abdoutony207's picture
update model card README.md
69d3286
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - un_multi
metrics:
  - bleu
model-index:
  - name: >-
      m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu1
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: un_multi
          type: un_multi
          args: ar-en
        metrics:
          - name: Bleu
            type: bleu
            value: 41.8577

m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu1

This model is a fine-tuned version of facebook/m2m100_418M on the un_multi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3603
  • Bleu: 41.8577
  • Meteor: 0.4199
  • Gen Len: 41.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 11
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Meteor Gen Len
5.111 0.5 100 3.2467 29.5017 0.3371 42.425
2.1491 1.0 200 1.0018 33.0563 0.3593 41.205
0.5911 1.5 300 0.4159 34.5818 0.3705 42.0625
0.3546 2.0 400 0.3723 36.6179 0.3823 40.925
0.2487 2.5 500 0.3595 39.0331 0.3956 41.56
0.2365 3.0 600 0.3485 39.5188 0.4023 41.6425
0.1687 3.5 700 0.3542 40.1728 0.4043 42.61
0.1791 4.0 800 0.3466 40.4858 0.4101 41.5575
0.1196 4.5 900 0.3493 41.2457 0.4123 41.755
0.1394 5.0 1000 0.3486 40.5606 0.4114 41.78
0.0958 5.5 1100 0.3568 41.1873 0.4157 41.7275
0.1043 6.0 1200 0.3557 41.2749 0.4165 41.935
0.073 6.5 1300 0.3603 41.8577 0.4199 41.9

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1