File size: 2,086 Bytes
43a39d1
 
 
 
f525ddd
63d4826
 
 
 
 
43a39d1
 
63d4826
 
 
 
 
f525ddd
 
 
63d4826
f525ddd
63d4826
 
 
f525ddd
63d4826
 
f525ddd
63d4826
 
f525ddd
63d4826
 
f525ddd
43a39d1
 
 
 
 
 
 
f525ddd
63d4826
f525ddd
 
 
 
 
43a39d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d4826
 
 
 
f525ddd
 
 
63d4826
 
43a39d1
 
 
63d4826
43a39d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wikiann
      type: wikiann
      config: es
      split: train
      args: es
    metrics:
    - name: Precision
      type: precision
      value: 0.8655875585178132
    - name: Recall
      type: recall
      value: 0.889079054604727
    - name: F1
      type: f1
      value: 0.8771760543561292
    - name: Accuracy
      type: accuracy
      value: 0.9432045651459472
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner

This model was trained from scratch on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2685
- Precision: 0.8656
- Recall: 0.8891
- F1: 0.8772
- Accuracy: 0.9432

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.245         | 1.0   | 2500 | 0.2470          | 0.8224    | 0.8577 | 0.8397 | 0.9303   |
| 0.1472        | 2.0   | 5000 | 0.2469          | 0.8651    | 0.8876 | 0.8762 | 0.9415   |
| 0.0965        | 3.0   | 7500 | 0.2685          | 0.8656    | 0.8891 | 0.8772 | 0.9432   |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2