|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: es |
|
split: train |
|
args: es |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8655875585178132 |
|
- name: Recall |
|
type: recall |
|
value: 0.889079054604727 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8771760543561292 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9432045651459472 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-ner |
|
|
|
This model was trained from scratch on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2685 |
|
- Precision: 0.8656 |
|
- Recall: 0.8891 |
|
- F1: 0.8772 |
|
- Accuracy: 0.9432 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.245 | 1.0 | 2500 | 0.2470 | 0.8224 | 0.8577 | 0.8397 | 0.9303 | |
|
| 0.1472 | 2.0 | 5000 | 0.2469 | 0.8651 | 0.8876 | 0.8762 | 0.9415 | |
|
| 0.0965 | 3.0 | 7500 | 0.2685 | 0.8656 | 0.8891 | 0.8772 | 0.9432 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|