metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ft-ms-layoutlmv3-funsd-layoutlmv3
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: funsd-layoutlmv3
type: funsd-layoutlmv3
config: funsd
split: test
args: funsd
metrics:
- name: Precision
type: precision
value: 0.89171974522293
- name: Recall
type: recall
value: 0.9041231992051664
- name: F1
type: f1
value: 0.8978786383818451
- name: Accuracy
type: accuracy
value: 0.8377510994888863
ft-ms-layoutlmv3-funsd-layoutlmv3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0021
- Precision: 0.8917
- Recall: 0.9041
- F1: 0.8979
- Accuracy: 0.8378
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 10.0 | 100 | 0.5222 | 0.8477 | 0.8823 | 0.8647 | 0.8436 |
No log | 20.0 | 200 | 0.6686 | 0.8736 | 0.9026 | 0.8879 | 0.8357 |
No log | 30.0 | 300 | 0.7175 | 0.8759 | 0.9151 | 0.8950 | 0.8286 |
No log | 40.0 | 400 | 0.7636 | 0.8832 | 0.8977 | 0.8904 | 0.8426 |
0.2392 | 50.0 | 500 | 0.9518 | 0.8820 | 0.9026 | 0.8922 | 0.8178 |
0.2392 | 60.0 | 600 | 0.9803 | 0.8771 | 0.8897 | 0.8834 | 0.8121 |
0.2392 | 70.0 | 700 | 1.0956 | 0.8883 | 0.9086 | 0.8983 | 0.8173 |
0.2392 | 80.0 | 800 | 0.9517 | 0.8930 | 0.9076 | 0.9002 | 0.8444 |
0.2392 | 90.0 | 900 | 1.0337 | 0.8950 | 0.9061 | 0.9005 | 0.8379 |
0.0083 | 100.0 | 1000 | 1.0021 | 0.8917 | 0.9041 | 0.8979 | 0.8378 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0