aisuko's picture
ft-ms-layoutlmv3-funsd-layoutlmv3
59ecd16
|
raw
history blame
2.95 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ft-ms-layoutlmv3-funsd-layoutlmv3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd-layoutlmv3
          type: funsd-layoutlmv3
          config: funsd
          split: test
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.89171974522293
          - name: Recall
            type: recall
            value: 0.9041231992051664
          - name: F1
            type: f1
            value: 0.8978786383818451
          - name: Accuracy
            type: accuracy
            value: 0.8377510994888863

ft-ms-layoutlmv3-funsd-layoutlmv3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0021
  • Precision: 0.8917
  • Recall: 0.9041
  • F1: 0.8979
  • Accuracy: 0.8378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 10.0 100 0.5222 0.8477 0.8823 0.8647 0.8436
No log 20.0 200 0.6686 0.8736 0.9026 0.8879 0.8357
No log 30.0 300 0.7175 0.8759 0.9151 0.8950 0.8286
No log 40.0 400 0.7636 0.8832 0.8977 0.8904 0.8426
0.2392 50.0 500 0.9518 0.8820 0.9026 0.8922 0.8178
0.2392 60.0 600 0.9803 0.8771 0.8897 0.8834 0.8121
0.2392 70.0 700 1.0956 0.8883 0.9086 0.8983 0.8173
0.2392 80.0 800 0.9517 0.8930 0.9076 0.9002 0.8444
0.2392 90.0 900 1.0337 0.8950 0.9061 0.9005 0.8379
0.0083 100.0 1000 1.0021 0.8917 0.9041 0.8979 0.8378

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0