SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6021 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2_replace_Whata_repetition_with_noPropaganda_SetFit")
# Run inference
preds = model("Columbus police are investigating the shootings.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 23.1093 | 129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.3592 | - |
0.0121 | 50 | 0.2852 | - |
0.0243 | 100 | 0.2694 | - |
0.0364 | 150 | 0.2182 | - |
0.0486 | 200 | 0.2224 | - |
0.0607 | 250 | 0.2634 | - |
0.0729 | 300 | 0.2431 | - |
0.0850 | 350 | 0.2286 | - |
0.0971 | 400 | 0.197 | - |
0.1093 | 450 | 0.2466 | - |
0.1214 | 500 | 0.2374 | - |
0.1336 | 550 | 0.2134 | - |
0.1457 | 600 | 0.2092 | - |
0.1578 | 650 | 0.1987 | - |
0.1700 | 700 | 0.2288 | - |
0.1821 | 750 | 0.1562 | - |
0.1943 | 800 | 0.27 | - |
0.2064 | 850 | 0.1314 | - |
0.2186 | 900 | 0.2144 | - |
0.2307 | 950 | 0.184 | - |
0.2428 | 1000 | 0.2069 | - |
0.2550 | 1050 | 0.1773 | - |
0.2671 | 1100 | 0.0704 | - |
0.2793 | 1150 | 0.1139 | - |
0.2914 | 1200 | 0.2398 | - |
0.3035 | 1250 | 0.0672 | - |
0.3157 | 1300 | 0.1321 | - |
0.3278 | 1350 | 0.0803 | - |
0.3400 | 1400 | 0.0589 | - |
0.3521 | 1450 | 0.0428 | - |
0.3643 | 1500 | 0.0886 | - |
0.3764 | 1550 | 0.0839 | - |
0.3885 | 1600 | 0.1843 | - |
0.4007 | 1650 | 0.0375 | - |
0.4128 | 1700 | 0.114 | - |
0.4250 | 1750 | 0.1264 | - |
0.4371 | 1800 | 0.0585 | - |
0.4492 | 1850 | 0.0586 | - |
0.4614 | 1900 | 0.0805 | - |
0.4735 | 1950 | 0.0686 | - |
0.4857 | 2000 | 0.0684 | - |
0.4978 | 2050 | 0.0803 | - |
0.5100 | 2100 | 0.076 | - |
0.5221 | 2150 | 0.0888 | - |
0.5342 | 2200 | 0.1091 | - |
0.5464 | 2250 | 0.038 | - |
0.5585 | 2300 | 0.0674 | - |
0.5707 | 2350 | 0.0562 | - |
0.5828 | 2400 | 0.0603 | - |
0.5949 | 2450 | 0.0669 | - |
0.6071 | 2500 | 0.0829 | - |
0.6192 | 2550 | 0.1442 | - |
0.6314 | 2600 | 0.0914 | - |
0.6435 | 2650 | 0.0357 | - |
0.6557 | 2700 | 0.0546 | - |
0.6678 | 2750 | 0.0748 | - |
0.6799 | 2800 | 0.0149 | - |
0.6921 | 2850 | 0.1067 | - |
0.7042 | 2900 | 0.0054 | - |
0.7164 | 2950 | 0.0878 | - |
0.7285 | 3000 | 0.0385 | - |
0.7407 | 3050 | 0.036 | - |
0.7528 | 3100 | 0.0902 | - |
0.7649 | 3150 | 0.0734 | - |
0.7771 | 3200 | 0.0369 | - |
0.7892 | 3250 | 0.0031 | - |
0.8014 | 3300 | 0.0113 | - |
0.8135 | 3350 | 0.0862 | - |
0.8256 | 3400 | 0.0549 | - |
0.8378 | 3450 | 0.0104 | - |
0.8499 | 3500 | 0.0072 | - |
0.8621 | 3550 | 0.0546 | - |
0.8742 | 3600 | 0.0579 | - |
0.8864 | 3650 | 0.0789 | - |
0.8985 | 3700 | 0.0711 | - |
0.9106 | 3750 | 0.0361 | - |
0.9228 | 3800 | 0.0292 | - |
0.9349 | 3850 | 0.0121 | - |
0.9471 | 3900 | 0.0066 | - |
0.9592 | 3950 | 0.0091 | - |
0.9713 | 4000 | 0.0027 | - |
0.9835 | 4050 | 0.0891 | - |
0.9956 | 4100 | 0.0186 | - |
1.0 | 4118 | - | 0.2746 |
1.0078 | 4150 | 0.0246 | - |
1.0199 | 4200 | 0.0154 | - |
1.0321 | 4250 | 0.0056 | - |
1.0442 | 4300 | 0.0343 | - |
1.0563 | 4350 | 0.0375 | - |
1.0685 | 4400 | 0.0106 | - |
1.0806 | 4450 | 0.0025 | - |
1.0928 | 4500 | 0.0425 | - |
1.1049 | 4550 | 0.0019 | - |
1.1170 | 4600 | 0.0014 | - |
1.1292 | 4650 | 0.0883 | - |
1.1413 | 4700 | 0.0176 | - |
1.1535 | 4750 | 0.0204 | - |
1.1656 | 4800 | 0.0011 | - |
1.1778 | 4850 | 0.005 | - |
1.1899 | 4900 | 0.0238 | - |
1.2020 | 4950 | 0.0362 | - |
1.2142 | 5000 | 0.0219 | - |
1.2263 | 5050 | 0.0487 | - |
1.2385 | 5100 | 0.0609 | - |
1.2506 | 5150 | 0.0464 | - |
1.2627 | 5200 | 0.0033 | - |
1.2749 | 5250 | 0.0087 | - |
1.2870 | 5300 | 0.0101 | - |
1.2992 | 5350 | 0.0529 | - |
1.3113 | 5400 | 0.0243 | - |
1.3235 | 5450 | 0.001 | - |
1.3356 | 5500 | 0.0102 | - |
1.3477 | 5550 | 0.0047 | - |
1.3599 | 5600 | 0.0034 | - |
1.3720 | 5650 | 0.0118 | - |
1.3842 | 5700 | 0.0742 | - |
1.3963 | 5750 | 0.0538 | - |
1.4085 | 5800 | 0.0162 | - |
1.4206 | 5850 | 0.0079 | - |
1.4327 | 5900 | 0.0027 | - |
1.4449 | 5950 | 0.0035 | - |
1.4570 | 6000 | 0.0581 | - |
1.4692 | 6050 | 0.0813 | - |
1.4813 | 6100 | 0.0339 | - |
1.4934 | 6150 | 0.0312 | - |
1.5056 | 6200 | 0.0323 | - |
1.5177 | 6250 | 0.0521 | - |
1.5299 | 6300 | 0.0016 | - |
1.5420 | 6350 | 0.0009 | - |
1.5542 | 6400 | 0.0967 | - |
1.5663 | 6450 | 0.0009 | - |
1.5784 | 6500 | 0.031 | - |
1.5906 | 6550 | 0.0114 | - |
1.6027 | 6600 | 0.0599 | - |
1.6149 | 6650 | 0.0416 | - |
1.6270 | 6700 | 0.0047 | - |
1.6391 | 6750 | 0.0234 | - |
1.6513 | 6800 | 0.0609 | - |
1.6634 | 6850 | 0.022 | - |
1.6756 | 6900 | 0.0042 | - |
1.6877 | 6950 | 0.0336 | - |
1.6999 | 7000 | 0.0592 | - |
1.7120 | 7050 | 0.0536 | - |
1.7241 | 7100 | 0.1198 | - |
1.7363 | 7150 | 0.1035 | - |
1.7484 | 7200 | 0.0549 | - |
1.7606 | 7250 | 0.027 | - |
1.7727 | 7300 | 0.0251 | - |
1.7848 | 7350 | 0.0225 | - |
1.7970 | 7400 | 0.0027 | - |
1.8091 | 7450 | 0.0309 | - |
1.8213 | 7500 | 0.024 | - |
1.8334 | 7550 | 0.0355 | - |
1.8456 | 7600 | 0.0239 | - |
1.8577 | 7650 | 0.0377 | - |
1.8698 | 7700 | 0.012 | - |
1.8820 | 7750 | 0.0233 | - |
1.8941 | 7800 | 0.0184 | - |
1.9063 | 7850 | 0.0022 | - |
1.9184 | 7900 | 0.0043 | - |
1.9305 | 7950 | 0.014 | - |
1.9427 | 8000 | 0.0083 | - |
1.9548 | 8050 | 0.0084 | - |
1.9670 | 8100 | 0.0009 | - |
1.9791 | 8150 | 0.002 | - |
1.9913 | 8200 | 0.0002 | - |
2.0 | 8236 | - | 0.2768 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference API (serverless) has been turned off for this model.