anismahmahi's picture
Add SetFit model
e5b6a25
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      Fox News, The Washington Post, NBC News, The Associated Press and the Los
      Angeles Times are among the entities that have said they will file amicus
      briefs on behalf of CNN.
  - text: >
      Tommy Robinson is in prison today because he violated a court order
      demanding that he not film videos outside the trials of Muslim rape gangs.
  - text: >-
      As I wrote during the presidential campaign, Trump has no idea of
      Washington and no idea who to appoint who would support him rather than
      work against him.
  - text: >-
      IN MAY 2013, the Washington Post’s Greg Miller reported that the head of
      the CIA’s clandestine service was being shifted out of that position as a
      result of “a management shake-up” by then-Director John Brennan.
  - text: Columbus police are investigating the shootings.
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.602089552238806
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.6021

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2_replace_Whata_repetition_with_noPropaganda_SetFit")
# Run inference
preds = model("Columbus police are investigating the shootings.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 23.1093 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0002 1 0.3592 -
0.0121 50 0.2852 -
0.0243 100 0.2694 -
0.0364 150 0.2182 -
0.0486 200 0.2224 -
0.0607 250 0.2634 -
0.0729 300 0.2431 -
0.0850 350 0.2286 -
0.0971 400 0.197 -
0.1093 450 0.2466 -
0.1214 500 0.2374 -
0.1336 550 0.2134 -
0.1457 600 0.2092 -
0.1578 650 0.1987 -
0.1700 700 0.2288 -
0.1821 750 0.1562 -
0.1943 800 0.27 -
0.2064 850 0.1314 -
0.2186 900 0.2144 -
0.2307 950 0.184 -
0.2428 1000 0.2069 -
0.2550 1050 0.1773 -
0.2671 1100 0.0704 -
0.2793 1150 0.1139 -
0.2914 1200 0.2398 -
0.3035 1250 0.0672 -
0.3157 1300 0.1321 -
0.3278 1350 0.0803 -
0.3400 1400 0.0589 -
0.3521 1450 0.0428 -
0.3643 1500 0.0886 -
0.3764 1550 0.0839 -
0.3885 1600 0.1843 -
0.4007 1650 0.0375 -
0.4128 1700 0.114 -
0.4250 1750 0.1264 -
0.4371 1800 0.0585 -
0.4492 1850 0.0586 -
0.4614 1900 0.0805 -
0.4735 1950 0.0686 -
0.4857 2000 0.0684 -
0.4978 2050 0.0803 -
0.5100 2100 0.076 -
0.5221 2150 0.0888 -
0.5342 2200 0.1091 -
0.5464 2250 0.038 -
0.5585 2300 0.0674 -
0.5707 2350 0.0562 -
0.5828 2400 0.0603 -
0.5949 2450 0.0669 -
0.6071 2500 0.0829 -
0.6192 2550 0.1442 -
0.6314 2600 0.0914 -
0.6435 2650 0.0357 -
0.6557 2700 0.0546 -
0.6678 2750 0.0748 -
0.6799 2800 0.0149 -
0.6921 2850 0.1067 -
0.7042 2900 0.0054 -
0.7164 2950 0.0878 -
0.7285 3000 0.0385 -
0.7407 3050 0.036 -
0.7528 3100 0.0902 -
0.7649 3150 0.0734 -
0.7771 3200 0.0369 -
0.7892 3250 0.0031 -
0.8014 3300 0.0113 -
0.8135 3350 0.0862 -
0.8256 3400 0.0549 -
0.8378 3450 0.0104 -
0.8499 3500 0.0072 -
0.8621 3550 0.0546 -
0.8742 3600 0.0579 -
0.8864 3650 0.0789 -
0.8985 3700 0.0711 -
0.9106 3750 0.0361 -
0.9228 3800 0.0292 -
0.9349 3850 0.0121 -
0.9471 3900 0.0066 -
0.9592 3950 0.0091 -
0.9713 4000 0.0027 -
0.9835 4050 0.0891 -
0.9956 4100 0.0186 -
1.0 4118 - 0.2746
1.0078 4150 0.0246 -
1.0199 4200 0.0154 -
1.0321 4250 0.0056 -
1.0442 4300 0.0343 -
1.0563 4350 0.0375 -
1.0685 4400 0.0106 -
1.0806 4450 0.0025 -
1.0928 4500 0.0425 -
1.1049 4550 0.0019 -
1.1170 4600 0.0014 -
1.1292 4650 0.0883 -
1.1413 4700 0.0176 -
1.1535 4750 0.0204 -
1.1656 4800 0.0011 -
1.1778 4850 0.005 -
1.1899 4900 0.0238 -
1.2020 4950 0.0362 -
1.2142 5000 0.0219 -
1.2263 5050 0.0487 -
1.2385 5100 0.0609 -
1.2506 5150 0.0464 -
1.2627 5200 0.0033 -
1.2749 5250 0.0087 -
1.2870 5300 0.0101 -
1.2992 5350 0.0529 -
1.3113 5400 0.0243 -
1.3235 5450 0.001 -
1.3356 5500 0.0102 -
1.3477 5550 0.0047 -
1.3599 5600 0.0034 -
1.3720 5650 0.0118 -
1.3842 5700 0.0742 -
1.3963 5750 0.0538 -
1.4085 5800 0.0162 -
1.4206 5850 0.0079 -
1.4327 5900 0.0027 -
1.4449 5950 0.0035 -
1.4570 6000 0.0581 -
1.4692 6050 0.0813 -
1.4813 6100 0.0339 -
1.4934 6150 0.0312 -
1.5056 6200 0.0323 -
1.5177 6250 0.0521 -
1.5299 6300 0.0016 -
1.5420 6350 0.0009 -
1.5542 6400 0.0967 -
1.5663 6450 0.0009 -
1.5784 6500 0.031 -
1.5906 6550 0.0114 -
1.6027 6600 0.0599 -
1.6149 6650 0.0416 -
1.6270 6700 0.0047 -
1.6391 6750 0.0234 -
1.6513 6800 0.0609 -
1.6634 6850 0.022 -
1.6756 6900 0.0042 -
1.6877 6950 0.0336 -
1.6999 7000 0.0592 -
1.7120 7050 0.0536 -
1.7241 7100 0.1198 -
1.7363 7150 0.1035 -
1.7484 7200 0.0549 -
1.7606 7250 0.027 -
1.7727 7300 0.0251 -
1.7848 7350 0.0225 -
1.7970 7400 0.0027 -
1.8091 7450 0.0309 -
1.8213 7500 0.024 -
1.8334 7550 0.0355 -
1.8456 7600 0.0239 -
1.8577 7650 0.0377 -
1.8698 7700 0.012 -
1.8820 7750 0.0233 -
1.8941 7800 0.0184 -
1.9063 7850 0.0022 -
1.9184 7900 0.0043 -
1.9305 7950 0.014 -
1.9427 8000 0.0083 -
1.9548 8050 0.0084 -
1.9670 8100 0.0009 -
1.9791 8150 0.002 -
1.9913 8200 0.0002 -
2.0 8236 - 0.2768
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}