|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: Fox News, The Washington Post, NBC News, The Associated Press and the Los |
|
Angeles Times are among the entities that have said they will file amicus briefs |
|
on behalf of CNN. |
|
- text: 'Tommy Robinson is in prison today because he violated a court order demanding |
|
that he not film videos outside the trials of Muslim rape gangs. |
|
|
|
' |
|
- text: As I wrote during the presidential campaign, Trump has no idea of Washington |
|
and no idea who to appoint who would support him rather than work against him. |
|
- text: IN MAY 2013, the Washington Post’s Greg Miller reported that the head of the |
|
CIA’s clandestine service was being shifted out of that position as a result of |
|
“a management shake-up” by then-Director John Brennan. |
|
- text: Columbus police are investigating the shootings. |
|
pipeline_tag: text-classification |
|
inference: false |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.602089552238806 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a OneVsRestClassifier instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
<!-- - **Number of Classes:** Unknown --> |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.6021 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("anismahmahi/G2_replace_Whata_repetition_with_noPropaganda_SetFit") |
|
# Run inference |
|
preds = model("Columbus police are investigating the shootings.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 23.1093 | 129 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 10 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:--------:|:-------------:|:---------------:| |
|
| 0.0002 | 1 | 0.3592 | - | |
|
| 0.0121 | 50 | 0.2852 | - | |
|
| 0.0243 | 100 | 0.2694 | - | |
|
| 0.0364 | 150 | 0.2182 | - | |
|
| 0.0486 | 200 | 0.2224 | - | |
|
| 0.0607 | 250 | 0.2634 | - | |
|
| 0.0729 | 300 | 0.2431 | - | |
|
| 0.0850 | 350 | 0.2286 | - | |
|
| 0.0971 | 400 | 0.197 | - | |
|
| 0.1093 | 450 | 0.2466 | - | |
|
| 0.1214 | 500 | 0.2374 | - | |
|
| 0.1336 | 550 | 0.2134 | - | |
|
| 0.1457 | 600 | 0.2092 | - | |
|
| 0.1578 | 650 | 0.1987 | - | |
|
| 0.1700 | 700 | 0.2288 | - | |
|
| 0.1821 | 750 | 0.1562 | - | |
|
| 0.1943 | 800 | 0.27 | - | |
|
| 0.2064 | 850 | 0.1314 | - | |
|
| 0.2186 | 900 | 0.2144 | - | |
|
| 0.2307 | 950 | 0.184 | - | |
|
| 0.2428 | 1000 | 0.2069 | - | |
|
| 0.2550 | 1050 | 0.1773 | - | |
|
| 0.2671 | 1100 | 0.0704 | - | |
|
| 0.2793 | 1150 | 0.1139 | - | |
|
| 0.2914 | 1200 | 0.2398 | - | |
|
| 0.3035 | 1250 | 0.0672 | - | |
|
| 0.3157 | 1300 | 0.1321 | - | |
|
| 0.3278 | 1350 | 0.0803 | - | |
|
| 0.3400 | 1400 | 0.0589 | - | |
|
| 0.3521 | 1450 | 0.0428 | - | |
|
| 0.3643 | 1500 | 0.0886 | - | |
|
| 0.3764 | 1550 | 0.0839 | - | |
|
| 0.3885 | 1600 | 0.1843 | - | |
|
| 0.4007 | 1650 | 0.0375 | - | |
|
| 0.4128 | 1700 | 0.114 | - | |
|
| 0.4250 | 1750 | 0.1264 | - | |
|
| 0.4371 | 1800 | 0.0585 | - | |
|
| 0.4492 | 1850 | 0.0586 | - | |
|
| 0.4614 | 1900 | 0.0805 | - | |
|
| 0.4735 | 1950 | 0.0686 | - | |
|
| 0.4857 | 2000 | 0.0684 | - | |
|
| 0.4978 | 2050 | 0.0803 | - | |
|
| 0.5100 | 2100 | 0.076 | - | |
|
| 0.5221 | 2150 | 0.0888 | - | |
|
| 0.5342 | 2200 | 0.1091 | - | |
|
| 0.5464 | 2250 | 0.038 | - | |
|
| 0.5585 | 2300 | 0.0674 | - | |
|
| 0.5707 | 2350 | 0.0562 | - | |
|
| 0.5828 | 2400 | 0.0603 | - | |
|
| 0.5949 | 2450 | 0.0669 | - | |
|
| 0.6071 | 2500 | 0.0829 | - | |
|
| 0.6192 | 2550 | 0.1442 | - | |
|
| 0.6314 | 2600 | 0.0914 | - | |
|
| 0.6435 | 2650 | 0.0357 | - | |
|
| 0.6557 | 2700 | 0.0546 | - | |
|
| 0.6678 | 2750 | 0.0748 | - | |
|
| 0.6799 | 2800 | 0.0149 | - | |
|
| 0.6921 | 2850 | 0.1067 | - | |
|
| 0.7042 | 2900 | 0.0054 | - | |
|
| 0.7164 | 2950 | 0.0878 | - | |
|
| 0.7285 | 3000 | 0.0385 | - | |
|
| 0.7407 | 3050 | 0.036 | - | |
|
| 0.7528 | 3100 | 0.0902 | - | |
|
| 0.7649 | 3150 | 0.0734 | - | |
|
| 0.7771 | 3200 | 0.0369 | - | |
|
| 0.7892 | 3250 | 0.0031 | - | |
|
| 0.8014 | 3300 | 0.0113 | - | |
|
| 0.8135 | 3350 | 0.0862 | - | |
|
| 0.8256 | 3400 | 0.0549 | - | |
|
| 0.8378 | 3450 | 0.0104 | - | |
|
| 0.8499 | 3500 | 0.0072 | - | |
|
| 0.8621 | 3550 | 0.0546 | - | |
|
| 0.8742 | 3600 | 0.0579 | - | |
|
| 0.8864 | 3650 | 0.0789 | - | |
|
| 0.8985 | 3700 | 0.0711 | - | |
|
| 0.9106 | 3750 | 0.0361 | - | |
|
| 0.9228 | 3800 | 0.0292 | - | |
|
| 0.9349 | 3850 | 0.0121 | - | |
|
| 0.9471 | 3900 | 0.0066 | - | |
|
| 0.9592 | 3950 | 0.0091 | - | |
|
| 0.9713 | 4000 | 0.0027 | - | |
|
| 0.9835 | 4050 | 0.0891 | - | |
|
| 0.9956 | 4100 | 0.0186 | - | |
|
| **1.0** | **4118** | **-** | **0.2746** | |
|
| 1.0078 | 4150 | 0.0246 | - | |
|
| 1.0199 | 4200 | 0.0154 | - | |
|
| 1.0321 | 4250 | 0.0056 | - | |
|
| 1.0442 | 4300 | 0.0343 | - | |
|
| 1.0563 | 4350 | 0.0375 | - | |
|
| 1.0685 | 4400 | 0.0106 | - | |
|
| 1.0806 | 4450 | 0.0025 | - | |
|
| 1.0928 | 4500 | 0.0425 | - | |
|
| 1.1049 | 4550 | 0.0019 | - | |
|
| 1.1170 | 4600 | 0.0014 | - | |
|
| 1.1292 | 4650 | 0.0883 | - | |
|
| 1.1413 | 4700 | 0.0176 | - | |
|
| 1.1535 | 4750 | 0.0204 | - | |
|
| 1.1656 | 4800 | 0.0011 | - | |
|
| 1.1778 | 4850 | 0.005 | - | |
|
| 1.1899 | 4900 | 0.0238 | - | |
|
| 1.2020 | 4950 | 0.0362 | - | |
|
| 1.2142 | 5000 | 0.0219 | - | |
|
| 1.2263 | 5050 | 0.0487 | - | |
|
| 1.2385 | 5100 | 0.0609 | - | |
|
| 1.2506 | 5150 | 0.0464 | - | |
|
| 1.2627 | 5200 | 0.0033 | - | |
|
| 1.2749 | 5250 | 0.0087 | - | |
|
| 1.2870 | 5300 | 0.0101 | - | |
|
| 1.2992 | 5350 | 0.0529 | - | |
|
| 1.3113 | 5400 | 0.0243 | - | |
|
| 1.3235 | 5450 | 0.001 | - | |
|
| 1.3356 | 5500 | 0.0102 | - | |
|
| 1.3477 | 5550 | 0.0047 | - | |
|
| 1.3599 | 5600 | 0.0034 | - | |
|
| 1.3720 | 5650 | 0.0118 | - | |
|
| 1.3842 | 5700 | 0.0742 | - | |
|
| 1.3963 | 5750 | 0.0538 | - | |
|
| 1.4085 | 5800 | 0.0162 | - | |
|
| 1.4206 | 5850 | 0.0079 | - | |
|
| 1.4327 | 5900 | 0.0027 | - | |
|
| 1.4449 | 5950 | 0.0035 | - | |
|
| 1.4570 | 6000 | 0.0581 | - | |
|
| 1.4692 | 6050 | 0.0813 | - | |
|
| 1.4813 | 6100 | 0.0339 | - | |
|
| 1.4934 | 6150 | 0.0312 | - | |
|
| 1.5056 | 6200 | 0.0323 | - | |
|
| 1.5177 | 6250 | 0.0521 | - | |
|
| 1.5299 | 6300 | 0.0016 | - | |
|
| 1.5420 | 6350 | 0.0009 | - | |
|
| 1.5542 | 6400 | 0.0967 | - | |
|
| 1.5663 | 6450 | 0.0009 | - | |
|
| 1.5784 | 6500 | 0.031 | - | |
|
| 1.5906 | 6550 | 0.0114 | - | |
|
| 1.6027 | 6600 | 0.0599 | - | |
|
| 1.6149 | 6650 | 0.0416 | - | |
|
| 1.6270 | 6700 | 0.0047 | - | |
|
| 1.6391 | 6750 | 0.0234 | - | |
|
| 1.6513 | 6800 | 0.0609 | - | |
|
| 1.6634 | 6850 | 0.022 | - | |
|
| 1.6756 | 6900 | 0.0042 | - | |
|
| 1.6877 | 6950 | 0.0336 | - | |
|
| 1.6999 | 7000 | 0.0592 | - | |
|
| 1.7120 | 7050 | 0.0536 | - | |
|
| 1.7241 | 7100 | 0.1198 | - | |
|
| 1.7363 | 7150 | 0.1035 | - | |
|
| 1.7484 | 7200 | 0.0549 | - | |
|
| 1.7606 | 7250 | 0.027 | - | |
|
| 1.7727 | 7300 | 0.0251 | - | |
|
| 1.7848 | 7350 | 0.0225 | - | |
|
| 1.7970 | 7400 | 0.0027 | - | |
|
| 1.8091 | 7450 | 0.0309 | - | |
|
| 1.8213 | 7500 | 0.024 | - | |
|
| 1.8334 | 7550 | 0.0355 | - | |
|
| 1.8456 | 7600 | 0.0239 | - | |
|
| 1.8577 | 7650 | 0.0377 | - | |
|
| 1.8698 | 7700 | 0.012 | - | |
|
| 1.8820 | 7750 | 0.0233 | - | |
|
| 1.8941 | 7800 | 0.0184 | - | |
|
| 1.9063 | 7850 | 0.0022 | - | |
|
| 1.9184 | 7900 | 0.0043 | - | |
|
| 1.9305 | 7950 | 0.014 | - | |
|
| 1.9427 | 8000 | 0.0083 | - | |
|
| 1.9548 | 8050 | 0.0084 | - | |
|
| 1.9670 | 8100 | 0.0009 | - | |
|
| 1.9791 | 8150 | 0.002 | - | |
|
| 1.9913 | 8200 | 0.0002 | - | |
|
| 2.0 | 8236 | - | 0.2768 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |