sulaimank's picture
End of training
4770f0d verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: lg_ug
          split: test
          args: lg_ug
        metrics:
          - name: Wer
            type: wer
            value: 0.4098153547133139

mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1

This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2897
  • Wer: 0.4098
  • Cer: 0.0743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.3203 1.0 7125 0.3178 0.4156 0.0762
0.2149 2.0 14250 0.3008 0.4194 0.0759
0.2093 3.0 21375 0.3015 0.4017 0.0743
0.2064 4.0 28500 0.3043 0.4114 0.0745
0.2042 5.0 35625 0.2955 0.4069 0.0753
0.2022 6.0 42750 0.3009 0.4088 0.0750
0.1989 7.0 49875 0.3088 0.4092 0.0756
0.1983 8.0 57000 0.2980 0.4081 0.0754
0.1969 9.0 64125 0.2951 0.4040 0.0741
0.1957 10.0 71250 0.2899 0.4039 0.0745
0.1945 11.0 78375 0.2896 0.4083 0.0744
0.1936 12.0 85500 0.2931 0.4038 0.0743
0.1929 13.0 92625 0.2897 0.4098 0.0743

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3