|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- crows_pairs |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: multiberts-seed_0_crows_pairs_classifieronly |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: crows_pairs |
|
type: crows_pairs |
|
config: crows_pairs |
|
split: test |
|
args: crows_pairs |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5132450331125827 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multiberts-seed_0_crows_pairs_classifieronly |
|
|
|
This model is a fine-tuned version of [google/multiberts-seed_0](https://huggingface.co/google/multiberts-seed_0) on the crows_pairs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6940 |
|
- Accuracy: 0.5132 |
|
- Tp: 0.0695 |
|
- Tn: 0.4437 |
|
- Fp: 0.0199 |
|
- Fn: 0.4669 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:| |
|
| 0.7145 | 1.05 | 20 | 0.6927 | 0.5166 | 0.4172 | 0.0993 | 0.3642 | 0.1192 | |
|
| 0.7091 | 2.11 | 40 | 0.6916 | 0.5166 | 0.4967 | 0.0199 | 0.4437 | 0.0397 | |
|
| 0.7005 | 3.16 | 60 | 0.6943 | 0.4702 | 0.1854 | 0.2848 | 0.1788 | 0.3510 | |
|
| 0.7106 | 4.21 | 80 | 0.6976 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 | |
|
| 0.7038 | 5.26 | 100 | 0.6933 | 0.5132 | 0.3411 | 0.1722 | 0.2914 | 0.1954 | |
|
| 0.7012 | 6.32 | 120 | 0.6974 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 | |
|
| 0.7 | 7.37 | 140 | 0.6918 | 0.5199 | 0.4768 | 0.0430 | 0.4205 | 0.0596 | |
|
| 0.7082 | 8.42 | 160 | 0.6960 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 | |
|
| 0.699 | 9.47 | 180 | 0.6936 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 | |
|
| 0.7004 | 10.53 | 200 | 0.7043 | 0.4636 | 0.0 | 0.4636 | 0.0 | 0.5364 | |
|
| 0.6948 | 11.58 | 220 | 0.6907 | 0.5232 | 0.5199 | 0.0033 | 0.4603 | 0.0166 | |
|
| 0.7132 | 12.63 | 240 | 0.6979 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 | |
|
| 0.7062 | 13.68 | 260 | 0.6930 | 0.5232 | 0.3444 | 0.1788 | 0.2848 | 0.1921 | |
|
| 0.6983 | 14.74 | 280 | 0.6966 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 | |
|
| 0.6996 | 15.79 | 300 | 0.6927 | 0.5265 | 0.3742 | 0.1523 | 0.3113 | 0.1623 | |
|
| 0.7039 | 16.84 | 320 | 0.6972 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 | |
|
| 0.6862 | 17.89 | 340 | 0.6914 | 0.5232 | 0.4967 | 0.0265 | 0.4371 | 0.0397 | |
|
| 0.6943 | 18.95 | 360 | 0.6947 | 0.4934 | 0.0430 | 0.4503 | 0.0132 | 0.4934 | |
|
| 0.7063 | 20.0 | 380 | 0.6907 | 0.5232 | 0.5199 | 0.0033 | 0.4603 | 0.0166 | |
|
| 0.7087 | 21.05 | 400 | 0.6947 | 0.4834 | 0.0331 | 0.4503 | 0.0132 | 0.5033 | |
|
| 0.7033 | 22.11 | 420 | 0.6945 | 0.4934 | 0.0464 | 0.4470 | 0.0166 | 0.4901 | |
|
| 0.7025 | 23.16 | 440 | 0.6934 | 0.4967 | 0.2185 | 0.2781 | 0.1854 | 0.3179 | |
|
| 0.7035 | 24.21 | 460 | 0.6944 | 0.5033 | 0.0563 | 0.4470 | 0.0166 | 0.4801 | |
|
| 0.6958 | 25.26 | 480 | 0.6941 | 0.5199 | 0.0795 | 0.4404 | 0.0232 | 0.4570 | |
|
| 0.6955 | 26.32 | 500 | 0.6946 | 0.4868 | 0.0364 | 0.4503 | 0.0132 | 0.5 | |
|
| 0.7046 | 27.37 | 520 | 0.6932 | 0.5199 | 0.2715 | 0.2483 | 0.2152 | 0.2649 | |
|
| 0.6955 | 28.42 | 540 | 0.6954 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 | |
|
| 0.7095 | 29.47 | 560 | 0.6961 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 | |
|
| 0.6953 | 30.53 | 580 | 0.6919 | 0.5132 | 0.4371 | 0.0762 | 0.3874 | 0.0993 | |
|
| 0.7124 | 31.58 | 600 | 0.6946 | 0.4834 | 0.0331 | 0.4503 | 0.0132 | 0.5033 | |
|
| 0.6929 | 32.63 | 620 | 0.6936 | 0.5265 | 0.1457 | 0.3808 | 0.0828 | 0.3907 | |
|
| 0.7103 | 33.68 | 640 | 0.6926 | 0.5265 | 0.3477 | 0.1788 | 0.2848 | 0.1887 | |
|
| 0.6993 | 34.74 | 660 | 0.6937 | 0.5166 | 0.1192 | 0.3974 | 0.0662 | 0.4172 | |
|
| 0.6975 | 35.79 | 680 | 0.6936 | 0.5199 | 0.1291 | 0.3907 | 0.0728 | 0.4073 | |
|
| 0.6935 | 36.84 | 700 | 0.6937 | 0.5199 | 0.1026 | 0.4172 | 0.0464 | 0.4338 | |
|
| 0.7039 | 37.89 | 720 | 0.6925 | 0.5232 | 0.3642 | 0.1589 | 0.3046 | 0.1722 | |
|
| 0.6999 | 38.95 | 740 | 0.6941 | 0.5099 | 0.0662 | 0.4437 | 0.0199 | 0.4702 | |
|
| 0.6965 | 40.0 | 760 | 0.6948 | 0.4735 | 0.0166 | 0.4570 | 0.0066 | 0.5199 | |
|
| 0.7039 | 41.05 | 780 | 0.6944 | 0.4934 | 0.0430 | 0.4503 | 0.0132 | 0.4934 | |
|
| 0.7026 | 42.11 | 800 | 0.6939 | 0.5199 | 0.0795 | 0.4404 | 0.0232 | 0.4570 | |
|
| 0.7072 | 43.16 | 820 | 0.6930 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 | |
|
| 0.7064 | 44.21 | 840 | 0.6930 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 | |
|
| 0.6982 | 45.26 | 860 | 0.6933 | 0.5199 | 0.2119 | 0.3079 | 0.1556 | 0.3245 | |
|
| 0.6921 | 46.32 | 880 | 0.6935 | 0.5232 | 0.1490 | 0.3742 | 0.0894 | 0.3874 | |
|
| 0.6983 | 47.37 | 900 | 0.6939 | 0.5199 | 0.0762 | 0.4437 | 0.0199 | 0.4603 | |
|
| 0.6938 | 48.42 | 920 | 0.6940 | 0.5132 | 0.0695 | 0.4437 | 0.0199 | 0.4669 | |
|
| 0.6984 | 49.47 | 940 | 0.6940 | 0.5132 | 0.0695 | 0.4437 | 0.0199 | 0.4669 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|