avurity's picture
update model card README.md
e3a9a1e
|
raw
history blame
6.53 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - generated
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-invoice
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: generated
          type: generated
          config: sroie
          split: test
          args: sroie
        metrics:
          - name: Precision
            type: precision
            value: 1
          - name: Recall
            type: recall
            value: 1
          - name: F1
            type: f1
            value: 1
          - name: Accuracy
            type: accuracy
            value: 1

layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0014
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.0766 0.97 0.9838 0.9768 0.9968
No log 4.0 200 0.0214 0.972 0.9858 0.9789 0.9971
No log 6.0 300 0.0157 0.972 0.9858 0.9789 0.9971
No log 8.0 400 0.0142 0.972 0.9858 0.9789 0.9971
0.1264 10.0 500 0.0129 0.972 0.9858 0.9789 0.9971
0.1264 12.0 600 0.0118 0.972 0.9858 0.9789 0.9971
0.1264 14.0 700 0.0038 0.9980 0.9959 0.9970 0.9996
0.1264 16.0 800 0.0020 1.0 1.0 1.0 1.0
0.1264 18.0 900 0.0016 1.0 1.0 1.0 1.0
0.0064 20.0 1000 0.0014 1.0 1.0 1.0 1.0
0.0064 22.0 1100 0.0012 1.0 1.0 1.0 1.0
0.0064 24.0 1200 0.0010 1.0 1.0 1.0 1.0
0.0064 26.0 1300 0.0009 1.0 1.0 1.0 1.0
0.0064 28.0 1400 0.0008 1.0 1.0 1.0 1.0
0.0018 30.0 1500 0.0008 1.0 1.0 1.0 1.0
0.0018 32.0 1600 0.0007 1.0 1.0 1.0 1.0
0.0018 34.0 1700 0.0006 1.0 1.0 1.0 1.0
0.0018 36.0 1800 0.0006 1.0 1.0 1.0 1.0
0.0018 38.0 1900 0.0005 1.0 1.0 1.0 1.0
0.0011 40.0 2000 0.0005 1.0 1.0 1.0 1.0
0.0011 42.0 2100 0.0005 1.0 1.0 1.0 1.0
0.0011 44.0 2200 0.0004 1.0 1.0 1.0 1.0
0.0011 46.0 2300 0.0004 1.0 1.0 1.0 1.0
0.0011 48.0 2400 0.0004 1.0 1.0 1.0 1.0
0.0008 50.0 2500 0.0004 1.0 1.0 1.0 1.0
0.0008 52.0 2600 0.0003 1.0 1.0 1.0 1.0
0.0008 54.0 2700 0.0003 1.0 1.0 1.0 1.0
0.0008 56.0 2800 0.0003 1.0 1.0 1.0 1.0
0.0008 58.0 2900 0.0003 1.0 1.0 1.0 1.0
0.0006 60.0 3000 0.0003 1.0 1.0 1.0 1.0
0.0006 62.0 3100 0.0003 1.0 1.0 1.0 1.0
0.0006 64.0 3200 0.0003 1.0 1.0 1.0 1.0
0.0006 66.0 3300 0.0002 1.0 1.0 1.0 1.0
0.0006 68.0 3400 0.0002 1.0 1.0 1.0 1.0
0.0005 70.0 3500 0.0002 1.0 1.0 1.0 1.0
0.0005 72.0 3600 0.0002 1.0 1.0 1.0 1.0
0.0005 74.0 3700 0.0002 1.0 1.0 1.0 1.0
0.0005 76.0 3800 0.0002 1.0 1.0 1.0 1.0
0.0005 78.0 3900 0.0002 1.0 1.0 1.0 1.0
0.0004 80.0 4000 0.0002 1.0 1.0 1.0 1.0
0.0004 82.0 4100 0.0002 1.0 1.0 1.0 1.0
0.0004 84.0 4200 0.0002 1.0 1.0 1.0 1.0
0.0004 86.0 4300 0.0002 1.0 1.0 1.0 1.0
0.0004 88.0 4400 0.0002 1.0 1.0 1.0 1.0
0.0003 90.0 4500 0.0002 1.0 1.0 1.0 1.0
0.0003 92.0 4600 0.0002 1.0 1.0 1.0 1.0
0.0003 94.0 4700 0.0002 1.0 1.0 1.0 1.0
0.0003 96.0 4800 0.0002 1.0 1.0 1.0 1.0
0.0003 98.0 4900 0.0002 1.0 1.0 1.0 1.0
0.0003 100.0 5000 0.0002 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3