bhadresh-savani's picture
Add evaluation results on emotion dataset (#1)
5268bc5
|
raw
history blame
3.98 kB
metadata
language:
  - en
thumbnail: >-
  https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
tags:
  - text-classification
  - emotion
  - pytorch
license: apache-2.0
datasets:
  - emotion
metrics:
  - Accuracy, F1 Score
model-index:
  - name: bhadresh-savani/bert-base-uncased-emotion
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: emotion
          type: emotion
          config: default
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9265
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.8859601677706858
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.9265
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.9265082039990273
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.879224648382427
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.9265
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.9265
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.8821398657055098
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.9265
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.9262425173620311
            verified: true
          - name: loss
            type: loss
            value: 0.17315374314785004
            verified: true

bert-base-uncased-emotion

Model description:

Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective

bert-base-uncased finetuned on the emotion dataset using HuggingFace Trainer with below training parameters

 learning rate 2e-5, 
 batch size 64,
 num_train_epochs=8,

Model Performance Comparision on Emotion Dataset from Twitter:

Model Accuracy F1 Score Test Sample per Second
Distilbert-base-uncased-emotion 93.8 93.79 398.69
Bert-base-uncased-emotion 94.05 94.06 190.152
Roberta-base-emotion 93.95 93.97 195.639
Albert-base-v2-emotion 93.6 93.65 182.794

How to Use the model:

from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/bert-base-uncased-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)

"""
output:
[[
{'label': 'sadness', 'score': 0.0005138228880241513}, 
{'label': 'joy', 'score': 0.9972520470619202}, 
{'label': 'love', 'score': 0.0007443308713845909}, 
{'label': 'anger', 'score': 0.0007404946954920888}, 
{'label': 'fear', 'score': 0.00032938539516180754}, 
{'label': 'surprise', 'score': 0.0004197491507511586}
]]
"""

Dataset:

Twitter-Sentiment-Analysis.

Training procedure

Colab Notebook follow the above notebook by changing the model name from distilbert to bert

Eval results

{
 'test_accuracy': 0.9405,
 'test_f1': 0.9405920712282673,
 'test_loss': 0.15769127011299133,
 'test_runtime': 10.5179,
 'test_samples_per_second': 190.152,
 'test_steps_per_second': 3.042
 }

Reference: