metadata
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 0.244673
Wav2Vec2-Large-XLSR-53-Moroccan-Darija
wav2vec2-large-xlsr-53 fine-tuned on 27 hours (27 people) of labeled Darija Audios.
Old model vs new model
Old Model:
- The model contains numerous incorrect transcriptions as input
- There are multiple transcribers.
- The audio database is not organized (by gender, age, regions ..).
- Wrong wer rate
New Model:
- Transcriptions are now performed by a single individual.
- Each hour of audio is pronounced by one person.
- Fine-tuning is ongoing 24/7 to enhance accuracy, and we are consistently adding more data to the model every day.
- True Wer rate
Training Loss | Validation | Loss Wer |
---|---|---|
0.057800 | 0.297430 | 0.244673 |
Usage
The model can be used directly as follows:
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens = torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
Output: قالت ليا هاد السيد هادا ما كاينش بحالو
email: souregh@gmail.com BOUMEHDI Ahmed