nlp_til / README.md
casual's picture
End of training
46d1c46 verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: nlp_til
    results: []

nlp_til

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1994
  • Precision: 0.4726
  • Recall: 0.5278
  • F1: 0.4987
  • Accuracy: 0.9007

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 219 0.2462 0.3017 0.3623 0.3292 0.8584
No log 2.0 438 0.2436 0.3176 0.3485 0.3323 0.8656
0.2463 3.0 657 0.2434 0.3333 0.4792 0.3932 0.8622
0.2463 4.0 876 0.2402 0.3398 0.3567 0.3480 0.8675
0.2453 5.0 1095 0.2388 0.3299 0.3708 0.3491 0.8686
0.2453 6.0 1314 0.2381 0.3230 0.3740 0.3467 0.8689
0.2421 7.0 1533 0.2384 0.3448 0.3508 0.3477 0.8691
0.2421 8.0 1752 0.2343 0.3427 0.3711 0.3563 0.8705
0.2421 9.0 1971 0.2334 0.3448 0.3433 0.3440 0.8713
0.2388 10.0 2190 0.2314 0.3696 0.4533 0.4072 0.8768
0.2388 11.0 2409 0.2238 0.3846 0.4643 0.4207 0.8812
0.2337 12.0 2628 0.2216 0.3968 0.4703 0.4305 0.8832
0.2337 13.0 2847 0.2135 0.4169 0.4939 0.4521 0.8898
0.2268 14.0 3066 0.2117 0.4387 0.5200 0.4759 0.8919
0.2268 15.0 3285 0.2059 0.4565 0.5146 0.4838 0.8963
0.2197 16.0 3504 0.2043 0.4669 0.5359 0.4990 0.8977
0.2197 17.0 3723 0.2005 0.4701 0.5356 0.5007 0.8997
0.2197 18.0 3942 0.1994 0.4726 0.5278 0.4987 0.9007

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1