metadata
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
library_name: peft
license: llama3.1
tags:
- trl
- sft
- unsloth
- generated_from_trainer
model-index:
- name: meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003
results: []
meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003
This model is a fine-tuned version of unsloth/meta-llama-3.1-8b-instruct-bnb-4bit on the None dataset.
Model description
This model was trained on Successful episodes of the top 3 model similar to D20002 but instead of using the whole episode as input, each episode was split into conversation pieces.
e.g.
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
]
is split int:
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
and
[
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
{
role: 'user'
content: '...'
},
{
role: 'assistant'
content: '...'
},
]
Training and evaluation data
After splitting, the dataset contains about 4122 conversation bits accross all games.
The Dataset ID is D30003
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 7331
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- lr_scheduler_warmup_steps: 5
- num_epochs: 1
Training results
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1