File size: 33,464 Bytes
44eca84 1028385 16db48a 1028385 44eca84 551a5a7 44eca84 f22aece 1028385 19fa3ec a78db43 1028385 a78db43 1028385 a407d29 1028385 19fa3ec a78db43 19fa3ec abc0b46 551a5a7 abc0b46 a78db43 44eca84 38a8e51 a78db43 44eca84 e754fde 44eca84 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a a78db43 16db48a 04ba1c9 a78db43 04ba1c9 16db48a 44eca84 19fa3ec 1028385 fa58912 811a69b fa58912 1028385 8833bbc 19fa3ec 04ba1c9 19fa3ec e754fde 16db48a 19fa3ec 8833bbc fa58912 19fa3ec 1028385 04ba1c9 1028385 e754fde 19fa3ec 8833bbc 1028385 19fa3ec 8833bbc abc0b46 8833bbc 44eca84 551a5a7 fa58912 8833bbc fa58912 8833bbc fa58912 8833bbc eabd9f8 8833bbc fa58912 8833bbc 551a5a7 8833bbc 38a8e51 04ba1c9 8833bbc e754fde 8833bbc 19fa3ec 8833bbc 1028385 44eca84 33824cf 1028385 44eca84 fa58912 1028385 8833bbc fa58912 8833bbc fa58912 8833bbc 551a5a7 44eca84 38a8e51 04ba1c9 44eca84 e754fde 38a8e51 44eca84 1028385 19fa3ec 9fb003c 8833bbc 9fb003c 1028385 811a69b 9fb003c 551a5a7 1028385 8833bbc 04ba1c9 1028385 e754fde 1028385 44eca84 551a5a7 19fa3ec 8ad9fee 44eca84 8ad9fee 44eca84 551a5a7 44eca84 38a8e51 04ba1c9 19fa3ec e754fde 19fa3ec 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 16db48a 2b7496e 19fa3ec 16db48a 19fa3ec 16db48a 2b7496e 44eca84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"This Notebook is a Stable-diffusion tool which allows you to find similiar tokens from the SD 1.5 vocab.json that you can use for text-to-image generation. Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator\n",
"\n",
"Scroll to the bottom of the notebook to see the guide for how this works."
],
"metadata": {
"id": "L7JTcbOdBPfh"
}
},
{
"cell_type": "code",
"source": [
"# @title Load/initialize values\n",
"# Load the tokens into the colab\n",
"!git clone https://huggingface.co/datasets/codeShare/sd_tokens\n",
"import torch\n",
"from torch import linalg as LA\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"%cd /content/sd_tokens\n",
"token = torch.load('sd15_tensors.pt', map_location=device, weights_only=True)\n",
"#-----#\n",
"\n",
"#Import the vocab.json\n",
"import json\n",
"import pandas as pd\n",
"with open('vocab.json', 'r') as f:\n",
" data = json.load(f)\n",
"\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"\n",
"vocab = {\n",
" value: key for key, value in _df.items()\n",
"}\n",
"#-----#\n",
"\n",
"# Define functions/constants\n",
"NUM_TOKENS = 49407\n",
"\n",
"def absolute_value(x):\n",
" return max(x, -x)\n",
"\n",
"\n",
"def token_similarity(A, B):\n",
"\n",
" #Vector length#\n",
" _A = LA.vector_norm(A, ord=2)\n",
" _B = LA.vector_norm(B, ord=2)\n",
"\n",
" #----#\n",
" result = torch.dot(A,B)/(_A*_B)\n",
" #similarity_pcnt = absolute_value(result.item()*100)\n",
" similarity_pcnt = result.item()*100\n",
" similarity_pcnt_aprox = round(similarity_pcnt, 3)\n",
" result = f'{similarity_pcnt_aprox} %'\n",
" return result\n",
"\n",
"\n",
"def similarity(id_A , id_B):\n",
" #Tensors\n",
" A = token[id_A]\n",
" B = token[id_B]\n",
" return token_similarity(A, B)\n",
"#----#\n",
"\n",
"#print(vocab[8922]) #the vocab item for ID 8922\n",
"#print(token[8922].shape) #dimension of the token\n",
"\n",
"mix_with = \"\"\n",
"mix_method = \"None\"\n",
"\n",
"#-------------#\n",
"# UNUSED\n",
"\n",
"# Get the 10 lowest values from a tensor as a string\n",
"def get_valleys (A):\n",
" sorted, indices = torch.sort(A,dim=0 , descending=False)\n",
" result = \"{\"\n",
" for index in range(10):\n",
" id = indices[index].item()\n",
" result = result + f\"{id}\"\n",
" if(index<9):\n",
" result = result + \",\"\n",
" result = result + \"}\"\n",
" return result\n",
"\n",
"# Get the 10 highest values from a tensor as a string\n",
"def get_peaks (A):\n",
" sorted, indices = torch.sort(A,dim=0 , descending=True)\n",
" result = \"{\"\n",
" for index in range(10):\n",
" id = indices[index].item()\n",
" result = result + f\"{id}\"\n",
" if(index<9):\n",
" result = result + \",\"\n",
" result = result + \"}\"\n",
" return result"
],
"metadata": {
"id": "Ch9puvwKH1s3",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title ⚡ Get similiar tokens\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"\n",
"prompt= \"banana\" # @param {type:'string'}\n",
"\n",
"tokenizer_output = tokenizer(text = prompt)\n",
"input_ids = tokenizer_output['input_ids']\n",
"print(input_ids)\n",
"\n",
"\n",
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
"\n",
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
"\n",
"id_A = input_ids[1]\n",
"A = token[id_A]\n",
"_A = LA.vector_norm(A, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (prompt == \"\"):\n",
" id_A = -1\n",
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" A = R*(_A/_R)\n",
" name_A = 'random_A'\n",
"\n",
"\n",
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"(optional) write something else\"}\n",
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"\n",
"tokenizer_output = tokenizer(text = mix_with)\n",
"input_ids = tokenizer_output['input_ids']\n",
"id_C = input_ids[1]\n",
"C = token[id_C]\n",
"_C = LA.vector_norm(C, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (mix_with == \"\"):\n",
" id_C = -1\n",
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" C = R*(_C/_R)\n",
" name_C = 'random_C'\n",
"\n",
"name_A = \"A of random type\"\n",
"if (id_A>-1):\n",
" name_A = vocab[id_A]\n",
"\n",
"name_C = \"token C of random type\"\n",
"if (id_C>-1):\n",
" name_C = vocab[id_C]\n",
"\n",
"# Peaks feature\n",
"#peaks_A = get_valleys(A)\n",
"#peaks_C = get_valleys(C)\n",
"#print(f\"The elementwise top 10 highest values for A is at indices {peaks_A}\")\n",
"#print(\"-------\")\n",
"#print(f\"The elementwise top 10 highest values for C is at indices {peaks_C}\")\n",
"#print(\"-------\")\n",
"#//------//\n",
"\n",
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {token_similarity(A, C)}\")\n",
"\n",
"if (mix_method == \"None\"):\n",
" print(\"No operation\")\n",
"\n",
"if (mix_method == \"Average\"):\n",
" A = w*A + (1-w)*C\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
"\n",
"if (mix_method == \"Subtract\"):\n",
" tmp = w*A - (1-w)*C\n",
" _tmp = LA.vector_norm(tmp, ord=2)\n",
" A = (_A/_tmp)*tmp\n",
" #//---//\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A * norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
"\n",
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
"\n",
"dots = torch.zeros(NUM_TOKENS)\n",
"for index in range(NUM_TOKENS):\n",
" id_B = index\n",
" B = token[id_B]\n",
" _B = LA.vector_norm(B, ord=2)\n",
" result = torch.dot(A,B)/(_A*_B)\n",
" #result = absolute_value(result.item())\n",
" result = result.item()\n",
" dots[index] = result\n",
"\n",
"\n",
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
"#----#\n",
"if (mix_method == \"Average\"):\n",
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"Subtract\"):\n",
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"None\"):\n",
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
"\n",
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
"\n",
"list_size = 100 # @param {type:'number'}\n",
"print_ID = False # @param {type:\"boolean\"}\n",
"print_Similarity = True # @param {type:\"boolean\"}\n",
"print_Name = True # @param {type:\"boolean\"}\n",
"print_Divider = True # @param {type:\"boolean\"}\n",
"\n",
"\n",
"if (print_Divider):\n",
" print('//---//')\n",
"\n",
"print('')\n",
"print('Here is the result : ')\n",
"print('')\n",
"\n",
"for index in range(list_size):\n",
" id = indices[index].item()\n",
" if (print_Name):\n",
" print(f'{vocab[id]}') # vocab item\n",
" if (print_ID):\n",
" print(f'ID = {id}') # IDs\n",
" if (print_Similarity):\n",
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
" if (print_Divider):\n",
" print('--------')\n",
"\n",
"#Print the sorted list from above result"
],
"metadata": {
"id": "iWeFnT1gAx6A",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title 💫 Compare Text encodings\n",
"\n",
"prompt_A = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
"prompt_B = \"\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
"use_token_padding = True # @param {type:\"boolean\"}\n",
"\n",
"from transformers import CLIPProcessor, CLIPModel\n",
"\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
"\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"\n",
"ids_A = processor.tokenizer(text=prompt_A, padding=use_token_padding, return_tensors=\"pt\")\n",
"text_encoding_A = model.get_text_features(**ids_A)\n",
"\n",
"ids_B = processor.tokenizer(text=prompt_B, padding=use_token_padding, return_tensors=\"pt\")\n",
"text_encoding_B = model.get_text_features(**ids_B)\n",
"\n",
"similarity_str = 'The similarity between the text_encoding for A:\"' + prompt_A + '\" and B: \"' + prompt_B +'\" is ' + token_similarity(text_encoding_A[0] , text_encoding_B[0])\n",
"\n",
"\n",
"print(similarity_str)\n",
"#outputs = model(**inputs)\n",
"#logits_per_image = outputs.logits_per_image # this is the image-text similarity score\n",
"#probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities"
],
"metadata": {
"id": "QQOjh5BvnG8M",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# ↓ Sub modules (use these to build your own projects) ↓"
],
"metadata": {
"id": "_d8WtPgtAymM"
}
},
{
"cell_type": "code",
"source": [
"# @title 📝 -> 🆔 Tokenize prompt into IDs\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"\n",
"prompt= \"banana\" # @param {type:'string'}\n",
"\n",
"tokenizer_output = tokenizer(text = prompt)\n",
"input_ids = tokenizer_output['input_ids']\n",
"print(input_ids)\n",
"\n",
"\n",
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
"\n",
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID."
],
"metadata": {
"id": "RPdkYzT2_X85",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title 🆔->🥢 Take the ID at index 1 from above result and get its corresponding tensor value\n",
"\n",
"id_A = input_ids[1]\n",
"A = token[id_A]\n",
"_A = LA.vector_norm(A, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (prompt == \"\"):\n",
" id_A = -1\n",
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" A = R*(_A/_R)\n",
"\n",
"#Save a copy of the tensor A\n",
"id_P = id_A\n",
"P = A\n",
"_P = LA.vector_norm(A, ord=2)\n"
],
"metadata": {
"id": "YqdiF8DIz9Wu",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title 🥢 -> 🥢🔀 Take the ID at index 1 from above result and modify it (optional)\n",
"mix_with = \"\" # @param {type:'string'}\n",
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"\n",
"#------#\n",
"#If set to TRUE , this will use the output of this cell , tensor A, as the input of this cell the 2nd time we run it. Use this feature to mix many tokens into A\n",
"re_iterate_tensor_A = True # @param {\"type\":\"boolean\"}\n",
"if (re_iterate_tensor_A == False) :\n",
" #prevent re-iterating A by reading from stored copy\n",
" id_A = id_P\n",
" A = P\n",
" _A = _P\n",
"#----#\n",
"\n",
"tokenizer_output = tokenizer(text = mix_with)\n",
"input_ids = tokenizer_output['input_ids']\n",
"id_C = input_ids[1]\n",
"C = token[id_C]\n",
"_C = LA.vector_norm(C, ord=2)\n",
"\n",
"#if no imput exists we just randomize the entire thing\n",
"if (mix_with == \"\"):\n",
" id_C = -1\n",
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
" R = torch.rand(768)\n",
" _R = LA.vector_norm(R, ord=2)\n",
" C = R*(_C/_R)\n",
"\n",
"if (mix_method == \"None\"):\n",
" print(\"No operation\")\n",
"\n",
"if (mix_method == \"Average\"):\n",
" A = w*A + (1-w)*C\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(\"Tokenized prompt tensor A has been recalculated as A = w*A + (1-w)*C , where C is the tokenized prompt 'mix_with' tensor C\")\n",
"\n",
"if (mix_method == \"Subtract\"):\n",
" tmp = (A/_A) - (C/_C)\n",
" _tmp = LA.vector_norm(tmp, ord=2)\n",
" A = tmp*((w*_A + (1-w)*_C)/_tmp)\n",
" _A = LA.vector_norm(A, ord=2)\n",
" print(\"Tokenized prompt tensor A has been recalculated as A = (w*_A + (1-w)*_C) * norm(w*A - (1-w)*C) , where C is the tokenized prompt 'mix_with' tensor C\")\n",
"\n",
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor"
],
"metadata": {
"id": "oXbNSRSKPgRr",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
"# @title 🥢->🧾🥢 Find Similiar Tokens to ID at index 1 from above result\n",
"dots = torch.zeros(NUM_TOKENS)\n",
"for index in range(NUM_TOKENS):\n",
" id_B = index\n",
" B = token[id_B]\n",
" _B = LA.vector_norm(B, ord=2)\n",
" result = torch.dot(A,B)/(_A*_B)\n",
" #result = absolute_value(result.item())\n",
" result = result.item()\n",
" dots[index] = result\n",
"\n",
"name_A = \"A of random type\"\n",
"if (id_A>-1):\n",
" name_A = vocab[id_A]\n",
"\n",
"name_C = \"token C of random type\"\n",
"if (id_C>-1):\n",
" name_C = vocab[id_C]\n",
"\n",
"\n",
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
"#----#\n",
"if (mix_method == \"Average\"):\n",
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"Subtract\"):\n",
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
"if (mix_method == \"None\"):\n",
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
"\n",
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result"
],
"metadata": {
"id": "juxsvco9B0iV",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "cYYu5C5C6MHH"
}
},
{
"cell_type": "code",
"source": [
"# @title 🥢🧾 -> 🖨️ Print Result from the 'Similiar Tokens' list from above result\n",
"list_size = 100 # @param {type:'number'}\n",
"print_ID = False # @param {type:\"boolean\"}\n",
"print_Similarity = True # @param {type:\"boolean\"}\n",
"print_Name = True # @param {type:\"boolean\"}\n",
"print_Divider = True # @param {type:\"boolean\"}\n",
"\n",
"for index in range(list_size):\n",
" id = indices[index].item()\n",
" if (print_Name):\n",
" print(f'{vocab[id]}') # vocab item\n",
" if (print_ID):\n",
" print(f'ID = {id}') # IDs\n",
" if (print_Similarity):\n",
" print(f'similiarity = {round(sorted[index].item()*100,2)} %') # % value\n",
" if (print_Divider):\n",
" print('--------')\n",
"\n",
"#Print the sorted list from above result"
],
"metadata": {
"id": "YIEmLAzbHeuo",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
"# @title 🆔 Get similarity % of two token IDs\n",
"id_for_token_A = 4567 # @param {type:'number'}\n",
"id_for_token_B = 4343 # @param {type:'number'}\n",
"\n",
"similarity_str = 'The similarity between tokens A and B is ' + similarity(id_for_token_A , id_for_token_B)\n",
"\n",
"print(similarity_str)\n",
"\n",
"#Valid ID ranges for id_for_token_A / id_for_token_B are between 0 and 49407"
],
"metadata": {
"id": "MwmOdC9cNZty",
"collapsed": true,
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"\n",
"\n",
"# How does this notebook work?\n",
"\n",
"Similiar vectors = similiar output in the SD 1.5 / SDXL / FLUX model\n",
"\n",
"CLIP converts the prompt text to vectors (“tensors”) , with float32 values usually ranging from -1 to 1.\n",
"\n",
"Dimensions are \\[ 1x768 ] tensors for SD 1.5 , and a \\[ 1x768 , 1x1024 ] tensor for SDXL and FLUX.\n",
"\n",
"The SD models and FLUX converts these vectors to an image.\n",
"\n",
"This notebook takes an input string , tokenizes it and matches the first token against the 49407 token vectors in the vocab.json : [https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fblack-forest-labs%2FFLUX.1-dev%2Ftree%2Fmain%2Ftokenizer)\n",
"\n",
"It finds the “most similiar tokens” in the list. Similarity is the theta angle between the token vectors.\n",
"\n",
"<div>\n",
"<img src=\"https://huggingface.co/datasets/codeShare/sd_tokens/resolve/main/cosine.jpeg\" width=\"300\"/>\n",
"</div>\n",
"\n",
"The angle is calculated using cosine similarity , where 1 = 100% similarity (parallell vectors) , and 0 = 0% similarity (perpendicular vectors).\n",
"\n",
"Negative similarity is also possible.\n",
"\n",
"# How can I use it?\n",
"\n",
"If you are bored of prompting “girl” and want something similiar you can run this notebook and use the “chick” token at 21.88% similarity , for example\n",
"\n",
"You can also run a mixed search , like “cute+girl”/2 , where for example “kpop” has a 16.71% similarity\n",
"\n",
"There are some strange tokens further down the list you go. Example: tokens similiar to the token \"pewdiepie</w>\" (yes this is an actual token that exists in CLIP)\n",
"\n",
"<div>\n",
"<img src=\"https://lemmy.world/pictrs/image/a1cd284e-3341-4284-9949-5f8b58d3bd1f.jpeg\" width=\"300\"/>\n",
"</div>\n",
"\n",
"Each of these correspond to a unique 1x768 token vector.\n",
"\n",
"The higher the ID value , the less often the token appeared in the CLIP training data.\n",
"\n",
"To reiterate; this is the CLIP model training data , not the SD-model training data.\n",
"\n",
"So for certain models , tokens with high ID can give very consistent results , if the SD model is trained to handle them.\n",
"\n",
"Example of this can be anime models , where japanese artist names can affect the output greatly. \n",
"\n",
"Tokens with high ID will often give the \"fun\" output when used in very short prompts.\n",
"\n",
"# What about token vector length?\n",
"\n",
"If you are wondering about token magnitude,\n",
"Prompt weights like (banana:1.2) will scale the magnitude of the corresponding 1x768 tensor(s) by 1.2 . So thats how prompt token magnitude works.\n",
"\n",
"Source: [https://huggingface.co/docs/diffusers/main/en/using-diffusers/weighted\\_prompts](https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fdocs%2Fdiffusers%2Fmain%2Fen%2Fusing-diffusers%2Fweighted_prompts)\\*\n",
"\n",
"So TLDR; vector direction = “what to generate” , vector magnitude = “prompt weights”\n",
"\n",
"# How prompting works (technical summary)\n",
"\n",
" 1. There is no correct way to prompt.\n",
"\n",
"2. Stable diffusion reads your prompt left to right, one token at a time, finding association _from_ the previous token _to_ the current token _and to_ the image generated thus far (Cross Attention Rule)\n",
"\n",
"3. Stable Diffusion is an optimization problem that seeks to maximize similarity to prompt and minimize similarity to negatives (Optimization Rule)\n",
"\n",
"Reference material (covers entire SD , so not good source material really, but the info is there) : https://youtu.be/sFztPP9qPRc?si=ge2Ty7wnpPGmB0gi\n",
"\n",
"# The SD pipeline\n",
"\n",
"For every step (20 in total by default) for SD1.5 :\n",
"\n",
"1. Prompt text => (tokenizer)\n",
"2. => Nx768 token vectors =>(CLIP model) =>\n",
"3. 1x768 encoding => ( the SD model / Unet ) =>\n",
"4. => _Desired_ image per Rule 3 => ( sampler)\n",
"5. => Paint a section of the image => (image)\n",
"\n",
"# Disclaimer /Trivia\n",
"\n",
"This notebook should be seen as a \"dictionary search tool\" for the vocab.json , which is the same for SD1.5 , SDXL and FLUX. Feel free to verify this by checking the 'tokenizer' folder under each model.\n",
"\n",
"vocab.json in the FLUX model , for example (1 of 2 copies) : https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main/tokenizer\n",
"\n",
"I'm using Clip-vit-large-patch14 , which is used in SD 1.5 , and is one among the two tokenizers for SDXL and FLUX : https://huggingface.co/openai/clip-vit-large-patch14/blob/main/README.md\n",
"\n",
"This set of tokens has dimension 1x768. \n",
"\n",
"SDXL and FLUX uses an additional set of tokens of dimension 1x1024.\n",
"\n",
"These are not included in this notebook. Feel free to include them yourselves (I would appreciate that).\n",
"\n",
"To do so, you will have to download a FLUX and/or SDXL model\n",
"\n",
", and copy the 49407x1024 tensor list that is stored within the model and then save it as a .pt file.\n",
"\n",
"//---//\n",
"\n",
"I am aware it is actually the 1x768 text_encoding being processed into an image for the SD models + FLUX.\n",
"\n",
"As such , I've included text_encoding comparison at the bottom of the Notebook.\n",
"\n",
"I am also aware thar SDXL and FLUX uses additional encodings , which are not included in this notebook.\n",
"\n",
"* Clip-vit-bigG for SDXL: https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/blob/main/README.md\n",
"\n",
"* And the T5 text encoder for FLUX. I have 0% understanding of FLUX T5 text_encoder.\n",
"\n",
"//---//\n",
"\n",
"If you want them , feel free to include them yourself and share the results (cuz I probably won't) :)!\n",
"\n",
"That being said , being an encoding , I reckon the CLIP Nx768 => 1x768 should be \"linear\" (or whatever one might call it)\n",
"\n",
"So exchange a few tokens in the Nx768 for something similiar , and the resulting 1x768 ought to be kinda similar to 1x768 we had earlier. Hopefully.\n",
"\n",
"I feel its important to mention this , in case some wonder why the token-token similarity don't match the text-encoding to text-encoding similarity.\n",
"\n",
"# Note regarding CLIP text encoding vs. token\n",
"\n",
"*To make this disclaimer clear; Token-to-token similarity is not the same as text_encoding similarity.*\n",
"\n",
"I have to say this , since it will otherwise get (even more) confusing , as both the individual tokens , and the text_encoding have dimensions 1x768.\n",
"\n",
"They are separate things. Separate results. etc.\n",
"\n",
"As such , you will not get anything useful if you start comparing similarity between a token , and a text-encoding. So don't do that :)!\n",
"\n",
"# What about the CLIP image encoding?\n",
"\n",
"The CLIP model can also do an image_encoding of an image, where the output will be a 1x768 tensor. These _can_ be compared with the text_encoding.\n",
"\n",
"Comparing CLIP image_encoding with the CLIP text_encoding for a bunch of random prompts until you find the \"highest similarity\" , is a method used in the CLIP interrogator : https://huggingface.co/spaces/pharmapsychotic/CLIP-Interrogator\n",
"\n",
"List of random prompts for CLIP interrogator can be found here, for reference : https://github.com/pharmapsychotic/clip-interrogator/tree/main/clip_interrogator/data\n",
"\n",
"The CLIP image_encoding is not included in this Notebook.\n",
"\n",
"If you spot errors / ideas for improvememts; feel free to fix the code in your own notebook and post the results.\n",
"\n",
"I'd appreciate that over people saying \"your math is wrong you n00b!\" with no constructive feedback.\n",
"\n",
"//---//\n",
"\n",
"Regarding output\n",
"\n",
"# What are the </w> symbols?\n",
"\n",
"The whitespace symbol indicate if the tokenized item ends with whitespace ( the suffix \"banana</w>\" => \"banana \" ) or not (the prefix \"post\" in \"post-apocalyptic \")\n",
"\n",
"For ease of reference , I call them prefix-tokens and suffix-tokens.\n",
"\n",
"Sidenote:\n",
"\n",
"Prefix tokens have the unique property in that they \"mutate\" suffix tokens\n",
"\n",
"Example: \"photo of a #prefix#-banana\"\n",
"\n",
"where #prefix# is a randomly selected prefix-token from the vocab.json\n",
"\n",
"The hyphen \"-\" exists to guarantee the tokenized text splits into the written #prefix# and #suffix# token respectively. The \"-\" hypen symbol can be replaced by any other special character of your choosing.\n",
"\n",
" Capital letters work too , e.g \"photo of a #prefix#Abanana\" since the capital letters A-Z are only listed once in the entire vocab.json.\n",
"\n",
"You can also choose to omit any separator and just rawdog it with the prompt \"photo of a #prefix#banana\" , however know that this may , on occasion , be tokenized as completely different tokens of lower ID:s.\n",
"\n",
"Curiously , common NSFW terms found online have in the CLIP model have been purposefully fragmented into separate #prefix# and #suffix# counterparts in the vocab.json. Likely for PR-reasons.\n",
"\n",
"You can verify the results using this online tokenizer: https://sd-tokenizer.rocker.boo/\n",
"\n",
"<div>\n",
"<img src=\"https://lemmy.world/pictrs/image/43467d75-7406-4a13-93ca-cdc469f944fc.jpeg\" width=\"300\"/>\n",
"<img src=\"https://lemmy.world/pictrs/image/c0411565-0cb3-47b1-a788-b368924d6f17.jpeg\" width=\"300\"/>\n",
"<img src=\"https://lemmy.world/pictrs/image/c27c6550-a88b-4543-9bd7-067dff016be2.jpeg\" width=\"300\"/>\n",
"</div>\n",
"\n",
"# What is that gibberish tokens that show up?\n",
"\n",
"The gibberish tokens like \"ðŁĺħ\\</w>\" are actually emojis!\n",
"\n",
"Try writing some emojis in this online tokenizer to see the results: https://sd-tokenizer.rocker.boo/\n",
"\n",
"It is a bit borked as it can't process capital letters properly.\n",
"\n",
"Also note that this is not reversible.\n",
"\n",
"If tokenization \"😅\" => ðŁĺħ</w>\n",
"\n",
"Then you can't prompt \"ðŁĺħ\" and expect to get the same result as the tokenized original emoji , \"😅\".\n",
"\n",
"SD 1.5 models actually have training for Emojis.\n",
"\n",
"But you have to set CLIP skip to 1 for this to work is intended.\n",
"\n",
"For example, this is the result from \"photo of a 🧔🏻♂️\"\n",
"\n",
"\n",
"<div>\n",
"<img src=\"https://lemmy.world/pictrs/image/e2b51aea-6960-4ad0-867e-8ce85f2bd51e.jpeg\" width=\"300\"/>\n",
"</div>\n",
"\n",
"A tutorial on stuff you can do with the vocab.list concluded.\n",
"\n",
"Anyways, have fun with the notebook.\n",
"\n",
"There might be some updates in the future with features not mentioned here.\n",
"\n",
"//---//"
],
"metadata": {
"id": "njeJx_nSSA8H"
}
}
]
} |