cor-c's picture
layoutlmv3-finetuned-cord_100
278e21c
|
raw
history blame
2.94 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9266666666666666
          - name: Recall
            type: recall
            value: 0.936377245508982
          - name: F1
            type: f1
            value: 0.9314966492926285
          - name: Accuracy
            type: accuracy
            value: 0.9354838709677419

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3194
  • Precision: 0.9267
  • Recall: 0.9364
  • F1: 0.9315
  • Accuracy: 0.9355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 4.17 250 1.0054 0.7555 0.8024 0.7782 0.8081
1.4019 8.33 500 0.5287 0.8320 0.8638 0.8476 0.8739
1.4019 12.5 750 0.3790 0.9043 0.9192 0.9117 0.9236
0.3185 16.67 1000 0.3253 0.9178 0.9281 0.9230 0.9355
0.3185 20.83 1250 0.3231 0.9223 0.9334 0.9278 0.9304
0.1319 25.0 1500 0.3039 0.9317 0.9394 0.9355 0.9419
0.1319 29.17 1750 0.3142 0.9287 0.9364 0.9325 0.9334
0.0725 33.33 2000 0.2982 0.9296 0.9386 0.9341 0.9419
0.0725 37.5 2250 0.3189 0.9288 0.9371 0.9329 0.9346
0.0549 41.67 2500 0.3194 0.9267 0.9364 0.9315 0.9355

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0