|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9266666666666666 |
|
- name: Recall |
|
type: recall |
|
value: 0.936377245508982 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9314966492926285 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9354838709677419 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3194 |
|
- Precision: 0.9267 |
|
- Recall: 0.9364 |
|
- F1: 0.9315 |
|
- Accuracy: 0.9355 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 4.17 | 250 | 1.0054 | 0.7555 | 0.8024 | 0.7782 | 0.8081 | |
|
| 1.4019 | 8.33 | 500 | 0.5287 | 0.8320 | 0.8638 | 0.8476 | 0.8739 | |
|
| 1.4019 | 12.5 | 750 | 0.3790 | 0.9043 | 0.9192 | 0.9117 | 0.9236 | |
|
| 0.3185 | 16.67 | 1000 | 0.3253 | 0.9178 | 0.9281 | 0.9230 | 0.9355 | |
|
| 0.3185 | 20.83 | 1250 | 0.3231 | 0.9223 | 0.9334 | 0.9278 | 0.9304 | |
|
| 0.1319 | 25.0 | 1500 | 0.3039 | 0.9317 | 0.9394 | 0.9355 | 0.9419 | |
|
| 0.1319 | 29.17 | 1750 | 0.3142 | 0.9287 | 0.9364 | 0.9325 | 0.9334 | |
|
| 0.0725 | 33.33 | 2000 | 0.2982 | 0.9296 | 0.9386 | 0.9341 | 0.9419 | |
|
| 0.0725 | 37.5 | 2250 | 0.3189 | 0.9288 | 0.9371 | 0.9329 | 0.9346 | |
|
| 0.0549 | 41.67 | 2500 | 0.3194 | 0.9267 | 0.9364 | 0.9315 | 0.9355 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|