|
--- |
|
license: cc-by-4.0 |
|
--- |
|
![Intro Image](cosmicman_samples.png) |
|
|
|
CosmicMan is a text-to-image foundation model specialized for generating high-fidelity human images. For more information, please refer to our research paper: [CosmicMan: A Text-to-Image Foundation Model for Humans](https://arxiv.org/abs/2404.01294). Our model is based on [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). This repository provide UNet checkpoints for CosmicMan-SDXL. |
|
|
|
|
|
## Requirements |
|
|
|
```python |
|
conda create -n cosmicman python=3.10 |
|
source activate cosmicman |
|
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 |
|
pip install accelerate diffusers datasets transformers botocore invisible-watermark bitsandbytes gradio==3.48.0 |
|
``` |
|
|
|
|
|
### Quick start with [Gradio](https://www.gradio.app/guides/quickstart) |
|
|
|
To get started, first install the required dependencies, then run: |
|
|
|
``` |
|
python demo_sdxl.py |
|
``` |
|
Let's have a look at a simple example using the `http://your-server-ip:port`. |
|
|
|
|
|
## Inference |
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel, EulerDiscreteScheduler |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
base_path = "stabilityai/stable-diffusion-xl-base-1.0" |
|
refiner_path = "stabilityai/stable-diffusion-xl-refiner-1.0" |
|
unet_path = "cosmicman/CosmicMan-SDXL" |
|
|
|
# Load model. |
|
unet = UNet2DConditionModel.from_pretrained(unet_path, torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLPipeline.from_pretrained(base_path, unet=unet, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") |
|
pipe.scheduler = EulerDiscreteScheduler.from_pretrained(base_path, subfolder="scheduler", torch_dtype=torch.float16) |
|
|
|
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(refiner_path,torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") # we found use base_path instead of refiner_path may get a better performance |
|
|
|
# Generate image. |
|
positive_prompt = "A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot" |
|
negative_prompt = "" |
|
image = pipe(positive_prompt, num_inference_steps=30, |
|
guidance_scale=7.5, height=1024, |
|
width=1024, negative_prompt=negative_prompt, output_type="latent").images[0] |
|
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0].save("output.png") |
|
``` |
|
|
|
|
|
## Citation Information |
|
``` |
|
@article{li2024cosmicman, |
|
title={CosmicMan: A Text-to-Image Foundation Model for Humans}, |
|
author={Li, Shikai and Fu, Jianglin and Liu, Kaiyuan and Wang, Wentao and Lin, Kwan-Yee and Wu, Wayne}, |
|
journal={arXiv preprint arXiv:2404.01294}, |
|
year={2024} |
|
} |
|
|
|
``` |