|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@article{majewska2022cross, |
|
title={Cross-lingual dialogue dataset creation via outline-based generation}, |
|
author={Majewska, Olga and Razumovskaia, Evgeniia and Ponti, Edoardo Maria and Vuli{\'c}, Ivan and Korhonen, Anna}, |
|
journal={arXiv preprint arXiv:2201.13405}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "cod" |
|
|
|
_DESCRIPTION = """\ |
|
Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts. |
|
COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation. |
|
Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022). |
|
English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/cambridgeltl/COD" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"validation": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_dev.json", |
|
"test": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_test.json", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.DIALOGUE_SYSTEM] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""Cross-lingual Outline-based Dialogue (COD) is a dataset comprises manually generated, localised, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data which served as the source of dialogue prompts.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="cod_source", |
|
version=SOURCE_VERSION, |
|
description="Cross-lingual Outline-based Dialogue (COD) source schema", |
|
schema="source", |
|
subset_id="cod", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "cod_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("string"), |
|
"dialogue_id": datasets.Value("string"), |
|
"services": [datasets.Value("string")], |
|
"turns": [ |
|
{ |
|
"speaker": datasets.Value("string"), |
|
"utterance": datasets.Value("string"), |
|
"frames": [ |
|
{ |
|
"actions": [ |
|
{ |
|
"act": datasets.Value("string"), |
|
"slot": datasets.Value("string"), |
|
"values": [datasets.Value("string")], |
|
} |
|
], |
|
"service": datasets.Value("string"), |
|
"slots": [ |
|
{ |
|
"exclusive_end": datasets.Value("int32"), |
|
"slot": datasets.Value("string"), |
|
"start": datasets.Value("int32"), |
|
} |
|
], |
|
"state": { |
|
"active_intent": datasets.Value("string"), |
|
"requested_slots": [datasets.Value("string")], |
|
"slot_values": [ |
|
{"slot": datasets.Value("string"), "values": [datasets.Value("string")]}, |
|
], |
|
}, |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
|
|
with open(filepath, "r+") as fw: |
|
data = json.loads(fw.read()) |
|
|
|
if self.config.schema == "source": |
|
for idx, example in enumerate(data): |
|
example["index"] = str(idx) |
|
for turn in example["turns"]: |
|
for frame in turn["frames"]: |
|
if "state" not in frame: |
|
continue |
|
ls_slot_values = [] |
|
for slot in frame["state"]["slot_values"]: |
|
ls_slot_values.append({"slot": slot, "values": frame["state"]["slot_values"][slot]}) |
|
frame["state"]["slot_values"] = ls_slot_values |
|
|
|
yield str(idx), example |
|
|