repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/sacrebleu/sacrebleu.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SACREBLEU metric. """ import sacrebleu as scb from packaging import version import datasets _CITATION = """\ @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization for you. See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information. """ _KWARGS_DESCRIPTION = """ Produces BLEU scores along with its sufficient statistics from a source against one or more references. Args: predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens. references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length). smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are: - `'none'`: no smoothing - `'floor'`: increment zero counts - `'add-k'`: increment num/denom by k for n>1 - `'exp'`: exponential decay smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`). tokenize (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are: - `'none'`: No tokenization. - `'zh'`: Chinese tokenization. - `'13a'`: mimics the `mteval-v13a` script from Moses. - `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses - `'char'`: Language-agnostic character-level tokenization. - `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3). lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`. force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`. use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`. Returns: 'score': BLEU score, 'counts': Counts, 'totals': Totals, 'precisions': Precisions, 'bp': Brevity penalty, 'sys_len': predictions length, 'ref_len': reference length, Examples: Example 1: >>> predictions = ["hello there general kenobi", "foo bar foobar"] >>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] >>> sacrebleu = datasets.load_metric("sacrebleu") >>> results = sacrebleu.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] >>> print(round(results["score"], 1)) 100.0 Example 2: >>> predictions = ["hello there general kenobi", ... "on our way to ankh morpork"] >>> references = [["hello there general kenobi", "hello there !"], ... ["goodbye ankh morpork", "ankh morpork"]] >>> sacrebleu = datasets.load_metric("sacrebleu") >>> results = sacrebleu.compute(predictions=predictions, ... references=references) >>> print(list(results.keys())) ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len'] >>> print(round(results["score"], 1)) 39.8 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Sacrebleu(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU"], reference_urls=[ "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ], ) def _compute( self, predictions, references, smooth_method="exp", smooth_value=None, force=False, lowercase=False, tokenize=None, use_effective_order=False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] output = scb.corpus_bleu( predictions, transformed_references, smooth_method=smooth_method, smooth_value=smooth_value, force=force, lowercase=lowercase, use_effective_order=use_effective_order, **({"tokenize": tokenize} if tokenize else {}), ) output_dict = { "score": output.score, "counts": output.counts, "totals": output.totals, "precisions": output.precisions, "bp": output.bp, "sys_len": output.sys_len, "ref_len": output.ref_len, } return output_dict
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/glue/README.md
# Metric Card for GLUE ## Metric description This metric is used to compute the GLUE evaluation metric associated to each [GLUE dataset](https://huggingface.co/datasets/glue). GLUE, the General Language Understanding Evaluation benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ## How to use There are two steps: (1) loading the GLUE metric relevant to the subset of the GLUE dataset being used for evaluation; and (2) calculating the metric. 1. **Loading the relevant GLUE metric** : the subsets of GLUE are the following: `sst2`, `mnli`, `mnli_mismatched`, `mnli_matched`, `qnli`, `rte`, `wnli`, `cola`,`stsb`, `mrpc`, `qqp`, and `hans`. More information about the different subsets of the GLUE dataset can be found on the [GLUE dataset page](https://huggingface.co/datasets/glue). 2. **Calculating the metric**: the metric takes two inputs : one list with the predictions of the model to score and one lists of references for each translation. ```python from datasets import load_metric glue_metric = load_metric('glue', 'sst2') references = [0, 1] predictions = [0, 1] results = glue_metric.compute(predictions=predictions, references=references) ``` ## Output values The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics: `accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information). `f1`: the harmonic mean of the precision and recall (see [F1 score](https://huggingface.co/metrics/f1) for more information). Its range is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall. `pearson`: a measure of the linear relationship between two datasets (see [Pearson correlation](https://huggingface.co/metrics/pearsonr) for more information). Its range is between -1 and +1, with 0 implying no correlation, and -1/+1 implying an exact linear relationship. Positive correlations imply that as x increases, so does y, whereas negative correlations imply that as x increases, y decreases. `spearmanr`: a nonparametric measure of the monotonicity of the relationship between two datasets(see [Spearman Correlation](https://huggingface.co/metrics/spearmanr) for more information). `spearmanr` has the same range as `pearson`. `matthews_correlation`: a measure of the quality of binary and multiclass classifications (see [Matthews Correlation](https://huggingface.co/metrics/matthews_correlation) for more information). Its range of values is between -1 and +1, where a coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The `cola` subset returns `matthews_correlation`, the `stsb` subset returns `pearson` and `spearmanr`, the `mrpc` and `qqp` subsets return both `accuracy` and `f1`, and all other subsets of GLUE return only accuracy. ### Values from popular papers The [original GLUE paper](https://huggingface.co/datasets/glue) reported average scores ranging from 58 to 64%, depending on the model used (with all evaluation values scaled by 100 to make computing the average possible). For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue). ## Examples Maximal values for the MRPC subset (which outputs `accuracy` and `f1`): ```python from datasets import load_metric glue_metric = load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' references = [0, 1] predictions = [0, 1] results = glue_metric.compute(predictions=predictions, references=references) print(results) {'accuracy': 1.0, 'f1': 1.0} ``` Minimal values for the STSB subset (which outputs `pearson` and `spearmanr`): ```python from datasets import load_metric glue_metric = load_metric('glue', 'stsb') references = [0., 1., 2., 3., 4., 5.] predictions = [-10., -11., -12., -13., -14., -15.] results = glue_metric.compute(predictions=predictions, references=references) print(results) {'pearson': -1.0, 'spearmanr': -1.0} ``` Partial match for the COLA subset (which outputs `matthews_correlation`) ```python from datasets import load_metric glue_metric = load_metric('glue', 'cola') references = [0, 1] predictions = [1, 1] results = glue_metric.compute(predictions=predictions, references=references) results {'matthews_correlation': 0.0} ``` ## Limitations and bias This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue). While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such. Also, while the GLUE subtasks were considered challenging during its creation in 2019, they are no longer considered as such given the impressive progress made since then. A more complex (or "stickier") version of it, called [SuperGLUE](https://huggingface.co/datasets/super_glue), was subsequently created. ## Citation ```bibtex @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ``` ## Further References - [GLUE benchmark homepage](https://gluebenchmark.com/) - [Fine-tuning a model with the Trainer API](https://huggingface.co/course/chapter3/3?)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/glue/glue.py
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE benchmark metric. """ from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef import datasets _CITATION = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ _DESCRIPTION = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ _KWARGS_DESCRIPTION = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def simple_accuracy(preds, labels): return float((preds == labels).mean()) def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = float(f1_score(y_true=labels, y_pred=preds)) return { "accuracy": acc, "f1": f1, } def pearson_and_spearman(preds, labels): pearson_corr = float(pearsonr(preds, labels)[0]) spearman_corr = float(spearmanr(preds, labels)[0]) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Glue(datasets.Metric): def _info(self): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32"), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32"), } ), codebase_urls=[], reference_urls=[], format="numpy", ) def _compute(self, predictions, references): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(references, predictions)} elif self.config_name == "stsb": return pearson_and_spearman(predictions, references) elif self.config_name in ["mrpc", "qqp"]: return acc_and_f1(predictions, references) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/cer/README.md
# Metric Card for CER ## Metric description Character error rate (CER) is a common metric of the performance of an automatic speech recognition (ASR) system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Character error rate can be computed as: `CER = (S + D + I) / N = (S + D + I) / (S + D + C)` where `S` is the number of substitutions, `D` is the number of deletions, `I` is the number of insertions, `C` is the number of correct characters, `N` is the number of characters in the reference (`N=S+D+C`). ## How to use The metric takes two inputs: references (a list of references for each speech input) and predictions (a list of transcriptions to score). ```python from datasets import load_metric cer = load_metric("cer") cer_score = cer.compute(predictions=predictions, references=references) ``` ## Output values This metric outputs a float representing the character error rate. ``` print(cer_score) 0.34146341463414637 ``` The **lower** the CER value, the **better** the performance of the ASR system, with a CER of 0 being a perfect score. However, CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions (see [Examples](#Examples) below). ### Values from popular papers This metric is highly dependent on the content and quality of the dataset, and therefore users can expect very different values for the same model but on different datasets. Multilingual datasets such as [Common Voice](https://huggingface.co/datasets/common_voice) report different CERs depending on the language, ranging from 0.02-0.03 for languages such as French and Italian, to 0.05-0.07 for English (see [here](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) for more values). ## Examples Perfect match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello world", "good night moon"] references = ["hello world", "good night moon"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 0.0 ``` Partial match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["this is the prediction", "there is an other sample"] references = ["this is the reference", "there is another one"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 0.34146341463414637 ``` No match between prediction and reference: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello"] references = ["gracias"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 1.0 ``` CER above 1 due to insertion errors: ```python from datasets import load_metric cer = load_metric("cer") predictions = ["hello world"] references = ["hello"] cer_score = cer.compute(predictions=predictions, references=references) print(cer_score) 1.2 ``` ## Limitations and bias CER is useful for comparing different models for tasks such as automatic speech recognition (ASR) and optic character recognition (OCR), especially for multilingual datasets where WER is not suitable given the diversity of languages. However, CER provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. Also, in some cases, instead of reporting the raw CER, a normalized CER is reported where the number of mistakes is divided by the sum of the number of edit operations (`I` + `S` + `D`) and `C` (the number of correct characters), which results in CER values that fall within the range of 0–100%. ## Citation ```bibtex @inproceedings{morris2004, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ``` ## Further References - [Hugging Face Tasks -- Automatic Speech Recognition](https://huggingface.co/tasks/automatic-speech-recognition)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/cer/test_cer.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from cer import CER cer = CER() class TestCER(unittest.TestCase): def test_cer_case_senstive(self): refs = ["White House"] preds = ["white house"] # S = 2, D = 0, I = 0, N = 11, CER = 2 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.1818181818) < 1e-6) def test_cer_whitespace(self): refs = ["were wolf"] preds = ["werewolf"] # S = 0, D = 0, I = 1, N = 9, CER = 1 / 9 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.1111111) < 1e-6) refs = ["werewolf"] preds = ["weae wolf"] # S = 1, D = 1, I = 0, N = 8, CER = 0.25 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.25) < 1e-6) # consecutive whitespaces case 1 refs = ["were wolf"] preds = ["were wolf"] # S = 0, D = 0, I = 0, N = 9, CER = 0 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) # consecutive whitespaces case 2 refs = ["were wolf"] preds = ["were wolf"] # S = 0, D = 0, I = 0, N = 9, CER = 0 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) def test_cer_sub(self): refs = ["werewolf"] preds = ["weaewolf"] # S = 1, D = 0, I = 0, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_del(self): refs = ["werewolf"] preds = ["wereawolf"] # S = 0, D = 1, I = 0, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_insert(self): refs = ["werewolf"] preds = ["wereolf"] # S = 0, D = 0, I = 1, N = 8, CER = 0.125 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) def test_cer_equal(self): refs = ["werewolf"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertEqual(char_error_rate, 0.0) def test_cer_list_of_seqs(self): refs = ["werewolf", "I am your father"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertEqual(char_error_rate, 0.0) refs = ["werewolf", "I am your father", "doge"] preds = ["werxwolf", "I am your father", "doge"] # S = 1, D = 0, I = 0, N = 28, CER = 1 / 28 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.03571428) < 1e-6) def test_correlated_sentences(self): refs = ["My hovercraft", "is full of eels"] preds = ["My hovercraft is full", " of eels"] # S = 0, D = 0, I = 2, N = 28, CER = 2 / 28 # whitespace at the front of " of eels" will be strip during preporcessing # so need to insert 2 whitespaces char_error_rate = cer.compute(predictions=preds, references=refs, concatenate_texts=True) self.assertTrue(abs(char_error_rate - 0.071428) < 1e-6) def test_cer_unicode(self): refs = ["ζˆ‘θƒ½εžδΈ‹ηŽ»η’ƒθ€ŒδΈδΌ€θΊ«δ½“"] preds = [" θƒ½εžθ™ΎηŽ»η’ƒθ€Œ δΈιœœθΊ«δ½“ε•¦"] # S = 3, D = 2, I = 0, N = 11, CER = 5 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.4545454545) < 1e-6) refs = ["ζˆ‘θƒ½εžδΈ‹ηŽ»η’ƒ", "θ€ŒδΈδΌ€θΊ«δ½“"] preds = ["ζˆ‘ 能 吞 δΈ‹ 玻 η’ƒ", "θ€ŒδΈδΌ€θΊ«δ½“"] # S = 0, D = 5, I = 0, N = 11, CER = 5 / 11 char_error_rate = cer.compute(predictions=preds, references=refs) self.assertTrue(abs(char_error_rate - 0.454545454545) < 1e-6) refs = ["ζˆ‘θƒ½εžδΈ‹ηŽ»η’ƒθ€ŒδΈδΌ€θΊ«δ½“"] char_error_rate = cer.compute(predictions=refs, references=refs) self.assertFalse(char_error_rate, 0.0) def test_cer_empty(self): refs = [""] preds = ["Hypothesis"] with self.assertRaises(ValueError): cer.compute(predictions=preds, references=refs) if __name__ == "__main__": unittest.main()
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/cer/cer.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Character Error Ratio (CER) metric. """ from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata SENTENCE_DELIMITER = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SentencesToListOfCharacters(tr.AbstractTransform): def __init__(self, sentence_delimiter: str = " "): self.sentence_delimiter = sentence_delimiter def process_string(self, s: str): return list(s) def process_list(self, inp: List[str]): chars = [] for sent_idx, sentence in enumerate(inp): chars.extend(self.process_string(sentence)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(inp) - 1: chars.append(self.sentence_delimiter) return chars cer_transform = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: cer_transform = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _CITATION = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _DESCRIPTION = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ _KWARGS_DESCRIPTION = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class CER(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ], ) def _compute(self, predictions, references, concatenate_texts=False): if concatenate_texts: return jiwer.compute_measures( references, predictions, truth_transform=cer_transform, hypothesis_transform=cer_transform, )["wer"] incorrect = 0 total = 0 for prediction, reference in zip(predictions, references): measures = jiwer.compute_measures( reference, prediction, truth_transform=cer_transform, hypothesis_transform=cer_transform, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/recall/README.md
# Metric Card for Recall ## Metric Description Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the number of true positives and FN is the number of false negatives. ## How to Use At minimum, this metric takes as input two `list`s, each containing `int`s: predictions and references. ```python >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) ["{'recall': 1.0}"] ``` ### Inputs - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. ### Output Values - **recall**(`float`, or `array` of `float`, for multiclass targets): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Output Example(s): ```python {'recall': 1.0} ``` ```python {'recall': array([1., 0., 0.])} ``` This metric outputs a dictionary with one entry, `'recall'`. #### Values from Popular Papers ### Examples Example 1-A simple example with some errors ```python >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} ``` Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. ```python >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} ``` Example 3-The same example as Example 1, but with `sample_weight` included. ```python >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} ``` Example 4-A multiclass example, using different averages. ```python >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} ``` ## Limitations and Bias ## Citation(s) ```bibtex @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ``` ## Further References
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/recall/recall.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Recall metric.""" from sklearn.metrics import recall_score import datasets _DESCRIPTION = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _KWARGS_DESCRIPTION = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Recall(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"], ) def _compute( self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn", ): score = recall_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight, zero_division=zero_division, ) return {"recall": float(score) if score.size == 1 else score}
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/precision/README.md
# Metric Card for Precision ## Metric Description Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation: Precision = TP / (TP + FP) where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive). ## How to Use At minimum, precision takes as input a list of predicted labels, `predictions`, and a list of output labels, `references`. ```python >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'precision': 1.0} ``` ### Inputs - **predictions** (`list` of `int`): Predicted class labels. - **references** (`list` of `int`): Actual class labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. - **pos_label** (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to None. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - 0: Returns 0 when there is a zero division. - 1: Returns 1 when there is a zero division. - 'warn': Raises warnings and then returns 0 when there is a zero division. ### Output Values - **precision**(`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better. Output Example(s): ```python {'precision': 0.2222222222222222} ``` ```python {'precision': array([0.66666667, 0.0, 0.0])} ``` #### Values from Popular Papers ### Examples Example 1-A simple binary example ```python >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'precision': 0.5} ``` Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. ```python >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['precision'], 2)) 0.67 ``` Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. ```python >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(results) {'precision': 0.23529411764705882} ``` Example 4-A multiclass example, with different values for the `average` input. ```python >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = precision_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'precision': 0.3333333333333333} >>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average=None) >>> print([round(res, 2) for res in results['precision']]) [0.67, 0.0, 0.0] ``` ## Limitations and Bias [Precision](https://huggingface.co/metrics/precision) and [recall](https://huggingface.co/metrics/recall) are complementary and can be used to measure different aspects of model performance -- using both of them (or an averaged measure like [F1 score](https://huggingface.co/metrics/F1) to better represent different aspects of performance. See [Wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall) for more information. ## Citation(s) ```bibtex @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ``` ## Further References - [Wikipedia -- Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/precision/precision.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Precision metric.""" from sklearn.metrics import precision_score import datasets _DESCRIPTION = """ Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation: Precision = TP / (TP + FP) where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive). """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted class labels. references (`list` of `int`): Actual class labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. zero_division (`int` or `string`): Sets the value to return when there is a zero division. Defaults to 'warn'. - 0: Returns 0 when there is a zero division. - 1: Returns 1 when there is a zero division. - 'warn': Raises warnings and then returns 0 when there is a zero division. Returns: precision (`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better. Examples: Example 1-A simple binary example >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'precision': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['precision'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> precision_metric = datasets.load_metric("precision") >>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(results) {'precision': 0.23529411764705882} Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = precision_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'precision': 0.3333333333333333} >>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'precision': 0.2222222222222222} >>> results = precision_metric.compute(predictions=predictions, references=references, average=None) >>> print([round(res, 2) for res in results['precision']]) [0.67, 0.0, 0.0] """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Precision(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html"], ) def _compute( self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None, zero_division="warn", ): score = precision_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight, zero_division=zero_division, ) return {"precision": float(score) if score.size == 1 else score}
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/matthews_correlation/matthews_correlation.py
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Matthews Correlation metric.""" from sklearn.metrics import matthews_corrcoef import datasets _DESCRIPTION = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ _KWARGS_DESCRIPTION = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ _CITATION = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class MatthewsCorrelation(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ], ) def _compute(self, predictions, references, sample_weight=None): return { "matthews_correlation": float(matthews_corrcoef(references, predictions, sample_weight=sample_weight)), }
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/matthews_correlation/README.md
# Metric Card for Matthews Correlation Coefficient ## Metric Description The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ## How to Use At minimum, this metric requires a list of predictions and a list of references: ```python >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'matthews_correlation': 1.0} ``` ### Inputs - **`predictions`** (`list` of `int`s): Predicted class labels. - **`references`** (`list` of `int`s): Ground truth labels. - **`sample_weight`** (`list` of `int`s, `float`s, or `bool`s): Sample weights. Defaults to `None`. ### Output Values - **`matthews_correlation`** (`float`): Matthews correlation coefficient. The metric output takes the following form: ```python {'matthews_correlation': 0.54} ``` This metric can be any value from -1 to +1, inclusive. #### Values from Popular Papers ### Examples A basic example with only predictions and references as inputs: ```python >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(results) {'matthews_correlation': 0.5384615384615384} ``` The same example as above, but also including sample weights: ```python >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(results) {'matthews_correlation': 0.09782608695652174} ``` The same example as above, with sample weights that cause a negative correlation: ```python >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(results) {'matthews_correlation': -0.25} ``` ## Limitations and Bias *Note any limitations or biases that the metric has.* ## Citation ```bibtex @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ``` ## Further References - This Hugging Face implementation uses [this scikit-learn implementation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/mauve/README.md
# Metric Card for MAUVE ## Metric description MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. It summarizes both Type I and Type II errors measured softly using [Kullback–Leibler (KL) divergences](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence). This metric is a wrapper around the [official implementation](https://github.com/krishnap25/mauve) of MAUVE. For more details, consult the [MAUVE paper](https://arxiv.org/abs/2102.01454). ## How to use The metric takes two lists of strings of tokens separated by spaces: one representing `predictions` (i.e. the text generated by the model) and the second representing `references` (a reference text for each prediction): ```python from datasets import load_metric mauve = load_metric('mauve') predictions = ["hello world", "goodnight moon"] references = ["hello world", "goodnight moon"] mauve_results = mauve.compute(predictions=predictions, references=references) ``` It also has several optional arguments: `num_buckets`: the size of the histogram to quantize P and Q. Options: `auto` (default) or an integer. `pca_max_data`: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. The default is `-1`. `kmeans_explained_var`: amount of variance of the data to keep in dimensionality reduction by PCA. The default is `0.9`. `kmeans_num_redo`: number of times to redo k-means clustering (the best objective is kept). The default is `5`. `kmeans_max_iter`: maximum number of k-means iterations. The default is `500`. `featurize_model_name`: name of the model from which features are obtained, from one of the following: `gpt2`, `gpt2-medium`, `gpt2-large`, `gpt2-xl`. The default is `gpt2-large`. `device_id`: Device for featurization. Supply a GPU id (e.g. `0` or `3`) to use GPU. If no GPU with this id is found, the metric will use CPU. `max_text_length`: maximum number of tokens to consider. The default is `1024`. `divergence_curve_discretization_size` Number of points to consider on the divergence curve. The default is `25`. `mauve_scaling_factor`: Hyperparameter for scaling. The default is `5`. `verbose`: If `True` (default), running the metric will print running time updates. `seed`: random seed to initialize k-means cluster assignments, randomly assigned by default. ## Output values This metric outputs a dictionary with 5 key-value pairs: `mauve`: MAUVE score, which ranges between 0 and 1. **Larger** values indicate that P and Q are closer. `frontier_integral`: Frontier Integral, which ranges between 0 and 1. **Smaller** values indicate that P and Q are closer. `divergence_curve`: a numpy.ndarray of shape (m, 2); plot it with `matplotlib` to view the divergence curve. `p_hist`: a discrete distribution, which is a quantized version of the text distribution `p_text`. `q_hist`: same as above, but with `q_text`. ### Values from popular papers The [original MAUVE paper](https://arxiv.org/abs/2102.01454) reported values ranging from 0.88 to 0.94 for open-ended text generation using a text completion task in the web text domain. The authors found that bigger models resulted in higher MAUVE scores, and that MAUVE is correlated with human judgments. ## Examples Perfect match between prediction and reference: ```python from datasets import load_metric mauve = load_metric('mauve') predictions = ["hello world", "goodnight moon"] references = ["hello world", "goodnight moon"] mauve_results = mauve.compute(predictions=predictions, references=references) print(mauve_results.mauve) 1.0 ``` Partial match between prediction and reference: ```python from datasets import load_metric mauve = load_metric('mauve') predictions = ["hello world", "goodnight moon"] references = ["hello there", "general kenobi"] mauve_results = mauve.compute(predictions=predictions, references=references) print(mauve_results.mauve) 0.27811372536724027 ``` ## Limitations and bias The [original MAUVE paper](https://arxiv.org/abs/2102.01454) did not analyze the inductive biases present in different embedding models, but related work has shown different kinds of biases exist in many popular generative language models including GPT-2 (see [Kirk et al., 2021](https://arxiv.org/pdf/2102.04130.pdf), [Abid et al., 2021](https://arxiv.org/abs/2101.05783)). The extent to which these biases can impact the MAUVE score has not been quantified. Also, calculating the MAUVE metric involves downloading the model from which features are obtained -- the default model, `gpt2-large`, takes over 3GB of storage space and downloading it can take a significant amount of time depending on the speed of your internet connection. If this is an issue, choose a smaller model; for instance `gpt` is 523MB. ## Citation ```bibtex @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ``` ## Further References - [Official MAUVE implementation](https://github.com/krishnap25/mauve) - [Hugging Face Tasks - Text Generation](https://huggingface.co/tasks/text-generation)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/mauve/mauve.py
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MAUVE metric from https://github.com/krishnap25/mauve. """ import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _CITATION = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _DESCRIPTION = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _KWARGS_DESCRIPTION = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mauve(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/krishnap25/mauve", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/krishnap25/mauve"], reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ], ) def _compute( self, predictions, references, p_features=None, q_features=None, p_tokens=None, q_tokens=None, num_buckets="auto", pca_max_data=-1, kmeans_explained_var=0.9, kmeans_num_redo=5, kmeans_max_iter=500, featurize_model_name="gpt2-large", device_id=-1, max_text_length=1024, divergence_curve_discretization_size=25, mauve_scaling_factor=5, verbose=True, seed=25, ): out = compute_mauve( p_text=predictions, q_text=references, p_features=p_features, q_features=q_features, p_tokens=p_tokens, q_tokens=q_tokens, num_buckets=num_buckets, pca_max_data=pca_max_data, kmeans_explained_var=kmeans_explained_var, kmeans_num_redo=kmeans_num_redo, kmeans_max_iter=kmeans_max_iter, featurize_model_name=featurize_model_name, device_id=device_id, max_text_length=max_text_length, divergence_curve_discretization_size=divergence_curve_discretization_size, mauve_scaling_factor=mauve_scaling_factor, verbose=verbose, seed=seed, ) return out
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/exact_match/exact_match.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exact Match metric.""" import re import string import numpy as np import datasets _DESCRIPTION = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _KWARGS_DESCRIPTION = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 """ _CITATION = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ExactMatch(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), reference_urls=[], ) def _compute( self, predictions, references, regexes_to_ignore=None, ignore_case=False, ignore_punctuation=False, ignore_numbers=False, ): if regexes_to_ignore is not None: for s in regexes_to_ignore: predictions = np.array([re.sub(s, "", x) for x in predictions]) references = np.array([re.sub(s, "", x) for x in references]) else: predictions = np.asarray(predictions) references = np.asarray(references) if ignore_case: predictions = np.char.lower(predictions) references = np.char.lower(references) if ignore_punctuation: repl_table = string.punctuation.maketrans("", "", string.punctuation) predictions = np.char.translate(predictions, table=repl_table) references = np.char.translate(references, table=repl_table) if ignore_numbers: repl_table = string.digits.maketrans("", "", string.digits) predictions = np.char.translate(predictions, table=repl_table) references = np.char.translate(references, table=repl_table) score_list = predictions == references return {"exact_match": np.mean(score_list) * 100}
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/exact_match/README.md
# Metric Card for Exact Match ## Metric Description A given predicted string's exact match score is 1 if it is the exact same as its reference string, and is 0 otherwise. - **Example 1**: The exact match score of prediction "Happy Birthday!" is 0, given its reference is "Happy New Year!". - **Example 2**: The exact match score of prediction "The Colour of Magic (1983)" is 1, given its reference is also "The Colour of Magic (1983)". The exact match score of a set of predictions is the sum of all of the individual exact match scores in the set, divided by the total number of predictions in the set. - **Example**: The exact match score of the set {Example 1, Example 2} (above) is 0.5. ## How to Use At minimum, this metric takes as input predictions and references: ```python >>> from datasets import load_metric >>> exact_match_metric = load_metric("exact_match") >>> results = exact_match_metric.compute(predictions=predictions, references=references) ``` ### Inputs - **`predictions`** (`list` of `str`): List of predicted texts. - **`references`** (`list` of `str`): List of reference texts. - **`regexes_to_ignore`** (`list` of `str`): Regex expressions of characters to ignore when calculating the exact matches. Defaults to `None`. Note: the regex changes are applied before capitalization is normalized. - **`ignore_case`** (`bool`): If `True`, turns everything to lowercase so that capitalization differences are ignored. Defaults to `False`. - **`ignore_punctuation`** (`bool`): If `True`, removes punctuation before comparing strings. Defaults to `False`. - **`ignore_numbers`** (`bool`): If `True`, removes all digits before comparing strings. Defaults to `False`. ### Output Values This metric outputs a dictionary with one value: the average exact match score. ```python {'exact_match': 100.0} ``` This metric's range is 0-100, inclusive. Here, 0.0 means no prediction/reference pairs were matches, while 100.0 means they all were. #### Values from Popular Papers The exact match metric is often included in other metrics, such as SQuAD. For example, the [original SQuAD paper](https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf) reported an Exact Match score of 40.0%. They also report that the human performance Exact Match score on the dataset was 80.3%. ### Examples Without including any regexes to ignore: ```python >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 ``` Ignoring regexes "the" and "yell", as well as ignoring case and punctuation: ```python >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 ``` Note that in the example above, because the regexes are ignored before the case is normalized, "yell" from "YELLING" is not deleted. Ignoring "the", "yell", and "YELL", as well as ignoring case and punctuation: ```python >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 ``` Ignoring "the", "yell", and "YELL", as well as ignoring case, punctuation, and numbers: ```python >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 ``` An example that includes sentences: ```python >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ``` ## Limitations and Bias This metric is limited in that it outputs the same score for something that is completely wrong as for something that is correct except for a single character. In other words, there is no award for being *almost* right. ## Citation ## Further References - Also used in the [SQuAD metric](https://github.com/huggingface/datasets/tree/main/metrics/squad)
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/chrf/README.md
# Metric Card for chrF(++) ## Metric Description ChrF and ChrF++ are two MT evaluation metrics that use the F-score statistic for character n-gram matches. ChrF++ additionally includes word n-grams, which correlate more strongly with direct assessment. We use the implementation that is already present in sacrebleu. While this metric is included in sacreBLEU, the implementation here is slightly different from sacreBLEU in terms of the required input format. Here, the length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the [sacreBLEU README.md](https://github.com/mjpost/sacreBLEU#chrf--chrf) for more information. ## How to Use At minimum, this metric requires a `list` of predictions and a `list` of `list`s of references: ```python >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly.", ], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} ``` ### Inputs - **`predictions`** (`list` of `str`): The predicted sentences. - **`references`** (`list` of `list` of `str`): The references. There should be one reference sub-list for each prediction sentence. - **`char_order`** (`int`): Character n-gram order. Defaults to `6`. - **`word_order`** (`int`): Word n-gram order. If equals to 2, the metric is referred to as chrF++. Defaults to `0`. - **`beta`** (`int`): Determine the importance of recall w.r.t precision. Defaults to `2`. - **`lowercase`** (`bool`): If `True`, enables case-insensitivity. Defaults to `False`. - **`whitespace`** (`bool`): If `True`, include whitespaces when extracting character n-grams. Defaults to `False`. - **`eps_smoothing`** (`bool`): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK, and Moses implementations. If `False`, takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. ### Output Values The output is a dictionary containing the following fields: - **`'score'`** (`float`): The chrF (chrF++) score. - **`'char_order'`** (`int`): The character n-gram order. - **`'word_order'`** (`int`): The word n-gram order. If equals to `2`, the metric is referred to as chrF++. - **`'beta'`** (`int`): Determine the importance of recall w.r.t precision. The output is formatted as below: ```python {'score': 61.576379378113785, 'char_order': 6, 'word_order': 0, 'beta': 2} ``` The chrF(++) score can be any value between `0.0` and `100.0`, inclusive. #### Values from Popular Papers ### Examples A simple example of calculating chrF: ```python >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly.", ], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} ``` The same example, but with the argument `word_order=2`, to calculate chrF++ instead of chrF: ```python >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly.", ], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} ``` The same chrF++ example as above, but with `lowercase=True` to normalize all case: ```python >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly.", ], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} ``` ## Limitations and Bias - According to [Popović 2017](https://www.statmt.org/wmt17/pdf/WMT70.pdf), chrF+ (where `word_order=1`) and chrF++ (where `word_order=2`) produce scores that correlate better with human judgements than chrF (where `word_order=0`) does. ## Citation ```bibtex @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ``` ## Further References - See the [sacreBLEU README.md](https://github.com/mjpost/sacreBLEU#chrf--chrf) for more information on this implementation.
0
hf_public_repos/datasets/metrics
hf_public_repos/datasets/metrics/chrf/chrf.py
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Chrf(++) metric as available in sacrebleu. """ import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _CITATION = """\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _KWARGS_DESCRIPTION = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ChrF(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"], reference_urls=[ "https://github.com/m-popovic/chrF", ], ) def _compute( self, predictions, references, char_order: int = CHRF.CHAR_ORDER, word_order: int = CHRF.WORD_ORDER, beta: int = CHRF.BETA, lowercase: bool = False, whitespace: bool = False, eps_smoothing: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] sb_chrf = CHRF(char_order, word_order, beta, lowercase, whitespace, eps_smoothing) output = sb_chrf.corpus_score(predictions, transformed_references) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
0
hf_public_repos/datasets
hf_public_repos/datasets/utils/release.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import packaging.version REPLACE_PATTERNS = { "init": (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), "setup": (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), } REPLACE_FILES = { "init": "src/datasets/__init__.py", "setup": "setup.py", } def update_version_in_file(fname, version, pattern): """Update the version in one file using a specific pattern.""" with open(fname, "r", encoding="utf-8", newline="\n") as f: code = f.read() re_pattern, replace = REPLACE_PATTERNS[pattern] replace = replace.replace("VERSION", version) code = re_pattern.sub(replace, code) with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) def global_version_update(version): """Update the version in all needed files.""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(fname, version, pattern) def get_version(): """Reads the current version in the __init__.""" with open(REPLACE_FILES["init"], "r") as f: code = f.read() default_version = REPLACE_PATTERNS["init"][0].search(code).groups()[0] return packaging.version.parse(default_version) def pre_release_work(patch=False): """Do all the necessary pre-release steps.""" # First let's get the default version: base version if we are in dev, bump minor otherwise. default_version = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: default_version = default_version.base_version elif patch: default_version = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: default_version = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. version = input(f"Which version are you releasing? [{default_version}]") if len(version) == 0: version = default_version print(f"Updating version to {version}.") global_version_update(version) def post_release_work(): """Do all the necesarry post-release steps.""" # First let's get the current version current_version = get_version() dev_version = f"{current_version.major}.{current_version.minor + 1}.0.dev0" current_version = current_version.base_version # Check with the user we got that right. version = input(f"Which version are we developing now? [{dev_version}]") if len(version) == 0: version = dev_version print(f"Updating version to {version}.") global_version_update(version) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether or not this is post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") args = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_info_utils.py
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size", [None, 400 * 2**20, 600 * 2**20]) @pytest.mark.parametrize("input_in_memory_max_size", ["default", 0, 100 * 2**20, 900 * 2**20]) def test_is_small_dataset(dataset_size, input_in_memory_max_size, monkeypatch): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, "IN_MEMORY_MAX_SIZE", input_in_memory_max_size) in_memory_max_size = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: expected = dataset_size < in_memory_max_size else: expected = False result = is_small_dataset(dataset_size) assert result == expected
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_table.py
import copy import pickle import warnings from typing import List, Union import numpy as np import pyarrow as pa import pytest import datasets from datasets import Sequence, Value from datasets.features.features import Array2D, Array2DExtensionType, ClassLabel, Features, Image from datasets.table import ( ConcatenationTable, InMemoryTable, MemoryMappedTable, Table, TableBlock, _in_memory_arrow_table_from_buffer, _in_memory_arrow_table_from_file, _interpolation_search, _is_extension_type, _memory_mapped_arrow_table_from_file, array_concat, cast_array_to_feature, concat_tables, embed_array_storage, embed_table_storage, inject_arrow_table_documentation, table_cast, table_iter, ) from .utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, slow @pytest.fixture(scope="session") def in_memory_pa_table(arrow_file) -> pa.Table: return pa.ipc.open_stream(arrow_file).read_all() def _to_testing_blocks(table: TableBlock) -> List[List[TableBlock]]: assert len(table) > 2 blocks = [ [table.slice(0, 2)], [table.slice(2).drop([c for c in table.column_names if c != "tokens"]), table.slice(2).drop(["tokens"])], ] return blocks @pytest.fixture(scope="session") def in_memory_blocks(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table) return _to_testing_blocks(table) @pytest.fixture(scope="session") def memory_mapped_blocks(arrow_file): table = MemoryMappedTable.from_file(arrow_file) return _to_testing_blocks(table) @pytest.fixture(scope="session") def mixed_in_memory_and_memory_mapped_blocks(in_memory_blocks, memory_mapped_blocks): return in_memory_blocks[:1] + memory_mapped_blocks[1:] def assert_deepcopy_without_bringing_data_in_memory(table: MemoryMappedTable): with assert_arrow_memory_doesnt_increase(): copied_table = copy.deepcopy(table) assert isinstance(copied_table, MemoryMappedTable) assert copied_table.table == table.table def assert_deepcopy_does_bring_data_in_memory(table: MemoryMappedTable): with assert_arrow_memory_increases(): copied_table = copy.deepcopy(table) assert isinstance(copied_table, MemoryMappedTable) assert copied_table.table == table.table def assert_pickle_without_bringing_data_in_memory(table: MemoryMappedTable): with assert_arrow_memory_doesnt_increase(): pickled_table = pickle.dumps(table) unpickled_table = pickle.loads(pickled_table) assert isinstance(unpickled_table, MemoryMappedTable) assert unpickled_table.table == table.table def assert_pickle_does_bring_data_in_memory(table: MemoryMappedTable): with assert_arrow_memory_increases(): pickled_table = pickle.dumps(table) unpickled_table = pickle.loads(pickled_table) assert isinstance(unpickled_table, MemoryMappedTable) assert unpickled_table.table == table.table def assert_index_attributes_equal(table: Table, other: Table): assert table._batches == other._batches np.testing.assert_array_equal(table._offsets, other._offsets) assert table._schema == other._schema def add_suffix_to_column_names(table, suffix): return table.rename_columns([f"{name}{suffix}" for name in table.column_names]) def test_inject_arrow_table_documentation(in_memory_pa_table): method = pa.Table.slice def function_to_wrap(*args): return method(*args) args = (0, 1) wrapped_method = inject_arrow_table_documentation(method)(function_to_wrap) assert method(in_memory_pa_table, *args) == wrapped_method(in_memory_pa_table, *args) assert "pyarrow.Table" not in wrapped_method.__doc__ assert "Table" in wrapped_method.__doc__ def test_in_memory_arrow_table_from_file(arrow_file, in_memory_pa_table): with assert_arrow_memory_increases(): pa_table = _in_memory_arrow_table_from_file(arrow_file) assert in_memory_pa_table == pa_table def test_in_memory_arrow_table_from_buffer(in_memory_pa_table): with assert_arrow_memory_increases(): buf_writer = pa.BufferOutputStream() writer = pa.RecordBatchStreamWriter(buf_writer, schema=in_memory_pa_table.schema) writer.write_table(in_memory_pa_table) writer.close() buf_writer.close() pa_table = _in_memory_arrow_table_from_buffer(buf_writer.getvalue()) assert in_memory_pa_table == pa_table def test_memory_mapped_arrow_table_from_file(arrow_file, in_memory_pa_table): with assert_arrow_memory_doesnt_increase(): pa_table = _memory_mapped_arrow_table_from_file(arrow_file) assert in_memory_pa_table == pa_table def test_table_init(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.table == in_memory_pa_table def test_table_validate(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.validate() == in_memory_pa_table.validate() def test_table_equals(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.equals(in_memory_pa_table) def test_table_to_batches(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.to_batches() == in_memory_pa_table.to_batches() def test_table_to_pydict(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.to_pydict() == in_memory_pa_table.to_pydict() def test_table_to_string(in_memory_pa_table): table = Table(in_memory_pa_table) assert table.to_string() == in_memory_pa_table.to_string() def test_table_field(in_memory_pa_table): assert "tokens" in in_memory_pa_table.column_names table = Table(in_memory_pa_table) assert table.field("tokens") == in_memory_pa_table.field("tokens") def test_table_column(in_memory_pa_table): assert "tokens" in in_memory_pa_table.column_names table = Table(in_memory_pa_table) assert table.column("tokens") == in_memory_pa_table.column("tokens") def test_table_itercolumns(in_memory_pa_table): table = Table(in_memory_pa_table) assert isinstance(table.itercolumns(), type(in_memory_pa_table.itercolumns())) assert list(table.itercolumns()) == list(in_memory_pa_table.itercolumns()) def test_table_getitem(in_memory_pa_table): table = Table(in_memory_pa_table) assert table[0] == in_memory_pa_table[0] def test_table_len(in_memory_pa_table): table = Table(in_memory_pa_table) assert len(table) == len(in_memory_pa_table) def test_table_str(in_memory_pa_table): table = Table(in_memory_pa_table) assert str(table) == str(in_memory_pa_table).replace("pyarrow.Table", "Table") assert repr(table) == repr(in_memory_pa_table).replace("pyarrow.Table", "Table") @pytest.mark.parametrize( "attribute", ["schema", "columns", "num_columns", "num_rows", "shape", "nbytes", "column_names"] ) def test_table_attributes(in_memory_pa_table, attribute): table = Table(in_memory_pa_table) assert getattr(table, attribute) == getattr(in_memory_pa_table, attribute) def test_in_memory_table_from_file(arrow_file, in_memory_pa_table): with assert_arrow_memory_increases(): table = InMemoryTable.from_file(arrow_file) assert table.table == in_memory_pa_table assert isinstance(table, InMemoryTable) def test_in_memory_table_from_buffer(in_memory_pa_table): with assert_arrow_memory_increases(): buf_writer = pa.BufferOutputStream() writer = pa.RecordBatchStreamWriter(buf_writer, schema=in_memory_pa_table.schema) writer.write_table(in_memory_pa_table) writer.close() buf_writer.close() table = InMemoryTable.from_buffer(buf_writer.getvalue()) assert table.table == in_memory_pa_table assert isinstance(table, InMemoryTable) def test_in_memory_table_from_pandas(in_memory_pa_table): df = in_memory_pa_table.to_pandas() with assert_arrow_memory_increases(): # with no schema it might infer another order of the fields in the schema table = InMemoryTable.from_pandas(df) assert isinstance(table, InMemoryTable) # by specifying schema we get the same order of features, and so the exact same table table = InMemoryTable.from_pandas(df, schema=in_memory_pa_table.schema) assert table.table == in_memory_pa_table assert isinstance(table, InMemoryTable) def test_in_memory_table_from_arrays(in_memory_pa_table): arrays = list(in_memory_pa_table.columns) names = list(in_memory_pa_table.column_names) table = InMemoryTable.from_arrays(arrays, names=names) assert table.table == in_memory_pa_table assert isinstance(table, InMemoryTable) def test_in_memory_table_from_pydict(in_memory_pa_table): pydict = in_memory_pa_table.to_pydict() with assert_arrow_memory_increases(): table = InMemoryTable.from_pydict(pydict) assert isinstance(table, InMemoryTable) assert table.table == pa.Table.from_pydict(pydict) def test_in_memory_table_from_pylist(in_memory_pa_table): pylist = InMemoryTable(in_memory_pa_table).to_pylist() table = InMemoryTable.from_pylist(pylist) assert isinstance(table, InMemoryTable) assert pylist == table.to_pylist() def test_in_memory_table_from_batches(in_memory_pa_table): batches = list(in_memory_pa_table.to_batches()) table = InMemoryTable.from_batches(batches) assert table.table == in_memory_pa_table assert isinstance(table, InMemoryTable) def test_in_memory_table_deepcopy(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table) copied_table = copy.deepcopy(table) assert table.table == copied_table.table assert_index_attributes_equal(table, copied_table) # deepcopy must return the exact same arrow objects since they are immutable assert table.table is copied_table.table assert all(batch1 is batch2 for batch1, batch2 in zip(table._batches, copied_table._batches)) def test_in_memory_table_pickle(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table) pickled_table = pickle.dumps(table) unpickled_table = pickle.loads(pickled_table) assert unpickled_table.table == table.table assert_index_attributes_equal(table, unpickled_table) @slow def test_in_memory_table_pickle_big_table(): big_table_4GB = InMemoryTable.from_pydict({"col": [0] * ((4 * 8 << 30) // 64)}) length = len(big_table_4GB) big_table_4GB = pickle.dumps(big_table_4GB) big_table_4GB = pickle.loads(big_table_4GB) assert len(big_table_4GB) == length def test_in_memory_table_slice(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table).slice(1, 2) assert table.table == in_memory_pa_table.slice(1, 2) assert isinstance(table, InMemoryTable) def test_in_memory_table_filter(in_memory_pa_table): mask = pa.array([i % 2 == 0 for i in range(len(in_memory_pa_table))]) table = InMemoryTable(in_memory_pa_table).filter(mask) assert table.table == in_memory_pa_table.filter(mask) assert isinstance(table, InMemoryTable) def test_in_memory_table_flatten(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table).flatten() assert table.table == in_memory_pa_table.flatten() assert isinstance(table, InMemoryTable) def test_in_memory_table_combine_chunks(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table).combine_chunks() assert table.table == in_memory_pa_table.combine_chunks() assert isinstance(table, InMemoryTable) def test_in_memory_table_cast(in_memory_pa_table): assert pa.list_(pa.int64()) in in_memory_pa_table.schema.types schema = pa.schema( { k: v if v != pa.list_(pa.int64()) else pa.list_(pa.int32()) for k, v in zip(in_memory_pa_table.schema.names, in_memory_pa_table.schema.types) } ) table = InMemoryTable(in_memory_pa_table).cast(schema) assert table.table == in_memory_pa_table.cast(schema) assert isinstance(table, InMemoryTable) def test_in_memory_table_cast_reorder_struct(): table = InMemoryTable( pa.Table.from_pydict( { "top": [ { "foo": "a", "bar": "b", } ] } ) ) schema = pa.schema({"top": pa.struct({"bar": pa.string(), "foo": pa.string()})}) assert table.cast(schema).schema == schema def test_in_memory_table_cast_with_hf_features(): table = InMemoryTable(pa.Table.from_pydict({"labels": [0, 1]})) features = Features({"labels": ClassLabel(names=["neg", "pos"])}) schema = features.arrow_schema assert table.cast(schema).schema == schema assert Features.from_arrow_schema(table.cast(schema).schema) == features def test_in_memory_table_replace_schema_metadata(in_memory_pa_table): metadata = {"huggingface": "{}"} table = InMemoryTable(in_memory_pa_table).replace_schema_metadata(metadata) assert table.table.schema.metadata == in_memory_pa_table.replace_schema_metadata(metadata).schema.metadata assert isinstance(table, InMemoryTable) def test_in_memory_table_add_column(in_memory_pa_table): i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = InMemoryTable(in_memory_pa_table).add_column(i, field_, column) assert table.table == in_memory_pa_table.add_column(i, field_, column) assert isinstance(table, InMemoryTable) def test_in_memory_table_append_column(in_memory_pa_table): field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = InMemoryTable(in_memory_pa_table).append_column(field_, column) assert table.table == in_memory_pa_table.append_column(field_, column) assert isinstance(table, InMemoryTable) def test_in_memory_table_remove_column(in_memory_pa_table): table = InMemoryTable(in_memory_pa_table).remove_column(0) assert table.table == in_memory_pa_table.remove_column(0) assert isinstance(table, InMemoryTable) def test_in_memory_table_set_column(in_memory_pa_table): i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = InMemoryTable(in_memory_pa_table).set_column(i, field_, column) assert table.table == in_memory_pa_table.set_column(i, field_, column) assert isinstance(table, InMemoryTable) def test_in_memory_table_rename_columns(in_memory_pa_table): assert "tokens" in in_memory_pa_table.column_names names = [name if name != "tokens" else "new_tokens" for name in in_memory_pa_table.column_names] table = InMemoryTable(in_memory_pa_table).rename_columns(names) assert table.table == in_memory_pa_table.rename_columns(names) assert isinstance(table, InMemoryTable) def test_in_memory_table_drop(in_memory_pa_table): names = [in_memory_pa_table.column_names[0]] table = InMemoryTable(in_memory_pa_table).drop(names) assert table.table == in_memory_pa_table.drop(names) assert isinstance(table, InMemoryTable) def test_memory_mapped_table_init(arrow_file, in_memory_pa_table): table = MemoryMappedTable(_memory_mapped_arrow_table_from_file(arrow_file), arrow_file) assert table.table == in_memory_pa_table assert isinstance(table, MemoryMappedTable) assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_from_file(arrow_file, in_memory_pa_table): with assert_arrow_memory_doesnt_increase(): table = MemoryMappedTable.from_file(arrow_file) assert table.table == in_memory_pa_table assert isinstance(table, MemoryMappedTable) assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_from_file_with_replay(arrow_file, in_memory_pa_table): replays = [("slice", (0, 1), {}), ("flatten", (), {})] with assert_arrow_memory_doesnt_increase(): table = MemoryMappedTable.from_file(arrow_file, replays=replays) assert len(table) == 1 for method, args, kwargs in replays: in_memory_pa_table = getattr(in_memory_pa_table, method)(*args, **kwargs) assert table.table == in_memory_pa_table assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_deepcopy(arrow_file): table = MemoryMappedTable.from_file(arrow_file) copied_table = copy.deepcopy(table) assert table.table == copied_table.table assert table.path == copied_table.path assert_index_attributes_equal(table, copied_table) # deepcopy must return the exact same arrow objects since they are immutable assert table.table is copied_table.table assert all(batch1 is batch2 for batch1, batch2 in zip(table._batches, copied_table._batches)) def test_memory_mapped_table_pickle(arrow_file): table = MemoryMappedTable.from_file(arrow_file) pickled_table = pickle.dumps(table) unpickled_table = pickle.loads(pickled_table) assert unpickled_table.table == table.table assert unpickled_table.path == table.path assert_index_attributes_equal(table, unpickled_table) def test_memory_mapped_table_pickle_doesnt_fill_memory(arrow_file): with assert_arrow_memory_doesnt_increase(): table = MemoryMappedTable.from_file(arrow_file) assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_pickle_applies_replay(arrow_file): replays = [("slice", (0, 1), {}), ("flatten", (), {})] with assert_arrow_memory_doesnt_increase(): table = MemoryMappedTable.from_file(arrow_file, replays=replays) assert isinstance(table, MemoryMappedTable) assert table.replays == replays assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_slice(arrow_file, in_memory_pa_table): table = MemoryMappedTable.from_file(arrow_file).slice(1, 2) assert table.table == in_memory_pa_table.slice(1, 2) assert isinstance(table, MemoryMappedTable) assert table.replays == [("slice", (1, 2), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_filter(arrow_file, in_memory_pa_table): mask = pa.array([i % 2 == 0 for i in range(len(in_memory_pa_table))]) table = MemoryMappedTable.from_file(arrow_file).filter(mask) assert table.table == in_memory_pa_table.filter(mask) assert isinstance(table, MemoryMappedTable) assert table.replays == [("filter", (mask,), {})] assert_deepcopy_without_bringing_data_in_memory(table) # filter DOES increase memory # assert_pickle_without_bringing_data_in_memory(table) assert_pickle_does_bring_data_in_memory(table) def test_memory_mapped_table_flatten(arrow_file, in_memory_pa_table): table = MemoryMappedTable.from_file(arrow_file).flatten() assert table.table == in_memory_pa_table.flatten() assert isinstance(table, MemoryMappedTable) assert table.replays == [("flatten", (), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_combine_chunks(arrow_file, in_memory_pa_table): table = MemoryMappedTable.from_file(arrow_file).combine_chunks() assert table.table == in_memory_pa_table.combine_chunks() assert isinstance(table, MemoryMappedTable) assert table.replays == [("combine_chunks", (), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_cast(arrow_file, in_memory_pa_table): assert pa.list_(pa.int64()) in in_memory_pa_table.schema.types schema = pa.schema( { k: v if v != pa.list_(pa.int64()) else pa.list_(pa.int32()) for k, v in zip(in_memory_pa_table.schema.names, in_memory_pa_table.schema.types) } ) table = MemoryMappedTable.from_file(arrow_file).cast(schema) assert table.table == in_memory_pa_table.cast(schema) assert isinstance(table, MemoryMappedTable) assert table.replays == [("cast", (schema,), {})] assert_deepcopy_without_bringing_data_in_memory(table) # cast DOES increase memory when converting integers precision for example # assert_pickle_without_bringing_data_in_memory(table) assert_pickle_does_bring_data_in_memory(table) def test_memory_mapped_table_replace_schema_metadata(arrow_file, in_memory_pa_table): metadata = {"huggingface": "{}"} table = MemoryMappedTable.from_file(arrow_file).replace_schema_metadata(metadata) assert table.table.schema.metadata == in_memory_pa_table.replace_schema_metadata(metadata).schema.metadata assert isinstance(table, MemoryMappedTable) assert table.replays == [("replace_schema_metadata", (metadata,), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_add_column(arrow_file, in_memory_pa_table): i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = MemoryMappedTable.from_file(arrow_file).add_column(i, field_, column) assert table.table == in_memory_pa_table.add_column(i, field_, column) assert isinstance(table, MemoryMappedTable) assert table.replays == [("add_column", (i, field_, column), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_append_column(arrow_file, in_memory_pa_table): field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = MemoryMappedTable.from_file(arrow_file).append_column(field_, column) assert table.table == in_memory_pa_table.append_column(field_, column) assert isinstance(table, MemoryMappedTable) assert table.replays == [("append_column", (field_, column), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_remove_column(arrow_file, in_memory_pa_table): table = MemoryMappedTable.from_file(arrow_file).remove_column(0) assert table.table == in_memory_pa_table.remove_column(0) assert isinstance(table, MemoryMappedTable) assert table.replays == [("remove_column", (0,), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_set_column(arrow_file, in_memory_pa_table): i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) table = MemoryMappedTable.from_file(arrow_file).set_column(i, field_, column) assert table.table == in_memory_pa_table.set_column(i, field_, column) assert isinstance(table, MemoryMappedTable) assert table.replays == [("set_column", (i, field_, column), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_rename_columns(arrow_file, in_memory_pa_table): assert "tokens" in in_memory_pa_table.column_names names = [name if name != "tokens" else "new_tokens" for name in in_memory_pa_table.column_names] table = MemoryMappedTable.from_file(arrow_file).rename_columns(names) assert table.table == in_memory_pa_table.rename_columns(names) assert isinstance(table, MemoryMappedTable) assert table.replays == [("rename_columns", (names,), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) def test_memory_mapped_table_drop(arrow_file, in_memory_pa_table): names = [in_memory_pa_table.column_names[0]] table = MemoryMappedTable.from_file(arrow_file).drop(names) assert table.table == in_memory_pa_table.drop(names) assert isinstance(table, MemoryMappedTable) assert table.replays == [("drop", (names,), {})] assert_deepcopy_without_bringing_data_in_memory(table) assert_pickle_without_bringing_data_in_memory(table) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_init( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = ( in_memory_blocks if blocks_type == "in_memory" else memory_mapped_blocks if blocks_type == "memory_mapped" else mixed_in_memory_and_memory_mapped_blocks ) table = ConcatenationTable(in_memory_pa_table, blocks) assert table.table == in_memory_pa_table assert table.blocks == blocks def test_concatenation_table_from_blocks(in_memory_pa_table, in_memory_blocks): assert len(in_memory_pa_table) > 2 in_memory_table = InMemoryTable(in_memory_pa_table) t1, t2 = in_memory_table.slice(0, 2), in_memory_table.slice(2) table = ConcatenationTable.from_blocks(in_memory_table) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table assert table.blocks == [[in_memory_table]] table = ConcatenationTable.from_blocks([t1, t2]) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table assert table.blocks == [[in_memory_table]] table = ConcatenationTable.from_blocks([[t1], [t2]]) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table assert table.blocks == [[in_memory_table]] table = ConcatenationTable.from_blocks(in_memory_blocks) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table assert table.blocks == [[in_memory_table]] @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_from_blocks_doesnt_increase_memory( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] with assert_arrow_memory_doesnt_increase(): table = ConcatenationTable.from_blocks(blocks) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table if blocks_type == "in_memory": assert table.blocks == [[InMemoryTable(in_memory_pa_table)]] else: assert table.blocks == blocks @pytest.mark.parametrize("axis", [0, 1]) def test_concatenation_table_from_tables(axis, in_memory_pa_table, arrow_file): in_memory_table = InMemoryTable(in_memory_pa_table) concatenation_table = ConcatenationTable.from_blocks(in_memory_table) memory_mapped_table = MemoryMappedTable.from_file(arrow_file) tables = [in_memory_pa_table, in_memory_table, concatenation_table, memory_mapped_table] if axis == 0: expected_table = pa.concat_tables([in_memory_pa_table] * len(tables)) else: # avoids error due to duplicate column names tables[1:] = [add_suffix_to_column_names(table, i) for i, table in enumerate(tables[1:], 1)] expected_table = in_memory_pa_table for table in tables[1:]: for name, col in zip(table.column_names, table.columns): expected_table = expected_table.append_column(name, col) with assert_arrow_memory_doesnt_increase(): table = ConcatenationTable.from_tables(tables, axis=axis) assert isinstance(table, ConcatenationTable) assert table.table == expected_table # because of consolidation, we end up with 1 InMemoryTable and 1 MemoryMappedTable assert len(table.blocks) == 1 if axis == 1 else 2 assert len(table.blocks[0]) == 1 if axis == 0 else 2 assert axis == 1 or len(table.blocks[1]) == 1 assert isinstance(table.blocks[0][0], InMemoryTable) assert isinstance(table.blocks[1][0] if axis == 0 else table.blocks[0][1], MemoryMappedTable) def test_concatenation_table_from_tables_axis1_misaligned_blocks(arrow_file): table = MemoryMappedTable.from_file(arrow_file) t1 = table.slice(0, 2) t2 = table.slice(0, 3).rename_columns([col + "_1" for col in table.column_names]) concatenated = ConcatenationTable.from_tables( [ ConcatenationTable.from_blocks([[t1], [t1], [t1]]), ConcatenationTable.from_blocks([[t2], [t2]]), ], axis=1, ) assert len(concatenated) == 6 assert [len(row_blocks[0]) for row_blocks in concatenated.blocks] == [2, 1, 1, 2] concatenated = ConcatenationTable.from_tables( [ ConcatenationTable.from_blocks([[t2], [t2]]), ConcatenationTable.from_blocks([[t1], [t1], [t1]]), ], axis=1, ) assert len(concatenated) == 6 assert [len(row_blocks[0]) for row_blocks in concatenated.blocks] == [2, 1, 1, 2] @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_deepcopy( blocks_type, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks) copied_table = copy.deepcopy(table) assert table.table == copied_table.table assert table.blocks == copied_table.blocks assert_index_attributes_equal(table, copied_table) # deepcopy must return the exact same arrow objects since they are immutable assert table.table is copied_table.table assert all(batch1 is batch2 for batch1, batch2 in zip(table._batches, copied_table._batches)) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_pickle( blocks_type, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks) pickled_table = pickle.dumps(table) unpickled_table = pickle.loads(pickled_table) assert unpickled_table.table == table.table assert unpickled_table.blocks == table.blocks assert_index_attributes_equal(table, unpickled_table) def test_concat_tables_with_features_metadata(arrow_file, in_memory_pa_table): input_features = Features.from_arrow_schema(in_memory_pa_table.schema) input_features["id"] = Value("int64", id="my_id") intput_schema = input_features.arrow_schema t0 = in_memory_pa_table.replace_schema_metadata(intput_schema.metadata) t1 = MemoryMappedTable.from_file(arrow_file) tables = [t0, t1] concatenated_table = concat_tables(tables, axis=0) output_schema = concatenated_table.schema output_features = Features.from_arrow_schema(output_schema) assert output_schema == intput_schema assert output_schema.metadata == intput_schema.metadata assert output_features == input_features assert output_features["id"].id == "my_id" @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_slice( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks).slice(1, 2) assert table.table == in_memory_pa_table.slice(1, 2) assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_filter( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] mask = pa.array([i % 2 == 0 for i in range(len(in_memory_pa_table))]) table = ConcatenationTable.from_blocks(blocks).filter(mask) assert table.table == in_memory_pa_table.filter(mask) assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_flatten( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks).flatten() assert table.table == in_memory_pa_table.flatten() assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_combine_chunks( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks).combine_chunks() assert table.table == in_memory_pa_table.combine_chunks() assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_cast( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] assert pa.list_(pa.int64()) in in_memory_pa_table.schema.types assert pa.int64() in in_memory_pa_table.schema.types schema = pa.schema( { k: v if v != pa.list_(pa.int64()) else pa.list_(pa.int32()) for k, v in zip(in_memory_pa_table.schema.names, in_memory_pa_table.schema.types) } ) table = ConcatenationTable.from_blocks(blocks).cast(schema) assert table.table == in_memory_pa_table.cast(schema) assert isinstance(table, ConcatenationTable) schema = pa.schema( { k: v if v != pa.int64() else pa.int32() for k, v in zip(in_memory_pa_table.schema.names, in_memory_pa_table.schema.types) } ) table = ConcatenationTable.from_blocks(blocks).cast(schema) assert table.table == in_memory_pa_table.cast(schema) assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concat_tables_cast_with_features_metadata( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] input_features = Features.from_arrow_schema(in_memory_pa_table.schema) input_features["id"] = Value("int64", id="my_id") intput_schema = input_features.arrow_schema concatenated_table = ConcatenationTable.from_blocks(blocks).cast(intput_schema) output_schema = concatenated_table.schema output_features = Features.from_arrow_schema(output_schema) assert output_schema == intput_schema assert output_schema.metadata == intput_schema.metadata assert output_features == input_features assert output_features["id"].id == "my_id" @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_replace_schema_metadata( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] metadata = {"huggingface": "{}"} table = ConcatenationTable.from_blocks(blocks).replace_schema_metadata(metadata) assert table.table.schema.metadata == in_memory_pa_table.replace_schema_metadata(metadata).schema.metadata assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_add_column( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) with pytest.raises(NotImplementedError): ConcatenationTable.from_blocks(blocks).add_column(i, field_, column) # assert table.table == in_memory_pa_table.add_column(i, field_, column) # unpickled_table = pickle.loads(pickle.dumps(table)) # assert unpickled_table.table == in_memory_pa_table.add_column(i, field_, column) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_append_column( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) with pytest.raises(NotImplementedError): ConcatenationTable.from_blocks(blocks).append_column(field_, column) # assert table.table == in_memory_pa_table.append_column(field_, column) # unpickled_table = pickle.loads(pickle.dumps(table)) # assert unpickled_table.table == in_memory_pa_table.append_column(field_, column) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_remove_column( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] table = ConcatenationTable.from_blocks(blocks).remove_column(0) assert table.table == in_memory_pa_table.remove_column(0) assert isinstance(table, ConcatenationTable) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_set_column( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] i = len(in_memory_pa_table.column_names) field_ = "new_field" column = pa.array(list(range(len(in_memory_pa_table)))) with pytest.raises(NotImplementedError): ConcatenationTable.from_blocks(blocks).set_column(i, field_, column) # assert table.table == in_memory_pa_table.set_column(i, field_, column) # unpickled_table = pickle.loads(pickle.dumps(table)) # assert unpickled_table.table == in_memory_pa_table.set_column(i, field_, column) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_rename_columns( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] assert "tokens" in in_memory_pa_table.column_names names = [name if name != "tokens" else "new_tokens" for name in in_memory_pa_table.column_names] table = ConcatenationTable.from_blocks(blocks).rename_columns(names) assert isinstance(table, ConcatenationTable) assert table.table == in_memory_pa_table.rename_columns(names) @pytest.mark.parametrize("blocks_type", ["in_memory", "memory_mapped", "mixed"]) def test_concatenation_table_drop( blocks_type, in_memory_pa_table, in_memory_blocks, memory_mapped_blocks, mixed_in_memory_and_memory_mapped_blocks ): blocks = { "in_memory": in_memory_blocks, "memory_mapped": memory_mapped_blocks, "mixed": mixed_in_memory_and_memory_mapped_blocks, }[blocks_type] names = [in_memory_pa_table.column_names[0]] table = ConcatenationTable.from_blocks(blocks).drop(names) assert table.table == in_memory_pa_table.drop(names) assert isinstance(table, ConcatenationTable) def test_concat_tables(arrow_file, in_memory_pa_table): t0 = in_memory_pa_table t1 = InMemoryTable(t0) t2 = MemoryMappedTable.from_file(arrow_file) t3 = ConcatenationTable.from_blocks(t1) tables = [t0, t1, t2, t3] concatenated_table = concat_tables(tables, axis=0) assert concatenated_table.table == pa.concat_tables([t0] * 4) assert concatenated_table.table.shape == (40, 4) assert isinstance(concatenated_table, ConcatenationTable) assert len(concatenated_table.blocks) == 3 # t0 and t1 are consolidated as a single InMemoryTable assert isinstance(concatenated_table.blocks[0][0], InMemoryTable) assert isinstance(concatenated_table.blocks[1][0], MemoryMappedTable) assert isinstance(concatenated_table.blocks[2][0], InMemoryTable) # add suffix to avoid error due to duplicate column names concatenated_table = concat_tables( [add_suffix_to_column_names(table, i) for i, table in enumerate(tables)], axis=1 ) assert concatenated_table.table.shape == (10, 16) assert len(concatenated_table.blocks[0]) == 3 # t0 and t1 are consolidated as a single InMemoryTable assert isinstance(concatenated_table.blocks[0][0], InMemoryTable) assert isinstance(concatenated_table.blocks[0][1], MemoryMappedTable) assert isinstance(concatenated_table.blocks[0][2], InMemoryTable) def _interpolation_search_ground_truth(arr: List[int], x: int) -> Union[int, IndexError]: for i in range(len(arr) - 1): if arr[i] <= x < arr[i + 1]: return i return IndexError class _ListWithGetitemCounter(list): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.unique_getitem_calls = set() def __getitem__(self, i): out = super().__getitem__(i) self.unique_getitem_calls.add(i) return out @property def getitem_unique_count(self): return len(self.unique_getitem_calls) @pytest.mark.parametrize( "arr, x", [(np.arange(0, 14, 3), x) for x in range(-1, 22)] + [(list(np.arange(-5, 5)), x) for x in range(-6, 6)] + [([0, 1_000, 1_001, 1_003], x) for x in [-1, 0, 2, 100, 999, 1_000, 1_001, 1_002, 1_003, 1_004]] + [(list(range(1_000)), x) for x in [-1, 0, 1, 10, 666, 999, 1_000, 1_0001]], ) def test_interpolation_search(arr, x): ground_truth = _interpolation_search_ground_truth(arr, x) if isinstance(ground_truth, int): arr = _ListWithGetitemCounter(arr) output = _interpolation_search(arr, x) assert ground_truth == output # 4 maximum unique getitem calls is expected for the cases of this test # but it can be bigger for large and messy arrays. assert arr.getitem_unique_count <= 4 else: with pytest.raises(ground_truth): _interpolation_search(arr, x) def test_indexed_table_mixin(): n_rows_per_chunk = 10 n_chunks = 4 pa_table = pa.Table.from_pydict({"col": [0] * n_rows_per_chunk}) pa_table = pa.concat_tables([pa_table] * n_chunks) table = Table(pa_table) assert all(table._offsets.tolist() == np.cumsum([0] + [n_rows_per_chunk] * n_chunks)) assert table.fast_slice(5) == pa_table.slice(5) assert table.fast_slice(2, 13) == pa_table.slice(2, 13) @pytest.mark.parametrize( "arrays", [ [pa.array([[1, 2, 3, 4]]), pa.array([[10, 2]])], [ pa.array([[[1, 2], [3]]], pa.list_(pa.list_(pa.int32()), 2)), pa.array([[[10, 2, 3], [2]]], pa.list_(pa.list_(pa.int32()), 2)), ], [pa.array([[[1, 2, 3]], [[2, 3], [20, 21]], [[4]]]).slice(1), pa.array([[[1, 2, 3]]])], ], ) def test_concat_arrays(arrays): assert array_concat(arrays) == pa.concat_arrays(arrays) def test_concat_arrays_nested_with_nulls(): arrays = [pa.array([{"a": 21, "b": [[1, 2], [3]]}]), pa.array([{"a": 100, "b": [[1], None]}])] concatenated_arrays = array_concat(arrays) assert concatenated_arrays == pa.array([{"a": 21, "b": [[1, 2], [3]]}, {"a": 100, "b": [[1], None]}]) def test_concat_extension_arrays(): arrays = [pa.array([[[1, 2], [3, 4]]]), pa.array([[[10, 2], [3, 4]]])] extension_type = Array2DExtensionType((2, 2), "int64") assert array_concat([extension_type.wrap_array(array) for array in arrays]) == extension_type.wrap_array( pa.concat_arrays(arrays) ) def test_cast_array_to_features(): arr = pa.array([[0, 1]]) assert cast_array_to_feature(arr, Sequence(Value("string"))).type == pa.list_(pa.string()) with pytest.raises(TypeError): cast_array_to_feature(arr, Sequence(Value("string")), allow_number_to_str=False) def test_cast_array_to_features_nested(): arr = pa.array([[{"foo": [0]}]]) assert cast_array_to_feature(arr, [{"foo": Sequence(Value("string"))}]).type == pa.list_( pa.struct({"foo": pa.list_(pa.string())}) ) def test_cast_array_to_features_to_nested_with_no_fields(): arr = pa.array([{}]) assert cast_array_to_feature(arr, {}).type == pa.struct({}) assert cast_array_to_feature(arr, {}).to_pylist() == arr.to_pylist() def test_cast_array_to_features_nested_with_null_values(): # same type arr = pa.array([{"foo": [None, [0]]}], pa.struct({"foo": pa.list_(pa.list_(pa.int64()))})) casted_array = cast_array_to_feature(arr, {"foo": [[Value("int64")]]}) assert casted_array.type == pa.struct({"foo": pa.list_(pa.list_(pa.int64()))}) assert casted_array.to_pylist() == arr.to_pylist() # different type arr = pa.array([{"foo": [None, [0]]}], pa.struct({"foo": pa.list_(pa.list_(pa.int64()))})) if datasets.config.PYARROW_VERSION.major < 10: with pytest.warns(UserWarning, match="None values are converted to empty lists.+"): casted_array = cast_array_to_feature(arr, {"foo": [[Value("int32")]]}) assert casted_array.type == pa.struct({"foo": pa.list_(pa.list_(pa.int32()))}) assert casted_array.to_pylist() == [ {"foo": [[], [0]]} ] # empty list because of https://github.com/huggingface/datasets/issues/3676 else: with warnings.catch_warnings(): warnings.simplefilter("error") casted_array = cast_array_to_feature(arr, {"foo": [[Value("int32")]]}) assert casted_array.type == pa.struct({"foo": pa.list_(pa.list_(pa.int32()))}) assert casted_array.to_pylist() == [{"foo": [None, [0]]}] def test_cast_array_to_features_to_null_type(): # same type arr = pa.array([[None, None]]) assert cast_array_to_feature(arr, Sequence(Value("null"))).type == pa.list_(pa.null()) # different type arr = pa.array([[None, 1]]) with pytest.raises(TypeError): cast_array_to_feature(arr, Sequence(Value("null"))) def test_cast_array_to_features_array_xd(): # same storage type arr = pa.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], pa.list_(pa.list_(pa.int32(), 2), 2)) casted_array = cast_array_to_feature(arr, Array2D(shape=(2, 2), dtype="int32")) assert casted_array.type == Array2DExtensionType(shape=(2, 2), dtype="int32") # different storage type casted_array = cast_array_to_feature(arr, Array2D(shape=(2, 2), dtype="float32")) assert casted_array.type == Array2DExtensionType(shape=(2, 2), dtype="float32") def test_cast_array_to_features_sequence_classlabel(): arr = pa.array([[], [1], [0, 1]], pa.list_(pa.int64())) assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))).type == pa.list_(pa.int64()) arr = pa.array([[], ["bar"], ["foo", "bar"]], pa.list_(pa.string())) assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))).type == pa.list_(pa.int64()) # Test empty arrays arr = pa.array([[], []], pa.list_(pa.int64())) assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))).type == pa.list_(pa.int64()) arr = pa.array([[], []], pa.list_(pa.string())) assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))).type == pa.list_(pa.int64()) # Test invalid class labels arr = pa.array([[2]], pa.list_(pa.int64())) with pytest.raises(ValueError): assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))) arr = pa.array([["baz"]], pa.list_(pa.string())) with pytest.raises(ValueError): assert cast_array_to_feature(arr, Sequence(ClassLabel(names=["foo", "bar"]))) def test_cast_fixed_size_array_to_features_sequence(): arr = pa.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], pa.list_(pa.int32(), 3)) # Fixed size list casted_array = cast_array_to_feature(arr, Sequence(Value("int64"), length=3)) assert casted_array.type == pa.list_(pa.int64(), 3) assert casted_array.to_pylist() == arr.to_pylist() # Variable size list casted_array = cast_array_to_feature(arr, Sequence(Value("int64"))) assert casted_array.type == pa.list_(pa.int64()) assert casted_array.to_pylist() == arr.to_pylist() def test_cast_sliced_fixed_size_array_to_features(): arr = pa.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], pa.list_(pa.int32(), 3)) casted_array = cast_array_to_feature(arr[1:], Sequence(Value("int64"), length=3)) assert casted_array.type == pa.list_(pa.int64(), 3) assert casted_array.to_pylist() == arr[1:].to_pylist() def test_embed_array_storage(image_file): array = pa.array([{"bytes": None, "path": image_file}], type=Image.pa_type) embedded_images_array = embed_array_storage(array, Image()) assert isinstance(embedded_images_array.to_pylist()[0]["path"], str) assert embedded_images_array.to_pylist()[0]["path"] == "test_image_rgb.jpg" assert isinstance(embedded_images_array.to_pylist()[0]["bytes"], bytes) def test_embed_array_storage_nested(image_file): array = pa.array([[{"bytes": None, "path": image_file}]], type=pa.list_(Image.pa_type)) embedded_images_array = embed_array_storage(array, [Image()]) assert isinstance(embedded_images_array.to_pylist()[0][0]["path"], str) assert isinstance(embedded_images_array.to_pylist()[0][0]["bytes"], bytes) array = pa.array([{"foo": {"bytes": None, "path": image_file}}], type=pa.struct({"foo": Image.pa_type})) embedded_images_array = embed_array_storage(array, {"foo": Image()}) assert isinstance(embedded_images_array.to_pylist()[0]["foo"]["path"], str) assert isinstance(embedded_images_array.to_pylist()[0]["foo"]["bytes"], bytes) def test_embed_table_storage(image_file): features = Features({"image": Image()}) table = table_cast(pa.table({"image": [image_file]}), features.arrow_schema) embedded_images_table = embed_table_storage(table) assert isinstance(embedded_images_table.to_pydict()["image"][0]["path"], str) assert isinstance(embedded_images_table.to_pydict()["image"][0]["bytes"], bytes) @pytest.mark.parametrize( "table", [ InMemoryTable(pa.table({"foo": range(10)})), InMemoryTable(pa.concat_tables([pa.table({"foo": range(0, 5)}), pa.table({"foo": range(5, 10)})])), InMemoryTable(pa.concat_tables([pa.table({"foo": [i]}) for i in range(10)])), ], ) @pytest.mark.parametrize("batch_size", [1, 2, 3, 9, 10, 11, 20]) @pytest.mark.parametrize("drop_last_batch", [False, True]) def test_table_iter(table, batch_size, drop_last_batch): num_rows = len(table) if not drop_last_batch else len(table) // batch_size * batch_size num_batches = (num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size subtables = list(table_iter(table, batch_size=batch_size, drop_last_batch=drop_last_batch)) assert len(subtables) == num_batches if drop_last_batch: assert all(len(subtable) == batch_size for subtable in subtables) else: assert all(len(subtable) == batch_size for subtable in subtables[:-1]) assert len(subtables[-1]) <= batch_size if num_rows > 0: reloaded = pa.concat_tables(subtables) assert table.slice(0, num_rows).to_pydict() == reloaded.to_pydict() @pytest.mark.parametrize( "pa_type, expected", [ (pa.int8(), False), (pa.struct({"col1": pa.int8(), "col2": pa.int64()}), False), (pa.struct({"col1": pa.list_(pa.int8()), "col2": Array2DExtensionType((1, 3), "int64")}), True), (pa.list_(pa.int8()), False), (pa.list_(Array2DExtensionType((1, 3), "int64"), 4), True), ], ) def test_is_extension_type(pa_type, expected): assert _is_extension_type(pa_type) == expected
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_hf_gcp.py
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False).replace(os.sep, "/"), config.DATASET_INFO_FILENAME, ] ) datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_as_dataset_from_hf_gcs(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds @pytest.mark.integration def test_as_streaming_dataset_from_hf_gcs(tmp_path): dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_path) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_path, config_name="20220301.frr", hash=dataset_module.hash, ) ds = builder_instance.as_streaming_dataset() assert ds assert isinstance(ds, IterableDatasetDict) assert "train" in ds assert isinstance(ds["train"], IterableDataset) assert next(iter(ds["train"]))
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_load.py
import importlib import os import pickle import shutil import tempfile import time from hashlib import sha256 from multiprocessing import Pool from pathlib import Path from unittest import TestCase from unittest.mock import patch import dill import pyarrow as pa import pytest import requests import datasets from datasets import config, load_dataset, load_from_disk from datasets.arrow_dataset import Dataset from datasets.arrow_writer import ArrowWriter from datasets.builder import DatasetBuilder from datasets.config import METADATA_CONFIGS_FIELD from datasets.data_files import DataFilesDict, DataFilesPatternsDict from datasets.dataset_dict import DatasetDict, IterableDatasetDict from datasets.download.download_config import DownloadConfig from datasets.exceptions import DatasetNotFoundError from datasets.features import Features, Image, Value from datasets.iterable_dataset import IterableDataset from datasets.load import ( CachedDatasetModuleFactory, CachedMetricModuleFactory, GithubMetricModuleFactory, HubDatasetModuleFactoryWithoutScript, HubDatasetModuleFactoryWithParquetExport, HubDatasetModuleFactoryWithScript, LocalDatasetModuleFactoryWithoutScript, LocalDatasetModuleFactoryWithScript, LocalMetricModuleFactory, PackagedDatasetModuleFactory, infer_module_for_data_files_list, infer_module_for_data_files_list_in_archives, load_dataset_builder, resolve_trust_remote_code, ) from datasets.packaged_modules.audiofolder.audiofolder import AudioFolder, AudioFolderConfig from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder, ImageFolderConfig from datasets.packaged_modules.parquet.parquet import ParquetConfig from datasets.utils import _datasets_server from datasets.utils.logging import INFO, get_logger from .utils import ( OfflineSimulationMode, assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, offline, require_pil, require_sndfile, set_current_working_directory_to_temp_dir, ) DATASET_LOADING_SCRIPT_NAME = "__dummy_dataset1__" DATASET_LOADING_SCRIPT_CODE = """ import os import datasets from datasets import DatasetInfo, Features, Split, SplitGenerator, Value class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self) -> DatasetInfo: return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator(Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_manager.manual_dir, "train.txt")}), SplitGenerator(Split.TEST, gen_kwargs={"filepath": os.path.join(dl_manager.manual_dir, "test.txt")}), ] def _generate_examples(self, filepath, **kwargs): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, {"text": line.strip()} """ SAMPLE_DATASET_IDENTIFIER = "hf-internal-testing/dataset_with_script" # has dataset script and also a parquet export SAMPLE_DATASET_IDENTIFIER2 = "hf-internal-testing/dataset_with_data_files" # only has data files SAMPLE_DATASET_IDENTIFIER3 = "hf-internal-testing/multi_dir_dataset" # has multiple data directories SAMPLE_DATASET_IDENTIFIER4 = "hf-internal-testing/imagefolder_with_metadata" # imagefolder with a metadata file outside of the train/test directories SAMPLE_DATASET_IDENTIFIER5 = "hf-internal-testing/imagefolder_with_metadata_no_splits" # imagefolder with a metadata file and no default split names in data files SAMPLE_NOT_EXISTING_DATASET_IDENTIFIER = "hf-internal-testing/_dummy" SAMPLE_DATASET_NAME_THAT_DOESNT_EXIST = "_dummy" SAMPLE_DATASET_NO_CONFIGS_IN_METADATA = "hf-internal-testing/audiofolder_no_configs_in_metadata" SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA = "hf-internal-testing/audiofolder_single_config_in_metadata" SAMPLE_DATASET_TWO_CONFIG_IN_METADATA = "hf-internal-testing/audiofolder_two_configs_in_metadata" SAMPLE_DATASET_TWO_CONFIG_IN_METADATA_WITH_DEFAULT = ( "hf-internal-testing/audiofolder_two_configs_in_metadata_with_default" ) METRIC_LOADING_SCRIPT_NAME = "__dummy_metric1__" METRIC_LOADING_SCRIPT_CODE = """ import datasets from datasets import MetricInfo, Features, Value class __DummyMetric1__(datasets.Metric): def _info(self): return MetricInfo(features=Features({"predictions": Value("int"), "references": Value("int")})) def _compute(self, predictions, references): return {"__dummy_metric1__": sum(int(p == r) for p, r in zip(predictions, references))} """ @pytest.fixture def data_dir(tmp_path): data_dir = tmp_path / "data_dir" data_dir.mkdir() with open(data_dir / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "test.txt", "w") as f: f.write("bar\n" * 10) return str(data_dir) @pytest.fixture def data_dir_with_arrow(tmp_path): data_dir = tmp_path / "data_dir" data_dir.mkdir() output_train = os.path.join(data_dir, "train.arrow") with ArrowWriter(path=output_train) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo"] * 10})) num_examples, num_bytes = writer.finalize() assert num_examples == 10 assert num_bytes > 0 output_test = os.path.join(data_dir, "test.arrow") with ArrowWriter(path=output_test) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["bar"] * 10})) num_examples, num_bytes = writer.finalize() assert num_examples == 10 assert num_bytes > 0 return str(data_dir) @pytest.fixture def data_dir_with_metadata(tmp_path): data_dir = tmp_path / "data_dir_with_metadata" data_dir.mkdir() with open(data_dir / "train.jpg", "wb") as f: f.write(b"train_image_bytes") with open(data_dir / "test.jpg", "wb") as f: f.write(b"test_image_bytes") with open(data_dir / "metadata.jsonl", "w") as f: f.write( """\ {"file_name": "train.jpg", "caption": "Cool tran image"} {"file_name": "test.jpg", "caption": "Cool test image"} """ ) return str(data_dir) @pytest.fixture def data_dir_with_single_config_in_metadata(tmp_path): data_dir = tmp_path / "data_dir_with_one_default_config_in_metadata" cats_data_dir = data_dir / "cats" cats_data_dir.mkdir(parents=True) dogs_data_dir = data_dir / "dogs" dogs_data_dir.mkdir(parents=True) with open(cats_data_dir / "cat.jpg", "wb") as f: f.write(b"this_is_a_cat_image_bytes") with open(dogs_data_dir / "dog.jpg", "wb") as f: f.write(b"this_is_a_dog_image_bytes") with open(data_dir / "README.md", "w") as f: f.write( f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: custom drop_labels: true --- """ ) return str(data_dir) @pytest.fixture def data_dir_with_two_config_in_metadata(tmp_path): data_dir = tmp_path / "data_dir_with_two_configs_in_metadata" cats_data_dir = data_dir / "cats" cats_data_dir.mkdir(parents=True) dogs_data_dir = data_dir / "dogs" dogs_data_dir.mkdir(parents=True) with open(cats_data_dir / "cat.jpg", "wb") as f: f.write(b"this_is_a_cat_image_bytes") with open(dogs_data_dir / "dog.jpg", "wb") as f: f.write(b"this_is_a_dog_image_bytes") with open(data_dir / "README.md", "w") as f: f.write( f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: "v1" drop_labels: true default: true - config_name: "v2" drop_labels: false --- """ ) return str(data_dir) @pytest.fixture def data_dir_with_data_dir_configs_in_metadata(tmp_path): data_dir = tmp_path / "data_dir_with_two_configs_in_metadata" cats_data_dir = data_dir / "cats" cats_data_dir.mkdir(parents=True) dogs_data_dir = data_dir / "dogs" dogs_data_dir.mkdir(parents=True) with open(cats_data_dir / "cat.jpg", "wb") as f: f.write(b"this_is_a_cat_image_bytes") with open(dogs_data_dir / "dog.jpg", "wb") as f: f.write(b"this_is_a_dog_image_bytes") @pytest.fixture def sub_data_dirs(tmp_path): data_dir2 = tmp_path / "data_dir2" relative_subdir1 = "subdir1" sub_data_dir1 = data_dir2 / relative_subdir1 sub_data_dir1.mkdir(parents=True) with open(sub_data_dir1 / "train.txt", "w") as f: f.write("foo\n" * 10) with open(sub_data_dir1 / "test.txt", "w") as f: f.write("bar\n" * 10) relative_subdir2 = "subdir2" sub_data_dir2 = tmp_path / data_dir2 / relative_subdir2 sub_data_dir2.mkdir(parents=True) with open(sub_data_dir2 / "train.txt", "w") as f: f.write("foo\n" * 10) with open(sub_data_dir2 / "test.txt", "w") as f: f.write("bar\n" * 10) return str(data_dir2), relative_subdir1 @pytest.fixture def complex_data_dir(tmp_path): data_dir = tmp_path / "complex_data_dir" data_dir.mkdir() (data_dir / "data").mkdir() with open(data_dir / "data" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "data" / "test.txt", "w") as f: f.write("bar\n" * 10) with open(data_dir / "README.md", "w") as f: f.write("This is a readme") with open(data_dir / ".dummy", "w") as f: f.write("this is a dummy file that is not a data file") return str(data_dir) @pytest.fixture def dataset_loading_script_dir(tmp_path): script_name = DATASET_LOADING_SCRIPT_NAME script_dir = tmp_path / script_name script_dir.mkdir() script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(DATASET_LOADING_SCRIPT_CODE) return str(script_dir) @pytest.fixture def dataset_loading_script_dir_readonly(tmp_path): script_name = DATASET_LOADING_SCRIPT_NAME script_dir = tmp_path / "readonly" / script_name script_dir.mkdir(parents=True) script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(DATASET_LOADING_SCRIPT_CODE) dataset_loading_script_dir = str(script_dir) # Make this directory readonly os.chmod(dataset_loading_script_dir, 0o555) os.chmod(os.path.join(dataset_loading_script_dir, f"{script_name}.py"), 0o555) return dataset_loading_script_dir @pytest.fixture def metric_loading_script_dir(tmp_path): script_name = METRIC_LOADING_SCRIPT_NAME script_dir = tmp_path / script_name script_dir.mkdir() script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(METRIC_LOADING_SCRIPT_CODE) return str(script_dir) @pytest.mark.parametrize( "data_files, expected_module, expected_builder_kwargs", [ (["train.csv"], "csv", {}), (["train.tsv"], "csv", {"sep": "\t"}), (["train.json"], "json", {}), (["train.jsonl"], "json", {}), (["train.parquet"], "parquet", {}), (["train.arrow"], "arrow", {}), (["train.txt"], "text", {}), (["uppercase.TXT"], "text", {}), (["unsupported.ext"], None, {}), ([""], None, {}), ], ) def test_infer_module_for_data_files(data_files, expected_module, expected_builder_kwargs): module, builder_kwargs = infer_module_for_data_files_list(data_files) assert module == expected_module assert builder_kwargs == expected_builder_kwargs @pytest.mark.parametrize( "data_file, expected_module", [ ("zip_csv_path", "csv"), ("zip_csv_with_dir_path", "csv"), ("zip_uppercase_csv_path", "csv"), ("zip_unsupported_ext_path", None), ], ) def test_infer_module_for_data_files_in_archives( data_file, expected_module, zip_csv_path, zip_csv_with_dir_path, zip_uppercase_csv_path, zip_unsupported_ext_path ): data_file_paths = { "zip_csv_path": zip_csv_path, "zip_csv_with_dir_path": zip_csv_with_dir_path, "zip_uppercase_csv_path": zip_uppercase_csv_path, "zip_unsupported_ext_path": zip_unsupported_ext_path, } data_files = [str(data_file_paths[data_file])] inferred_module, _ = infer_module_for_data_files_list_in_archives(data_files) assert inferred_module == expected_module class ModuleFactoryTest(TestCase): @pytest.fixture(autouse=True) def inject_fixtures( self, jsonl_path, data_dir, data_dir_with_metadata, data_dir_with_single_config_in_metadata, data_dir_with_two_config_in_metadata, sub_data_dirs, dataset_loading_script_dir, metric_loading_script_dir, ): self._jsonl_path = jsonl_path self._data_dir = data_dir self._data_dir_with_metadata = data_dir_with_metadata self._data_dir_with_single_config_in_metadata = data_dir_with_single_config_in_metadata self._data_dir_with_two_config_in_metadata = data_dir_with_two_config_in_metadata self._data_dir2 = sub_data_dirs[0] self._sub_data_dir = sub_data_dirs[1] self._dataset_loading_script_dir = dataset_loading_script_dir self._metric_loading_script_dir = metric_loading_script_dir def setUp(self): self.hf_modules_cache = tempfile.mkdtemp() self.cache_dir = tempfile.mkdtemp() self.download_config = DownloadConfig(cache_dir=self.cache_dir) self.dynamic_modules_path = datasets.load.init_dynamic_modules( name="test_datasets_modules_" + os.path.basename(self.hf_modules_cache), hf_modules_cache=self.hf_modules_cache, ) def test_HubDatasetModuleFactoryWithScript_dont_trust_remote_code(self): # "lhoestq/test" has a dataset script factory = HubDatasetModuleFactoryWithScript( "lhoestq/test", download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) with patch.object(config, "HF_DATASETS_TRUST_REMOTE_CODE", None): # this will be the default soon self.assertRaises(ValueError, factory.get_module) factory = HubDatasetModuleFactoryWithScript( "lhoestq/test", download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path, trust_remote_code=False, ) self.assertRaises(ValueError, factory.get_module) def test_HubDatasetModuleFactoryWithScript_with_github_dataset(self): # "wmt_t2t" has additional imports (internal) factory = HubDatasetModuleFactoryWithScript( "wmt_t2t", download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) def test_GithubMetricModuleFactory_with_internal_import(self): # "squad_v2" requires additional imports (internal) factory = GithubMetricModuleFactory( "squad_v2", download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None @pytest.mark.filterwarnings("ignore:GithubMetricModuleFactory is deprecated:FutureWarning") def test_GithubMetricModuleFactory_with_external_import(self): # "bleu" requires additional imports (external from github) factory = GithubMetricModuleFactory( "bleu", download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None def test_LocalMetricModuleFactory(self): path = os.path.join(self._metric_loading_script_dir, f"{METRIC_LOADING_SCRIPT_NAME}.py") factory = LocalMetricModuleFactory( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None def test_LocalDatasetModuleFactoryWithScript(self): path = os.path.join(self._dataset_loading_script_dir, f"{DATASET_LOADING_SCRIPT_NAME}.py") factory = LocalDatasetModuleFactoryWithScript( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert os.path.isdir(module_factory_result.builder_kwargs["base_path"]) def test_LocalDatasetModuleFactoryWithScript_dont_trust_remote_code(self): path = os.path.join(self._dataset_loading_script_dir, f"{DATASET_LOADING_SCRIPT_NAME}.py") factory = LocalDatasetModuleFactoryWithScript( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) with patch.object(config, "HF_DATASETS_TRUST_REMOTE_CODE", None): # this will be the default soon self.assertRaises(ValueError, factory.get_module) factory = LocalDatasetModuleFactoryWithScript( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path, trust_remote_code=False, ) self.assertRaises(ValueError, factory.get_module) def test_LocalDatasetModuleFactoryWithoutScript(self): factory = LocalDatasetModuleFactoryWithoutScript(self._data_dir) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert os.path.isdir(module_factory_result.builder_kwargs["base_path"]) def test_LocalDatasetModuleFactoryWithoutScript_with_data_dir(self): factory = LocalDatasetModuleFactoryWithoutScript(self._data_dir2, data_dir=self._sub_data_dir) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None builder_config = module_factory_result.builder_configs_parameters.builder_configs[0] assert ( builder_config.data_files is not None and len(builder_config.data_files["train"]) == 1 and len(builder_config.data_files["test"]) == 1 ) assert all( self._sub_data_dir in Path(data_file).parts for data_file in builder_config.data_files["train"] + builder_config.data_files["test"] ) def test_LocalDatasetModuleFactoryWithoutScript_with_metadata(self): factory = LocalDatasetModuleFactoryWithoutScript(self._data_dir_with_metadata) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None builder_config = module_factory_result.builder_configs_parameters.builder_configs[0] assert ( builder_config.data_files is not None and len(builder_config.data_files["train"]) > 0 and len(builder_config.data_files["test"]) > 0 ) assert any(Path(data_file).name == "metadata.jsonl" for data_file in builder_config.data_files["train"]) assert any(Path(data_file).name == "metadata.jsonl" for data_file in builder_config.data_files["test"]) def test_LocalDatasetModuleFactoryWithoutScript_with_single_config_in_metadata(self): factory = LocalDatasetModuleFactoryWithoutScript( self._data_dir_with_single_config_in_metadata, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None module_metadata_configs = module_factory_result.builder_configs_parameters.metadata_configs assert module_metadata_configs is not None assert len(module_metadata_configs) == 1 assert next(iter(module_metadata_configs)) == "custom" assert "drop_labels" in next(iter(module_metadata_configs.values())) assert next(iter(module_metadata_configs.values()))["drop_labels"] is True module_builder_configs = module_factory_result.builder_configs_parameters.builder_configs assert module_builder_configs is not None assert len(module_builder_configs) == 1 assert isinstance(module_builder_configs[0], ImageFolderConfig) assert module_builder_configs[0].name == "custom" assert module_builder_configs[0].data_files is not None assert isinstance(module_builder_configs[0].data_files, DataFilesPatternsDict) module_builder_configs[0]._resolve_data_files(self._data_dir_with_single_config_in_metadata, DownloadConfig()) assert isinstance(module_builder_configs[0].data_files, DataFilesDict) assert len(module_builder_configs[0].data_files) == 1 # one train split assert len(module_builder_configs[0].data_files["train"]) == 2 # two files assert module_builder_configs[0].drop_labels is True # parameter is passed from metadata # config named "default" is automatically considered to be a default config assert module_factory_result.builder_configs_parameters.default_config_name is None # we don't pass config params to builder in builder_kwargs, they are stored in builder_configs directly assert "drop_labels" not in module_factory_result.builder_kwargs def test_LocalDatasetModuleFactoryWithoutScript_with_two_configs_in_metadata(self): factory = LocalDatasetModuleFactoryWithoutScript( self._data_dir_with_two_config_in_metadata, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None module_metadata_configs = module_factory_result.builder_configs_parameters.metadata_configs assert module_metadata_configs is not None assert len(module_metadata_configs) == 2 assert list(module_metadata_configs) == ["v1", "v2"] assert "drop_labels" in module_metadata_configs["v1"] assert module_metadata_configs["v1"]["drop_labels"] is True assert "drop_labels" in module_metadata_configs["v2"] assert module_metadata_configs["v2"]["drop_labels"] is False module_builder_configs = module_factory_result.builder_configs_parameters.builder_configs assert module_builder_configs is not None assert len(module_builder_configs) == 2 module_builder_config_v1, module_builder_config_v2 = module_builder_configs assert module_builder_config_v1.name == "v1" assert module_builder_config_v2.name == "v2" assert isinstance(module_builder_config_v1, ImageFolderConfig) assert isinstance(module_builder_config_v2, ImageFolderConfig) assert isinstance(module_builder_config_v1.data_files, DataFilesPatternsDict) assert isinstance(module_builder_config_v2.data_files, DataFilesPatternsDict) module_builder_config_v1._resolve_data_files(self._data_dir_with_two_config_in_metadata, DownloadConfig()) module_builder_config_v2._resolve_data_files(self._data_dir_with_two_config_in_metadata, DownloadConfig()) assert isinstance(module_builder_config_v1.data_files, DataFilesDict) assert isinstance(module_builder_config_v2.data_files, DataFilesDict) assert sorted(module_builder_config_v1.data_files) == ["train"] assert len(module_builder_config_v1.data_files["train"]) == 2 assert sorted(module_builder_config_v2.data_files) == ["train"] assert len(module_builder_config_v2.data_files["train"]) == 2 assert module_builder_config_v1.drop_labels is True # parameter is passed from metadata assert module_builder_config_v2.drop_labels is False # parameter is passed from metadata assert ( module_factory_result.builder_configs_parameters.default_config_name == "v1" ) # it's marked as a default one in yaml # we don't pass config params to builder in builder_kwargs, they are stored in builder_configs directly assert "drop_labels" not in module_factory_result.builder_kwargs def test_PackagedDatasetModuleFactory(self): factory = PackagedDatasetModuleFactory( "json", data_files=self._jsonl_path, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None def test_PackagedDatasetModuleFactory_with_data_dir(self): factory = PackagedDatasetModuleFactory("json", data_dir=self._data_dir, download_config=self.download_config) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None data_files = module_factory_result.builder_kwargs.get("data_files") assert data_files is not None and len(data_files["train"]) > 0 and len(data_files["test"]) > 0 assert Path(data_files["train"][0]).parent.samefile(self._data_dir) assert Path(data_files["test"][0]).parent.samefile(self._data_dir) def test_PackagedDatasetModuleFactory_with_data_dir_and_metadata(self): factory = PackagedDatasetModuleFactory( "imagefolder", data_dir=self._data_dir_with_metadata, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None data_files = module_factory_result.builder_kwargs.get("data_files") assert data_files is not None and len(data_files["train"]) > 0 and len(data_files["test"]) > 0 assert Path(data_files["train"][0]).parent.samefile(self._data_dir_with_metadata) assert Path(data_files["test"][0]).parent.samefile(self._data_dir_with_metadata) assert any(Path(data_file).name == "metadata.jsonl" for data_file in data_files["train"]) assert any(Path(data_file).name == "metadata.jsonl" for data_file in data_files["test"]) @pytest.mark.integration def test_HubDatasetModuleFactoryWithoutScript(self): factory = HubDatasetModuleFactoryWithoutScript( SAMPLE_DATASET_IDENTIFIER2, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) @pytest.mark.integration def test_HubDatasetModuleFactoryWithoutScript_with_data_dir(self): data_dir = "data2" factory = HubDatasetModuleFactoryWithoutScript( SAMPLE_DATASET_IDENTIFIER3, data_dir=data_dir, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None builder_config = module_factory_result.builder_configs_parameters.builder_configs[0] assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) assert ( builder_config.data_files is not None and len(builder_config.data_files["train"]) == 1 and len(builder_config.data_files["test"]) == 1 ) assert all( data_dir in Path(data_file).parts for data_file in builder_config.data_files["train"] + builder_config.data_files["test"] ) @pytest.mark.integration def test_HubDatasetModuleFactoryWithoutScript_with_metadata(self): factory = HubDatasetModuleFactoryWithoutScript( SAMPLE_DATASET_IDENTIFIER4, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None builder_config = module_factory_result.builder_configs_parameters.builder_configs[0] assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) assert ( builder_config.data_files is not None and len(builder_config.data_files["train"]) > 0 and len(builder_config.data_files["test"]) > 0 ) assert any(Path(data_file).name == "metadata.jsonl" for data_file in builder_config.data_files["train"]) assert any(Path(data_file).name == "metadata.jsonl" for data_file in builder_config.data_files["test"]) factory = HubDatasetModuleFactoryWithoutScript( SAMPLE_DATASET_IDENTIFIER5, download_config=self.download_config ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None builder_config = module_factory_result.builder_configs_parameters.builder_configs[0] assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) assert ( builder_config.data_files is not None and len(builder_config.data_files) == 1 and len(builder_config.data_files["train"]) > 0 ) assert any(Path(data_file).name == "metadata.jsonl" for data_file in builder_config.data_files["train"]) @pytest.mark.integration def test_HubDatasetModuleFactoryWithoutScript_with_one_default_config_in_metadata(self): factory = HubDatasetModuleFactoryWithoutScript( SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA, download_config=self.download_config, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) module_metadata_configs = module_factory_result.builder_configs_parameters.metadata_configs assert module_metadata_configs is not None assert len(module_metadata_configs) == 1 assert next(iter(module_metadata_configs)) == "custom" assert "drop_labels" in next(iter(module_metadata_configs.values())) assert next(iter(module_metadata_configs.values()))["drop_labels"] is True module_builder_configs = module_factory_result.builder_configs_parameters.builder_configs assert module_builder_configs is not None assert len(module_builder_configs) == 1 assert isinstance(module_builder_configs[0], AudioFolderConfig) assert module_builder_configs[0].name == "custom" assert module_builder_configs[0].data_files is not None assert isinstance(module_builder_configs[0].data_files, DataFilesPatternsDict) module_builder_configs[0]._resolve_data_files( module_factory_result.builder_kwargs["base_path"], DownloadConfig() ) assert isinstance(module_builder_configs[0].data_files, DataFilesDict) assert sorted(module_builder_configs[0].data_files) == ["test", "train"] assert len(module_builder_configs[0].data_files["train"]) == 3 assert len(module_builder_configs[0].data_files["test"]) == 3 assert module_builder_configs[0].drop_labels is True # parameter is passed from metadata # config named "default" is automatically considered to be a default config assert module_factory_result.builder_configs_parameters.default_config_name is None # we don't pass config params to builder in builder_kwargs, they are stored in builder_configs directly assert "drop_labels" not in module_factory_result.builder_kwargs @pytest.mark.integration def test_HubDatasetModuleFactoryWithoutScript_with_two_configs_in_metadata(self): datasets_names = [SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, SAMPLE_DATASET_TWO_CONFIG_IN_METADATA_WITH_DEFAULT] for dataset_name in datasets_names: factory = HubDatasetModuleFactoryWithoutScript(dataset_name, download_config=self.download_config) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None module_metadata_configs = module_factory_result.builder_configs_parameters.metadata_configs assert module_metadata_configs is not None assert len(module_metadata_configs) == 2 assert list(module_metadata_configs) == ["v1", "v2"] assert "drop_labels" in module_metadata_configs["v1"] assert module_metadata_configs["v1"]["drop_labels"] is True assert "drop_labels" in module_metadata_configs["v2"] assert module_metadata_configs["v2"]["drop_labels"] is False module_builder_configs = module_factory_result.builder_configs_parameters.builder_configs assert module_builder_configs is not None assert len(module_builder_configs) == 2 module_builder_config_v1, module_builder_config_v2 = module_builder_configs assert module_builder_config_v1.name == "v1" assert module_builder_config_v2.name == "v2" assert isinstance(module_builder_config_v1, AudioFolderConfig) assert isinstance(module_builder_config_v2, AudioFolderConfig) assert isinstance(module_builder_config_v1.data_files, DataFilesPatternsDict) assert isinstance(module_builder_config_v2.data_files, DataFilesPatternsDict) module_builder_config_v1._resolve_data_files( module_factory_result.builder_kwargs["base_path"], DownloadConfig() ) module_builder_config_v2._resolve_data_files( module_factory_result.builder_kwargs["base_path"], DownloadConfig() ) assert isinstance(module_builder_config_v1.data_files, DataFilesDict) assert isinstance(module_builder_config_v2.data_files, DataFilesDict) assert sorted(module_builder_config_v1.data_files) == ["test", "train"] assert len(module_builder_config_v1.data_files["train"]) == 3 assert len(module_builder_config_v1.data_files["test"]) == 3 assert sorted(module_builder_config_v2.data_files) == ["test", "train"] assert len(module_builder_config_v2.data_files["train"]) == 2 assert len(module_builder_config_v2.data_files["test"]) == 1 assert module_builder_config_v1.drop_labels is True # parameter is passed from metadata assert module_builder_config_v2.drop_labels is False # parameter is passed from metadata # we don't pass config params to builder in builder_kwargs, they are stored in builder_configs directly assert "drop_labels" not in module_factory_result.builder_kwargs if dataset_name == SAMPLE_DATASET_TWO_CONFIG_IN_METADATA_WITH_DEFAULT: assert module_factory_result.builder_configs_parameters.default_config_name == "v1" else: assert module_factory_result.builder_configs_parameters.default_config_name is None @pytest.mark.integration def test_HubDatasetModuleFactoryWithScript(self): factory = HubDatasetModuleFactoryWithScript( SAMPLE_DATASET_IDENTIFIER, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None assert module_factory_result.builder_kwargs["base_path"].startswith(config.HF_ENDPOINT) @pytest.mark.integration def test_HubDatasetModuleFactoryWithParquetExport(self): factory = HubDatasetModuleFactoryWithParquetExport( SAMPLE_DATASET_IDENTIFIER, download_config=self.download_config, ) module_factory_result = factory.get_module() assert module_factory_result.module_path == "datasets.packaged_modules.parquet.parquet" assert module_factory_result.builder_configs_parameters.builder_configs assert isinstance(module_factory_result.builder_configs_parameters.builder_configs[0], ParquetConfig) module_factory_result.builder_configs_parameters.builder_configs[0]._resolve_data_files( base_path="", download_config=self.download_config ) assert module_factory_result.builder_configs_parameters.builder_configs[0].data_files == { "train": [ "hf://datasets/hf-internal-testing/dataset_with_script@da4ed81df5a1bcd916043c827b75994de8ef7eda/default/train/0000.parquet" ], "validation": [ "hf://datasets/hf-internal-testing/dataset_with_script@da4ed81df5a1bcd916043c827b75994de8ef7eda/default/validation/0000.parquet" ], } @pytest.mark.integration def test_HubDatasetModuleFactoryWithParquetExport_errors_on_wrong_sha(self): factory = HubDatasetModuleFactoryWithParquetExport( SAMPLE_DATASET_IDENTIFIER, download_config=self.download_config, revision="1a21ac5846fc3f36ad5f128740c58932d3d7806f", ) factory.get_module() factory = HubDatasetModuleFactoryWithParquetExport( SAMPLE_DATASET_IDENTIFIER, download_config=self.download_config, revision="wrong_sha", ) with self.assertRaises(_datasets_server.DatasetsServerError): factory.get_module() @pytest.mark.integration def test_CachedDatasetModuleFactory(self): name = SAMPLE_DATASET_IDENTIFIER2 load_dataset_builder(name, cache_dir=self.cache_dir).download_and_prepare() for offline_mode in OfflineSimulationMode: with offline(offline_mode): factory = CachedDatasetModuleFactory( name, cache_dir=self.cache_dir, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None def test_CachedDatasetModuleFactory_with_script(self): path = os.path.join(self._dataset_loading_script_dir, f"{DATASET_LOADING_SCRIPT_NAME}.py") factory = LocalDatasetModuleFactoryWithScript( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() for offline_mode in OfflineSimulationMode: with offline(offline_mode): factory = CachedDatasetModuleFactory( DATASET_LOADING_SCRIPT_NAME, dynamic_modules_path=self.dynamic_modules_path, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None @pytest.mark.filterwarnings("ignore:LocalMetricModuleFactory is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:CachedMetricModuleFactory is deprecated:FutureWarning") def test_CachedMetricModuleFactory(self): path = os.path.join(self._metric_loading_script_dir, f"{METRIC_LOADING_SCRIPT_NAME}.py") factory = LocalMetricModuleFactory( path, download_config=self.download_config, dynamic_modules_path=self.dynamic_modules_path ) module_factory_result = factory.get_module() for offline_mode in OfflineSimulationMode: with offline(offline_mode): factory = CachedMetricModuleFactory( METRIC_LOADING_SCRIPT_NAME, dynamic_modules_path=self.dynamic_modules_path, ) module_factory_result = factory.get_module() assert importlib.import_module(module_factory_result.module_path) is not None @pytest.mark.parametrize( "factory_class", [ CachedDatasetModuleFactory, CachedMetricModuleFactory, GithubMetricModuleFactory, HubDatasetModuleFactoryWithoutScript, HubDatasetModuleFactoryWithScript, LocalDatasetModuleFactoryWithoutScript, LocalDatasetModuleFactoryWithScript, LocalMetricModuleFactory, PackagedDatasetModuleFactory, ], ) def test_module_factories(factory_class): name = "dummy_name" factory = factory_class(name) assert factory.name == name @pytest.mark.integration class LoadTest(TestCase): @pytest.fixture(autouse=True) def inject_fixtures(self, caplog): self._caplog = caplog def setUp(self): self.hf_modules_cache = tempfile.mkdtemp() self.cache_dir = tempfile.mkdtemp() self.dynamic_modules_path = datasets.load.init_dynamic_modules( name="test_datasets_modules2", hf_modules_cache=self.hf_modules_cache ) def tearDown(self): shutil.rmtree(self.hf_modules_cache) shutil.rmtree(self.cache_dir) def _dummy_module_dir(self, modules_dir, dummy_module_name, dummy_code): assert dummy_module_name.startswith("__") module_dir = os.path.join(modules_dir, dummy_module_name) os.makedirs(module_dir, exist_ok=True) module_path = os.path.join(module_dir, dummy_module_name + ".py") with open(module_path, "w") as f: f.write(dummy_code) return module_dir def test_dataset_module_factory(self): with tempfile.TemporaryDirectory() as tmp_dir: # prepare module from directory path dummy_code = "MY_DUMMY_VARIABLE = 'hello there'" module_dir = self._dummy_module_dir(tmp_dir, "__dummy_module_name1__", dummy_code) dataset_module = datasets.load.dataset_module_factory( module_dir, dynamic_modules_path=self.dynamic_modules_path ) dummy_module = importlib.import_module(dataset_module.module_path) self.assertEqual(dummy_module.MY_DUMMY_VARIABLE, "hello there") self.assertEqual(dataset_module.hash, sha256(dummy_code.encode("utf-8")).hexdigest()) # prepare module from file path + check resolved_file_path dummy_code = "MY_DUMMY_VARIABLE = 'general kenobi'" module_dir = self._dummy_module_dir(tmp_dir, "__dummy_module_name1__", dummy_code) module_path = os.path.join(module_dir, "__dummy_module_name1__.py") dataset_module = datasets.load.dataset_module_factory( module_path, dynamic_modules_path=self.dynamic_modules_path ) dummy_module = importlib.import_module(dataset_module.module_path) self.assertEqual(dummy_module.MY_DUMMY_VARIABLE, "general kenobi") self.assertEqual(dataset_module.hash, sha256(dummy_code.encode("utf-8")).hexdigest()) # missing module for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): with self.assertRaises( (DatasetNotFoundError, ConnectionError, requests.exceptions.ConnectionError) ): datasets.load.dataset_module_factory( "__missing_dummy_module_name__", dynamic_modules_path=self.dynamic_modules_path ) @pytest.mark.integration def test_offline_dataset_module_factory(self): repo_id = SAMPLE_DATASET_IDENTIFIER2 builder = load_dataset_builder(repo_id, cache_dir=self.cache_dir) builder.download_and_prepare() for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): self._caplog.clear() # allow provide the repo id without an explicit path to remote or local actual file dataset_module = datasets.load.dataset_module_factory(repo_id, cache_dir=self.cache_dir) self.assertEqual(dataset_module.module_path, "datasets.packaged_modules.cache.cache") self.assertIn("Using the latest cached version of the dataset", self._caplog.text) def test_offline_dataset_module_factory_with_script(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_code = "MY_DUMMY_VARIABLE = 'hello there'" module_dir = self._dummy_module_dir(tmp_dir, "__dummy_module_name2__", dummy_code) dataset_module_1 = datasets.load.dataset_module_factory( module_dir, dynamic_modules_path=self.dynamic_modules_path ) time.sleep(0.1) # make sure there's a difference in the OS update time of the python file dummy_code = "MY_DUMMY_VARIABLE = 'general kenobi'" module_dir = self._dummy_module_dir(tmp_dir, "__dummy_module_name2__", dummy_code) dataset_module_2 = datasets.load.dataset_module_factory( module_dir, dynamic_modules_path=self.dynamic_modules_path ) for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): self._caplog.clear() # allow provide the module name without an explicit path to remote or local actual file dataset_module_3 = datasets.load.dataset_module_factory( "__dummy_module_name2__", dynamic_modules_path=self.dynamic_modules_path ) # it loads the most recent version of the module self.assertEqual(dataset_module_2.module_path, dataset_module_3.module_path) self.assertNotEqual(dataset_module_1.module_path, dataset_module_3.module_path) self.assertIn("Using the latest cached version of the module", self._caplog.text) def test_load_dataset_from_hub(self): with self.assertRaises(DatasetNotFoundError) as context: datasets.load_dataset("_dummy") self.assertIn( "Dataset '_dummy' doesn't exist on the Hub", str(context.exception), ) with self.assertRaises(DatasetNotFoundError) as context: datasets.load_dataset("_dummy", revision="0.0.0") self.assertIn( "Dataset '_dummy' doesn't exist on the Hub", str(context.exception), ) self.assertIn( "at revision '0.0.0'", str(context.exception), ) for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): with self.assertRaises(ConnectionError) as context: datasets.load_dataset("_dummy") if offline_simulation_mode != OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: self.assertIn( "Couldn't reach '_dummy' on the Hub", str(context.exception), ) def test_load_dataset_namespace(self): with self.assertRaises(DatasetNotFoundError) as context: datasets.load_dataset("hf-internal-testing/_dummy") self.assertIn( "hf-internal-testing/_dummy", str(context.exception), ) for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): with self.assertRaises(ConnectionError) as context: datasets.load_dataset("hf-internal-testing/_dummy") self.assertIn("hf-internal-testing/_dummy", str(context.exception), msg=offline_simulation_mode) @pytest.mark.integration def test_load_dataset_builder_with_metadata(): builder = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER4) assert isinstance(builder, ImageFolder) assert builder.config.name == "default" assert builder.config.data_files is not None assert builder.config.drop_metadata is None with pytest.raises(ValueError): builder = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER4, "non-existing-config") @pytest.mark.integration def test_load_dataset_builder_config_kwargs_passed_as_arguments(): builder_default = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER4) builder_custom = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER4, drop_metadata=True) assert builder_custom.config.drop_metadata != builder_default.config.drop_metadata assert builder_custom.config.drop_metadata is True @pytest.mark.integration def test_load_dataset_builder_with_two_configs_in_metadata(): builder = datasets.load_dataset_builder(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v1") assert isinstance(builder, AudioFolder) assert builder.config.name == "v1" assert builder.config.data_files is not None with pytest.raises(ValueError): datasets.load_dataset_builder(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA) with pytest.raises(ValueError): datasets.load_dataset_builder(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "non-existing-config") @pytest.mark.parametrize("serializer", [pickle, dill]) def test_load_dataset_builder_with_metadata_configs_pickable(serializer): builder = datasets.load_dataset_builder(SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA) builder_unpickled = serializer.loads(serializer.dumps(builder)) assert builder.BUILDER_CONFIGS == builder_unpickled.BUILDER_CONFIGS assert list(builder_unpickled.builder_configs) == ["custom"] assert isinstance(builder_unpickled.builder_configs["custom"], AudioFolderConfig) builder2 = datasets.load_dataset_builder(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v1") builder2_unpickled = serializer.loads(serializer.dumps(builder2)) assert builder2.BUILDER_CONFIGS == builder2_unpickled.BUILDER_CONFIGS != builder_unpickled.BUILDER_CONFIGS assert list(builder2_unpickled.builder_configs) == ["v1", "v2"] assert isinstance(builder2_unpickled.builder_configs["v1"], AudioFolderConfig) assert isinstance(builder2_unpickled.builder_configs["v2"], AudioFolderConfig) def test_load_dataset_builder_for_absolute_script_dir(dataset_loading_script_dir, data_dir): builder = datasets.load_dataset_builder(dataset_loading_script_dir, data_dir=data_dir) assert isinstance(builder, DatasetBuilder) assert builder.name == DATASET_LOADING_SCRIPT_NAME assert builder.dataset_name == DATASET_LOADING_SCRIPT_NAME assert builder.info.features == Features({"text": Value("string")}) def test_load_dataset_builder_for_relative_script_dir(dataset_loading_script_dir, data_dir): with set_current_working_directory_to_temp_dir(): relative_script_dir = DATASET_LOADING_SCRIPT_NAME shutil.copytree(dataset_loading_script_dir, relative_script_dir) builder = datasets.load_dataset_builder(relative_script_dir, data_dir=data_dir) assert isinstance(builder, DatasetBuilder) assert builder.name == DATASET_LOADING_SCRIPT_NAME assert builder.dataset_name == DATASET_LOADING_SCRIPT_NAME assert builder.info.features == Features({"text": Value("string")}) def test_load_dataset_builder_for_script_path(dataset_loading_script_dir, data_dir): builder = datasets.load_dataset_builder( os.path.join(dataset_loading_script_dir, DATASET_LOADING_SCRIPT_NAME + ".py"), data_dir=data_dir ) assert isinstance(builder, DatasetBuilder) assert builder.name == DATASET_LOADING_SCRIPT_NAME assert builder.dataset_name == DATASET_LOADING_SCRIPT_NAME assert builder.info.features == Features({"text": Value("string")}) def test_load_dataset_builder_for_absolute_data_dir(complex_data_dir): builder = datasets.load_dataset_builder(complex_data_dir) assert isinstance(builder, DatasetBuilder) assert builder.name == "text" assert builder.dataset_name == Path(complex_data_dir).name assert builder.config.name == "default" assert isinstance(builder.config.data_files, DataFilesDict) assert len(builder.config.data_files["train"]) > 0 assert len(builder.config.data_files["test"]) > 0 def test_load_dataset_builder_for_relative_data_dir(complex_data_dir): with set_current_working_directory_to_temp_dir(): relative_data_dir = "relative_data_dir" shutil.copytree(complex_data_dir, relative_data_dir) builder = datasets.load_dataset_builder(relative_data_dir) assert isinstance(builder, DatasetBuilder) assert builder.name == "text" assert builder.dataset_name == relative_data_dir assert builder.config.name == "default" assert isinstance(builder.config.data_files, DataFilesDict) assert len(builder.config.data_files["train"]) > 0 assert len(builder.config.data_files["test"]) > 0 @pytest.mark.integration def test_load_dataset_builder_for_community_dataset_with_script(): builder = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER) assert isinstance(builder, DatasetBuilder) assert builder.name == "parquet" assert builder.dataset_name == SAMPLE_DATASET_IDENTIFIER.split("/")[-1] assert builder.config.name == "default" assert builder.info.features == Features({"text": Value("string")}) namespace = SAMPLE_DATASET_IDENTIFIER[: SAMPLE_DATASET_IDENTIFIER.index("/")] assert builder._relative_data_dir().startswith(namespace) assert builder.__module__.startswith("datasets.") @pytest.mark.integration def test_load_dataset_builder_for_community_dataset_with_script_no_parquet_export(): with patch.object(config, "USE_PARQUET_EXPORT", False): builder = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER) assert isinstance(builder, DatasetBuilder) assert builder.name == SAMPLE_DATASET_IDENTIFIER.split("/")[-1] assert builder.dataset_name == SAMPLE_DATASET_IDENTIFIER.split("/")[-1] assert builder.config.name == "default" assert builder.info.features == Features({"text": Value("string")}) namespace = SAMPLE_DATASET_IDENTIFIER[: SAMPLE_DATASET_IDENTIFIER.index("/")] assert builder._relative_data_dir().startswith(namespace) assert SAMPLE_DATASET_IDENTIFIER.replace("/", "--") in builder.__module__ @pytest.mark.integration def test_load_dataset_builder_use_parquet_export_if_dont_trust_remote_code_keeps_features(): dataset_name = "food101" builder = datasets.load_dataset_builder(dataset_name, trust_remote_code=False) assert isinstance(builder, DatasetBuilder) assert builder.name == "parquet" assert builder.dataset_name == dataset_name assert builder.config.name == "default" assert list(builder.info.features) == ["image", "label"] assert builder.info.features["image"] == Image() @pytest.mark.integration def test_load_dataset_builder_for_community_dataset_without_script(): builder = datasets.load_dataset_builder(SAMPLE_DATASET_IDENTIFIER2) assert isinstance(builder, DatasetBuilder) assert builder.name == "text" assert builder.dataset_name == SAMPLE_DATASET_IDENTIFIER2.split("/")[-1] assert builder.config.name == "default" assert isinstance(builder.config.data_files, DataFilesDict) assert len(builder.config.data_files["train"]) > 0 assert len(builder.config.data_files["test"]) > 0 def test_load_dataset_builder_fail(): with pytest.raises(DatasetNotFoundError): datasets.load_dataset_builder("blabla") @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_load_dataset_local_script(dataset_loading_script_dir, data_dir, keep_in_memory, caplog): with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, keep_in_memory=keep_in_memory) assert isinstance(dataset, DatasetDict) assert all(isinstance(d, Dataset) for d in dataset.values()) assert len(dataset) == 2 assert isinstance(next(iter(dataset["train"])), dict) def test_load_dataset_cached_local_script(dataset_loading_script_dir, data_dir, caplog): dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir) assert isinstance(dataset, DatasetDict) assert all(isinstance(d, Dataset) for d in dataset.values()) assert len(dataset) == 2 assert isinstance(next(iter(dataset["train"])), dict) for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): caplog.clear() # Load dataset from cache dataset = datasets.load_dataset(DATASET_LOADING_SCRIPT_NAME, data_dir=data_dir) assert len(dataset) == 2 assert "Using the latest cached version of the module" in caplog.text assert isinstance(next(iter(dataset["train"])), dict) with pytest.raises(DatasetNotFoundError) as exc_info: datasets.load_dataset(SAMPLE_DATASET_NAME_THAT_DOESNT_EXIST) assert f"Dataset '{SAMPLE_DATASET_NAME_THAT_DOESNT_EXIST}' doesn't exist on the Hub" in str(exc_info.value) @pytest.mark.integration @pytest.mark.parametrize("stream_from_cache, ", [False, True]) def test_load_dataset_cached_from_hub(stream_from_cache, caplog): dataset = load_dataset(SAMPLE_DATASET_IDENTIFIER3) assert isinstance(dataset, DatasetDict) assert all(isinstance(d, Dataset) for d in dataset.values()) assert len(dataset) == 2 assert isinstance(next(iter(dataset["train"])), dict) for offline_simulation_mode in list(OfflineSimulationMode): with offline(offline_simulation_mode): caplog.clear() # Load dataset from cache dataset = datasets.load_dataset(SAMPLE_DATASET_IDENTIFIER3, streaming=stream_from_cache) assert len(dataset) == 2 assert "Using the latest cached version of the dataset" in caplog.text assert isinstance(next(iter(dataset["train"])), dict) with pytest.raises(DatasetNotFoundError) as exc_info: datasets.load_dataset(SAMPLE_DATASET_NAME_THAT_DOESNT_EXIST) assert f"Dataset '{SAMPLE_DATASET_NAME_THAT_DOESNT_EXIST}' doesn't exist on the Hub" in str(exc_info.value) def test_load_dataset_streaming(dataset_loading_script_dir, data_dir): dataset = load_dataset(dataset_loading_script_dir, streaming=True, data_dir=data_dir) assert isinstance(dataset, IterableDatasetDict) assert all(isinstance(d, IterableDataset) for d in dataset.values()) assert len(dataset) == 2 assert isinstance(next(iter(dataset["train"])), dict) def test_load_dataset_streaming_gz_json(jsonl_gz_path): data_files = jsonl_gz_path ds = load_dataset("json", split="train", data_files=data_files, streaming=True) assert isinstance(ds, IterableDataset) ds_item = next(iter(ds)) assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} @pytest.mark.integration @pytest.mark.parametrize( "path", ["sample.jsonl", "sample.jsonl.gz", "sample.tar", "sample.jsonl.xz", "sample.zip", "sample.jsonl.zst"] ) def test_load_dataset_streaming_compressed_files(path): repo_id = "hf-internal-testing/compressed_files" data_files = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{path}" if data_files[-3:] in ("zip", "tar"): # we need to glob "*" inside archives data_files = data_files[-3:] + "://*::" + data_files return # TODO(QL, albert): support re-add support for ZIP and TAR archives streaming ds = load_dataset("json", split="train", data_files=data_files, streaming=True) assert isinstance(ds, IterableDataset) ds_item = next(iter(ds)) assert ds_item == { "tokens": ["Ministeri", "de", "JustΓ­cia", "d'Espanya"], "ner_tags": [1, 2, 2, 2], "langs": ["ca", "ca", "ca", "ca"], "spans": ["PER: Ministeri de JustΓ­cia d'Espanya"], } @pytest.mark.parametrize("path_extension", ["csv", "csv.bz2"]) @pytest.mark.parametrize("streaming", [False, True]) def test_load_dataset_streaming_csv(path_extension, streaming, csv_path, bz2_csv_path): paths = {"csv": csv_path, "csv.bz2": bz2_csv_path} data_files = str(paths[path_extension]) features = Features({"col_1": Value("string"), "col_2": Value("int32"), "col_3": Value("float32")}) ds = load_dataset("csv", split="train", data_files=data_files, features=features, streaming=streaming) assert isinstance(ds, IterableDataset if streaming else Dataset) ds_item = next(iter(ds)) assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize("data_file", ["zip_csv_path", "zip_csv_with_dir_path", "csv_path"]) def test_load_dataset_zip_csv(data_file, streaming, zip_csv_path, zip_csv_with_dir_path, csv_path): data_file_paths = { "zip_csv_path": zip_csv_path, "zip_csv_with_dir_path": zip_csv_with_dir_path, "csv_path": csv_path, } data_files = str(data_file_paths[data_file]) expected_size = 8 if data_file.startswith("zip") else 4 features = Features({"col_1": Value("string"), "col_2": Value("int32"), "col_3": Value("float32")}) ds = load_dataset("csv", split="train", data_files=data_files, features=features, streaming=streaming) if streaming: ds_item_counter = 0 for ds_item in ds: if ds_item_counter == 0: assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} ds_item_counter += 1 assert ds_item_counter == expected_size else: assert ds.shape[0] == expected_size ds_item = next(iter(ds)) assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize("data_file", ["zip_jsonl_path", "zip_jsonl_with_dir_path", "jsonl_path"]) def test_load_dataset_zip_jsonl(data_file, streaming, zip_jsonl_path, zip_jsonl_with_dir_path, jsonl_path): data_file_paths = { "zip_jsonl_path": zip_jsonl_path, "zip_jsonl_with_dir_path": zip_jsonl_with_dir_path, "jsonl_path": jsonl_path, } data_files = str(data_file_paths[data_file]) expected_size = 8 if data_file.startswith("zip") else 4 features = Features({"col_1": Value("string"), "col_2": Value("int32"), "col_3": Value("float32")}) ds = load_dataset("json", split="train", data_files=data_files, features=features, streaming=streaming) if streaming: ds_item_counter = 0 for ds_item in ds: if ds_item_counter == 0: assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} ds_item_counter += 1 assert ds_item_counter == expected_size else: assert ds.shape[0] == expected_size ds_item = next(iter(ds)) assert ds_item == {"col_1": "0", "col_2": 0, "col_3": 0.0} @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize("data_file", ["zip_text_path", "zip_text_with_dir_path", "text_path"]) def test_load_dataset_zip_text(data_file, streaming, zip_text_path, zip_text_with_dir_path, text_path): data_file_paths = { "zip_text_path": zip_text_path, "zip_text_with_dir_path": zip_text_with_dir_path, "text_path": text_path, } data_files = str(data_file_paths[data_file]) expected_size = 8 if data_file.startswith("zip") else 4 ds = load_dataset("text", split="train", data_files=data_files, streaming=streaming) if streaming: ds_item_counter = 0 for ds_item in ds: if ds_item_counter == 0: assert ds_item == {"text": "0"} ds_item_counter += 1 assert ds_item_counter == expected_size else: assert ds.shape[0] == expected_size ds_item = next(iter(ds)) assert ds_item == {"text": "0"} @pytest.mark.parametrize("streaming", [False, True]) def test_load_dataset_arrow(streaming, data_dir_with_arrow): ds = load_dataset("arrow", split="train", data_dir=data_dir_with_arrow, streaming=streaming) expected_size = 10 if streaming: ds_item_counter = 0 for ds_item in ds: if ds_item_counter == 0: assert ds_item == {"col_1": "foo"} ds_item_counter += 1 assert ds_item_counter == 10 else: assert ds.num_rows == 10 assert ds.shape[0] == expected_size ds_item = next(iter(ds)) assert ds_item == {"col_1": "foo"} def test_load_dataset_text_with_unicode_new_lines(text_path_with_unicode_new_lines): data_files = str(text_path_with_unicode_new_lines) ds = load_dataset("text", split="train", data_files=data_files) assert ds.num_rows == 3 def test_load_dataset_with_unsupported_extensions(text_dir_with_unsupported_extension): data_files = str(text_dir_with_unsupported_extension) ds = load_dataset("text", split="train", data_files=data_files) assert ds.num_rows == 4 @pytest.mark.integration def test_loading_from_the_datasets_hub(): with tempfile.TemporaryDirectory() as tmp_dir: with load_dataset(SAMPLE_DATASET_IDENTIFIER, cache_dir=tmp_dir) as dataset: assert len(dataset["train"]) == 2 assert len(dataset["validation"]) == 3 @pytest.mark.integration def test_loading_from_the_datasets_hub_with_token(): true_request = requests.Session().request def assert_auth(method, url, *args, headers, **kwargs): assert headers["authorization"] == "Bearer foo" return true_request(method, url, *args, headers=headers, **kwargs) with patch("requests.Session.request") as mock_request: mock_request.side_effect = assert_auth with tempfile.TemporaryDirectory() as tmp_dir: with offline(): with pytest.raises((ConnectionError, requests.exceptions.ConnectionError)): load_dataset(SAMPLE_NOT_EXISTING_DATASET_IDENTIFIER, cache_dir=tmp_dir, token="foo") mock_request.assert_called() @pytest.mark.integration def test_load_streaming_private_dataset(hf_token, hf_private_dataset_repo_txt_data): ds = load_dataset(hf_private_dataset_repo_txt_data, streaming=True, token=hf_token) assert next(iter(ds)) is not None @pytest.mark.integration def test_load_dataset_builder_private_dataset(hf_token, hf_private_dataset_repo_txt_data): builder = load_dataset_builder(hf_private_dataset_repo_txt_data, token=hf_token) assert isinstance(builder, DatasetBuilder) @pytest.mark.integration def test_load_streaming_private_dataset_with_zipped_data(hf_token, hf_private_dataset_repo_zipped_txt_data): ds = load_dataset(hf_private_dataset_repo_zipped_txt_data, streaming=True, token=hf_token) assert next(iter(ds)) is not None @pytest.mark.integration def test_load_dataset_config_kwargs_passed_as_arguments(): ds_default = load_dataset(SAMPLE_DATASET_IDENTIFIER4) ds_custom = load_dataset(SAMPLE_DATASET_IDENTIFIER4, drop_metadata=True) assert list(ds_default["train"].features) == ["image", "caption"] assert list(ds_custom["train"].features) == ["image"] @require_sndfile @pytest.mark.integration def test_load_hub_dataset_without_script_with_single_config_in_metadata(): # load the same dataset but with no configurations (=with default parameters) ds = load_dataset(SAMPLE_DATASET_NO_CONFIGS_IN_METADATA) assert list(ds["train"].features) == ["audio", "label"] # assert label feature is here as expected by default assert len(ds["train"]) == 5 and len(ds["test"]) == 4 ds2 = load_dataset(SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA) # single config -> no need to specify it assert list(ds2["train"].features) == ["audio"] # assert param `drop_labels=True` from metadata is passed assert len(ds2["train"]) == 3 and len(ds2["test"]) == 3 ds3 = load_dataset(SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA, "custom") assert list(ds3["train"].features) == ["audio"] # assert param `drop_labels=True` from metadata is passed assert len(ds3["train"]) == 3 and len(ds3["test"]) == 3 with pytest.raises(ValueError): # no config named "default" _ = load_dataset(SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA, "default") @require_sndfile @pytest.mark.integration def test_load_hub_dataset_without_script_with_two_config_in_metadata(): ds = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v1") assert list(ds["train"].features) == ["audio"] # assert param `drop_labels=True` from metadata is passed assert len(ds["train"]) == 3 and len(ds["test"]) == 3 ds2 = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v2") assert list(ds2["train"].features) == [ "audio", "label", ] # assert param `drop_labels=False` from metadata is passed assert len(ds2["train"]) == 2 and len(ds2["test"]) == 1 with pytest.raises(ValueError): # config is required but not specified _ = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA) with pytest.raises(ValueError): # no config named "default" _ = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "default") ds_with_default = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA_WITH_DEFAULT) # it's a dataset with the same data but "v1" config is marked as a default one assert list(ds_with_default["train"].features) == list(ds["train"].features) assert len(ds_with_default["train"]) == len(ds["train"]) and len(ds_with_default["test"]) == len(ds["test"]) @require_sndfile @pytest.mark.integration def test_load_hub_dataset_without_script_with_metadata_config_in_parallel(): # assert it doesn't fail (pickling of dynamically created class works) ds = load_dataset(SAMPLE_DATASET_SINGLE_CONFIG_IN_METADATA, num_proc=2) assert "label" not in ds["train"].features # assert param `drop_labels=True` from metadata is passed assert len(ds["train"]) == 3 and len(ds["test"]) == 3 ds = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v1", num_proc=2) assert "label" not in ds["train"].features # assert param `drop_labels=True` from metadata is passed assert len(ds["train"]) == 3 and len(ds["test"]) == 3 ds = load_dataset(SAMPLE_DATASET_TWO_CONFIG_IN_METADATA, "v2", num_proc=2) assert "label" in ds["train"].features assert len(ds["train"]) == 2 and len(ds["test"]) == 1 @require_pil @pytest.mark.integration @pytest.mark.parametrize("streaming", [True]) def test_load_dataset_private_zipped_images(hf_private_dataset_repo_zipped_img_data, hf_token, streaming): ds = load_dataset(hf_private_dataset_repo_zipped_img_data, split="train", streaming=streaming, token=hf_token) assert isinstance(ds, IterableDataset if streaming else Dataset) ds_items = list(ds) assert len(ds_items) == 2 def test_load_dataset_then_move_then_reload(dataset_loading_script_dir, data_dir, tmp_path, caplog): cache_dir1 = tmp_path / "cache1" cache_dir2 = tmp_path / "cache2" dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, split="train", cache_dir=cache_dir1) fingerprint1 = dataset._fingerprint del dataset os.rename(cache_dir1, cache_dir2) caplog.clear() with caplog.at_level(INFO, logger=get_logger().name): dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, split="train", cache_dir=cache_dir2) assert "Found cached dataset" in caplog.text assert dataset._fingerprint == fingerprint1, "for the caching mechanism to work, fingerprint should stay the same" dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, split="test", cache_dir=cache_dir2) assert dataset._fingerprint != fingerprint1 def test_load_dataset_builder_then_edit_then_load_again(tmp_path: Path): dataset_dir = tmp_path / "test_load_dataset_then_edit_then_load_again" dataset_dir.mkdir() with open(dataset_dir / "train.txt", "w") as f: f.write("Hello there") dataset_builder = load_dataset_builder(str(dataset_dir)) with open(dataset_dir / "train.txt", "w") as f: f.write("General Kenobi !") edited_dataset_builder = load_dataset_builder(str(dataset_dir)) assert dataset_builder.cache_dir != edited_dataset_builder.cache_dir def test_load_dataset_readonly(dataset_loading_script_dir, dataset_loading_script_dir_readonly, data_dir, tmp_path): cache_dir1 = tmp_path / "cache1" cache_dir2 = tmp_path / "cache2" dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, split="train", cache_dir=cache_dir1) fingerprint1 = dataset._fingerprint del dataset # Load readonly dataset and check that the fingerprint is the same. dataset = load_dataset(dataset_loading_script_dir_readonly, data_dir=data_dir, split="train", cache_dir=cache_dir2) assert dataset._fingerprint == fingerprint1, "Cannot load a dataset in a readonly folder." @pytest.mark.parametrize("max_in_memory_dataset_size", ["default", 0, 50, 500]) def test_load_dataset_local_with_default_in_memory( max_in_memory_dataset_size, dataset_loading_script_dir, data_dir, monkeypatch ): current_dataset_size = 148 if max_in_memory_dataset_size == "default": max_in_memory_dataset_size = 0 # default else: monkeypatch.setattr(datasets.config, "IN_MEMORY_MAX_SIZE", max_in_memory_dataset_size) if max_in_memory_dataset_size: expected_in_memory = current_dataset_size < max_in_memory_dataset_size else: expected_in_memory = False with assert_arrow_memory_increases() if expected_in_memory else assert_arrow_memory_doesnt_increase(): dataset = load_dataset(dataset_loading_script_dir, data_dir=data_dir) assert (dataset["train"].dataset_size < max_in_memory_dataset_size) is expected_in_memory @pytest.mark.parametrize("max_in_memory_dataset_size", ["default", 0, 100, 1000]) def test_load_from_disk_with_default_in_memory( max_in_memory_dataset_size, dataset_loading_script_dir, data_dir, tmp_path, monkeypatch ): current_dataset_size = 512 # arrow file size = 512, in-memory dataset size = 148 if max_in_memory_dataset_size == "default": max_in_memory_dataset_size = 0 # default else: monkeypatch.setattr(datasets.config, "IN_MEMORY_MAX_SIZE", max_in_memory_dataset_size) if max_in_memory_dataset_size: expected_in_memory = current_dataset_size < max_in_memory_dataset_size else: expected_in_memory = False dset = load_dataset(dataset_loading_script_dir, data_dir=data_dir, keep_in_memory=True) dataset_path = os.path.join(tmp_path, "saved_dataset") dset.save_to_disk(dataset_path) with assert_arrow_memory_increases() if expected_in_memory else assert_arrow_memory_doesnt_increase(): _ = load_from_disk(dataset_path) @pytest.mark.integration def test_remote_data_files(): repo_id = "hf-internal-testing/raw_jsonl" filename = "wikiann-bn-validation.jsonl" data_files = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{filename}" ds = load_dataset("json", split="train", data_files=data_files, streaming=True) assert isinstance(ds, IterableDataset) ds_item = next(iter(ds)) assert ds_item.keys() == {"langs", "ner_tags", "spans", "tokens"} @pytest.mark.parametrize("deleted", [False, True]) def test_load_dataset_deletes_extracted_files(deleted, jsonl_gz_path, tmp_path): data_files = jsonl_gz_path cache_dir = tmp_path / "cache" if deleted: download_config = DownloadConfig(delete_extracted=True, cache_dir=cache_dir / "downloads") ds = load_dataset( "json", split="train", data_files=data_files, cache_dir=cache_dir, download_config=download_config ) else: # default ds = load_dataset("json", split="train", data_files=data_files, cache_dir=cache_dir) assert ds[0] == {"col_1": "0", "col_2": 0, "col_3": 0.0} assert ( [path for path in (cache_dir / "downloads" / "extracted").iterdir() if path.suffix != ".lock"] == [] ) is deleted def distributed_load_dataset(args): data_name, tmp_dir, datafiles = args dataset = load_dataset(data_name, cache_dir=tmp_dir, data_files=datafiles) return dataset def test_load_dataset_distributed(tmp_path, csv_path): num_workers = 5 args = "csv", str(tmp_path), csv_path with Pool(processes=num_workers) as pool: # start num_workers processes datasets = pool.map(distributed_load_dataset, [args] * num_workers) assert len(datasets) == num_workers assert all(len(dataset) == len(datasets[0]) > 0 for dataset in datasets) assert len(datasets[0].cache_files) > 0 assert all(dataset.cache_files == datasets[0].cache_files for dataset in datasets) def test_load_dataset_with_storage_options(mockfs): with mockfs.open("data.txt", "w") as f: f.write("Hello there\n") f.write("General Kenobi !") data_files = {"train": ["mock://data.txt"]} ds = load_dataset("text", data_files=data_files, storage_options=mockfs.storage_options) assert list(ds["train"]) == [{"text": "Hello there"}, {"text": "General Kenobi !"}] @require_pil def test_load_dataset_with_storage_options_with_decoding(mockfs, image_file): import PIL.Image filename = os.path.basename(image_file) with mockfs.open(filename, "wb") as fout: with open(image_file, "rb") as fin: fout.write(fin.read()) data_files = {"train": ["mock://" + filename]} ds = load_dataset("imagefolder", data_files=data_files, storage_options=mockfs.storage_options) assert len(ds["train"]) == 1 assert isinstance(ds["train"][0]["image"], PIL.Image.Image) def test_load_dataset_without_script_with_zip(zip_csv_path): path = str(zip_csv_path.parent) ds = load_dataset(path) assert list(ds.keys()) == ["train"] assert ds["train"].column_names == ["col_1", "col_2", "col_3"] assert ds["train"].num_rows == 8 assert ds["train"][0] == {"col_1": 0, "col_2": 0, "col_3": 0.0} @pytest.mark.parametrize("trust_remote_code, expected", [(False, False), (True, True), (None, True)]) def test_resolve_trust_remote_code(trust_remote_code, expected): assert resolve_trust_remote_code(trust_remote_code, repo_id="dummy") is expected @pytest.mark.parametrize("trust_remote_code, expected", [(False, False), (True, True), (None, ValueError)]) def test_resolve_trust_remote_code_future(trust_remote_code, expected): with patch.object(config, "HF_DATASETS_TRUST_REMOTE_CODE", None): # this will be the default soon if isinstance(expected, bool): resolve_trust_remote_code(trust_remote_code, repo_id="dummy") is expected else: with pytest.raises(expected): resolve_trust_remote_code(trust_remote_code, repo_id="dummy") @pytest.mark.integration def test_reload_old_cache_from_2_15(tmp_path: Path): cache_dir = tmp_path / "test_reload_old_cache_from_2_15" builder_cache_dir = ( cache_dir / "polinaeterna___audiofolder_two_configs_in_metadata/v2-374bfde4f55442bc/0.0.0/7896925d64deea5d" ) builder_cache_dir.mkdir(parents=True) arrow_path = builder_cache_dir / "audiofolder_two_configs_in_metadata-train.arrow" dataset_info_path = builder_cache_dir / "dataset_info.json" with dataset_info_path.open("w") as f: f.write("{}") arrow_path.touch() builder = load_dataset_builder( "polinaeterna/audiofolder_two_configs_in_metadata", "v2", data_files="v2/train/*", cache_dir=cache_dir.as_posix(), ) assert builder.cache_dir == builder_cache_dir.as_posix() # old cache from 2.15 builder = load_dataset_builder( "polinaeterna/audiofolder_two_configs_in_metadata", "v2", cache_dir=cache_dir.as_posix() ) assert ( builder.cache_dir == ( cache_dir / "polinaeterna___audiofolder_two_configs_in_metadata" / "v2" / "0.0.0" / str(builder.hash) ).as_posix() ) # new cache @pytest.mark.integration def test_update_dataset_card_data_with_standalone_yaml(): # Labels defined in .huggingface.yml because they are too long to be in README.md from datasets.utils.metadata import MetadataConfigs with patch( "datasets.utils.metadata.MetadataConfigs.from_dataset_card_data", side_effect=MetadataConfigs.from_dataset_card_data, ) as card_data_read_mock: builder = load_dataset_builder("datasets-maintainers/dataset-with-standalone-yaml") assert card_data_read_mock.call_args.args[0]["license"] is not None # from README.md assert card_data_read_mock.call_args.args[0]["dataset_info"] is not None # from standalone yaml assert card_data_read_mock.call_args.args[0]["tags"] == ["test"] # standalone yaml has precedence assert isinstance( builder.info.features["label"], datasets.ClassLabel ) # correctly loaded from long labels list in standalone yaml
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_metadata_util.py
import re import sys import tempfile import unittest from pathlib import Path import pytest import yaml from huggingface_hub import DatasetCard, DatasetCardData from datasets.config import METADATA_CONFIGS_FIELD from datasets.info import DatasetInfo from datasets.utils.metadata import MetadataConfigs def _dedent(string: str) -> str: indent_level = min(re.search("^ +", t).end() if t.startswith(" ") else 0 for t in string.splitlines()) return "\n".join([line[indent_level:] for line in string.splitlines() if indent_level < len(line)]) README_YAML = """\ --- language: - zh - en task_ids: - sentiment-classification --- # Begin of markdown Some cool dataset card """ README_EMPTY_YAML = """\ --- --- # Begin of markdown Some cool dataset card """ README_NO_YAML = """\ # Begin of markdown Some cool dataset card """ README_METADATA_CONFIG_INCORRECT_FORMAT = f"""\ --- {METADATA_CONFIGS_FIELD}: data_dir: v1 drop_labels: true --- """ README_METADATA_SINGLE_CONFIG = f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: custom data_dir: v1 drop_labels: true --- """ README_METADATA_TWO_CONFIGS_WITH_DEFAULT_FLAG = f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: v1 data_dir: v1 drop_labels: true - config_name: v2 data_dir: v2 drop_labels: false default: true --- """ README_METADATA_TWO_CONFIGS_WITH_DEFAULT_NAME = f"""\ --- {METADATA_CONFIGS_FIELD}: - config_name: custom data_dir: custom drop_labels: true - config_name: default data_dir: data drop_labels: false --- """ EXPECTED_METADATA_SINGLE_CONFIG = {"custom": {"data_dir": "v1", "drop_labels": True}} EXPECTED_METADATA_TWO_CONFIGS_DEFAULT_FLAG = { "v1": {"data_dir": "v1", "drop_labels": True}, "v2": {"data_dir": "v2", "drop_labels": False, "default": True}, } EXPECTED_METADATA_TWO_CONFIGS_DEFAULT_NAME = { "custom": {"data_dir": "custom", "drop_labels": True}, "default": {"data_dir": "data", "drop_labels": False}, } @pytest.fixture def data_dir_with_two_subdirs(tmp_path): data_dir = tmp_path / "data_dir_with_two_configs_in_metadata" cats_data_dir = data_dir / "cats" cats_data_dir.mkdir(parents=True) dogs_data_dir = data_dir / "dogs" dogs_data_dir.mkdir(parents=True) with open(cats_data_dir / "cat.jpg", "wb") as f: f.write(b"this_is_a_cat_image_bytes") with open(dogs_data_dir / "dog.jpg", "wb") as f: f.write(b"this_is_a_dog_image_bytes") return str(data_dir) class TestMetadataUtils(unittest.TestCase): def test_metadata_dict_from_readme(self): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(README_YAML) dataset_card_data = DatasetCard.load(path).data self.assertDictEqual( dataset_card_data.to_dict(), {"language": ["zh", "en"], "task_ids": ["sentiment-classification"]} ) with open(path, "w+") as readme_file: readme_file.write(README_EMPTY_YAML) if ( sys.platform != "win32" ): # there is a bug on windows, see https://github.com/huggingface/huggingface_hub/issues/1546 dataset_card_data = DatasetCard.load(path).data self.assertDictEqual(dataset_card_data.to_dict(), {}) with open(path, "w+") as readme_file: readme_file.write(README_NO_YAML) dataset_card_data = DatasetCard.load(path).data self.assertEqual(dataset_card_data.to_dict(), {}) def test_from_yaml_string(self): valid_yaml_string = _dedent( """\ annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual pretty_name: Test Dataset size_categories: - 10K<n<100K source_datasets: - extended|other-yahoo-webscope-l6 task_categories: - question-answering task_ids: - open-domain-qa """ ) assert DatasetCardData(**yaml.safe_load(valid_yaml_string)).to_dict() valid_yaml_with_optional_keys = _dedent( """\ annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual pretty_name: Test Dataset size_categories: - 10K<n<100K source_datasets: - extended|other-yahoo-webscope-l6 task_categories: - text-classification task_ids: - multi-class-classification paperswithcode_id: - squad configs: - en train-eval-index: - config: en task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy extra_gated_prompt: | By clicking on β€œAccess repository” below, you also agree to ImageNet Terms of Access: [RESEARCHER_FULLNAME] (the "Researcher") has requested permission to use the ImageNet database (the "Database") at Princeton University and Stanford University. In exchange for such permission, Researcher hereby agrees to the following terms and conditions: 1. Researcher shall use the Database only for non-commercial research and educational purposes. extra_gated_fields: Company: text Country: text I agree to use this model for non-commerical use ONLY: checkbox """ ) assert DatasetCardData(**yaml.safe_load(valid_yaml_with_optional_keys)).to_dict() @pytest.mark.parametrize( "readme_content, expected_metadata_configs_dict, expected_default_config_name", [ (README_METADATA_SINGLE_CONFIG, EXPECTED_METADATA_SINGLE_CONFIG, None), (README_METADATA_TWO_CONFIGS_WITH_DEFAULT_FLAG, EXPECTED_METADATA_TWO_CONFIGS_DEFAULT_FLAG, "v2"), (README_METADATA_TWO_CONFIGS_WITH_DEFAULT_NAME, EXPECTED_METADATA_TWO_CONFIGS_DEFAULT_NAME, "default"), ], ) def test_metadata_configs_dataset_card_data( readme_content, expected_metadata_configs_dict, expected_default_config_name ): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(readme_content) dataset_card_data = DatasetCard.load(path).data metadata_configs_dict = MetadataConfigs.from_dataset_card_data(dataset_card_data) assert metadata_configs_dict == expected_metadata_configs_dict assert metadata_configs_dict.get_default_config_name() == expected_default_config_name def test_metadata_configs_incorrect_yaml(): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(README_METADATA_CONFIG_INCORRECT_FORMAT) dataset_card_data = DatasetCard.load(path).data with pytest.raises(ValueError): _ = MetadataConfigs.from_dataset_card_data(dataset_card_data) def test_split_order_in_metadata_configs_from_exported_parquet_files_and_dataset_infos(): exported_parquet_files = [ { "dataset": "beans", "config": "default", "split": "test", "url": "https://huggingface.co/datasets/beans/resolve/refs%2Fconvert%2Fparquet/default/test/0000.parquet", "filename": "0000.parquet", "size": 17707203, }, { "dataset": "beans", "config": "default", "split": "train", "url": "https://huggingface.co/datasets/beans/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet", "filename": "0000.parquet", "size": 143780164, }, { "dataset": "beans", "config": "default", "split": "validation", "url": "https://huggingface.co/datasets/beans/resolve/refs%2Fconvert%2Fparquet/default/validation/0000.parquet", "filename": "0000.parquet", "size": 18500862, }, ] dataset_infos = { "default": DatasetInfo( dataset_name="beans", config_name="default", version="0.0.0", splits={ "train": { "name": "train", "num_bytes": 143996486, "num_examples": 1034, "shard_lengths": None, "dataset_name": "beans", }, "validation": { "name": "validation", "num_bytes": 18525985, "num_examples": 133, "shard_lengths": None, "dataset_name": "beans", }, "test": { "name": "test", "num_bytes": 17730506, "num_examples": 128, "shard_lengths": None, "dataset_name": "beans", }, }, download_checksums={ "https://huggingface.co/datasets/beans/resolve/main/data/train.zip": { "num_bytes": 143812152, "checksum": None, }, "https://huggingface.co/datasets/beans/resolve/main/data/validation.zip": { "num_bytes": 18504213, "checksum": None, }, "https://huggingface.co/datasets/beans/resolve/main/data/test.zip": { "num_bytes": 17708541, "checksum": None, }, }, download_size=180024906, post_processing_size=None, dataset_size=180252977, size_in_bytes=360277883, ) } metadata_configs = MetadataConfigs._from_exported_parquet_files_and_dataset_infos( "123", exported_parquet_files, dataset_infos ) split_names = [data_file["split"] for data_file in metadata_configs["default"]["data_files"]] assert split_names == ["train", "validation", "test"]
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_filesystem.py
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, extract_path_from_uri, is_remote_filesystem from .utils import require_lz4, require_zstandard def test_mockfs(mockfs): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def test_non_mockfs(): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def test_extract_path_from_uri(): mock_bucket = "mock-s3-bucket" dataset_path = f"s3://{mock_bucket}" dataset_path = extract_path_from_uri(dataset_path) assert dataset_path.startswith("s3://") is False dataset_path = "./local/path" new_dataset_path = extract_path_from_uri(dataset_path) assert dataset_path == new_dataset_path def test_is_remote_filesystem(mockfs): is_remote = is_remote_filesystem(mockfs) assert is_remote is True fs = fsspec.filesystem("file") is_remote = is_remote_filesystem(fs) assert is_remote is False @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_compression_filesystems(compression_fs_class, gz_file, bz2_file, lz4_file, zstd_file, xz_file, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) fs = fsspec.filesystem(compression_fs_class.protocol, fo=input_path) assert isinstance(fs, compression_fs_class) expected_filename = os.path.basename(input_path) expected_filename = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(expected_filename, "r", encoding="utf-8") as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol", ["zip", "gzip"]) def test_fs_isfile(protocol, zip_jsonl_path, jsonl_gz_path): compressed_file_paths = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} compressed_file_path = compressed_file_paths[protocol] member_file_path = "dataset.jsonl" path = f"{protocol}://{member_file_path}::{compressed_file_path}" fs, *_ = fsspec.get_fs_token_paths(path) assert fs.isfile(member_file_path) assert not fs.isfile("non_existing_" + member_file_path) def test_fs_overwrites(): protocol = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(protocol, None, clobber=True) with pytest.warns(UserWarning) as warning_info: importlib.reload(datasets.filesystems) assert len(warning_info) == 1 assert ( str(warning_info[0].message) == f"A filesystem protocol was already set for {protocol} and will be overwritten." )
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_iterable_dataset.py
import pickle from copy import deepcopy from itertools import chain, islice import numpy as np import pandas as pd import pyarrow as pa import pyarrow.compute as pc import pytest from datasets import Dataset, load_dataset from datasets.combine import concatenate_datasets, interleave_datasets from datasets.features import ( ClassLabel, Features, Image, Value, ) from datasets.formatting import get_format_type_from_alias from datasets.info import DatasetInfo from datasets.iterable_dataset import ( ArrowExamplesIterable, BufferShuffledExamplesIterable, CyclingMultiSourcesExamplesIterable, ExamplesIterable, FilteredExamplesIterable, FormattingConfig, HorizontallyConcatenatedMultiSourcesExamplesIterable, IterableDataset, MappedExamplesIterable, RandomlyCyclingMultiSourcesExamplesIterable, SelectColumnsIterable, ShuffledDataSourcesArrowExamplesIterable, ShuffledDataSourcesExamplesIterable, ShufflingConfig, SkipExamplesIterable, StepExamplesIterable, TakeExamplesIterable, TypedExamplesIterable, VerticallyConcatenatedMultiSourcesExamplesIterable, _BaseExamplesIterable, _batch_arrow_tables, _batch_to_examples, _convert_to_arrow, _examples_to_batch, ) from .utils import ( assert_arrow_memory_doesnt_increase, is_rng_equal, require_dill_gt_0_3_2, require_not_windows, require_pyspark, require_tf, require_torch, ) DEFAULT_N_EXAMPLES = 20 DEFAULT_BATCH_SIZE = 4 DEFAULT_FILEPATH = "file.txt" SAMPLE_DATASET_IDENTIFIER = "hf-internal-testing/dataset_with_script" # has dataset script def generate_examples_fn(**kwargs): kwargs = kwargs.copy() n = kwargs.pop("n", DEFAULT_N_EXAMPLES) filepaths = kwargs.pop("filepaths", None) for filepath in filepaths or [DEFAULT_FILEPATH]: if filepaths is not None: kwargs["filepath"] = filepath for i in range(n): yield f"{filepath}_{i}", {"id": i, **kwargs} def generate_tables_fn(**kwargs): kwargs = kwargs.copy() n = kwargs.pop("n", DEFAULT_N_EXAMPLES) batch_size = kwargs.pop("batch_size", DEFAULT_BATCH_SIZE) filepaths = kwargs.pop("filepaths", None) for filepath in filepaths or [DEFAULT_FILEPATH]: buffer = [] batch_idx = 0 if filepaths is not None: kwargs["filepath"] = filepath for i in range(n): buffer.append({"id": i, **kwargs}) if len(buffer) == batch_size: yield f"{filepath}_{batch_idx}", pa.Table.from_pylist(buffer) buffer = [] batch_idx += 1 yield batch_idx, pa.Table.from_pylist(buffer) @pytest.fixture def dataset(): ex_iterable = ExamplesIterable(generate_examples_fn, {}) return IterableDataset(ex_iterable, info=DatasetInfo(description="dummy"), split="train") @pytest.fixture def dataset_with_several_columns(): ex_iterable = ExamplesIterable( generate_examples_fn, {"filepath": ["data0.txt", "data1.txt", "data2.txt"], "metadata": {"sources": ["https://foo.bar"]}}, ) return IterableDataset(ex_iterable, info=DatasetInfo(description="dummy"), split="train") @pytest.fixture def arrow_file(tmp_path_factory, dataset: IterableDataset): filename = str(tmp_path_factory.mktemp("data") / "file.arrow") Dataset.from_generator(dataset.__iter__).map(cache_file_name=filename) return filename ################################ # # Utilities tests # ################################ @pytest.mark.parametrize("batch_size", [1, 2, 3, 9, 10, 11, 20]) @pytest.mark.parametrize("drop_last_batch", [False, True]) def test_convert_to_arrow(batch_size, drop_last_batch): examples = [{"foo": i} for i in range(10)] full_table = pa.Table.from_pylist(examples) num_rows = len(full_table) if not drop_last_batch else len(full_table) // batch_size * batch_size num_batches = (num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size subtables = list( _convert_to_arrow( list(enumerate(examples)), batch_size=batch_size, drop_last_batch=drop_last_batch, ) ) assert len(subtables) == num_batches if drop_last_batch: assert all(len(subtable) == batch_size for _, subtable in subtables) else: assert all(len(subtable) == batch_size for _, subtable in subtables[:-1]) assert len(subtables[-1][1]) <= batch_size if num_rows > 0: reloaded = pa.concat_tables([subtable for _, subtable in subtables]) assert full_table.slice(0, num_rows).to_pydict() == reloaded.to_pydict() @pytest.mark.parametrize( "tables", [ [pa.table({"foo": range(10)})], [pa.table({"foo": range(0, 5)}), pa.table({"foo": range(5, 10)})], [pa.table({"foo": [i]}) for i in range(10)], ], ) @pytest.mark.parametrize("batch_size", [1, 2, 3, 9, 10, 11, 20]) @pytest.mark.parametrize("drop_last_batch", [False, True]) def test_batch_arrow_tables(tables, batch_size, drop_last_batch): full_table = pa.concat_tables(tables) num_rows = len(full_table) if not drop_last_batch else len(full_table) // batch_size * batch_size num_batches = (num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size subtables = list( _batch_arrow_tables(list(enumerate(tables)), batch_size=batch_size, drop_last_batch=drop_last_batch) ) assert len(subtables) == num_batches if drop_last_batch: assert all(len(subtable) == batch_size for _, subtable in subtables) else: assert all(len(subtable) == batch_size for _, subtable in subtables[:-1]) assert len(subtables[-1][1]) <= batch_size if num_rows > 0: reloaded = pa.concat_tables([subtable for _, subtable in subtables]) assert full_table.slice(0, num_rows).to_pydict() == reloaded.to_pydict() ################################ # # _BaseExampleIterable tests # ################################ def test_examples_iterable(): ex_iterable = ExamplesIterable(generate_examples_fn, {}) expected = list(generate_examples_fn()) assert next(iter(ex_iterable)) == expected[0] assert list(ex_iterable) == expected assert ex_iterable.iter_arrow is None def test_examples_iterable_with_kwargs(): ex_iterable = ExamplesIterable(generate_examples_fn, {"filepaths": ["0.txt", "1.txt"], "split": "train"}) expected = list(generate_examples_fn(filepaths=["0.txt", "1.txt"], split="train")) assert list(ex_iterable) == expected assert all("split" in ex for _, ex in ex_iterable) assert sorted({ex["filepath"] for _, ex in ex_iterable}) == ["0.txt", "1.txt"] def test_examples_iterable_shuffle_data_sources(): ex_iterable = ExamplesIterable(generate_examples_fn, {"filepaths": ["0.txt", "1.txt"]}) ex_iterable = ex_iterable.shuffle_data_sources(np.random.default_rng(40)) expected = list(generate_examples_fn(filepaths=["1.txt", "0.txt"])) # shuffle the filepaths assert list(ex_iterable) == expected def test_examples_iterable_shuffle_shards_and_metadata(): def gen(filepaths, all_metadata): for i, (filepath, metadata) in enumerate(zip(filepaths, all_metadata)): yield i, {"filepath": filepath, "metadata": metadata} ex_iterable = ExamplesIterable( gen, { "filepaths": [f"{i}.txt" for i in range(100)], "all_metadata": [{"id": str(i)} for i in range(100)], }, ) ex_iterable = ex_iterable.shuffle_data_sources(np.random.default_rng(42)) out = list(ex_iterable) filepaths_ids = [x["filepath"].split(".")[0] for _, x in out] metadata_ids = [x["metadata"]["id"] for _, x in out] assert filepaths_ids == metadata_ids, "entangled lists of shards/metadata should be shuffled the same way" def test_arrow_examples_iterable(): ex_iterable = ArrowExamplesIterable(generate_tables_fn, {}) expected = sum([pa_table.to_pylist() for _, pa_table in generate_tables_fn()], []) assert next(iter(ex_iterable))[1] == expected[0] assert [example for _, example in ex_iterable] == expected expected = list(generate_tables_fn()) assert list(ex_iterable.iter_arrow()) == expected def test_arrow_examples_iterable_with_kwargs(): ex_iterable = ArrowExamplesIterable(generate_tables_fn, {"filepaths": ["0.txt", "1.txt"], "split": "train"}) expected = sum( [pa_table.to_pylist() for _, pa_table in generate_tables_fn(filepaths=["0.txt", "1.txt"], split="train")], [] ) assert [example for _, example in ex_iterable] == expected assert all("split" in ex for _, ex in ex_iterable) assert sorted({ex["filepath"] for _, ex in ex_iterable}) == ["0.txt", "1.txt"] expected = list(generate_tables_fn(filepaths=["0.txt", "1.txt"], split="train")) assert list(ex_iterable.iter_arrow()) == expected def test_arrow_examples_iterable_shuffle_data_sources(): ex_iterable = ArrowExamplesIterable(generate_tables_fn, {"filepaths": ["0.txt", "1.txt"]}) ex_iterable = ex_iterable.shuffle_data_sources(np.random.default_rng(40)) expected = sum( [pa_table.to_pylist() for _, pa_table in generate_tables_fn(filepaths=["1.txt", "0.txt"])], [] ) # shuffle the filepaths assert [example for _, example in ex_iterable] == expected expected = list(generate_tables_fn(filepaths=["1.txt", "0.txt"])) assert list(ex_iterable.iter_arrow()) == expected @pytest.mark.parametrize("seed", [42, 1337, 101010, 123456]) def test_buffer_shuffled_examples_iterable(seed): n, buffer_size = 100, 30 generator = np.random.default_rng(seed) base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = BufferShuffledExamplesIterable(base_ex_iterable, buffer_size=buffer_size, generator=generator) rng = deepcopy(generator) expected_indices_used_for_shuffling = list( islice(BufferShuffledExamplesIterable._iter_random_indices(rng, buffer_size=buffer_size), n - buffer_size) ) # indices to pick in the shuffle buffer should all be in the right range assert all(0 <= index_to_pick < buffer_size for index_to_pick in expected_indices_used_for_shuffling) # it should be random indices assert expected_indices_used_for_shuffling != list(range(buffer_size)) # The final order of examples is the result of a shuffle buffer. all_examples = list(generate_examples_fn(n=n)) # We create a buffer and we pick random examples from it. buffer, rest = all_examples[:buffer_size], all_examples[buffer_size:] expected = [] for i, index_to_pick in enumerate(expected_indices_used_for_shuffling): expected.append(buffer[index_to_pick]) # The picked examples are directly replaced by the next examples from the iterable. buffer[index_to_pick] = rest.pop(0) # Once we have reached the end of the iterable, we shuffle the buffer and return the remaining examples. rng.shuffle(buffer) expected += buffer assert next(iter(ex_iterable)) == expected[0] assert list(ex_iterable) == expected assert sorted(ex_iterable) == sorted(all_examples) def test_cycling_multi_sources_examples_iterable(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"text": "foo"}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"text": "bar"}) ex_iterable = CyclingMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) expected = list(chain(*zip(generate_examples_fn(text="foo"), generate_examples_fn(text="bar")))) # The cycling stops as soon as one iterable is out of examples (here ex_iterable1), so the last sample from ex_iterable2 is unecessary expected = expected[:-1] assert next(iter(ex_iterable)) == expected[0] assert list(ex_iterable) == expected assert all((x["id"], x["text"]) == (i // 2, "bar" if i % 2 else "foo") for i, (_, x) in enumerate(ex_iterable)) @pytest.mark.parametrize("probabilities", [None, (0.5, 0.5), (0.9, 0.1)]) def test_randomly_cycling_multi_sources_examples_iterable(probabilities): seed = 42 generator = np.random.default_rng(seed) ex_iterable1 = ExamplesIterable(generate_examples_fn, {"text": "foo"}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"text": "bar"}) ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable( [ex_iterable1, ex_iterable2], generator=generator, probabilities=probabilities ) # The source used randomly changes at each example. It stops when one of the iterators is empty. rng = deepcopy(generator) iterators = (generate_examples_fn(text="foo"), generate_examples_fn(text="bar")) indices_iterator = RandomlyCyclingMultiSourcesExamplesIterable._iter_random_indices( rng, len(iterators), p=probabilities ) expected = [] lengths = [len(list(ex_iterable1)), len(list(ex_iterable2))] for i in indices_iterator: if lengths[0] == 0 or lengths[1] == 0: break for key, example in iterators[i]: expected.append((key, example)) lengths[i] -= 1 break else: break assert next(iter(ex_iterable)) == expected[0] assert list(ex_iterable) == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda x: {"id+1": x["id"] + 1}, False, None), # just add 1 to the id (3, lambda x: {"id+1": [x["id"][0] + 1]}, True, 1), # same with bs=1 (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, 10), # same with bs=10 (25, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, 10), # same with bs=10 (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, None), # same with bs=None (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, -1), # same with bs<=0 (3, lambda x: {k: v * 2 for k, v in x.items()}, True, 1), # make a duplicate of each example ], ) def test_mapped_examples_iterable(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable(base_ex_iterable, func, batched=batched, batch_size=batch_size) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [{**x, **func(x)} for x in all_examples] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) transformed_batch = func(batch) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) expected = _examples_to_batch(all_examples) expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda x: {"id+1": x["id"] + 1}, False, None), # just add 1 to the id (3, lambda x: {"id+1": [x["id"][0] + 1]}, True, 1), # same with bs=1 (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, 10), # same with bs=10 (25, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, 10), # same with bs=10 (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, None), # same with bs=None (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, -1), # same with bs<=0 (3, lambda x: {k: v * 2 for k, v in x.items()}, True, 1), # make a duplicate of each example ], ) def test_mapped_examples_iterable_drop_last_batch(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, drop_last_batch=True ) all_examples = [x for _, x in generate_examples_fn(n=n)] is_empty = False if batched is False: # `drop_last_batch` has no effect here expected = [{**x, **func(x)} for x in all_examples] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] if len(examples) < batch_size: # ignore last batch break batch = _examples_to_batch(examples) transformed_batch = func(batch) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) all_examples = all_examples if n % batch_size == 0 else all_examples[: n // batch_size * batch_size] if all_examples: expected = _examples_to_batch(all_examples) expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) else: is_empty = True if not is_empty: assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected else: with pytest.raises(StopIteration): next(iter(ex_iterable)) @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda x, index: {"id+idx": x["id"] + index}, False, None), # add the index to the id ( 25, lambda x, indices: {"id+idx": [i + j for i, j in zip(x["id"], indices)]}, True, 10, ), # add the index to the id (5, lambda x, indices: {"id+idx": [i + j for i, j in zip(x["id"], indices)]}, True, None), # same with bs=None (5, lambda x, indices: {"id+idx": [i + j for i, j in zip(x["id"], indices)]}, True, -1), # same with bs<=0 ], ) def test_mapped_examples_iterable_with_indices(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, with_indices=True ) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [{**x, **func(x, idx)} for idx, x in enumerate(all_examples)] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) indices = list(range(batch_offset, batch_offset + len(examples))) transformed_batch = func(batch, indices) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) expected = _examples_to_batch(all_examples) expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, remove_columns", [ (3, lambda x: {"id+1": x["id"] + 1}, False, None, ["extra_column"]), # just add 1 to the id (25, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, 10, ["extra_column"]), # same with bs=10 ( 50, lambda x: {"foo": ["bar"] * np.random.default_rng(x["id"][0]).integers(0, 10)}, True, 8, ["extra_column", "id"], ), # make a duplicate of each example (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, None, ["extra_column"]), # same with bs=None (5, lambda x: {"id+1": [i + 1 for i in x["id"]]}, True, -1, ["extra_column"]), # same with bs<=0 ], ) def test_mapped_examples_iterable_remove_columns(n, func, batched, batch_size, remove_columns): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n, "extra_column": "foo"}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, remove_columns=remove_columns ) all_examples = [x for _, x in generate_examples_fn(n=n)] columns_to_remove = remove_columns if isinstance(remove_columns, list) else [remove_columns] if batched is False: expected = [{**{k: v for k, v in x.items() if k not in columns_to_remove}, **func(x)} for x in all_examples] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) transformed_batch = func(batch) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) expected = {k: v for k, v in _examples_to_batch(all_examples).items() if k not in columns_to_remove} expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, fn_kwargs", [ (3, lambda x, y=0: {"id+y": x["id"] + y}, False, None, None), (3, lambda x, y=0: {"id+y": x["id"] + y}, False, None, {"y": 3}), (25, lambda x, y=0: {"id+y": [i + y for i in x["id"]]}, True, 10, {"y": 3}), (5, lambda x, y=0: {"id+y": [i + y for i in x["id"]]}, True, None, {"y": 3}), # same with bs=None (5, lambda x, y=0: {"id+y": [i + y for i in x["id"]]}, True, -1, {"y": 3}), # same with bs<=0 ], ) def test_mapped_examples_iterable_fn_kwargs(n, func, batched, batch_size, fn_kwargs): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, fn_kwargs=fn_kwargs ) all_examples = [x for _, x in generate_examples_fn(n=n)] if fn_kwargs is None: fn_kwargs = {} if batched is False: expected = [{**x, **func(x, **fn_kwargs)} for x in all_examples] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) transformed_batch = func(batch, **fn_kwargs) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) expected = _examples_to_batch(all_examples) expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, input_columns", [ (3, lambda id_: {"id+1": id_ + 1}, False, None, ["id"]), # just add 1 to the id (25, lambda ids_: {"id+1": [i + 1 for i in ids_]}, True, 10, ["id"]), # same with bs=10 (5, lambda ids_: {"id+1": [i + 1 for i in ids_]}, True, None, ["id"]), # same with bs=None (5, lambda ids_: {"id+1": [i + 1 for i in ids_]}, True, -1, ["id"]), # same with bs<=0 ], ) def test_mapped_examples_iterable_input_columns(n, func, batched, batch_size, input_columns): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, input_columns=input_columns ) all_examples = [x for _, x in generate_examples_fn(n=n)] columns_to_input = input_columns if isinstance(input_columns, list) else [input_columns] if batched is False: expected = [{**x, **func(*[x[col] for col in columns_to_input])} for x in all_examples] else: # For batched map we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) transformed_batch = func(*[batch[col] for col in columns_to_input]) all_transformed_examples.extend(_batch_to_examples(transformed_batch)) expected = _examples_to_batch(all_examples) expected.update(_examples_to_batch(all_transformed_examples)) expected = list(_batch_to_examples(expected)) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), False, None), # just add 1 to the id (3, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 1), # same with bs=1 (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 10), # same with bs=10 (25, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 10), # same with bs=10 (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, None), # same with bs=None (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, -1), # same with bs<=0 (3, lambda t: pa.concat_tables([t] * 2), True, 1), # make a duplicate of each example ], ) def test_mapped_examples_iterable_arrow_format(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [func(pa.Table.from_pylist([x])).to_pylist()[0] for x in all_examples] else: expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = pa.Table.from_pylist(examples) expected.extend(func(batch).to_pylist()) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), False, None), # just add 1 to the id (3, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 1), # same with bs=1 (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 10), # same with bs=10 (25, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 10), # same with bs=10 (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, None), # same with bs=None (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, -1), # same with bs<=0 (3, lambda t: pa.concat_tables([t] * 2), True, 1), # make a duplicate of each example ], ) def test_mapped_examples_iterable_drop_last_batch_and_arrow_format(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, drop_last_batch=True, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] is_empty = False if batched is False: # `drop_last_batch` has no effect here expected = [func(pa.Table.from_pylist([x])).to_pylist()[0] for x in all_examples] else: all_transformed_examples = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] if len(examples) < batch_size: # ignore last batch break batch = pa.Table.from_pylist(examples) out = func(batch) all_transformed_examples.extend( out.to_pylist() ) # we don't merge with input since they're arrow tables and not dictionaries all_examples = all_examples if n % batch_size == 0 else all_examples[: n // batch_size * batch_size] if all_examples: expected = all_transformed_examples else: is_empty = True if not is_empty: assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected else: with pytest.raises(StopIteration): next(iter(ex_iterable)) @pytest.mark.parametrize( "n, func, batched, batch_size", [ ( 3, lambda t, index: t.append_column("id+idx", pc.add(t["id"], index)), False, None, ), # add the index to the id ( 25, lambda t, indices: t.append_column("id+idx", pc.add(t["id"], indices)), True, 10, ), # add the index to the id (5, lambda t, indices: t.append_column("id+idx", pc.add(t["id"], indices)), True, None), # same with bs=None (5, lambda t, indices: t.append_column("id+idx", pc.add(t["id"], indices)), True, -1), # same with bs<=0 ], ) def test_mapped_examples_iterable_with_indices_and_arrow_format(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, with_indices=True, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [func(pa.Table.from_pylist([x]), i).to_pylist()[0] for i, x in enumerate(all_examples)] else: expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = pa.Table.from_pylist(examples) expected.extend(func(batch, list(range(batch_offset, batch_offset + len(batch)))).to_pylist()) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, remove_columns", [ ( 3, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), False, None, ["extra_column"], ), # just add 1 to the id (25, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, 10, ["extra_column"]), # same with bs=10 ( 50, lambda t: pa.table({"foo": ["bar"] * np.random.default_rng(t["id"][0].as_py()).integers(0, 10)}), True, 8, ["extra_column", "id"], ), # make a duplicate of each example (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, None, ["extra_column"]), # same with bs=None (5, lambda t: t.append_column("id+1", pc.add(t["id"], 1)), True, -1, ["extra_column"]), # same with bs<=0 ], ) def test_mapped_examples_iterable_remove_columns_arrow_format(n, func, batched, batch_size, remove_columns): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n, "extra_column": "foo"}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, remove_columns=remove_columns, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] columns_to_remove = remove_columns if isinstance(remove_columns, list) else [remove_columns] if batched is False: expected = [ {**{k: v for k, v in func(pa.Table.from_pylist([x])).to_pylist()[0].items() if k not in columns_to_remove}} for x in all_examples ] else: expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = pa.Table.from_pylist(examples) expected.extend( [{k: v for k, v in x.items() if k not in columns_to_remove} for x in func(batch).to_pylist()] ) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, fn_kwargs", [ (3, lambda t, y=0: t.append_column("id+idx", pc.add(t["id"], y)), False, None, None), (3, lambda t, y=0: t.append_column("id+idx", pc.add(t["id"], y)), False, None, {"y": 3}), (25, lambda t, y=0: t.append_column("id+idx", pc.add(t["id"], y)), True, 10, {"y": 3}), (5, lambda t, y=0: t.append_column("id+idx", pc.add(t["id"], y)), True, None, {"y": 3}), # same with bs=None (5, lambda t, y=0: t.append_column("id+idx", pc.add(t["id"], y)), True, -1, {"y": 3}), # same with bs<=0 ], ) def test_mapped_examples_iterable_fn_kwargs_and_arrow_format(n, func, batched, batch_size, fn_kwargs): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, fn_kwargs=fn_kwargs, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] if fn_kwargs is None: fn_kwargs = {} if batched is False: expected = [func(pa.Table.from_pylist([x]), **fn_kwargs).to_pylist()[0] for x in all_examples] else: expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = pa.Table.from_pylist(examples) expected.extend(func(batch, **fn_kwargs).to_pylist()) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, input_columns", [ (3, lambda id_: pa.table({"id+1": pc.add(id_, 1)}), False, None, ["id"]), # just add 1 to the id (25, lambda ids_: pa.table({"id+1": pc.add(ids_, 1)}), True, 10, ["id"]), # same with bs=10 (5, lambda ids_: pa.table({"id+1": pc.add(ids_, 1)}), True, None, ["id"]), # same with bs=None (5, lambda ids_: pa.table({"id+1": pc.add(ids_, 1)}), True, -1, ["id"]), # same with bs<=0 ], ) def test_mapped_examples_iterable_input_columns_and_arrow_format(n, func, batched, batch_size, input_columns): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = MappedExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, input_columns=input_columns, formatting=FormattingConfig(format_type="arrow"), ) all_examples = [x for _, x in generate_examples_fn(n=n)] columns_to_input = input_columns if isinstance(input_columns, list) else [input_columns] if batched is False: expected = [ func(*[pa.Table.from_pylist([x])[col] for col in columns_to_input]).to_pylist()[0] for x in all_examples ] else: expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = pa.Table.from_pylist(examples) expected.extend(func(*[batch[col] for col in columns_to_input]).to_pylist()) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda x: x["id"] % 2 == 0, False, None), # keep even number (3, lambda x: [x["id"][0] % 2 == 0], True, 1), # same with bs=1 (25, lambda x: [i % 2 == 0 for i in x["id"]], True, 10), # same with bs=10 (5, lambda x: [i % 2 == 0 for i in x["id"]], True, None), # same with bs=None (5, lambda x: [i % 2 == 0 for i in x["id"]], True, -1), # same with bs<=0 (3, lambda x: False, False, None), # return 0 examples (3, lambda x: [False] * len(x["id"]), True, 10), # same with bs=10 ], ) def test_filtered_examples_iterable(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = FilteredExamplesIterable(base_ex_iterable, func, batched=batched, batch_size=batch_size) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [x for x in all_examples if func(x)] else: # For batched filter we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) mask = func(batch) expected.extend([x for x, to_keep in zip(examples, mask) if to_keep]) if expected: assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size", [ (3, lambda x, index: index % 2 == 0, False, None), # keep even number (25, lambda x, indices: [idx % 2 == 0 for idx in indices], True, 10), # same with bs=10 (5, lambda x, indices: [idx % 2 == 0 for idx in indices], True, None), # same with bs=None (5, lambda x, indices: [idx % 2 == 0 for idx in indices], True, -1), # same with bs<=0 ], ) def test_filtered_examples_iterable_with_indices(n, func, batched, batch_size): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = FilteredExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, with_indices=True ) all_examples = [x for _, x in generate_examples_fn(n=n)] if batched is False: expected = [x for idx, x in enumerate(all_examples) if func(x, idx)] else: # For batched filter we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) indices = list(range(batch_offset, batch_offset + len(examples))) mask = func(batch, indices) expected.extend([x for x, to_keep in zip(examples, mask) if to_keep]) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected @pytest.mark.parametrize( "n, func, batched, batch_size, input_columns", [ (3, lambda id_: id_ % 2 == 0, False, None, ["id"]), # keep even number (25, lambda ids_: [i % 2 == 0 for i in ids_], True, 10, ["id"]), # same with bs=10 (3, lambda ids_: [i % 2 == 0 for i in ids_], True, None, ["id"]), # same with bs=None (3, lambda ids_: [i % 2 == 0 for i in ids_], True, None, ["id"]), # same with bs=None ], ) def test_filtered_examples_iterable_input_columns(n, func, batched, batch_size, input_columns): base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n}) ex_iterable = FilteredExamplesIterable( base_ex_iterable, func, batched=batched, batch_size=batch_size, input_columns=input_columns ) all_examples = [x for _, x in generate_examples_fn(n=n)] columns_to_input = input_columns if isinstance(input_columns, list) else [input_columns] if batched is False: expected = [x for x in all_examples if func(*[x[col] for col in columns_to_input])] else: # For batched filter we have to format the examples as a batch (i.e. in one single dictionary) to pass the batch to the function expected = [] # If batch_size is None or <=0, we use the whole dataset as a single batch if batch_size is None or batch_size <= 0: batch_size = len(all_examples) for batch_offset in range(0, len(all_examples), batch_size): examples = all_examples[batch_offset : batch_offset + batch_size] batch = _examples_to_batch(examples) mask = func(*[batch[col] for col in columns_to_input]) expected.extend([x for x, to_keep in zip(examples, mask) if to_keep]) assert next(iter(ex_iterable))[1] == expected[0] assert [x for _, x in ex_iterable] == expected def test_skip_examples_iterable(): total, count = 10, 2 base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": total}) skip_ex_iterable = SkipExamplesIterable(base_ex_iterable, n=count) expected = list(generate_examples_fn(n=total))[count:] assert list(skip_ex_iterable) == expected assert ( skip_ex_iterable.shuffle_data_sources(np.random.default_rng(42)) is skip_ex_iterable ), "skip examples makes the shards order fixed" def test_take_examples_iterable(): total, count = 10, 2 base_ex_iterable = ExamplesIterable(generate_examples_fn, {"n": total}) take_ex_iterable = TakeExamplesIterable(base_ex_iterable, n=count) expected = list(generate_examples_fn(n=total))[:count] assert list(take_ex_iterable) == expected assert ( take_ex_iterable.shuffle_data_sources(np.random.default_rng(42)) is take_ex_iterable ), "skip examples makes the shards order fixed" def test_vertically_concatenated_examples_iterable(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label": 5}) concatenated_ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) expected = [x for _, x in ex_iterable1] + [x for _, x in ex_iterable2] assert [x for _, x in concatenated_ex_iterable] == expected def test_vertically_concatenated_examples_iterable_with_different_columns(): # having different columns is supported # Though iterable datasets fill the missing data with nulls ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {}) concatenated_ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) expected = [x for _, x in ex_iterable1] + [x for _, x in ex_iterable2] assert [x for _, x in concatenated_ex_iterable] == expected def test_vertically_concatenated_examples_iterable_shuffle_data_sources(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label": 5}) concatenated_ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) rng = np.random.default_rng(42) shuffled_ex_iterable = concatenated_ex_iterable.shuffle_data_sources(rng) # make sure the list of examples iterables is shuffled, and each examples iterable is shuffled expected = [x for _, x in ex_iterable2.shuffle_data_sources(rng)] + [ x for _, x in ex_iterable1.shuffle_data_sources(rng) ] assert [x for _, x in shuffled_ex_iterable] == expected def test_horizontally_concatenated_examples_iterable(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label1": 10}) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label2": 5}) concatenated_ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) with pytest.raises(ValueError): # column "id" is duplicated -> raise an error list(concatenated_ex_iterable) ex_iterable2 = MappedExamplesIterable(ex_iterable2, lambda x: x, remove_columns=["id"]) concatenated_ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable([ex_iterable1, ex_iterable2]) expected = [{**x, **y} for (_, x), (_, y) in zip(ex_iterable1, ex_iterable2)] assert [x for _, x in concatenated_ex_iterable] == expected assert ( concatenated_ex_iterable.shuffle_data_sources(np.random.default_rng(42)) is concatenated_ex_iterable ), "horizontally concatenated examples makes the shards order fixed" @pytest.mark.parametrize( "ex_iterable", [ ExamplesIterable(generate_examples_fn, {}), ShuffledDataSourcesExamplesIterable(generate_examples_fn, {}, np.random.default_rng(42)), SelectColumnsIterable(ExamplesIterable(generate_examples_fn, {}), ["id"]), StepExamplesIterable(ExamplesIterable(generate_examples_fn, {}), 2, 0), CyclingMultiSourcesExamplesIterable([ExamplesIterable(generate_examples_fn, {})]), VerticallyConcatenatedMultiSourcesExamplesIterable([ExamplesIterable(generate_examples_fn, {})]), HorizontallyConcatenatedMultiSourcesExamplesIterable([ExamplesIterable(generate_examples_fn, {})]), RandomlyCyclingMultiSourcesExamplesIterable( [ExamplesIterable(generate_examples_fn, {})], np.random.default_rng(42) ), MappedExamplesIterable(ExamplesIterable(generate_examples_fn, {}), lambda x: x), MappedExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), lambda x: x), FilteredExamplesIterable(ExamplesIterable(generate_examples_fn, {}), lambda x: True), FilteredExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), lambda x: True), BufferShuffledExamplesIterable(ExamplesIterable(generate_examples_fn, {}), 10, np.random.default_rng(42)), SkipExamplesIterable(ExamplesIterable(generate_examples_fn, {}), 10), TakeExamplesIterable(ExamplesIterable(generate_examples_fn, {}), 10), TypedExamplesIterable( ExamplesIterable(generate_examples_fn, {}), Features({"id": Value("int32")}), token_per_repo_id={} ), ], ) def test_no_iter_arrow(ex_iterable: _BaseExamplesIterable): assert ex_iterable.iter_arrow is None @pytest.mark.parametrize( "ex_iterable", [ ArrowExamplesIterable(generate_tables_fn, {}), ShuffledDataSourcesArrowExamplesIterable(generate_tables_fn, {}, np.random.default_rng(42)), SelectColumnsIterable(ArrowExamplesIterable(generate_tables_fn, {}), ["id"]), # StepExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), 2, 0), # not implemented # CyclingMultiSourcesExamplesIterable([ArrowExamplesIterable(generate_tables_fn, {})]), # not implemented VerticallyConcatenatedMultiSourcesExamplesIterable([ArrowExamplesIterable(generate_tables_fn, {})]), # HorizontallyConcatenatedMultiSourcesExamplesIterable([ArrowExamplesIterable(generate_tables_fn, {})]), # not implemented # RandomlyCyclingMultiSourcesExamplesIterable([ArrowExamplesIterable(generate_tables_fn, {})], np.random.default_rng(42)), # not implemented MappedExamplesIterable( ExamplesIterable(generate_examples_fn, {}), lambda t: t, formatting=FormattingConfig(format_type="arrow") ), MappedExamplesIterable( ArrowExamplesIterable(generate_tables_fn, {}), lambda t: t, formatting=FormattingConfig(format_type="arrow"), ), FilteredExamplesIterable( ExamplesIterable(generate_examples_fn, {}), lambda t: True, formatting=FormattingConfig(format_type="arrow"), ), FilteredExamplesIterable( ArrowExamplesIterable(generate_tables_fn, {}), lambda t: True, formatting=FormattingConfig(format_type="arrow"), ), # BufferShuffledExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), 10, np.random.default_rng(42)), # not implemented # SkipExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), 10), # not implemented # TakeExamplesIterable(ArrowExamplesIterable(generate_tables_fn, {}), 10), # not implemented TypedExamplesIterable( ArrowExamplesIterable(generate_tables_fn, {}), Features({"id": Value("int32")}), token_per_repo_id={} ), ], ) def test_iter_arrow(ex_iterable: _BaseExamplesIterable): assert ex_iterable.iter_arrow is not None key, pa_table = next(ex_iterable.iter_arrow()) assert isinstance(pa_table, pa.Table) ############################ # # IterableDataset tests # ############################ def test_iterable_dataset(): dataset = IterableDataset(ExamplesIterable(generate_examples_fn, {})) expected = [x for _, x in generate_examples_fn()] assert next(iter(dataset)) == expected[0] assert list(dataset) == expected def test_iterable_dataset_from_generator(): data = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] def gen(): yield from data dataset = IterableDataset.from_generator(gen) assert isinstance(dataset, IterableDataset) assert list(dataset) == data def test_iterable_dataset_from_generator_with_shards(): def gen(shard_names): for shard_name in shard_names: for i in range(10): yield {"shard_name": shard_name, "i": i} shard_names = [f"data{shard_idx}.txt" for shard_idx in range(4)] dataset = IterableDataset.from_generator(gen, gen_kwargs={"shard_names": shard_names}) assert isinstance(dataset, IterableDataset) assert dataset.n_shards == len(shard_names) def test_iterable_dataset_from_file(dataset: IterableDataset, arrow_file: str): with assert_arrow_memory_doesnt_increase(): dataset_from_file = IterableDataset.from_file(arrow_file) expected_features = dataset._resolve_features().features assert dataset_from_file.features.type == expected_features.type assert dataset_from_file.features == expected_features assert isinstance(dataset_from_file, IterableDataset) assert list(dataset_from_file) == list(dataset) @require_not_windows @require_dill_gt_0_3_2 @require_pyspark def test_from_spark_streaming(): import pyspark spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() data = [ ("0", 0, 0.0), ("1", 1, 1.0), ("2", 2, 2.0), ("3", 3, 3.0), ] df = spark.createDataFrame(data, "col_1: string, col_2: int, col_3: float") dataset = IterableDataset.from_spark(df) assert isinstance(dataset, IterableDataset) results = [] for ex in dataset: results.append(ex) assert results == [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] @require_not_windows @require_dill_gt_0_3_2 @require_pyspark def test_from_spark_streaming_features(): import PIL.Image import pyspark spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() data = [(0, np.arange(4 * 4 * 3).reshape(4, 4, 3).tolist())] df = spark.createDataFrame(data, "idx: int, image: array<array<array<int>>>") features = Features({"idx": Value("int64"), "image": Image()}) dataset = IterableDataset.from_spark( df, features=features, ) assert isinstance(dataset, IterableDataset) results = [] for ex in dataset: results.append(ex) assert len(results) == 1 isinstance(results[0]["image"], PIL.Image.Image) @require_torch def test_iterable_dataset_torch_integration(): ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable) import torch.utils.data assert isinstance(dataset, torch.utils.data.IterableDataset) assert isinstance(dataset, IterableDataset) assert dataset._ex_iterable is ex_iterable @require_torch def test_iterable_dataset_torch_picklable(): import pickle ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable, formatting=FormattingConfig(format_type="torch")) reloaded_dataset = pickle.loads(pickle.dumps(dataset)) import torch.utils.data assert isinstance(reloaded_dataset, IterableDataset) assert isinstance(reloaded_dataset, torch.utils.data.IterableDataset) assert reloaded_dataset._formatting.format_type == "torch" assert len(list(dataset)) == len(list(reloaded_dataset)) @require_torch def test_iterable_dataset_with_format_torch(): ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable) from torch.utils.data import DataLoader dataloader = DataLoader(dataset) assert len(list(dataloader)) == len(list(ex_iterable)) @require_torch def test_iterable_dataset_torch_dataloader_parallel(): from torch.utils.data import DataLoader ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable) dataloader = DataLoader(dataset, num_workers=2, batch_size=None) result = list(dataloader) expected = [example for _, example in ex_iterable] assert len(result) == len(expected) assert {str(x) for x in result} == {str(x) for x in expected} @require_torch @pytest.mark.filterwarnings("ignore:This DataLoader will create:UserWarning") @pytest.mark.parametrize("n_shards, num_workers", [(2, 1), (2, 2), (3, 2), (2, 3)]) def test_sharded_iterable_dataset_torch_dataloader_parallel(n_shards, num_workers): from torch.utils.data import DataLoader ex_iterable = ExamplesIterable(generate_examples_fn, {"filepaths": [f"{i}.txt" for i in range(n_shards)]}) dataset = IterableDataset(ex_iterable) dataloader = DataLoader(dataset, batch_size=None, num_workers=num_workers) result = list(dataloader) expected = [example for _, example in ex_iterable] assert len(result) == len(expected) assert {str(x) for x in result} == {str(x) for x in expected} @require_torch @pytest.mark.integration @pytest.mark.parametrize("num_workers", [1, 2]) def test_iterable_dataset_from_hub_torch_dataloader_parallel(num_workers, tmp_path): from torch.utils.data import DataLoader dataset = load_dataset(SAMPLE_DATASET_IDENTIFIER, cache_dir=str(tmp_path), streaming=True, split="train") dataloader = DataLoader(dataset, batch_size=None, num_workers=num_workers) result = list(dataloader) assert len(result) == 2 @pytest.mark.parametrize("batch_size", [4, 5]) @pytest.mark.parametrize("drop_last_batch", [False, True]) def test_iterable_dataset_iter_batch(batch_size, drop_last_batch): n = 25 dataset = IterableDataset(ExamplesIterable(generate_examples_fn, {"n": n})) all_examples = [ex for _, ex in generate_examples_fn(n=n)] expected = [] for i in range(0, len(all_examples), batch_size): if len(all_examples[i : i + batch_size]) < batch_size and drop_last_batch: continue expected.append(_examples_to_batch(all_examples[i : i + batch_size])) assert next(iter(dataset.iter(batch_size, drop_last_batch=drop_last_batch))) == expected[0] assert list(dataset.iter(batch_size, drop_last_batch=drop_last_batch)) == expected def test_iterable_dataset_info(): info = DatasetInfo(description="desc", citation="@article{}", size_in_bytes=42) ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable, info=info) assert dataset.info == info assert dataset.description == info.description assert dataset.citation == info.citation assert dataset.size_in_bytes == info.size_in_bytes def test_iterable_dataset_set_epoch(dataset: IterableDataset): assert dataset._epoch == 0 dataset.set_epoch(42) assert dataset._epoch == 42 @pytest.mark.parametrize("seed", [None, 42, 1337]) @pytest.mark.parametrize("epoch", [None, 0, 1, 10]) def test_iterable_dataset_set_epoch_of_shuffled_dataset(dataset: IterableDataset, seed, epoch): buffer_size = 10 shuffled_dataset = dataset.shuffle(seed, buffer_size=buffer_size) base_generator = shuffled_dataset._shuffling.generator if epoch is not None: shuffled_dataset.set_epoch(epoch) effective_generator = shuffled_dataset._effective_generator() assert effective_generator is not None if epoch is None or epoch == 0: assert is_rng_equal(base_generator, shuffled_dataset._effective_generator()) else: assert not is_rng_equal(base_generator, shuffled_dataset._effective_generator()) effective_seed = deepcopy(base_generator).integers(0, 1 << 63) - epoch assert is_rng_equal(np.random.default_rng(effective_seed), shuffled_dataset._effective_generator()) def test_iterable_dataset_map( dataset: IterableDataset, ): func = lambda x: {"id+1": x["id"] + 1} # noqa: E731 mapped_dataset = dataset.map(func) assert isinstance(mapped_dataset._ex_iterable, MappedExamplesIterable) assert mapped_dataset._ex_iterable.function is func assert mapped_dataset._ex_iterable.batched is False assert next(iter(mapped_dataset)) == {**next(iter(dataset)), **func(next(iter(generate_examples_fn()))[1])} def test_iterable_dataset_map_batched( dataset: IterableDataset, ): func = lambda x: {"id+1": [i + 1 for i in x["id"]]} # noqa: E731 batch_size = 3 dataset = dataset.map(func, batched=True, batch_size=batch_size) assert isinstance(dataset._ex_iterable, MappedExamplesIterable) assert dataset._ex_iterable.function is func assert dataset._ex_iterable.batch_size == batch_size assert next(iter(dataset)) == {"id": 0, "id+1": 1} def test_iterable_dataset_map_complex_features( dataset: IterableDataset, ): # https://github.com/huggingface/datasets/issues/3505 ex_iterable = ExamplesIterable(generate_examples_fn, {"label": "positive"}) features = Features( { "id": Value("int64"), "label": Value("string"), } ) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) dataset = dataset.cast_column("label", ClassLabel(names=["negative", "positive"])) dataset = dataset.map(lambda x: {"id+1": x["id"] + 1, **x}) assert isinstance(dataset._ex_iterable, MappedExamplesIterable) features["label"] = ClassLabel(names=["negative", "positive"]) assert [{k: v for k, v in ex.items() if k != "id+1"} for ex in dataset] == [ features.encode_example(ex) for _, ex in ex_iterable ] def test_iterable_dataset_map_with_features(dataset: IterableDataset) -> None: # https://github.com/huggingface/datasets/issues/3888 ex_iterable = ExamplesIterable(generate_examples_fn, {"label": "positive"}) features_before_map = Features( { "id": Value("int64"), "label": Value("string"), } ) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features_before_map)) assert dataset.info.features is not None assert dataset.info.features == features_before_map features_after_map = Features( { "id": Value("int64"), "label": Value("string"), "target": Value("string"), } ) dataset = dataset.map(lambda x: {"target": x["label"]}, features=features_after_map) assert dataset.info.features is not None assert dataset.info.features == features_after_map def test_iterable_dataset_map_with_fn_kwargs(dataset: IterableDataset) -> None: fn_kwargs = {"y": 1} mapped_dataset = dataset.map(lambda x, y: {"id+y": x["id"] + y}, fn_kwargs=fn_kwargs) assert mapped_dataset._ex_iterable.batched is False assert next(iter(mapped_dataset)) == {"id": 0, "id+y": 1} batch_size = 3 mapped_dataset = dataset.map( lambda x, y: {"id+y": [i + y for i in x["id"]]}, batched=True, batch_size=batch_size, fn_kwargs=fn_kwargs ) assert isinstance(mapped_dataset._ex_iterable, MappedExamplesIterable) assert mapped_dataset._ex_iterable.batch_size == batch_size assert next(iter(mapped_dataset)) == {"id": 0, "id+y": 1} def test_iterable_dataset_filter(dataset: IterableDataset) -> None: fn_kwargs = {"y": 1} filtered_dataset = dataset.filter(lambda x, y: x["id"] == y, fn_kwargs=fn_kwargs) assert filtered_dataset._ex_iterable.batched is False assert next(iter(filtered_dataset)) == {"id": 1} @pytest.mark.parametrize("seed", [42, 1337, 101010, 123456]) @pytest.mark.parametrize("epoch", [None, 0, 1]) def test_iterable_dataset_shuffle(dataset: IterableDataset, seed, epoch): buffer_size = 3 dataset = deepcopy(dataset) dataset._ex_iterable.kwargs["filepaths"] = ["0.txt", "1.txt"] dataset = dataset.shuffle(seed, buffer_size=buffer_size) assert isinstance(dataset._shuffling, ShufflingConfig) assert isinstance(dataset._shuffling.generator, np.random.Generator) assert is_rng_equal(dataset._shuffling.generator, np.random.default_rng(seed)) # Effective seed is sum of seed and epoch if epoch is None or epoch == 0: effective_seed = seed else: dataset.set_epoch(epoch) effective_seed = np.random.default_rng(seed).integers(0, 1 << 63) - epoch # Shuffling adds a shuffle buffer expected_first_example_index = next( iter(BufferShuffledExamplesIterable._iter_random_indices(np.random.default_rng(effective_seed), buffer_size)) ) assert isinstance(dataset._ex_iterable, BufferShuffledExamplesIterable) # It also shuffles the underlying examples iterable expected_ex_iterable = ExamplesIterable( generate_examples_fn, {"filepaths": ["0.txt", "1.txt"]} ).shuffle_data_sources(np.random.default_rng(effective_seed)) assert isinstance(dataset._ex_iterable.ex_iterable, ExamplesIterable) assert next(iter(dataset)) == list(islice(expected_ex_iterable, expected_first_example_index + 1))[-1][1] @pytest.mark.parametrize( "features", [ None, Features( { "id": Value("int64"), "label": Value("int64"), } ), Features( { "id": Value("int64"), "label": ClassLabel(names=["negative", "positive"]), } ), ], ) def test_iterable_dataset_features(features): ex_iterable = ExamplesIterable(generate_examples_fn, {"label": 0}) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) if features: expected = [features.encode_example(x) for _, x in ex_iterable] else: expected = [x for _, x in ex_iterable] assert list(dataset) == expected def test_iterable_dataset_features_cast_to_python(): ex_iterable = ExamplesIterable( generate_examples_fn, {"timestamp": pd.Timestamp(2020, 1, 1), "array": np.ones(5), "n": 1} ) features = Features( { "id": Value("int64"), "timestamp": Value("timestamp[us]"), "array": [Value("int64")], } ) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) assert list(dataset) == [{"timestamp": pd.Timestamp(2020, 1, 1).to_pydatetime(), "array": [1] * 5, "id": 0}] @pytest.mark.parametrize("format_type", [None, "torch", "python", "tf", "tensorflow", "np", "numpy", "jax"]) def test_iterable_dataset_with_format(dataset: IterableDataset, format_type): formatted_dataset = dataset.with_format(format_type) assert formatted_dataset._formatting.format_type == get_format_type_from_alias(format_type) @require_torch def test_iterable_dataset_is_torch_iterable_dataset(dataset: IterableDataset): from torch.utils.data import DataLoader, _DatasetKind dataloader = DataLoader(dataset) assert dataloader._dataset_kind == _DatasetKind.Iterable out = list(dataloader) assert len(out) == DEFAULT_N_EXAMPLES @pytest.mark.parametrize("n", [0, 2, int(1e10)]) def test_iterable_dataset_skip(dataset: IterableDataset, n): skip_dataset = dataset.skip(n) assert isinstance(skip_dataset._ex_iterable, SkipExamplesIterable) assert skip_dataset._ex_iterable.n == n assert list(skip_dataset) == list(dataset)[n:] @pytest.mark.parametrize("n", [0, 2, int(1e10)]) def test_iterable_dataset_take(dataset: IterableDataset, n): take_dataset = dataset.take(n) assert isinstance(take_dataset._ex_iterable, TakeExamplesIterable) assert take_dataset._ex_iterable.n == n assert list(take_dataset) == list(dataset)[:n] @pytest.mark.parametrize("method", ["skip", "take"]) def test_iterable_dataset_shuffle_after_skip_or_take(method): seed = 42 n, n_shards = 3, 10 count = 7 ex_iterable = ExamplesIterable(generate_examples_fn, {"n": n, "filepaths": [f"{i}.txt" for i in range(n_shards)]}) dataset = IterableDataset(ex_iterable) dataset = dataset.skip(n) if method == "skip" else dataset.take(count) shuffled_dataset = dataset.shuffle(seed, buffer_size=DEFAULT_N_EXAMPLES) # shuffling a skip/take dataset should keep the same examples and don't shuffle the shards key = lambda x: f"{x['filepath']}_{x['id']}" # noqa: E731 assert sorted(dataset, key=key) == sorted(shuffled_dataset, key=key) def test_iterable_dataset_add_column(dataset_with_several_columns): new_column = list(range(DEFAULT_N_EXAMPLES)) new_dataset = dataset_with_several_columns.add_column("new_column", new_column) assert list(new_dataset) == [ {**example, "new_column": idx} for idx, example in enumerate(dataset_with_several_columns) ] new_dataset = new_dataset._resolve_features() assert "new_column" in new_dataset.column_names def test_iterable_dataset_rename_column(dataset_with_several_columns): new_dataset = dataset_with_several_columns.rename_column("id", "new_id") assert list(new_dataset) == [ {("new_id" if k == "id" else k): v for k, v in example.items()} for example in dataset_with_several_columns ] assert new_dataset.features is None assert new_dataset.column_names is None # rename the column if ds.features was not None new_dataset = dataset_with_several_columns._resolve_features().rename_column("id", "new_id") assert new_dataset.features is not None assert new_dataset.column_names is not None assert "id" not in new_dataset.column_names assert "new_id" in new_dataset.column_names def test_iterable_dataset_rename_columns(dataset_with_several_columns): column_mapping = {"id": "new_id", "filepath": "filename"} new_dataset = dataset_with_several_columns.rename_columns(column_mapping) assert list(new_dataset) == [ {column_mapping.get(k, k): v for k, v in example.items()} for example in dataset_with_several_columns ] assert new_dataset.features is None assert new_dataset.column_names is None # rename the columns if ds.features was not None new_dataset = dataset_with_several_columns._resolve_features().rename_columns(column_mapping) assert new_dataset.features is not None assert new_dataset.column_names is not None assert all(c not in new_dataset.column_names for c in ["id", "filepath"]) assert all(c in new_dataset.column_names for c in ["new_id", "filename"]) def test_iterable_dataset_remove_columns(dataset_with_several_columns): new_dataset = dataset_with_several_columns.remove_columns("id") assert list(new_dataset) == [ {k: v for k, v in example.items() if k != "id"} for example in dataset_with_several_columns ] assert new_dataset.features is None new_dataset = dataset_with_several_columns.remove_columns(["id", "filepath"]) assert list(new_dataset) == [ {k: v for k, v in example.items() if k != "id" and k != "filepath"} for example in dataset_with_several_columns ] assert new_dataset.features is None assert new_dataset.column_names is None # remove the columns if ds.features was not None new_dataset = dataset_with_several_columns._resolve_features().remove_columns(["id", "filepath"]) assert new_dataset.features is not None assert new_dataset.column_names is not None assert all(c not in new_dataset.features for c in ["id", "filepath"]) assert all(c not in new_dataset.column_names for c in ["id", "filepath"]) def test_iterable_dataset_select_columns(dataset_with_several_columns): new_dataset = dataset_with_several_columns.select_columns("id") assert list(new_dataset) == [ {k: v for k, v in example.items() if k == "id"} for example in dataset_with_several_columns ] assert new_dataset.features is None new_dataset = dataset_with_several_columns.select_columns(["id", "filepath"]) assert list(new_dataset) == [ {k: v for k, v in example.items() if k in ("id", "filepath")} for example in dataset_with_several_columns ] assert new_dataset.features is None # select the columns if ds.features was not None new_dataset = dataset_with_several_columns._resolve_features().select_columns(["id", "filepath"]) assert new_dataset.features is not None assert new_dataset.column_names is not None assert all(c in new_dataset.features for c in ["id", "filepath"]) assert all(c in new_dataset.column_names for c in ["id", "filepath"]) def test_iterable_dataset_cast_column(): ex_iterable = ExamplesIterable(generate_examples_fn, {"label": 10}) features = Features({"id": Value("int64"), "label": Value("int64")}) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) casted_dataset = dataset.cast_column("label", Value("bool")) casted_features = features.copy() casted_features["label"] = Value("bool") assert list(casted_dataset) == [casted_features.encode_example(ex) for _, ex in ex_iterable] def test_iterable_dataset_cast(): ex_iterable = ExamplesIterable(generate_examples_fn, {"label": 10}) features = Features({"id": Value("int64"), "label": Value("int64")}) dataset = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) new_features = Features({"id": Value("int64"), "label": Value("bool")}) casted_dataset = dataset.cast(new_features) assert list(casted_dataset) == [new_features.encode_example(ex) for _, ex in ex_iterable] def test_iterable_dataset_resolve_features(): ex_iterable = ExamplesIterable(generate_examples_fn, {}) dataset = IterableDataset(ex_iterable) assert dataset.features is None assert dataset.column_names is None dataset = dataset._resolve_features() assert dataset.features == Features( { "id": Value("int64"), } ) assert dataset.column_names == ["id"] def test_iterable_dataset_resolve_features_keep_order(): def gen(): yield from zip(range(3), [{"a": 1}, {"c": 1}, {"b": 1}]) ex_iterable = ExamplesIterable(gen, {}) dataset = IterableDataset(ex_iterable)._resolve_features() # columns appear in order of appearance in the dataset assert list(dataset.features) == ["a", "c", "b"] assert dataset.column_names == ["a", "c", "b"] def test_iterable_dataset_with_features_fill_with_none(): def gen(): yield from zip(range(2), [{"a": 1}, {"b": 1}]) ex_iterable = ExamplesIterable(gen, {}) info = DatasetInfo(features=Features({"a": Value("int32"), "b": Value("int32")})) dataset = IterableDataset(ex_iterable, info=info) assert list(dataset) == [{"a": 1, "b": None}, {"b": 1, "a": None}] def test_concatenate_datasets(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) dataset1 = IterableDataset(ex_iterable1) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label": 5}) dataset2 = IterableDataset(ex_iterable2) concatenated_dataset = concatenate_datasets([dataset1, dataset2]) assert list(concatenated_dataset) == list(dataset1) + list(dataset2) def test_concatenate_datasets_resolves_features(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) dataset1 = IterableDataset(ex_iterable1) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label": 5}) dataset2 = IterableDataset(ex_iterable2) concatenated_dataset = concatenate_datasets([dataset1, dataset2]) assert concatenated_dataset.features is not None assert sorted(concatenated_dataset.features) == ["id", "label"] def test_concatenate_datasets_with_different_columns(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label": 10}) dataset1 = IterableDataset(ex_iterable1) ex_iterable2 = ExamplesIterable(generate_examples_fn, {}) dataset2 = IterableDataset(ex_iterable2) # missing column "label" -> it should be replaced with nulls extended_dataset2_list = [{"label": None, **x} for x in dataset2] concatenated_dataset = concatenate_datasets([dataset1, dataset2]) assert list(concatenated_dataset) == list(dataset1) + extended_dataset2_list # change order concatenated_dataset = concatenate_datasets([dataset2, dataset1]) assert list(concatenated_dataset) == extended_dataset2_list + list(dataset1) def test_concatenate_datasets_axis_1(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label1": 10}) dataset1 = IterableDataset(ex_iterable1) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label2": 5}) dataset2 = IterableDataset(ex_iterable2) with pytest.raises(ValueError): # column "id" is duplicated -> raise an error concatenate_datasets([dataset1, dataset2], axis=1) concatenated_dataset = concatenate_datasets([dataset1, dataset2.remove_columns("id")], axis=1) assert list(concatenated_dataset) == [{**x, **y} for x, y in zip(dataset1, dataset2)] def test_concatenate_datasets_axis_1_resolves_features(): ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label1": 10}) dataset1 = IterableDataset(ex_iterable1) ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label2": 5}) dataset2 = IterableDataset(ex_iterable2).remove_columns("id") concatenated_dataset = concatenate_datasets([dataset1, dataset2], axis=1) assert concatenated_dataset.features is not None assert sorted(concatenated_dataset.features) == ["id", "label1", "label2"] def test_concatenate_datasets_axis_1_with_different_lengths(): n1 = 10 ex_iterable1 = ExamplesIterable(generate_examples_fn, {"label1": 10, "n": n1}) dataset1 = IterableDataset(ex_iterable1) n2 = 5 ex_iterable2 = ExamplesIterable(generate_examples_fn, {"label2": 5, "n": n2}) dataset2 = IterableDataset(ex_iterable2).remove_columns("id") # missing rows -> they should be replaced with nulls extended_dataset2_list = list(dataset2) + [{"label2": None}] * (n1 - n2) concatenated_dataset = concatenate_datasets([dataset1, dataset2], axis=1) assert list(concatenated_dataset) == [{**x, **y} for x, y in zip(dataset1, extended_dataset2_list)] # change order concatenated_dataset = concatenate_datasets([dataset2, dataset1], axis=1) assert list(concatenated_dataset) == [{**x, **y} for x, y in zip(extended_dataset2_list, dataset1)] @pytest.mark.parametrize( "probas, seed, expected_length, stopping_strategy", [ (None, None, 3 * (DEFAULT_N_EXAMPLES - 1) + 1, "first_exhausted"), ([1, 0, 0], None, DEFAULT_N_EXAMPLES, "first_exhausted"), ([0, 1, 0], None, DEFAULT_N_EXAMPLES, "first_exhausted"), ([0.2, 0.5, 0.3], 42, None, "first_exhausted"), ([0.1, 0.1, 0.8], 1337, None, "first_exhausted"), ([0.5, 0.2, 0.3], 101010, None, "first_exhausted"), (None, None, 3 * DEFAULT_N_EXAMPLES, "all_exhausted"), ([0.2, 0.5, 0.3], 42, None, "all_exhausted"), ([0.1, 0.1, 0.8], 1337, None, "all_exhausted"), ([0.5, 0.2, 0.3], 101010, None, "all_exhausted"), ], ) def test_interleave_datasets(dataset: IterableDataset, probas, seed, expected_length, stopping_strategy): d1 = dataset d2 = dataset.map(lambda x: {"id+1": x["id"] + 1, **x}) d3 = dataset.with_format("python") datasets = [d1, d2, d3] merged_dataset = interleave_datasets( datasets, probabilities=probas, seed=seed, stopping_strategy=stopping_strategy ) def fill_default(example): return {"id": None, "id+1": None, **example} # Check the examples iterable assert isinstance( merged_dataset._ex_iterable, (CyclingMultiSourcesExamplesIterable, RandomlyCyclingMultiSourcesExamplesIterable) ) # Check that it is deterministic if seed is not None: merged_dataset2 = interleave_datasets( [d1, d2, d3], probabilities=probas, seed=seed, stopping_strategy=stopping_strategy ) assert list(merged_dataset) == list(merged_dataset2) # Check features assert merged_dataset.features == Features({"id": Value("int64"), "id+1": Value("int64")}) # Check first example if seed is not None: rng = np.random.default_rng(seed) i = next(iter(RandomlyCyclingMultiSourcesExamplesIterable._iter_random_indices(rng, len(datasets), p=probas))) assert next(iter(merged_dataset)) == fill_default(next(iter(datasets[i]))) else: assert any(next(iter(merged_dataset)) == fill_default(next(iter(dataset))) for dataset in datasets) # Compute length it case it's random if expected_length is None: expected_length = 0 counts = np.array([len(list(d)) for d in datasets]) bool_strategy_func = np.all if stopping_strategy == "all_exhausted" else np.any rng = np.random.default_rng(seed) for i in RandomlyCyclingMultiSourcesExamplesIterable._iter_random_indices(rng, len(datasets), p=probas): counts[i] -= 1 expected_length += 1 if bool_strategy_func(counts <= 0): break # Check length assert len(list(merged_dataset)) == expected_length def test_interleave_datasets_with_features( dataset: IterableDataset, ): features = Features( { "id": Value("int64"), "label": ClassLabel(names=["negative", "positive"]), } ) ex_iterable = ExamplesIterable(generate_examples_fn, {"label": 0}) dataset_with_features = IterableDataset(ex_iterable, info=DatasetInfo(features=features)) merged_dataset = interleave_datasets([dataset, dataset_with_features]) assert merged_dataset.features == features def test_interleave_datasets_with_oversampling(): # Test hardcoded results d1 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {"a": i}) for i in [0, 1, 2]])), {})) d2 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {"a": i}) for i in [10, 11, 12, 13]])), {})) d3 = IterableDataset(ExamplesIterable((lambda: (yield from [(i, {"a": i}) for i in [20, 21, 22, 23, 24]])), {})) expected_values = [0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24] # Check oversampling strategy without probabilities assert [x["a"] for x in interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")] == expected_values # Check oversampling strategy with probabilities expected_values = [20, 0, 21, 10, 1, 22, 23, 24, 2, 0, 1, 20, 11, 21, 2, 0, 12, 1, 22, 13] values = [ x["a"] for x in interleave_datasets( [d1, d2, d3], probabilities=[0.5, 0.2, 0.3], seed=42, stopping_strategy="all_exhausted" ) ] assert values == expected_values @require_torch def test_with_format_torch(dataset_with_several_columns: IterableDataset): import torch dset = dataset_with_several_columns.with_format(type="torch") example = next(iter(dset)) batch = next(iter(dset.iter(batch_size=3))) assert len(example) == 3 assert isinstance(example["id"], torch.Tensor) assert list(example["id"].shape) == [] assert example["id"].item() == 0 assert isinstance(batch["id"], torch.Tensor) assert isinstance(example["filepath"], list) assert isinstance(example["filepath"][0], str) assert example["filepath"][0] == "data0.txt" assert isinstance(batch["filepath"], list) assert isinstance(example["metadata"], dict) assert isinstance(example["metadata"]["sources"], list) assert isinstance(example["metadata"]["sources"][0], str) assert isinstance(batch["metadata"], list) @require_tf def test_with_format_tf(dataset_with_several_columns: IterableDataset): import tensorflow as tf dset = dataset_with_several_columns.with_format(type="tensorflow") example = next(iter(dset)) batch = next(iter(dset.iter(batch_size=3))) assert isinstance(example["id"], tf.Tensor) assert list(example["id"].shape) == [] assert example["id"].numpy().item() == 0 assert isinstance(batch["id"], tf.Tensor) assert isinstance(example["filepath"], tf.Tensor) assert example["filepath"][0] == b"data0.txt" assert isinstance(batch["filepath"], tf.Tensor) assert isinstance(example["metadata"], dict) assert isinstance(example["metadata"]["sources"], tf.Tensor) assert isinstance(batch["metadata"], list) def test_map_array_are_not_converted_back_to_lists(dataset: IterableDataset): def func(example): return {"array": np.array([1, 2, 3])} dset_test = dataset.map(func) example = next(iter(dset_test)) # not aligned with Dataset.map because we don't convert back to lists after map() assert isinstance(example["array"], np.ndarray) def test_formatted_map(dataset: IterableDataset): dataset = dataset.with_format("np") assert isinstance(next(dataset.iter(batch_size=3))["id"], np.ndarray) dataset = dataset.with_format(None) assert isinstance(next(dataset.iter(batch_size=3))["id"], list) def add_one_numpy(example): assert isinstance(example["id"], np.ndarray) return {"id": example["id"] + 1} dataset = dataset.with_format("np") dataset = dataset.map(add_one_numpy, batched=True) assert isinstance(next(dataset.iter(batch_size=3))["id"], np.ndarray) dataset = dataset.with_format(None) assert isinstance(next(dataset.iter(batch_size=3))["id"], list) @pytest.mark.parametrize("n_shards1, n_shards2, num_workers", [(2, 1, 1), (2, 2, 2), (1, 3, 1), (4, 3, 3)]) def test_interleave_dataset_with_sharding(n_shards1, n_shards2, num_workers): from torch.utils.data import DataLoader ex_iterable1 = ExamplesIterable(generate_examples_fn, {"filepaths": [f"{i}-1.txt" for i in range(n_shards1)]}) dataset1 = IterableDataset(ex_iterable1).with_format("torch") ex_iterable2 = ExamplesIterable(generate_examples_fn, {"filepaths": [f"{i}-2.txt" for i in range(n_shards2)]}) dataset2 = IterableDataset(ex_iterable2).with_format("torch") dataset_merged = interleave_datasets([dataset1, dataset2], stopping_strategy="first_exhausted") assert dataset_merged.n_shards == min(n_shards1, n_shards2) dataloader = DataLoader(dataset_merged, batch_size=None, num_workers=num_workers) result = list(dataloader) expected_length = 2 * min( len([example for _, example in ex_iterable1]), len([example for _, example in ex_iterable2]) ) # some samples may be missing because the stopping strategy is applied per process assert expected_length - num_workers <= len(result) <= expected_length assert len(result) == len({str(x) for x in result}) def filter_func(batch): return batch["id"] == 4 def map_func(batch): batch["id"] *= 2 return batch def test_pickle_after_many_transforms(dataset_with_several_columns): dataset = dataset_with_several_columns dataset = dataset.remove_columns(["filepath"]) dataset = dataset.take(5) dataset = dataset.map(map_func) dataset = dataset.shuffle() dataset = dataset.skip(1) dataset = dataset.filter(filter_func) dataset = dataset.add_column("additional_col", ["something"]) dataset = dataset.rename_column("metadata", "metadata1") dataset = dataset.rename_columns({"id": "id1", "metadata1": "metadata2"}) dataset = dataset.select_columns(["id1", "additional_col"]) unpickled_dataset = pickle.loads(pickle.dumps(dataset)) assert list(unpickled_dataset) == list(dataset)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_experimental.py
import unittest import warnings from datasets.utils import experimental @experimental def dummy_function(): return "success" class TestExperimentalFlag(unittest.TestCase): def test_experimental_warning(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self.assertEqual(dummy_function(), "success") self.assertEqual(len(w), 1)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_inspect.py
import os from pathlib import Path import pytest from datasets.inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_default_config_name, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) from datasets.packaged_modules.csv import csv pytestmark = pytest.mark.integration @pytest.mark.parametrize("path", ["lhoestq/test", csv.__file__]) def test_inspect_dataset(path, tmp_path): inspect_dataset(path, tmp_path) script_name = Path(path).stem + ".py" assert script_name in os.listdir(tmp_path) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path", ["accuracy"]) def test_inspect_metric(path, tmp_path): inspect_metric(path, tmp_path) script_name = path + ".py" assert script_name in os.listdir(tmp_path) assert "__pycache__" not in os.listdir(tmp_path) @pytest.mark.parametrize( "path, config_name, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_config_info(path, config_name, expected_splits): info = get_dataset_config_info(path, config_name=config_name) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits def test_get_dataset_config_info_private(hf_token, hf_private_dataset_repo_txt_data): info = get_dataset_config_info(hf_private_dataset_repo_txt_data, config_name="default", token=hf_token) assert list(info.splits.keys()) == ["train"] @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_config_info_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_config_info(path, config_name=config_name) @pytest.mark.parametrize( "path, expected", [ ("acronym_identification", ["default"]), ("squad", ["plain_text"]), ("hf-internal-testing/dataset_with_script", ["default"]), ("dalle-mini/wit", ["default"]), ("hf-internal-testing/librispeech_asr_dummy", ["clean", "other"]), ("hf-internal-testing/audiofolder_no_configs_in_metadata", ["default"]), ("hf-internal-testing/audiofolder_single_config_in_metadata", ["custom"]), ("hf-internal-testing/audiofolder_two_configs_in_metadata", ["v1", "v2"]), ], ) def test_get_dataset_config_names(path, expected): config_names = get_dataset_config_names(path) assert config_names == expected @pytest.mark.parametrize( "path, expected", [ ("acronym_identification", "default"), ("squad", "plain_text"), ("hf-internal-testing/dataset_with_script", "default"), ("dalle-mini/wit", "default"), ("hf-internal-testing/librispeech_asr_dummy", None), ("hf-internal-testing/audiofolder_no_configs_in_metadata", "default"), ("hf-internal-testing/audiofolder_single_config_in_metadata", "custom"), ("hf-internal-testing/audiofolder_two_configs_in_metadata", None), ], ) def test_get_dataset_default_config_name(path, expected): default_config_name = get_dataset_default_config_name(path) if expected: assert default_config_name == expected else: assert default_config_name is None @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config", [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["default"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ], ) def test_get_dataset_info(path, expected_configs, expected_splits_in_first_config): infos = get_dataset_infos(path) assert list(infos.keys()) == expected_configs expected_config = expected_configs[0] assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits", [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "default", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ], ) def test_get_dataset_split_names(path, expected_config, expected_splits): infos = get_dataset_infos(path) assert expected_config in infos info = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception", [ ("paws", None, ValueError), ], ) def test_get_dataset_split_names_error(path, config_name, expected_exception): with pytest.raises(expected_exception): get_dataset_split_names(path, config_name=config_name)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_file_utils.py
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) FILE_CONTENT = """\ Text data. Second line of data.""" FILE_PATH = "file" @pytest.fixture(scope="session") def zstd_path(tmp_path_factory): path = tmp_path_factory.mktemp("data") / (FILE_PATH + ".zstd") data = bytes(FILE_CONTENT, "utf-8") with zstd.open(path, "wb") as f: f.write(data) return path @pytest.fixture def tmpfs_file(tmpfs): with open(os.path.join(tmpfs.local_root_dir, FILE_PATH), "w") as f: f.write(FILE_CONTENT) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"]) def test_cached_path_extract(compression_format, gz_file, xz_file, zstd_path, tmp_path, text_file): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} input_path = input_paths[compression_format] cache_dir = tmp_path / "cache" download_config = DownloadConfig(cache_dir=cache_dir, extract_compressed_file=True) extracted_path = cached_path(input_path, download_config=download_config) with open(extracted_path) as f: extracted_file_content = f.read() with open(text_file) as f: expected_file_content = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False]) @pytest.mark.parametrize("default_cache_dir", [True, False]) def test_extracted_datasets_path(default_extracted, default_cache_dir, xz_file, tmp_path, monkeypatch): custom_cache_dir = "custom_cache" custom_extracted_dir = "custom_extracted_dir" custom_extracted_path = tmp_path / "custom_extracted_path" if default_extracted: expected = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", custom_extracted_dir) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(custom_extracted_path)) expected = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) filename = xz_file download_config = ( DownloadConfig(extract_compressed_file=True) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=True) ) extracted_file_path = cached_path(filename, download_config=download_config) assert Path(extracted_file_path).parent.parts[-2:] == expected def test_cached_path_local(text_file): # input absolute path -> output absolute path text_file_abs = str(Path(text_file).resolve()) assert os.path.samefile(cached_path(text_file_abs), text_file_abs) # input relative path -> output absolute path text_file = __file__ text_file_abs = str(Path(text_file).resolve()) text_file_rel = str(Path(text_file).resolve().relative_to(Path(os.getcwd()))) assert os.path.samefile(cached_path(text_file_rel), text_file_abs) def test_cached_path_missing_local(tmp_path): # absolute path missing_file = str(tmp_path.resolve() / "__missing_file__.txt") with pytest.raises(FileNotFoundError): cached_path(missing_file) # relative path missing_file = "./__missing_file__.txt" with pytest.raises(FileNotFoundError): cached_path(missing_file) def test_get_from_cache_fsspec(tmpfs_file): output_path = get_from_cache(f"tmp://{tmpfs_file}") with open(output_path) as f: output_file_content = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", True) def test_cached_path_offline(): with pytest.raises(OfflineModeIsEnabled): cached_path("https://huggingface.co") @patch("datasets.config.HF_DATASETS_OFFLINE", True) def test_http_offline(tmp_path_factory): filename = tmp_path_factory.mktemp("data") / "file.html" with pytest.raises(OfflineModeIsEnabled): http_get("https://huggingface.co", temp_file=filename) with pytest.raises(OfflineModeIsEnabled): http_head("https://huggingface.co") @patch("datasets.config.HF_DATASETS_OFFLINE", True) def test_ftp_offline(tmp_path_factory): filename = tmp_path_factory.mktemp("data") / "file.html" with pytest.raises(OfflineModeIsEnabled): ftp_get("ftp://huggingface.co", temp_file=filename) with pytest.raises(OfflineModeIsEnabled): ftp_head("ftp://huggingface.co") @patch("datasets.config.HF_DATASETS_OFFLINE", True) def test_fsspec_offline(tmp_path_factory): filename = tmp_path_factory.mktemp("data") / "file.html" with pytest.raises(OfflineModeIsEnabled): fsspec_get("s3://huggingface.co", temp_file=filename) with pytest.raises(OfflineModeIsEnabled): fsspec_head("s3://huggingface.co")
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_data_files.py
import copy import os from pathlib import Path from typing import List from unittest.mock import patch import fsspec import pytest from fsspec.registry import _registry as _fsspec_registry from fsspec.spec import AbstractFileSystem from datasets.data_files import ( DataFilesDict, DataFilesList, DataFilesPatternsDict, DataFilesPatternsList, _get_data_files_patterns, _get_metadata_files_patterns, _is_inside_unrequested_special_dir, _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir, get_data_patterns, resolve_pattern, ) from datasets.fingerprint import Hasher _TEST_PATTERNS = ["*", "**", "**/*", "*.txt", "data/*", "**/*.txt", "**/train.txt"] _FILES_TO_IGNORE = {".dummy", "README.md", "dummy_data.zip", "dataset_infos.json"} _DIRS_TO_IGNORE = {"data/.dummy_subdir", "__pycache__"} _TEST_PATTERNS_SIZES = { "*": 0, "**": 4, "**/*": 4, "*.txt": 0, "data/*": 2, "data/**": 4, "**/*.txt": 4, "**/train.txt": 2, } _TEST_URL = "https://raw.githubusercontent.com/huggingface/datasets/9675a5a1e7b99a86f9c250f6ea5fa5d1e6d5cc7d/setup.py" @pytest.fixture def complex_data_dir(tmp_path): data_dir = tmp_path / "complex_data_dir" data_dir.mkdir() (data_dir / "data").mkdir() with open(data_dir / "data" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "data" / "test.txt", "w") as f: f.write("bar\n" * 10) with open(data_dir / "README.md", "w") as f: f.write("This is a readme") with open(data_dir / ".dummy", "w") as f: f.write("this is a dummy file that is not a data file") (data_dir / "data" / "subdir").mkdir() with open(data_dir / "data" / "subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "data" / "subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) (data_dir / "data" / ".dummy_subdir").mkdir() with open(data_dir / "data" / ".dummy_subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "data" / ".dummy_subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) (data_dir / "__pycache__").mkdir() with open(data_dir / "__pycache__" / "script.py", "w") as f: f.write("foo\n" * 10) return str(data_dir) def is_relative_to(path, *other): # A built-in method in Python 3.9+ try: path.relative_to(*other) return True except ValueError: return False @pytest.fixture def pattern_results(complex_data_dir): # We use fsspec glob as a reference for data files resolution from patterns. # This is the same as dask for example. # # /!\ Here are some behaviors specific to fsspec glob that are different from glob.glob, Path.glob, Path.match or fnmatch: # - '*' matches only first level items # - '**' matches all items # - '**/*' matches all at least second level items # # More generally: # - '*' matches any character except a forward-slash (to match just the file or directory name) # - '**' matches any character including a forward-slash / return { pattern: sorted( Path(os.path.abspath(path)).as_posix() for path in fsspec.filesystem("file").glob(os.path.join(complex_data_dir, pattern)) if Path(path).name not in _FILES_TO_IGNORE and not any( is_relative_to(Path(path), os.path.join(complex_data_dir, dir_path)) for dir_path in _DIRS_TO_IGNORE ) and Path(path).is_file() ) for pattern in _TEST_PATTERNS } @pytest.fixture def hub_dataset_repo_path(tmpfs, complex_data_dir): for path in Path(complex_data_dir).rglob("*"): if path.is_file(): with tmpfs.open(path.relative_to(complex_data_dir).as_posix(), "wb") as f: f.write(path.read_bytes()) yield "tmp://" @pytest.fixture def hub_dataset_repo_patterns_results(hub_dataset_repo_path, complex_data_dir, pattern_results): return { pattern: [ hub_dataset_repo_path + Path(path).relative_to(complex_data_dir).as_posix() for path in pattern_results[pattern] ] for pattern in pattern_results } def test_is_inside_unrequested_special_dir(complex_data_dir, pattern_results): # usual patterns outside special dir work fine for pattern, result in pattern_results.items(): if result: matched_rel_path = str(Path(result[0]).relative_to(complex_data_dir)) assert _is_inside_unrequested_special_dir(matched_rel_path, pattern) is False # check behavior for special dir f = _is_inside_unrequested_special_dir assert f("__pycache__/b.txt", "**") is True assert f("__pycache__/b.txt", "*/b.txt") is True assert f("__pycache__/b.txt", "__pycache__/*") is False assert f("__pycache__/__b.txt", "__pycache__/*") is False assert f("__pycache__/__b.txt", "__*/*") is False assert f("__b.txt", "*") is False def test_is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(complex_data_dir, pattern_results): # usual patterns outside hidden dir work fine for pattern, result in pattern_results.items(): if result: matched_rel_path = str(Path(result[0]).relative_to(complex_data_dir)) assert _is_inside_unrequested_special_dir(matched_rel_path, pattern) is False # check behavior for hidden dir and file f = _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir assert f(".hidden_file.txt", "**") is True assert f(".hidden_file.txt", ".*") is False assert f(".hidden_dir/a.txt", "**") is True assert f(".hidden_dir/a.txt", ".*/*") is False assert f(".hidden_dir/a.txt", ".hidden_dir/*") is False assert f(".hidden_dir/.hidden_file.txt", "**") is True assert f(".hidden_dir/.hidden_file.txt", ".*/*") is True assert f(".hidden_dir/.hidden_file.txt", ".*/.*") is False assert f(".hidden_dir/.hidden_file.txt", ".hidden_dir/*") is True assert f(".hidden_dir/.hidden_file.txt", ".hidden_dir/.*") is False @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_pattern_results_fixture(pattern_results, pattern): assert len(pattern_results[pattern]) == _TEST_PATTERNS_SIZES[pattern] assert all(Path(path).is_file() for path in pattern_results[pattern]) @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_resolve_pattern_locally(complex_data_dir, pattern, pattern_results): try: resolved_data_files = resolve_pattern(pattern, complex_data_dir) assert sorted(str(f) for f in resolved_data_files) == pattern_results[pattern] except FileNotFoundError: assert len(pattern_results[pattern]) == 0 def test_resolve_pattern_locally_with_dot_in_base_path(complex_data_dir): base_path_with_dot = os.path.join(complex_data_dir, "data", ".dummy_subdir") resolved_data_files = resolve_pattern(os.path.join(base_path_with_dot, "train.txt"), base_path_with_dot) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_with_absolute_path(tmp_path, complex_data_dir): abs_path = os.path.join(complex_data_dir, "data", "train.txt") resolved_data_files = resolve_pattern(abs_path, str(tmp_path / "blabla")) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_with_double_dots(tmp_path, complex_data_dir): path_with_double_dots = os.path.join(complex_data_dir, "data", "subdir", "..", "train.txt") resolved_data_files = resolve_pattern(path_with_double_dots, str(tmp_path / "blabla")) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_returns_hidden_file_only_if_requested(complex_data_dir): with pytest.raises(FileNotFoundError): resolve_pattern("*dummy", complex_data_dir) resolved_data_files = resolve_pattern(".dummy", complex_data_dir) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_hidden_base_path(tmp_path): hidden = tmp_path / ".test_hidden_base_path" hidden.mkdir() (tmp_path / ".test_hidden_base_path" / "a.txt").touch() resolved_data_files = resolve_pattern("*", str(hidden)) assert len(resolved_data_files) == 1 def test_resolve_pattern_locallyreturns_hidden_dir_only_if_requested(complex_data_dir): with pytest.raises(FileNotFoundError): resolve_pattern("data/*dummy_subdir/train.txt", complex_data_dir) resolved_data_files = resolve_pattern("data/.dummy_subdir/train.txt", complex_data_dir) assert len(resolved_data_files) == 1 resolved_data_files = resolve_pattern("*/.dummy_subdir/train.txt", complex_data_dir) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_returns_special_dir_only_if_requested(complex_data_dir): with pytest.raises(FileNotFoundError): resolve_pattern("data/*dummy_subdir/train.txt", complex_data_dir) resolved_data_files = resolve_pattern("data/.dummy_subdir/train.txt", complex_data_dir) assert len(resolved_data_files) == 1 resolved_data_files = resolve_pattern("*/.dummy_subdir/train.txt", complex_data_dir) assert len(resolved_data_files) == 1 def test_resolve_pattern_locally_special_base_path(tmp_path): special = tmp_path / "__test_special_base_path__" special.mkdir() (tmp_path / "__test_special_base_path__" / "a.txt").touch() resolved_data_files = resolve_pattern("*", str(special)) assert len(resolved_data_files) == 1 @pytest.mark.parametrize("pattern,size,extensions", [("**", 4, [".txt"]), ("**", 4, None), ("**", 0, [".blablabla"])]) def test_resolve_pattern_locally_with_extensions(complex_data_dir, pattern, size, extensions): if size > 0: resolved_data_files = resolve_pattern(pattern, complex_data_dir, allowed_extensions=extensions) assert len(resolved_data_files) == size else: with pytest.raises(FileNotFoundError): resolve_pattern(pattern, complex_data_dir, allowed_extensions=extensions) def test_fail_resolve_pattern_locally(complex_data_dir): with pytest.raises(FileNotFoundError): resolve_pattern(complex_data_dir, ["blablabla"]) @pytest.mark.skipif(os.name == "nt", reason="Windows does not support symlinks in the default mode") def test_resolve_pattern_locally_does_not_resolve_symbolic_links(tmp_path, complex_data_dir): (tmp_path / "train_data_symlink.txt").symlink_to(os.path.join(complex_data_dir, "data", "train.txt")) resolved_data_files = resolve_pattern("train_data_symlink.txt", str(tmp_path)) assert len(resolved_data_files) == 1 assert Path(resolved_data_files[0]) == tmp_path / "train_data_symlink.txt" def test_resolve_pattern_locally_sorted_files(tmp_path_factory): path = str(tmp_path_factory.mktemp("unsorted_text_files")) unsorted_names = ["0.txt", "2.txt", "3.txt"] for name in unsorted_names: with open(os.path.join(path, name), "w"): pass resolved_data_files = resolve_pattern("*", path) resolved_names = [os.path.basename(data_file) for data_file in resolved_data_files] assert resolved_names == sorted(unsorted_names) @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_resolve_pattern_in_dataset_repository(hub_dataset_repo_path, pattern, hub_dataset_repo_patterns_results): try: resolved_data_files = resolve_pattern(pattern, hub_dataset_repo_path) assert sorted(str(f) for f in resolved_data_files) == hub_dataset_repo_patterns_results[pattern] except FileNotFoundError: assert len(hub_dataset_repo_patterns_results[pattern]) == 0 @pytest.mark.parametrize( "pattern,size,base_path", [("**", 4, None), ("**", 4, "data"), ("**", 2, "data/subdir"), ("**", 0, "data/subdir2")] ) def test_resolve_pattern_in_dataset_repository_with_base_path(hub_dataset_repo_path, pattern, size, base_path): base_path = hub_dataset_repo_path + (base_path or "") if size > 0: resolved_data_files = resolve_pattern(pattern, base_path) assert len(resolved_data_files) == size else: with pytest.raises(FileNotFoundError): resolve_pattern(pattern, base_path) @pytest.mark.parametrize("pattern,size,extensions", [("**", 4, [".txt"]), ("**", 4, None), ("**", 0, [".blablabla"])]) def test_resolve_pattern_in_dataset_repository_with_extensions(hub_dataset_repo_path, pattern, size, extensions): if size > 0: resolved_data_files = resolve_pattern(pattern, hub_dataset_repo_path, allowed_extensions=extensions) assert len(resolved_data_files) == size else: with pytest.raises(FileNotFoundError): resolved_data_files = resolve_pattern(pattern, hub_dataset_repo_path, allowed_extensions=extensions) def test_fail_resolve_pattern_in_dataset_repository(hub_dataset_repo_path): with pytest.raises(FileNotFoundError): resolve_pattern("blablabla", hub_dataset_repo_path) def test_resolve_pattern_in_dataset_repository_returns_hidden_file_only_if_requested(hub_dataset_repo_path): with pytest.raises(FileNotFoundError): resolve_pattern("*dummy", hub_dataset_repo_path) resolved_data_files = resolve_pattern(".dummy", hub_dataset_repo_path) assert len(resolved_data_files) == 1 def test_resolve_pattern_in_dataset_repository_hidden_base_path(tmpfs): tmpfs.touch(".hidden/a.txt") resolved_data_files = resolve_pattern("*", base_path="tmp://.hidden") assert len(resolved_data_files) == 1 def test_resolve_pattern_in_dataset_repository_returns_hidden_dir_only_if_requested(hub_dataset_repo_path): with pytest.raises(FileNotFoundError): resolve_pattern("data/*dummy_subdir/train.txt", hub_dataset_repo_path) resolved_data_files = resolve_pattern("data/.dummy_subdir/train.txt", hub_dataset_repo_path) assert len(resolved_data_files) == 1 resolved_data_files = resolve_pattern("*/.dummy_subdir/train.txt", hub_dataset_repo_path) assert len(resolved_data_files) == 1 def test_resolve_pattern_in_dataset_repository_returns_special_dir_only_if_requested(hub_dataset_repo_path): with pytest.raises(FileNotFoundError): resolve_pattern("data/*dummy_subdir/train.txt", hub_dataset_repo_path) resolved_data_files = resolve_pattern("data/.dummy_subdir/train.txt", hub_dataset_repo_path) assert len(resolved_data_files) == 1 resolved_data_files = resolve_pattern("*/.dummy_subdir/train.txt", hub_dataset_repo_path) assert len(resolved_data_files) == 1 def test_resolve_pattern_in_dataset_repository_special_base_path(tmpfs): tmpfs.touch("__special__/a.txt") resolved_data_files = resolve_pattern("*", base_path="tmp://__special__") assert len(resolved_data_files) == 1 @pytest.fixture def dummy_fs(): DummyTestFS = mock_fs(["train.txt", "test.txt"]) _fsspec_registry["mock"] = DummyTestFS _fsspec_registry["dummy"] = DummyTestFS yield del _fsspec_registry["mock"] del _fsspec_registry["dummy"] def test_resolve_pattern_fs(dummy_fs): resolved_data_files = resolve_pattern("mock://train.txt", base_path="") assert resolved_data_files == ["mock://train.txt"] @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_DataFilesList_from_patterns_in_dataset_repository_( hub_dataset_repo_path, hub_dataset_repo_patterns_results, pattern ): try: data_files_list = DataFilesList.from_patterns([pattern], hub_dataset_repo_path) assert sorted(data_files_list) == hub_dataset_repo_patterns_results[pattern] assert len(data_files_list.origin_metadata) == len(data_files_list) except FileNotFoundError: assert len(hub_dataset_repo_patterns_results[pattern]) == 0 def test_DataFilesList_from_patterns_locally_with_extra_files(complex_data_dir, text_file): data_files_list = DataFilesList.from_patterns([_TEST_URL, text_file.as_posix()], complex_data_dir) assert list(data_files_list) == [_TEST_URL, text_file.as_posix()] assert len(data_files_list.origin_metadata) == 2 def test_DataFilesList_from_patterns_raises_FileNotFoundError(complex_data_dir): with pytest.raises(FileNotFoundError): DataFilesList.from_patterns(["file_that_doesnt_exist.txt"], complex_data_dir) class TestDataFilesDict: def test_key_order_after_copy(self): data_files = DataFilesDict({"train": "train.csv", "test": "test.csv"}) copied_data_files = copy.deepcopy(data_files) assert list(copied_data_files.keys()) == list(data_files.keys()) # test split order with list() @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_DataFilesDict_from_patterns_in_dataset_repository( hub_dataset_repo_path, hub_dataset_repo_patterns_results, pattern ): split_name = "train" try: data_files = DataFilesDict.from_patterns({split_name: [pattern]}, hub_dataset_repo_path) assert all(isinstance(data_files_list, DataFilesList) for data_files_list in data_files.values()) assert sorted(data_files[split_name]) == hub_dataset_repo_patterns_results[pattern] except FileNotFoundError: assert len(hub_dataset_repo_patterns_results[pattern]) == 0 @pytest.mark.parametrize( "pattern,size,base_path,split_name", [ ("**", 4, None, "train"), ("**", 4, "data", "train"), ("**", 2, "data/subdir", "train"), ("**train*", 1, "data/subdir", "train"), ("**test*", 1, "data/subdir", "test"), ("**", 0, "data/subdir2", "train"), ], ) def test_DataFilesDict_from_patterns_in_dataset_repository_with_base_path( hub_dataset_repo_path, pattern, size, base_path, split_name ): base_path = hub_dataset_repo_path + (base_path or "") if size > 0: data_files = DataFilesDict.from_patterns({split_name: [pattern]}, base_path=base_path) assert len(data_files[split_name]) == size else: with pytest.raises(FileNotFoundError): resolve_pattern(pattern, base_path) @pytest.mark.parametrize("pattern", _TEST_PATTERNS) def test_DataFilesDict_from_patterns_locally(complex_data_dir, pattern_results, pattern): split_name = "train" try: data_files = DataFilesDict.from_patterns({split_name: [pattern]}, complex_data_dir) assert all(isinstance(data_files_list, DataFilesList) for data_files_list in data_files.values()) assert sorted(data_files[split_name]) == pattern_results[pattern] except FileNotFoundError: assert len(pattern_results[pattern]) == 0 def test_DataFilesDict_from_patterns_in_dataset_repository_hashing(hub_dataset_repo_path): patterns = {"train": ["**/train.txt"], "test": ["**/test.txt"]} data_files1 = DataFilesDict.from_patterns(patterns, hub_dataset_repo_path) data_files2 = DataFilesDict.from_patterns(patterns, hub_dataset_repo_path) assert Hasher.hash(data_files1) == Hasher.hash(data_files2) data_files2 = DataFilesDict(sorted(data_files1.items(), reverse=True)) assert Hasher.hash(data_files1) == Hasher.hash(data_files2) patterns2 = {"train": ["data/**train.txt"], "test": ["data/**test.txt"]} data_files2 = DataFilesDict.from_patterns(patterns2, hub_dataset_repo_path) assert Hasher.hash(data_files1) == Hasher.hash(data_files2) patterns2 = {"train": ["data/**train.txt"], "test": ["data/**train.txt"]} data_files2 = DataFilesDict.from_patterns(patterns2, hub_dataset_repo_path) assert Hasher.hash(data_files1) != Hasher.hash(data_files2) # the tmpfs used to mock the hub repo is based on a local directory # therefore os.stat is used to get the mtime of the data files with patch("os.stat", return_value=os.stat(__file__)): data_files2 = DataFilesDict.from_patterns(patterns, hub_dataset_repo_path) assert Hasher.hash(data_files1) != Hasher.hash(data_files2) def test_DataFilesDict_from_patterns_locally_or_remote_hashing(text_file): patterns = {"train": [_TEST_URL], "test": [str(text_file)]} data_files1 = DataFilesDict.from_patterns(patterns) data_files2 = DataFilesDict.from_patterns(patterns) assert Hasher.hash(data_files1) == Hasher.hash(data_files2) data_files2 = DataFilesDict(sorted(data_files1.items(), reverse=True)) assert Hasher.hash(data_files1) == Hasher.hash(data_files2) patterns2 = {"train": [_TEST_URL], "test": [_TEST_URL]} data_files2 = DataFilesDict.from_patterns(patterns2) assert Hasher.hash(data_files1) != Hasher.hash(data_files2) with patch("fsspec.implementations.http._file_info", return_value={}): data_files2 = DataFilesDict.from_patterns(patterns) assert Hasher.hash(data_files1) != Hasher.hash(data_files2) with patch("os.stat", return_value=os.stat(__file__)): data_files2 = DataFilesDict.from_patterns(patterns) assert Hasher.hash(data_files1) != Hasher.hash(data_files2) def test_DataFilesPatternsList(text_file): data_files_patterns = DataFilesPatternsList([str(text_file)], allowed_extensions=[None]) data_files = data_files_patterns.resolve(base_path="") assert data_files == [text_file.as_posix()] assert isinstance(data_files, DataFilesList) data_files_patterns = DataFilesPatternsList([str(text_file)], allowed_extensions=[[".txt"]]) data_files = data_files_patterns.resolve(base_path="") assert data_files == [text_file.as_posix()] assert isinstance(data_files, DataFilesList) data_files_patterns = DataFilesPatternsList([str(text_file).replace(".txt", ".tx*")], allowed_extensions=[None]) data_files = data_files_patterns.resolve(base_path="") assert data_files == [text_file.as_posix()] assert isinstance(data_files, DataFilesList) data_files_patterns = DataFilesPatternsList([Path(text_file).name], allowed_extensions=[None]) data_files = data_files_patterns.resolve(base_path=str(Path(text_file).parent)) assert data_files == [text_file.as_posix()] data_files_patterns = DataFilesPatternsList([str(text_file)], allowed_extensions=[[".zip"]]) with pytest.raises(FileNotFoundError): data_files_patterns.resolve(base_path="") def test_DataFilesPatternsDict(text_file): data_files_patterns_dict = DataFilesPatternsDict( {"train": DataFilesPatternsList([str(text_file)], allowed_extensions=[None])} ) data_files_dict = data_files_patterns_dict.resolve(base_path="") assert data_files_dict == {"train": [text_file.as_posix()]} assert isinstance(data_files_dict, DataFilesDict) assert isinstance(data_files_dict["train"], DataFilesList) def mock_fs(file_paths: List[str]): """ Set up a mock filesystem for fsspec containing the provided files Example: ```py >>> DummyTestFS = mock_fs(["data/train.txt", "data.test.txt"]) >>> fs = DummyTestFS() >>> assert fsspec.get_filesystem_class("mock").__name__ == "DummyTestFS" >>> assert type(fs).__name__ == "DummyTestFS" >>> print(fs.glob("**")) ["data", "data/train.txt", "data.test.txt"] ``` """ file_paths = [file_path.split("://")[-1] for file_path in file_paths] dir_paths = { "/".join(file_path.split("/")[: i + 1]) for file_path in file_paths for i in range(file_path.count("/")) } fs_contents = [{"name": dir_path, "type": "directory"} for dir_path in dir_paths] + [ {"name": file_path, "type": "file", "size": 10} for file_path in file_paths ] class DummyTestFS(AbstractFileSystem): protocol = ("mock", "dummy") _fs_contents = fs_contents def ls(self, path, detail=True, refresh=True, **kwargs): if kwargs.pop("strip_proto", True): path = self._strip_protocol(path) files = not refresh and self._ls_from_cache(path) if not files: files = [file for file in self._fs_contents if path == self._parent(file["name"])] files.sort(key=lambda file: file["name"]) self.dircache[path.rstrip("/")] = files if detail: return files return [file["name"] for file in files] return DummyTestFS @pytest.mark.parametrize("base_path", ["", "mock://", "my_dir"]) @pytest.mark.parametrize( "data_file_per_split", [ # === Main cases === # file named after split at the root {"train": "train.txt", "validation": "valid.txt", "test": "test.txt"}, # file named after split in a directory { "train": "data/train.txt", "validation": "data/valid.txt", "test": "data/test.txt", }, # directory named after split { "train": "train/split.txt", "validation": "valid/split.txt", "test": "test/split.txt", }, # sharded splits { "train": [f"data/train_{i}.txt" for i in range(3)], "validation": [f"data/validation_{i}.txt" for i in range(3)], "test": [f"data/test_{i}.txt" for i in range(3)], }, # sharded splits with standard format (+ custom split name) { "train": [f"data/train-0000{i}-of-00003.txt" for i in range(3)], "validation": [f"data/validation-0000{i}-of-00003.txt" for i in range(3)], "test": [f"data/test-0000{i}-of-00003.txt" for i in range(3)], "random": [f"data/random-0000{i}-of-00003.txt" for i in range(3)], }, # === Secondary cases === # Default to train split {"train": "dataset.txt"}, {"train": "data/dataset.txt"}, {"train": ["data/image.jpg", "metadata.jsonl"]}, {"train": ["data/image.jpg", "metadata.csv"]}, # With prefix or suffix in directory or file names {"train": "my_train_dir/dataset.txt"}, {"train": "data/my_train_file.txt"}, {"test": "my_test_dir/dataset.txt"}, {"test": "data/my_test_file.txt"}, {"validation": "my_validation_dir/dataset.txt"}, {"validation": "data/my_validation_file.txt"}, # With test<>eval aliases {"test": "eval.txt"}, {"test": "data/eval.txt"}, {"test": "eval/dataset.txt"}, # With valid<>dev aliases {"validation": "dev.txt"}, {"validation": "data/dev.txt"}, {"validation": "dev/dataset.txt"}, # With valid<>val aliases {"validation": "val.txt"}, {"validation": "data/val.txt"}, # With other extensions {"train": "train.parquet", "validation": "valid.parquet", "test": "test.parquet"}, # With "dev" or "eval" without separators {"train": "developers_list.txt"}, {"train": "data/seqeval_results.txt"}, {"train": "contest.txt"}, # With supported separators {"test": "my.test.file.txt"}, {"test": "my-test-file.txt"}, {"test": "my_test_file.txt"}, {"test": "my test file.txt"}, {"test": "test00001.txt"}, ], ) def test_get_data_files_patterns(base_path, data_file_per_split): data_file_per_split = {k: v if isinstance(v, list) else [v] for k, v in data_file_per_split.items()} data_file_per_split = { split: [ base_path + ("/" if base_path and base_path[-1] != "/" else "") + file_path for file_path in data_file_per_split[split] ] for split in data_file_per_split } file_paths = sum(data_file_per_split.values(), []) DummyTestFS = mock_fs(file_paths) fs = DummyTestFS() def resolver(pattern): pattern = base_path + ("/" if base_path and base_path[-1] != "/" else "") + pattern return [ file_path[len(fs._strip_protocol(base_path)) :].lstrip("/") for file_path in fs.glob(pattern) if fs.isfile(file_path) ] patterns_per_split = _get_data_files_patterns(resolver) assert list(patterns_per_split.keys()) == list(data_file_per_split.keys()) # Test split order with list() for split, patterns in patterns_per_split.items(): matched = [file_path for pattern in patterns for file_path in resolver(pattern)] expected = [ fs._strip_protocol(file_path)[len(fs._strip_protocol(base_path)) :].lstrip("/") for file_path in data_file_per_split[split] ] assert matched == expected @pytest.mark.parametrize( "metadata_files", [ # metadata files at the root ["metadata.jsonl"], ["metadata.csv"], # nested metadata files ["metadata.jsonl", "data/metadata.jsonl"], ["metadata.csv", "data/metadata.csv"], ], ) def test_get_metadata_files_patterns(metadata_files): DummyTestFS = mock_fs(metadata_files) fs = DummyTestFS() def resolver(pattern): return [file_path for file_path in fs.glob(pattern) if fs.isfile(file_path)] patterns = _get_metadata_files_patterns(resolver) matched = [file_path for pattern in patterns for file_path in resolver(pattern)] assert sorted(matched) == sorted(metadata_files) def test_get_data_patterns_from_directory_with_the_word_data_twice(tmp_path): repo_dir = tmp_path / "directory-name-ending-with-the-word-data" # parent directory contains the word "data/" data_dir = repo_dir / "data" data_dir.mkdir(parents=True) data_file = data_dir / "train-00001-of-00009.parquet" data_file.touch() data_file_patterns = get_data_patterns(repo_dir.as_posix()) assert data_file_patterns == {"train": ["data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"]}
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_splits.py
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict", [ SplitDict(), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42, dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train", num_bytes=1337, num_examples=42)}), SplitDict({"train": SplitInfo()}), ], ) def test_split_dict_to_yaml_list(split_dict: SplitDict): split_dict_yaml_list = split_dict._to_yaml_list() assert len(split_dict_yaml_list) == len(split_dict) reloaded = SplitDict._from_yaml_list(split_dict_yaml_list) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump split_info.dataset_name = None # the split name of split_dict takes over the name of the split info object split_info.name = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info", [SplitInfo(), SplitInfo(dataset_name=None), SplitInfo(dataset_name="my_dataset")] ) def test_split_dict_asdict_has_dataset_name(split_info): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files split_dict_asdict = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_download_manager.py
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename URL = "http://www.mocksite.com/file1.txt" CONTENT = '"text": ["foo", "foo"]' HASH = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class MockResponse: status_code = 200 headers = {"Content-Length": "100"} cookies = {} def iter_content(self, **kwargs): return [bytes(CONTENT, "utf-8")] def mock_request(*args, **kwargs): return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict]) def test_download_manager_download(urls_type, tmp_path, monkeypatch): import requests monkeypatch.setattr(requests, "request", mock_request) url = URL if issubclass(urls_type, str): urls = url elif issubclass(urls_type, list): urls = [url] elif issubclass(urls_type, dict): urls = {"train": url} dataset_name = "dummy" cache_subdir = "downloads" cache_dir_root = tmp_path download_config = DownloadConfig( cache_dir=os.path.join(cache_dir_root, cache_subdir), use_etag=False, ) dl_manager = DownloadManager(dataset_name=dataset_name, download_config=download_config) downloaded_paths = dl_manager.download(urls) input_urls = urls for downloaded_paths in [downloaded_paths]: if isinstance(urls, str): downloaded_paths = [downloaded_paths] input_urls = [urls] elif isinstance(urls, dict): assert "train" in downloaded_paths.keys() downloaded_paths = downloaded_paths.values() input_urls = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(downloaded_paths, input_urls): assert downloaded_path == dl_manager.downloaded_paths[input_url] downloaded_path = Path(downloaded_path) parts = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() content = downloaded_path.read_text() assert content == CONTENT metadata_downloaded_path = downloaded_path.with_suffix(".json") assert metadata_downloaded_path.exists() metadata_content = json.loads(metadata_downloaded_path.read_text()) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict]) def test_download_manager_extract(paths_type, xz_file, text_file): filename = str(xz_file) if issubclass(paths_type, str): paths = filename elif issubclass(paths_type, list): paths = [filename] elif issubclass(paths_type, dict): paths = {"train": filename} dataset_name = "dummy" cache_dir = xz_file.parent extracted_subdir = "extracted" download_config = DownloadConfig( cache_dir=cache_dir, use_etag=False, ) dl_manager = DownloadManager(dataset_name=dataset_name, download_config=download_config) extracted_paths = dl_manager.extract(paths) input_paths = paths for extracted_paths in [extracted_paths]: if isinstance(paths, str): extracted_paths = [extracted_paths] input_paths = [paths] elif isinstance(paths, dict): assert "train" in extracted_paths.keys() extracted_paths = extracted_paths.values() input_paths = paths.values() assert extracted_paths for extracted_path, input_path in zip(extracted_paths, input_paths): assert extracted_path == dl_manager.extracted_paths[input_path] extracted_path = Path(extracted_path) parts = extracted_path.parts assert parts[-1] == hash_url_to_filename(input_path, etag=None) assert parts[-2] == extracted_subdir assert extracted_path.exists() extracted_file_content = extracted_path.read_text() expected_file_content = text_file.read_text() assert extracted_file_content == expected_file_content def _test_jsonl(path, file): assert path.endswith(".jsonl") for num_items, line in enumerate(file, start=1): item = json.loads(line.decode("utf-8")) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"]) def test_iter_archive_path(archive_jsonl, request): archive_jsonl_path = request.getfixturevalue(archive_jsonl) dl_manager = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(archive_jsonl_path), start=1): _test_jsonl(path, file) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"]) def test_iter_archive_file(archive_nested_jsonl, request): archive_nested_jsonl_path = request.getfixturevalue(archive_nested_jsonl) dl_manager = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(archive_nested_jsonl_path), start=1): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(file), start=1): _test_jsonl(subpath, subfile) assert num_tar == 1 assert num_jsonl == 2 def test_iter_files(data_dir_with_hidden_files): dl_manager = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(data_dir_with_hidden_files), start=1): assert os.path.basename(file) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_builder.py
import importlib import os import tempfile import types from contextlib import nullcontext as does_not_raise from multiprocessing import Process from pathlib import Path from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from multiprocess.pool import Pool from datasets.arrow_dataset import Dataset from datasets.arrow_reader import DatasetNotOnHfGcsError from datasets.arrow_writer import ArrowWriter from datasets.builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from datasets.dataset_dict import DatasetDict, IterableDatasetDict from datasets.download.download_manager import DownloadMode from datasets.features import Features, Value from datasets.info import DatasetInfo, PostProcessedInfo from datasets.iterable_dataset import IterableDataset from datasets.load import configure_builder_class from datasets.splits import Split, SplitDict, SplitGenerator, SplitInfo from datasets.streaming import xjoin from datasets.utils.file_utils import is_local_path from datasets.utils.info_utils import VerificationMode from datasets.utils.logging import INFO, get_logger from .utils import ( assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_beam, require_faiss, set_current_working_directory_to_temp_dir, ) class DummyBuilder(DatasetBuilder): def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _prepare_split(self, split_generator, **kwargs): fname = f"{self.dataset_name}-{split_generator.name}.arrow" with ArrowWriter(features=self.info.features, path=os.path.join(self._output_dir, fname)) as writer: writer.write_batch({"text": ["foo"] * 100}) num_examples, num_bytes = writer.finalize() split_generator.split_info.num_examples = num_examples split_generator.split_info.num_bytes = num_bytes class DummyGeneratorBasedBuilder(GeneratorBasedBuilder): def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _generate_examples(self): for i in range(100): yield i, {"text": "foo"} class DummyArrowBasedBuilder(ArrowBasedBuilder): def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _generate_tables(self): for i in range(10): yield i, pa.table({"text": ["foo"] * 10}) class DummyBeamBasedBuilder(BeamBasedBuilder): def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _build_pcollection(self, pipeline): import apache_beam as beam def _process(item): for i in range(10): yield f"{i}_{item}", {"text": "foo"} return pipeline | "Initialize" >> beam.Create(range(10)) | "Extract content" >> beam.FlatMap(_process) class DummyGeneratorBasedBuilderWithIntegers(GeneratorBasedBuilder): def _info(self): return DatasetInfo(features=Features({"id": Value("int8")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _generate_examples(self): for i in range(100): yield i, {"id": i} class DummyGeneratorBasedBuilderConfig(BuilderConfig): def __init__(self, content="foo", times=2, *args, **kwargs): super().__init__(*args, **kwargs) self.content = content self.times = times class DummyGeneratorBasedBuilderWithConfig(GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = DummyGeneratorBasedBuilderConfig def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN)] def _generate_examples(self): for i in range(100): yield i, {"text": self.config.content * self.config.times} class DummyBuilderWithMultipleConfigs(DummyBuilder): BUILDER_CONFIGS = [ DummyGeneratorBasedBuilderConfig(name="a"), DummyGeneratorBasedBuilderConfig(name="b"), ] class DummyBuilderWithDefaultConfig(DummyBuilderWithMultipleConfigs): DEFAULT_CONFIG_NAME = "a" class DummyBuilderWithDownload(DummyBuilder): def __init__(self, *args, rel_path=None, abs_path=None, **kwargs): super().__init__(*args, **kwargs) self._rel_path = rel_path self._abs_path = abs_path def _split_generators(self, dl_manager): if self._rel_path is not None: assert os.path.exists(dl_manager.download(self._rel_path)), "dl_manager must support relative paths" if self._abs_path is not None: assert os.path.exists(dl_manager.download(self._abs_path)), "dl_manager must support absolute paths" return [SplitGenerator(name=Split.TRAIN)] class DummyBuilderWithManualDownload(DummyBuilderWithMultipleConfigs): @property def manual_download_instructions(self): return "To use the dataset you have to download some stuff manually and pass the data path to data_dir" def _split_generators(self, dl_manager): if not os.path.exists(self.config.data_dir): raise FileNotFoundError(f"data_dir {self.config.data_dir} doesn't exist.") return [SplitGenerator(name=Split.TRAIN)] class DummyArrowBasedBuilderWithShards(ArrowBasedBuilder): def _info(self): return DatasetInfo(features=Features({"id": Value("int8"), "filepath": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepaths": [f"data{i}.txt" for i in range(4)]})] def _generate_tables(self, filepaths): idx = 0 for filepath in filepaths: for i in range(10): yield idx, pa.table({"id": range(10 * i, 10 * (i + 1)), "filepath": [filepath] * 10}) idx += 1 class DummyGeneratorBasedBuilderWithShards(GeneratorBasedBuilder): def _info(self): return DatasetInfo(features=Features({"id": Value("int8"), "filepath": Value("string")})) def _split_generators(self, dl_manager): return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepaths": [f"data{i}.txt" for i in range(4)]})] def _generate_examples(self, filepaths): idx = 0 for filepath in filepaths: for i in range(100): yield idx, {"id": i, "filepath": filepath} idx += 1 class DummyArrowBasedBuilderWithAmbiguousShards(ArrowBasedBuilder): def _info(self): return DatasetInfo(features=Features({"id": Value("int8"), "filepath": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "filepaths": [f"data{i}.txt" for i in range(4)], "dummy_kwarg_with_different_length": [f"dummy_data{i}.txt" for i in range(3)], }, ) ] def _generate_tables(self, filepaths, dummy_kwarg_with_different_length): idx = 0 for filepath in filepaths: for i in range(10): yield idx, pa.table({"id": range(10 * i, 10 * (i + 1)), "filepath": [filepath] * 10}) idx += 1 class DummyGeneratorBasedBuilderWithAmbiguousShards(GeneratorBasedBuilder): def _info(self): return DatasetInfo(features=Features({"id": Value("int8"), "filepath": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "filepaths": [f"data{i}.txt" for i in range(4)], "dummy_kwarg_with_different_length": [f"dummy_data{i}.txt" for i in range(3)], }, ) ] def _generate_examples(self, filepaths, dummy_kwarg_with_different_length): idx = 0 for filepath in filepaths: for i in range(100): yield idx, {"id": i, "filepath": filepath} idx += 1 def _run_concurrent_download_and_prepare(tmp_dir): builder = DummyBuilder(cache_dir=tmp_dir) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) return builder def check_streaming(builder): builders_module = importlib.import_module(builder.__module__) assert builders_module._patched_for_streaming assert builders_module.os.path.join is xjoin class BuilderTest(TestCase): def test_download_and_prepare(self): with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists(os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) ) def test_download_and_prepare_checksum_computation(self): with tempfile.TemporaryDirectory() as tmp_dir: builder_no_verification = DummyBuilder(cache_dir=tmp_dir) builder_no_verification.download_and_prepare( try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD ) self.assertTrue( all(v["checksum"] is not None for _, v in builder_no_verification.info.download_checksums.items()) ) builder_with_verification = DummyBuilder(cache_dir=tmp_dir) builder_with_verification.download_and_prepare( try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.ALL_CHECKS, ) self.assertTrue( all(v["checksum"] is None for _, v in builder_with_verification.info.download_checksums.items()) ) def test_concurrent_download_and_prepare(self): with tempfile.TemporaryDirectory() as tmp_dir: processes = 2 with Pool(processes=processes) as pool: jobs = [ pool.apply_async(_run_concurrent_download_and_prepare, kwds={"tmp_dir": tmp_dir}) for _ in range(processes) ] builders = [job.get() for job in jobs] for builder in builders: self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow", ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists( os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json") ) ) def test_download_and_prepare_with_base_path(self): with tempfile.TemporaryDirectory() as tmp_dir: rel_path = "dummy1.data" abs_path = os.path.join(tmp_dir, "dummy2.data") # test relative path is missing builder = DummyBuilderWithDownload(cache_dir=tmp_dir, rel_path=rel_path) with self.assertRaises(FileNotFoundError): builder.download_and_prepare( try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD, base_path=tmp_dir ) # test absolute path is missing builder = DummyBuilderWithDownload(cache_dir=tmp_dir, abs_path=abs_path) with self.assertRaises(FileNotFoundError): builder.download_and_prepare( try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD, base_path=tmp_dir ) # test that they are both properly loaded when they exist open(os.path.join(tmp_dir, rel_path), "w") open(abs_path, "w") builder = DummyBuilderWithDownload(cache_dir=tmp_dir, rel_path=rel_path, abs_path=abs_path) builder.download_and_prepare( try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD, base_path=tmp_dir ) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow", ) ) ) def test_as_dataset_with_post_process(self): def _post_process(self, dataset, resources_paths): def char_tokenize(example): return {"tokens": list(example["text"])} return dataset.map(char_tokenize, cache_file_name=resources_paths["tokenized_dataset"]) def _post_processing_resources(self, split): return {"tokenized_dataset": f"tokenized_dataset-{split}.arrow"} with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder.info.post_processed = PostProcessedInfo( features=Features({"text": Value("string"), "tokens": [Value("string")]}) ) builder._post_process = types.MethodType(_post_process, builder) builder._post_processing_resources = types.MethodType(_post_processing_resources, builder) os.makedirs(builder.cache_dir) builder.info.splits = SplitDict() builder.info.splits.add(SplitInfo("train", num_examples=10)) builder.info.splits.add(SplitInfo("test", num_examples=10)) for split in builder.info.splits: with ArrowWriter( path=os.path.join(builder.cache_dir, f"{builder.dataset_name}-{split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 10}) writer.finalize() with ArrowWriter( path=os.path.join(builder.cache_dir, f"tokenized_dataset-{split}.arrow"), features=Features({"text": Value("string"), "tokens": [Value("string")]}), ) as writer: writer.write_batch({"text": ["foo"] * 10, "tokens": [list("foo")] * 10}) writer.finalize() dsets = builder.as_dataset() self.assertIsInstance(dsets, DatasetDict) self.assertListEqual(list(dsets.keys()), ["train", "test"]) self.assertEqual(len(dsets["train"]), 10) self.assertEqual(len(dsets["test"]), 10) self.assertDictEqual( dsets["train"].features, Features({"text": Value("string"), "tokens": [Value("string")]}) ) self.assertDictEqual( dsets["test"].features, Features({"text": Value("string"), "tokens": [Value("string")]}) ) self.assertListEqual(dsets["train"].column_names, ["text", "tokens"]) self.assertListEqual(dsets["test"].column_names, ["text", "tokens"]) del dsets dset = builder.as_dataset("train") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train") self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"text": Value("string"), "tokens": [Value("string")]})) self.assertListEqual(dset.column_names, ["text", "tokens"]) self.assertGreater(builder.info.post_processing_size, 0) self.assertGreater( builder.info.post_processed.resources_checksums["train"]["tokenized_dataset"]["num_bytes"], 0 ) del dset dset = builder.as_dataset("train+test[:30%]") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test[:30%]") self.assertEqual(len(dset), 13) self.assertDictEqual(dset.features, Features({"text": Value("string"), "tokens": [Value("string")]})) self.assertListEqual(dset.column_names, ["text", "tokens"]) del dset dset = builder.as_dataset("all") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test") self.assertEqual(len(dset), 20) self.assertDictEqual(dset.features, Features({"text": Value("string"), "tokens": [Value("string")]})) self.assertListEqual(dset.column_names, ["text", "tokens"]) del dset def _post_process(self, dataset, resources_paths): return dataset.select([0, 1], keep_in_memory=True) with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder._post_process = types.MethodType(_post_process, builder) os.makedirs(builder.cache_dir) builder.info.splits = SplitDict() builder.info.splits.add(SplitInfo("train", num_examples=10)) builder.info.splits.add(SplitInfo("test", num_examples=10)) for split in builder.info.splits: with ArrowWriter( path=os.path.join(builder.cache_dir, f"{builder.dataset_name}-{split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 10}) writer.finalize() with ArrowWriter( path=os.path.join(builder.cache_dir, f"small_dataset-{split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 2}) writer.finalize() dsets = builder.as_dataset() self.assertIsInstance(dsets, DatasetDict) self.assertListEqual(list(dsets.keys()), ["train", "test"]) self.assertEqual(len(dsets["train"]), 2) self.assertEqual(len(dsets["test"]), 2) self.assertDictEqual(dsets["train"].features, Features({"text": Value("string")})) self.assertDictEqual(dsets["test"].features, Features({"text": Value("string")})) self.assertListEqual(dsets["train"].column_names, ["text"]) self.assertListEqual(dsets["test"].column_names, ["text"]) del dsets dset = builder.as_dataset("train") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train") self.assertEqual(len(dset), 2) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) del dset dset = builder.as_dataset("train+test[:30%]") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test[:30%]") self.assertEqual(len(dset), 2) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) del dset @require_faiss def test_as_dataset_with_post_process_with_index(self): def _post_process(self, dataset, resources_paths): if os.path.exists(resources_paths["index"]): dataset.load_faiss_index("my_index", resources_paths["index"]) return dataset else: dataset.add_faiss_index_from_external_arrays( external_arrays=np.ones((len(dataset), 8)), string_factory="Flat", index_name="my_index" ) dataset.save_faiss_index("my_index", resources_paths["index"]) return dataset def _post_processing_resources(self, split): return {"index": f"Flat-{split}.faiss"} with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder._post_process = types.MethodType(_post_process, builder) builder._post_processing_resources = types.MethodType(_post_processing_resources, builder) os.makedirs(builder.cache_dir) builder.info.splits = SplitDict() builder.info.splits.add(SplitInfo("train", num_examples=10)) builder.info.splits.add(SplitInfo("test", num_examples=10)) for split in builder.info.splits: with ArrowWriter( path=os.path.join(builder.cache_dir, f"{builder.dataset_name}-{split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 10}) writer.finalize() with ArrowWriter( path=os.path.join(builder.cache_dir, f"small_dataset-{split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 2}) writer.finalize() dsets = builder.as_dataset() self.assertIsInstance(dsets, DatasetDict) self.assertListEqual(list(dsets.keys()), ["train", "test"]) self.assertEqual(len(dsets["train"]), 10) self.assertEqual(len(dsets["test"]), 10) self.assertDictEqual(dsets["train"].features, Features({"text": Value("string")})) self.assertDictEqual(dsets["test"].features, Features({"text": Value("string")})) self.assertListEqual(dsets["train"].column_names, ["text"]) self.assertListEqual(dsets["test"].column_names, ["text"]) self.assertListEqual(dsets["train"].list_indexes(), ["my_index"]) self.assertListEqual(dsets["test"].list_indexes(), ["my_index"]) self.assertGreater(builder.info.post_processing_size, 0) self.assertGreater(builder.info.post_processed.resources_checksums["train"]["index"]["num_bytes"], 0) del dsets dset = builder.as_dataset("train") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train") self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) self.assertListEqual(dset.list_indexes(), ["my_index"]) del dset dset = builder.as_dataset("train+test[:30%]") self.assertIsInstance(dset, Dataset) self.assertEqual(dset.split, "train+test[:30%]") self.assertEqual(len(dset), 13) self.assertDictEqual(dset.features, Features({"text": Value("string")})) self.assertListEqual(dset.column_names, ["text"]) self.assertListEqual(dset.list_indexes(), ["my_index"]) del dset def test_download_and_prepare_with_post_process(self): def _post_process(self, dataset, resources_paths): def char_tokenize(example): return {"tokens": list(example["text"])} return dataset.map(char_tokenize, cache_file_name=resources_paths["tokenized_dataset"]) def _post_processing_resources(self, split): return {"tokenized_dataset": f"tokenized_dataset-{split}.arrow"} with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder.info.post_processed = PostProcessedInfo( features=Features({"text": Value("string"), "tokens": [Value("string")]}) ) builder._post_process = types.MethodType(_post_process, builder) builder._post_processing_resources = types.MethodType(_post_processing_resources, builder) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertDictEqual( builder.info.post_processed.features, Features({"text": Value("string"), "tokens": [Value("string")]}), ) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists(os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) ) def _post_process(self, dataset, resources_paths): return dataset.select([0, 1], keep_in_memory=True) with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder._post_process = types.MethodType(_post_process, builder) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertIsNone(builder.info.post_processed) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists(os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) ) def _post_process(self, dataset, resources_paths): if os.path.exists(resources_paths["index"]): dataset.load_faiss_index("my_index", resources_paths["index"]) return dataset else: dataset = dataset.add_faiss_index_from_external_arrays( external_arrays=np.ones((len(dataset), 8)), string_factory="Flat", index_name="my_index" ) dataset.save_faiss_index("my_index", resources_paths["index"]) return dataset def _post_processing_resources(self, split): return {"index": f"Flat-{split}.faiss"} with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder._post_process = types.MethodType(_post_process, builder) builder._post_processing_resources = types.MethodType(_post_processing_resources, builder) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertIsNone(builder.info.post_processed) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists(os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) ) def test_error_download_and_prepare(self): def _prepare_split(self, split_generator, **kwargs): raise ValueError() with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyBuilder(cache_dir=tmp_dir) builder._prepare_split = types.MethodType(_prepare_split, builder) self.assertRaises( ValueError, builder.download_and_prepare, try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD, ) self.assertRaises(FileNotFoundError, builder.as_dataset) def test_generator_based_download_and_prepare(self): with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) self.assertTrue( os.path.exists( os.path.join( tmp_dir, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow", ) ) ) self.assertDictEqual(builder.info.features, Features({"text": Value("string")})) self.assertEqual(builder.info.splits["train"].num_examples, 100) self.assertTrue( os.path.exists(os.path.join(tmp_dir, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) ) # Test that duplicated keys are ignored if verification_mode is "no_checks" with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir) with patch("datasets.builder.ArrowWriter", side_effect=ArrowWriter) as mock_arrow_writer: builder.download_and_prepare( download_mode=DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.NO_CHECKS ) mock_arrow_writer.assert_called_once() args, kwargs = mock_arrow_writer.call_args_list[0] self.assertFalse(kwargs["check_duplicates"]) mock_arrow_writer.reset_mock() builder.download_and_prepare( download_mode=DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.BASIC_CHECKS ) mock_arrow_writer.assert_called_once() args, kwargs = mock_arrow_writer.call_args_list[0] self.assertTrue(kwargs["check_duplicates"]) def test_cache_dir_no_args(self): with tempfile.TemporaryDirectory() as tmp_dir: builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_dir=None, data_files=None) relative_cache_dir_parts = Path(builder._relative_data_dir()).parts self.assertTupleEqual(relative_cache_dir_parts, (builder.dataset_name, "default", "0.0.0")) def test_cache_dir_for_data_files(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_data1 = os.path.join(tmp_dir, "dummy_data1.txt") with open(dummy_data1, "w", encoding="utf-8") as f: f.writelines("foo bar") dummy_data2 = os.path.join(tmp_dir, "dummy_data2.txt") with open(dummy_data2, "w", encoding="utf-8") as f: f.writelines("foo bar\n") builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=dummy_data1) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=dummy_data1) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data1]) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files={"train": dummy_data1}) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files={Split.TRAIN: dummy_data1}) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files={"train": [dummy_data1]}) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files={"test": dummy_data1}) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=dummy_data2) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data2]) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data1, dummy_data2]) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data1, dummy_data2]) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data1, dummy_data2]) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder(cache_dir=tmp_dir, data_files=[dummy_data2, dummy_data1]) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) builder = DummyGeneratorBasedBuilder( cache_dir=tmp_dir, data_files={"train": dummy_data1, "test": dummy_data2} ) other_builder = DummyGeneratorBasedBuilder( cache_dir=tmp_dir, data_files={"train": dummy_data1, "test": dummy_data2} ) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder( cache_dir=tmp_dir, data_files={"train": [dummy_data1], "test": dummy_data2} ) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder( cache_dir=tmp_dir, data_files={"train": dummy_data1, "validation": dummy_data2} ) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilder( cache_dir=tmp_dir, data_files={"train": [dummy_data1, dummy_data2], "test": dummy_data2}, ) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) def test_cache_dir_for_features(self): with tempfile.TemporaryDirectory() as tmp_dir: f1 = Features({"id": Value("int8")}) f2 = Features({"id": Value("int32")}) builder = DummyGeneratorBasedBuilderWithIntegers(cache_dir=tmp_dir, features=f1) other_builder = DummyGeneratorBasedBuilderWithIntegers(cache_dir=tmp_dir, features=f1) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilderWithIntegers(cache_dir=tmp_dir, features=f2) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) def test_cache_dir_for_config_kwargs(self): with tempfile.TemporaryDirectory() as tmp_dir: # create config on the fly builder = DummyGeneratorBasedBuilderWithConfig(cache_dir=tmp_dir, content="foo", times=2) other_builder = DummyGeneratorBasedBuilderWithConfig(cache_dir=tmp_dir, times=2, content="foo") self.assertEqual(builder.cache_dir, other_builder.cache_dir) self.assertIn("content=foo", builder.cache_dir) self.assertIn("times=2", builder.cache_dir) other_builder = DummyGeneratorBasedBuilderWithConfig(cache_dir=tmp_dir, content="bar", times=2) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyGeneratorBasedBuilderWithConfig(cache_dir=tmp_dir, content="foo") self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) with tempfile.TemporaryDirectory() as tmp_dir: # overwrite an existing config builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="a", content="foo", times=2) other_builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="a", times=2, content="foo") self.assertEqual(builder.cache_dir, other_builder.cache_dir) self.assertIn("content=foo", builder.cache_dir) self.assertIn("times=2", builder.cache_dir) other_builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="a", content="bar", times=2) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="a", content="foo") self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) def test_config_names(self): with tempfile.TemporaryDirectory() as tmp_dir: with self.assertRaises(ValueError) as error_context: DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, data_files=None, data_dir=None) self.assertIn("Please pick one among the available configs", str(error_context.exception)) builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="a") self.assertEqual(builder.config.name, "a") builder = DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir, config_name="b") self.assertEqual(builder.config.name, "b") with self.assertRaises(ValueError): DummyBuilderWithMultipleConfigs(cache_dir=tmp_dir) builder = DummyBuilderWithDefaultConfig(cache_dir=tmp_dir) self.assertEqual(builder.config.name, "a") def test_cache_dir_for_data_dir(self): with tempfile.TemporaryDirectory() as tmp_dir, tempfile.TemporaryDirectory() as data_dir: builder = DummyBuilderWithManualDownload(cache_dir=tmp_dir, config_name="a", data_dir=data_dir) other_builder = DummyBuilderWithManualDownload(cache_dir=tmp_dir, config_name="a", data_dir=data_dir) self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = DummyBuilderWithManualDownload(cache_dir=tmp_dir, config_name="a", data_dir=tmp_dir) self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) def test_cache_dir_for_configured_builder(self): with tempfile.TemporaryDirectory() as tmp_dir, tempfile.TemporaryDirectory() as data_dir: builder_cls = configure_builder_class( DummyBuilderWithManualDownload, builder_configs=[BuilderConfig(data_dir=data_dir)], default_config_name=None, dataset_name="dummy", ) builder = builder_cls(cache_dir=tmp_dir, hash="abc") other_builder = builder_cls(cache_dir=tmp_dir, hash="abc") self.assertEqual(builder.cache_dir, other_builder.cache_dir) other_builder = builder_cls(cache_dir=tmp_dir, hash="def") self.assertNotEqual(builder.cache_dir, other_builder.cache_dir) def test_arrow_based_download_and_prepare(tmp_path): builder = DummyArrowBasedBuilder(cache_dir=tmp_path) builder.download_and_prepare() assert os.path.exists( os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow", ) ) assert builder.info.features, Features({"text": Value("string")}) assert builder.info.splits["train"].num_examples == 100 assert os.path.exists(os.path.join(tmp_path, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) @require_beam def test_beam_based_download_and_prepare(tmp_path): builder = DummyBeamBasedBuilder(cache_dir=tmp_path, beam_runner="DirectRunner") builder.download_and_prepare() assert os.path.exists( os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.arrow", ) ) assert builder.info.features, Features({"text": Value("string")}) assert builder.info.splits["train"].num_examples == 100 assert os.path.exists(os.path.join(tmp_path, builder.dataset_name, "default", "0.0.0", "dataset_info.json")) @require_beam def test_beam_based_as_dataset(tmp_path): builder = DummyBeamBasedBuilder(cache_dir=tmp_path, beam_runner="DirectRunner") builder.download_and_prepare() dataset = builder.as_dataset() assert dataset assert isinstance(dataset["train"], Dataset) assert len(dataset["train"]) > 0 @pytest.mark.parametrize( "split, expected_dataset_class, expected_dataset_length", [ (None, DatasetDict, 10), ("train", Dataset, 10), ("train+test[:30%]", Dataset, 13), ], ) @pytest.mark.parametrize("in_memory", [False, True]) def test_builder_as_dataset(split, expected_dataset_class, expected_dataset_length, in_memory, tmp_path): cache_dir = str(tmp_path) builder = DummyBuilder(cache_dir=cache_dir) os.makedirs(builder.cache_dir) builder.info.splits = SplitDict() builder.info.splits.add(SplitInfo("train", num_examples=10)) builder.info.splits.add(SplitInfo("test", num_examples=10)) for info_split in builder.info.splits: with ArrowWriter( path=os.path.join(builder.cache_dir, f"{builder.dataset_name}-{info_split}.arrow"), features=Features({"text": Value("string")}), ) as writer: writer.write_batch({"text": ["foo"] * 10}) writer.finalize() with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): dataset = builder.as_dataset(split=split, in_memory=in_memory) assert isinstance(dataset, expected_dataset_class) if isinstance(dataset, DatasetDict): assert list(dataset.keys()) == ["train", "test"] datasets = dataset.values() expected_splits = ["train", "test"] elif isinstance(dataset, Dataset): datasets = [dataset] expected_splits = [split] for dataset, expected_split in zip(datasets, expected_splits): assert dataset.split == expected_split assert len(dataset) == expected_dataset_length assert dataset.features == Features({"text": Value("string")}) dataset.column_names == ["text"] @pytest.mark.parametrize("in_memory", [False, True]) def test_generator_based_builder_as_dataset(in_memory, tmp_path): cache_dir = tmp_path / "data" cache_dir.mkdir() cache_dir = str(cache_dir) builder = DummyGeneratorBasedBuilder(cache_dir=cache_dir) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): dataset = builder.as_dataset("train", in_memory=in_memory) assert dataset.data.to_pydict() == {"text": ["foo"] * 100} @pytest.mark.parametrize( "writer_batch_size, default_writer_batch_size, expected_chunks", [(None, None, 1), (None, 5, 20), (10, None, 10)] ) def test_custom_writer_batch_size(tmp_path, writer_batch_size, default_writer_batch_size, expected_chunks): cache_dir = str(tmp_path) if default_writer_batch_size: DummyGeneratorBasedBuilder.DEFAULT_WRITER_BATCH_SIZE = default_writer_batch_size builder = DummyGeneratorBasedBuilder(cache_dir=cache_dir, writer_batch_size=writer_batch_size) assert builder._writer_batch_size == (writer_batch_size or default_writer_batch_size) builder.download_and_prepare(try_from_hf_gcs=False, download_mode=DownloadMode.FORCE_REDOWNLOAD) dataset = builder.as_dataset("train") assert len(dataset.data[0].chunks) == expected_chunks def test_builder_as_streaming_dataset(tmp_path): dummy_builder = DummyGeneratorBasedBuilder(cache_dir=str(tmp_path)) check_streaming(dummy_builder) dsets = dummy_builder.as_streaming_dataset() assert isinstance(dsets, IterableDatasetDict) assert isinstance(dsets["train"], IterableDataset) assert len(list(dsets["train"])) == 100 dset = dummy_builder.as_streaming_dataset(split="train") assert isinstance(dset, IterableDataset) assert len(list(dset)) == 100 @require_beam def test_beam_based_builder_as_streaming_dataset(tmp_path): builder = DummyBeamBasedBuilder(cache_dir=tmp_path) check_streaming(builder) with pytest.raises(DatasetNotOnHfGcsError): builder.as_streaming_dataset() def _run_test_builder_streaming_works_in_subprocesses(builder): check_streaming(builder) dset = builder.as_streaming_dataset(split="train") assert isinstance(dset, IterableDataset) assert len(list(dset)) == 100 def test_builder_streaming_works_in_subprocess(tmp_path): dummy_builder = DummyGeneratorBasedBuilder(cache_dir=str(tmp_path)) p = Process(target=_run_test_builder_streaming_works_in_subprocesses, args=(dummy_builder,)) p.start() p.join() class DummyBuilderWithVersion(GeneratorBasedBuilder): VERSION = "2.0.0" def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): pass def _generate_examples(self): pass class DummyBuilderWithBuilderConfigs(GeneratorBasedBuilder): BUILDER_CONFIGS = [BuilderConfig(name="custom", version="2.0.0")] def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): pass def _generate_examples(self): pass class CustomBuilderConfig(BuilderConfig): def __init__(self, date=None, language=None, version="2.0.0", **kwargs): name = f"{date}.{language}" super().__init__(name=name, version=version, **kwargs) self.date = date self.language = language class DummyBuilderWithCustomBuilderConfigs(GeneratorBasedBuilder): BUILDER_CONFIGS = [CustomBuilderConfig(date="20220501", language="en")] BUILDER_CONFIG_CLASS = CustomBuilderConfig def _info(self): return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): pass def _generate_examples(self): pass @pytest.mark.parametrize( "builder_class, kwargs", [ (DummyBuilderWithVersion, {}), (DummyBuilderWithBuilderConfigs, {"config_name": "custom"}), (DummyBuilderWithCustomBuilderConfigs, {"config_name": "20220501.en"}), (DummyBuilderWithCustomBuilderConfigs, {"date": "20220501", "language": "ca"}), ], ) def test_builder_config_version(builder_class, kwargs, tmp_path): cache_dir = str(tmp_path) builder = builder_class(cache_dir=cache_dir, **kwargs) assert builder.config.version == "2.0.0" def test_builder_download_and_prepare_with_absolute_output_dir(tmp_path): builder = DummyGeneratorBasedBuilder() output_dir = str(tmp_path) builder.download_and_prepare(output_dir) assert builder._output_dir.startswith(tmp_path.resolve().as_posix()) assert os.path.exists(os.path.join(output_dir, "dataset_info.json")) assert os.path.exists(os.path.join(output_dir, f"{builder.dataset_name}-train.arrow")) assert not os.path.exists(os.path.join(output_dir + ".incomplete")) def test_builder_download_and_prepare_with_relative_output_dir(): with set_current_working_directory_to_temp_dir(): builder = DummyGeneratorBasedBuilder() output_dir = "test-out" builder.download_and_prepare(output_dir) assert Path(builder._output_dir).resolve().as_posix().startswith(Path(output_dir).resolve().as_posix()) assert os.path.exists(os.path.join(output_dir, "dataset_info.json")) assert os.path.exists(os.path.join(output_dir, f"{builder.dataset_name}-train.arrow")) assert not os.path.exists(os.path.join(output_dir + ".incomplete")) def test_builder_with_filesystem_download_and_prepare(tmp_path, mockfs): builder = DummyGeneratorBasedBuilder(cache_dir=tmp_path) builder.download_and_prepare("mock://my_dataset", storage_options=mockfs.storage_options) assert builder._output_dir.startswith("mock://my_dataset") assert is_local_path(builder._cache_downloaded_dir) assert isinstance(builder._fs, type(mockfs)) assert builder._fs.storage_options == mockfs.storage_options assert mockfs.exists("my_dataset/dataset_info.json") assert mockfs.exists(f"my_dataset/{builder.dataset_name}-train.arrow") assert not mockfs.exists("my_dataset.incomplete") def test_builder_with_filesystem_download_and_prepare_reload(tmp_path, mockfs, caplog): builder = DummyGeneratorBasedBuilder(cache_dir=tmp_path) mockfs.makedirs("my_dataset") DatasetInfo().write_to_directory("mock://my_dataset", storage_options=mockfs.storage_options) mockfs.touch(f"my_dataset/{builder.dataset_name}-train.arrow") caplog.clear() with caplog.at_level(INFO, logger=get_logger().name): builder.download_and_prepare("mock://my_dataset", storage_options=mockfs.storage_options) assert "Found cached dataset" in caplog.text def test_generator_based_builder_download_and_prepare_as_parquet(tmp_path): builder = DummyGeneratorBasedBuilder(cache_dir=tmp_path) builder.download_and_prepare(file_format="parquet") assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.parquet" ) assert os.path.exists(parquet_path) assert pq.ParquetFile(parquet_path) is not None def test_generator_based_builder_download_and_prepare_sharded(tmp_path): writer_batch_size = 25 builder = DummyGeneratorBasedBuilder(cache_dir=tmp_path, writer_batch_size=writer_batch_size) with patch("datasets.config.MAX_SHARD_SIZE", 1): # one batch per shard builder.download_and_prepare(file_format="parquet") expected_num_shards = 100 // writer_batch_size assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.parquet", ) assert os.path.exists(parquet_path) parquet_files = [ pq.ParquetFile(parquet_path) for parquet_path in Path(tmp_path).rglob( f"{builder.dataset_name}-train-*-of-{expected_num_shards:05d}.parquet" ) ] assert len(parquet_files) == expected_num_shards assert sum(parquet_file.metadata.num_rows for parquet_file in parquet_files) == 100 def test_generator_based_builder_download_and_prepare_with_max_shard_size(tmp_path): writer_batch_size = 25 builder = DummyGeneratorBasedBuilder(cache_dir=tmp_path, writer_batch_size=writer_batch_size) builder.download_and_prepare(file_format="parquet", max_shard_size=1) # one batch per shard expected_num_shards = 100 // writer_batch_size assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.parquet", ) assert os.path.exists(parquet_path) parquet_files = [ pq.ParquetFile(parquet_path) for parquet_path in Path(tmp_path).rglob( f"{builder.dataset_name}-train-*-of-{expected_num_shards:05d}.parquet" ) ] assert len(parquet_files) == expected_num_shards assert sum(parquet_file.metadata.num_rows for parquet_file in parquet_files) == 100 def test_generator_based_builder_download_and_prepare_with_num_proc(tmp_path): builder = DummyGeneratorBasedBuilderWithShards(cache_dir=tmp_path) builder.download_and_prepare(num_proc=2) expected_num_shards = 2 assert builder.info.splits["train"].num_examples == 400 assert builder.info.splits["train"].shard_lengths == [200, 200] arrow_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.arrow", ) assert os.path.exists(arrow_path) ds = builder.as_dataset("train") assert len(ds) == 400 assert ds.to_dict() == { "id": [i for _ in range(4) for i in range(100)], "filepath": [f"data{i}.txt" for i in range(4) for _ in range(100)], } @pytest.mark.parametrize( "num_proc, expectation", [(None, does_not_raise()), (1, does_not_raise()), (2, pytest.raises(RuntimeError))] ) def test_generator_based_builder_download_and_prepare_with_ambiguous_shards(num_proc, expectation, tmp_path): builder = DummyGeneratorBasedBuilderWithAmbiguousShards(cache_dir=tmp_path) with expectation: builder.download_and_prepare(num_proc=num_proc) def test_arrow_based_builder_download_and_prepare_as_parquet(tmp_path): builder = DummyArrowBasedBuilder(cache_dir=tmp_path) builder.download_and_prepare(file_format="parquet") assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.parquet" ) assert os.path.exists(parquet_path) assert pq.ParquetFile(parquet_path) is not None def test_arrow_based_builder_download_and_prepare_sharded(tmp_path): builder = DummyArrowBasedBuilder(cache_dir=tmp_path) with patch("datasets.config.MAX_SHARD_SIZE", 1): # one batch per shard builder.download_and_prepare(file_format="parquet") expected_num_shards = 10 assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.parquet", ) assert os.path.exists(parquet_path) parquet_files = [ pq.ParquetFile(parquet_path) for parquet_path in Path(tmp_path).rglob( f"{builder.dataset_name}-train-*-of-{expected_num_shards:05d}.parquet" ) ] assert len(parquet_files) == expected_num_shards assert sum(parquet_file.metadata.num_rows for parquet_file in parquet_files) == 100 def test_arrow_based_builder_download_and_prepare_with_max_shard_size(tmp_path): builder = DummyArrowBasedBuilder(cache_dir=tmp_path) builder.download_and_prepare(file_format="parquet", max_shard_size=1) # one table per shard expected_num_shards = 10 assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.parquet", ) assert os.path.exists(parquet_path) parquet_files = [ pq.ParquetFile(parquet_path) for parquet_path in Path(tmp_path).rglob( f"{builder.dataset_name}-train-*-of-{expected_num_shards:05d}.parquet" ) ] assert len(parquet_files) == expected_num_shards assert sum(parquet_file.metadata.num_rows for parquet_file in parquet_files) == 100 def test_arrow_based_builder_download_and_prepare_with_num_proc(tmp_path): builder = DummyArrowBasedBuilderWithShards(cache_dir=tmp_path) builder.download_and_prepare(num_proc=2) expected_num_shards = 2 assert builder.info.splits["train"].num_examples == 400 assert builder.info.splits["train"].shard_lengths == [200, 200] arrow_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train-00000-of-{expected_num_shards:05d}.arrow", ) assert os.path.exists(arrow_path) ds = builder.as_dataset("train") assert len(ds) == 400 assert ds.to_dict() == { "id": [i for _ in range(4) for i in range(100)], "filepath": [f"data{i}.txt" for i in range(4) for _ in range(100)], } @pytest.mark.parametrize( "num_proc, expectation", [(None, does_not_raise()), (1, does_not_raise()), (2, pytest.raises(RuntimeError))] ) def test_arrow_based_builder_download_and_prepare_with_ambiguous_shards(num_proc, expectation, tmp_path): builder = DummyArrowBasedBuilderWithAmbiguousShards(cache_dir=tmp_path) with expectation: builder.download_and_prepare(num_proc=num_proc) @require_beam def test_beam_based_builder_download_and_prepare_as_parquet(tmp_path): builder = DummyBeamBasedBuilder(cache_dir=tmp_path, beam_runner="DirectRunner") builder.download_and_prepare(file_format="parquet") assert builder.info.splits["train"].num_examples == 100 parquet_path = os.path.join( tmp_path, builder.dataset_name, "default", "0.0.0", f"{builder.dataset_name}-train.parquet" ) assert os.path.exists(parquet_path) assert pq.ParquetFile(parquet_path) is not None
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_arrow_dataset.py
import contextlib import copy import itertools import json import os import pickle import re import sys import tempfile from functools import partial from pathlib import Path from unittest import TestCase from unittest.mock import MagicMock, patch import numpy as np import numpy.testing as npt import pandas as pd import pyarrow as pa import pytest from absl.testing import parameterized from fsspec.core import strip_protocol from packaging import version import datasets.arrow_dataset from datasets import concatenate_datasets, interleave_datasets, load_from_disk from datasets.arrow_dataset import Dataset, transmit_format, update_metadata_with_features from datasets.dataset_dict import DatasetDict from datasets.features import ( Array2D, Array3D, Audio, ClassLabel, Features, Image, Sequence, Translation, TranslationVariableLanguages, Value, ) from datasets.info import DatasetInfo from datasets.iterable_dataset import IterableDataset from datasets.splits import NamedSplit from datasets.table import ConcatenationTable, InMemoryTable, MemoryMappedTable from datasets.tasks import ( AutomaticSpeechRecognition, LanguageModeling, QuestionAnsweringExtractive, Summarization, TextClassification, ) from datasets.utils.logging import INFO, get_logger from datasets.utils.py_utils import temp_seed from .utils import ( assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_dill_gt_0_3_2, require_jax, require_not_windows, require_pil, require_pyspark, require_sqlalchemy, require_tf, require_torch, require_transformers, set_current_working_directory_to_temp_dir, ) class PickableMagicMock(MagicMock): def __reduce__(self): return MagicMock, () class Unpicklable: def __getstate__(self): raise pickle.PicklingError() def picklable_map_function(x): return {"id": int(x["filename"].split("_")[-1])} def picklable_map_function_with_indices(x, i): return {"id": i} def picklable_map_function_with_rank(x, r): return {"rank": r} def picklable_map_function_with_indices_and_rank(x, i, r): return {"id": i, "rank": r} def picklable_filter_function(x): return int(x["filename"].split("_")[-1]) < 10 def assert_arrow_metadata_are_synced_with_dataset_features(dataset: Dataset): assert dataset.data.schema.metadata is not None assert b"huggingface" in dataset.data.schema.metadata metadata = json.loads(dataset.data.schema.metadata[b"huggingface"].decode()) assert "info" in metadata features = DatasetInfo.from_dict(metadata["info"]).features assert features is not None assert features == dataset.features assert features == Features.from_arrow_schema(dataset.data.schema) assert list(features) == dataset.data.column_names assert list(features) == list(dataset.features) IN_MEMORY_PARAMETERS = [ {"testcase_name": name, "in_memory": im} for im, name in [(True, "in_memory"), (False, "on_disk")] ] @parameterized.named_parameters(IN_MEMORY_PARAMETERS) class BaseDatasetTest(TestCase): @pytest.fixture(autouse=True) def inject_fixtures(self, caplog, set_sqlalchemy_silence_uber_warning): self._caplog = caplog def _create_dummy_dataset( self, in_memory: bool, tmp_dir: str, multiple_columns=False, array_features=False, nested_features=False ) -> Dataset: assert int(multiple_columns) + int(array_features) + int(nested_features) < 2 if multiple_columns: data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"], "col_3": [False, True, False, True]} dset = Dataset.from_dict(data) elif array_features: data = { "col_1": [[[True, False], [False, True]]] * 4, # 2D "col_2": [[[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]] * 4, # 3D array "col_3": [[3, 2, 1, 0]] * 4, # Sequence } features = Features( { "col_1": Array2D(shape=(2, 2), dtype="bool"), "col_2": Array3D(shape=(2, 2, 2), dtype="string"), "col_3": Sequence(feature=Value("int64")), } ) dset = Dataset.from_dict(data, features=features) elif nested_features: data = {"nested": [{"a": i, "x": i * 10, "c": i * 100} for i in range(1, 11)]} features = Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}}) dset = Dataset.from_dict(data, features=features) else: dset = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(x) for x in np.arange(30).tolist()]}) if not in_memory: dset = self._to(in_memory, tmp_dir, dset) return dset def _to(self, in_memory, tmp_dir, *datasets): if in_memory: datasets = [dataset.map(keep_in_memory=True) for dataset in datasets] else: start = 0 while os.path.isfile(os.path.join(tmp_dir, f"dataset{start}.arrow")): start += 1 datasets = [ dataset.map(cache_file_name=os.path.join(tmp_dir, f"dataset{start + i}.arrow")) for i, dataset in enumerate(datasets) ] return datasets if len(datasets) > 1 else datasets[0] def test_dummy_dataset(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: self.assertDictEqual( dset.features, Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}), ) self.assertEqual(dset[0]["col_1"], 3) self.assertEqual(dset["col_1"][0], 3) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset: self.assertDictEqual( dset.features, Features( { "col_1": Array2D(shape=(2, 2), dtype="bool"), "col_2": Array3D(shape=(2, 2, 2), dtype="string"), "col_3": Sequence(feature=Value("int64")), } ), ) self.assertEqual(dset[0]["col_2"], [[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]) self.assertEqual(dset["col_2"][0], [[["a", "b"], ["c", "d"]], [["e", "f"], ["g", "h"]]]) def test_dataset_getitem(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") self.assertEqual(dset[-1]["filename"], "my_name-train_29") self.assertEqual(dset["filename"][-1], "my_name-train_29") self.assertListEqual(dset[:2]["filename"], ["my_name-train_0", "my_name-train_1"]) self.assertListEqual(dset["filename"][:2], ["my_name-train_0", "my_name-train_1"]) self.assertEqual(dset[:-1]["filename"][-1], "my_name-train_28") self.assertEqual(dset["filename"][:-1][-1], "my_name-train_28") self.assertListEqual(dset[[0, -1]]["filename"], ["my_name-train_0", "my_name-train_29"]) self.assertListEqual(dset[range(0, -2, -1)]["filename"], ["my_name-train_0", "my_name-train_29"]) self.assertListEqual(dset[np.array([0, -1])]["filename"], ["my_name-train_0", "my_name-train_29"]) self.assertListEqual(dset[pd.Series([0, -1])]["filename"], ["my_name-train_0", "my_name-train_29"]) with dset.select(range(2)) as dset_subset: self.assertListEqual(dset_subset[-1:]["filename"], ["my_name-train_1"]) self.assertListEqual(dset_subset["filename"][-1:], ["my_name-train_1"]) def test_dummy_dataset_deepcopy(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: with assert_arrow_memory_doesnt_increase(): dset2 = copy.deepcopy(dset) # don't copy the underlying arrow data using memory self.assertEqual(len(dset2), 10) self.assertDictEqual(dset2.features, Features({"filename": Value("string")})) self.assertEqual(dset2[0]["filename"], "my_name-train_0") self.assertEqual(dset2["filename"][0], "my_name-train_0") del dset2 def test_dummy_dataset_pickle(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: tmp_file = os.path.join(tmp_dir, "dset.pt") with self._create_dummy_dataset(in_memory, tmp_dir).select(range(0, 10, 2)) as dset: with open(tmp_file, "wb") as f: pickle.dump(dset, f) with open(tmp_file, "rb") as f: with pickle.load(f) as dset: self.assertEqual(len(dset), 5) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") with self._create_dummy_dataset(in_memory, tmp_dir).select( range(0, 10, 2), indices_cache_file_name=os.path.join(tmp_dir, "ind.arrow") ) as dset: if not in_memory: dset._data.table = Unpicklable() dset._indices.table = Unpicklable() with open(tmp_file, "wb") as f: pickle.dump(dset, f) with open(tmp_file, "rb") as f: with pickle.load(f) as dset: self.assertEqual(len(dset), 5) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") def test_dummy_dataset_serialize(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with set_current_working_directory_to_temp_dir(): with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: dataset_path = "my_dataset" # rel path dset.save_to_disk(dataset_path) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") expected = dset.to_dict() with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: dataset_path = os.path.join(tmp_dir, "my_dataset") # abs path dset.save_to_disk(dataset_path) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") with self._create_dummy_dataset(in_memory, tmp_dir).select( range(10), indices_cache_file_name=os.path.join(tmp_dir, "ind.arrow") ) as dset: with assert_arrow_memory_doesnt_increase(): dset.save_to_disk(dataset_path) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") with self._create_dummy_dataset(in_memory, tmp_dir, nested_features=True) as dset: with assert_arrow_memory_doesnt_increase(): dset.save_to_disk(dataset_path) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual( dset.features, Features({"nested": {"a": Value("int64"), "x": Value("int64"), "c": Value("int64")}}), ) self.assertDictEqual(dset[0]["nested"], {"a": 1, "c": 100, "x": 10}) self.assertDictEqual(dset["nested"][0], {"a": 1, "c": 100, "x": 10}) with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: with assert_arrow_memory_doesnt_increase(): dset.save_to_disk(dataset_path, num_shards=4) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset.to_dict(), expected) self.assertEqual(len(dset.cache_files), 4) with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: with assert_arrow_memory_doesnt_increase(): dset.save_to_disk(dataset_path, num_proc=2) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset.to_dict(), expected) self.assertEqual(len(dset.cache_files), 2) with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: with assert_arrow_memory_doesnt_increase(): dset.save_to_disk(dataset_path, num_shards=7, num_proc=2) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset.to_dict(), expected) self.assertEqual(len(dset.cache_files), 7) with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: with assert_arrow_memory_doesnt_increase(): max_shard_size = dset._estimate_nbytes() // 2 + 1 dset.save_to_disk(dataset_path, max_shard_size=max_shard_size) with Dataset.load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset.to_dict(), expected) self.assertEqual(len(dset.cache_files), 2) def test_dummy_dataset_load_from_disk(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir).select(range(10)) as dset: dataset_path = os.path.join(tmp_dir, "my_dataset") dset.save_to_disk(dataset_path) with load_from_disk(dataset_path) as dset: self.assertEqual(len(dset), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertEqual(dset[0]["filename"], "my_name-train_0") self.assertEqual(dset["filename"][0], "my_name-train_0") def test_restore_saved_format(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format(type="numpy", columns=["col_1"], output_all_columns=True) dataset_path = os.path.join(tmp_dir, "my_dataset") dset.save_to_disk(dataset_path) with load_from_disk(dataset_path) as loaded_dset: self.assertEqual(dset.format, loaded_dset.format) def test_set_format_numpy_multiple_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint dset.set_format(type="numpy", columns=["col_1"]) self.assertEqual(len(dset[0]), 1) self.assertIsInstance(dset[0]["col_1"], np.int64) self.assertEqual(dset[0]["col_1"].item(), 3) self.assertIsInstance(dset["col_1"], np.ndarray) self.assertListEqual(list(dset["col_1"].shape), [4]) np.testing.assert_array_equal(dset["col_1"], np.array([3, 2, 1, 0])) self.assertNotEqual(dset._fingerprint, fingerprint) dset.reset_format() with dset.formatted_as(type="numpy", columns=["col_1"]): self.assertEqual(len(dset[0]), 1) self.assertIsInstance(dset[0]["col_1"], np.int64) self.assertEqual(dset[0]["col_1"].item(), 3) self.assertIsInstance(dset["col_1"], np.ndarray) self.assertListEqual(list(dset["col_1"].shape), [4]) np.testing.assert_array_equal(dset["col_1"], np.array([3, 2, 1, 0])) self.assertEqual(dset.format["type"], None) self.assertEqual(dset.format["format_kwargs"], {}) self.assertEqual(dset.format["columns"], dset.column_names) self.assertEqual(dset.format["output_all_columns"], False) dset.set_format(type="numpy", columns=["col_1"], output_all_columns=True) self.assertEqual(len(dset[0]), 3) self.assertIsInstance(dset[0]["col_2"], str) self.assertEqual(dset[0]["col_2"], "a") dset.set_format(type="numpy", columns=["col_1", "col_2"]) self.assertEqual(len(dset[0]), 2) self.assertIsInstance(dset[0]["col_2"], np.str_) self.assertEqual(dset[0]["col_2"].item(), "a") @require_torch def test_set_format_torch(self, in_memory): import torch with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format(type="torch", columns=["col_1"]) self.assertEqual(len(dset[0]), 1) self.assertIsInstance(dset[0]["col_1"], torch.Tensor) self.assertIsInstance(dset["col_1"], torch.Tensor) self.assertListEqual(list(dset[0]["col_1"].shape), []) self.assertEqual(dset[0]["col_1"].item(), 3) dset.set_format(type="torch", columns=["col_1"], output_all_columns=True) self.assertEqual(len(dset[0]), 3) self.assertIsInstance(dset[0]["col_2"], str) self.assertEqual(dset[0]["col_2"], "a") dset.set_format(type="torch") self.assertEqual(len(dset[0]), 3) self.assertIsInstance(dset[0]["col_1"], torch.Tensor) self.assertIsInstance(dset["col_1"], torch.Tensor) self.assertListEqual(list(dset[0]["col_1"].shape), []) self.assertEqual(dset[0]["col_1"].item(), 3) self.assertIsInstance(dset[0]["col_2"], str) self.assertEqual(dset[0]["col_2"], "a") self.assertIsInstance(dset[0]["col_3"], torch.Tensor) self.assertIsInstance(dset["col_3"], torch.Tensor) self.assertListEqual(list(dset[0]["col_3"].shape), []) @require_tf def test_set_format_tf(self, in_memory): import tensorflow as tf with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format(type="tensorflow", columns=["col_1"]) self.assertEqual(len(dset[0]), 1) self.assertIsInstance(dset[0]["col_1"], tf.Tensor) self.assertListEqual(list(dset[0]["col_1"].shape), []) self.assertEqual(dset[0]["col_1"].numpy().item(), 3) dset.set_format(type="tensorflow", columns=["col_1"], output_all_columns=True) self.assertEqual(len(dset[0]), 3) self.assertIsInstance(dset[0]["col_2"], str) self.assertEqual(dset[0]["col_2"], "a") dset.set_format(type="tensorflow", columns=["col_1", "col_2"]) self.assertEqual(len(dset[0]), 2) self.assertEqual(dset[0]["col_2"].numpy().decode("utf-8"), "a") def test_set_format_pandas(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format(type="pandas", columns=["col_1"]) self.assertEqual(len(dset[0].columns), 1) self.assertIsInstance(dset[0], pd.DataFrame) self.assertListEqual(list(dset[0].shape), [1, 1]) self.assertEqual(dset[0]["col_1"].item(), 3) dset.set_format(type="pandas", columns=["col_1", "col_2"]) self.assertEqual(len(dset[0].columns), 2) self.assertEqual(dset[0]["col_2"].item(), "a") def test_set_transform(self, in_memory): def transform(batch): return {k: [str(i).upper() for i in v] for k, v in batch.items()} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_transform(transform=transform, columns=["col_1"]) self.assertEqual(dset.format["type"], "custom") self.assertEqual(len(dset[0].keys()), 1) self.assertEqual(dset[0]["col_1"], "3") self.assertEqual(dset[:2]["col_1"], ["3", "2"]) self.assertEqual(dset["col_1"][:2], ["3", "2"]) prev_format = dset.format dset.set_format(**dset.format) self.assertEqual(prev_format, dset.format) dset.set_transform(transform=transform, columns=["col_1", "col_2"]) self.assertEqual(len(dset[0].keys()), 2) self.assertEqual(dset[0]["col_2"], "A") def test_transmit_format(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: transform = datasets.arrow_dataset.transmit_format(lambda x: x) # make sure identity transform doesn't apply unnecessary format self.assertEqual(dset._fingerprint, transform(dset)._fingerprint) dset.set_format(**dset.format) self.assertEqual(dset._fingerprint, transform(dset)._fingerprint) # check lists comparisons dset.set_format(columns=["col_1"]) self.assertEqual(dset._fingerprint, transform(dset)._fingerprint) dset.set_format(columns=["col_1", "col_2"]) self.assertEqual(dset._fingerprint, transform(dset)._fingerprint) dset.set_format("numpy", columns=["col_1", "col_2"]) self.assertEqual(dset._fingerprint, transform(dset)._fingerprint) def test_cast(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: features = dset.features features["col_1"] = Value("float64") features = Features({k: features[k] for k in list(features)[::-1]}) fingerprint = dset._fingerprint # TODO: with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): with dset.cast(features) as casted_dset: self.assertEqual(casted_dset.num_columns, 3) self.assertEqual(casted_dset.features["col_1"], Value("float64")) self.assertIsInstance(casted_dset[0]["col_1"], float) self.assertNotEqual(casted_dset._fingerprint, fingerprint) self.assertNotEqual(casted_dset, dset) assert_arrow_metadata_are_synced_with_dataset_features(casted_dset) def test_class_encode_column(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with self.assertRaises(ValueError): dset.class_encode_column(column="does not exist") with dset.class_encode_column("col_1") as casted_dset: self.assertIsInstance(casted_dset.features["col_1"], ClassLabel) self.assertListEqual(casted_dset.features["col_1"].names, ["0", "1", "2", "3"]) self.assertListEqual(casted_dset["col_1"], [3, 2, 1, 0]) self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint) self.assertNotEqual(casted_dset, dset) assert_arrow_metadata_are_synced_with_dataset_features(casted_dset) with dset.class_encode_column("col_2") as casted_dset: self.assertIsInstance(casted_dset.features["col_2"], ClassLabel) self.assertListEqual(casted_dset.features["col_2"].names, ["a", "b", "c", "d"]) self.assertListEqual(casted_dset["col_2"], [0, 1, 2, 3]) self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint) self.assertNotEqual(casted_dset, dset) assert_arrow_metadata_are_synced_with_dataset_features(casted_dset) with dset.class_encode_column("col_3") as casted_dset: self.assertIsInstance(casted_dset.features["col_3"], ClassLabel) self.assertListEqual(casted_dset.features["col_3"].names, ["False", "True"]) self.assertListEqual(casted_dset["col_3"], [0, 1, 0, 1]) self.assertNotEqual(casted_dset._fingerprint, dset._fingerprint) self.assertNotEqual(casted_dset, dset) assert_arrow_metadata_are_synced_with_dataset_features(casted_dset) # Test raises if feature is an array / sequence with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset: for column in dset.column_names: with self.assertRaises(ValueError): dset.class_encode_column(column) def test_remove_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint with dset.remove_columns(column_names="col_1") as new_dset: self.assertEqual(new_dset.num_columns, 2) self.assertListEqual(list(new_dset.column_names), ["col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with dset.remove_columns(column_names=["col_1", "col_2", "col_3"]) as new_dset: self.assertEqual(new_dset.num_columns, 0) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset._format_columns = ["col_1", "col_2", "col_3"] with dset.remove_columns(column_names=["col_1"]) as new_dset: self.assertListEqual(new_dset._format_columns, ["col_2", "col_3"]) self.assertEqual(new_dset.num_columns, 2) self.assertListEqual(list(new_dset.column_names), ["col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) def test_rename_column(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint with dset.rename_column(original_column_name="col_1", new_column_name="new_name") as new_dset: self.assertEqual(new_dset.num_columns, 3) self.assertListEqual(list(new_dset.column_names), ["new_name", "col_2", "col_3"]) self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) def test_rename_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint with dset.rename_columns({"col_1": "new_name"}) as new_dset: self.assertEqual(new_dset.num_columns, 3) self.assertListEqual(list(new_dset.column_names), ["new_name", "col_2", "col_3"]) self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) with dset.rename_columns({"col_1": "new_name", "col_2": "new_name2"}) as new_dset: self.assertEqual(new_dset.num_columns, 3) self.assertListEqual(list(new_dset.column_names), ["new_name", "new_name2", "col_3"]) self.assertListEqual(list(dset.column_names), ["col_1", "col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) # Original column not in dataset with self.assertRaises(ValueError): dset.rename_columns({"not_there": "new_name"}) # Empty new name with self.assertRaises(ValueError): dset.rename_columns({"col_1": ""}) # Duplicates with self.assertRaises(ValueError): dset.rename_columns({"col_1": "new_name", "col_2": "new_name"}) def test_select_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint with dset.select_columns(column_names=[]) as new_dset: self.assertEqual(new_dset.num_columns, 0) self.assertListEqual(list(new_dset.column_names), []) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: fingerprint = dset._fingerprint with dset.select_columns(column_names="col_1") as new_dset: self.assertEqual(new_dset.num_columns, 1) self.assertListEqual(list(new_dset.column_names), ["col_1"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with dset.select_columns(column_names=["col_1", "col_2", "col_3"]) as new_dset: self.assertEqual(new_dset.num_columns, 3) self.assertListEqual(list(new_dset.column_names), ["col_1", "col_2", "col_3"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with dset.select_columns(column_names=["col_3", "col_2", "col_1"]) as new_dset: self.assertEqual(new_dset.num_columns, 3) self.assertListEqual(list(new_dset.column_names), ["col_3", "col_2", "col_1"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset._format_columns = ["col_1", "col_2", "col_3"] with dset.select_columns(column_names=["col_1"]) as new_dset: self.assertListEqual(new_dset._format_columns, ["col_1"]) self.assertEqual(new_dset.num_columns, 1) self.assertListEqual(list(new_dset.column_names), ["col_1"]) self.assertNotEqual(new_dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(new_dset) def test_concatenate(self, in_memory): data1, data2, data3 = {"id": [0, 1, 2]}, {"id": [3, 4, 5]}, {"id": [6, 7]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: dset1, dset2, dset3 = ( Dataset.from_dict(data1, info=info1), Dataset.from_dict(data2, info=info2), Dataset.from_dict(data3), ) dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3) with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2)) self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3)) self.assertListEqual(dset_concat["id"], [0, 1, 2, 3, 4, 5, 6, 7]) self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3) self.assertEqual(dset_concat.info.description, "Dataset1\n\nDataset2") del dset1, dset2, dset3 def test_concatenate_formatted(self, in_memory): data1, data2, data3 = {"id": [0, 1, 2]}, {"id": [3, 4, 5]}, {"id": [6, 7]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: dset1, dset2, dset3 = ( Dataset.from_dict(data1, info=info1), Dataset.from_dict(data2, info=info2), Dataset.from_dict(data3), ) dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3) dset1.set_format("numpy") with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertEqual(dset_concat.format["type"], None) dset2.set_format("numpy") dset3.set_format("numpy") with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertEqual(dset_concat.format["type"], "numpy") del dset1, dset2, dset3 def test_concatenate_with_indices(self, in_memory): data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7, 8]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: dset1, dset2, dset3 = ( Dataset.from_dict(data1, info=info1), Dataset.from_dict(data2, info=info2), Dataset.from_dict(data3), ) dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3) dset1, dset2, dset3 = dset1.select([2, 1, 0]), dset2.select([2, 1, 0]), dset3 with concatenate_datasets([dset3, dset2, dset1]) as dset_concat: self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 3)) self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3)) self.assertListEqual(dset_concat["id"], [6, 7, 8, 5, 4, 3, 2, 1, 0]) # in_memory = False: # 3 cache files for the dset_concat._data table # no cache file for the indices because it's in memory # in_memory = True: # no cache files since both dset_concat._data and dset_concat._indices are in memory self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3) self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1") dset1 = dset1.rename_columns({"id": "id1"}) dset2 = dset2.rename_columns({"id": "id2"}) dset3 = dset3.rename_columns({"id": "id3"}) with concatenate_datasets([dset1, dset2, dset3], axis=1) as dset_concat: self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 3)) self.assertEqual(len(dset_concat), len(dset1)) self.assertListEqual(dset_concat["id1"], [2, 1, 0]) self.assertListEqual(dset_concat["id2"], [5, 4, 3]) self.assertListEqual(dset_concat["id3"], [6, 7, 8]) # in_memory = False: # 3 cache files for the dset_concat._data table # no cache file for the indices because it's None # in_memory = True: # no cache files since dset_concat._data is in memory and dset_concat._indices is None self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 3) self.assertIsNone(dset_concat._indices) self.assertEqual(dset_concat.info.description, "Dataset1\n\nDataset2") with concatenate_datasets([dset1], axis=1) as dset_concat: self.assertEqual(len(dset_concat), len(dset1)) self.assertListEqual(dset_concat["id1"], [2, 1, 0]) # in_memory = False: # 1 cache file for the dset_concat._data table # no cache file for the indices because it's in memory # in_memory = True: # no cache files since both dset_concat._data and dset_concat._indices are in memory self.assertEqual(len(dset_concat.cache_files), 0 if in_memory else 1) self.assertTrue(dset_concat._indices == dset1._indices) self.assertEqual(dset_concat.info.description, "Dataset1") del dset1, dset2, dset3 def test_concatenate_with_indices_from_disk(self, in_memory): data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: dset1, dset2, dset3 = ( Dataset.from_dict(data1, info=info1), Dataset.from_dict(data2, info=info2), Dataset.from_dict(data3), ) dset1, dset2, dset3 = self._to(in_memory, tmp_dir, dset1, dset2, dset3) dset1, dset2, dset3 = ( dset1.select([2, 1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i1.arrow")), dset2.select([2, 1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i2.arrow")), dset3.select([1, 0], indices_cache_file_name=os.path.join(tmp_dir, "i3.arrow")), ) with concatenate_datasets([dset3, dset2, dset1]) as dset_concat: self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2)) self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3)) self.assertListEqual(dset_concat["id"], [7, 6, 5, 4, 3, 2, 1, 0]) # in_memory = False: # 3 cache files for the dset_concat._data table, and 1 for the dset_concat._indices_table # There is only 1 for the indices tables (i1.arrow) # Indeed, the others are brought to memory since an offset is applied to them. # in_memory = True: # 1 cache file for i1.arrow since both dset_concat._data and dset_concat._indices are in memory self.assertEqual(len(dset_concat.cache_files), 1 if in_memory else 3 + 1) self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1") del dset1, dset2, dset3 def test_concatenate_pickle(self, in_memory): data1, data2, data3 = {"id": [0, 1, 2] * 2}, {"id": [3, 4, 5] * 2}, {"id": [6, 7], "foo": ["bar", "bar"]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: dset1, dset2, dset3 = ( Dataset.from_dict(data1, info=info1), Dataset.from_dict(data2, info=info2), Dataset.from_dict(data3), ) # mix from in-memory and on-disk datasets dset1, dset2 = self._to(in_memory, tmp_dir, dset1, dset2) dset3 = self._to(not in_memory, tmp_dir, dset3) dset1, dset2, dset3 = ( dset1.select( [2, 1, 0], keep_in_memory=in_memory, indices_cache_file_name=os.path.join(tmp_dir, "i1.arrow") if not in_memory else None, ), dset2.select( [2, 1, 0], keep_in_memory=in_memory, indices_cache_file_name=os.path.join(tmp_dir, "i2.arrow") if not in_memory else None, ), dset3.select( [1, 0], keep_in_memory=in_memory, indices_cache_file_name=os.path.join(tmp_dir, "i3.arrow") if not in_memory else None, ), ) dset3 = dset3.rename_column("foo", "new_foo") dset3 = dset3.remove_columns("new_foo") if in_memory: dset3._data.table = Unpicklable() else: dset1._data.table, dset2._data.table = Unpicklable(), Unpicklable() dset1, dset2, dset3 = (pickle.loads(pickle.dumps(d)) for d in (dset1, dset2, dset3)) with concatenate_datasets([dset3, dset2, dset1]) as dset_concat: if not in_memory: dset_concat._data.table = Unpicklable() with pickle.loads(pickle.dumps(dset_concat)) as dset_concat: self.assertTupleEqual((len(dset1), len(dset2), len(dset3)), (3, 3, 2)) self.assertEqual(len(dset_concat), len(dset1) + len(dset2) + len(dset3)) self.assertListEqual(dset_concat["id"], [7, 6, 5, 4, 3, 2, 1, 0]) # in_memory = True: 1 cache file for dset3 # in_memory = False: 2 caches files for dset1 and dset2, and 1 cache file for i1.arrow self.assertEqual(len(dset_concat.cache_files), 1 if in_memory else 2 + 1) self.assertEqual(dset_concat.info.description, "Dataset2\n\nDataset1") del dset1, dset2, dset3 def test_flatten(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [{"b": {"c": ["text"]}}] * 10, "foo": [1] * 10}, features=Features({"a": {"b": Sequence({"c": Value("string")})}, "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.b.c", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.b.c", "foo"]) self.assertDictEqual( dset.features, Features({"a.b.c": Sequence(Value("string")), "foo": Value("int64")}) ) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [{"en": "Thank you", "fr": "Merci"}] * 10, "foo": [1] * 10}, features=Features({"a": Translation(languages=["en", "fr"]), "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.en", "a.fr", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.en", "a.fr", "foo"]) self.assertDictEqual( dset.features, Features({"a.en": Value("string"), "a.fr": Value("string"), "foo": Value("int64")}), ) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [{"en": "the cat", "fr": ["le chat", "la chatte"], "de": "die katze"}] * 10, "foo": [1] * 10}, features=Features( {"a": TranslationVariableLanguages(languages=["en", "fr", "de"]), "foo": Value("int64")} ), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.language", "a.translation", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.language", "a.translation", "foo"]) self.assertDictEqual( dset.features, Features( { "a.language": Sequence(Value("string")), "a.translation": Sequence(Value("string")), "foo": Value("int64"), } ), ) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) @require_pil def test_flatten_complex_image(self, in_memory): # decoding turned on with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)] * 10, "foo": [1] * 10}, features=Features({"a": Image(), "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a", "foo"]) self.assertDictEqual(dset.features, Features({"a": Image(), "foo": Value("int64")})) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) # decoding turned on + nesting with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [{"b": np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)}] * 10, "foo": [1] * 10}, features=Features({"a": {"b": Image()}, "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.b", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.b", "foo"]) self.assertDictEqual(dset.features, Features({"a.b": Image(), "foo": Value("int64")})) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) # decoding turned off with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)] * 10, "foo": [1] * 10}, features=Features({"a": Image(decode=False), "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.bytes", "a.path", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.bytes", "a.path", "foo"]) self.assertDictEqual( dset.features, Features({"a.bytes": Value("binary"), "a.path": Value("string"), "foo": Value("int64")}), ) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) # decoding turned off + nesting with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"a": [{"b": np.arange(4 * 4 * 3, dtype=np.uint8).reshape(4, 4, 3)}] * 10, "foo": [1] * 10}, features=Features({"a": {"b": Image(decode=False)}, "foo": Value("int64")}), ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fingerprint = dset._fingerprint with dset.flatten() as dset: self.assertListEqual(sorted(dset.column_names), ["a.b.bytes", "a.b.path", "foo"]) self.assertListEqual(sorted(dset.features.keys()), ["a.b.bytes", "a.b.path", "foo"]) self.assertDictEqual( dset.features, Features( {"a.b.bytes": Value("binary"), "a.b.path": Value("string"), "foo": Value("int64")} ), ) self.assertNotEqual(dset._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset) def test_map(self, in_memory): # standard with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertDictEqual(dset.features, Features({"filename": Value("string")})) fingerprint = dset._fingerprint with dset.map( lambda x: {"name": x["filename"][:-2], "id": int(x["filename"].split("_")[-1])} ) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "name": Value("string"), "id": Value("int64")}), ) self.assertListEqual(dset_test["id"], list(range(30))) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) # no transform with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.map(lambda x: None) as dset_test: self.assertEqual(len(dset_test), 30) self.assertEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) # with indices with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map( lambda x, i: {"name": x["filename"][:-2], "id": i}, with_indices=True ) as dset_test_with_indices: self.assertEqual(len(dset_test_with_indices), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_with_indices.features, Features({"filename": Value("string"), "name": Value("string"), "id": Value("int64")}), ) self.assertListEqual(dset_test_with_indices["id"], list(range(30))) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_with_indices) # interrupted with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: def func(x, i): if i == 4: raise KeyboardInterrupt() return {"name": x["filename"][:-2], "id": i} tmp_file = os.path.join(tmp_dir, "test.arrow") self.assertRaises( KeyboardInterrupt, dset.map, function=func, with_indices=True, cache_file_name=tmp_file, writer_batch_size=2, ) self.assertFalse(os.path.exists(tmp_file)) with dset.map( lambda x, i: {"name": x["filename"][:-2], "id": i}, with_indices=True, cache_file_name=tmp_file, writer_batch_size=2, ) as dset_test_with_indices: self.assertTrue(os.path.exists(tmp_file)) self.assertEqual(len(dset_test_with_indices), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_with_indices.features, Features({"filename": Value("string"), "name": Value("string"), "id": Value("int64")}), ) self.assertListEqual(dset_test_with_indices["id"], list(range(30))) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_with_indices) # formatted with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format("numpy", columns=["col_1"]) with dset.map(lambda x: {"col_1_plus_one": x["col_1"] + 1}) as dset_test: self.assertEqual(len(dset_test), 4) self.assertEqual(dset_test.format["type"], "numpy") self.assertIsInstance(dset_test["col_1"], np.ndarray) self.assertIsInstance(dset_test["col_1_plus_one"], np.ndarray) self.assertListEqual(sorted(dset_test[0].keys()), ["col_1", "col_1_plus_one"]) self.assertListEqual(sorted(dset_test.column_names), ["col_1", "col_1_plus_one", "col_2", "col_3"]) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) def test_map_multiprocessing(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # standard with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertDictEqual(dset.features, Features({"filename": Value("string")})) fingerprint = dset._fingerprint with dset.map(picklable_map_function, num_proc=2) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 2) if not in_memory: self.assertIn("_of_00002.arrow", dset_test.cache_files[0]["filename"]) self.assertListEqual(dset_test["id"], list(range(30))) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) with tempfile.TemporaryDirectory() as tmp_dir: # num_proc > num rows with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertDictEqual(dset.features, Features({"filename": Value("string")})) fingerprint = dset._fingerprint with dset.select([0, 1], keep_in_memory=True).map(picklable_map_function, num_proc=10) as dset_test: self.assertEqual(len(dset_test), 2) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 2) self.assertListEqual(dset_test["id"], list(range(2))) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) with tempfile.TemporaryDirectory() as tmp_dir: # with_indices with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.map(picklable_map_function_with_indices, num_proc=3, with_indices=True) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 3) self.assertListEqual(dset_test["id"], list(range(30))) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) with tempfile.TemporaryDirectory() as tmp_dir: # with_rank with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.map(picklable_map_function_with_rank, num_proc=3, with_rank=True) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "rank": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 3) self.assertListEqual(dset_test["rank"], [0] * 10 + [1] * 10 + [2] * 10) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) with tempfile.TemporaryDirectory() as tmp_dir: # with_indices AND with_rank with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.map( picklable_map_function_with_indices_and_rank, num_proc=3, with_indices=True, with_rank=True ) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64"), "rank": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 3) self.assertListEqual(dset_test["id"], list(range(30))) self.assertListEqual(dset_test["rank"], [0] * 10 + [1] * 10 + [2] * 10) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) with tempfile.TemporaryDirectory() as tmp_dir: # new_fingerprint new_fingerprint = "foobar" invalid_new_fingerprint = "foobar/hey" with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint self.assertRaises( ValueError, dset.map, picklable_map_function, num_proc=2, new_fingerprint=invalid_new_fingerprint ) with dset.map(picklable_map_function, num_proc=2, new_fingerprint=new_fingerprint) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 2) self.assertListEqual(dset_test["id"], list(range(30))) self.assertNotEqual(dset_test._fingerprint, fingerprint) self.assertEqual(dset_test._fingerprint, new_fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) file_names = sorted(Path(cache_file["filename"]).name for cache_file in dset_test.cache_files) for i, file_name in enumerate(file_names): self.assertIn(new_fingerprint + f"_{i:05d}", file_name) with tempfile.TemporaryDirectory() as tmp_dir: # lambda (requires multiprocess from pathos) with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.map(lambda x: {"id": int(x["filename"].split("_")[-1])}, num_proc=2) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "id": Value("int64")}), ) self.assertEqual(len(dset_test.cache_files), 0 if in_memory else 2) self.assertListEqual(dset_test["id"], list(range(30))) self.assertNotEqual(dset_test._fingerprint, fingerprint) assert_arrow_metadata_are_synced_with_dataset_features(dset_test) def test_map_new_features(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: features = Features({"filename": Value("string"), "label": ClassLabel(names=["positive", "negative"])}) with dset.map( lambda x, i: {"label": i % 2}, with_indices=True, features=features ) as dset_test_with_indices: self.assertEqual(len(dset_test_with_indices), 30) self.assertDictEqual( dset_test_with_indices.features, features, ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_with_indices) def test_map_batched(self, in_memory): def map_batched(example): return {"filename_new": [x + "_extension" for x in example["filename"]]} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(map_batched, batched=True) as dset_test_batched: self.assertEqual(len(dset_test_batched), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_batched.features, Features({"filename": Value("string"), "filename_new": Value("string")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_batched) # change batch size and drop the last batch with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: batch_size = 4 with dset.map( map_batched, batched=True, batch_size=batch_size, drop_last_batch=True ) as dset_test_batched: self.assertEqual(len(dset_test_batched), 30 // batch_size * batch_size) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_batched.features, Features({"filename": Value("string"), "filename_new": Value("string")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_batched) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.formatted_as("numpy", columns=["filename"]): with dset.map(map_batched, batched=True) as dset_test_batched: self.assertEqual(len(dset_test_batched), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_batched.features, Features({"filename": Value("string"), "filename_new": Value("string")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_batched) def map_batched_with_indices(example, idx): return {"filename_new": [x + "_extension_" + str(idx) for x in example["filename"]]} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map( map_batched_with_indices, batched=True, with_indices=True ) as dset_test_with_indices_batched: self.assertEqual(len(dset_test_with_indices_batched), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_with_indices_batched.features, Features({"filename": Value("string"), "filename_new": Value("string")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_with_indices_batched) # check remove columns for even if the function modifies input in-place def map_batched_modifying_inputs_inplace(example): result = {"filename_new": [x + "_extension" for x in example["filename"]]} del example["filename"] return result with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map( map_batched_modifying_inputs_inplace, batched=True, remove_columns="filename" ) as dset_test_modifying_inputs_inplace: self.assertEqual(len(dset_test_modifying_inputs_inplace), 30) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual( dset_test_modifying_inputs_inplace.features, Features({"filename_new": Value("string")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset_test_modifying_inputs_inplace) def test_map_nested(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict({"field": ["a", "b"]}) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(lambda example: {"otherfield": {"capital": example["field"].capitalize()}}) as dset: with dset.map(lambda example: {"otherfield": {"append_x": example["field"] + "x"}}) as dset: self.assertEqual(dset[0], {"field": "a", "otherfield": {"append_x": "ax"}}) def test_map_return_example_as_dict_value(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict({"en": ["aa", "bb"], "fr": ["cc", "dd"]}) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(lambda example: {"translation": example}) as dset: self.assertEqual(dset[0], {"en": "aa", "fr": "cc", "translation": {"en": "aa", "fr": "cc"}}) def test_map_fn_kwargs(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict({"id": range(10)}) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fn_kwargs = {"offset": 3} with dset.map( lambda example, offset: {"id+offset": example["id"] + offset}, fn_kwargs=fn_kwargs ) as mapped_dset: assert mapped_dset["id+offset"] == list(range(3, 13)) with dset.map( lambda id, offset: {"id+offset": id + offset}, fn_kwargs=fn_kwargs, input_columns="id" ) as mapped_dset: assert mapped_dset["id+offset"] == list(range(3, 13)) with dset.map( lambda id, i, offset: {"id+offset": i + offset}, fn_kwargs=fn_kwargs, input_columns="id", with_indices=True, ) as mapped_dset: assert mapped_dset["id+offset"] == list(range(3, 13)) def test_map_caching(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: self._caplog.clear() with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with patch( "datasets.arrow_dataset.Dataset._map_single", autospec=Dataset._map_single, side_effect=Dataset._map_single, ) as mock_map_single: with dset.map(lambda x: {"foo": "bar"}) as dset_test1: dset_test1_data_files = list(dset_test1.cache_files) self.assertEqual(mock_map_single.call_count, 1) with dset.map(lambda x: {"foo": "bar"}) as dset_test2: self.assertEqual(dset_test1_data_files, dset_test2.cache_files) self.assertEqual(len(dset_test2.cache_files), 1 - int(in_memory)) self.assertTrue(("Loading cached processed dataset" in self._caplog.text) ^ in_memory) self.assertEqual(mock_map_single.call_count, 2 if in_memory else 1) with tempfile.TemporaryDirectory() as tmp_dir: self._caplog.clear() with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(lambda x: {"foo": "bar"}) as dset_test1: dset_test1_data_files = list(dset_test1.cache_files) with dset.map(lambda x: {"foo": "bar"}, load_from_cache_file=False) as dset_test2: self.assertEqual(dset_test1_data_files, dset_test2.cache_files) self.assertEqual(len(dset_test2.cache_files), 1 - int(in_memory)) self.assertNotIn("Loading cached processed dataset", self._caplog.text) with tempfile.TemporaryDirectory() as tmp_dir: self._caplog.clear() with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with patch( "datasets.arrow_dataset.Pool", new_callable=PickableMagicMock, side_effect=datasets.arrow_dataset.Pool, ) as mock_pool: with dset.map(lambda x: {"foo": "bar"}, num_proc=2) as dset_test1: dset_test1_data_files = list(dset_test1.cache_files) self.assertEqual(mock_pool.call_count, 1) with dset.map(lambda x: {"foo": "bar"}, num_proc=2) as dset_test2: self.assertEqual(dset_test1_data_files, dset_test2.cache_files) self.assertTrue( (len(re.findall("Loading cached processed dataset", self._caplog.text)) == 1) ^ in_memory ) self.assertEqual(mock_pool.call_count, 2 if in_memory else 1) with tempfile.TemporaryDirectory() as tmp_dir: self._caplog.clear() with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(lambda x: {"foo": "bar"}, num_proc=2) as dset_test1: dset_test1_data_files = list(dset_test1.cache_files) with dset.map(lambda x: {"foo": "bar"}, num_proc=2, load_from_cache_file=False) as dset_test2: self.assertEqual(dset_test1_data_files, dset_test2.cache_files) self.assertEqual(len(dset_test2.cache_files), (1 - int(in_memory)) * 2) self.assertNotIn("Loading cached processed dataset", self._caplog.text) if not in_memory: try: self._caplog.clear() with tempfile.TemporaryDirectory() as tmp_dir: with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: datasets.disable_caching() with dset.map(lambda x: {"foo": "bar"}) as dset_test1: with dset.map(lambda x: {"foo": "bar"}) as dset_test2: self.assertNotEqual(dset_test1.cache_files, dset_test2.cache_files) self.assertEqual(len(dset_test1.cache_files), 1) self.assertEqual(len(dset_test2.cache_files), 1) self.assertNotIn("Loading cached processed dataset", self._caplog.text) # make sure the arrow files are going to be removed self.assertIn( Path(tempfile.gettempdir()), Path(dset_test1.cache_files[0]["filename"]).parents, ) self.assertIn( Path(tempfile.gettempdir()), Path(dset_test2.cache_files[0]["filename"]).parents, ) finally: datasets.enable_caching() def test_map_return_pa_table(self, in_memory): def func_return_single_row_pa_table(x): return pa.table({"id": [0], "text": ["a"]}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func_return_single_row_pa_table) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"id": Value("int64"), "text": Value("string")}), ) self.assertEqual(dset_test[0]["id"], 0) self.assertEqual(dset_test[0]["text"], "a") # Batched def func_return_single_row_pa_table_batched(x): batch_size = len(x[next(iter(x))]) return pa.table({"id": [0] * batch_size, "text": ["a"] * batch_size}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func_return_single_row_pa_table_batched, batched=True) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"id": Value("int64"), "text": Value("string")}), ) self.assertEqual(dset_test[0]["id"], 0) self.assertEqual(dset_test[0]["text"], "a") # Error when returning a table with more than one row in the non-batched mode def func_return_multi_row_pa_table(x): return pa.table({"id": [0, 1], "text": ["a", "b"]}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertRaises(ValueError, dset.map, func_return_multi_row_pa_table) def test_map_return_pd_dataframe(self, in_memory): def func_return_single_row_pd_dataframe(x): return pd.DataFrame({"id": [0], "text": ["a"]}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func_return_single_row_pd_dataframe) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"id": Value("int64"), "text": Value("string")}), ) self.assertEqual(dset_test[0]["id"], 0) self.assertEqual(dset_test[0]["text"], "a") # Batched def func_return_single_row_pd_dataframe_batched(x): batch_size = len(x[next(iter(x))]) return pd.DataFrame({"id": [0] * batch_size, "text": ["a"] * batch_size}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func_return_single_row_pd_dataframe_batched, batched=True) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"id": Value("int64"), "text": Value("string")}), ) self.assertEqual(dset_test[0]["id"], 0) self.assertEqual(dset_test[0]["text"], "a") # Error when returning a table with more than one row in the non-batched mode def func_return_multi_row_pd_dataframe(x): return pd.DataFrame({"id": [0, 1], "text": ["a", "b"]}) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertRaises(ValueError, dset.map, func_return_multi_row_pd_dataframe) @require_torch def test_map_torch(self, in_memory): import torch def func(example): return {"tensor": torch.tensor([1.0, 2, 3])} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "tensor": Sequence(Value("float32"))}), ) self.assertListEqual(dset_test[0]["tensor"], [1, 2, 3]) @require_tf def test_map_tf(self, in_memory): import tensorflow as tf def func(example): return {"tensor": tf.constant([1.0, 2, 3])} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "tensor": Sequence(Value("float32"))}), ) self.assertListEqual(dset_test[0]["tensor"], [1, 2, 3]) @require_jax def test_map_jax(self, in_memory): import jax.numpy as jnp def func(example): return {"tensor": jnp.asarray([1.0, 2, 3])} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "tensor": Sequence(Value("float32"))}), ) self.assertListEqual(dset_test[0]["tensor"], [1, 2, 3]) def test_map_numpy(self, in_memory): def func(example): return {"tensor": np.array([1.0, 2, 3])} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "tensor": Sequence(Value("float64"))}), ) self.assertListEqual(dset_test[0]["tensor"], [1, 2, 3]) @require_torch def test_map_tensor_batched(self, in_memory): import torch def func(batch): return {"tensor": torch.tensor([[1.0, 2, 3]] * len(batch["filename"]))} with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(func, batched=True) as dset_test: self.assertEqual(len(dset_test), 30) self.assertDictEqual( dset_test.features, Features({"filename": Value("string"), "tensor": Sequence(Value("float32"))}), ) self.assertListEqual(dset_test[0]["tensor"], [1, 2, 3]) def test_map_input_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with dset.map(lambda col_1: {"label": col_1 % 2}, input_columns="col_1") as mapped_dset: self.assertEqual(mapped_dset[0].keys(), {"col_1", "col_2", "col_3", "label"}) self.assertEqual( mapped_dset.features, Features( { "col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool"), "label": Value("int64"), } ), ) def test_map_remove_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.map(lambda x, i: {"name": x["filename"][:-2], "id": i}, with_indices=True) as dset: self.assertTrue("id" in dset[0]) self.assertDictEqual( dset.features, Features({"filename": Value("string"), "name": Value("string"), "id": Value("int64")}), ) assert_arrow_metadata_are_synced_with_dataset_features(dset) with dset.map(lambda x: x, remove_columns=["id"]) as mapped_dset: self.assertTrue("id" not in mapped_dset[0]) self.assertDictEqual( mapped_dset.features, Features({"filename": Value("string"), "name": Value("string")}) ) assert_arrow_metadata_are_synced_with_dataset_features(mapped_dset) with mapped_dset.with_format("numpy", columns=mapped_dset.column_names) as mapped_dset: with mapped_dset.map( lambda x: {"name": 1}, remove_columns=mapped_dset.column_names ) as mapped_dset: self.assertTrue("filename" not in mapped_dset[0]) self.assertTrue("name" in mapped_dset[0]) self.assertDictEqual(mapped_dset.features, Features({"name": Value(dtype="int64")})) assert_arrow_metadata_are_synced_with_dataset_features(mapped_dset) # empty dataset columns_names = dset.column_names with dset.select([]) as empty_dset: self.assertEqual(len(empty_dset), 0) with empty_dset.map(lambda x: {}, remove_columns=columns_names[0]) as mapped_dset: self.assertListEqual(columns_names[1:], mapped_dset.column_names) assert_arrow_metadata_are_synced_with_dataset_features(mapped_dset) def test_map_stateful_callable(self, in_memory): # be sure that the state of the map callable is unaffected # before processing the dataset examples class ExampleCounter: def __init__(self, batched=False): self.batched = batched # state self.cnt = 0 def __call__(self, example): if self.batched: self.cnt += len(example) else: self.cnt += 1 with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: ex_cnt = ExampleCounter() dset.map(ex_cnt) self.assertEqual(ex_cnt.cnt, len(dset)) ex_cnt = ExampleCounter(batched=True) dset.map(ex_cnt) self.assertEqual(ex_cnt.cnt, len(dset)) @require_not_windows def test_map_crash_subprocess(self, in_memory): # be sure that a crash in one of the subprocess will not # hang dataset.map() call forever def do_crash(row): import os os.kill(os.getpid(), 9) return row with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with pytest.raises(RuntimeError) as excinfo: dset.map(do_crash, num_proc=2) assert str(excinfo.value) == ( "One of the subprocesses has abruptly died during map operation." "To debug the error, disable multiprocessing." ) def test_filter(self, in_memory): # keep only first five examples with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.filter(lambda x, i: i < 5, with_indices=True) as dset_filter_first_five: self.assertEqual(len(dset_filter_first_five), 5) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_filter_first_five.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_filter_first_five._fingerprint, fingerprint) # filter filenames with even id at the end + formatted with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: dset.set_format("numpy") fingerprint = dset._fingerprint with dset.filter(lambda x: (int(x["filename"][-1]) % 2 == 0)) as dset_filter_even_num: self.assertEqual(len(dset_filter_even_num), 15) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_filter_even_num.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_filter_even_num._fingerprint, fingerprint) self.assertEqual(dset_filter_even_num.format["type"], "numpy") def test_filter_with_indices_mapping(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: dset = Dataset.from_dict({"col": [0, 1, 2]}) with self._to(in_memory, tmp_dir, dset) as dset: with dset.filter(lambda x: x["col"] > 0) as dset: self.assertListEqual(dset["col"], [1, 2]) with dset.filter(lambda x: x["col"] < 2) as dset: self.assertListEqual(dset["col"], [1]) def test_filter_empty(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertIsNone(dset._indices, None) tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.filter(lambda _: False, cache_file_name=tmp_file) as dset: self.assertEqual(len(dset), 0) self.assertIsNotNone(dset._indices, None) tmp_file_2 = os.path.join(tmp_dir, "test_2.arrow") with dset.filter(lambda _: False, cache_file_name=tmp_file_2) as dset2: self.assertEqual(len(dset2), 0) self.assertEqual(dset._indices, dset2._indices) def test_filter_batched(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: dset = Dataset.from_dict({"col": [0, 1, 2]}) with self._to(in_memory, tmp_dir, dset) as dset: with dset.filter(lambda x: [i > 0 for i in x["col"]], batched=True) as dset: self.assertListEqual(dset["col"], [1, 2]) with dset.filter(lambda x: [i < 2 for i in x["col"]], batched=True) as dset: self.assertListEqual(dset["col"], [1]) def test_filter_input_columns(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: dset = Dataset.from_dict({"col_1": [0, 1, 2], "col_2": ["a", "b", "c"]}) with self._to(in_memory, tmp_dir, dset) as dset: with dset.filter(lambda x: x > 0, input_columns=["col_1"]) as filtered_dset: self.assertListEqual(filtered_dset.column_names, dset.column_names) self.assertListEqual(filtered_dset["col_1"], [1, 2]) self.assertListEqual(filtered_dset["col_2"], ["b", "c"]) def test_filter_fn_kwargs(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict({"id": range(10)}) as dset: with self._to(in_memory, tmp_dir, dset) as dset: fn_kwargs = {"max_offset": 3} with dset.filter( lambda example, max_offset: example["id"] < max_offset, fn_kwargs=fn_kwargs ) as filtered_dset: assert len(filtered_dset) == 3 with dset.filter( lambda id, max_offset: id < max_offset, fn_kwargs=fn_kwargs, input_columns="id" ) as filtered_dset: assert len(filtered_dset) == 3 with dset.filter( lambda id, i, max_offset: i < max_offset, fn_kwargs=fn_kwargs, input_columns="id", with_indices=True, ) as filtered_dset: assert len(filtered_dset) == 3 def test_filter_multiprocessing(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint with dset.filter(picklable_filter_function, num_proc=2) as dset_filter_first_ten: self.assertEqual(len(dset_filter_first_ten), 10) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_filter_first_ten.features, Features({"filename": Value("string")})) self.assertEqual(len(dset_filter_first_ten.cache_files), 0 if in_memory else 2) self.assertNotEqual(dset_filter_first_ten._fingerprint, fingerprint) def test_filter_caching(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: self._caplog.clear() with self._caplog.at_level(INFO, logger=get_logger().name): with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.filter(lambda x, i: i < 5, with_indices=True) as dset_filter_first_five1: dset_test1_data_files = list(dset_filter_first_five1.cache_files) with dset.filter(lambda x, i: i < 5, with_indices=True) as dset_filter_first_five2: self.assertEqual(dset_test1_data_files, dset_filter_first_five2.cache_files) self.assertEqual(len(dset_filter_first_five2.cache_files), 0 if in_memory else 2) self.assertTrue(("Loading cached processed dataset" in self._caplog.text) ^ in_memory) def test_keep_features_after_transform_specified(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]]} with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(invert_labels, features=features) as inverted_dset: self.assertEqual(inverted_dset.features.type, features.type) self.assertDictEqual(inverted_dset.features, features) assert_arrow_metadata_are_synced_with_dataset_features(inverted_dset) def test_keep_features_after_transform_unspecified(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]]} with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(invert_labels) as inverted_dset: self.assertEqual(inverted_dset.features.type, features.type) self.assertDictEqual(inverted_dset.features, features) assert_arrow_metadata_are_synced_with_dataset_features(inverted_dset) def test_keep_features_after_transform_to_file(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]]} with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: tmp_file = os.path.join(tmp_dir, "test.arrow") dset.map(invert_labels, cache_file_name=tmp_file) with Dataset.from_file(tmp_file) as inverted_dset: self.assertEqual(inverted_dset.features.type, features.type) self.assertDictEqual(inverted_dset.features, features) def test_keep_features_after_transform_to_memory(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]]} with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(invert_labels, keep_in_memory=True) as inverted_dset: self.assertEqual(inverted_dset.features.type, features.type) self.assertDictEqual(inverted_dset.features, features) def test_keep_features_after_loading_from_cache(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]]} with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: tmp_file1 = os.path.join(tmp_dir, "test1.arrow") tmp_file2 = os.path.join(tmp_dir, "test2.arrow") # TODO: Why mapped twice? inverted_dset = dset.map(invert_labels, cache_file_name=tmp_file1) inverted_dset = dset.map(invert_labels, cache_file_name=tmp_file2) self.assertGreater(len(inverted_dset.cache_files), 0) self.assertEqual(inverted_dset.features.type, features.type) self.assertDictEqual(inverted_dset.features, features) del inverted_dset def test_keep_features_with_new_features(self, in_memory): features = Features( {"tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"]))} ) def invert_labels(x): return {"labels": [(1 - label) for label in x["labels"]], "labels2": x["labels"]} expected_features = Features( { "tokens": Sequence(Value("string")), "labels": Sequence(ClassLabel(names=["negative", "positive"])), "labels2": Sequence(Value("int64")), } ) with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict( {"tokens": [["foo"] * 5] * 10, "labels": [[1] * 5] * 10}, features=features ) as dset: with self._to(in_memory, tmp_dir, dset) as dset: with dset.map(invert_labels) as inverted_dset: self.assertEqual(inverted_dset.features.type, expected_features.type) self.assertDictEqual(inverted_dset.features, expected_features) assert_arrow_metadata_are_synced_with_dataset_features(inverted_dset) def test_select(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: # select every two example indices = list(range(0, len(dset), 2)) tmp_file = os.path.join(tmp_dir, "test.arrow") fingerprint = dset._fingerprint with dset.select(indices, indices_cache_file_name=tmp_file) as dset_select_even: self.assertIsNotNone(dset_select_even._indices) # an indices mapping is created self.assertTrue(os.path.exists(tmp_file)) self.assertEqual(len(dset_select_even), 15) for row in dset_select_even: self.assertEqual(int(row["filename"][-1]) % 2, 0) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_select_even.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_select_even._fingerprint, fingerprint) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: indices = list(range(0, len(dset))) with dset.select(indices) as dset_select_all: # no indices mapping, since the indices are contiguous # (in this case the arrow table is simply sliced, which is more efficient) self.assertIsNone(dset_select_all._indices) self.assertEqual(len(dset_select_all), len(dset)) self.assertListEqual(list(dset_select_all), list(dset)) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_select_all.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_select_all._fingerprint, fingerprint) indices = range(0, len(dset)) with dset.select(indices) as dset_select_all: # same but with range self.assertIsNone(dset_select_all._indices) self.assertEqual(len(dset_select_all), len(dset)) self.assertListEqual(list(dset_select_all), list(dset)) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_select_all.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_select_all._fingerprint, fingerprint) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: bad_indices = list(range(5)) bad_indices[-1] = len(dset) + 10 # out of bounds tmp_file = os.path.join(tmp_dir, "test.arrow") self.assertRaises( Exception, dset.select, indices=bad_indices, indices_cache_file_name=tmp_file, writer_batch_size=2, ) self.assertFalse(os.path.exists(tmp_file)) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: indices = iter(range(len(dset))) # iterator of contiguous indices with dset.select(indices) as dset_select_all: # no indices mapping, since the indices are contiguous self.assertIsNone(dset_select_all._indices) self.assertEqual(len(dset_select_all), len(dset)) indices = reversed(range(len(dset))) # iterator of not contiguous indices tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.select(indices, indices_cache_file_name=tmp_file) as dset_select_all: # new indices mapping, since the indices are not contiguous self.assertIsNotNone(dset_select_all._indices) self.assertEqual(len(dset_select_all), len(dset)) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: bad_indices = list(range(5)) bad_indices[3] = "foo" # wrong type tmp_file = os.path.join(tmp_dir, "test.arrow") self.assertRaises( Exception, dset.select, indices=bad_indices, indices_cache_file_name=tmp_file, writer_batch_size=2, ) self.assertFalse(os.path.exists(tmp_file)) dset.set_format("numpy") with dset.select( range(5), indices_cache_file_name=tmp_file, writer_batch_size=2, ) as dset_select_five: self.assertIsNone(dset_select_five._indices) self.assertEqual(len(dset_select_five), 5) self.assertEqual(dset_select_five.format["type"], "numpy") for i, row in enumerate(dset_select_five): self.assertEqual(int(row["filename"][-1]), i) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_select_five.features, Features({"filename": Value("string")})) def test_select_then_map(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.select([0]) as d1: with d1.map(lambda x: {"id": int(x["filename"].split("_")[-1])}) as d1: self.assertEqual(d1[0]["id"], 0) with dset.select([1]) as d2: with d2.map(lambda x: {"id": int(x["filename"].split("_")[-1])}) as d2: self.assertEqual(d2[0]["id"], 1) with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: with dset.select([0], indices_cache_file_name=os.path.join(tmp_dir, "i1.arrow")) as d1: with d1.map(lambda x: {"id": int(x["filename"].split("_")[-1])}) as d1: self.assertEqual(d1[0]["id"], 0) with dset.select([1], indices_cache_file_name=os.path.join(tmp_dir, "i2.arrow")) as d2: with d2.map(lambda x: {"id": int(x["filename"].split("_")[-1])}) as d2: self.assertEqual(d2[0]["id"], 1) def test_pickle_after_many_transforms_on_disk(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertEqual(len(dset.cache_files), 0 if in_memory else 1) with dset.rename_column("filename", "file") as dset: self.assertListEqual(dset.column_names, ["file"]) with dset.select(range(5)) as dset: self.assertEqual(len(dset), 5) with dset.map(lambda x: {"id": int(x["file"][-1])}) as dset: self.assertListEqual(sorted(dset.column_names), ["file", "id"]) with dset.rename_column("id", "number") as dset: self.assertListEqual(sorted(dset.column_names), ["file", "number"]) with dset.select([1, 0]) as dset: self.assertEqual(dset[0]["file"], "my_name-train_1") self.assertEqual(dset[0]["number"], 1) self.assertEqual(dset._indices["indices"].to_pylist(), [1, 0]) if not in_memory: self.assertIn( ("rename_columns", (["file", "number"],), {}), dset._data.replays, ) if not in_memory: dset._data.table = Unpicklable() # check that we don't pickle the entire table pickled = pickle.dumps(dset) with pickle.loads(pickled) as loaded: self.assertEqual(loaded[0]["file"], "my_name-train_1") self.assertEqual(loaded[0]["number"], 1) def test_shuffle(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: tmp_file = os.path.join(tmp_dir, "test.arrow") fingerprint = dset._fingerprint with dset.shuffle(seed=1234, keep_in_memory=True) as dset_shuffled: self.assertEqual(len(dset_shuffled), 30) self.assertEqual(dset_shuffled[0]["filename"], "my_name-train_28") self.assertEqual(dset_shuffled[2]["filename"], "my_name-train_10") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_shuffled.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_shuffled._fingerprint, fingerprint) with dset.shuffle(seed=1234, indices_cache_file_name=tmp_file) as dset_shuffled: self.assertEqual(len(dset_shuffled), 30) self.assertEqual(dset_shuffled[0]["filename"], "my_name-train_28") self.assertEqual(dset_shuffled[2]["filename"], "my_name-train_10") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_shuffled.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_shuffled._fingerprint, fingerprint) # Reproducibility tmp_file = os.path.join(tmp_dir, "test_2.arrow") with dset.shuffle(seed=1234, indices_cache_file_name=tmp_file) as dset_shuffled_2: self.assertListEqual(dset_shuffled["filename"], dset_shuffled_2["filename"]) # Compatible with temp_seed with temp_seed(42), dset.shuffle() as d1: with temp_seed(42), dset.shuffle() as d2, dset.shuffle() as d3: self.assertListEqual(d1["filename"], d2["filename"]) self.assertEqual(d1._fingerprint, d2._fingerprint) self.assertNotEqual(d3["filename"], d2["filename"]) self.assertNotEqual(d3._fingerprint, d2._fingerprint) def test_sort(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # Sort on a single key with self._create_dummy_dataset(in_memory=in_memory, tmp_dir=tmp_dir) as dset: # Keep only 10 examples tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.select(range(10), indices_cache_file_name=tmp_file) as dset: tmp_file = os.path.join(tmp_dir, "test_2.arrow") with dset.shuffle(seed=1234, indices_cache_file_name=tmp_file) as dset: self.assertEqual(len(dset), 10) self.assertEqual(dset[0]["filename"], "my_name-train_8") self.assertEqual(dset[1]["filename"], "my_name-train_9") # Sort tmp_file = os.path.join(tmp_dir, "test_3.arrow") fingerprint = dset._fingerprint with dset.sort("filename", indices_cache_file_name=tmp_file) as dset_sorted: for i, row in enumerate(dset_sorted): self.assertEqual(int(row["filename"][-1]), i) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_sorted.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_sorted._fingerprint, fingerprint) # Sort reversed tmp_file = os.path.join(tmp_dir, "test_4.arrow") fingerprint = dset._fingerprint with dset.sort("filename", indices_cache_file_name=tmp_file, reverse=True) as dset_sorted: for i, row in enumerate(dset_sorted): self.assertEqual(int(row["filename"][-1]), len(dset_sorted) - 1 - i) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_sorted.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_sorted._fingerprint, fingerprint) # formatted dset.set_format("numpy") with dset.sort("filename") as dset_sorted_formatted: self.assertEqual(dset_sorted_formatted.format["type"], "numpy") # Sort on multiple keys with self._create_dummy_dataset(in_memory=in_memory, tmp_dir=tmp_dir, multiple_columns=True) as dset: tmp_file = os.path.join(tmp_dir, "test_5.arrow") fingerprint = dset._fingerprint # Throw error when reverse is a list of bools that does not match the length of column_names with pytest.raises(ValueError): dset.sort(["col_1", "col_2", "col_3"], reverse=[False]) with dset.shuffle(seed=1234, indices_cache_file_name=tmp_file) as dset: # Sort with dset.sort(["col_1", "col_2", "col_3"], reverse=[False, True, False]) as dset_sorted: for i, row in enumerate(dset_sorted): self.assertEqual(row["col_1"], i) self.assertDictEqual( dset.features, Features( { "col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool"), } ), ) self.assertDictEqual( dset_sorted.features, Features( { "col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool"), } ), ) self.assertNotEqual(dset_sorted._fingerprint, fingerprint) # Sort reversed with dset.sort(["col_1", "col_2", "col_3"], reverse=[True, False, True]) as dset_sorted: for i, row in enumerate(dset_sorted): self.assertEqual(row["col_1"], len(dset_sorted) - 1 - i) self.assertDictEqual( dset.features, Features( { "col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool"), } ), ) self.assertDictEqual( dset_sorted.features, Features( { "col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool"), } ), ) self.assertNotEqual(dset_sorted._fingerprint, fingerprint) # formatted dset.set_format("numpy") with dset.sort( ["col_1", "col_2", "col_3"], reverse=[False, True, False] ) as dset_sorted_formatted: self.assertEqual(dset_sorted_formatted.format["type"], "numpy") @require_tf def test_export(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: # Export the data tfrecord_path = os.path.join(tmp_dir, "test.tfrecord") with dset.map( lambda ex, i: { "id": i, "question": f"Question {i}", "answers": {"text": [f"Answer {i}-0", f"Answer {i}-1"], "answer_start": [0, 1]}, }, with_indices=True, remove_columns=["filename"], ) as formatted_dset: with formatted_dset.flatten() as formatted_dset: formatted_dset.set_format("numpy") formatted_dset.export(filename=tfrecord_path, format="tfrecord") # Import the data import tensorflow as tf tf_dset = tf.data.TFRecordDataset([tfrecord_path]) feature_description = { "id": tf.io.FixedLenFeature([], tf.int64), "question": tf.io.FixedLenFeature([], tf.string), "answers.text": tf.io.VarLenFeature(tf.string), "answers.answer_start": tf.io.VarLenFeature(tf.int64), } tf_parsed_dset = tf_dset.map( lambda example_proto: tf.io.parse_single_example(example_proto, feature_description) ) # Test that keys match original dataset for i, ex in enumerate(tf_parsed_dset): self.assertEqual(ex.keys(), formatted_dset[i].keys()) # Test for equal number of elements self.assertEqual(i, len(formatted_dset) - 1) def test_to_csv(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # File path argument with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_path.csv") bytes_written = dset.to_csv(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) self.assertEqual(bytes_written, os.path.getsize(file_path)) csv_dset = pd.read_csv(file_path) self.assertEqual(csv_dset.shape, dset.shape) self.assertListEqual(list(csv_dset.columns), list(dset.column_names)) # File buffer argument with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_buffer.csv") with open(file_path, "wb+") as buffer: bytes_written = dset.to_csv(path_or_buf=buffer) self.assertTrue(os.path.isfile(file_path)) self.assertEqual(bytes_written, os.path.getsize(file_path)) csv_dset = pd.read_csv(file_path) self.assertEqual(csv_dset.shape, dset.shape) self.assertListEqual(list(csv_dset.columns), list(dset.column_names)) # After a select/shuffle transform with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset = dset.select(range(0, len(dset), 2)).shuffle() file_path = os.path.join(tmp_dir, "test_path.csv") bytes_written = dset.to_csv(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) self.assertEqual(bytes_written, os.path.getsize(file_path)) csv_dset = pd.read_csv(file_path) self.assertEqual(csv_dset.shape, dset.shape) self.assertListEqual(list(csv_dset.columns), list(dset.column_names)) # With array features with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset: file_path = os.path.join(tmp_dir, "test_path.csv") bytes_written = dset.to_csv(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) self.assertEqual(bytes_written, os.path.getsize(file_path)) csv_dset = pd.read_csv(file_path) self.assertEqual(csv_dset.shape, dset.shape) self.assertListEqual(list(csv_dset.columns), list(dset.column_names)) def test_to_dict(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: # Full dset_to_dict = dset.to_dict() self.assertIsInstance(dset_to_dict, dict) self.assertListEqual(sorted(dset_to_dict.keys()), sorted(dset.column_names)) for col_name in dset.column_names: self.assertLessEqual(len(dset_to_dict[col_name]), len(dset)) # With index mapping with dset.select([1, 0, 3]) as dset: dset_to_dict = dset.to_dict() self.assertIsInstance(dset_to_dict, dict) self.assertEqual(len(dset_to_dict), 3) self.assertListEqual(sorted(dset_to_dict.keys()), sorted(dset.column_names)) for col_name in dset.column_names: self.assertIsInstance(dset_to_dict[col_name], list) self.assertEqual(len(dset_to_dict[col_name]), len(dset)) def test_to_list(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset_to_list = dset.to_list() self.assertIsInstance(dset_to_list, list) for row in dset_to_list: self.assertIsInstance(row, dict) self.assertListEqual(sorted(row.keys()), sorted(dset.column_names)) # With index mapping with dset.select([1, 0, 3]) as dset: dset_to_list = dset.to_list() self.assertIsInstance(dset_to_list, list) self.assertEqual(len(dset_to_list), 3) for row in dset_to_list: self.assertIsInstance(row, dict) self.assertListEqual(sorted(row.keys()), sorted(dset.column_names)) def test_to_pandas(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # Batched with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: batch_size = dset.num_rows - 1 to_pandas_generator = dset.to_pandas(batched=True, batch_size=batch_size) for batch in to_pandas_generator: self.assertIsInstance(batch, pd.DataFrame) self.assertListEqual(sorted(batch.columns), sorted(dset.column_names)) for col_name in dset.column_names: self.assertLessEqual(len(batch[col_name]), batch_size) # Full dset_to_pandas = dset.to_pandas() self.assertIsInstance(dset_to_pandas, pd.DataFrame) self.assertListEqual(sorted(dset_to_pandas.columns), sorted(dset.column_names)) for col_name in dset.column_names: self.assertEqual(len(dset_to_pandas[col_name]), len(dset)) # With index mapping with dset.select([1, 0, 3]) as dset: dset_to_pandas = dset.to_pandas() self.assertIsInstance(dset_to_pandas, pd.DataFrame) self.assertEqual(len(dset_to_pandas), 3) self.assertListEqual(sorted(dset_to_pandas.columns), sorted(dset.column_names)) for col_name in dset.column_names: self.assertEqual(len(dset_to_pandas[col_name]), dset.num_rows) def test_to_parquet(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # File path argument with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_path.parquet") dset.to_parquet(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) # self.assertEqual(bytes_written, os.path.getsize(file_path)) # because of compression, the number of bytes doesn't match parquet_dset = pd.read_parquet(file_path) self.assertEqual(parquet_dset.shape, dset.shape) self.assertListEqual(list(parquet_dset.columns), list(dset.column_names)) # File buffer argument with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_buffer.parquet") with open(file_path, "wb+") as buffer: dset.to_parquet(path_or_buf=buffer) self.assertTrue(os.path.isfile(file_path)) # self.assertEqual(bytes_written, os.path.getsize(file_path)) # because of compression, the number of bytes doesn't match parquet_dset = pd.read_parquet(file_path) self.assertEqual(parquet_dset.shape, dset.shape) self.assertListEqual(list(parquet_dset.columns), list(dset.column_names)) # After a select/shuffle transform with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset = dset.select(range(0, len(dset), 2)).shuffle() file_path = os.path.join(tmp_dir, "test_path.parquet") dset.to_parquet(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) # self.assertEqual(bytes_written, os.path.getsize(file_path)) # because of compression, the number of bytes doesn't match parquet_dset = pd.read_parquet(file_path) self.assertEqual(parquet_dset.shape, dset.shape) self.assertListEqual(list(parquet_dset.columns), list(dset.column_names)) # With array features with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset: file_path = os.path.join(tmp_dir, "test_path.parquet") dset.to_parquet(path_or_buf=file_path) self.assertTrue(os.path.isfile(file_path)) # self.assertEqual(bytes_written, os.path.getsize(file_path)) # because of compression, the number of bytes doesn't match parquet_dset = pd.read_parquet(file_path) self.assertEqual(parquet_dset.shape, dset.shape) self.assertListEqual(list(parquet_dset.columns), list(dset.column_names)) @require_sqlalchemy def test_to_sql(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: # Destionation specified as database URI string with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_path.sqlite") _ = dset.to_sql("data", "sqlite:///" + file_path) self.assertTrue(os.path.isfile(file_path)) sql_dset = pd.read_sql("data", "sqlite:///" + file_path) self.assertEqual(sql_dset.shape, dset.shape) self.assertListEqual(list(sql_dset.columns), list(dset.column_names)) # Destionation specified as sqlite3 connection with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: import sqlite3 file_path = os.path.join(tmp_dir, "test_path.sqlite") with contextlib.closing(sqlite3.connect(file_path)) as con: _ = dset.to_sql("data", con, if_exists="replace") self.assertTrue(os.path.isfile(file_path)) sql_dset = pd.read_sql("data", "sqlite:///" + file_path) self.assertEqual(sql_dset.shape, dset.shape) self.assertListEqual(list(sql_dset.columns), list(dset.column_names)) # Test writing to a database in chunks with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: file_path = os.path.join(tmp_dir, "test_path.sqlite") _ = dset.to_sql("data", "sqlite:///" + file_path, batch_size=1, if_exists="replace") self.assertTrue(os.path.isfile(file_path)) sql_dset = pd.read_sql("data", "sqlite:///" + file_path) self.assertEqual(sql_dset.shape, dset.shape) self.assertListEqual(list(sql_dset.columns), list(dset.column_names)) # After a select/shuffle transform with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset = dset.select(range(0, len(dset), 2)).shuffle() file_path = os.path.join(tmp_dir, "test_path.sqlite") _ = dset.to_sql("data", "sqlite:///" + file_path, if_exists="replace") self.assertTrue(os.path.isfile(file_path)) sql_dset = pd.read_sql("data", "sqlite:///" + file_path) self.assertEqual(sql_dset.shape, dset.shape) self.assertListEqual(list(sql_dset.columns), list(dset.column_names)) # With array features with self._create_dummy_dataset(in_memory, tmp_dir, array_features=True) as dset: file_path = os.path.join(tmp_dir, "test_path.sqlite") _ = dset.to_sql("data", "sqlite:///" + file_path, if_exists="replace") self.assertTrue(os.path.isfile(file_path)) sql_dset = pd.read_sql("data", "sqlite:///" + file_path) self.assertEqual(sql_dset.shape, dset.shape) self.assertListEqual(list(sql_dset.columns), list(dset.column_names)) def test_train_test_split(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: fingerprint = dset._fingerprint dset_dict = dset.train_test_split(test_size=10, shuffle=False) self.assertListEqual(list(dset_dict.keys()), ["train", "test"]) dset_train = dset_dict["train"] dset_test = dset_dict["test"] self.assertEqual(len(dset_train), 20) self.assertEqual(len(dset_test), 10) self.assertEqual(dset_train[0]["filename"], "my_name-train_0") self.assertEqual(dset_train[-1]["filename"], "my_name-train_19") self.assertEqual(dset_test[0]["filename"], "my_name-train_20") self.assertEqual(dset_test[-1]["filename"], "my_name-train_29") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_train.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_test.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_train._fingerprint, fingerprint) self.assertNotEqual(dset_test._fingerprint, fingerprint) self.assertNotEqual(dset_train._fingerprint, dset_test._fingerprint) dset_dict = dset.train_test_split(test_size=0.5, shuffle=False) self.assertListEqual(list(dset_dict.keys()), ["train", "test"]) dset_train = dset_dict["train"] dset_test = dset_dict["test"] self.assertEqual(len(dset_train), 15) self.assertEqual(len(dset_test), 15) self.assertEqual(dset_train[0]["filename"], "my_name-train_0") self.assertEqual(dset_train[-1]["filename"], "my_name-train_14") self.assertEqual(dset_test[0]["filename"], "my_name-train_15") self.assertEqual(dset_test[-1]["filename"], "my_name-train_29") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_train.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_test.features, Features({"filename": Value("string")})) dset_dict = dset.train_test_split(train_size=10, shuffle=False) self.assertListEqual(list(dset_dict.keys()), ["train", "test"]) dset_train = dset_dict["train"] dset_test = dset_dict["test"] self.assertEqual(len(dset_train), 10) self.assertEqual(len(dset_test), 20) self.assertEqual(dset_train[0]["filename"], "my_name-train_0") self.assertEqual(dset_train[-1]["filename"], "my_name-train_9") self.assertEqual(dset_test[0]["filename"], "my_name-train_10") self.assertEqual(dset_test[-1]["filename"], "my_name-train_29") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_train.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_test.features, Features({"filename": Value("string")})) dset.set_format("numpy") dset_dict = dset.train_test_split(train_size=10, seed=42) self.assertListEqual(list(dset_dict.keys()), ["train", "test"]) dset_train = dset_dict["train"] dset_test = dset_dict["test"] self.assertEqual(len(dset_train), 10) self.assertEqual(len(dset_test), 20) self.assertEqual(dset_train.format["type"], "numpy") self.assertEqual(dset_test.format["type"], "numpy") self.assertNotEqual(dset_train[0]["filename"].item(), "my_name-train_0") self.assertNotEqual(dset_train[-1]["filename"].item(), "my_name-train_9") self.assertNotEqual(dset_test[0]["filename"].item(), "my_name-train_10") self.assertNotEqual(dset_test[-1]["filename"].item(), "my_name-train_29") self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_train.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_test.features, Features({"filename": Value("string")})) del dset_test, dset_train, dset_dict # DatasetDict def test_shard(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir, self._create_dummy_dataset(in_memory, tmp_dir) as dset: tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.select(range(10), indices_cache_file_name=tmp_file) as dset: self.assertEqual(len(dset), 10) # Shard tmp_file_1 = os.path.join(tmp_dir, "test_1.arrow") fingerprint = dset._fingerprint with dset.shard(num_shards=8, index=1, indices_cache_file_name=tmp_file_1) as dset_sharded: self.assertEqual(2, len(dset_sharded)) self.assertEqual(["my_name-train_1", "my_name-train_9"], dset_sharded["filename"]) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_sharded.features, Features({"filename": Value("string")})) self.assertNotEqual(dset_sharded._fingerprint, fingerprint) # Shard contiguous tmp_file_2 = os.path.join(tmp_dir, "test_2.arrow") with dset.shard( num_shards=3, index=0, contiguous=True, indices_cache_file_name=tmp_file_2 ) as dset_sharded_contiguous: self.assertEqual([f"my_name-train_{i}" for i in (0, 1, 2, 3)], dset_sharded_contiguous["filename"]) self.assertDictEqual(dset.features, Features({"filename": Value("string")})) self.assertDictEqual(dset_sharded_contiguous.features, Features({"filename": Value("string")})) # Test lengths of sharded contiguous self.assertEqual( [4, 3, 3], [ len(dset.shard(3, index=i, contiguous=True, indices_cache_file_name=tmp_file_2 + str(i))) for i in range(3) ], ) # formatted dset.set_format("numpy") with dset.shard(num_shards=3, index=0) as dset_sharded_formatted: self.assertEqual(dset_sharded_formatted.format["type"], "numpy") def test_flatten_indices(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertIsNone(dset._indices) tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.select(range(0, 10, 2), indices_cache_file_name=tmp_file) as dset: self.assertEqual(len(dset), 5) self.assertIsNotNone(dset._indices) tmp_file_2 = os.path.join(tmp_dir, "test_2.arrow") fingerprint = dset._fingerprint dset.set_format("numpy") with dset.flatten_indices(cache_file_name=tmp_file_2) as dset: self.assertEqual(len(dset), 5) self.assertEqual(len(dset.data), len(dset)) self.assertIsNone(dset._indices) self.assertNotEqual(dset._fingerprint, fingerprint) self.assertEqual(dset.format["type"], "numpy") # Test unique works dset.unique(dset.column_names[0]) assert_arrow_metadata_are_synced_with_dataset_features(dset) # Empty indices mapping with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir) as dset: self.assertIsNone(dset._indices, None) tmp_file = os.path.join(tmp_dir, "test.arrow") with dset.filter(lambda _: False, cache_file_name=tmp_file) as dset: self.assertEqual(len(dset), 0) self.assertIsNotNone(dset._indices, None) tmp_file_2 = os.path.join(tmp_dir, "test_2.arrow") fingerprint = dset._fingerprint dset.set_format("numpy") with dset.flatten_indices(cache_file_name=tmp_file_2) as dset: self.assertEqual(len(dset), 0) self.assertEqual(len(dset.data), len(dset)) self.assertIsNone(dset._indices, None) self.assertNotEqual(dset._fingerprint, fingerprint) self.assertEqual(dset.format["type"], "numpy") # Test unique works dset.unique(dset.column_names[0]) assert_arrow_metadata_are_synced_with_dataset_features(dset) @require_tf @require_torch def test_format_vectors(self, in_memory): import numpy as np import tensorflow as tf import torch with tempfile.TemporaryDirectory() as tmp_dir, self._create_dummy_dataset( in_memory, tmp_dir ) as dset, dset.map(lambda ex, i: {"vec": np.ones(3) * i}, with_indices=True) as dset: columns = dset.column_names self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) for col in columns: self.assertIsInstance(dset[0][col], (str, list)) self.assertIsInstance(dset[:2][col], list) self.assertDictEqual( dset.features, Features({"filename": Value("string"), "vec": Sequence(Value("float64"))}) ) dset.set_format("tensorflow") self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) for col in columns: self.assertIsInstance(dset[0][col], (tf.Tensor, tf.RaggedTensor)) self.assertIsInstance(dset[:2][col], (tf.Tensor, tf.RaggedTensor)) self.assertIsInstance(dset[col], (tf.Tensor, tf.RaggedTensor)) self.assertTupleEqual(tuple(dset[:2]["vec"].shape), (2, 3)) self.assertTupleEqual(tuple(dset["vec"][:2].shape), (2, 3)) dset.set_format("numpy") self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[0]["filename"], np.str_) self.assertIsInstance(dset[:2]["filename"], np.ndarray) self.assertIsInstance(dset["filename"], np.ndarray) self.assertIsInstance(dset[0]["vec"], np.ndarray) self.assertIsInstance(dset[:2]["vec"], np.ndarray) self.assertIsInstance(dset["vec"], np.ndarray) self.assertTupleEqual(dset[:2]["vec"].shape, (2, 3)) self.assertTupleEqual(dset["vec"][:2].shape, (2, 3)) dset.set_format("torch", columns=["vec"]) self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) # torch.Tensor is only for numerical columns self.assertIsInstance(dset[0]["vec"], torch.Tensor) self.assertIsInstance(dset[:2]["vec"], torch.Tensor) self.assertIsInstance(dset["vec"][:2], torch.Tensor) self.assertTupleEqual(dset[:2]["vec"].shape, (2, 3)) self.assertTupleEqual(dset["vec"][:2].shape, (2, 3)) @require_tf @require_torch def test_format_ragged_vectors(self, in_memory): import numpy as np import tensorflow as tf import torch with tempfile.TemporaryDirectory() as tmp_dir, self._create_dummy_dataset( in_memory, tmp_dir ) as dset, dset.map(lambda ex, i: {"vec": np.ones(3 + i) * i}, with_indices=True) as dset: columns = dset.column_names self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) for col in columns: self.assertIsInstance(dset[0][col], (str, list)) self.assertIsInstance(dset[:2][col], list) self.assertDictEqual( dset.features, Features({"filename": Value("string"), "vec": Sequence(Value("float64"))}) ) dset.set_format("tensorflow") self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) for col in columns: self.assertIsInstance(dset[0][col], tf.Tensor) self.assertIsInstance(dset[:2][col], tf.RaggedTensor if col == "vec" else tf.Tensor) self.assertIsInstance(dset[col], tf.RaggedTensor if col == "vec" else tf.Tensor) # dim is None for ragged vectors in tensorflow self.assertListEqual(dset[:2]["vec"].shape.as_list(), [2, None]) self.assertListEqual(dset["vec"][:2].shape.as_list(), [2, None]) dset.set_format("numpy") self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[0]["filename"], np.str_) self.assertIsInstance(dset[:2]["filename"], np.ndarray) self.assertIsInstance(dset["filename"], np.ndarray) self.assertIsInstance(dset[0]["vec"], np.ndarray) self.assertIsInstance(dset[:2]["vec"], np.ndarray) self.assertIsInstance(dset["vec"], np.ndarray) # array is flat for ragged vectors in numpy self.assertTupleEqual(dset[:2]["vec"].shape, (2,)) self.assertTupleEqual(dset["vec"][:2].shape, (2,)) dset.set_format("torch") self.assertIsNotNone(dset[0]) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[0]["filename"], str) self.assertIsInstance(dset[:2]["filename"], list) self.assertIsInstance(dset["filename"], list) self.assertIsInstance(dset[0]["vec"], torch.Tensor) self.assertIsInstance(dset[:2]["vec"][0], torch.Tensor) self.assertIsInstance(dset["vec"][0], torch.Tensor) # pytorch doesn't support ragged tensors, so we should have lists self.assertIsInstance(dset[:2]["vec"], list) self.assertIsInstance(dset[:2]["vec"][0], torch.Tensor) self.assertIsInstance(dset["vec"][:2], list) self.assertIsInstance(dset["vec"][0], torch.Tensor) @require_tf @require_torch def test_format_nested(self, in_memory): import numpy as np import tensorflow as tf import torch with tempfile.TemporaryDirectory() as tmp_dir, self._create_dummy_dataset( in_memory, tmp_dir ) as dset, dset.map(lambda ex: {"nested": [{"foo": np.ones(3)}] * len(ex["filename"])}, batched=True) as dset: self.assertDictEqual( dset.features, Features({"filename": Value("string"), "nested": {"foo": Sequence(Value("float64"))}}) ) dset.set_format("tensorflow") self.assertIsNotNone(dset[0]) self.assertIsInstance(dset[0]["nested"]["foo"], (tf.Tensor, tf.RaggedTensor)) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[:2]["nested"][0]["foo"], (tf.Tensor, tf.RaggedTensor)) self.assertIsInstance(dset["nested"][0]["foo"], (tf.Tensor, tf.RaggedTensor)) dset.set_format("numpy") self.assertIsNotNone(dset[0]) self.assertIsInstance(dset[0]["nested"]["foo"], np.ndarray) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[:2]["nested"][0]["foo"], np.ndarray) self.assertIsInstance(dset["nested"][0]["foo"], np.ndarray) dset.set_format("torch", columns="nested") self.assertIsNotNone(dset[0]) self.assertIsInstance(dset[0]["nested"]["foo"], torch.Tensor) self.assertIsNotNone(dset[:2]) self.assertIsInstance(dset[:2]["nested"][0]["foo"], torch.Tensor) self.assertIsInstance(dset["nested"][0]["foo"], torch.Tensor) def test_format_pandas(self, in_memory): import pandas as pd with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: dset.set_format("pandas") self.assertIsInstance(dset[0], pd.DataFrame) self.assertIsInstance(dset[:2], pd.DataFrame) self.assertIsInstance(dset["col_1"], pd.Series) def test_transmit_format_single(self, in_memory): @transmit_format def my_single_transform(self, return_factory, *args, **kwargs): return return_factory() with tempfile.TemporaryDirectory() as tmp_dir: return_factory = partial( self._create_dummy_dataset, in_memory=in_memory, tmp_dir=tmp_dir, multiple_columns=True ) with return_factory() as dset: dset.set_format("numpy", columns=["col_1"]) prev_format = dset.format with my_single_transform(dset, return_factory) as transformed_dset: self.assertDictEqual(transformed_dset.format, prev_format) def test_transmit_format_dict(self, in_memory): @transmit_format def my_split_transform(self, return_factory, *args, **kwargs): return DatasetDict({"train": return_factory()}) with tempfile.TemporaryDirectory() as tmp_dir: return_factory = partial( self._create_dummy_dataset, in_memory=in_memory, tmp_dir=tmp_dir, multiple_columns=True ) with return_factory() as dset: dset.set_format("numpy", columns=["col_1"]) prev_format = dset.format transformed_dset = my_split_transform(dset, return_factory)["train"] self.assertDictEqual(transformed_dset.format, prev_format) del transformed_dset # DatasetDict def test_with_format(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: with dset.with_format("numpy", columns=["col_1"]) as dset2: dset.set_format("numpy", columns=["col_1"]) self.assertDictEqual(dset.format, dset2.format) self.assertEqual(dset._fingerprint, dset2._fingerprint) # dset.reset_format() # self.assertNotEqual(dset.format, dset2.format) # self.assertNotEqual(dset._fingerprint, dset2._fingerprint) def test_with_transform(self, in_memory): with tempfile.TemporaryDirectory() as tmp_dir: with self._create_dummy_dataset(in_memory, tmp_dir, multiple_columns=True) as dset: transform = lambda x: {"foo": x["col_1"]} # noqa: E731 with dset.with_transform(transform, columns=["col_1"]) as dset2: dset.set_transform(transform, columns=["col_1"]) self.assertDictEqual(dset.format, dset2.format) self.assertEqual(dset._fingerprint, dset2._fingerprint) dset.reset_format() self.assertNotEqual(dset.format, dset2.format) self.assertNotEqual(dset._fingerprint, dset2._fingerprint) @require_tf def test_tf_dataset_conversion(self, in_memory): tmp_dir = tempfile.TemporaryDirectory() for num_workers in [0, 1, 2]: if num_workers > 0 and sys.platform == "win32" and not in_memory: continue # This test hangs on the Py3.10 test worker, but it runs fine locally on my Windows machine with self._create_dummy_dataset(in_memory, tmp_dir.name, array_features=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_3", batch_size=2, num_workers=num_workers) batch = next(iter(tf_dataset)) self.assertEqual(batch.shape.as_list(), [2, 4]) self.assertEqual(batch.dtype.name, "int64") with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_1", batch_size=2, num_workers=num_workers) batch = next(iter(tf_dataset)) self.assertEqual(batch.shape.as_list(), [2]) self.assertEqual(batch.dtype.name, "int64") with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: # Check that it works with all default options (except batch_size because the dummy dataset only has 4) tf_dataset = dset.to_tf_dataset(batch_size=2, num_workers=num_workers) batch = next(iter(tf_dataset)) self.assertEqual(batch["col_1"].shape.as_list(), [2]) self.assertEqual(batch["col_2"].shape.as_list(), [2]) self.assertEqual(batch["col_1"].dtype.name, "int64") self.assertEqual(batch["col_2"].dtype.name, "string") # Assert that we're converting strings properly with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: # Check that when we use a transform that creates a new column from existing column values # but don't load the old columns that the new column depends on in the final dataset, # that they're still kept around long enough to be used in the transform transform_dset = dset.with_transform( lambda x: {"new_col": [val * 2 for val in x["col_1"]], "col_1": x["col_1"]} ) tf_dataset = transform_dset.to_tf_dataset(columns="new_col", batch_size=2, num_workers=num_workers) batch = next(iter(tf_dataset)) self.assertEqual(batch.shape.as_list(), [2]) self.assertEqual(batch.dtype.name, "int64") del transform_dset del tf_dataset # For correct cleanup @require_tf def test_tf_index_reshuffling(self, in_memory): # This test checks that when we do two epochs over a tf.data.Dataset from to_tf_dataset # that we get a different shuffle order each time # It also checks that when we aren't shuffling, that the dataset order is fully preserved # even when loading is split across multiple workers data = {"col_1": list(range(20))} for num_workers in [0, 1, 2, 3]: with Dataset.from_dict(data) as dset: tf_dataset = dset.to_tf_dataset(batch_size=10, shuffle=True, num_workers=num_workers) indices = [] for batch in tf_dataset: indices.append(batch["col_1"]) indices = np.concatenate([arr.numpy() for arr in indices]) second_indices = [] for batch in tf_dataset: second_indices.append(batch["col_1"]) second_indices = np.concatenate([arr.numpy() for arr in second_indices]) self.assertFalse(np.array_equal(indices, second_indices)) self.assertEqual(len(indices), len(np.unique(indices))) self.assertEqual(len(second_indices), len(np.unique(second_indices))) tf_dataset = dset.to_tf_dataset(batch_size=1, shuffle=False, num_workers=num_workers) for i, batch in enumerate(tf_dataset): # Assert that the unshuffled order is fully preserved even when multiprocessing self.assertEqual(i, batch["col_1"].numpy()) @require_tf def test_tf_label_renaming(self, in_memory): # Protect TF-specific imports in here import tensorflow as tf from datasets.utils.tf_utils import minimal_tf_collate_fn_with_renaming tmp_dir = tempfile.TemporaryDirectory() with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: with dset.rename_columns({"col_1": "features", "col_2": "label"}) as new_dset: tf_dataset = new_dset.to_tf_dataset(collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4) batch = next(iter(tf_dataset)) self.assertTrue("labels" in batch and "features" in batch) tf_dataset = new_dset.to_tf_dataset( columns=["features", "labels"], collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4 ) batch = next(iter(tf_dataset)) self.assertTrue("labels" in batch and "features" in batch) tf_dataset = new_dset.to_tf_dataset( columns=["features", "label"], collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4 ) batch = next(iter(tf_dataset)) self.assertTrue("labels" in batch and "features" in batch) # Assert renaming was handled correctly tf_dataset = new_dset.to_tf_dataset( columns=["features"], label_cols=["labels"], collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4, ) batch = next(iter(tf_dataset)) self.assertEqual(len(batch), 2) # Assert that we don't have any empty entries here self.assertTrue(isinstance(batch[0], tf.Tensor) and isinstance(batch[1], tf.Tensor)) tf_dataset = new_dset.to_tf_dataset( columns=["features"], label_cols=["label"], collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4, ) batch = next(iter(tf_dataset)) self.assertEqual(len(batch), 2) # Assert that we don't have any empty entries here self.assertTrue(isinstance(batch[0], tf.Tensor) and isinstance(batch[1], tf.Tensor)) tf_dataset = new_dset.to_tf_dataset( columns=["features"], collate_fn=minimal_tf_collate_fn_with_renaming, batch_size=4, ) batch = next(iter(tf_dataset)) # Assert that labels didn't creep in when we don't ask for them # just because the collate_fn added them self.assertTrue(isinstance(batch, tf.Tensor)) del tf_dataset # For correct cleanup @require_tf def test_tf_dataset_options(self, in_memory): tmp_dir = tempfile.TemporaryDirectory() # Test that batch_size option works as expected with self._create_dummy_dataset(in_memory, tmp_dir.name, array_features=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_3", batch_size=2) batch = next(iter(tf_dataset)) self.assertEqual(batch.shape.as_list(), [2, 4]) self.assertEqual(batch.dtype.name, "int64") # Test that batch_size=None (optional) works as expected with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_3", batch_size=None) single_example = next(iter(tf_dataset)) self.assertEqual(single_example.shape.as_list(), []) self.assertEqual(single_example.dtype.name, "int64") # Assert that we can batch it with `tf.data.Dataset.batch` method batched_dataset = tf_dataset.batch(batch_size=2) batch = next(iter(batched_dataset)) self.assertEqual(batch.shape.as_list(), [2]) self.assertEqual(batch.dtype.name, "int64") # Test that batching a batch_size=None dataset produces the same results as using batch_size arg with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: batch_size = 2 tf_dataset_no_batch = dset.to_tf_dataset(columns="col_3") tf_dataset_batch = dset.to_tf_dataset(columns="col_3", batch_size=batch_size) self.assertEqual(tf_dataset_no_batch.element_spec, tf_dataset_batch.unbatch().element_spec) self.assertEqual(tf_dataset_no_batch.cardinality(), tf_dataset_batch.cardinality() * batch_size) for batch_1, batch_2 in zip(tf_dataset_no_batch.batch(batch_size=batch_size), tf_dataset_batch): self.assertEqual(batch_1.shape, batch_2.shape) self.assertEqual(batch_1.dtype, batch_2.dtype) self.assertListEqual(batch_1.numpy().tolist(), batch_2.numpy().tolist()) # Test that requesting label_cols works as expected with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_1", label_cols=["col_2", "col_3"], batch_size=4) batch = next(iter(tf_dataset)) self.assertEqual(len(batch), 2) self.assertEqual(set(batch[1].keys()), {"col_2", "col_3"}) self.assertEqual(batch[0].dtype.name, "int64") # Assert data comes out as expected and isn't shuffled self.assertEqual(batch[0].numpy().tolist(), [3, 2, 1, 0]) self.assertEqual(batch[1]["col_2"].numpy().tolist(), [b"a", b"b", b"c", b"d"]) self.assertEqual(batch[1]["col_3"].numpy().tolist(), [0, 1, 0, 1]) # Check that incomplete batches are dropped if requested with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: tf_dataset = dset.to_tf_dataset(columns="col_1", batch_size=3) tf_dataset_with_drop = dset.to_tf_dataset(columns="col_1", batch_size=3, drop_remainder=True) self.assertEqual(len(tf_dataset), 2) # One batch of 3 and one batch of 1 self.assertEqual(len(tf_dataset_with_drop), 1) # Incomplete batch of 1 is dropped # Test that `NotImplementedError` is raised `batch_size` is None and `num_workers` is > 0 if sys.version_info >= (3, 8): with self._create_dummy_dataset(in_memory, tmp_dir.name, multiple_columns=True) as dset: with self.assertRaisesRegex( NotImplementedError, "`batch_size` must be specified when using multiple workers" ): dset.to_tf_dataset(columns="col_1", batch_size=None, num_workers=2) del tf_dataset # For correct cleanup del tf_dataset_with_drop class MiscellaneousDatasetTest(TestCase): def test_from_pandas(self): data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} df = pd.DataFrame.from_dict(data) with Dataset.from_pandas(df) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2"]) self.assertDictEqual(dset.features, Features({"col_1": Value("int64"), "col_2": Value("string")})) features = Features({"col_1": Value("int64"), "col_2": Value("string")}) with Dataset.from_pandas(df, features=features) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2"]) self.assertDictEqual(dset.features, Features({"col_1": Value("int64"), "col_2": Value("string")})) features = Features({"col_1": Value("int64"), "col_2": Value("string")}) with Dataset.from_pandas(df, features=features, info=DatasetInfo(features=features)) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2"]) self.assertDictEqual(dset.features, Features({"col_1": Value("int64"), "col_2": Value("string")})) features = Features({"col_1": Sequence(Value("string")), "col_2": Value("string")}) self.assertRaises(TypeError, Dataset.from_pandas, df, features=features) def test_from_dict(self): data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"], "col_3": pa.array([True, False, True, False])} with Dataset.from_dict(data) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(dset["col_3"], data["col_3"].to_pylist()) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2", "col_3"]) self.assertDictEqual( dset.features, Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}) ) features = Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}) with Dataset.from_dict(data, features=features) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(dset["col_3"], data["col_3"].to_pylist()) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2", "col_3"]) self.assertDictEqual( dset.features, Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}) ) features = Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}) with Dataset.from_dict(data, features=features, info=DatasetInfo(features=features)) as dset: self.assertListEqual(dset["col_1"], data["col_1"]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(dset["col_3"], data["col_3"].to_pylist()) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2", "col_3"]) self.assertDictEqual( dset.features, Features({"col_1": Value("int64"), "col_2": Value("string"), "col_3": Value("bool")}) ) features = Features({"col_1": Value("string"), "col_2": Value("string"), "col_3": Value("int32")}) with Dataset.from_dict(data, features=features) as dset: # the integers are converted to strings self.assertListEqual(dset["col_1"], [str(x) for x in data["col_1"]]) self.assertListEqual(dset["col_2"], data["col_2"]) self.assertListEqual(dset["col_3"], [int(x) for x in data["col_3"].to_pylist()]) self.assertListEqual(list(dset.features.keys()), ["col_1", "col_2", "col_3"]) self.assertDictEqual( dset.features, Features({"col_1": Value("string"), "col_2": Value("string"), "col_3": Value("int32")}) ) features = Features({"col_1": Value("int64"), "col_2": Value("int64"), "col_3": Value("bool")}) self.assertRaises(ValueError, Dataset.from_dict, data, features=features) def test_concatenate_mixed_memory_and_disk(self): data1, data2, data3 = {"id": [0, 1, 2]}, {"id": [3, 4, 5]}, {"id": [6, 7]} info1 = DatasetInfo(description="Dataset1") info2 = DatasetInfo(description="Dataset2") with tempfile.TemporaryDirectory() as tmp_dir: with Dataset.from_dict(data1, info=info1).map( cache_file_name=os.path.join(tmp_dir, "d1.arrow") ) as dset1, Dataset.from_dict(data2, info=info2).map( cache_file_name=os.path.join(tmp_dir, "d2.arrow") ) as dset2, Dataset.from_dict(data3) as dset3: with concatenate_datasets([dset1, dset2, dset3]) as concatenated_dset: self.assertEqual(len(concatenated_dset), len(dset1) + len(dset2) + len(dset3)) self.assertListEqual(concatenated_dset["id"], dset1["id"] + dset2["id"] + dset3["id"]) @require_transformers @pytest.mark.integration def test_set_format_encode(self): from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") def encode(batch): return tokenizer(batch["text"], padding="longest", return_tensors="np") with Dataset.from_dict({"text": ["hello there", "foo"]}) as dset: dset.set_transform(transform=encode) self.assertEqual(str(dset[:2]), str(encode({"text": ["hello there", "foo"]}))) @require_tf def test_tf_string_encoding(self): data = {"col_1": ["Γ‘", "Γ©", "Γ­", "Γ³", "ΓΊ"], "col_2": ["Γ ", "Γ¨", "Γ¬", "Γ²", "ΓΉ"]} with Dataset.from_dict(data) as dset: tf_dset_wo_batch = dset.to_tf_dataset(columns=["col_1", "col_2"]) for tf_row, row in zip(tf_dset_wo_batch, dset): self.assertEqual(tf_row["col_1"].numpy().decode("utf-8"), row["col_1"]) self.assertEqual(tf_row["col_2"].numpy().decode("utf-8"), row["col_2"]) tf_dset_w_batch = dset.to_tf_dataset(columns=["col_1", "col_2"], batch_size=2) for tf_row, row in zip(tf_dset_w_batch.unbatch(), dset): self.assertEqual(tf_row["col_1"].numpy().decode("utf-8"), row["col_1"]) self.assertEqual(tf_row["col_2"].numpy().decode("utf-8"), row["col_2"]) self.assertEqual(tf_dset_w_batch.unbatch().element_spec, tf_dset_wo_batch.element_spec) self.assertEqual(tf_dset_w_batch.element_spec, tf_dset_wo_batch.batch(2).element_spec) def test_cast_with_sliced_list(): old_features = Features({"foo": Sequence(Value("int64"))}) new_features = Features({"foo": Sequence(Value("int32"))}) dataset = Dataset.from_dict({"foo": [[i] * (i % 3) for i in range(20)]}, features=old_features) casted_dataset = dataset.cast(new_features, batch_size=2) # small batch size to slice the ListArray assert dataset["foo"] == casted_dataset["foo"] assert casted_dataset.features == new_features @pytest.mark.parametrize("include_nulls", [False, True]) def test_class_encode_column_with_none(include_nulls): dataset = Dataset.from_dict({"col_1": ["a", "b", "c", None, "d", None]}) dataset = dataset.class_encode_column("col_1", include_nulls=include_nulls) class_names = ["a", "b", "c", "d"] if include_nulls: class_names += ["None"] assert isinstance(dataset.features["col_1"], ClassLabel) assert set(dataset.features["col_1"].names) == set(class_names) assert (None in dataset.unique("col_1")) == (not include_nulls) @pytest.mark.parametrize("null_placement", ["first", "last"]) def test_sort_with_none(null_placement): dataset = Dataset.from_dict({"col_1": ["item_2", "item_3", "item_1", None, "item_4", None]}) dataset = dataset.sort("col_1", null_placement=null_placement) if null_placement == "first": assert dataset["col_1"] == [None, None, "item_1", "item_2", "item_3", "item_4"] else: assert dataset["col_1"] == ["item_1", "item_2", "item_3", "item_4", None, None] def test_update_metadata_with_features(dataset_dict): table1 = pa.Table.from_pydict(dataset_dict) features1 = Features.from_arrow_schema(table1.schema) features2 = features1.copy() features2["col_2"] = ClassLabel(num_classes=len(table1)) assert features1 != features2 table2 = update_metadata_with_features(table1, features2) metadata = json.loads(table2.schema.metadata[b"huggingface"].decode()) assert features2 == Features.from_dict(metadata["info"]["features"]) with Dataset(table1) as dset1, Dataset(table2) as dset2: assert dset1.features == features1 assert dset2.features == features2 @pytest.mark.parametrize("dataset_type", ["in_memory", "memory_mapped", "mixed"]) @pytest.mark.parametrize("axis, expected_shape", [(0, (4, 3)), (1, (2, 6))]) def test_concatenate_datasets(dataset_type, axis, expected_shape, dataset_dict, arrow_path): table = { "in_memory": InMemoryTable.from_pydict(dataset_dict), "memory_mapped": MemoryMappedTable.from_file(arrow_path), } tables = [ table[dataset_type if dataset_type != "mixed" else "memory_mapped"].slice(0, 2), # shape = (2, 3) table[dataset_type if dataset_type != "mixed" else "in_memory"].slice(2, 4), # shape = (2, 3) ] if axis == 1: # don't duplicate columns tables[1] = tables[1].rename_columns([col + "_bis" for col in tables[1].column_names]) datasets = [Dataset(table) for table in tables] dataset = concatenate_datasets(datasets, axis=axis) assert dataset.shape == expected_shape assert_arrow_metadata_are_synced_with_dataset_features(dataset) def test_concatenate_datasets_new_columns(): dataset1 = Dataset.from_dict({"col_1": ["a", "b", "c"]}) dataset2 = Dataset.from_dict({"col_1": ["d", "e", "f"], "col_2": [True, False, True]}) dataset = concatenate_datasets([dataset1, dataset2]) assert dataset.data.shape == (6, 2) assert dataset.features == Features({"col_1": Value("string"), "col_2": Value("bool")}) assert dataset[:] == {"col_1": ["a", "b", "c", "d", "e", "f"], "col_2": [None, None, None, True, False, True]} dataset3 = Dataset.from_dict({"col_3": ["a_1"]}) dataset = concatenate_datasets([dataset, dataset3]) assert dataset.data.shape == (7, 3) assert dataset.features == Features({"col_1": Value("string"), "col_2": Value("bool"), "col_3": Value("string")}) assert dataset[:] == { "col_1": ["a", "b", "c", "d", "e", "f", None], "col_2": [None, None, None, True, False, True, None], "col_3": [None, None, None, None, None, None, "a_1"], } @pytest.mark.parametrize("axis", [0, 1]) def test_concatenate_datasets_complex_features(axis): n = 5 dataset1 = Dataset.from_dict( {"col_1": [0] * n, "col_2": list(range(n))}, features=Features({"col_1": Value("int32"), "col_2": ClassLabel(num_classes=n)}), ) if axis == 1: dataset2 = dataset1.rename_columns({col: col + "_" for col in dataset1.column_names}) expected_features = Features({**dataset1.features, **dataset2.features}) else: dataset2 = dataset1 expected_features = dataset1.features assert concatenate_datasets([dataset1, dataset2], axis=axis).features == expected_features @pytest.mark.parametrize("other_dataset_type", ["in_memory", "memory_mapped", "concatenation"]) @pytest.mark.parametrize("axis, expected_shape", [(0, (8, 3)), (1, (4, 6))]) def test_concatenate_datasets_with_concatenation_tables( axis, expected_shape, other_dataset_type, dataset_dict, arrow_path ): def _create_concatenation_table(axis): if axis == 0: # shape: (4, 3) = (4, 1) + (4, 2) concatenation_table = ConcatenationTable.from_blocks( [ [ InMemoryTable.from_pydict({"col_1": dataset_dict["col_1"]}), MemoryMappedTable.from_file(arrow_path).remove_column(0), ] ] ) elif axis == 1: # shape: (4, 3) = (1, 3) + (3, 3) concatenation_table = ConcatenationTable.from_blocks( [ [InMemoryTable.from_pydict(dataset_dict).slice(0, 1)], [MemoryMappedTable.from_file(arrow_path).slice(1, 4)], ] ) return concatenation_table concatenation_table = _create_concatenation_table(axis) assert concatenation_table.shape == (4, 3) if other_dataset_type == "in_memory": other_table = InMemoryTable.from_pydict(dataset_dict) elif other_dataset_type == "memory_mapped": other_table = MemoryMappedTable.from_file(arrow_path) elif other_dataset_type == "concatenation": other_table = _create_concatenation_table(axis) assert other_table.shape == (4, 3) tables = [concatenation_table, other_table] if axis == 1: # don't duplicate columns tables[1] = tables[1].rename_columns([col + "_bis" for col in tables[1].column_names]) for tables in [tables, reversed(tables)]: datasets = [Dataset(table) for table in tables] dataset = concatenate_datasets(datasets, axis=axis) assert dataset.shape == expected_shape def test_concatenate_datasets_duplicate_columns(dataset): with pytest.raises(ValueError) as excinfo: concatenate_datasets([dataset, dataset], axis=1) assert "duplicated" in str(excinfo.value) def test_interleave_datasets(): d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [22, 21, 20]}).select([2, 1, 0]) dataset = interleave_datasets([d1, d2, d3]) expected_length = 3 * min(len(d1), len(d2), len(d3)) expected_values = [x["a"] for x in itertools.chain(*zip(d1, d2, d3))] assert isinstance(dataset, Dataset) assert len(dataset) == expected_length assert dataset["a"] == expected_values assert dataset._fingerprint == interleave_datasets([d1, d2, d3])._fingerprint def test_interleave_datasets_probabilities(): seed = 42 probabilities = [0.3, 0.5, 0.2] d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [22, 21, 20]}).select([2, 1, 0]) dataset = interleave_datasets([d1, d2, d3], probabilities=probabilities, seed=seed) expected_length = 7 # hardcoded expected_values = [10, 11, 20, 12, 0, 21, 13] # hardcoded assert isinstance(dataset, Dataset) assert len(dataset) == expected_length assert dataset["a"] == expected_values assert ( dataset._fingerprint == interleave_datasets([d1, d2, d3], probabilities=probabilities, seed=seed)._fingerprint ) def test_interleave_datasets_oversampling_strategy(): d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [22, 21, 20]}).select([2, 1, 0]) dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") expected_length = 3 * max(len(d1), len(d2), len(d3)) expected_values = [0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 20] # hardcoded assert isinstance(dataset, Dataset) assert len(dataset) == expected_length assert dataset["a"] == expected_values assert dataset._fingerprint == interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")._fingerprint def test_interleave_datasets_probabilities_oversampling_strategy(): seed = 42 probabilities = [0.3, 0.5, 0.2] d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [22, 21, 20]}).select([2, 1, 0]) dataset = interleave_datasets( [d1, d2, d3], stopping_strategy="all_exhausted", probabilities=probabilities, seed=seed ) expected_length = 16 # hardcoded expected_values = [10, 11, 20, 12, 0, 21, 13, 10, 1, 11, 12, 22, 13, 20, 10, 2] # hardcoded assert isinstance(dataset, Dataset) assert len(dataset) == expected_length assert dataset["a"] == expected_values assert ( dataset._fingerprint == interleave_datasets( [d1, d2, d3], stopping_strategy="all_exhausted", probabilities=probabilities, seed=seed )._fingerprint ) @pytest.mark.parametrize("batch_size", [4, 5]) @pytest.mark.parametrize("drop_last_batch", [False, True]) def test_dataset_iter_batch(batch_size, drop_last_batch): n = 25 dset = Dataset.from_dict({"i": list(range(n))}) all_col_values = list(range(n)) batches = [] for i, batch in enumerate(dset.iter(batch_size, drop_last_batch=drop_last_batch)): assert batch == {"i": all_col_values[i * batch_size : (i + 1) * batch_size]} batches.append(batch) if drop_last_batch: assert all(len(batch["i"]) == batch_size for batch in batches) else: assert all(len(batch["i"]) == batch_size for batch in batches[:-1]) assert len(batches[-1]["i"]) <= batch_size @pytest.mark.parametrize( "column, expected_dtype", [(["a", "b", "c", "d"], "string"), ([1, 2, 3, 4], "int64"), ([1.0, 2.0, 3.0, 4.0], "float64")], ) @pytest.mark.parametrize("in_memory", [False, True]) @pytest.mark.parametrize( "transform", [ None, ("shuffle", (42,), {}), ("with_format", ("pandas",), {}), ("class_encode_column", ("col_2",), {}), ("select", (range(3),), {}), ], ) def test_dataset_add_column(column, expected_dtype, in_memory, transform, dataset_dict, arrow_path): column_name = "col_4" original_dataset = ( Dataset(InMemoryTable.from_pydict(dataset_dict)) if in_memory else Dataset(MemoryMappedTable.from_file(arrow_path)) ) if transform is not None: transform_name, args, kwargs = transform original_dataset: Dataset = getattr(original_dataset, transform_name)(*args, **kwargs) column = column[:3] if transform is not None and transform_name == "select" else column dataset = original_dataset.add_column(column_name, column) assert dataset.data.shape == (3, 4) if transform is not None and transform_name == "select" else (4, 4) expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} # Sort expected features as in the original dataset expected_features = {feature: expected_features[feature] for feature in original_dataset.features} # Add new column feature expected_features[column_name] = expected_dtype assert dataset.data.column_names == list(expected_features.keys()) for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype assert len(dataset.data.blocks) == 1 if in_memory else 2 # multiple InMemoryTables are consolidated as one assert dataset.format["type"] == original_dataset.format["type"] assert dataset._fingerprint != original_dataset._fingerprint dataset.reset_format() original_dataset.reset_format() assert all(dataset[col] == original_dataset[col] for col in original_dataset.column_names) assert set(dataset["col_4"]) == set(column) if dataset._indices is not None: dataset_indices = dataset._indices["indices"].to_pylist() expected_dataset_indices = original_dataset._indices["indices"].to_pylist() assert dataset_indices == expected_dataset_indices assert_arrow_metadata_are_synced_with_dataset_features(dataset) @pytest.mark.parametrize( "transform", [None, ("shuffle", (42,), {}), ("with_format", ("pandas",), {}), ("class_encode_column", ("col_2",), {})], ) @pytest.mark.parametrize("in_memory", [False, True]) @pytest.mark.parametrize( "item", [ {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "2", "col_2": "2", "col_3": "2"}, {"col_1": 2, "col_2": 2, "col_3": 2}, {"col_1": 2.0, "col_2": 2.0, "col_3": 2.0}, ], ) def test_dataset_add_item(item, in_memory, dataset_dict, arrow_path, transform): dataset_to_test = ( Dataset(InMemoryTable.from_pydict(dataset_dict)) if in_memory else Dataset(MemoryMappedTable.from_file(arrow_path)) ) if transform is not None: transform_name, args, kwargs = transform dataset_to_test: Dataset = getattr(dataset_to_test, transform_name)(*args, **kwargs) dataset = dataset_to_test.add_item(item) assert dataset.data.shape == (5, 3) expected_features = dataset_to_test.features assert sorted(dataset.data.column_names) == sorted(expected_features.keys()) for feature, expected_dtype in expected_features.items(): assert dataset.features[feature] == expected_dtype assert len(dataset.data.blocks) == 1 if in_memory else 2 # multiple InMemoryTables are consolidated as one assert dataset.format["type"] == dataset_to_test.format["type"] assert dataset._fingerprint != dataset_to_test._fingerprint dataset.reset_format() dataset_to_test.reset_format() assert dataset[:-1] == dataset_to_test[:] assert {k: int(v) for k, v in dataset[-1].items()} == {k: int(v) for k, v in item.items()} if dataset._indices is not None: dataset_indices = dataset._indices["indices"].to_pylist() dataset_to_test_indices = dataset_to_test._indices["indices"].to_pylist() assert dataset_indices == dataset_to_test_indices + [len(dataset_to_test._data)] def test_dataset_add_item_new_columns(): dataset = Dataset.from_dict({"col_1": [0, 1, 2]}, features=Features({"col_1": Value("uint8")})) dataset = dataset.add_item({"col_1": 3, "col_2": "a"}) assert dataset.data.shape == (4, 2) assert dataset.features == Features({"col_1": Value("uint8"), "col_2": Value("string")}) assert dataset[:] == {"col_1": [0, 1, 2, 3], "col_2": [None, None, None, "a"]} dataset = dataset.add_item({"col_3": True}) assert dataset.data.shape == (5, 3) assert dataset.features == Features({"col_1": Value("uint8"), "col_2": Value("string"), "col_3": Value("bool")}) assert dataset[:] == { "col_1": [0, 1, 2, 3, None], "col_2": [None, None, None, "a", None], "col_3": [None, None, None, None, True], } def test_dataset_add_item_introduce_feature_type(): dataset = Dataset.from_dict({"col_1": [None, None, None]}) dataset = dataset.add_item({"col_1": "a"}) assert dataset.data.shape == (4, 1) assert dataset.features == Features({"col_1": Value("string")}) assert dataset[:] == {"col_1": [None, None, None, "a"]} def test_dataset_filter_batched_indices(): ds = Dataset.from_dict({"num": [0, 1, 2, 3]}) ds = ds.filter(lambda num: num % 2 == 0, input_columns="num", batch_size=2) assert all(item["num"] % 2 == 0 for item in ds) @pytest.mark.parametrize("in_memory", [False, True]) def test_dataset_from_file(in_memory, dataset, arrow_file): filename = arrow_file with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): dataset_from_file = Dataset.from_file(filename, in_memory=in_memory) assert dataset_from_file.features.type == dataset.features.type assert dataset_from_file.features == dataset.features assert dataset_from_file.cache_files == ([{"filename": filename}] if not in_memory else []) def _check_csv_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_csv_keep_in_memory(keep_in_memory, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_csv(csv_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_csv_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_csv_features(features, csv_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_csv(csv_path, features=features, cache_dir=cache_dir) _check_csv_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_csv_split(split, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_csv(csv_path, cache_dir=cache_dir, split=split) _check_csv_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_csv_path_type(path_type, csv_path, tmp_path): if issubclass(path_type, str): path = csv_path elif issubclass(path_type, list): path = [csv_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_csv(path, cache_dir=cache_dir) _check_csv_dataset(dataset, expected_features) def _check_json_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_json_keep_in_memory(keep_in_memory, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_json(jsonl_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_json_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_json_features(features, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_json(jsonl_path, features=features, cache_dir=cache_dir) _check_json_dataset(dataset, expected_features) def test_dataset_from_json_with_class_label_feature(jsonl_str_path, tmp_path): features = Features( {"col_1": ClassLabel(names=["s0", "s1", "s2", "s3"]), "col_2": Value("int64"), "col_3": Value("float64")} ) cache_dir = tmp_path / "cache" dataset = Dataset.from_json(jsonl_str_path, features=features, cache_dir=cache_dir) assert dataset.features["col_1"].dtype == "int64" @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_json_split(split, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_json(jsonl_path, cache_dir=cache_dir, split=split) _check_json_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_json_path_type(path_type, jsonl_path, tmp_path): if issubclass(path_type, str): path = jsonl_path elif issubclass(path_type, list): path = [jsonl_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_json(path, cache_dir=cache_dir) _check_json_dataset(dataset, expected_features) def _check_parquet_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_parquet_keep_in_memory(keep_in_memory, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_parquet(parquet_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_parquet_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_parquet_features(features, parquet_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_parquet(parquet_path, features=features, cache_dir=cache_dir) _check_parquet_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_parquet_split(split, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_parquet(parquet_path, cache_dir=cache_dir, split=split) _check_parquet_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_parquet_path_type(path_type, parquet_path, tmp_path): if issubclass(path_type, str): path = parquet_path elif issubclass(path_type, list): path = [parquet_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = Dataset.from_parquet(path, cache_dir=cache_dir) _check_parquet_dataset(dataset, expected_features) def _check_text_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_text_keep_in_memory(keep_in_memory, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_text(text_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_text_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ], ) def test_dataset_from_text_features(features, text_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"text": "string"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_text(text_path, features=features, cache_dir=cache_dir) _check_text_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_text_split(split, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = Dataset.from_text(text_path, cache_dir=cache_dir, split=split) _check_text_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_text_path_type(path_type, text_path, tmp_path): if issubclass(path_type, str): path = text_path elif issubclass(path_type, list): path = [text_path] cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = Dataset.from_text(path, cache_dir=cache_dir) _check_text_dataset(dataset, expected_features) @pytest.fixture def data_generator(): def _gen(): data = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] for item in data: yield item return _gen def _check_generator_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_generator_keep_in_memory(keep_in_memory, data_generator, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_generator(data_generator, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_generator_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_generator_features(features, data_generator, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_generator(data_generator, features=features, cache_dir=cache_dir) _check_generator_dataset(dataset, expected_features) @require_not_windows @require_dill_gt_0_3_2 @require_pyspark def test_from_spark(): import pyspark spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() data = [ ("0", 0, 0.0), ("1", 1, 1.0), ("2", 2, 2.0), ("3", 3, 3.0), ] df = spark.createDataFrame(data, "col_1: string, col_2: int, col_3: float") dataset = Dataset.from_spark(df) assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] @require_not_windows @require_dill_gt_0_3_2 @require_pyspark def test_from_spark_features(): import PIL.Image import pyspark spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() data = [(0, np.arange(4 * 4 * 3).reshape(4, 4, 3).tolist())] df = spark.createDataFrame(data, "idx: int, image: array<array<array<int>>>") features = Features({"idx": Value("int64"), "image": Image()}) dataset = Dataset.from_spark( df, features=features, ) assert isinstance(dataset, Dataset) assert dataset.num_rows == 1 assert dataset.num_columns == 2 assert dataset.column_names == ["idx", "image"] assert isinstance(dataset[0]["image"], PIL.Image.Image) assert dataset.features == features assert_arrow_metadata_are_synced_with_dataset_features(dataset) @require_not_windows @require_dill_gt_0_3_2 @require_pyspark def test_from_spark_different_cache(): import pyspark spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.createDataFrame([("0", 0)], "col_1: string, col_2: int") dataset = Dataset.from_spark(df) assert isinstance(dataset, Dataset) different_df = spark.createDataFrame([("1", 1)], "col_1: string, col_2: int") different_dataset = Dataset.from_spark(different_df) assert isinstance(different_dataset, Dataset) assert dataset[0]["col_1"] == "0" # Check to make sure that the second dataset wasn't read from the cache. assert different_dataset[0]["col_1"] == "1" def _check_sql_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("con_type", ["string", "engine"]) def test_dataset_from_sql_con_type(con_type, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} if con_type == "string": con = "sqlite:///" + sqlite_path elif con_type == "engine": import sqlalchemy con = sqlalchemy.create_engine("sqlite:///" + sqlite_path) # # https://github.com/huggingface/datasets/issues/2832 needs to be fixed first for this to work # with caplog.at_level(INFO): # dataset = Dataset.from_sql( # "dataset", # con, # cache_dir=cache_dir, # ) # if con_type == "string": # assert "couldn't be hashed properly" not in caplog.text # elif con_type == "engine": # assert "couldn't be hashed properly" in caplog.text dataset = Dataset.from_sql( "dataset", con, cache_dir=cache_dir, ) _check_sql_dataset(dataset, expected_features) @require_sqlalchemy @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_sql_features(features, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = Dataset.from_sql("dataset", "sqlite:///" + sqlite_path, features=features, cache_dir=cache_dir) _check_sql_dataset(dataset, expected_features) @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_sql_keep_in_memory(keep_in_memory, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = Dataset.from_sql( "dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory ) _check_sql_dataset(dataset, expected_features) def test_dataset_to_json(dataset, tmp_path): file_path = tmp_path / "test_path.jsonl" bytes_written = dataset.to_json(path_or_buf=file_path) assert file_path.is_file() assert bytes_written == file_path.stat().st_size df = pd.read_json(file_path, orient="records", lines=True) assert df.shape == dataset.shape assert list(df.columns) == list(dataset.column_names) @pytest.mark.parametrize("in_memory", [False, True]) @pytest.mark.parametrize( "method_and_params", [ ("rename_column", (), {"original_column_name": "labels", "new_column_name": "label"}), ("remove_columns", (), {"column_names": "labels"}), ( "cast", (), { "features": Features( { "tokens": Sequence(Value("string")), "labels": Sequence(Value("int16")), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), "id": Value("int32"), } ) }, ), ("flatten", (), {}), ], ) def test_pickle_dataset_after_transforming_the_table(in_memory, method_and_params, arrow_file): method, args, kwargs = method_and_params with Dataset.from_file(arrow_file, in_memory=in_memory) as dataset, Dataset.from_file( arrow_file, in_memory=in_memory ) as reference_dataset: out = getattr(dataset, method)(*args, **kwargs) dataset = out if out is not None else dataset pickled_dataset = pickle.dumps(dataset) reloaded_dataset = pickle.loads(pickled_dataset) assert dataset._data != reference_dataset._data assert dataset._data.table == reloaded_dataset._data.table def test_dummy_dataset_serialize_fs(dataset, mockfs): dataset_path = "mock://my_dataset" dataset.save_to_disk(dataset_path, storage_options=mockfs.storage_options) assert mockfs.isdir(dataset_path) assert mockfs.glob(dataset_path + "/*") reloaded = dataset.load_from_disk(dataset_path, storage_options=mockfs.storage_options) assert len(reloaded) == len(dataset) assert reloaded.features == dataset.features assert reloaded.to_dict() == dataset.to_dict() @pytest.mark.parametrize( "uri_or_path", [ "relative/path", "/absolute/path", "s3://bucket/relative/path", "hdfs://relative/path", "hdfs:///absolute/path", ], ) def test_build_local_temp_path(uri_or_path): extracted_path = strip_protocol(uri_or_path) local_temp_path = Dataset._build_local_temp_path(extracted_path).as_posix() extracted_path_without_anchor = Path(extracted_path).relative_to(Path(extracted_path).anchor).as_posix() # Check that the local temp path is relative to the system temp dir path_relative_to_tmp_dir = Path(local_temp_path).relative_to(Path(tempfile.gettempdir())).as_posix() assert ( "hdfs://" not in path_relative_to_tmp_dir and "s3://" not in path_relative_to_tmp_dir and not local_temp_path.startswith(extracted_path_without_anchor) and local_temp_path.endswith(extracted_path_without_anchor) ), f"Local temp path: {local_temp_path}" class TaskTemplatesTest(TestCase): def test_task_text_classification(self): labels = sorted(["pos", "neg"]) features_before_cast = Features( { "input_text": Value("string"), "input_labels": ClassLabel(names=labels), } ) # Labels are cast to tuple during `TextClassification.__post_init_`, so we do the same here features_after_cast = Features( { "text": Value("string"), "labels": ClassLabel(names=labels), } ) # Label names are added in `DatasetInfo.__post_init__` so not needed here task_without_labels = TextClassification(text_column="input_text", label_column="input_labels") info1 = DatasetInfo( features=features_before_cast, task_templates=task_without_labels, ) # Label names are required when passing a TextClassification template directly to `Dataset.prepare_for_task` # However they also can be used to define `DatasetInfo` so we include a test for this too task_with_labels = TextClassification(text_column="input_text", label_column="input_labels") info2 = DatasetInfo( features=features_before_cast, task_templates=task_with_labels, ) data = {"input_text": ["i love transformers!"], "input_labels": [1]} # Test we can load from task name when label names not included in template (default behaviour) with Dataset.from_dict(data, info=info1) as dset: self.assertSetEqual({"input_text", "input_labels"}, set(dset.column_names)) self.assertDictEqual(features_before_cast, dset.features) with dset.prepare_for_task(task="text-classification") as dset: self.assertSetEqual({"labels", "text"}, set(dset.column_names)) self.assertDictEqual(features_after_cast, dset.features) # Test we can load from task name when label names included in template with Dataset.from_dict(data, info=info2) as dset: self.assertSetEqual({"input_text", "input_labels"}, set(dset.column_names)) self.assertDictEqual(features_before_cast, dset.features) with dset.prepare_for_task(task="text-classification") as dset: self.assertSetEqual({"labels", "text"}, set(dset.column_names)) self.assertDictEqual(features_after_cast, dset.features) # Test we can load from TextClassification template info1.task_templates = None with Dataset.from_dict(data, info=info1) as dset: with dset.prepare_for_task(task=task_with_labels) as dset: self.assertSetEqual({"labels", "text"}, set(dset.column_names)) self.assertDictEqual(features_after_cast, dset.features) def test_task_question_answering(self): features_before_cast = Features( { "input_context": Value("string"), "input_question": Value("string"), "input_answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ) features_after_cast = Features( { "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ) task = QuestionAnsweringExtractive( context_column="input_context", question_column="input_question", answers_column="input_answers" ) info = DatasetInfo(features=features_before_cast, task_templates=task) data = { "input_context": ["huggingface is going to the moon!"], "input_question": ["where is huggingface going?"], "input_answers": [{"text": ["to the moon!"], "answer_start": [2]}], } # Test we can load from task name with Dataset.from_dict(data, info=info) as dset: self.assertSetEqual( {"input_context", "input_question", "input_answers.text", "input_answers.answer_start"}, set(dset.flatten().column_names), ) self.assertDictEqual(features_before_cast, dset.features) with dset.prepare_for_task(task="question-answering-extractive") as dset: self.assertSetEqual( {"context", "question", "answers.text", "answers.answer_start"}, set(dset.flatten().column_names), ) self.assertDictEqual(features_after_cast, dset.features) # Test we can load from QuestionAnsweringExtractive template info.task_templates = None with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task=task) as dset: self.assertSetEqual( {"context", "question", "answers.text", "answers.answer_start"}, set(dset.flatten().column_names), ) self.assertDictEqual(features_after_cast, dset.features) def test_task_summarization(self): # Include a dummy extra column `dummy` to test we drop it correctly features_before_cast = Features( {"input_text": Value("string"), "input_summary": Value("string"), "dummy": Value("string")} ) features_after_cast = Features({"text": Value("string"), "summary": Value("string")}) task = Summarization(text_column="input_text", summary_column="input_summary") info = DatasetInfo(features=features_before_cast, task_templates=task) data = { "input_text": ["jack and jill took a taxi to attend a super duper party in the city."], "input_summary": ["jack and jill attend party"], "dummy": ["123456"], } # Test we can load from task name with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task="summarization") as dset: self.assertSetEqual( {"text", "summary"}, set(dset.column_names), ) self.assertDictEqual(features_after_cast, dset.features) # Test we can load from Summarization template info.task_templates = None with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task=task) as dset: self.assertSetEqual( {"text", "summary"}, set(dset.column_names), ) self.assertDictEqual(features_after_cast, dset.features) def test_task_automatic_speech_recognition(self): # Include a dummy extra column `dummy` to test we drop it correctly features_before_cast = Features( { "input_audio": Audio(sampling_rate=16_000), "input_transcription": Value("string"), "dummy": Value("string"), } ) features_after_cast = Features({"audio": Audio(sampling_rate=16_000), "transcription": Value("string")}) task = AutomaticSpeechRecognition(audio_column="input_audio", transcription_column="input_transcription") info = DatasetInfo(features=features_before_cast, task_templates=task) data = { "input_audio": [{"bytes": None, "path": "path/to/some/audio/file.wav"}], "input_transcription": ["hello, my name is bob!"], "dummy": ["123456"], } # Test we can load from task name with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task="automatic-speech-recognition") as dset: self.assertSetEqual( {"audio", "transcription"}, set(dset.column_names), ) self.assertDictEqual(features_after_cast, dset.features) # Test we can load from Summarization template info.task_templates = None with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task=task) as dset: self.assertSetEqual( {"audio", "transcription"}, set(dset.column_names), ) self.assertDictEqual(features_after_cast, dset.features) def test_task_with_no_template(self): data = {"input_text": ["i love transformers!"], "input_labels": [1]} with Dataset.from_dict(data) as dset: with self.assertRaises(ValueError): dset.prepare_for_task("text-classification") def test_task_with_incompatible_templates(self): labels = sorted(["pos", "neg"]) features = Features( { "input_text": Value("string"), "input_labels": ClassLabel(names=labels), } ) task = TextClassification(text_column="input_text", label_column="input_labels") info = DatasetInfo( features=features, task_templates=task, ) data = {"input_text": ["i love transformers!"], "input_labels": [1]} with Dataset.from_dict(data, info=info) as dset: # Invalid task name self.assertRaises(ValueError, dset.prepare_for_task, "this-task-does-not-exist") # Invalid task type self.assertRaises(ValueError, dset.prepare_for_task, 1) def test_task_with_multiple_compatible_task_templates(self): features = Features( { "text1": Value("string"), "text2": Value("string"), } ) task1 = LanguageModeling(text_column="text1") task2 = LanguageModeling(text_column="text2") info = DatasetInfo( features=features, task_templates=[task1, task2], ) data = {"text1": ["i love transformers!"], "text2": ["i love datasets!"]} with Dataset.from_dict(data, info=info) as dset: self.assertRaises(ValueError, dset.prepare_for_task, "language-modeling", id=3) with dset.prepare_for_task("language-modeling") as dset1: self.assertEqual(dset1[0]["text"], "i love transformers!") with dset.prepare_for_task("language-modeling", id=1) as dset2: self.assertEqual(dset2[0]["text"], "i love datasets!") def test_task_templates_empty_after_preparation(self): features = Features( { "input_text": Value("string"), "input_labels": ClassLabel(names=["pos", "neg"]), } ) task = TextClassification(text_column="input_text", label_column="input_labels") info = DatasetInfo( features=features, task_templates=task, ) data = {"input_text": ["i love transformers!"], "input_labels": [1]} with Dataset.from_dict(data, info=info) as dset: with dset.prepare_for_task(task="text-classification") as dset: self.assertIsNone(dset.info.task_templates) def test_align_labels_with_mapping_classification(self): features = Features( { "input_text": Value("string"), "input_labels": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), } ) data = {"input_text": ["a", "a", "b", "b", "c", "c"], "input_labels": [0, 0, 1, 1, 2, 2]} label2id = {"CONTRADICTION": 0, "ENTAILMENT": 2, "NEUTRAL": 1} id2label = {v: k for k, v in label2id.items()} expected_labels = [2, 2, 1, 1, 0, 0] expected_label_names = [id2label[idx] for idx in expected_labels] with Dataset.from_dict(data, features=features) as dset: with dset.align_labels_with_mapping(label2id, "input_labels") as dset: self.assertListEqual(expected_labels, dset["input_labels"]) aligned_label_names = [dset.features["input_labels"].int2str(idx) for idx in dset["input_labels"]] self.assertListEqual(expected_label_names, aligned_label_names) def test_align_labels_with_mapping_ner(self): features = Features( { "input_text": Value("string"), "input_labels": Sequence( ClassLabel( names=[ "b-per", "i-per", "o", ] ) ), } ) data = {"input_text": [["Optimus", "Prime", "is", "a", "Transformer"]], "input_labels": [[0, 1, 2, 2, 2]]} label2id = {"B-PER": 2, "I-PER": 1, "O": 0} id2label = {v: k for k, v in label2id.items()} expected_labels = [[2, 1, 0, 0, 0]] expected_label_names = [[id2label[idx] for idx in seq] for seq in expected_labels] with Dataset.from_dict(data, features=features) as dset: with dset.align_labels_with_mapping(label2id, "input_labels") as dset: self.assertListEqual(expected_labels, dset["input_labels"]) aligned_label_names = [ dset.features["input_labels"].feature.int2str(idx) for idx in dset["input_labels"] ] self.assertListEqual(expected_label_names, aligned_label_names) def test_concatenate_with_no_task_templates(self): info = DatasetInfo(task_templates=None) data = {"text": ["i love transformers!"], "labels": [1]} with Dataset.from_dict(data, info=info) as dset1, Dataset.from_dict( data, info=info ) as dset2, Dataset.from_dict(data, info=info) as dset3: with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertEqual(dset_concat.info.task_templates, None) def test_concatenate_with_equal_task_templates(self): labels = ["neg", "pos"] task_template = TextClassification(text_column="text", label_column="labels") info = DatasetInfo( features=Features({"text": Value("string"), "labels": ClassLabel(names=labels)}), # Label names are added in `DatasetInfo.__post_init__` so not included here task_templates=TextClassification(text_column="text", label_column="labels"), ) data = {"text": ["i love transformers!"], "labels": [1]} with Dataset.from_dict(data, info=info) as dset1, Dataset.from_dict( data, info=info ) as dset2, Dataset.from_dict(data, info=info) as dset3: with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertListEqual(dset_concat.info.task_templates, [task_template]) def test_concatenate_with_mixed_task_templates_in_common(self): tc_template = TextClassification(text_column="text", label_column="labels") qa_template = QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) info1 = DatasetInfo( task_templates=[qa_template], features=Features( { "text": Value("string"), "labels": ClassLabel(names=["pos", "neg"]), "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ), ) info2 = DatasetInfo( task_templates=[qa_template, tc_template], features=Features( { "text": Value("string"), "labels": ClassLabel(names=["pos", "neg"]), "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ), ) data = { "text": ["i love transformers!"], "labels": [1], "context": ["huggingface is going to the moon!"], "question": ["where is huggingface going?"], "answers": [{"text": ["to the moon!"], "answer_start": [2]}], } with Dataset.from_dict(data, info=info1) as dset1, Dataset.from_dict( data, info=info2 ) as dset2, Dataset.from_dict(data, info=info2) as dset3: with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertListEqual(dset_concat.info.task_templates, [qa_template]) def test_concatenate_with_no_mixed_task_templates_in_common(self): tc_template1 = TextClassification(text_column="text", label_column="labels") tc_template2 = TextClassification(text_column="text", label_column="sentiment") qa_template = QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) info1 = DatasetInfo( features=Features( { "text": Value("string"), "labels": ClassLabel(names=["pos", "neg"]), "sentiment": ClassLabel(names=["pos", "neg", "neutral"]), "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ), task_templates=[tc_template1], ) info2 = DatasetInfo( features=Features( { "text": Value("string"), "labels": ClassLabel(names=["pos", "neg"]), "sentiment": ClassLabel(names=["pos", "neg", "neutral"]), "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ), task_templates=[tc_template2], ) info3 = DatasetInfo( features=Features( { "text": Value("string"), "labels": ClassLabel(names=["pos", "neg"]), "sentiment": ClassLabel(names=["pos", "neg", "neutral"]), "context": Value("string"), "question": Value("string"), "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ), } ), task_templates=[qa_template], ) data = { "text": ["i love transformers!"], "labels": [1], "sentiment": [0], "context": ["huggingface is going to the moon!"], "question": ["where is huggingface going?"], "answers": [{"text": ["to the moon!"], "answer_start": [2]}], } with Dataset.from_dict(data, info=info1) as dset1, Dataset.from_dict( data, info=info2 ) as dset2, Dataset.from_dict(data, info=info3) as dset3: with concatenate_datasets([dset1, dset2, dset3]) as dset_concat: self.assertEqual(dset_concat.info.task_templates, None) def test_task_text_classification_when_columns_removed(self): labels = sorted(["pos", "neg"]) features_before_map = Features( { "input_text": Value("string"), "input_labels": ClassLabel(names=labels), } ) features_after_map = Features({"new_column": Value("int64")}) # Label names are added in `DatasetInfo.__post_init__` so not needed here task = TextClassification(text_column="input_text", label_column="input_labels") info = DatasetInfo( features=features_before_map, task_templates=task, ) data = {"input_text": ["i love transformers!"], "input_labels": [1]} with Dataset.from_dict(data, info=info) as dset: with dset.map(lambda x: {"new_column": 0}, remove_columns=dset.column_names) as dset: self.assertDictEqual(dset.features, features_after_map) class StratifiedTest(TestCase): def test_errors_train_test_split_stratify(self): ys = [ np.array([0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2]), np.array([0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2), np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]), np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]), ] for i in range(len(ys)): features = Features({"text": Value("int64"), "label": ClassLabel(len(np.unique(ys[i])))}) data = {"text": np.ones(len(ys[i])), "label": ys[i]} d1 = Dataset.from_dict(data, features=features) # For checking stratify_by_column exist as key in self.features.keys() if i == 0: self.assertRaises(ValueError, d1.train_test_split, 0.33, stratify_by_column="labl") # For checking minimum class count error elif i == 1: self.assertRaises(ValueError, d1.train_test_split, 0.33, stratify_by_column="label") # For check typeof label as ClassLabel type elif i == 2: d1 = Dataset.from_dict(data) self.assertRaises(ValueError, d1.train_test_split, 0.33, stratify_by_column="label") # For checking test_size should be greater than or equal to number of classes elif i == 3: self.assertRaises(ValueError, d1.train_test_split, 0.30, stratify_by_column="label") # For checking train_size should be greater than or equal to number of classes elif i == 4: self.assertRaises(ValueError, d1.train_test_split, 0.60, stratify_by_column="label") def test_train_test_split_startify(self): ys = [ np.array([0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2), np.array([0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]), np.array([0] * 800 + [1] * 50), ] for y in ys: features = Features({"text": Value("int64"), "label": ClassLabel(len(np.unique(y)))}) data = {"text": np.ones(len(y)), "label": y} d1 = Dataset.from_dict(data, features=features) d1 = d1.train_test_split(test_size=0.33, stratify_by_column="label") y = np.asanyarray(y) # To make it indexable for y[train] test_size = np.ceil(0.33 * len(y)) train_size = len(y) - test_size npt.assert_array_equal(np.unique(d1["train"]["label"]), np.unique(d1["test"]["label"])) # checking classes proportion p_train = np.bincount(np.unique(d1["train"]["label"], return_inverse=True)[1]) / float( len(d1["train"]["label"]) ) p_test = np.bincount(np.unique(d1["test"]["label"], return_inverse=True)[1]) / float( len(d1["test"]["label"]) ) npt.assert_array_almost_equal(p_train, p_test, 1) assert len(d1["train"]["text"]) + len(d1["test"]["text"]) == y.size assert len(d1["train"]["text"]) == train_size assert len(d1["test"]["text"]) == test_size def test_dataset_estimate_nbytes(): ds = Dataset.from_dict({"a": ["0" * 100] * 100}) assert 0.9 * ds._estimate_nbytes() < 100 * 100, "must be smaller than full dataset size" ds = Dataset.from_dict({"a": ["0" * 100] * 100}).select([0]) assert 0.9 * ds._estimate_nbytes() < 100 * 100, "must be smaller than one chunk" ds = Dataset.from_dict({"a": ["0" * 100] * 100}) ds = concatenate_datasets([ds] * 100) assert 0.9 * ds._estimate_nbytes() < 100 * 100 * 100, "must be smaller than full dataset size" assert 1.1 * ds._estimate_nbytes() > 100 * 100 * 100, "must be bigger than full dataset size" ds = Dataset.from_dict({"a": ["0" * 100] * 100}) ds = concatenate_datasets([ds] * 100).select([0]) assert 0.9 * ds._estimate_nbytes() < 100 * 100, "must be smaller than one chunk" def test_dataset_to_iterable_dataset(dataset: Dataset): iterable_dataset = dataset.to_iterable_dataset() assert isinstance(iterable_dataset, IterableDataset) assert list(iterable_dataset) == list(dataset) assert iterable_dataset.features == dataset.features iterable_dataset = dataset.to_iterable_dataset(num_shards=3) assert isinstance(iterable_dataset, IterableDataset) assert list(iterable_dataset) == list(dataset) assert iterable_dataset.features == dataset.features assert iterable_dataset.n_shards == 3 with pytest.raises(ValueError): dataset.to_iterable_dataset(num_shards=len(dataset) + 1) with pytest.raises(NotImplementedError): dataset.with_format("torch").to_iterable_dataset() @require_pil def test_dataset_format_with_unformatted_image(): import PIL ds = Dataset.from_dict( {"a": [np.arange(4 * 4 * 3).reshape(4, 4, 3)] * 10, "b": [[0, 1]] * 10}, Features({"a": Image(), "b": Sequence(Value("int64"))}), ) ds.set_format("np", columns=["b"], output_all_columns=True) assert isinstance(ds[0]["a"], PIL.Image.Image) assert isinstance(ds[0]["b"], np.ndarray) @pytest.mark.parametrize("batch_size", [1, 4]) @require_torch def test_dataset_with_torch_dataloader(dataset, batch_size): from torch.utils.data import DataLoader from datasets import config dataloader = DataLoader(dataset, batch_size=batch_size) with patch.object(dataset, "_getitem", wraps=dataset._getitem) as mock_getitem: out = list(dataloader) getitem_call_count = mock_getitem.call_count assert len(out) == len(dataset) // batch_size + int(len(dataset) % batch_size > 0) # calling dataset[list_of_indices] is much more efficient than [dataset[idx] for idx in list of indices] if config.TORCH_VERSION >= version.parse("1.13.0"): assert getitem_call_count == len(dataset) // batch_size + int(len(dataset) % batch_size > 0) @pytest.mark.parametrize("return_lazy_dict", [True, False, "mix"]) def test_map_cases(return_lazy_dict): def f(x): """May return a mix of LazyDict and regular Dict""" if x["a"] < 2: x["a"] = -1 return dict(x) if return_lazy_dict is False else x else: return x if return_lazy_dict is True else {} ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) ds = ds.map(f) outputs = ds[:] assert outputs == {"a": [-1, -1, 2, 3]} def f(x): """May return a mix of LazyDict and regular Dict, but sometimes with None values""" if x["a"] < 2: x["a"] = None return dict(x) if return_lazy_dict is False else x else: return x if return_lazy_dict is True else {} ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) ds = ds.map(f) outputs = ds[:] assert outputs == {"a": [None, None, 2, 3]} def f(x): """Return a LazyDict, but we remove a lazy column and add a new one""" if x["a"] < 2: x["b"] = -1 return x else: x["b"] = x["a"] return x ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) ds = ds.map(f, remove_columns=["a"]) outputs = ds[:] assert outputs == {"b": [-1, -1, 2, 3]} # The formatted dataset version removes the lazy column from a different dictionary, hence it should be preserved in the output ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) ds = ds.with_format("numpy") ds = ds.map(f, remove_columns=["a"]) ds = ds.with_format(None) outputs = ds[:] assert outputs == {"a": [0, 1, 2, 3], "b": [-1, -1, 2, 3]} def f(x): """May return a mix of LazyDict and regular Dict, but we replace a lazy column""" if x["a"] < 2: x["a"] = -1 return dict(x) if return_lazy_dict is False else x else: x["a"] = x["a"] return x if return_lazy_dict is True else {"a": x["a"]} ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) ds = ds.map(f, remove_columns=["a"]) outputs = ds[:] assert outputs == ({"a": [-1, -1, 2, 3]} if return_lazy_dict is False else {}) def f(x): """May return a mix of LazyDict and regular Dict, but we modify a nested lazy column in-place""" if x["a"]["b"] < 2: x["a"]["c"] = -1 return dict(x) if return_lazy_dict is False else x else: x["a"]["c"] = x["a"]["b"] return x if return_lazy_dict is True else {} ds = Dataset.from_dict({"a": [{"b": 0}, {"b": 1}, {"b": 2}, {"b": 3}]}) ds = ds.map(f) outputs = ds[:] assert outputs == {"a": [{"b": 0, "c": -1}, {"b": 1, "c": -1}, {"b": 2, "c": 2}, {"b": 3, "c": 3}]} def f(x): """May return a mix of LazyDict and regular Dict, but using an extension type""" if x["a"][0][0] < 2: x["a"] = [[-1]] return dict(x) if return_lazy_dict is False else x else: return x if return_lazy_dict is True else {} features = Features({"a": Array2D(shape=(1, 1), dtype="int32")}) ds = Dataset.from_dict({"a": [[[i]] for i in [0, 1, 2, 3]]}, features=features) ds = ds.map(f) outputs = ds[:] assert outputs == {"a": [[[i]] for i in [-1, -1, 2, 3]]} def f(x): """May return a mix of LazyDict and regular Dict, but using a nested extension type""" if x["a"]["nested"][0][0] < 2: x["a"] = {"nested": [[-1]]} return dict(x) if return_lazy_dict is False else x else: return x if return_lazy_dict is True else {} features = Features({"a": {"nested": Array2D(shape=(1, 1), dtype="int64")}}) ds = Dataset.from_dict({"a": [{"nested": [[i]]} for i in [0, 1, 2, 3]]}, features=features) ds = ds.map(f) outputs = ds[:] assert outputs == {"a": [{"nested": [[i]]} for i in [-1, -1, 2, 3]]} def test_dataset_getitem_raises(): ds = Dataset.from_dict({"a": [0, 1, 2, 3]}) with pytest.raises(TypeError): ds[False] with pytest.raises(TypeError): ds._getitem(True)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_arrow_writer.py
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import Array2D, ClassLabel, Features, Image, Value from datasets.features.features import Array2DExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class TypedSequenceTest(TestCase): def test_no_type(self): arr = pa.array(TypedSequence([1, 2, 3])) self.assertEqual(arr.type, pa.int64()) def test_array_type_forbidden(self): with self.assertRaises(ValueError): _ = pa.array(TypedSequence([1, 2, 3]), type=pa.int64()) def test_try_type_and_type_forbidden(self): with self.assertRaises(ValueError): _ = pa.array(TypedSequence([1, 2, 3], try_type=Value("bool"), type=Value("int64"))) def test_compatible_type(self): arr = pa.array(TypedSequence([1, 2, 3], type=Value("int32"))) self.assertEqual(arr.type, pa.int32()) def test_incompatible_type(self): with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): _ = pa.array(TypedSequence(["foo", "bar"], type=Value("int64"))) def test_try_compatible_type(self): arr = pa.array(TypedSequence([1, 2, 3], try_type=Value("int32"))) self.assertEqual(arr.type, pa.int32()) def test_try_incompatible_type(self): arr = pa.array(TypedSequence(["foo", "bar"], try_type=Value("int64"))) self.assertEqual(arr.type, pa.string()) def test_compatible_extension_type(self): arr = pa.array(TypedSequence([[[1, 2, 3]]], type=Array2D((1, 3), "int64"))) self.assertEqual(arr.type, Array2DExtensionType((1, 3), "int64")) def test_incompatible_extension_type(self): with self.assertRaises((TypeError, pa.lib.ArrowInvalid)): _ = pa.array(TypedSequence(["foo", "bar"], type=Array2D((1, 3), "int64"))) def test_try_compatible_extension_type(self): arr = pa.array(TypedSequence([[[1, 2, 3]]], try_type=Array2D((1, 3), "int64"))) self.assertEqual(arr.type, Array2DExtensionType((1, 3), "int64")) def test_try_incompatible_extension_type(self): arr = pa.array(TypedSequence(["foo", "bar"], try_type=Array2D((1, 3), "int64"))) self.assertEqual(arr.type, pa.string()) @require_pil def test_exhaustive_cast(self): import PIL.Image pil_image = PIL.Image.fromarray(np.arange(10, dtype=np.uint8).reshape(2, 5)) with patch( "datasets.arrow_writer.cast_to_python_objects", side_effect=cast_to_python_objects ) as mock_cast_to_python_objects: _ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image], type=Image())) args, kwargs = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting", kwargs) self.assertFalse(kwargs["optimize_list_casting"]) def _check_output(output, expected_num_chunks: int): stream = pa.BufferReader(output) if isinstance(output, pa.Buffer) else pa.memory_map(output) f = pa.ipc.open_stream(stream) pa_table: pa.Table = f.read_all() assert len(pa_table.to_batches()) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size", [None, 1, 10]) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.int64()}, {"col_1": pa.string(), "col_2": pa.int32()}] ) def test_write(fields, writer_batch_size): output = pa.BufferOutputStream() schema = pa.schema(fields) if fields else None with ArrowWriter(stream=output, schema=schema, writer_batch_size=writer_batch_size) as writer: writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: fields = {"col_1": pa.string(), "col_2": pa.int64()} assert writer._schema == pa.schema(fields, metadata=writer._schema.metadata) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def test_write_with_features(): output = pa.BufferOutputStream() features = Features({"labels": ClassLabel(names=["neg", "pos"])}) with ArrowWriter(stream=output, features=features) as writer: writer.write({"labels": 0}) writer.write({"labels": 1}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata stream = pa.BufferReader(output.getvalue()) f = pa.ipc.open_stream(stream) pa_table: pa.Table = f.read_all() schema = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(schema) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10]) def test_key_datatype(writer_batch_size): output = pa.BufferOutputStream() with ArrowWriter( stream=output, writer_batch_size=writer_batch_size, hash_salt="split_name", check_duplicates=True, ) as writer: with pytest.raises(InvalidKeyError): writer.write({"col_1": "foo", "col_2": 1}, key=[1, 2]) num_examples, num_bytes = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10]) def test_duplicate_keys(writer_batch_size): output = pa.BufferOutputStream() with ArrowWriter( stream=output, writer_batch_size=writer_batch_size, hash_salt="split_name", check_duplicates=True, ) as writer: with pytest.raises(DuplicatedKeysError): writer.write({"col_1": "foo", "col_2": 1}, key=10) writer.write({"col_1": "bar", "col_2": 2}, key=10) num_examples, num_bytes = writer.finalize() @pytest.mark.parametrize("writer_batch_size", [None, 2, 10]) def test_write_with_keys(writer_batch_size): output = pa.BufferOutputStream() with ArrowWriter( stream=output, writer_batch_size=writer_batch_size, hash_salt="split_name", check_duplicates=True, ) as writer: writer.write({"col_1": "foo", "col_2": 1}, key=1) writer.write({"col_1": "bar", "col_2": 2}, key=2) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10]) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.int64()}, {"col_1": pa.string(), "col_2": pa.int32()}] ) def test_write_batch(fields, writer_batch_size): output = pa.BufferOutputStream() schema = pa.schema(fields) if fields else None with ArrowWriter(stream=output, schema=schema, writer_batch_size=writer_batch_size) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]}) writer.write_batch({"col_1": [], "col_2": []}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: fields = {"col_1": pa.string(), "col_2": pa.int64()} assert writer._schema == pa.schema(fields, metadata=writer._schema.metadata) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10]) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.int64()}, {"col_1": pa.string(), "col_2": pa.int32()}] ) def test_write_table(fields, writer_batch_size): output = pa.BufferOutputStream() schema = pa.schema(fields) if fields else None with ArrowWriter(stream=output, schema=schema, writer_batch_size=writer_batch_size) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]})) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: fields = {"col_1": pa.string(), "col_2": pa.int64()} assert writer._schema == pa.schema(fields, metadata=writer._schema.metadata) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1) @pytest.mark.parametrize("writer_batch_size", [None, 1, 10]) @pytest.mark.parametrize( "fields", [None, {"col_1": pa.string(), "col_2": pa.int64()}, {"col_1": pa.string(), "col_2": pa.int32()}] ) def test_write_row(fields, writer_batch_size): output = pa.BufferOutputStream() schema = pa.schema(fields) if fields else None with ArrowWriter(stream=output, schema=schema, writer_batch_size=writer_batch_size) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]})) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]})) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: fields = {"col_1": pa.string(), "col_2": pa.int64()} assert writer._schema == pa.schema(fields, metadata=writer._schema.metadata) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1) def test_write_file(): with tempfile.TemporaryDirectory() as tmp_dir: fields = {"col_1": pa.string(), "col_2": pa.int64()} output = os.path.join(tmp_dir, "test.arrow") with ArrowWriter(path=output, schema=pa.schema(fields)) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(fields, metadata=writer._schema.metadata) _check_output(output, 1) def get_base_dtype(arr_type): if pa.types.is_list(arr_type): return get_base_dtype(arr_type.value_type) else: return arr_type def change_first_primitive_element_in_list(lst, value): if isinstance(lst[0], list): change_first_primitive_element_in_list(lst[0], value) else: lst[0] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype", [(None, pa.int64()), (Value("int32"), pa.int32())]) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def test_optimized_int_type_for_typed_sequence(sequence, optimized_int_type, expected_dtype): arr = pa.array(TypedSequence(sequence, optimized_int_type=optimized_int_type)) assert get_base_dtype(arr.type) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype", [ ("attention_mask", pa.int8()), ("special_tokens_mask", pa.int8()), ("token_type_ids", pa.int8()), ("input_ids", pa.int32()), ("other", pa.int64()), ], ) @pytest.mark.parametrize("sequence", [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]]) def test_optimized_typed_sequence(sequence, col, expected_dtype): # in range arr = pa.array(OptimizedTypedSequence(sequence, col=col)) assert get_base_dtype(arr.type) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications sequence = copy.deepcopy(sequence) value = np.iinfo(expected_dtype.to_pandas_dtype()).max + 1 change_first_primitive_element_in_list(sequence, value) arr = pa.array(OptimizedTypedSequence(sequence, col=col)) assert get_base_dtype(arr.type) == pa.int64() @pytest.mark.parametrize("raise_exception", [False, True]) def test_arrow_writer_closes_stream(raise_exception, tmp_path): path = str(tmp_path / "dataset-train.arrow") try: with ArrowWriter(path=path) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def test_arrow_writer_with_filesystem(mockfs): path = "mock://dataset-train.arrow" with ArrowWriter(path=path, storage_options=mockfs.storage_options) as writer: assert isinstance(writer._fs, type(mockfs)) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(path) def test_parquet_writer_write(): output = pa.BufferOutputStream() with ParquetWriter(stream=output) as writer: writer.write({"col_1": "foo", "col_2": 1}) writer.write({"col_1": "bar", "col_2": 2}) num_examples, num_bytes = writer.finalize() assert num_examples == 2 assert num_bytes > 0 stream = pa.BufferReader(output.getvalue()) pa_table: pa.Table = pq.read_table(stream) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files", [False, True]) def test_writer_embed_local_files(tmp_path, embed_local_files): import PIL.Image image_path = str(tmp_path / "test_image_rgb.jpg") PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uint8)).save(image_path, format="png") output = pa.BufferOutputStream() with ParquetWriter( stream=output, features=Features({"image": Image()}), embed_local_files=embed_local_files ) as writer: writer.write({"image": image_path}) writer.finalize() stream = pa.BufferReader(output.getvalue()) pa_table: pa.Table = pq.read_table(stream) out = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"], str) with open(image_path, "rb") as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def test_always_nullable(): non_nullable_schema = pa.schema([pa.field("col_1", pa.string(), nullable=False)]) output = pa.BufferOutputStream() with ArrowWriter(stream=output) as writer: writer._build_writer(inferred_schema=non_nullable_schema) assert writer._schema == pa.schema([pa.field("col_1", pa.string())])
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/README.md
## Add Dummy data test **Important** In order to pass the `load_dataset_<dataset_name>` test, dummy data is required for all possible config names. First we distinguish between datasets scripts that - A) have no config class and - B) have a config class For A) the dummy data folder structure, will always look as follows: - ``dummy/<version>/dummy_data.zip``, *e.g.* ``cosmos_qa/dummy/0.1.0/dummy_data.zip``. For B) the dummy data folder structure, will always look as follows: - ``dummy/<config_name>/<version>/dummy_data.zip``, *e.g.* ``squad/dummy/plain-text/1.0.0/dummy_data.zip``. Now the difficult part is to create the correct `dummy_data.zip` file. **Important** When checking the dummy folder structure of already added datasets, always unzip ``dummy_data.zip``. If a folder ``dummy_data`` is found next to ``dummy_data.zip``, it is probably an old version and should be deleted. The tests only take the ``dummy_data.zip`` file into account. Here we have to pay close attention to the ``_split_generators(self, dl_manager)`` function of the dataset script in question. There are three general possibilties: 1) The ``dl_manager.download_and_extract()`` is given a **single path variable** of type `str` as its argument. In this case the file `dummy_data.zip` should unzip to the following structure: ``os.path.join("dummy_data", <additional-paths-as-defined-in-split-generations>)`` *e.g.* for ``sentiment140``, the unzipped ``dummy_data.zip`` has the following dir structure ``dummy_data/testdata.manual.2009.06.14.csv`` and ``dummy_data/training.1600000.processed.noemoticon.csv``. **Note** if there are no ``<additional-paths-as-defined-in-split-generations>``, then ``dummy_data`` should be the name of the single file. An example for this is the ``crime-and-punishment`` dataset script. 2) The ``dl_manager.download_and_extract()`` is given a **dictionary of paths** of type `str` as its argument. In this case the file `dummy_data.zip` should unzip to the following structure: ``os.path.join("dummy_data", <value_of_dict>.split('/')[-1], <additional-paths-as-defined-in-split-generations>)`` *e.g.* for ``squad``, the unzipped ``dummy_data.zip`` has the following dir structure ``dummy_data/dev-v1.1.json``, etc... **Note** if ``<value_of_dict>`` is a zipped file then the dummy data folder structure should contain the exact name of the zipped file and the following extracted folder structure. The file `dummy_data.zip` should **never** itself contain a zipped file since the dummy data is not unzipped by the ``MockDownloadManager`` during testing. *E.g.* check the dummy folder structure of ``hansards`` where the folders have to be named ``*.tar`` or the structure of ``wiki_split`` where the folders have to be named ``*.zip``. 3) The ``dl_manager.download_and_extract()`` is given a **dictionary of lists of paths** of type `str` as its argument. This is a very special case and has been seen only for the dataset ``ensli``. In this case the values are simply flattened and the dummy folder structure is the same as in 2).
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_warnings.py
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def mock_emitted_deprecation_warnings(monkeypatch): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings", set()) # Used by list_metrics @pytest.fixture def mock_hfh(monkeypatch): class MetricMock: def __init__(self, metric_id): self.id = metric_id class HfhMock: _metrics = [MetricMock(metric_id) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def list_metrics(self): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub", HfhMock()) @pytest.mark.parametrize( "func, args", [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def test_metric_deprecation_warning(func, args, mock_emitted_deprecation_warnings, mock_hfh, tmp_path): if "tmp_path" in args: args = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(FutureWarning, match="https://huggingface.co/docs/evaluate"): func(*args)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_dataset_list.py
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class DatasetListTest(TestCase): def _create_example_records(self): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _create_example_dict(self): data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(data) def test_create(self): example_records = self._create_example_records() dset = Dataset.from_list(example_records) self.assertListEqual(dset.column_names, ["col_1", "col_2"]) for i, r in enumerate(dset): self.assertDictEqual(r, example_records[i]) def test_list_dict_equivalent(self): example_records = self._create_example_records() dset = Dataset.from_list(example_records) dset_from_dict = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info, dset_from_dict.info) def test_uneven_records(self): # checks what happens with missing columns uneven_records = [{"col_1": 1}, {"col_2": "x"}] dset = Dataset.from_list(uneven_records) self.assertDictEqual(dset[0], {"col_1": 1}) self.assertDictEqual(dset[1], {"col_1": None}) # NB: first record is used for columns def test_variable_list_records(self): # checks if the type can be inferred from the second record list_records = [{"col_1": []}, {"col_1": [1, 2]}] dset = Dataset.from_list(list_records) self.assertEqual(dset.info.features["col_1"], Sequence(Value("int64"))) def test_create_empty(self): dset = Dataset.from_list([]) self.assertEqual(len(dset), 0) self.assertListEqual(dset.column_names, [])
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_version.py
import pytest from datasets.utils.version import Version @pytest.mark.parametrize( "other, expected_equality", [ (Version("1.0.0"), True), ("1.0.0", True), (Version("2.0.0"), False), ("2.0.0", False), ("1", False), ("a", False), (1, False), (None, False), ], ) def test_version_equality_and_hash(other, expected_equality): version = Version("1.0.0") assert (version == other) is expected_equality assert (version != other) is not expected_equality assert (hash(version) == hash(other)) is expected_equality
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_tasks.py
from copy import deepcopy from unittest.case import TestCase import pytest from datasets.arrow_dataset import Dataset from datasets.features import Audio, ClassLabel, Features, Image, Sequence, Value from datasets.info import DatasetInfo from datasets.tasks import ( AudioClassification, AutomaticSpeechRecognition, ImageClassification, LanguageModeling, QuestionAnsweringExtractive, Summarization, TextClassification, task_template_from_dict, ) from datasets.utils.py_utils import asdict SAMPLE_QUESTION_ANSWERING_EXTRACTIVE = { "id": "5733be284776f41900661182", "title": "University_of_Notre_Dame", "context": 'Architecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.', "question": "To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?", "answers": {"text": ["Saint Bernadette Soubirous"], "answer_start": [515]}, } @pytest.mark.parametrize( "task_cls", [ AudioClassification, AutomaticSpeechRecognition, ImageClassification, LanguageModeling, QuestionAnsweringExtractive, Summarization, TextClassification, ], ) def test_reload_task_from_dict(task_cls): task = task_cls() task_dict = asdict(task) reloaded = task_template_from_dict(task_dict) assert task == reloaded class TestLanguageModeling: def test_column_mapping(self): task = LanguageModeling(text_column="input_text") assert {"input_text": "text"} == task.column_mapping def test_from_dict(self): input_schema = Features({"text": Value("string")}) template_dict = {"text_column": "input_text"} task = LanguageModeling.from_dict(template_dict) assert "language-modeling" == task.task assert input_schema == task.input_schema class TextClassificationTest(TestCase): def setUp(self): self.labels = sorted(["pos", "neg"]) def test_column_mapping(self): task = TextClassification(text_column="input_text", label_column="input_label") self.assertDictEqual({"input_text": "text", "input_label": "labels"}, task.column_mapping) def test_from_dict(self): input_schema = Features({"text": Value("string")}) # Labels are cast to tuple during `TextClassification.__post_init__`, so we do the same here label_schema = Features({"labels": ClassLabel}) template_dict = {"text_column": "input_text", "label_column": "input_labels"} task = TextClassification.from_dict(template_dict) self.assertEqual("text-classification", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) def test_align_with_features(self): task = TextClassification(text_column="input_text", label_column="input_label") self.assertEqual(task.label_schema["labels"], ClassLabel) task = task.align_with_features(Features({"input_label": ClassLabel(names=self.labels)})) self.assertEqual(task.label_schema["labels"], ClassLabel(names=self.labels)) class QuestionAnsweringTest(TestCase): def test_column_mapping(self): task = QuestionAnsweringExtractive( context_column="input_context", question_column="input_question", answers_column="input_answers" ) self.assertDictEqual( {"input_context": "context", "input_question": "question", "input_answers": "answers"}, task.column_mapping ) def test_from_dict(self): input_schema = Features({"question": Value("string"), "context": Value("string")}) label_schema = Features( { "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ) } ) template_dict = { "context_column": "input_input_context", "question_column": "input_question", "answers_column": "input_answers", } task = QuestionAnsweringExtractive.from_dict(template_dict) self.assertEqual("question-answering-extractive", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) class SummarizationTest(TestCase): def test_column_mapping(self): task = Summarization(text_column="input_text", summary_column="input_summary") self.assertDictEqual({"input_text": "text", "input_summary": "summary"}, task.column_mapping) def test_from_dict(self): input_schema = Features({"text": Value("string")}) label_schema = Features({"summary": Value("string")}) template_dict = {"text_column": "input_text", "summary_column": "input_summary"} task = Summarization.from_dict(template_dict) self.assertEqual("summarization", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) class AutomaticSpeechRecognitionTest(TestCase): def test_column_mapping(self): task = AutomaticSpeechRecognition(audio_column="input_audio", transcription_column="input_transcription") self.assertDictEqual({"input_audio": "audio", "input_transcription": "transcription"}, task.column_mapping) def test_from_dict(self): input_schema = Features({"audio": Audio()}) label_schema = Features({"transcription": Value("string")}) template_dict = { "audio_column": "input_audio", "transcription_column": "input_transcription", } task = AutomaticSpeechRecognition.from_dict(template_dict) self.assertEqual("automatic-speech-recognition", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) class AudioClassificationTest(TestCase): def setUp(self): self.labels = sorted(["pos", "neg"]) def test_column_mapping(self): task = AudioClassification(audio_column="input_audio", label_column="input_label") self.assertDictEqual({"input_audio": "audio", "input_label": "labels"}, task.column_mapping) def test_from_dict(self): input_schema = Features({"audio": Audio()}) label_schema = Features({"labels": ClassLabel}) template_dict = { "audio_column": "input_image", "label_column": "input_label", } task = AudioClassification.from_dict(template_dict) self.assertEqual("audio-classification", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) def test_align_with_features(self): task = AudioClassification(audio_column="input_audio", label_column="input_label") self.assertEqual(task.label_schema["labels"], ClassLabel) task = task.align_with_features(Features({"input_label": ClassLabel(names=self.labels)})) self.assertEqual(task.label_schema["labels"], ClassLabel(names=self.labels)) class ImageClassificationTest(TestCase): def setUp(self): self.labels = sorted(["pos", "neg"]) def test_column_mapping(self): task = ImageClassification(image_column="input_image", label_column="input_label") self.assertDictEqual({"input_image": "image", "input_label": "labels"}, task.column_mapping) def test_from_dict(self): input_schema = Features({"image": Image()}) label_schema = Features({"labels": ClassLabel}) template_dict = { "image_column": "input_image", "label_column": "input_label", } task = ImageClassification.from_dict(template_dict) self.assertEqual("image-classification", task.task) self.assertEqual(input_schema, task.input_schema) self.assertEqual(label_schema, task.label_schema) def test_align_with_features(self): task = ImageClassification(image_column="input_image", label_column="input_label") self.assertEqual(task.label_schema["labels"], ClassLabel) task = task.align_with_features(Features({"input_label": ClassLabel(names=self.labels)})) self.assertEqual(task.label_schema["labels"], ClassLabel(names=self.labels)) class DatasetWithTaskProcessingTest(TestCase): def test_map_on_task_template(self): info = DatasetInfo(task_templates=QuestionAnsweringExtractive()) dataset = Dataset.from_dict({k: [v] for k, v in SAMPLE_QUESTION_ANSWERING_EXTRACTIVE.items()}, info=info) assert isinstance(dataset.info.task_templates, list) assert len(dataset.info.task_templates) == 1 def keep_task(x): return x def dont_keep_task(x): out = deepcopy(SAMPLE_QUESTION_ANSWERING_EXTRACTIVE) out["answers"]["foobar"] = 0 return out mapped_dataset = dataset.map(keep_task) assert mapped_dataset.info.task_templates == dataset.info.task_templates # reload from cache mapped_dataset = dataset.map(keep_task) assert mapped_dataset.info.task_templates == dataset.info.task_templates mapped_dataset = dataset.map(dont_keep_task) assert mapped_dataset.info.task_templates == [] # reload from cache mapped_dataset = dataset.map(dont_keep_task) assert mapped_dataset.info.task_templates == [] def test_remove_and_map_on_task_template(self): features = Features({"text": Value("string"), "label": ClassLabel(names=("pos", "neg"))}) task_templates = TextClassification(text_column="text", label_column="label") info = DatasetInfo(features=features, task_templates=task_templates) dataset = Dataset.from_dict({"text": ["A sentence."], "label": ["pos"]}, info=info) def process(example): return example modified_dataset = dataset.remove_columns("label") mapped_dataset = modified_dataset.map(process) assert mapped_dataset.info.task_templates == []
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_upstream_hub.py
import fnmatch import gc import os import shutil import tempfile import textwrap import time import unittest from io import BytesIO from pathlib import Path from unittest.mock import patch import numpy as np import pytest from huggingface_hub import DatasetCard, HfApi from huggingface_hub.utils import RepositoryNotFoundError from datasets import ( Audio, ClassLabel, Dataset, DatasetDict, DownloadManager, Features, Image, Value, load_dataset, load_dataset_builder, ) from datasets.config import METADATA_CONFIGS_FIELD from datasets.data_files import get_data_patterns from datasets.packaged_modules.folder_based_builder.folder_based_builder import ( FolderBasedBuilder, FolderBasedBuilderConfig, ) from datasets.utils.file_utils import cached_path from datasets.utils.hub import hf_hub_url from tests.fixtures.hub import CI_HUB_ENDPOINT, CI_HUB_USER, CI_HUB_USER_TOKEN from tests.utils import for_all_test_methods, require_pil, require_sndfile, xfail_if_500_502_http_error pytestmark = pytest.mark.integration @for_all_test_methods(xfail_if_500_502_http_error) @pytest.mark.usefixtures("ci_hub_config", "ci_hfh_hf_hub_url") class TestPushToHub: _api = HfApi(endpoint=CI_HUB_ENDPOINT) _token = CI_HUB_USER_TOKEN def test_push_dataset_dict_to_hub_no_token(self, temporary_repo, set_ci_hub_access_token): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there is a single file on the repository that has the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset")) assert files == [".gitattributes", "README.md", "data/train-00000-of-00001.parquet"] def test_push_dataset_dict_to_hub_name_without_namespace(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: # cannot create a repo without namespace with pytest.raises(RepositoryNotFoundError): local_ds.push_to_hub(ds_name.split("/")[-1], token=self._token) def test_push_dataset_dict_to_hub_datasets_with_different_features(self, cleanup_repo): ds_train = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_test = Dataset.from_dict({"x": [True, False, True], "y": ["a", "b", "c"]}) local_ds = DatasetDict({"train": ds_train, "test": ds_test}) ds_name = f"{CI_HUB_USER}/test-{int(time.time() * 10e6)}" try: with pytest.raises(ValueError): local_ds.push_to_hub(ds_name.split("/")[-1], token=self._token) except AssertionError: cleanup_repo(ds_name) raise def test_push_dataset_dict_to_hub_private(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token, private=True) hub_ds = load_dataset(ds_name, download_mode="force_redownload", token=self._token) assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there is a single file on the repository that has the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [".gitattributes", "README.md", "data/train-00000-of-00001.parquet"] def test_push_dataset_dict_to_hub(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there is a single file on the repository that has the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [".gitattributes", "README.md", "data/train-00000-of-00001.parquet"] def test_push_dataset_dict_to_hub_with_pull_request(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token, create_pr=True) hub_ds = load_dataset(ds_name, revision="refs/pr/1", download_mode="force_redownload") assert local_ds["train"].features == hub_ds["train"].features assert list(local_ds.keys()) == list(hub_ds.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there is a single file on the repository that has the correct name files = sorted( self._api.list_repo_files(ds_name, revision="refs/pr/1", repo_type="dataset", token=self._token) ) assert files == [".gitattributes", "README.md", "data/train-00000-of-00001.parquet"] def test_push_dataset_dict_to_hub_with_revision(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token, revision="dev") hub_ds = load_dataset(ds_name, revision="dev", download_mode="force_redownload") assert local_ds["train"].features == hub_ds["train"].features assert list(local_ds.keys()) == list(hub_ds.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there is a single file on the repository that has the correct name files = sorted(self._api.list_repo_files(ds_name, revision="dev", repo_type="dataset", token=self._token)) assert files == [".gitattributes", "README.md", "data/train-00000-of-00001.parquet"] def test_push_dataset_dict_to_hub_multiple_files(self, temporary_repo): ds = Dataset.from_dict({"x": list(range(1000)), "y": list(range(1000))}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: with patch("datasets.config.MAX_SHARD_SIZE", "16KB"): local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/train-00000-of-00002.parquet", "data/train-00001-of-00002.parquet", ] def test_push_dataset_dict_to_hub_multiple_files_with_max_shard_size(self, temporary_repo): ds = Dataset.from_dict({"x": list(range(1000)), "y": list(range(1000))}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token, max_shard_size="16KB") hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/train-00000-of-00002.parquet", "data/train-00001-of-00002.parquet", ] def test_push_dataset_dict_to_hub_multiple_files_with_num_shards(self, temporary_repo): ds = Dataset.from_dict({"x": list(range(1000)), "y": list(range(1000))}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token, num_shards={"train": 2}) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/train-00000-of-00002.parquet", "data/train-00001-of-00002.parquet", ] def test_push_dataset_dict_to_hub_with_multiple_commits(self, temporary_repo): ds = Dataset.from_dict({"x": list(range(1000)), "y": list(range(1000))}) local_ds = DatasetDict({"train": ds}) with temporary_repo() as ds_name: self._api.create_repo(ds_name, token=self._token, repo_type="dataset") num_commits_before_push = len(self._api.list_repo_commits(ds_name, repo_type="dataset", token=self._token)) with patch("datasets.config.MAX_SHARD_SIZE", "16KB"), patch( "datasets.config.UPLOADS_MAX_NUMBER_PER_COMMIT", 1 ): local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/train-00000-of-00002.parquet", "data/train-00001-of-00002.parquet", ] num_commits_after_push = len(self._api.list_repo_commits(ds_name, repo_type="dataset", token=self._token)) assert num_commits_after_push - num_commits_before_push > 1 def test_push_dataset_dict_to_hub_overwrite_files(self, temporary_repo): ds = Dataset.from_dict({"x": list(range(1000)), "y": list(range(1000))}) ds2 = Dataset.from_dict({"x": list(range(100)), "y": list(range(100))}) local_ds = DatasetDict({"train": ds, "random": ds2}) # Push to hub two times, but the second time with a larger amount of files. # Verify that the new files contain the correct dataset. with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token) with tempfile.TemporaryDirectory() as tmp: # Add a file starting with "data" to ensure it doesn't get deleted. path = Path(tmp) / "datafile.txt" with open(path, "w") as f: f.write("Bogus file") self._api.upload_file( path_or_fileobj=str(path), path_in_repo="datafile.txt", repo_id=ds_name, repo_type="dataset", token=self._token, ) local_ds.push_to_hub(ds_name, token=self._token, max_shard_size=500 << 5) # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/random-00000-of-00001.parquet", "data/train-00000-of-00002.parquet", "data/train-00001-of-00002.parquet", "datafile.txt", ] self._api.delete_file("datafile.txt", repo_id=ds_name, repo_type="dataset", token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features del hub_ds # To ensure the reference to the memory-mapped Arrow file is dropped to avoid the PermissionError on Windows gc.collect() # Push to hub two times, but the second time with fewer files. # Verify that the new files contain the correct dataset and that non-necessary files have been deleted. with temporary_repo(ds_name): local_ds.push_to_hub(ds_name, token=self._token, max_shard_size=500 << 5) with tempfile.TemporaryDirectory() as tmp: # Add a file starting with "data" to ensure it doesn't get deleted. path = Path(tmp) / "datafile.txt" with open(path, "w") as f: f.write("Bogus file") self._api.upload_file( path_or_fileobj=str(path), path_in_repo="datafile.txt", repo_id=ds_name, repo_type="dataset", token=self._token, ) local_ds.push_to_hub(ds_name, token=self._token) # Ensure that there are two files on the repository that have the correct name files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset", token=self._token)) assert files == [ ".gitattributes", "README.md", "data/random-00000-of-00001.parquet", "data/train-00000-of-00001.parquet", "datafile.txt", ] # Keeping the "datafile.txt" breaks the load_dataset to think it's a text-based dataset self._api.delete_file("datafile.txt", repo_id=ds_name, repo_type="dataset", token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features def test_push_dataset_to_hub(self, temporary_repo): local_ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, split="train", token=self._token) local_ds_dict = {"train": local_ds} hub_ds_dict = load_dataset(ds_name, download_mode="force_redownload") assert list(local_ds_dict.keys()) == list(hub_ds_dict.keys()) for ds_split_name in local_ds_dict.keys(): local_ds = local_ds_dict[ds_split_name] hub_ds = hub_ds_dict[ds_split_name] assert local_ds.column_names == hub_ds.column_names assert list(local_ds.features.keys()) == list(hub_ds.features.keys()) assert local_ds.features == hub_ds.features def test_push_dataset_to_hub_custom_features(self, temporary_repo): features = Features({"x": Value("int64"), "y": ClassLabel(names=["neg", "pos"])}) ds = Dataset.from_dict({"x": [1, 2, 3], "y": [0, 0, 1]}, features=features) with temporary_repo() as ds_name: ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, split="train", download_mode="force_redownload") assert ds.column_names == hub_ds.column_names assert list(ds.features.keys()) == list(hub_ds.features.keys()) assert ds.features == hub_ds.features assert ds[:] == hub_ds[:] @require_sndfile def test_push_dataset_to_hub_custom_features_audio(self, temporary_repo): audio_path = os.path.join(os.path.dirname(__file__), "features", "data", "test_audio_44100.wav") data = {"x": [audio_path, None], "y": [0, -1]} features = Features({"x": Audio(), "y": Value("int32")}) ds = Dataset.from_dict(data, features=features) for embed_external_files in [True, False]: with temporary_repo() as ds_name: ds.push_to_hub(ds_name, embed_external_files=embed_external_files, token=self._token) hub_ds = load_dataset(ds_name, split="train", download_mode="force_redownload") assert ds.column_names == hub_ds.column_names assert list(ds.features.keys()) == list(hub_ds.features.keys()) assert ds.features == hub_ds.features np.testing.assert_equal(ds[0]["x"]["array"], hub_ds[0]["x"]["array"]) assert ds[1] == hub_ds[1] # don't test hub_ds[0] since audio decoding might be slightly different hub_ds = hub_ds.cast_column("x", Audio(decode=False)) elem = hub_ds[0]["x"] path, bytes_ = elem["path"], elem["bytes"] assert isinstance(path, str) assert os.path.basename(path) == "test_audio_44100.wav" assert bool(bytes_) == embed_external_files @require_pil def test_push_dataset_to_hub_custom_features_image(self, temporary_repo): image_path = os.path.join(os.path.dirname(__file__), "features", "data", "test_image_rgb.jpg") data = {"x": [image_path, None], "y": [0, -1]} features = Features({"x": Image(), "y": Value("int32")}) ds = Dataset.from_dict(data, features=features) for embed_external_files in [True, False]: with temporary_repo() as ds_name: ds.push_to_hub(ds_name, embed_external_files=embed_external_files, token=self._token) hub_ds = load_dataset(ds_name, split="train", download_mode="force_redownload") assert ds.column_names == hub_ds.column_names assert list(ds.features.keys()) == list(hub_ds.features.keys()) assert ds.features == hub_ds.features assert ds[:] == hub_ds[:] hub_ds = hub_ds.cast_column("x", Image(decode=False)) elem = hub_ds[0]["x"] path, bytes_ = elem["path"], elem["bytes"] assert isinstance(path, str) assert bool(bytes_) == embed_external_files @require_pil def test_push_dataset_to_hub_custom_features_image_list(self, temporary_repo): image_path = os.path.join(os.path.dirname(__file__), "features", "data", "test_image_rgb.jpg") data = {"x": [[image_path], [image_path, image_path]], "y": [0, -1]} features = Features({"x": [Image()], "y": Value("int32")}) ds = Dataset.from_dict(data, features=features) for embed_external_files in [True, False]: with temporary_repo() as ds_name: ds.push_to_hub(ds_name, embed_external_files=embed_external_files, token=self._token) hub_ds = load_dataset(ds_name, split="train", download_mode="force_redownload") assert ds.column_names == hub_ds.column_names assert list(ds.features.keys()) == list(hub_ds.features.keys()) assert ds.features == hub_ds.features assert ds[:] == hub_ds[:] hub_ds = hub_ds.cast_column("x", [Image(decode=False)]) elem = hub_ds[0]["x"][0] path, bytes_ = elem["path"], elem["bytes"] assert isinstance(path, str) assert bool(bytes_) == embed_external_files def test_push_dataset_dict_to_hub_custom_features(self, temporary_repo): features = Features({"x": Value("int64"), "y": ClassLabel(names=["neg", "pos"])}) ds = Dataset.from_dict({"x": [1, 2, 3], "y": [0, 0, 1]}, features=features) local_ds = DatasetDict({"test": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["test"].features.keys()) == list(hub_ds["test"].features.keys()) assert local_ds["test"].features == hub_ds["test"].features def test_push_dataset_to_hub_custom_splits(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) with temporary_repo() as ds_name: ds.push_to_hub(ds_name, split="random", token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert ds.column_names == hub_ds["random"].column_names assert list(ds.features.keys()) == list(hub_ds["random"].features.keys()) assert ds.features == hub_ds["random"].features def test_push_dataset_to_hub_multiple_splits_one_by_one(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) with temporary_repo() as ds_name: ds.push_to_hub(ds_name, split="train", token=self._token) ds.push_to_hub(ds_name, split="test", token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert sorted(hub_ds) == ["test", "train"] assert ds.column_names == hub_ds["train"].column_names assert list(ds.features.keys()) == list(hub_ds["train"].features.keys()) assert ds.features == hub_ds["train"].features def test_push_dataset_dict_to_hub_custom_splits(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"random": ds}) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["random"].features.keys()) == list(hub_ds["random"].features.keys()) assert local_ds["random"].features == hub_ds["random"].features @unittest.skip("This test cannot pass until iterable datasets have push to hub") def test_push_streaming_dataset_dict_to_hub(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) local_ds = DatasetDict({"train": ds}) with tempfile.TemporaryDirectory() as tmp: local_ds.save_to_disk(tmp) local_ds = load_dataset(tmp, streaming=True) with temporary_repo() as ds_name: local_ds.push_to_hub(ds_name, token=self._token) hub_ds = load_dataset(ds_name, download_mode="force_redownload") assert local_ds.column_names == hub_ds.column_names assert list(local_ds["train"].features.keys()) == list(hub_ds["train"].features.keys()) assert local_ds["train"].features == hub_ds["train"].features def test_push_multiple_dataset_configs_to_hub_load_dataset_builder(self, temporary_repo): ds_default = Dataset.from_dict({"a": [0], "b": [1]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) with temporary_repo() as ds_name: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) ds_builder_default = load_dataset_builder(ds_name, download_mode="force_redownload") # default config assert len(ds_builder_default.BUILDER_CONFIGS) == 3 assert len(ds_builder_default.config.data_files["train"]) == 1 assert fnmatch.fnmatch( ds_builder_default.config.data_files["train"][0], "*/data/train-*", ) ds_builder_config1 = load_dataset_builder(ds_name, "config1", download_mode="force_redownload") assert len(ds_builder_config1.BUILDER_CONFIGS) == 3 assert len(ds_builder_config1.config.data_files["train"]) == 1 assert fnmatch.fnmatch( ds_builder_config1.config.data_files["train"][0], "*/config1/train-*", ) ds_builder_config2 = load_dataset_builder(ds_name, "config2", download_mode="force_redownload") assert len(ds_builder_config2.BUILDER_CONFIGS) == 3 assert len(ds_builder_config2.config.data_files["train"]) == 1 assert fnmatch.fnmatch( ds_builder_config2.config.data_files["train"][0], "*/config2/train-*", ) with pytest.raises(ValueError): # no config 'config3' load_dataset_builder(ds_name, "config3", download_mode="force_redownload") def test_push_multiple_dataset_configs_to_hub_load_dataset(self, temporary_repo): ds_default = Dataset.from_dict({"a": [0], "b": [1]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) with temporary_repo() as ds_name: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset")) assert files == [ ".gitattributes", "README.md", "config1/train-00000-of-00001.parquet", "config2/train-00000-of-00001.parquet", "data/train-00000-of-00001.parquet", ] hub_ds_default = load_dataset(ds_name, download_mode="force_redownload") hub_ds_config1 = load_dataset(ds_name, "config1", download_mode="force_redownload") hub_ds_config2 = load_dataset(ds_name, "config2", download_mode="force_redownload") # only "train" split assert len(hub_ds_default) == len(hub_ds_config1) == len(hub_ds_config2) == 1 assert ds_default.column_names == hub_ds_default["train"].column_names == ["a", "b"] assert ds_config1.column_names == hub_ds_config1["train"].column_names == ["x", "y"] assert ds_config2.column_names == hub_ds_config2["train"].column_names == ["foo", "bar"] assert ds_default.features == hub_ds_default["train"].features assert ds_config1.features == hub_ds_config1["train"].features assert ds_config2.features == hub_ds_config2["train"].features assert ds_default.num_rows == hub_ds_default["train"].num_rows == 1 assert ds_config1.num_rows == hub_ds_config1["train"].num_rows == 3 assert ds_config2.num_rows == hub_ds_config2["train"].num_rows == 2 with pytest.raises(ValueError): # no config 'config3' load_dataset(ds_name, "config3", download_mode="force_redownload") @pytest.mark.parametrize("specific_default_config_name", [False, True]) def test_push_multiple_dataset_configs_to_hub_readme_metadata_content( self, specific_default_config_name, temporary_repo ): ds_default = Dataset.from_dict({"a": [0], "b": [2]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) with temporary_repo() as ds_name: if specific_default_config_name: ds_default.push_to_hub(ds_name, config_name="config0", set_default=True, token=self._token) else: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) # check that configs args was correctly pushed to README.md ds_readme_path = cached_path(hf_hub_url(ds_name, "README.md")) dataset_card_data = DatasetCard.load(ds_readme_path).data assert METADATA_CONFIGS_FIELD in dataset_card_data assert isinstance(dataset_card_data[METADATA_CONFIGS_FIELD], list) assert sorted(dataset_card_data[METADATA_CONFIGS_FIELD], key=lambda x: x["config_name"]) == ( [ { "config_name": "config0", "data_files": [ {"split": "train", "path": "config0/train-*"}, ], "default": True, }, ] if specific_default_config_name else [] ) + [ { "config_name": "config1", "data_files": [ {"split": "train", "path": "config1/train-*"}, ], }, { "config_name": "config2", "data_files": [ {"split": "train", "path": "config2/train-*"}, ], }, ] + ( [] if specific_default_config_name else [ { "config_name": "default", "data_files": [ {"split": "train", "path": "data/train-*"}, ], }, ] ) def test_push_multiple_dataset_dict_configs_to_hub_load_dataset_builder(self, temporary_repo): ds_default = Dataset.from_dict({"a": [0], "b": [1]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) ds_default = DatasetDict({"random": ds_default}) ds_config1 = DatasetDict({"random": ds_config1}) ds_config2 = DatasetDict({"random": ds_config2}) with temporary_repo() as ds_name: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) ds_builder_default = load_dataset_builder(ds_name, download_mode="force_redownload") # default config assert len(ds_builder_default.BUILDER_CONFIGS) == 3 assert len(ds_builder_default.config.data_files["random"]) == 1 assert fnmatch.fnmatch( ds_builder_default.config.data_files["random"][0], "*/data/random-*", ) ds_builder_config1 = load_dataset_builder(ds_name, "config1", download_mode="force_redownload") assert len(ds_builder_config1.BUILDER_CONFIGS) == 3 assert len(ds_builder_config1.config.data_files["random"]) == 1 assert fnmatch.fnmatch( ds_builder_config1.config.data_files["random"][0], "*/config1/random-*", ) ds_builder_config2 = load_dataset_builder(ds_name, "config2", download_mode="force_redownload") assert len(ds_builder_config2.BUILDER_CONFIGS) == 3 assert len(ds_builder_config2.config.data_files["random"]) == 1 assert fnmatch.fnmatch( ds_builder_config2.config.data_files["random"][0], "*/config2/random-*", ) with pytest.raises(ValueError): # no config named 'config3' load_dataset_builder(ds_name, "config3", download_mode="force_redownload") def test_push_multiple_dataset_dict_configs_to_hub_load_dataset(self, temporary_repo): ds_default = Dataset.from_dict({"a": [0], "b": [1]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) ds_default = DatasetDict({"train": ds_default, "random": ds_default}) ds_config1 = DatasetDict({"train": ds_config1, "random": ds_config1}) ds_config2 = DatasetDict({"train": ds_config2, "random": ds_config2}) with temporary_repo() as ds_name: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) files = sorted(self._api.list_repo_files(ds_name, repo_type="dataset")) assert files == [ ".gitattributes", "README.md", "config1/random-00000-of-00001.parquet", "config1/train-00000-of-00001.parquet", "config2/random-00000-of-00001.parquet", "config2/train-00000-of-00001.parquet", "data/random-00000-of-00001.parquet", "data/train-00000-of-00001.parquet", ] hub_ds_default = load_dataset(ds_name, download_mode="force_redownload") hub_ds_config1 = load_dataset(ds_name, "config1", download_mode="force_redownload") hub_ds_config2 = load_dataset(ds_name, "config2", download_mode="force_redownload") # two splits expected_splits = ["random", "train"] assert len(hub_ds_default) == len(hub_ds_config1) == len(hub_ds_config2) == 2 assert sorted(hub_ds_default) == sorted(hub_ds_config1) == sorted(hub_ds_config2) == expected_splits for split in expected_splits: assert ds_default[split].column_names == hub_ds_default[split].column_names == ["a", "b"] assert ds_config1[split].column_names == hub_ds_config1[split].column_names == ["x", "y"] assert ds_config2[split].column_names == hub_ds_config2[split].column_names == ["foo", "bar"] assert ds_default[split].features == hub_ds_default[split].features assert ds_config1[split].features == hub_ds_config1[split].features assert ds_config2[split].features == hub_ds_config2["train"].features assert ds_default[split].num_rows == hub_ds_default[split].num_rows == 1 assert ds_config1[split].num_rows == hub_ds_config1[split].num_rows == 3 assert ds_config2[split].num_rows == hub_ds_config2[split].num_rows == 2 with pytest.raises(ValueError): # no config 'config3' load_dataset(ds_name, "config3", download_mode="force_redownload") @pytest.mark.parametrize("specific_default_config_name", [False, True]) def test_push_multiple_dataset_dict_configs_to_hub_readme_metadata_content( self, specific_default_config_name, temporary_repo ): ds_default = Dataset.from_dict({"a": [0], "b": [1]}) ds_config1 = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_config2 = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) ds_default = DatasetDict({"train": ds_default, "random": ds_default}) ds_config1 = DatasetDict({"train": ds_config1, "random": ds_config1}) ds_config2 = DatasetDict({"train": ds_config2, "random": ds_config2}) with temporary_repo() as ds_name: if specific_default_config_name: ds_default.push_to_hub(ds_name, config_name="config0", set_default=True, token=self._token) else: ds_default.push_to_hub(ds_name, token=self._token) ds_config1.push_to_hub(ds_name, "config1", token=self._token) ds_config2.push_to_hub(ds_name, "config2", token=self._token) # check that configs args was correctly pushed to README.md ds_readme_path = cached_path(hf_hub_url(ds_name, "README.md")) dataset_card_data = DatasetCard.load(ds_readme_path).data assert METADATA_CONFIGS_FIELD in dataset_card_data assert isinstance(dataset_card_data[METADATA_CONFIGS_FIELD], list) assert sorted(dataset_card_data[METADATA_CONFIGS_FIELD], key=lambda x: x["config_name"]) == ( [ { "config_name": "config0", "data_files": [ {"split": "train", "path": "config0/train-*"}, {"split": "random", "path": "config0/random-*"}, ], "default": True, }, ] if specific_default_config_name else [] ) + [ { "config_name": "config1", "data_files": [ {"split": "train", "path": "config1/train-*"}, {"split": "random", "path": "config1/random-*"}, ], }, { "config_name": "config2", "data_files": [ {"split": "train", "path": "config2/train-*"}, {"split": "random", "path": "config2/random-*"}, ], }, ] + ( [] if specific_default_config_name else [ { "config_name": "default", "data_files": [ {"split": "train", "path": "data/train-*"}, {"split": "random", "path": "data/random-*"}, ], }, ] ) def test_push_dataset_to_hub_with_config_no_metadata_configs(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_another_config = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) parquet_buf = BytesIO() ds.to_parquet(parquet_buf) parquet_content = parquet_buf.getvalue() with temporary_repo() as ds_name: self._api.create_repo(ds_name, token=self._token, repo_type="dataset") # old push_to_hub was uploading the parquet files only - without metadata configs self._api.upload_file( path_or_fileobj=parquet_content, path_in_repo="data/train-00000-of-00001.parquet", repo_id=ds_name, repo_type="dataset", token=self._token, ) ds_another_config.push_to_hub(ds_name, "another_config", token=self._token) ds_builder = load_dataset_builder(ds_name, download_mode="force_redownload") assert len(ds_builder.config.data_files) == 1 assert len(ds_builder.config.data_files["train"]) == 1 assert fnmatch.fnmatch(ds_builder.config.data_files["train"][0], "*/data/train-00000-of-00001.parquet") ds_another_config_builder = load_dataset_builder( ds_name, "another_config", download_mode="force_redownload" ) assert len(ds_another_config_builder.config.data_files) == 1 assert len(ds_another_config_builder.config.data_files["train"]) == 1 assert fnmatch.fnmatch( ds_another_config_builder.config.data_files["train"][0], "*/another_config/train-00000-of-00001.parquet", ) def test_push_dataset_dict_to_hub_with_config_no_metadata_configs(self, temporary_repo): ds = Dataset.from_dict({"x": [1, 2, 3], "y": [4, 5, 6]}) ds_another_config = Dataset.from_dict({"foo": [1, 2], "bar": [4, 5]}) parquet_buf = BytesIO() ds.to_parquet(parquet_buf) parquet_content = parquet_buf.getvalue() local_ds_another_config = DatasetDict({"random": ds_another_config}) with temporary_repo() as ds_name: self._api.create_repo(ds_name, token=self._token, repo_type="dataset") # old push_to_hub was uploading the parquet files only - without metadata configs self._api.upload_file( path_or_fileobj=parquet_content, path_in_repo="data/random-00000-of-00001.parquet", repo_id=ds_name, repo_type="dataset", token=self._token, ) local_ds_another_config.push_to_hub(ds_name, "another_config", token=self._token) ds_builder = load_dataset_builder(ds_name, download_mode="force_redownload") assert len(ds_builder.config.data_files) == 1 assert len(ds_builder.config.data_files["random"]) == 1 assert fnmatch.fnmatch(ds_builder.config.data_files["random"][0], "*/data/random-00000-of-00001.parquet") ds_another_config_builder = load_dataset_builder( ds_name, "another_config", download_mode="force_redownload" ) assert len(ds_another_config_builder.config.data_files) == 1 assert len(ds_another_config_builder.config.data_files["random"]) == 1 assert fnmatch.fnmatch( ds_another_config_builder.config.data_files["random"][0], "*/another_config/random-00000-of-00001.parquet", ) class DummyFolderBasedBuilder(FolderBasedBuilder): BASE_FEATURE = dict BASE_COLUMN_NAME = "base" BUILDER_CONFIG_CLASS = FolderBasedBuilderConfig EXTENSIONS = [".txt"] # CLASSIFICATION_TASK = TextClassification(text_column="base", label_column="label") @pytest.fixture(params=[".jsonl", ".csv"]) def text_file_with_metadata(request, tmp_path, text_file): metadata_filename_extension = request.param data_dir = tmp_path / "data_dir" data_dir.mkdir() text_file_path = data_dir / "file.txt" shutil.copyfile(text_file, text_file_path) metadata_file_path = data_dir / f"metadata{metadata_filename_extension}" metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} """ if metadata_filename_extension == ".jsonl" else """\ file_name,additional_feature file.txt,Dummy file """ ) with open(metadata_file_path, "w", encoding="utf-8") as f: f.write(metadata) return text_file_path, metadata_file_path @for_all_test_methods(xfail_if_500_502_http_error) @pytest.mark.usefixtures("ci_hub_config", "ci_hfh_hf_hub_url") class TestLoadFromHub: _api = HfApi(endpoint=CI_HUB_ENDPOINT) _token = CI_HUB_USER_TOKEN def test_load_dataset_with_metadata_file(self, temporary_repo, text_file_with_metadata, tmp_path): text_file_path, metadata_file_path = text_file_with_metadata data_dir_path = text_file_path.parent cache_dir_path = tmp_path / ".cache" cache_dir_path.mkdir() with temporary_repo() as repo_id: self._api.create_repo(repo_id, token=self._token, repo_type="dataset") self._api.upload_folder( folder_path=str(data_dir_path), repo_id=repo_id, repo_type="dataset", token=self._token, ) data_files = [ f"hf://datasets/{repo_id}/{text_file_path.name}", f"hf://datasets/{repo_id}/{metadata_file_path.name}", ] builder = DummyFolderBasedBuilder( dataset_name=repo_id.split("/")[-1], data_files=data_files, cache_dir=str(cache_dir_path) ) download_manager = DownloadManager() gen_kwargs = builder._split_generators(download_manager)[0].gen_kwargs generator = builder._generate_examples(**gen_kwargs) result = [example for _, example in generator] assert len(result) == 1 def test_get_data_patterns(self, temporary_repo, tmp_path): repo_dir = tmp_path / "test_get_data_patterns" data_dir = repo_dir / "data" data_dir.mkdir(parents=True) data_file = data_dir / "train-00001-of-00009.parquet" data_file.touch() with temporary_repo() as repo_id: self._api.create_repo(repo_id, token=self._token, repo_type="dataset") self._api.upload_folder( folder_path=str(repo_dir), repo_id=repo_id, repo_type="dataset", token=self._token, ) data_file_patterns = get_data_patterns(f"hf://datasets/{repo_id}") assert data_file_patterns == { "train": ["data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"] }
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_beam.py
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class DummyBeamDataset(datasets.BeamBasedBuilder): """Dummy beam dataset.""" def _info(self): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string")}), # No default supervised_keys. supervised_keys=None, ) def _split_generators(self, dl_manager, pipeline): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_dummy_examples()})] def _build_pcollection(self, pipeline, examples): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(examples) class NestedBeamDataset(datasets.BeamBasedBuilder): """Dummy beam dataset.""" def _info(self): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string")})}), # No default supervised_keys. supervised_keys=None, ) def _split_generators(self, dl_manager, pipeline): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_nested_examples()}) ] def _build_pcollection(self, pipeline, examples): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(examples) def get_test_dummy_examples(): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"])] def get_test_nested_examples(): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"])] class BeamBuilderTest(TestCase): @require_beam def test_download_and_prepare(self): expected_num_examples = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = DummyBeamDataset(cache_dir=tmp_cache_dir, beam_runner="DirectRunner") builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(tmp_cache_dir, builder.name, "default", "0.0.0", f"{builder.name}-train.arrow") ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string")})) dset = builder.as_dataset() self.assertEqual(dset["train"].num_rows, expected_num_examples) self.assertEqual(dset["train"].info.splits["train"].num_examples, expected_num_examples) self.assertDictEqual(dset["train"][0], get_test_dummy_examples()[0][1]) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(tmp_cache_dir, builder.name, "default", "0.0.0", "dataset_info.json")) ) del dset @require_beam def test_download_and_prepare_sharded(self): import apache_beam as beam original_write_parquet = beam.io.parquetio.WriteToParquet expected_num_examples = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = DummyBeamDataset(cache_dir=tmp_cache_dir, beam_runner="DirectRunner") with patch("apache_beam.io.parquetio.WriteToParquet") as write_parquet_mock: write_parquet_mock.side_effect = partial(original_write_parquet, num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( tmp_cache_dir, builder.name, "default", "0.0.0", f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( tmp_cache_dir, builder.name, "default", "0.0.0", f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string")})) dset = builder.as_dataset() self.assertEqual(dset["train"].num_rows, expected_num_examples) self.assertEqual(dset["train"].info.splits["train"].num_examples, expected_num_examples) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"]), sorted(["foo", "bar", "foobar"])) self.assertTrue( os.path.exists(os.path.join(tmp_cache_dir, builder.name, "default", "0.0.0", "dataset_info.json")) ) del dset @require_beam def test_no_beam_options(self): with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = DummyBeamDataset(cache_dir=tmp_cache_dir) self.assertRaises(datasets.builder.MissingBeamOptions, builder.download_and_prepare) @require_beam def test_nested_features(self): expected_num_examples = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = NestedBeamDataset(cache_dir=tmp_cache_dir, beam_runner="DirectRunner") builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(tmp_cache_dir, builder.name, "default", "0.0.0", f"{builder.name}-train.arrow") ) ) self.assertDictEqual( builder.info.features, datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string")})}) ) dset = builder.as_dataset() self.assertEqual(dset["train"].num_rows, expected_num_examples) self.assertEqual(dset["train"].info.splits["train"].num_examples, expected_num_examples) self.assertDictEqual(dset["train"][0], get_test_nested_examples()[0][1]) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(tmp_cache_dir, builder.name, "default", "0.0.0", "dataset_info.json")) ) del dset
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_py_utils.py
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def np_sum(x): # picklable for multiprocessing return x.sum() def add_one(i): # picklable for multiprocessing return i + 1 @dataclass class A: x: int y: str class PyUtilsTest(TestCase): def test_map_nested(self): s1 = {} s2 = [] s3 = 1 s4 = [1, 2] s5 = {"a": 1, "b": 2} s6 = {"a": [1, 2], "b": [3, 4]} s7 = {"a": {"1": 1}, "b": 2} s8 = {"a": 1, "b": 2, "c": 3, "d": 4} expected_map_nested_s1 = {} expected_map_nested_s2 = [] expected_map_nested_s3 = 2 expected_map_nested_s4 = [2, 3] expected_map_nested_s5 = {"a": 2, "b": 3} expected_map_nested_s6 = {"a": [2, 3], "b": [4, 5]} expected_map_nested_s7 = {"a": {"1": 2}, "b": 3} expected_map_nested_s8 = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(add_one, s1), expected_map_nested_s1) self.assertEqual(map_nested(add_one, s2), expected_map_nested_s2) self.assertEqual(map_nested(add_one, s3), expected_map_nested_s3) self.assertEqual(map_nested(add_one, s4), expected_map_nested_s4) self.assertEqual(map_nested(add_one, s5), expected_map_nested_s5) self.assertEqual(map_nested(add_one, s6), expected_map_nested_s6) self.assertEqual(map_nested(add_one, s7), expected_map_nested_s7) self.assertEqual(map_nested(add_one, s8), expected_map_nested_s8) num_proc = 2 self.assertEqual(map_nested(add_one, s1, num_proc=num_proc), expected_map_nested_s1) self.assertEqual(map_nested(add_one, s2, num_proc=num_proc), expected_map_nested_s2) self.assertEqual(map_nested(add_one, s3, num_proc=num_proc), expected_map_nested_s3) self.assertEqual(map_nested(add_one, s4, num_proc=num_proc), expected_map_nested_s4) self.assertEqual(map_nested(add_one, s5, num_proc=num_proc), expected_map_nested_s5) self.assertEqual(map_nested(add_one, s6, num_proc=num_proc), expected_map_nested_s6) self.assertEqual(map_nested(add_one, s7, num_proc=num_proc), expected_map_nested_s7) self.assertEqual(map_nested(add_one, s8, num_proc=num_proc), expected_map_nested_s8) sn1 = {"a": np.eye(2), "b": np.zeros(3), "c": np.ones(2)} expected_map_nested_sn1_sum = {"a": 2, "b": 0, "c": 2} expected_map_nested_sn1_int = { "a": np.eye(2).astype(int), "b": np.zeros(3).astype(int), "c": np.ones(2).astype(int), } self.assertEqual(map_nested(np_sum, sn1, map_numpy=False), expected_map_nested_sn1_sum) self.assertEqual( {k: v.tolist() for k, v in map_nested(int, sn1, map_numpy=True).items()}, {k: v.tolist() for k, v in expected_map_nested_sn1_int.items()}, ) self.assertEqual(map_nested(np_sum, sn1, map_numpy=False, num_proc=num_proc), expected_map_nested_sn1_sum) self.assertEqual( {k: v.tolist() for k, v in map_nested(int, sn1, map_numpy=True, num_proc=num_proc).items()}, {k: v.tolist() for k, v in expected_map_nested_sn1_int.items()}, ) with self.assertRaises(AttributeError): # can't pickle a local lambda map_nested(lambda x: x + 1, sn1, num_proc=num_proc) def test_zip_dict(self): d1 = {"a": 1, "b": 2} d2 = {"a": 3, "b": 4} d3 = {"a": 5, "b": 6} expected_zip_dict_result = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))]) self.assertEqual(sorted(zip_dict(d1, d2, d3)), expected_zip_dict_result) def test_temporary_assignment(self): class Foo: my_attr = "bar" foo = Foo() self.assertEqual(foo.my_attr, "bar") with temporary_assignment(foo, "my_attr", "BAR"): self.assertEqual(foo.my_attr, "BAR") self.assertEqual(foo.my_attr, "bar") @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc", [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def test_map_nested_num_proc(iterable_length, num_proc, expected_num_proc): with patch("datasets.utils.py_utils._single_map_nested") as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: data_struct = {f"{i}": i for i in range(iterable_length)} _ = map_nested(lambda x: x + 10, data_struct, num_proc=num_proc, parallel_min_length=16) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class TempSeedTest(TestCase): @require_tf def test_tensorflow(self): import tensorflow as tf from tensorflow.keras import layers model = layers.Dense(2) def gen_random_output(): x = tf.random.uniform((1, 3)) return model(x).numpy() with temp_seed(42, set_tensorflow=True): out1 = gen_random_output() with temp_seed(42, set_tensorflow=True): out2 = gen_random_output() out3 = gen_random_output() np.testing.assert_equal(out1, out2) self.assertGreater(np.abs(out1 - out3).sum(), 0) @require_torch def test_torch(self): import torch def gen_random_output(): model = torch.nn.Linear(3, 2) x = torch.rand(1, 3) return model(x).detach().numpy() with temp_seed(42, set_pytorch=True): out1 = gen_random_output() with temp_seed(42, set_pytorch=True): out2 = gen_random_output() out3 = gen_random_output() np.testing.assert_equal(out1, out2) self.assertGreater(np.abs(out1 - out3).sum(), 0) def test_numpy(self): def gen_random_output(): return np.random.rand(1, 3) with temp_seed(42): out1 = gen_random_output() with temp_seed(42): out2 = gen_random_output() out3 = gen_random_output() np.testing.assert_equal(out1, out2) self.assertGreater(np.abs(out1 - out3).sum(), 0) @pytest.mark.parametrize("input_data", [{}]) def test_nested_data_structure_data(input_data): output_data = NestedDataStructure(input_data).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output", [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ], ) def test_flatten(data, expected_output): output = NestedDataStructure(data).flatten() assert output == expected_output def test_asdict(): input = A(x=1, y="foobar") expected_output = {"x": 1, "y": "foobar"} assert asdict(input) == expected_output input = {"a": {"b": A(x=10, y="foo")}, "c": [A(x=20, y="bar")]} expected_output = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(input) == expected_output with pytest.raises(TypeError): asdict([1, A(x=10, y="foo")]) def _split_text(text: str): return text.split() def _2seconds_generator_of_2items_with_timing(content): yield (time.time(), content) time.sleep(2) yield (time.time(), content) def test_iflatmap_unordered(): with Pool(2) as pool: out = list(iflatmap_unordered(pool, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10)) assert out.count("hello") == 10 assert out.count("there") == 10 assert len(out) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2) as pool: out = list(iflatmap_unordered(pool, _split_text, kwargs_iterable=[{"text": "hello there"}] * 10)) assert out.count("hello") == 10 assert out.count("there") == 10 assert len(out) == 20 # check that we get items as fast as possible with Pool(2) as pool: out = [] for yield_time, content in iflatmap_unordered( pool, _2seconds_generator_of_2items_with_timing, kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(content) assert out.count("a") == 2 assert out.count("b") == 2 assert len(out) == 4
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_dataset_dict.py
import os import tempfile from unittest import TestCase import numpy as np import pandas as pd import pytest from datasets import load_from_disk from datasets.arrow_dataset import Dataset from datasets.dataset_dict import DatasetDict, IterableDatasetDict from datasets.features import ClassLabel, Features, Sequence, Value from datasets.iterable_dataset import IterableDataset from datasets.splits import NamedSplit from .utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_tf, require_torch class DatasetDictTest(TestCase): def _create_dummy_dataset(self, multiple_columns=False): if multiple_columns: data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} dset = Dataset.from_dict(data) else: dset = Dataset.from_dict( {"filename": ["my_name-train" + "_" + f"{x:03d}" for x in np.arange(30).tolist()]} ) return dset def _create_dummy_dataset_dict(self, multiple_columns=False) -> DatasetDict: return DatasetDict( { "train": self._create_dummy_dataset(multiple_columns=multiple_columns), "test": self._create_dummy_dataset(multiple_columns=multiple_columns), } ) def _create_dummy_iterable_dataset(self, multiple_columns=False) -> IterableDataset: def gen(): if multiple_columns: data = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} for v1, v2 in zip(data["col_1"], data["col_2"]): yield {"col_1": v1, "col_2": v2} else: for x in range(30): yield {"filename": "my_name-train" + "_" + f"{x:03d}"} return IterableDataset.from_generator(gen) def _create_dummy_iterable_dataset_dict(self, multiple_columns=False) -> IterableDatasetDict: return IterableDatasetDict( { "train": self._create_dummy_iterable_dataset(multiple_columns=multiple_columns), "test": self._create_dummy_iterable_dataset(multiple_columns=multiple_columns), } ) def test_flatten(self): dset_split = Dataset.from_dict( {"a": [{"b": {"c": ["text"]}}] * 10, "foo": [1] * 10}, features=Features({"a": {"b": Sequence({"c": Value("string")})}, "foo": Value("int64")}), ) dset = DatasetDict({"train": dset_split, "test": dset_split}) dset = dset.flatten() self.assertDictEqual(dset.column_names, {"train": ["a.b.c", "foo"], "test": ["a.b.c", "foo"]}) self.assertListEqual(sorted(dset["train"].features.keys()), ["a.b.c", "foo"]) self.assertDictEqual( dset["train"].features, Features({"a.b.c": Sequence(Value("string")), "foo": Value("int64")}) ) del dset def test_set_format_numpy(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset.set_format(type="numpy", columns=["col_1"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 1) self.assertIsInstance(dset_split[0]["col_1"], np.int64) self.assertEqual(dset_split[0]["col_1"].item(), 3) dset.reset_format() with dset.formatted_as(type="numpy", columns=["col_1"]): for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 1) self.assertIsInstance(dset_split[0]["col_1"], np.int64) self.assertEqual(dset_split[0]["col_1"].item(), 3) for dset_split in dset.values(): self.assertEqual(dset_split.format["type"], None) self.assertEqual(dset_split.format["format_kwargs"], {}) self.assertEqual(dset_split.format["columns"], dset_split.column_names) self.assertEqual(dset_split.format["output_all_columns"], False) dset.set_format(type="numpy", columns=["col_1"], output_all_columns=True) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertIsInstance(dset_split[0]["col_2"], str) self.assertEqual(dset_split[0]["col_2"], "a") dset.set_format(type="numpy", columns=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertIsInstance(dset_split[0]["col_2"], np.str_) self.assertEqual(dset_split[0]["col_2"].item(), "a") del dset @require_torch def test_set_format_torch(self): import torch dset = self._create_dummy_dataset_dict(multiple_columns=True) dset.set_format(type="torch", columns=["col_1"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 1) self.assertIsInstance(dset_split[0]["col_1"], torch.Tensor) self.assertListEqual(list(dset_split[0]["col_1"].shape), []) self.assertEqual(dset_split[0]["col_1"].item(), 3) dset.set_format(type="torch", columns=["col_1"], output_all_columns=True) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertIsInstance(dset_split[0]["col_2"], str) self.assertEqual(dset_split[0]["col_2"], "a") dset.set_format(type="torch") for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertIsInstance(dset_split[0]["col_1"], torch.Tensor) self.assertListEqual(list(dset_split[0]["col_1"].shape), []) self.assertEqual(dset_split[0]["col_1"].item(), 3) self.assertIsInstance(dset_split[0]["col_2"], str) self.assertEqual(dset_split[0]["col_2"], "a") del dset @require_tf def test_set_format_tf(self): import tensorflow as tf dset = self._create_dummy_dataset_dict(multiple_columns=True) dset.set_format(type="tensorflow", columns=["col_1"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 1) self.assertIsInstance(dset_split[0]["col_1"], tf.Tensor) self.assertListEqual(list(dset_split[0]["col_1"].shape), []) self.assertEqual(dset_split[0]["col_1"].numpy().item(), 3) dset.set_format(type="tensorflow", columns=["col_1"], output_all_columns=True) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertIsInstance(dset_split[0]["col_2"], str) self.assertEqual(dset_split[0]["col_2"], "a") dset.set_format(type="tensorflow", columns=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0]), 2) self.assertEqual(dset_split[0]["col_2"].numpy().decode("utf-8"), "a") del dset def test_set_format_pandas(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset.set_format(type="pandas", columns=["col_1"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0].columns), 1) self.assertIsInstance(dset_split[0], pd.DataFrame) self.assertListEqual(list(dset_split[0].shape), [1, 1]) self.assertEqual(dset_split[0]["col_1"].item(), 3) dset.set_format(type="pandas", columns=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0].columns), 2) self.assertEqual(dset_split[0]["col_2"].item(), "a") del dset def test_set_transform(self): def transform(batch): return {k: [str(i).upper() for i in v] for k, v in batch.items()} dset = self._create_dummy_dataset_dict(multiple_columns=True) dset.set_transform(transform=transform, columns=["col_1"]) for dset_split in dset.values(): self.assertEqual(dset_split.format["type"], "custom") self.assertEqual(len(dset_split[0].keys()), 1) self.assertEqual(dset_split[0]["col_1"], "3") self.assertEqual(dset_split[:2]["col_1"], ["3", "2"]) self.assertEqual(dset_split["col_1"][:2], ["3", "2"]) prev_format = dset[list(dset.keys())[0]].format for dset_split in dset.values(): dset_split.set_format(**dset_split.format) self.assertEqual(prev_format, dset_split.format) dset.set_transform(transform=transform, columns=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(len(dset_split[0].keys()), 2) self.assertEqual(dset_split[0]["col_2"], "A") del dset def test_with_format(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset2 = dset.with_format("numpy", columns=["col_1"]) dset.set_format("numpy", columns=["col_1"]) for dset_split, dset_split2 in zip(dset.values(), dset2.values()): self.assertDictEqual(dset_split.format, dset_split2.format) del dset, dset2 def test_with_transform(self): def transform(batch): return {k: [str(i).upper() for i in v] for k, v in batch.items()} dset = self._create_dummy_dataset_dict(multiple_columns=True) dset2 = dset.with_transform(transform, columns=["col_1"]) dset.set_transform(transform, columns=["col_1"]) for dset_split, dset_split2 in zip(dset.values(), dset2.values()): self.assertDictEqual(dset_split.format, dset_split2.format) del dset, dset2 def test_cast(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) features = dset["train"].features features["col_1"] = Value("float64") dset = dset.cast(features) for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 2) self.assertEqual(dset_split.features["col_1"], Value("float64")) self.assertIsInstance(dset_split[0]["col_1"], float) del dset def test_remove_columns(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.remove_columns(column_names="col_1") for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 1) self.assertListEqual(list(dset_split.column_names), ["col_2"]) dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.remove_columns(column_names=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 0) dset = self._create_dummy_dataset_dict(multiple_columns=True) for dset_split in dset.values(): dset_split._format_columns = ["col_1", "col_2"] dset = dset.remove_columns(column_names=["col_1"]) for dset_split in dset.values(): self.assertListEqual(dset_split._format_columns, ["col_2"]) self.assertEqual(dset_split.num_columns, 1) self.assertListEqual(list(dset_split.column_names), ["col_2"]) del dset def test_rename_column(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.rename_column(original_column_name="col_1", new_column_name="new_name") for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 2) self.assertListEqual(list(dset_split.column_names), ["new_name", "col_2"]) del dset def test_select_columns(self): dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.select_columns(column_names=[]) for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 0) dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.select_columns(column_names="col_1") for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 1) self.assertListEqual(list(dset_split.column_names), ["col_1"]) dset = self._create_dummy_dataset_dict(multiple_columns=True) dset = dset.select_columns(column_names=["col_1", "col_2"]) for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 2) dset = self._create_dummy_dataset_dict(multiple_columns=True) for dset_split in dset.values(): dset_split._format_columns = ["col_1", "col_2"] dset = dset.select_columns(column_names=["col_1"]) for dset_split in dset.values(): self.assertEqual(dset_split.num_columns, 1) self.assertListEqual(list(dset_split.column_names), ["col_1"]) self.assertListEqual(dset_split._format_columns, ["col_1"]) def test_map(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() mapped_dsets_1: DatasetDict = dsets.map(lambda ex: {"foo": ["bar"] * len(ex["filename"])}, batched=True) self.assertListEqual(list(dsets.keys()), list(mapped_dsets_1.keys())) self.assertListEqual(mapped_dsets_1["train"].column_names, ["filename", "foo"]) cache_file_names = { "train": os.path.join(tmp_dir, "train.arrow"), "test": os.path.join(tmp_dir, "test.arrow"), } mapped_dsets_2: DatasetDict = mapped_dsets_1.map( lambda ex: {"bar": ["foo"] * len(ex["filename"])}, batched=True, cache_file_names=cache_file_names ) self.assertListEqual(list(dsets.keys()), list(mapped_dsets_2.keys())) self.assertListEqual(sorted(mapped_dsets_2["train"].column_names), sorted(["filename", "foo", "bar"])) del dsets, mapped_dsets_1, mapped_dsets_2 def test_iterable_map(self): dsets = self._create_dummy_iterable_dataset_dict() fn_kwargs = {"n": 3} mapped_dsets: IterableDatasetDict = dsets.map( lambda x, n: {"foo": [n] * len(x["filename"])}, batched=True, fn_kwargs=fn_kwargs, ) mapped_example = next(iter(mapped_dsets["train"])) self.assertListEqual(sorted(mapped_example.keys()), sorted(["filename", "foo"])) self.assertLessEqual(mapped_example["foo"], 3) del dsets, mapped_dsets def test_filter(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() filtered_dsets_1: DatasetDict = dsets.filter(lambda ex: int(ex["filename"].split("_")[-1]) < 10) self.assertListEqual(list(dsets.keys()), list(filtered_dsets_1.keys())) self.assertEqual(len(filtered_dsets_1["train"]), 10) cache_file_names = { "train": os.path.join(tmp_dir, "train.arrow"), "test": os.path.join(tmp_dir, "test.arrow"), } filtered_dsets_2: DatasetDict = filtered_dsets_1.filter( lambda ex: int(ex["filename"].split("_")[-1]) < 5, cache_file_names=cache_file_names ) self.assertListEqual(list(dsets.keys()), list(filtered_dsets_2.keys())) self.assertEqual(len(filtered_dsets_2["train"]), 5) filtered_dsets_3: DatasetDict = dsets.filter( lambda examples: [int(ex.split("_")[-1]) < 10 for ex in examples["filename"]], batched=True ) self.assertListEqual(list(dsets.keys()), list(filtered_dsets_3.keys())) self.assertEqual(len(filtered_dsets_3["train"]), 10) del dsets, filtered_dsets_1, filtered_dsets_2, filtered_dsets_3 def test_iterable_filter(self): dsets = self._create_dummy_iterable_dataset_dict() example = next(iter(dsets["train"])) fn_kwargs = {"n": 3} filtered_dsets: IterableDatasetDict = dsets.filter( lambda ex, n: n < int(ex["filename"].split("_")[-1]), fn_kwargs=fn_kwargs ) filtered_example = next(iter(filtered_dsets["train"])) self.assertListEqual(list(example.keys()), list(filtered_example.keys())) self.assertEqual(int(filtered_example["filename"].split("_")[-1]), 4) # id starts from 3 del dsets, filtered_dsets def test_sort(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() sorted_dsets_1: DatasetDict = dsets.sort("filename") self.assertListEqual(list(dsets.keys()), list(sorted_dsets_1.keys())) self.assertListEqual( [f.split("_")[-1] for f in sorted_dsets_1["train"]["filename"]], sorted(f"{x:03d}" for x in range(30)), ) indices_cache_file_names = { "train": os.path.join(tmp_dir, "train.arrow"), "test": os.path.join(tmp_dir, "test.arrow"), } sorted_dsets_2: DatasetDict = sorted_dsets_1.sort( "filename", indices_cache_file_names=indices_cache_file_names, reverse=True ) self.assertListEqual(list(dsets.keys()), list(sorted_dsets_2.keys())) self.assertListEqual( [f.split("_")[-1] for f in sorted_dsets_2["train"]["filename"]], sorted((f"{x:03d}" for x in range(30)), reverse=True), ) del dsets, sorted_dsets_1, sorted_dsets_2 def test_shuffle(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() indices_cache_file_names = { "train": os.path.join(tmp_dir, "train.arrow"), "test": os.path.join(tmp_dir, "test.arrow"), } seeds = { "train": 1234, "test": 1234, } dsets_shuffled = dsets.shuffle( seeds=seeds, indices_cache_file_names=indices_cache_file_names, load_from_cache_file=False ) self.assertListEqual(dsets_shuffled["train"]["filename"], dsets_shuffled["test"]["filename"]) self.assertEqual(len(dsets_shuffled["train"]), 30) self.assertEqual(dsets_shuffled["train"][0]["filename"], "my_name-train_028") self.assertEqual(dsets_shuffled["train"][2]["filename"], "my_name-train_010") self.assertDictEqual(dsets["train"].features, Features({"filename": Value("string")})) self.assertDictEqual(dsets_shuffled["train"].features, Features({"filename": Value("string")})) # Reproducibility indices_cache_file_names_2 = { "train": os.path.join(tmp_dir, "train_2.arrow"), "test": os.path.join(tmp_dir, "test_2.arrow"), } dsets_shuffled_2 = dsets.shuffle( seeds=seeds, indices_cache_file_names=indices_cache_file_names_2, load_from_cache_file=False ) self.assertListEqual(dsets_shuffled["train"]["filename"], dsets_shuffled_2["train"]["filename"]) seeds = { "train": 1234, "test": 1, } indices_cache_file_names_3 = { "train": os.path.join(tmp_dir, "train_3.arrow"), "test": os.path.join(tmp_dir, "test_3.arrow"), } dsets_shuffled_3 = dsets.shuffle( seeds=seeds, indices_cache_file_names=indices_cache_file_names_3, load_from_cache_file=False ) self.assertNotEqual(dsets_shuffled_3["train"]["filename"], dsets_shuffled_3["test"]["filename"]) # other input types dsets_shuffled_int = dsets.shuffle(42) dsets_shuffled_alias = dsets.shuffle(seed=42) dsets_shuffled_none = dsets.shuffle() self.assertEqual(len(dsets_shuffled_int["train"]), 30) self.assertEqual(len(dsets_shuffled_alias["train"]), 30) self.assertEqual(len(dsets_shuffled_none["train"]), 30) del dsets, dsets_shuffled, dsets_shuffled_2, dsets_shuffled_3 del dsets_shuffled_int, dsets_shuffled_alias, dsets_shuffled_none def test_flatten_indices(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() indices_cache_file_names = { "train": os.path.join(tmp_dir, "train.arrow"), "test": os.path.join(tmp_dir, "test.arrow"), } dsets_shuffled = dsets.shuffle( seed=42, indices_cache_file_names=indices_cache_file_names, load_from_cache_file=False ) self.assertIsNotNone(dsets_shuffled["train"]._indices) self.assertIsNotNone(dsets_shuffled["test"]._indices) dsets_flat = dsets_shuffled.flatten_indices() self.assertIsNone(dsets_flat["train"]._indices) self.assertIsNone(dsets_flat["test"]._indices) del dsets, dsets_shuffled, dsets_flat def test_check_values_type(self): dsets = self._create_dummy_dataset_dict() dsets["bad_split"] = None self.assertRaises(TypeError, dsets.map, lambda x: x) self.assertRaises(TypeError, dsets.filter, lambda x: True) self.assertRaises(TypeError, dsets.shuffle) self.assertRaises(TypeError, dsets.sort, "filename") del dsets def test_serialization(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() dsets.save_to_disk(tmp_dir) reloaded_dsets = DatasetDict.load_from_disk(tmp_dir) self.assertListEqual(sorted(reloaded_dsets), ["test", "train"]) self.assertEqual(len(reloaded_dsets["train"]), 30) self.assertListEqual(reloaded_dsets["train"].column_names, ["filename"]) self.assertEqual(len(reloaded_dsets["test"]), 30) self.assertListEqual(reloaded_dsets["test"].column_names, ["filename"]) del reloaded_dsets del dsets["test"] dsets.save_to_disk(tmp_dir) reloaded_dsets = DatasetDict.load_from_disk(tmp_dir) self.assertListEqual(sorted(reloaded_dsets), ["train"]) self.assertEqual(len(reloaded_dsets["train"]), 30) self.assertListEqual(reloaded_dsets["train"].column_names, ["filename"]) del dsets, reloaded_dsets dsets = self._create_dummy_dataset_dict() dsets.save_to_disk(tmp_dir, num_shards={"train": 3, "test": 2}) reloaded_dsets = DatasetDict.load_from_disk(tmp_dir) self.assertListEqual(sorted(reloaded_dsets), ["test", "train"]) self.assertEqual(len(reloaded_dsets["train"]), 30) self.assertListEqual(reloaded_dsets["train"].column_names, ["filename"]) self.assertEqual(len(reloaded_dsets["train"].cache_files), 3) self.assertEqual(len(reloaded_dsets["test"]), 30) self.assertListEqual(reloaded_dsets["test"].column_names, ["filename"]) self.assertEqual(len(reloaded_dsets["test"].cache_files), 2) del reloaded_dsets dsets = self._create_dummy_dataset_dict() dsets.save_to_disk(tmp_dir, num_proc=2) reloaded_dsets = DatasetDict.load_from_disk(tmp_dir) self.assertListEqual(sorted(reloaded_dsets), ["test", "train"]) self.assertEqual(len(reloaded_dsets["train"]), 30) self.assertListEqual(reloaded_dsets["train"].column_names, ["filename"]) self.assertEqual(len(reloaded_dsets["train"].cache_files), 2) self.assertEqual(len(reloaded_dsets["test"]), 30) self.assertListEqual(reloaded_dsets["test"].column_names, ["filename"]) self.assertEqual(len(reloaded_dsets["test"].cache_files), 2) del reloaded_dsets def test_load_from_disk(self): with tempfile.TemporaryDirectory() as tmp_dir: dsets = self._create_dummy_dataset_dict() dsets.save_to_disk(tmp_dir) del dsets dsets = load_from_disk(tmp_dir) self.assertListEqual(sorted(dsets), ["test", "train"]) self.assertEqual(len(dsets["train"]), 30) self.assertListEqual(dsets["train"].column_names, ["filename"]) self.assertEqual(len(dsets["test"]), 30) self.assertListEqual(dsets["test"].column_names, ["filename"]) del dsets def test_align_labels_with_mapping(self): train_features = Features( { "input_text": Value("string"), "input_labels": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), } ) test_features = Features( { "input_text": Value("string"), "input_labels": ClassLabel(num_classes=3, names=["entailment", "contradiction", "neutral"]), } ) train_data = {"input_text": ["a", "a", "b", "b", "c", "c"], "input_labels": [0, 0, 1, 1, 2, 2]} test_data = {"input_text": ["a", "a", "c", "c", "b", "b"], "input_labels": [0, 0, 1, 1, 2, 2]} label2id = {"CONTRADICTION": 0, "ENTAILMENT": 2, "NEUTRAL": 1} id2label = {v: k for k, v in label2id.items()} train_expected_labels = [2, 2, 1, 1, 0, 0] test_expected_labels = [2, 2, 0, 0, 1, 1] train_expected_label_names = [id2label[idx] for idx in train_expected_labels] test_expected_label_names = [id2label[idx] for idx in test_expected_labels] dsets = DatasetDict( { "train": Dataset.from_dict(train_data, features=train_features), "test": Dataset.from_dict(test_data, features=test_features), } ) dsets = dsets.align_labels_with_mapping(label2id, "input_labels") self.assertListEqual(train_expected_labels, dsets["train"]["input_labels"]) self.assertListEqual(test_expected_labels, dsets["test"]["input_labels"]) train_aligned_label_names = [ dsets["train"].features["input_labels"].int2str(idx) for idx in dsets["train"]["input_labels"] ] test_aligned_label_names = [ dsets["test"].features["input_labels"].int2str(idx) for idx in dsets["test"]["input_labels"] ] self.assertListEqual(train_expected_label_names, train_aligned_label_names) self.assertListEqual(test_expected_label_names, test_aligned_label_names) def test_dummy_datasetdict_serialize_fs(mockfs): dataset_dict = DatasetDict( { "train": Dataset.from_dict({"a": range(30)}), "test": Dataset.from_dict({"a": range(10)}), } ) dataset_path = "mock://my_dataset" dataset_dict.save_to_disk(dataset_path, storage_options=mockfs.storage_options) assert mockfs.isdir(dataset_path) assert mockfs.glob(dataset_path + "/*") reloaded = dataset_dict.load_from_disk(dataset_path, storage_options=mockfs.storage_options) assert list(reloaded) == list(dataset_dict) for k in dataset_dict: assert reloaded[k].features == dataset_dict[k].features assert reloaded[k].to_dict() == dataset_dict[k].to_dict() def _check_csv_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_csv_keep_in_memory(keep_in_memory, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = DatasetDict.from_csv({"train": csv_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_csv_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_datasetdict_from_csv_features(features, csv_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = DatasetDict.from_csv({"train": csv_path}, features=features, cache_dir=cache_dir) _check_csv_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_csv_split(split, csv_path, tmp_path): if split: path = {split: csv_path} else: split = "train" path = {"train": csv_path, "test": csv_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = DatasetDict.from_csv(path, cache_dir=cache_dir) _check_csv_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def _check_json_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_json_keep_in_memory(keep_in_memory, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = DatasetDict.from_json({"train": jsonl_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_json_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_datasetdict_from_json_features(features, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = DatasetDict.from_json({"train": jsonl_path}, features=features, cache_dir=cache_dir) _check_json_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_json_splits(split, jsonl_path, tmp_path): if split: path = {split: jsonl_path} else: split = "train" path = {"train": jsonl_path, "test": jsonl_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = DatasetDict.from_json(path, cache_dir=cache_dir) _check_json_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def _check_parquet_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_parquet_keep_in_memory(keep_in_memory, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = DatasetDict.from_parquet({"train": parquet_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_parquet_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_datasetdict_from_parquet_features(features, parquet_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = DatasetDict.from_parquet({"train": parquet_path}, features=features, cache_dir=cache_dir) _check_parquet_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_parquet_split(split, parquet_path, tmp_path): if split: path = {split: parquet_path} else: split = "train" path = {"train": parquet_path, "test": parquet_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = DatasetDict.from_parquet(path, cache_dir=cache_dir) _check_parquet_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def _check_text_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_text_keep_in_memory(keep_in_memory, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = DatasetDict.from_text({"train": text_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory) _check_text_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ], ) def test_datasetdict_from_text_features(features, text_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"text": "string"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = DatasetDict.from_text({"train": text_path}, features=features, cache_dir=cache_dir) _check_text_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_text_split(split, text_path, tmp_path): if split: path = {split: text_path} else: split = "train" path = {"train": text_path, "test": text_path} cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = DatasetDict.from_text(path, cache_dir=cache_dir) _check_text_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys())
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_extract.py
import os import zipfile import pytest from datasets.utils.extract import ( Bzip2Extractor, Extractor, GzipExtractor, Lz4Extractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lz4, require_py7zr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def test_base_extractors( compression_format, is_archive, bz2_file, gz_file, lz4_file, seven_zip_file, tar_file, xz_file, zip_file, zstd_file, tmp_path, text_file, ): input_paths_and_base_extractors = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bz2_file, Bzip2Extractor), "gzip": (gz_file, GzipExtractor), "lz4": (lz4_file, Lz4Extractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } input_path, base_extractor = input_paths_and_base_extractors[compression_format] if input_path is None: reason = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_py7zr.kwargs["reason"] elif compression_format == "lz4": reason += require_lz4.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) assert base_extractor.is_extractable(input_path) output_path = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(input_path, output_path) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name extracted_file_content = file_path.read_text(encoding="utf-8") else: extracted_file_content = output_path.read_text(encoding="utf-8") expected_file_content = text_file.read_text(encoding="utf-8") assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def test_extractor( compression_format, is_archive, bz2_file, gz_file, lz4_file, seven_zip_file, tar_file, xz_file, zip_file, zstd_file, tmp_path, text_file, ): input_paths = { "7z": seven_zip_file, "bz2": bz2_file, "gzip": gz_file, "lz4": lz4_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } input_path = input_paths[compression_format] if input_path is None: reason = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_py7zr.kwargs["reason"] elif compression_format == "lz4": reason += require_lz4.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) extractor_format = Extractor.infer_extractor_format(input_path) assert extractor_format is not None output_path = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(input_path, output_path, extractor_format) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name extracted_file_content = file_path.read_text(encoding="utf-8") else: extracted_file_content = output_path.read_text(encoding="utf-8") expected_file_content = text_file.read_text(encoding="utf-8") assert extracted_file_content == expected_file_content @pytest.fixture def tar_file_with_dot_dot(tmp_path, text_file): import tarfile directory = tmp_path / "data_dot_dot" directory.mkdir() path = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(path, "w") as f: f.add(text_file, arcname=os.path.join("..", text_file.name)) return path @pytest.fixture def tar_file_with_sym_link(tmp_path): import tarfile directory = tmp_path / "data_sym_link" directory.mkdir() path = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=True) with tarfile.TarFile(path, "w") as f: f.add(str(directory / "subdir"), arcname="subdir") # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def test_tar_extract_insecure_files( insecure_tar_file, error_log, tar_file_with_dot_dot, tar_file_with_sym_link, tmp_path, caplog ): insecure_tar_files = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } input_path = insecure_tar_files[insecure_tar_file] output_path = tmp_path / "extracted" TarExtractor.extract(input_path, output_path) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def test_is_zipfile_false_positive(tmpdir): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number not_a_zip_file = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 data = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb") as f: f.write(data) assert zipfile.is_zipfile(str(not_a_zip_file)) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(not_a_zip_file) # but we're right
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_streaming_download_manager.py
import json import os import re from pathlib import Path import pytest from fsspec.registry import _registry as _fsspec_registry from fsspec.spec import AbstractBufferedFile, AbstractFileSystem from datasets.download.download_config import DownloadConfig from datasets.download.streaming_download_manager import ( StreamingDownloadManager, _get_extraction_protocol, xbasename, xexists, xgetsize, xglob, xisdir, xisfile, xjoin, xlistdir, xnumpy_load, xopen, xPath, xrelpath, xsplit, xsplitext, xwalk, ) from datasets.filesystems import COMPRESSION_FILESYSTEMS from datasets.utils.hub import hf_hub_url from .utils import require_lz4, require_zstandard, slow TEST_URL = "https://huggingface.co/datasets/hf-internal-testing/dataset_with_script/raw/main/some_text.txt" TEST_URL_CONTENT = "foo\nbar\nfoobar" TEST_GG_DRIVE_FILENAME = "train.tsv" TEST_GG_DRIVE_URL = "https://drive.google.com/uc?export=download&id=17bOgBDc3hRCoPZ89EYtKDzK-yXAWat94" TEST_GG_DRIVE_GZIPPED_URL = "https://drive.google.com/uc?export=download&id=1Bt4Garpf0QLiwkJhHJzXaVa0I0H5Qhwz" TEST_GG_DRIVE_ZIPPED_URL = "https://drive.google.com/uc?export=download&id=1k92sUfpHxKq8PXWRr7Y5aNHXwOCNUmqh" TEST_GG_DRIVE_CONTENT = """\ pokemon_name, type Charmander, fire Squirtle, water Bulbasaur, grass""" class DummyTestFS(AbstractFileSystem): protocol = "mock" _file_class = AbstractBufferedFile _fs_contents = ( {"name": "top_level", "type": "directory"}, {"name": "top_level/second_level", "type": "directory"}, {"name": "top_level/second_level/date=2019-10-01", "type": "directory"}, { "name": "top_level/second_level/date=2019-10-01/a.parquet", "type": "file", "size": 100, }, { "name": "top_level/second_level/date=2019-10-01/b.parquet", "type": "file", "size": 100, }, {"name": "top_level/second_level/date=2019-10-02", "type": "directory"}, { "name": "top_level/second_level/date=2019-10-02/a.parquet", "type": "file", "size": 100, }, {"name": "top_level/second_level/date=2019-10-04", "type": "directory"}, { "name": "top_level/second_level/date=2019-10-04/a.parquet", "type": "file", "size": 100, }, {"name": "misc", "type": "directory"}, {"name": "misc/foo.txt", "type": "file", "size": 100}, {"name": "glob_test", "type": "directory", "size": 0}, {"name": "glob_test/hat", "type": "directory", "size": 0}, {"name": "glob_test/hat/^foo.txt", "type": "file", "size": 100}, {"name": "glob_test/dollar", "type": "directory", "size": 0}, {"name": "glob_test/dollar/$foo.txt", "type": "file", "size": 100}, {"name": "glob_test/lbrace", "type": "directory", "size": 0}, {"name": "glob_test/lbrace/{foo.txt", "type": "file", "size": 100}, {"name": "glob_test/rbrace", "type": "directory", "size": 0}, {"name": "glob_test/rbrace/}foo.txt", "type": "file", "size": 100}, ) def __getitem__(self, name): for item in self._fs_contents: if item["name"] == name: return item raise IndexError(f"{name} not found!") def ls(self, path, detail=True, refresh=True, **kwargs): if kwargs.pop("strip_proto", True): path = self._strip_protocol(path) files = not refresh and self._ls_from_cache(path) if not files: files = [file for file in self._fs_contents if path == self._parent(file["name"])] files.sort(key=lambda file: file["name"]) self.dircache[path.rstrip("/")] = files if detail: return files return [file["name"] for file in files] def _open( self, path, mode="rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): return self._file_class( self, path, mode, block_size, autocommit, cache_options=cache_options, **kwargs, ) @pytest.fixture def mock_fsspec(): _fsspec_registry["mock"] = DummyTestFS yield del _fsspec_registry["mock"] def _readd_double_slash_removed_by_path(path_as_posix: str) -> str: """Path(...) on an url path like zip://file.txt::http://host.com/data.zip converts the :// to :/ This function readds the :// It handles cases like: - https://host.com/data.zip - C://data.zip - zip://file.txt::https://host.com/data.zip - zip://file.txt::/Users/username/data.zip - zip://file.txt::C://data.zip Args: path_as_posix (str): output of Path(...).as_posix() Returns: str: the url path with :// instead of :/ """ return re.sub("([A-z]:/)([A-z:])", r"\g<1>/\g<2>", path_as_posix) @pytest.mark.parametrize( "input_path, paths_to_join, expected_path", [ ( "https://host.com/archive.zip", ("file.txt",), "https://host.com/archive.zip/file.txt", ), ( "zip://::https://host.com/archive.zip", ("file.txt",), "zip://file.txt::https://host.com/archive.zip", ), ( "zip://folder::https://host.com/archive.zip", ("file.txt",), "zip://folder/file.txt::https://host.com/archive.zip", ), ( ".", ("file.txt",), os.path.join(".", "file.txt"), ), ( str(Path().resolve()), ("file.txt",), str((Path().resolve() / "file.txt")), ), ], ) def test_xjoin(input_path, paths_to_join, expected_path): output_path = xjoin(input_path, *paths_to_join) assert output_path == expected_path output_path = xPath(input_path).joinpath(*paths_to_join) assert output_path == xPath(expected_path) @pytest.mark.parametrize( "input_path, expected_path", [ (str(Path(__file__).resolve()), str(Path(__file__).resolve().parent)), ("https://host.com/archive.zip", "https://host.com"), ( "zip://file.txt::https://host.com/archive.zip", "zip://::https://host.com/archive.zip", ), ( "zip://folder/file.txt::https://host.com/archive.zip", "zip://folder::https://host.com/archive.zip", ), ], ) def test_xdirname(input_path, expected_path): from datasets.download.streaming_download_manager import xdirname output_path = xdirname(input_path) output_path = _readd_double_slash_removed_by_path(Path(output_path).as_posix()) assert output_path == _readd_double_slash_removed_by_path(Path(expected_path).as_posix()) @pytest.mark.parametrize( "input_path, exists", [ ("tmp_path/file.txt", True), ("tmp_path/file_that_doesnt_exist.txt", False), ("mock://top_level/second_level/date=2019-10-01/a.parquet", True), ("mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet", False), ], ) def test_xexists(input_path, exists, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) (tmp_path / "file.txt").touch() assert xexists(input_path) is exists @pytest.mark.integration def test_xexists_private(hf_private_dataset_repo_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_txt_data, "") download_config = DownloadConfig(token=hf_token) assert xexists(root_url + "data/text_data.txt", download_config=download_config) assert not xexists(root_url + "file_that_doesnt_exist.txt", download_config=download_config) @pytest.mark.parametrize( "input_path, expected_head_and_tail", [ ( str(Path(__file__).resolve()), (str(Path(__file__).resolve().parent), str(Path(__file__).resolve().name)), ), ("https://host.com/archive.zip", ("https://host.com", "archive.zip")), ("zip://file.txt::https://host.com/archive.zip", ("zip://::https://host.com/archive.zip", "file.txt")), ("zip://folder::https://host.com/archive.zip", ("zip://::https://host.com/archive.zip", "folder")), ("zip://::https://host.com/archive.zip", ("zip://::https://host.com/archive.zip", "")), ], ) def test_xsplit(input_path, expected_head_and_tail): output_path, tail = xsplit(input_path) expected_path, expected_tail = expected_head_and_tail output_path = _readd_double_slash_removed_by_path(Path(output_path).as_posix()) expected_path = _readd_double_slash_removed_by_path(Path(expected_path).as_posix()) assert output_path == expected_path assert tail == expected_tail @pytest.mark.parametrize( "input_path, expected_path_and_ext", [ ( str(Path(__file__).resolve()), (str(Path(__file__).resolve().with_suffix("")), str(Path(__file__).resolve().suffix)), ), ("https://host.com/archive.zip", ("https://host.com/archive", ".zip")), ("zip://file.txt::https://host.com/archive.zip", ("zip://file::https://host.com/archive.zip", ".txt")), ("zip://folder::https://host.com/archive.zip", ("zip://folder::https://host.com/archive.zip", "")), ("zip://::https://host.com/archive.zip", ("zip://::https://host.com/archive.zip", "")), ], ) def test_xsplitext(input_path, expected_path_and_ext): output_path, ext = xsplitext(input_path) expected_path, expected_ext = expected_path_and_ext output_path = _readd_double_slash_removed_by_path(Path(output_path).as_posix()) expected_path = _readd_double_slash_removed_by_path(Path(expected_path).as_posix()) assert output_path == expected_path assert ext == expected_ext def test_xopen_local(text_path): with xopen(text_path, "r", encoding="utf-8") as f, open(text_path, encoding="utf-8") as expected_file: assert list(f) == list(expected_file) with xPath(text_path).open("r", encoding="utf-8") as f, open(text_path, encoding="utf-8") as expected_file: assert list(f) == list(expected_file) @pytest.mark.integration def test_xopen_remote(): with xopen(TEST_URL, "r", encoding="utf-8") as f: assert list(f) == TEST_URL_CONTENT.splitlines(keepends=True) with xPath(TEST_URL).open("r", encoding="utf-8") as f: assert list(f) == TEST_URL_CONTENT.splitlines(keepends=True) @pytest.mark.parametrize( "input_path, expected_paths", [ ("tmp_path", ["file1.txt", "file2.txt"]), ("mock://", ["glob_test", "misc", "top_level"]), ("mock://top_level", ["second_level"]), ("mock://top_level/second_level/date=2019-10-01", ["a.parquet", "b.parquet"]), ], ) def test_xlistdir(input_path, expected_paths, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) for file in ["file1.txt", "file2.txt"]: (tmp_path / file).touch() output_paths = sorted(xlistdir(input_path)) assert output_paths == expected_paths @pytest.mark.integration def test_xlistdir_private(hf_private_dataset_repo_zipped_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_zipped_txt_data, "data.zip") download_config = DownloadConfig(token=hf_token) assert len(xlistdir("zip://::" + root_url, download_config=download_config)) == 1 assert len(xlistdir("zip://main_dir::" + root_url, download_config=download_config)) == 2 with pytest.raises(FileNotFoundError): xlistdir("zip://qwertyuiop::" + root_url, download_config=download_config) with pytest.raises(FileNotFoundError): xlistdir(root_url, download_config=download_config) @pytest.mark.parametrize( "input_path, isdir", [ ("tmp_path", True), ("tmp_path/file.txt", False), ("mock://", True), ("mock://top_level", True), ("mock://dir_that_doesnt_exist", False), ], ) def test_xisdir(input_path, isdir, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) (tmp_path / "file.txt").touch() assert xisdir(input_path) == isdir @pytest.mark.integration def test_xisdir_private(hf_private_dataset_repo_zipped_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_zipped_txt_data, "data.zip") download_config = DownloadConfig(token=hf_token) assert xisdir("zip://::" + root_url, download_config=download_config) is True assert xisdir("zip://main_dir::" + root_url, download_config=download_config) is True assert xisdir("zip://qwertyuiop::" + root_url, download_config=download_config) is False assert xisdir(root_url, download_config=download_config) is False @pytest.mark.parametrize( "input_path, isfile", [ ("tmp_path/file.txt", True), ("tmp_path/file_that_doesnt_exist.txt", False), ("mock://", False), ("mock://top_level/second_level/date=2019-10-01/a.parquet", True), ], ) def test_xisfile(input_path, isfile, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) (tmp_path / "file.txt").touch() assert xisfile(input_path) == isfile @pytest.mark.integration def test_xisfile_private(hf_private_dataset_repo_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_txt_data, "") download_config = DownloadConfig(token=hf_token) assert xisfile(root_url + "data/text_data.txt", download_config=download_config) is True assert xisfile(root_url + "qwertyuiop", download_config=download_config) is False @pytest.mark.parametrize( "input_path, size", [ ("tmp_path/file.txt", 100), ("mock://", 0), ("mock://top_level/second_level/date=2019-10-01/a.parquet", 100), ], ) def test_xgetsize(input_path, size, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) (tmp_path / "file.txt").touch() (tmp_path / "file.txt").write_bytes(b"x" * 100) assert xgetsize(input_path) == size @pytest.mark.integration def test_xgetsize_private(hf_private_dataset_repo_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_txt_data, "") download_config = DownloadConfig(token=hf_token) assert xgetsize(root_url + "data/text_data.txt", download_config=download_config) == 39 with pytest.raises(FileNotFoundError): xgetsize(root_url + "qwertyuiop", download_config=download_config) @pytest.mark.parametrize( "input_path, expected_paths", [ ("tmp_path/*.txt", ["file1.txt", "file2.txt"]), ("mock://*", ["mock://glob_test", "mock://misc", "mock://top_level"]), ("mock://top_*", ["mock://top_level"]), ( "mock://top_level/second_level/date=2019-10-0[1-4]", [ "mock://top_level/second_level/date=2019-10-01", "mock://top_level/second_level/date=2019-10-02", "mock://top_level/second_level/date=2019-10-04", ], ), ( "mock://top_level/second_level/date=2019-10-0[1-4]/*", [ "mock://top_level/second_level/date=2019-10-01/a.parquet", "mock://top_level/second_level/date=2019-10-01/b.parquet", "mock://top_level/second_level/date=2019-10-02/a.parquet", "mock://top_level/second_level/date=2019-10-04/a.parquet", ], ), ], ) def test_xglob(input_path, expected_paths, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) expected_paths = [str(tmp_path / file) for file in expected_paths] for file in ["file1.txt", "file2.txt", "README.md"]: (tmp_path / file).touch() output_paths = sorted(xglob(input_path)) assert output_paths == expected_paths @pytest.mark.integration def test_xglob_private(hf_private_dataset_repo_zipped_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_zipped_txt_data, "data.zip") download_config = DownloadConfig(token=hf_token) assert len(xglob("zip://**::" + root_url, download_config=download_config)) == 3 assert len(xglob("zip://qwertyuiop/*::" + root_url, download_config=download_config)) == 0 @pytest.mark.parametrize( "input_path, expected_outputs", [ ("tmp_path", [("", [], ["file1.txt", "file2.txt", "README.md"])]), ( "mock://top_level/second_level", [ ("mock://top_level/second_level", ["date=2019-10-01", "date=2019-10-02", "date=2019-10-04"], []), ("mock://top_level/second_level/date=2019-10-01", [], ["a.parquet", "b.parquet"]), ("mock://top_level/second_level/date=2019-10-02", [], ["a.parquet"]), ("mock://top_level/second_level/date=2019-10-04", [], ["a.parquet"]), ], ), ], ) def test_xwalk(input_path, expected_outputs, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) expected_outputs = sorted( [ (str(tmp_path / dirpath).rstrip("/"), sorted(dirnames), sorted(filenames)) for dirpath, dirnames, filenames in expected_outputs ] ) for file in ["file1.txt", "file2.txt", "README.md"]: (tmp_path / file).touch() outputs = sorted(xwalk(input_path)) outputs = [(dirpath, sorted(dirnames), sorted(filenames)) for dirpath, dirnames, filenames in outputs] assert outputs == expected_outputs @pytest.mark.integration def test_xwalk_private(hf_private_dataset_repo_zipped_txt_data, hf_token): root_url = hf_hub_url(hf_private_dataset_repo_zipped_txt_data, "data.zip") download_config = DownloadConfig(token=hf_token) assert len(list(xwalk("zip://::" + root_url, download_config=download_config))) == 2 assert len(list(xwalk("zip://main_dir::" + root_url, download_config=download_config))) == 1 assert len(list(xwalk("zip://qwertyuiop::" + root_url, download_config=download_config))) == 0 @pytest.mark.parametrize( "input_path, start_path, expected_path", [ ("dir1/dir2/file.txt".replace("/", os.path.sep), "dir1", "dir2/file.txt".replace("/", os.path.sep)), ("dir1/dir2/file.txt".replace("/", os.path.sep), "dir1/dir2".replace("/", os.path.sep), "file.txt"), ("zip://file.txt::https://host.com/archive.zip", "zip://::https://host.com/archive.zip", "file.txt"), ( "zip://folder/file.txt::https://host.com/archive.zip", "zip://::https://host.com/archive.zip", "folder/file.txt", ), ( "zip://folder/file.txt::https://host.com/archive.zip", "zip://folder::https://host.com/archive.zip", "file.txt", ), ], ) def test_xrelpath(input_path, start_path, expected_path): output_path = xrelpath(input_path, start=start_path) assert output_path == expected_path class TestxPath: @pytest.mark.parametrize( "input_path", [ "https://host.com/archive.zip", "zip://file.txt::https://host.com/archive.zip", "zip://dir/file.txt::https://host.com/archive.zip", "file.txt", str(Path().resolve() / "file.txt"), ], ) def test_xpath_str(self, input_path): assert str(xPath(input_path)) == input_path @pytest.mark.parametrize( "input_path, expected_path", [ ("https://host.com/archive.zip", "https://host.com/archive.zip"), ("zip://file.txt::https://host.com/archive.zip", "zip://file.txt::https://host.com/archive.zip"), ("zip://dir/file.txt::https://host.com/archive.zip", "zip://dir/file.txt::https://host.com/archive.zip"), ("file.txt", "file.txt"), (str(Path().resolve() / "file.txt"), (Path().resolve() / "file.txt").as_posix()), ], ) def test_xpath_as_posix(self, input_path, expected_path): assert xPath(input_path).as_posix() == expected_path @pytest.mark.parametrize( "input_path, exists", [ ("tmp_path/file.txt", True), ("tmp_path/file_that_doesnt_exist.txt", False), ("mock://top_level/second_level/date=2019-10-01/a.parquet", True), ("mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet", False), ], ) def test_xpath_exists(self, input_path, exists, tmp_path, mock_fsspec): if input_path.startswith("tmp_path"): input_path = input_path.replace("/", os.sep).replace("tmp_path", str(tmp_path)) (tmp_path / "file.txt").touch() assert xexists(input_path) is exists @pytest.mark.parametrize( "input_path, pattern, expected_paths", [ ("tmp_path", "*.txt", ["file1.txt", "file2.txt"]), ("mock://", "*", ["mock://glob_test", "mock://misc", "mock://top_level"]), ("mock://", "top_*", ["mock://top_level"]), ( "mock://top_level/second_level", "date=2019-10-0[1-4]", [ "mock://top_level/second_level/date=2019-10-01", "mock://top_level/second_level/date=2019-10-02", "mock://top_level/second_level/date=2019-10-04", ], ), ( "mock://top_level/second_level", "date=2019-10-0[1-4]/*", [ "mock://top_level/second_level/date=2019-10-01/a.parquet", "mock://top_level/second_level/date=2019-10-01/b.parquet", "mock://top_level/second_level/date=2019-10-02/a.parquet", "mock://top_level/second_level/date=2019-10-04/a.parquet", ], ), ], ) def test_xpath_glob(self, input_path, pattern, expected_paths, tmp_path, mock_fsspec): if input_path == "tmp_path": input_path = tmp_path expected_paths = [tmp_path / file for file in expected_paths] for file in ["file1.txt", "file2.txt", "README.md"]: (tmp_path / file).touch() else: expected_paths = [Path(file) for file in expected_paths] output_paths = sorted(xPath(input_path).glob(pattern)) assert output_paths == expected_paths @pytest.mark.parametrize( "input_path, pattern, expected_paths", [ ("tmp_path", "*.txt", ["file1.txt", "file2.txt"]), ( "mock://", "date=2019-10-0[1-4]", [ "mock://top_level/second_level/date=2019-10-01", "mock://top_level/second_level/date=2019-10-02", "mock://top_level/second_level/date=2019-10-04", ], ), ( "mock://top_level", "date=2019-10-0[1-4]", [ "mock://top_level/second_level/date=2019-10-01", "mock://top_level/second_level/date=2019-10-02", "mock://top_level/second_level/date=2019-10-04", ], ), ( "mock://", "date=2019-10-0[1-4]/*", [ "mock://top_level/second_level/date=2019-10-01/a.parquet", "mock://top_level/second_level/date=2019-10-01/b.parquet", "mock://top_level/second_level/date=2019-10-02/a.parquet", "mock://top_level/second_level/date=2019-10-04/a.parquet", ], ), ( "mock://top_level", "date=2019-10-0[1-4]/*", [ "mock://top_level/second_level/date=2019-10-01/a.parquet", "mock://top_level/second_level/date=2019-10-01/b.parquet", "mock://top_level/second_level/date=2019-10-02/a.parquet", "mock://top_level/second_level/date=2019-10-04/a.parquet", ], ), ], ) def test_xpath_rglob(self, input_path, pattern, expected_paths, tmp_path, mock_fsspec): if input_path == "tmp_path": input_path = tmp_path dir_path = tmp_path / "dir" dir_path.mkdir() expected_paths = [dir_path / file for file in expected_paths] for file in ["file1.txt", "file2.txt", "README.md"]: (dir_path / file).touch() else: expected_paths = [Path(file) for file in expected_paths] output_paths = sorted(xPath(input_path).rglob(pattern)) assert output_paths == expected_paths @pytest.mark.parametrize( "input_path, expected_path", [ ("https://host.com/archive.zip", "https://host.com"), ("zip://file.txt::https://host.com/archive.zip", "zip://::https://host.com/archive.zip"), ("zip://dir/file.txt::https://host.com/archive.zip", "zip://dir::https://host.com/archive.zip"), ("file.txt", ""), (str(Path().resolve() / "file.txt"), str(Path().resolve())), ], ) def test_xpath_parent(self, input_path, expected_path): assert xPath(input_path).parent == xPath(expected_path) @pytest.mark.parametrize( "input_path, expected", [ ("https://host.com/archive.zip", "archive.zip"), ("zip://file.txt::https://host.com/archive.zip", "file.txt"), ("zip://dir/file.txt::https://host.com/archive.zip", "file.txt"), ("file.txt", "file.txt"), (str(Path().resolve() / "file.txt"), "file.txt"), ], ) def test_xpath_name(self, input_path, expected): assert xPath(input_path).name == expected @pytest.mark.parametrize( "input_path, expected", [ ("https://host.com/archive.zip", "archive"), ("zip://file.txt::https://host.com/archive.zip", "file"), ("zip://dir/file.txt::https://host.com/archive.zip", "file"), ("file.txt", "file"), (str(Path().resolve() / "file.txt"), "file"), ], ) def test_xpath_stem(self, input_path, expected): assert xPath(input_path).stem == expected @pytest.mark.parametrize( "input_path, expected", [ ("https://host.com/archive.zip", ".zip"), ("zip://file.txt::https://host.com/archive.zip", ".txt"), ("zip://dir/file.txt::https://host.com/archive.zip", ".txt"), ("file.txt", ".txt"), (str(Path().resolve() / "file.txt"), ".txt"), ], ) def test_xpath_suffix(self, input_path, expected): assert xPath(input_path).suffix == expected @pytest.mark.parametrize( "input_path, suffix, expected", [ ("https://host.com/archive.zip", ".ann", "https://host.com/archive.ann"), ("zip://file.txt::https://host.com/archive.zip", ".ann", "zip://file.ann::https://host.com/archive.zip"), ( "zip://dir/file.txt::https://host.com/archive.zip", ".ann", "zip://dir/file.ann::https://host.com/archive.zip", ), ("file.txt", ".ann", "file.ann"), (str(Path().resolve() / "file.txt"), ".ann", str(Path().resolve() / "file.ann")), ], ) def test_xpath_with_suffix(self, input_path, suffix, expected): assert xPath(input_path).with_suffix(suffix) == xPath(expected) @pytest.mark.parametrize("urlpath", [r"C:\\foo\bar.txt", "/foo/bar.txt", "https://f.oo/bar.txt"]) def test_streaming_dl_manager_download_dummy_path(urlpath): dl_manager = StreamingDownloadManager() assert dl_manager.download(urlpath) == urlpath def test_streaming_dl_manager_download(text_path): dl_manager = StreamingDownloadManager() out = dl_manager.download(text_path) assert out == text_path with xopen(out, encoding="utf-8") as f, open(text_path, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("urlpath", [r"C:\\foo\bar.txt", "/foo/bar.txt", "https://f.oo/bar.txt"]) def test_streaming_dl_manager_download_and_extract_no_extraction(urlpath): dl_manager = StreamingDownloadManager() assert dl_manager.download_and_extract(urlpath) == urlpath def test_streaming_dl_manager_extract(text_gz_path, text_path): dl_manager = StreamingDownloadManager() output_path = dl_manager.extract(text_gz_path) path = os.path.basename(text_gz_path) path = path[: path.rindex(".")] assert output_path == f"gzip://{path}::{text_gz_path}" fsspec_open_file = xopen(output_path, encoding="utf-8") with fsspec_open_file as f, open(text_path, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() def test_streaming_dl_manager_download_and_extract_with_extraction(text_gz_path, text_path): dl_manager = StreamingDownloadManager() output_path = dl_manager.download_and_extract(text_gz_path) path = os.path.basename(text_gz_path) path = path[: path.rindex(".")] assert output_path == f"gzip://{path}::{text_gz_path}" fsspec_open_file = xopen(output_path, encoding="utf-8") with fsspec_open_file as f, open(text_path, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize( "input_path, filename, expected_path", [("https://domain.org/archive.zip", "filename.jsonl", "zip://filename.jsonl::https://domain.org/archive.zip")], ) def test_streaming_dl_manager_download_and_extract_with_join(input_path, filename, expected_path): dl_manager = StreamingDownloadManager() extracted_path = dl_manager.download_and_extract(input_path) output_path = xjoin(extracted_path, filename) assert output_path == expected_path @pytest.mark.parametrize("compression_fs_class", COMPRESSION_FILESYSTEMS) def test_streaming_dl_manager_extract_all_supported_single_file_compression_types( compression_fs_class, gz_file, xz_file, zstd_file, bz2_file, lz4_file, text_file ): input_paths = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bz2_file, "lz4": lz4_file} input_path = input_paths[compression_fs_class.protocol] if input_path is None: reason = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lz4.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) dl_manager = StreamingDownloadManager() output_path = dl_manager.extract(input_path) path = os.path.basename(input_path) path = path[: path.rindex(".")] assert output_path == f"{compression_fs_class.protocol}://{path}::{input_path}" fsspec_open_file = xopen(output_path, encoding="utf-8") with fsspec_open_file as f, open(text_file, encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize( "urlpath, expected_protocol", [ ("zip://train-00000.json.gz::https://foo.bar/data.zip", "gzip"), ("https://foo.bar/train.json.gz?dl=1", "gzip"), ("http://opus.nlpl.eu/download.php?f=Bianet/v1/moses/en-ku.txt.zip", "zip"), ("https://github.com/user/what-time-is-it/blob/master/gutenberg_time_phrases.zip?raw=true", "zip"), ("https://github.com/user/repo/blob/master/data/morph_train.tsv?raw=true", None), ("https://repo.org/bitstream/handle/20.500.12185/346/annotated_corpus.zip?sequence=3&isAllowed=y", "zip"), ("https://zenodo.org/record/2787612/files/SICK.zip?download=1", "zip"), ], ) def test_streaming_dl_manager_get_extraction_protocol(urlpath, expected_protocol): assert _get_extraction_protocol(urlpath) == expected_protocol @pytest.mark.parametrize( "urlpath, expected_protocol", [ (TEST_GG_DRIVE_GZIPPED_URL, "gzip"), (TEST_GG_DRIVE_ZIPPED_URL, "zip"), ], ) @slow # otherwise it spams Google Drive and the CI gets banned def test_streaming_dl_manager_get_extraction_protocol_gg_drive(urlpath, expected_protocol): assert _get_extraction_protocol(urlpath) == expected_protocol @pytest.mark.parametrize( "urlpath", [ "zip://train-00000.tar.gz::https://foo.bar/data.zip", "https://foo.bar/train.tar.gz", "https://foo.bar/train.tgz", "https://foo.bar/train.tar", ], ) def test_streaming_dl_manager_extract_throws(urlpath): with pytest.raises(NotImplementedError): _ = StreamingDownloadManager().extract(urlpath) @slow # otherwise it spams Google Drive and the CI gets banned @pytest.mark.integration def test_streaming_gg_drive(): with xopen(TEST_GG_DRIVE_URL) as f: assert f.read() == TEST_GG_DRIVE_CONTENT @slow # otherwise it spams Google Drive and the CI gets banned @pytest.mark.integration def test_streaming_gg_drive_no_extract(): urlpath = StreamingDownloadManager().download_and_extract(TEST_GG_DRIVE_URL) with xopen(urlpath) as f: assert f.read() == TEST_GG_DRIVE_CONTENT @slow # otherwise it spams Google Drive and the CI gets banned @pytest.mark.integration def test_streaming_gg_drive_gzipped(): urlpath = StreamingDownloadManager().download_and_extract(TEST_GG_DRIVE_GZIPPED_URL) with xopen(urlpath) as f: assert f.read() == TEST_GG_DRIVE_CONTENT @slow # otherwise it spams Google Drive and the CI gets banned @pytest.mark.integration def test_streaming_gg_drive_zipped(): urlpath = StreamingDownloadManager().download_and_extract(TEST_GG_DRIVE_ZIPPED_URL) all_files = list(xglob(xjoin(urlpath, "*"))) assert len(all_files) == 1 assert xbasename(all_files[0]) == TEST_GG_DRIVE_FILENAME with xopen(all_files[0]) as f: assert f.read() == TEST_GG_DRIVE_CONTENT def _test_jsonl(path, file): assert path.endswith(".jsonl") for num_items, line in enumerate(file, start=1): item = json.loads(line.decode("utf-8")) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"]) def test_iter_archive_path(archive_jsonl, request): archive_jsonl_path = request.getfixturevalue(archive_jsonl) dl_manager = StreamingDownloadManager() archive_iterable = dl_manager.iter_archive(archive_jsonl_path) num_jsonl = 0 for num_jsonl, (path, file) in enumerate(archive_iterable, start=1): _test_jsonl(path, file) assert num_jsonl == 2 # do it twice to make sure it's reset correctly num_jsonl = 0 for num_jsonl, (path, file) in enumerate(archive_iterable, start=1): _test_jsonl(path, file) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"]) def test_iter_archive_file(archive_nested_jsonl, request): archive_nested_jsonl_path = request.getfixturevalue(archive_nested_jsonl) dl_manager = StreamingDownloadManager() files_iterable = dl_manager.iter_archive(archive_nested_jsonl_path) num_tar, num_jsonl = 0, 0 for num_tar, (path, file) in enumerate(files_iterable, start=1): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(file), start=1): _test_jsonl(subpath, subfile) assert num_tar == 1 assert num_jsonl == 2 # do it twice to make sure it's reset correctly num_tar, num_jsonl = 0, 0 for num_tar, (path, file) in enumerate(files_iterable, start=1): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(file), start=1): _test_jsonl(subpath, subfile) assert num_tar == 1 assert num_jsonl == 2 def test_iter_files(data_dir_with_hidden_files): dl_manager = StreamingDownloadManager() for num_file, file in enumerate(dl_manager.iter_files(data_dir_with_hidden_files), start=1): assert os.path.basename(file) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2 def test_xnumpy_load(tmp_path): import numpy as np expected_x = np.arange(10) npy_path = tmp_path / "data-x.npy" np.save(npy_path, expected_x) x = xnumpy_load(npy_path) assert np.array_equal(x, expected_x) npz_path = tmp_path / "data.npz" np.savez(npz_path, x=expected_x) with xnumpy_load(npz_path) as f: x = f["x"] assert np.array_equal(x, expected_x)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_offline_util.py
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def test_offline_with_timeout(): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT): with pytest.raises(RequestWouldHangIndefinitelyError): requests.request("GET", "https://huggingface.co") with pytest.raises(requests.exceptions.ConnectTimeout): requests.request("GET", "https://huggingface.co", timeout=1.0) @pytest.mark.integration def test_offline_with_connection_error(): with offline(OfflineSimulationMode.CONNECTION_FAILS): with pytest.raises(requests.exceptions.ConnectionError): requests.request("GET", "https://huggingface.co") def test_offline_with_datasets_offline_mode_enabled(): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1): with pytest.raises(ConnectionError): http_head("https://huggingface.co")
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_metric_common.py
# Copyright 2020 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration pytestmark = pytest.mark.integration REQUIRE_FAIRSEQ = {"comet"} _has_fairseq = importlib.util.find_spec("fairseq") is not None UNSUPPORTED_ON_WINDOWS = {"code_eval"} _on_windows = os.name == "nt" REQUIRE_TRANSFORMERS = {"bertscore", "frugalscore", "perplexity"} _has_transformers = importlib.util.find_spec("transformers") is not None def skip_if_metric_requires_fairseq(test_case): @wraps(test_case) def wrapper(self, metric_name): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"') else: test_case(self, metric_name) return wrapper def skip_if_metric_requires_transformers(test_case): @wraps(test_case) def wrapper(self, metric_name): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"') else: test_case(self, metric_name) return wrapper def skip_on_windows_if_not_windows_compatible(test_case): @wraps(test_case) def wrapper(self, metric_name): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"') else: test_case(self, metric_name) return wrapper def get_local_metric_names(): metrics = [metric_dir.split(os.sep)[-2] for metric_dir in glob.glob("./metrics/*/")] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( skip_if_metric_requires_fairseq, skip_if_metric_requires_transformers, skip_on_windows_if_not_windows_compatible ) @local class LocalMetricTest(parameterized.TestCase): INTENSIVE_CALLS_PATCHER = {} metric_name = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning") def test_load_metric(self, metric_name): doctest.ELLIPSIS_MARKER = "[...]" metric_module = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics", metric_name)).module_path ) metric = datasets.load.import_main_class(metric_module.__name__, dataset=False) # check parameters parameters = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(metric_name, metric_module.__name__): with self.use_local_metrics(): try: results = doctest.testmod(metric_module, verbose=True, raise_on_error=True) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed, 0) self.assertGreater(results.attempted, 1) @slow def test_load_real_metric(self, metric_name): doctest.ELLIPSIS_MARKER = "[...]" metric_module = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics", metric_name)).module_path ) # run doctest with self.use_local_metrics(): results = doctest.testmod(metric_module, verbose=True, raise_on_error=True) self.assertEqual(results.failed, 0) self.assertGreater(results.attempted, 1) @contextmanager def patch_intensive_calls(self, metric_name, module_name): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](module_name): yield else: yield @contextmanager def use_local_metrics(self): def load_local_metric(metric_name, *args, **kwargs): return load_metric(os.path.join("metrics", metric_name), *args, **kwargs) with patch("datasets.load_metric") as mock_load_metric: mock_load_metric.side_effect = load_local_metric yield @classmethod def register_intensive_calls_patcher(cls, metric_name): def wrapper(patcher): patcher = contextmanager(patcher) cls.INTENSIVE_CALLS_PATCHER[metric_name] = patcher return patcher return wrapper # Metrics intensive calls patchers # -------------------------------- @LocalMetricTest.register_intensive_calls_patcher("bleurt") def patch_bleurt(module_name): import tensorflow.compat.v1 as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv", "", "") # handle pytest cli flags class MockedPredictor(Predictor): def predict(self, input_dict): assert len(input_dict["input_ids"]) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor") as mock_create_predictor: mock_create_predictor.return_value = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore") def patch_bertscore(module_name): import torch def bert_cos_score_idf(model, refs, *args, **kwargs): return torch.tensor([[1.0, 1.0, 1.0]] * len(refs)) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model"), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: mock_bert_cos_score_idf.side_effect = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet") def patch_comet(module_name): def load_from_checkpoint(model_path): class Model: def predict(self, data, *args, **kwargs): assert len(data) == 2 scores = [0.19, 0.92] return scores, sum(scores) / len(scores) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model") as mock_download_model: mock_download_model.return_value = None with patch("comet.load_from_checkpoint") as mock_load_from_checkpoint: mock_load_from_checkpoint.side_effect = load_from_checkpoint yield def test_seqeval_raises_when_incorrect_scheme(): metric = load_metric(os.path.join("metrics", "seqeval")) wrong_scheme = "ERROR" error_message = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(ValueError, match=re.escape(error_message)): metric.compute(predictions=[], references=[], scheme=wrong_scheme)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/utils.py
import asyncio import importlib.metadata import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config def parse_flag_from_env(key, default=False): try: value = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _value = default else: # KEY is set, convert it to True or False. try: _value = strtobool(value) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no.") return _value _run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) _run_remote_tests = parse_flag_from_env("RUN_REMOTE", default=False) _run_local_tests = parse_flag_from_env("RUN_LOCAL", default=True) _run_packaged_tests = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression require_lz4 = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") require_py7zr = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") require_zstandard = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio require_sndfile = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib.metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam require_beam = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility require_dill_gt_0_3_2 = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows require_not_windows = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def require_faiss(test_case): """ Decorator marking a test that requires Faiss. These tests are skipped when Faiss isn't installed. """ try: import faiss # noqa except ImportError: test_case = unittest.skip("test requires faiss")(test_case) return test_case def require_regex(test_case): """ Decorator marking a test that requires regex. These tests are skipped when Regex isn't installed. """ try: import regex # noqa except ImportError: test_case = unittest.skip("test requires regex")(test_case) return test_case def require_elasticsearch(test_case): """ Decorator marking a test that requires ElasticSearch. These tests are skipped when ElasticSearch isn't installed. """ try: import elasticsearch # noqa except ImportError: test_case = unittest.skip("test requires elasticsearch")(test_case) return test_case def require_sqlalchemy(test_case): """ Decorator marking a test that requires SQLAlchemy. These tests are skipped when SQLAlchemy isn't installed. """ try: import sqlalchemy # noqa except ImportError: test_case = unittest.skip("test requires sqlalchemy")(test_case) return test_case def require_torch(test_case): """ Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed. """ if not config.TORCH_AVAILABLE: test_case = unittest.skip("test requires PyTorch")(test_case) return test_case def require_tf(test_case): """ Decorator marking a test that requires TensorFlow. These tests are skipped when TensorFlow isn't installed. """ if not config.TF_AVAILABLE: test_case = unittest.skip("test requires TensorFlow")(test_case) return test_case def require_jax(test_case): """ Decorator marking a test that requires JAX. These tests are skipped when JAX isn't installed. """ if not config.JAX_AVAILABLE: test_case = unittest.skip("test requires JAX")(test_case) return test_case def require_pil(test_case): """ Decorator marking a test that requires Pillow. These tests are skipped when Pillow isn't installed. """ if not config.PIL_AVAILABLE: test_case = unittest.skip("test requires Pillow")(test_case) return test_case def require_transformers(test_case): """ Decorator marking a test that requires transformers. These tests are skipped when transformers isn't installed. """ try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers")(test_case) else: return test_case def require_tiktoken(test_case): """ Decorator marking a test that requires tiktoken. These tests are skipped when transformers isn't installed. """ try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken")(test_case) else: return test_case def require_spacy(test_case): """ Decorator marking a test that requires spacy. These tests are skipped when they aren't installed. """ try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy")(test_case) else: return test_case def require_spacy_model(model): """ Decorator marking a test that requires a spacy model. These tests are skipped when they aren't installed. """ def _require_spacy_model(test_case): try: import spacy # noqa F401 spacy.load(model) except ImportError: return unittest.skip("test requires spacy")(test_case) except OSError: return unittest.skip("test requires spacy model '{}'".format(model))(test_case) else: return test_case return _require_spacy_model def require_pyspark(test_case): """ Decorator marking a test that requires pyspark. These tests are skipped when pyspark isn't installed. """ try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark")(test_case) else: return test_case def require_joblibspark(test_case): """ Decorator marking a test that requires joblibspark. These tests are skipped when pyspark isn't installed. """ try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark")(test_case) else: return test_case def slow(test_case): """ Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them. """ if not _run_slow_tests or _run_slow_tests == 0: test_case = unittest.skip("test is slow")(test_case) return test_case def local(test_case): """ Decorator marking a test as local Local tests are run by default. Set the RUN_LOCAL environment variable to a falsy value to not run them. """ if not _run_local_tests or _run_local_tests == 0: test_case = unittest.skip("test is local")(test_case) return test_case def packaged(test_case): """ Decorator marking a test as packaged Packaged tests are run by default. Set the RUN_PACKAGED environment variable to a falsy value to not run them. """ if not _run_packaged_tests or _run_packaged_tests == 0: test_case = unittest.skip("test is packaged")(test_case) return test_case def remote(test_case): """ Decorator marking a test as one that relies on GitHub or the Hugging Face Hub. Remote tests are skipped by default. Set the RUN_REMOTE environment variable to a falsy value to not run them. """ if not _run_remote_tests or _run_remote_tests == 0: test_case = unittest.skip("test requires remote")(test_case) return test_case def for_all_test_methods(*decorators): def decorate(cls): for name, fn in cls.__dict__.items(): if callable(fn) and name.startswith("test"): for decorator in decorators: fn = decorator(fn) setattr(cls, name, fn) return cls return decorate class RequestWouldHangIndefinitelyError(Exception): pass class OfflineSimulationMode(Enum): CONNECTION_FAILS = 0 CONNECTION_TIMES_OUT = 1 HF_DATASETS_OFFLINE_SET_TO_1 = 2 @contextmanager def offline(mode=OfflineSimulationMode.CONNECTION_FAILS, timeout=1e-16): """ Simulate offline mode. There are three offline simulatiom modes: CONNECTION_FAILS (default mode): a ConnectionError is raised for each network call. Connection errors are created by mocking socket.socket CONNECTION_TIMES_OUT: the connection hangs until it times out. The default timeout value is low (1e-16) to speed up the tests. Timeout errors are created by mocking requests.request HF_DATASETS_OFFLINE_SET_TO_1: the HF_DATASETS_OFFLINE environment variable is set to 1. This makes the http/ftp calls of the library instantly fail and raise an OfflineModeEmabled error. """ online_request = requests.Session().request def timeout_request(session, method, url, **kwargs): # Change the url to an invalid url so that the connection hangs invalid_url = "https://10.255.255.1" if kwargs.get("timeout") is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) kwargs["timeout"] = timeout try: return online_request(method, invalid_url, **kwargs) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier e.request.url = url max_retry_error = e.args[0] max_retry_error.args = (max_retry_error.args[0].replace("10.255.255.1", f"OfflineMock[{url}]"),) e.args = (max_retry_error,) raise def raise_connection_error(session, prepared_request, **kwargs): raise requests.ConnectionError("Offline mode is enabled.", request=prepared_request) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send", raise_connection_error): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request", timeout_request): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE", True): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum.") @contextmanager def set_current_working_directory_to_temp_dir(*args, **kwargs): original_working_dir = str(Path().resolve()) with tempfile.TemporaryDirectory(*args, **kwargs) as tmp_dir: try: os.chdir(tmp_dir) yield finally: os.chdir(original_working_dir) @contextmanager def assert_arrow_memory_increases(): import gc gc.collect() previous_allocated_memory = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def assert_arrow_memory_doesnt_increase(): import gc gc.collect() previous_allocated_memory = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def is_rng_equal(rng1, rng2): return deepcopy(rng1).integers(0, 100, 10).tolist() == deepcopy(rng2).integers(0, 100, 10).tolist() def xfail_if_500_502_http_error(func): import decorator from requests.exceptions import HTTPError def _wrapper(func, *args, **kwargs): try: return func(*args, **kwargs) except HTTPError as err: if str(err).startswith("500") or str(err).startswith("502"): pytest.xfail(str(err)) raise err return decorator.decorator(_wrapper, func) # --- distributed testing functions --- # # copied from transformers # originally adapted from https://stackoverflow.com/a/59041913/9201239 class _RunOutput: def __init__(self, returncode, stdout, stderr): self.returncode = returncode self.stdout = stdout self.stderr = stderr async def _read_stream(stream, callback): while True: line = await stream.readline() if line: callback(line) else: break async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput: if echo: print("\nRunning: ", " ".join(cmd)) p = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=stdin, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=env, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) out = [] err = [] def tee(line, sink, pipe, label=""): line = line.decode("utf-8").rstrip() sink.append(line) if not quiet: print(label, line, file=pipe) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda line: tee(line, out, sys.stdout, label="stdout:")), _read_stream(p.stderr, lambda line: tee(line, err, sys.stderr, label="stderr:")), ], timeout=timeout, ) return _RunOutput(await p.wait(), out, err) def execute_subprocess_async(cmd, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput: loop = asyncio.get_event_loop() result = loop.run_until_complete( _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo) ) cmd_str = " ".join(cmd) if result.returncode > 0: stderr = "\n".join(result.stderr) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output.") return result def pytest_xdist_worker_id(): """ Returns an int value of worker's numerical id under `pytest-xdist`'s concurrent workers `pytest -n N` regime, or 0 if `-n 1` or `pytest-xdist` isn't being used. """ worker = os.environ.get("PYTEST_XDIST_WORKER", "gw0") worker = re.sub(r"^gw", "", worker, 0, re.M) return int(worker) def get_torch_dist_unique_port(): """ Returns a port number that can be fed to `torchrun`'s `--master_port` argument. Under `pytest-xdist` it adds a delta number based on a worker id so that concurrent tests don't try to use the same port at once. """ port = 29500 uniq_delta = pytest_xdist_worker_id() return port + uniq_delta
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_parallel.py
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def add_one(i): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def test_parallel_backend_input(): with parallel_backend("spark"): assert ParallelBackendConfig.backend_name == "spark" lst = [1, 2, 3] with pytest.raises(ValueError): with parallel_backend("unsupported backend"): map_nested(add_one, lst, num_proc=2) with pytest.raises(ValueError): with parallel_backend("unsupported backend"): map_nested(add_one, lst, num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc", [2, -1]) def test_parallel_backend_map_nested(num_proc): s1 = [1, 2] s2 = {"a": 1, "b": 2} s3 = {"a": [1, 2], "b": [3, 4]} s4 = {"a": {"1": 1}, "b": 2} s5 = {"a": 1, "b": 2, "c": 3, "d": 4} expected_map_nested_s1 = [2, 3] expected_map_nested_s2 = {"a": 2, "b": 3} expected_map_nested_s3 = {"a": [2, 3], "b": [4, 5]} expected_map_nested_s4 = {"a": {"1": 2}, "b": 3} expected_map_nested_s5 = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark"): assert map_nested(add_one, s1, num_proc=num_proc) == expected_map_nested_s1 assert map_nested(add_one, s2, num_proc=num_proc) == expected_map_nested_s2 assert map_nested(add_one, s3, num_proc=num_proc) == expected_map_nested_s3 assert map_nested(add_one, s4, num_proc=num_proc) == expected_map_nested_s4 assert map_nested(add_one, s5, num_proc=num_proc) == expected_map_nested_s5
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_arrow_reader.py
import os import tempfile from pathlib import Path from unittest import TestCase import pyarrow as pa import pytest from datasets.arrow_dataset import Dataset from datasets.arrow_reader import ArrowReader, BaseReader, FileInstructions, ReadInstruction, make_file_instructions from datasets.info import DatasetInfo from datasets.splits import NamedSplit, Split, SplitDict, SplitInfo from .utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases class ReaderTest(BaseReader): """ Build a Dataset object out of Instruction instance(s). This reader is made for testing. It mocks file reads. """ def _get_table_from_filename(self, filename_skip_take, in_memory=False): """Returns a Dataset instance from given (filename, skip, take).""" filename, skip, take = ( filename_skip_take["filename"], filename_skip_take["skip"] if "skip" in filename_skip_take else None, filename_skip_take["take"] if "take" in filename_skip_take else None, ) open(os.path.join(filename), "wb").close() pa_table = pa.Table.from_pydict({"filename": [Path(filename).name] * 100}) if take == -1: take = len(pa_table) - skip if skip is not None and take is not None: pa_table = pa_table.slice(skip, take) return pa_table class BaseReaderTest(TestCase): def test_read(self): name = "my_name" train_info = SplitInfo(name="train", num_examples=100) test_info = SplitInfo(name="test", num_examples=100) split_infos = [train_info, test_info] split_dict = SplitDict() split_dict.add(train_info) split_dict.add(test_info) info = DatasetInfo(splits=split_dict) with tempfile.TemporaryDirectory() as tmp_dir: reader = ReaderTest(tmp_dir, info) instructions = "test[:33%]" dset = Dataset(**reader.read(name, instructions, split_infos)) self.assertEqual(dset["filename"][0], f"{name}-test") self.assertEqual(dset.num_rows, 33) self.assertEqual(dset.num_columns, 1) instructions1 = ["train", "test[:33%]"] instructions2 = [Split.TRAIN, ReadInstruction.from_spec("test[:33%]")] for instructions in [instructions1, instructions2]: datasets_kwargs = [reader.read(name, instr, split_infos) for instr in instructions] train_dset, test_dset = (Dataset(**dataset_kwargs) for dataset_kwargs in datasets_kwargs) self.assertEqual(train_dset["filename"][0], f"{name}-train") self.assertEqual(train_dset.num_rows, 100) self.assertEqual(train_dset.num_columns, 1) self.assertIsInstance(train_dset.split, NamedSplit) self.assertEqual(str(train_dset.split), "train") self.assertEqual(test_dset["filename"][0], f"{name}-test") self.assertEqual(test_dset.num_rows, 33) self.assertEqual(test_dset.num_columns, 1) self.assertIsInstance(test_dset.split, NamedSplit) self.assertEqual(str(test_dset.split), "test[:33%]") del train_dset, test_dset def test_read_sharded(self): name = "my_name" train_info = SplitInfo(name="train", num_examples=1000, shard_lengths=[100] * 10) split_infos = [train_info] split_dict = SplitDict() split_dict.add(train_info) info = DatasetInfo(splits=split_dict) with tempfile.TemporaryDirectory() as tmp_dir: reader = ReaderTest(tmp_dir, info) instructions = "train[:33%]" dset = Dataset(**reader.read(name, instructions, split_infos)) self.assertEqual(dset["filename"][0], f"{name}-train-00000-of-00010") self.assertEqual(dset["filename"][-1], f"{name}-train-00003-of-00010") self.assertEqual(dset.num_rows, 330) self.assertEqual(dset.num_columns, 1) def test_read_files(self): train_info = SplitInfo(name="train", num_examples=100) test_info = SplitInfo(name="test", num_examples=100) split_dict = SplitDict() split_dict.add(train_info) split_dict.add(test_info) info = DatasetInfo(splits=split_dict) with tempfile.TemporaryDirectory() as tmp_dir: reader = ReaderTest(tmp_dir, info) files = [ {"filename": os.path.join(tmp_dir, "train")}, {"filename": os.path.join(tmp_dir, "test"), "skip": 10, "take": 10}, ] dset = Dataset(**reader.read_files(files, original_instructions="train+test[10:20]")) self.assertEqual(dset.num_rows, 110) self.assertEqual(dset.num_columns, 1) del dset @pytest.mark.parametrize("in_memory", [False, True]) def test_read_table(in_memory, dataset, arrow_file): filename = arrow_file with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): table = ArrowReader.read_table(filename, in_memory=in_memory) assert table.shape == dataset.data.shape assert set(table.column_names) == set(dataset.data.column_names) assert dict(table.to_pydict()) == dict(dataset.data.to_pydict()) # to_pydict returns OrderedDict @pytest.mark.parametrize("in_memory", [False, True]) def test_read_files(in_memory, dataset, arrow_file): filename = arrow_file reader = ArrowReader("", None) with assert_arrow_memory_increases() if in_memory else assert_arrow_memory_doesnt_increase(): dataset_kwargs = reader.read_files([{"filename": filename}], in_memory=in_memory) assert dataset_kwargs.keys() == {"arrow_table", "info", "split"} table = dataset_kwargs["arrow_table"] assert table.shape == dataset.data.shape assert set(table.column_names) == set(dataset.data.column_names) assert dict(table.to_pydict()) == dict(dataset.data.to_pydict()) # to_pydict returns OrderedDict def test_read_instruction_spec(): assert ReadInstruction("train", to=10, unit="abs").to_spec() == "train[:10]" assert ReadInstruction("train", from_=-80, to=10, unit="%").to_spec() == "train[-80%:10%]" spec_train_test = "train+test" assert ReadInstruction.from_spec(spec_train_test).to_spec() == spec_train_test spec_train_abs = "train[2:10]" assert ReadInstruction.from_spec(spec_train_abs).to_spec() == spec_train_abs spec_train_pct = "train[15%:-20%]" assert ReadInstruction.from_spec(spec_train_pct).to_spec() == spec_train_pct spec_train_pct_rounding = "train[:10%](closest)" assert ReadInstruction.from_spec(spec_train_pct_rounding).to_spec() == "train[:10%]" spec_train_pct_rounding = "train[:10%](pct1_dropremainder)" assert ReadInstruction.from_spec(spec_train_pct_rounding).to_spec() == spec_train_pct_rounding spec_train_test_pct_rounding = "train[:10%](pct1_dropremainder)+test[-10%:](pct1_dropremainder)" assert ReadInstruction.from_spec(spec_train_test_pct_rounding).to_spec() == spec_train_test_pct_rounding def test_make_file_instructions(): name = "dummy" split_infos = [SplitInfo(name="train", num_examples=100)] instruction = "train[:33%]" filetype_suffix = "arrow" prefix_path = "prefix" file_instructions = make_file_instructions(name, split_infos, instruction, filetype_suffix, prefix_path) assert isinstance(file_instructions, FileInstructions) assert file_instructions.num_examples == 33 assert file_instructions.file_instructions == [ {"filename": os.path.join(prefix_path, f"{name}-train.arrow"), "skip": 0, "take": 33} ] split_infos = [SplitInfo(name="train", num_examples=100, shard_lengths=[10] * 10)] file_instructions = make_file_instructions(name, split_infos, instruction, filetype_suffix, prefix_path) assert isinstance(file_instructions, FileInstructions) assert file_instructions.num_examples == 33 assert file_instructions.file_instructions == [ {"filename": os.path.join(prefix_path, f"{name}-train-00000-of-00010.arrow"), "skip": 0, "take": -1}, {"filename": os.path.join(prefix_path, f"{name}-train-00001-of-00010.arrow"), "skip": 0, "take": -1}, {"filename": os.path.join(prefix_path, f"{name}-train-00002-of-00010.arrow"), "skip": 0, "take": -1}, {"filename": os.path.join(prefix_path, f"{name}-train-00003-of-00010.arrow"), "skip": 0, "take": 3}, ] @pytest.mark.parametrize("name, expected_exception", [(None, TypeError), ("", ValueError)]) def test_make_file_instructions_raises(name, expected_exception): split_infos = [SplitInfo(name="train", num_examples=100)] instruction = "train" filetype_suffix = "arrow" prefix_path = "prefix_path" with pytest.raises(expected_exception): _ = make_file_instructions(name, split_infos, instruction, filetype_suffix, prefix_path)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_fingerprint.py
import json import os import pickle import subprocess from functools import partial from pathlib import Path from tempfile import gettempdir from textwrap import dedent from types import FunctionType from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from multiprocess import Pool import datasets from datasets import config from datasets.fingerprint import Hasher, fingerprint_transform from datasets.table import InMemoryTable from .utils import ( require_not_windows, require_regex, require_spacy, require_spacy_model, require_tiktoken, require_torch, require_transformers, ) class Foo: def __init__(self, foo): self.foo = foo def __call__(self): return self.foo class DatasetChild(datasets.Dataset): @fingerprint_transform(inplace=False) def func1(self, new_fingerprint, *args, **kwargs): return DatasetChild(self.data, fingerprint=new_fingerprint) @fingerprint_transform(inplace=False) def func2(self, new_fingerprint, *args, **kwargs): return DatasetChild(self.data, fingerprint=new_fingerprint) class UnpicklableCallable: def __init__(self, callable): self.callable = callable def __call__(self, *args, **kwargs): if self.callable is not None: return self.callable(*args, **kwargs) def __getstate__(self): raise pickle.PicklingError() if config.TORCH_AVAILABLE: import torch import torch.nn as nn import torch.nn.functional as F class TorchModule(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) else: TorchModule = None class TokenizersHashTest(TestCase): @require_transformers @pytest.mark.integration def test_hash_tokenizer(self): from transformers import AutoTokenizer def encode(x): return tokenizer(x) # TODO: add hash consistency tests across sessions tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") hash1 = Hasher.hash(tokenizer) hash1_lambda = Hasher.hash(lambda x: tokenizer(x)) hash1_encode = Hasher.hash(encode) tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") hash2 = Hasher.hash(tokenizer) hash2_lambda = Hasher.hash(lambda x: tokenizer(x)) hash2_encode = Hasher.hash(encode) tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") hash3 = Hasher.hash(tokenizer) hash3_lambda = Hasher.hash(lambda x: tokenizer(x)) hash3_encode = Hasher.hash(encode) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) self.assertEqual(hash1_lambda, hash3_lambda) self.assertNotEqual(hash1_lambda, hash2_lambda) self.assertEqual(hash1_encode, hash3_encode) self.assertNotEqual(hash1_encode, hash2_encode) @require_transformers @pytest.mark.integration def test_hash_tokenizer_with_cache(self): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") hash1 = Hasher.hash(tokenizer) tokenizer("Hello world !") # call once to change the tokenizer's cache hash2 = Hasher.hash(tokenizer) self.assertEqual(hash1, hash2) @require_regex def test_hash_regex(self): import regex pat = regex.Regex("foo") hash1 = Hasher.hash(pat) pat = regex.Regex("bar") hash2 = Hasher.hash(pat) pat = regex.Regex("foo") hash3 = Hasher.hash(pat) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) class RecurseHashTest(TestCase): def test_recurse_hash_for_function(self): def func(): return foo foo = [0] hash1 = Hasher.hash(func) foo = [1] hash2 = Hasher.hash(func) foo = [0] hash3 = Hasher.hash(func) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) def test_hash_ignores_line_definition_of_function(self): def func(): pass hash1 = Hasher.hash(func) def func(): pass hash2 = Hasher.hash(func) self.assertEqual(hash1, hash2) def test_recurse_hash_for_class(self): hash1 = Hasher.hash(Foo([0])) hash2 = Hasher.hash(Foo([1])) hash3 = Hasher.hash(Foo([0])) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) def test_recurse_hash_for_method(self): hash1 = Hasher.hash(Foo([0]).__call__) hash2 = Hasher.hash(Foo([1]).__call__) hash3 = Hasher.hash(Foo([0]).__call__) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) def test_hash_ipython_function(self): def create_ipython_func(co_filename, returned_obj): def func(): return returned_obj code = func.__code__ # Use _create_code from dill in order to make it work for different python versions code = code.replace(co_filename=co_filename) return FunctionType(code, func.__globals__, func.__name__, func.__defaults__, func.__closure__) co_filename, returned_obj = "<ipython-input-2-e0383a102aae>", [0] hash1 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) co_filename, returned_obj = "<ipython-input-2-e0383a102aae>", [1] hash2 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) co_filename, returned_obj = "<ipython-input-5-713f6613acf3>", [0] hash3 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) co_filename, returned_obj = os.path.join(gettempdir(), "ipykernel_12345", "321456789.py"), [0] hash4 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) co_filename, returned_obj = os.path.join(gettempdir(), "ipykernel_12345", "321456789.py"), [1] hash5 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) co_filename, returned_obj = os.path.join(gettempdir(), "ipykernel_12345", "654123987.py"), [0] hash6 = Hasher.hash(create_ipython_func(co_filename, returned_obj)) self.assertEqual(hash4, hash6) self.assertNotEqual(hash4, hash5) def test_recurse_hash_for_function_with_shuffled_globals(self): foo, bar = [0], [1] def func(): return foo, bar func.__module__ = "__main__" def globalvars_mock1_side_effect(func, *args, **kwargs): return {"foo": foo, "bar": bar} def globalvars_mock2_side_effect(func, *args, **kwargs): return {"bar": bar, "foo": foo} with patch("dill.detect.globalvars", side_effect=globalvars_mock1_side_effect) as globalvars_mock1: hash1 = Hasher.hash(func) self.assertGreater(globalvars_mock1.call_count, 0) with patch("dill.detect.globalvars", side_effect=globalvars_mock2_side_effect) as globalvars_mock2: hash2 = Hasher.hash(func) self.assertGreater(globalvars_mock2.call_count, 0) self.assertEqual(hash1, hash2) class HashingTest(TestCase): def test_hash_simple(self): hash1 = Hasher.hash("hello") hash2 = Hasher.hash("hello") hash3 = Hasher.hash("there") self.assertEqual(hash1, hash2) self.assertNotEqual(hash1, hash3) def test_hash_class_instance(self): hash1 = Hasher.hash(Foo("hello")) hash2 = Hasher.hash(Foo("hello")) hash3 = Hasher.hash(Foo("there")) self.assertEqual(hash1, hash2) self.assertNotEqual(hash1, hash3) def test_hash_update(self): hasher = Hasher() for x in ["hello", Foo("hello")]: hasher.update(x) hash1 = hasher.hexdigest() hasher = Hasher() for x in ["hello", Foo("hello")]: hasher.update(x) hash2 = hasher.hexdigest() hasher = Hasher() for x in ["there", Foo("there")]: hasher.update(x) hash3 = hasher.hexdigest() self.assertEqual(hash1, hash2) self.assertNotEqual(hash1, hash3) def test_hash_unpicklable(self): with self.assertRaises(pickle.PicklingError): Hasher.hash(UnpicklableCallable(Foo("hello"))) def test_hash_same_strings(self): string = "abc" obj1 = [string, string] # two strings have the same ids obj2 = [string, string] obj3 = json.loads(f'["{string}", "{string}"]') # two strings have different ids self.assertIs(obj1[0], string) self.assertIs(obj1[0], obj1[1]) self.assertIs(obj2[0], string) self.assertIs(obj2[0], obj2[1]) self.assertIsNot(obj3[0], string) self.assertIsNot(obj3[0], obj3[1]) hash1 = Hasher.hash(obj1) hash2 = Hasher.hash(obj2) hash3 = Hasher.hash(obj3) self.assertEqual(hash1, hash2) self.assertEqual(hash1, hash3) def test_set_stable(self): rng = np.random.default_rng(42) set_ = {rng.random() for _ in range(10_000)} expected_hash = Hasher.hash(set_) assert expected_hash == Pool(1).apply_async(partial(Hasher.hash, set(set_))).get() def test_set_doesnt_depend_on_order(self): set_ = set("abc") hash1 = Hasher.hash(set_) set_ = set("def") hash2 = Hasher.hash(set_) set_ = set("cba") hash3 = Hasher.hash(set_) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) @require_tiktoken def test_hash_tiktoken_encoding(self): import tiktoken enc = tiktoken.get_encoding("gpt2") hash1 = Hasher.hash(enc) enc = tiktoken.get_encoding("r50k_base") hash2 = Hasher.hash(enc) enc = tiktoken.get_encoding("gpt2") hash3 = Hasher.hash(enc) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) @require_torch def test_hash_torch_tensor(self): import torch t = torch.tensor([1.0]) hash1 = Hasher.hash(t) t = torch.tensor([2.0]) hash2 = Hasher.hash(t) t = torch.tensor([1.0]) hash3 = Hasher.hash(t) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) @require_torch def test_hash_torch_generator(self): import torch t = torch.Generator(device="cpu").manual_seed(42) hash1 = Hasher.hash(t) t = t = torch.Generator(device="cpu").manual_seed(50) hash2 = Hasher.hash(t) t = t = torch.Generator(device="cpu").manual_seed(42) hash3 = Hasher.hash(t) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) @require_spacy @require_spacy_model("en_core_web_sm") @require_spacy_model("fr_core_news_sm") @pytest.mark.integration def test_hash_spacy_model(self): import spacy nlp = spacy.load("en_core_web_sm") hash1 = Hasher.hash(nlp) nlp = spacy.load("fr_core_news_sm") hash2 = Hasher.hash(nlp) nlp = spacy.load("en_core_web_sm") hash3 = Hasher.hash(nlp) self.assertEqual(hash1, hash3) self.assertNotEqual(hash1, hash2) @require_not_windows @require_torch def test_hash_torch_compiled_function(self): import torch def f(x): return torch.sin(x) + torch.cos(x) hash1 = Hasher.hash(f) f = torch.compile(f) hash2 = Hasher.hash(f) self.assertEqual(hash1, hash2) @require_not_windows @require_torch def test_hash_torch_compiled_module(self): m = TorchModule() next(iter(m.parameters())).data.fill_(1.0) hash1 = Hasher.hash(m) m = torch.compile(m) hash2 = Hasher.hash(m) m = TorchModule() next(iter(m.parameters())).data.fill_(2.0) m = torch.compile(m) hash3 = Hasher.hash(m) self.assertEqual(hash1, hash2) self.assertNotEqual(hash1, hash3) self.assertNotEqual(hash2, hash3) @pytest.mark.integration def test_move_script_doesnt_change_hash(tmp_path: Path): dir1 = tmp_path / "dir1" dir2 = tmp_path / "dir2" dir1.mkdir() dir2.mkdir() script_filename = "script.py" code = dedent( """ from datasets.fingerprint import Hasher def foo(): pass print(Hasher.hash(foo)) """ ) script_path1 = dir1 / script_filename script_path2 = dir2 / script_filename with script_path1.open("w") as f: f.write(code) with script_path2.open("w") as f: f.write(code) fingerprint1 = subprocess.check_output(["python", str(script_path1)]) fingerprint2 = subprocess.check_output(["python", str(script_path2)]) assert fingerprint1 == fingerprint2 def test_fingerprint_in_multiprocessing(): data = {"a": [0, 1, 2]} dataset = DatasetChild(InMemoryTable.from_pydict(data)) expected_fingerprint = dataset.func1()._fingerprint assert expected_fingerprint == dataset.func1()._fingerprint assert expected_fingerprint != dataset.func2()._fingerprint with Pool(2) as p: assert expected_fingerprint == p.apply_async(dataset.func1).get()._fingerprint assert expected_fingerprint != p.apply_async(dataset.func2).get()._fingerprint def test_fingerprint_when_transform_version_changes(): data = {"a": [0, 1, 2]} class DummyDatasetChild(datasets.Dataset): @fingerprint_transform(inplace=False) def func(self, new_fingerprint): return DummyDatasetChild(self.data, fingerprint=new_fingerprint) fingeprint_no_version = DummyDatasetChild(InMemoryTable.from_pydict(data)).func() class DummyDatasetChild(datasets.Dataset): @fingerprint_transform(inplace=False, version="1.0.0") def func(self, new_fingerprint): return DummyDatasetChild(self.data, fingerprint=new_fingerprint) fingeprint_1 = DummyDatasetChild(InMemoryTable.from_pydict(data)).func() class DummyDatasetChild(datasets.Dataset): @fingerprint_transform(inplace=False, version="2.0.0") def func(self, new_fingerprint): return DummyDatasetChild(self.data, fingerprint=new_fingerprint) fingeprint_2 = DummyDatasetChild(InMemoryTable.from_pydict(data)).func() assert len({fingeprint_no_version, fingeprint_1, fingeprint_2}) == 3 def test_dependency_on_dill(): # AttributeError: module 'dill._dill' has no attribute 'stack' hasher = Hasher() hasher.update(lambda x: x)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_distributed.py
import os import sys from pathlib import Path import pytest from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node from .utils import execute_subprocess_async, get_torch_dist_unique_port, require_torch def test_split_dataset_by_node_map_style(): full_ds = Dataset.from_dict({"i": range(17)}) full_size = len(full_ds) world_size = 3 datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(ds) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_split_dataset_by_node_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 3 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size @pytest.mark.parametrize("shards_per_node", [1, 2, 3]) def test_split_dataset_by_node_iterable_sharded(shards_per_node): def gen(shards): for shard in shards: yield from ({"i": i, "shard": shard} for i in range(17)) world_size = 3 num_shards = shards_per_node * world_size gen_kwargs = {"shards": [f"shard_{shard_idx}.txt" for shard_idx in range(num_shards)]} full_ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) full_size = len(list(full_ds)) assert full_ds.n_shards == world_size * shards_per_node datasets_per_rank = [ split_dataset_by_node(full_ds, rank=rank, world_size=world_size) for rank in range(world_size) ] assert [ds.n_shards for ds in datasets_per_rank] == [shards_per_node] * world_size assert sum(len(list(ds)) for ds in datasets_per_rank) == full_size assert len({tuple(x.values()) for ds in datasets_per_rank for x in ds}) == full_size def test_distributed_shuffle_iterable(): def gen(): return ({"i": i} for i in range(17)) world_size = 2 full_ds = IterableDataset.from_generator(gen) full_size = len(list(full_ds)) ds_rank0 = split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle(seed=42) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds, rank=0, world_size=world_size).shuffle() ds_rank0 = split_dataset_by_node(full_ds.shuffle(seed=42), rank=0, world_size=world_size) assert len(list(ds_rank0)) == 1 + full_size // world_size with pytest.raises(RuntimeError): split_dataset_by_node(full_ds.shuffle(), rank=0, world_size=world_size) @pytest.mark.parametrize("streaming", [False, True]) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_run(streaming): nproc_per_node = 2 master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "run_torch_distributed.py" distributed_args = f""" -m torch.distributed.run --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy()) @pytest.mark.parametrize( "nproc_per_node, num_workers", [ (2, 2), # each node has 2 shards and each worker has 1 shards (3, 2), # each node uses all the shards but skips examples, and each worker has 2 shards ], ) @require_torch @pytest.mark.skipif(os.name == "nt", reason="execute_subprocess_async doesn't support windows") @pytest.mark.integration def test_torch_distributed_run_streaming_with_num_workers(nproc_per_node, num_workers): streaming = True master_port = get_torch_dist_unique_port() test_script = Path(__file__).resolve().parent / "distributed_scripts" / "run_torch_distributed.py" distributed_args = f""" -m torch.distributed.run --nproc_per_node={nproc_per_node} --master_port={master_port} {test_script} """.split() args = f""" --streaming={streaming} --num_workers={num_workers} """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=os.environ.copy())
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_sharding_utils.py
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected", [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10)]), ({"num_shards": 10, "max_num_jobs": 10}, [range(i, i + 1) for i in range(10)]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1)]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0, 4), range(4, 7), range(7, 10)]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0, 1), range(1, 2), range(2, 3)]), ], ) def test_distribute_shards(kwargs, expected): out = _distribute_shards(**kwargs) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected", [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ], ) def test_split_gen_kwargs(gen_kwargs, max_num_jobs, expected): out = _split_gen_kwargs(gen_kwargs, max_num_jobs) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected", [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ], ) def test_number_of_shards_in_gen_kwargs(gen_kwargs, expected): if expected is RuntimeError: with pytest.raises(expected): _number_of_shards_in_gen_kwargs(gen_kwargs) else: out = _number_of_shards_in_gen_kwargs(gen_kwargs) assert out == expected
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_tqdm.py
import unittest from unittest.mock import patch import pytest from pytest import CaptureFixture from datasets.utils import ( are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm, ) class TestTqdmUtils(unittest.TestCase): @pytest.fixture(autouse=True) def capsys(self, capsys: CaptureFixture) -> None: """Workaround to make capsys work in unittest framework. Capsys is a convenient pytest fixture to capture stdout. See https://waylonwalker.com/pytest-capsys/. Taken from https://github.com/pytest-dev/pytest/issues/2504#issuecomment-309475790. """ self.capsys = capsys def setUp(self) -> None: """Get verbosity to set it back after the tests.""" self._previous_are_progress_bars_disabled = are_progress_bars_disabled() return super().setUp() def tearDown(self) -> None: """Set back progress bars verbosity as before testing.""" if self._previous_are_progress_bars_disabled: disable_progress_bars() else: enable_progress_bars() @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", None) def test_tqdm_helpers(self) -> None: """Test helpers to enable/disable progress bars.""" disable_progress_bars() self.assertTrue(are_progress_bars_disabled()) enable_progress_bars() self.assertFalse(are_progress_bars_disabled()) @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", True) def test_cannot_enable_tqdm_when_env_variable_is_set(self) -> None: """ Test helpers cannot enable/disable progress bars when `HF_DATASETS_DISABLE_PROGRESS_BARS` is set. """ disable_progress_bars() self.assertTrue(are_progress_bars_disabled()) with self.assertWarns(UserWarning): enable_progress_bars() self.assertTrue(are_progress_bars_disabled()) # Still disabled ! @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", False) def test_cannot_disable_tqdm_when_env_variable_is_set(self) -> None: """ Test helpers cannot enable/disable progress bars when `HF_DATASETS_DISABLE_PROGRESS_BARS` is set. """ enable_progress_bars() self.assertFalse(are_progress_bars_disabled()) with self.assertWarns(UserWarning): disable_progress_bars() self.assertFalse(are_progress_bars_disabled()) # Still enabled ! @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", None) def test_tqdm_disabled(self) -> None: """Test TQDM not outputting anything when globally disabled.""" disable_progress_bars() for _ in tqdm(range(10)): pass captured = self.capsys.readouterr() self.assertEqual(captured.out, "") self.assertEqual(captured.err, "") @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", None) def test_tqdm_disabled_cannot_be_forced(self) -> None: """Test TQDM cannot be forced when globally disabled.""" disable_progress_bars() for _ in tqdm(range(10), disable=False): pass captured = self.capsys.readouterr() self.assertEqual(captured.out, "") self.assertEqual(captured.err, "") @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", None) def test_tqdm_can_be_disabled_when_globally_enabled(self) -> None: """Test TQDM can still be locally disabled even when globally enabled.""" enable_progress_bars() for _ in tqdm(range(10), disable=True): pass captured = self.capsys.readouterr() self.assertEqual(captured.out, "") self.assertEqual(captured.err, "") @patch("datasets.utils._tqdm.HF_DATASETS_DISABLE_PROGRESS_BARS", None) def test_tqdm_enabled(self) -> None: """Test TQDM work normally when globally enabled.""" enable_progress_bars() for _ in tqdm(range(10)): pass captured = self.capsys.readouterr() self.assertEqual(captured.out, "") self.assertIn("10/10", captured.err) # tqdm log
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_metric.py
import os import pickle import tempfile import time from multiprocessing import Pool from unittest import TestCase import pytest from datasets.features import Features, Sequence, Value from datasets.metric import Metric, MetricInfo from .utils import require_tf, require_torch class DummyMetric(Metric): def _info(self): return MetricInfo( description="dummy metric for tests", citation="insert citation here", features=Features({"predictions": Value("int64"), "references": Value("int64")}), ) def _compute(self, predictions, references): return ( { "accuracy": sum(i == j for i, j in zip(predictions, references)) / len(predictions), "set_equality": set(predictions) == set(references), } if predictions else {} ) @classmethod def predictions_and_references(cls): return ([1, 2, 3, 4], [1, 2, 4, 3]) @classmethod def expected_results(cls): return {"accuracy": 0.5, "set_equality": True} @classmethod def other_predictions_and_references(cls): return ([1, 3, 4, 5], [1, 2, 3, 4]) @classmethod def other_expected_results(cls): return {"accuracy": 0.25, "set_equality": False} @classmethod def distributed_predictions_and_references(cls): return ([1, 2, 3, 4], [1, 2, 3, 4]), ([1, 2, 4, 5], [1, 2, 3, 4]) @classmethod def distributed_expected_results(cls): return {"accuracy": 0.75, "set_equality": False} @classmethod def separate_predictions_and_references(cls): return ([1, 2, 3, 4], [1, 2, 3, 4]), ([1, 2, 4, 5], [1, 2, 3, 4]) @classmethod def separate_expected_results(cls): return [{"accuracy": 1.0, "set_equality": True}, {"accuracy": 0.5, "set_equality": False}] def properly_del_metric(metric): """properly delete a metric on windows if the process is killed during multiprocessing""" if metric is not None: if metric.filelock is not None: metric.filelock.release() if metric.rendez_vous_lock is not None: metric.rendez_vous_lock.release() del metric.writer del metric.data del metric def metric_compute(arg): """Thread worker function for distributed evaluation testing. On base level to be pickable. """ metric = None try: num_process, process_id, preds, refs, exp_id, cache_dir, wait = arg metric = DummyMetric( num_process=num_process, process_id=process_id, experiment_id=exp_id, cache_dir=cache_dir, timeout=5 ) time.sleep(wait) results = metric.compute(predictions=preds, references=refs) return results finally: properly_del_metric(metric) def metric_add_batch_and_compute(arg): """Thread worker function for distributed evaluation testing. On base level to be pickable. """ metric = None try: num_process, process_id, preds, refs, exp_id, cache_dir, wait = arg metric = DummyMetric( num_process=num_process, process_id=process_id, experiment_id=exp_id, cache_dir=cache_dir, timeout=5 ) metric.add_batch(predictions=preds, references=refs) time.sleep(wait) results = metric.compute() return results finally: properly_del_metric(metric) def metric_add_and_compute(arg): """Thread worker function for distributed evaluation testing. On base level to be pickable. """ metric = None try: num_process, process_id, preds, refs, exp_id, cache_dir, wait = arg metric = DummyMetric( num_process=num_process, process_id=process_id, experiment_id=exp_id, cache_dir=cache_dir, timeout=5 ) for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) time.sleep(wait) results = metric.compute() return results finally: properly_del_metric(metric) @pytest.mark.filterwarnings("ignore:Metric is deprecated:FutureWarning") class TestMetric(TestCase): def test_dummy_metric(self): preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() metric = DummyMetric(experiment_id="test_dummy_metric") self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric metric = DummyMetric(experiment_id="test_dummy_metric") metric.add_batch(predictions=preds, references=refs) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(experiment_id="test_dummy_metric") for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) self.assertDictEqual(expected_results, metric.compute()) del metric # With keep_in_memory metric = DummyMetric(keep_in_memory=True, experiment_id="test_dummy_metric") self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric metric = DummyMetric(keep_in_memory=True, experiment_id="test_dummy_metric") metric.add_batch(predictions=preds, references=refs) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(keep_in_memory=True, experiment_id="test_dummy_metric") for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(keep_in_memory=True, experiment_id="test_dummy_metric") self.assertDictEqual({}, metric.compute(predictions=[], references=[])) del metric metric = DummyMetric(keep_in_memory=True, experiment_id="test_dummy_metric") with self.assertRaisesRegex(ValueError, "Mismatch in the number"): metric.add_batch(predictions=[1, 2, 3], references=[1, 2, 3, 4]) del metric def test_metric_with_cache_dir(self): preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() with tempfile.TemporaryDirectory() as tmp_dir: metric = DummyMetric(experiment_id="test_dummy_metric", cache_dir=tmp_dir) self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric def test_concurrent_metrics(self): preds, refs = DummyMetric.predictions_and_references() other_preds, other_refs = DummyMetric.other_predictions_and_references() expected_results = DummyMetric.expected_results() other_expected_results = DummyMetric.other_expected_results() metric = DummyMetric(experiment_id="test_concurrent_metrics") other_metric = DummyMetric( experiment_id="test_concurrent_metrics", ) self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) self.assertDictEqual( other_expected_results, other_metric.compute(predictions=other_preds, references=other_refs) ) del metric, other_metric metric = DummyMetric( experiment_id="test_concurrent_metrics", ) other_metric = DummyMetric( experiment_id="test_concurrent_metrics", ) metric.add_batch(predictions=preds, references=refs) other_metric.add_batch(predictions=other_preds, references=other_refs) self.assertDictEqual(expected_results, metric.compute()) self.assertDictEqual(other_expected_results, other_metric.compute()) for pred, ref, other_pred, other_ref in zip(preds, refs, other_preds, other_refs): metric.add(prediction=pred, reference=ref) other_metric.add(prediction=other_pred, reference=other_ref) self.assertDictEqual(expected_results, metric.compute()) self.assertDictEqual(other_expected_results, other_metric.compute()) del metric, other_metric # With keep_in_memory metric = DummyMetric(experiment_id="test_concurrent_metrics", keep_in_memory=True) other_metric = DummyMetric(experiment_id="test_concurrent_metrics", keep_in_memory=True) self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) self.assertDictEqual( other_expected_results, other_metric.compute(predictions=other_preds, references=other_refs) ) metric = DummyMetric(experiment_id="test_concurrent_metrics", keep_in_memory=True) other_metric = DummyMetric(experiment_id="test_concurrent_metrics", keep_in_memory=True) metric.add_batch(predictions=preds, references=refs) other_metric.add_batch(predictions=other_preds, references=other_refs) self.assertDictEqual(expected_results, metric.compute()) self.assertDictEqual(other_expected_results, other_metric.compute()) for pred, ref, other_pred, other_ref in zip(preds, refs, other_preds, other_refs): metric.add(prediction=pred, reference=ref) other_metric.add(prediction=other_pred, reference=other_ref) self.assertDictEqual(expected_results, metric.compute()) self.assertDictEqual(other_expected_results, other_metric.compute()) del metric, other_metric def test_separate_experiments_in_parallel(self): with tempfile.TemporaryDirectory() as tmp_dir: (preds_0, refs_0), (preds_1, refs_1) = DummyMetric.separate_predictions_and_references() expected_results = DummyMetric.separate_expected_results() pool = Pool(processes=4) results = pool.map( metric_compute, [ (1, 0, preds_0, refs_0, None, tmp_dir, 0), (1, 0, preds_1, refs_1, None, tmp_dir, 0), ], ) self.assertDictEqual(expected_results[0], results[0]) self.assertDictEqual(expected_results[1], results[1]) del results # more than one sec of waiting so that the second metric has to sample a new hashing name results = pool.map( metric_compute, [ (1, 0, preds_0, refs_0, None, tmp_dir, 2), (1, 0, preds_1, refs_1, None, tmp_dir, 2), ], ) self.assertDictEqual(expected_results[0], results[0]) self.assertDictEqual(expected_results[1], results[1]) del results results = pool.map( metric_add_and_compute, [ (1, 0, preds_0, refs_0, None, tmp_dir, 0), (1, 0, preds_1, refs_1, None, tmp_dir, 0), ], ) self.assertDictEqual(expected_results[0], results[0]) self.assertDictEqual(expected_results[1], results[1]) del results results = pool.map( metric_add_batch_and_compute, [ (1, 0, preds_0, refs_0, None, tmp_dir, 0), (1, 0, preds_1, refs_1, None, tmp_dir, 0), ], ) self.assertDictEqual(expected_results[0], results[0]) self.assertDictEqual(expected_results[1], results[1]) del results def test_distributed_metrics(self): with tempfile.TemporaryDirectory() as tmp_dir: (preds_0, refs_0), (preds_1, refs_1) = DummyMetric.distributed_predictions_and_references() expected_results = DummyMetric.distributed_expected_results() pool = Pool(processes=4) results = pool.map( metric_compute, [ (2, 0, preds_0, refs_0, "test_distributed_metrics_0", tmp_dir, 0), (2, 1, preds_1, refs_1, "test_distributed_metrics_0", tmp_dir, 0.5), ], ) self.assertDictEqual(expected_results, results[0]) self.assertIsNone(results[1]) del results results = pool.map( metric_compute, [ (2, 0, preds_0, refs_0, "test_distributed_metrics_0", tmp_dir, 0.5), (2, 1, preds_1, refs_1, "test_distributed_metrics_0", tmp_dir, 0), ], ) self.assertDictEqual(expected_results, results[0]) self.assertIsNone(results[1]) del results results = pool.map( metric_add_and_compute, [ (2, 0, preds_0, refs_0, "test_distributed_metrics_1", tmp_dir, 0), (2, 1, preds_1, refs_1, "test_distributed_metrics_1", tmp_dir, 0), ], ) self.assertDictEqual(expected_results, results[0]) self.assertIsNone(results[1]) del results results = pool.map( metric_add_batch_and_compute, [ (2, 0, preds_0, refs_0, "test_distributed_metrics_2", tmp_dir, 0), (2, 1, preds_1, refs_1, "test_distributed_metrics_2", tmp_dir, 0), ], ) self.assertDictEqual(expected_results, results[0]) self.assertIsNone(results[1]) del results # To use several distributed metrics on the same local file system, need to specify an experiment_id try: results = pool.map( metric_add_and_compute, [ (2, 0, preds_0, refs_0, "test_distributed_metrics_3", tmp_dir, 0), (2, 1, preds_1, refs_1, "test_distributed_metrics_3", tmp_dir, 0), (2, 0, preds_0, refs_0, "test_distributed_metrics_3", tmp_dir, 0), (2, 1, preds_1, refs_1, "test_distributed_metrics_3", tmp_dir, 0), ], ) except ValueError: # We are fine with either raising a ValueError or computing well the metric # Being sure we raise the error would means making the dummy dataset bigger # and the test longer... pass else: self.assertDictEqual(expected_results, results[0]) self.assertDictEqual(expected_results, results[2]) self.assertIsNone(results[1]) self.assertIsNone(results[3]) del results results = pool.map( metric_add_and_compute, [ (2, 0, preds_0, refs_0, "exp_0", tmp_dir, 0), (2, 1, preds_1, refs_1, "exp_0", tmp_dir, 0), (2, 0, preds_0, refs_0, "exp_1", tmp_dir, 0), (2, 1, preds_1, refs_1, "exp_1", tmp_dir, 0), ], ) self.assertDictEqual(expected_results, results[0]) self.assertDictEqual(expected_results, results[2]) self.assertIsNone(results[1]) self.assertIsNone(results[3]) del results # With keep_in_memory is not allowed with self.assertRaises(ValueError): DummyMetric( experiment_id="test_distributed_metrics_4", keep_in_memory=True, num_process=2, process_id=0, cache_dir=tmp_dir, ) def test_dummy_metric_pickle(self): with tempfile.TemporaryDirectory() as tmp_dir: tmp_file = os.path.join(tmp_dir, "metric.pt") preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() metric = DummyMetric(experiment_id="test_dummy_metric_pickle") with open(tmp_file, "wb") as f: pickle.dump(metric, f) del metric with open(tmp_file, "rb") as f: metric = pickle.load(f) self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric def test_input_numpy(self): import numpy as np preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() preds, refs = np.array(preds), np.array(refs) metric = DummyMetric(experiment_id="test_input_numpy") self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric metric = DummyMetric(experiment_id="test_input_numpy") metric.add_batch(predictions=preds, references=refs) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(experiment_id="test_input_numpy") for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) self.assertDictEqual(expected_results, metric.compute()) del metric @require_torch def test_input_torch(self): import torch preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() preds, refs = torch.tensor(preds), torch.tensor(refs) metric = DummyMetric(experiment_id="test_input_torch") self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric metric = DummyMetric(experiment_id="test_input_torch") metric.add_batch(predictions=preds, references=refs) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(experiment_id="test_input_torch") for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) self.assertDictEqual(expected_results, metric.compute()) del metric @require_tf def test_input_tf(self): import tensorflow as tf preds, refs = DummyMetric.predictions_and_references() expected_results = DummyMetric.expected_results() preds, refs = tf.constant(preds), tf.constant(refs) metric = DummyMetric(experiment_id="test_input_tf") self.assertDictEqual(expected_results, metric.compute(predictions=preds, references=refs)) del metric metric = DummyMetric(experiment_id="test_input_tf") metric.add_batch(predictions=preds, references=refs) self.assertDictEqual(expected_results, metric.compute()) del metric metric = DummyMetric(experiment_id="test_input_tf") for pred, ref in zip(preds, refs): metric.add(prediction=pred, reference=ref) self.assertDictEqual(expected_results, metric.compute()) del metric class MetricWithMultiLabel(Metric): def _info(self): return MetricInfo( description="dummy metric for tests", citation="insert citation here", features=Features( {"predictions": Sequence(Value("int64")), "references": Sequence(Value("int64"))} if self.config_name == "multilabel" else {"predictions": Value("int64"), "references": Value("int64")} ), ) def _compute(self, predictions=None, references=None): return ( { "accuracy": sum(i == j for i, j in zip(predictions, references)) / len(predictions), } if predictions else {} ) @pytest.mark.parametrize( "config_name, predictions, references, expected", [ (None, [1, 2, 3, 4], [1, 2, 4, 3], 0.5), # Multiclass: Value("int64") ( "multilabel", [[1, 0], [1, 0], [1, 0], [1, 0]], [[1, 0], [0, 1], [1, 1], [0, 0]], 0.25, ), # Multilabel: Sequence(Value("int64")) ], ) def test_metric_with_multilabel(config_name, predictions, references, expected, tmp_path): cache_dir = tmp_path / "cache" metric = MetricWithMultiLabel(config_name, cache_dir=cache_dir) results = metric.compute(predictions=predictions, references=references) assert results["accuracy"] == expected def test_safety_checks_process_vars(): with pytest.raises(ValueError): _ = DummyMetric(process_id=-2) with pytest.raises(ValueError): _ = DummyMetric(num_process=2, process_id=3) class AccuracyWithNonStandardFeatureNames(Metric): def _info(self): return MetricInfo( description="dummy metric for tests", citation="insert citation here", features=Features({"inputs": Value("int64"), "targets": Value("int64")}), ) def _compute(self, inputs, targets): return ( { "accuracy": sum(i == j for i, j in zip(inputs, targets)) / len(targets), } if targets else {} ) @classmethod def inputs_and_targets(cls): return ([1, 2, 3, 4], [1, 2, 4, 3]) @classmethod def expected_results(cls): return {"accuracy": 0.5} def test_metric_with_non_standard_feature_names_add(tmp_path): cache_dir = tmp_path / "cache" inputs, targets = AccuracyWithNonStandardFeatureNames.inputs_and_targets() metric = AccuracyWithNonStandardFeatureNames(cache_dir=cache_dir) for input, target in zip(inputs, targets): metric.add(inputs=input, targets=target) results = metric.compute() assert results == AccuracyWithNonStandardFeatureNames.expected_results() def test_metric_with_non_standard_feature_names_add_batch(tmp_path): cache_dir = tmp_path / "cache" inputs, targets = AccuracyWithNonStandardFeatureNames.inputs_and_targets() metric = AccuracyWithNonStandardFeatureNames(cache_dir=cache_dir) metric.add_batch(inputs=inputs, targets=targets) results = metric.compute() assert results == AccuracyWithNonStandardFeatureNames.expected_results() def test_metric_with_non_standard_feature_names_compute(tmp_path): cache_dir = tmp_path / "cache" inputs, targets = AccuracyWithNonStandardFeatureNames.inputs_and_targets() metric = AccuracyWithNonStandardFeatureNames(cache_dir=cache_dir) results = metric.compute(inputs=inputs, targets=targets) assert results == AccuracyWithNonStandardFeatureNames.expected_results()
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_search.py
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss pytestmark = pytest.mark.integration @require_faiss class IndexableDatasetTest(TestCase): def _create_dummy_dataset(self): dset = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(x) for x in np.arange(30).tolist()]}) return dset def test_add_faiss_index(self): import faiss dset: Dataset = self._create_dummy_dataset() dset = dset.map( lambda ex, i: {"vecs": i * np.ones(5, dtype=np.float32)}, with_indices=True, keep_in_memory=True ) dset = dset.add_faiss_index("vecs", batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT) scores, examples = dset.get_nearest_examples("vecs", np.ones(5, dtype=np.float32)) self.assertEqual(examples["filename"][0], "my_name-train_29") dset.drop_index("vecs") def test_add_faiss_index_from_external_arrays(self): import faiss dset: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1, 1), index_name="vecs", batch_size=100, metric_type=faiss.METRIC_INNER_PRODUCT, ) scores, examples = dset.get_nearest_examples("vecs", np.ones(5, dtype=np.float32)) self.assertEqual(examples["filename"][0], "my_name-train_29") def test_serialization(self): import faiss dset: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1, 1), index_name="vecs", metric_type=faiss.METRIC_INNER_PRODUCT, ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=False) as tmp_file: dset.save_faiss_index("vecs", tmp_file.name) dset.load_faiss_index("vecs2", tmp_file.name) os.unlink(tmp_file.name) scores, examples = dset.get_nearest_examples("vecs2", np.ones(5, dtype=np.float32)) self.assertEqual(examples["filename"][0], "my_name-train_29") def test_drop_index(self): dset: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1, 1), index_name="vecs" ) dset.drop_index("vecs") self.assertRaises(MissingIndex, partial(dset.get_nearest_examples, "vecs2", np.ones(5, dtype=np.float32))) def test_add_elasticsearch_index(self): from elasticsearch import Elasticsearch dset: Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search") as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk") as mocked_bulk: mocked_index_create.return_value = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30) mocked_search.return_value = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} es_client = Elasticsearch() dset.add_elasticsearch_index("filename", es_client=es_client) scores, examples = dset.get_nearest_examples("filename", "my_name-train_29") self.assertEqual(examples["filename"][0], "my_name-train_29") @require_faiss class FaissIndexTest(TestCase): def test_flat_ip(self): import faiss index = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5, dtype=np.float32)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal, 5) index.add_vectors(np.zeros((5, 5), dtype=np.float32)) self.assertEqual(index.faiss_index.ntotal, 10) # single query query = np.zeros(5, dtype=np.float32) query[1] = 1 scores, indices = index.search(query) self.assertRaises(ValueError, index.search, query.reshape(-1, 1)) self.assertGreater(scores[0], 0) self.assertEqual(indices[0], 1) # batched queries queries = np.eye(5, dtype=np.float32)[::-1] total_scores, total_indices = index.search_batch(queries) self.assertRaises(ValueError, index.search_batch, queries[0]) best_scores = [scores[0] for scores in total_scores] best_indices = [indices[0] for indices in total_indices] self.assertGreater(np.min(best_scores), 0) self.assertListEqual([4, 3, 2, 1, 0], best_indices) def test_factory(self): import faiss index = FaissIndex(string_factory="Flat") index.add_vectors(np.eye(5, dtype=np.float32)) self.assertIsInstance(index.faiss_index, faiss.IndexFlat) index = FaissIndex(string_factory="LSH") index.add_vectors(np.eye(5, dtype=np.float32)) self.assertIsInstance(index.faiss_index, faiss.IndexLSH) with self.assertRaises(ValueError): _ = FaissIndex(string_factory="Flat", custom_index=faiss.IndexFlat(5)) def test_custom(self): import faiss custom_index = faiss.IndexFlat(5) index = FaissIndex(custom_index=custom_index) index.add_vectors(np.eye(5, dtype=np.float32)) self.assertIsInstance(index.faiss_index, faiss.IndexFlat) def test_serialization(self): import faiss index = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5, dtype=np.float32)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=False) as tmp_file: index.save(tmp_file.name) index = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) query = np.zeros(5, dtype=np.float32) query[1] = 1 scores, indices = index.search(query) self.assertGreater(scores[0], 0) self.assertEqual(indices[0], 1) @require_faiss def test_serialization_fs(mockfs): import faiss index = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5, dtype=np.float32)) index_name = "index.faiss" path = f"mock://{index_name}" index.save(path, storage_options=mockfs.storage_options) index = FaissIndex.load(path, storage_options=mockfs.storage_options) query = np.zeros(5, dtype=np.float32) query[1] = 1 scores, indices = index.search(query) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class ElasticSearchIndexTest(TestCase): def test_elasticsearch(self): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search") as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk") as mocked_bulk: es_client = Elasticsearch() mocked_index_create.return_value = {"acknowledged": True} index = ElasticSearchIndex(es_client=es_client) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(["foo", "bar", "foobar"]) # single query query = "foo" mocked_search.return_value = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} scores, indices = index.search(query) self.assertEqual(scores[0], 1) self.assertEqual(indices[0], 0) # single query with timeout query = "foo" mocked_search.return_value = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} scores, indices = index.search(query, request_timeout=30) self.assertEqual(scores[0], 1) self.assertEqual(indices[0], 0) # batched queries queries = ["foo", "bar", "foobar"] mocked_search.return_value = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} total_scores, total_indices = index.search_batch(queries) best_scores = [scores[0] for scores in total_scores] best_indices = [indices[0] for indices in total_indices] self.assertGreater(np.min(best_scores), 0) self.assertListEqual([1, 1, 1], best_indices) # batched queries with timeout queries = ["foo", "bar", "foobar"] mocked_search.return_value = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} total_scores, total_indices = index.search_batch(queries, request_timeout=30) best_scores = [scores[0] for scores in total_scores] best_indices = [indices[0] for indices in total_indices] self.assertGreater(np.min(best_scores), 0) self.assertListEqual([1, 1, 1], best_indices)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_formatting.py
import datetime from pathlib import Path from unittest import TestCase import numpy as np import pandas as pd import pyarrow as pa import pytest from datasets import Audio, Features, Image, IterableDataset from datasets.formatting import NumpyFormatter, PandasFormatter, PythonFormatter, query_table from datasets.formatting.formatting import ( LazyBatch, LazyRow, NumpyArrowExtractor, PandasArrowExtractor, PythonArrowExtractor, ) from datasets.table import InMemoryTable from .utils import require_jax, require_pil, require_sndfile, require_tf, require_torch class AnyArray: def __init__(self, data) -> None: self.data = data def __array__(self) -> np.ndarray: return np.asarray(self.data) def _gen_any_arrays(): for _ in range(10): yield {"array": AnyArray(list(range(10)))} @pytest.fixture def any_arrays_dataset(): return IterableDataset.from_generator(_gen_any_arrays) _COL_A = [0, 1, 2] _COL_B = ["foo", "bar", "foobar"] _COL_C = [[[1.0, 0.0, 0.0]] * 2, [[0.0, 1.0, 0.0]] * 2, [[0.0, 0.0, 1.0]] * 2] _COL_D = [datetime.datetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)] * 3 _INDICES = [1, 0] IMAGE_PATH_1 = Path(__file__).parent / "features" / "data" / "test_image_rgb.jpg" IMAGE_PATH_2 = Path(__file__).parent / "features" / "data" / "test_image_rgba.png" AUDIO_PATH_1 = Path(__file__).parent / "features" / "data" / "test_audio_44100.wav" class ArrowExtractorTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C, "d": _COL_D}) def test_python_extractor(self): pa_table = self._create_dummy_table() extractor = PythonArrowExtractor() row = extractor.extract_row(pa_table) self.assertEqual(row, {"a": _COL_A[0], "b": _COL_B[0], "c": _COL_C[0], "d": _COL_D[0]}) col = extractor.extract_column(pa_table) self.assertEqual(col, _COL_A) batch = extractor.extract_batch(pa_table) self.assertEqual(batch, {"a": _COL_A, "b": _COL_B, "c": _COL_C, "d": _COL_D}) def test_numpy_extractor(self): pa_table = self._create_dummy_table().drop(["c", "d"]) extractor = NumpyArrowExtractor() row = extractor.extract_row(pa_table) np.testing.assert_equal(row, {"a": _COL_A[0], "b": _COL_B[0]}) col = extractor.extract_column(pa_table) np.testing.assert_equal(col, np.array(_COL_A)) batch = extractor.extract_batch(pa_table) np.testing.assert_equal(batch, {"a": np.array(_COL_A), "b": np.array(_COL_B)}) def test_numpy_extractor_nested(self): pa_table = self._create_dummy_table().drop(["a", "b", "d"]) extractor = NumpyArrowExtractor() row = extractor.extract_row(pa_table) self.assertEqual(row["c"][0].dtype, np.float64) self.assertEqual(row["c"].dtype, object) col = extractor.extract_column(pa_table) self.assertEqual(col[0][0].dtype, np.float64) self.assertEqual(col[0].dtype, object) self.assertEqual(col.dtype, object) batch = extractor.extract_batch(pa_table) self.assertEqual(batch["c"][0][0].dtype, np.float64) self.assertEqual(batch["c"][0].dtype, object) self.assertEqual(batch["c"].dtype, object) def test_numpy_extractor_temporal(self): pa_table = self._create_dummy_table().drop(["a", "b", "c"]) extractor = NumpyArrowExtractor() row = extractor.extract_row(pa_table) self.assertTrue(np.issubdtype(row["d"].dtype, np.datetime64)) col = extractor.extract_column(pa_table) self.assertTrue(np.issubdtype(col[0].dtype, np.datetime64)) self.assertTrue(np.issubdtype(col.dtype, np.datetime64)) batch = extractor.extract_batch(pa_table) self.assertTrue(np.issubdtype(batch["d"][0].dtype, np.datetime64)) self.assertTrue(np.issubdtype(batch["d"].dtype, np.datetime64)) def test_pandas_extractor(self): pa_table = self._create_dummy_table() extractor = PandasArrowExtractor() row = extractor.extract_row(pa_table) self.assertIsInstance(row, pd.DataFrame) pd.testing.assert_series_equal(row["a"], pd.Series(_COL_A, name="a")[:1]) pd.testing.assert_series_equal(row["b"], pd.Series(_COL_B, name="b")[:1]) col = extractor.extract_column(pa_table) pd.testing.assert_series_equal(col, pd.Series(_COL_A, name="a")) batch = extractor.extract_batch(pa_table) self.assertIsInstance(batch, pd.DataFrame) pd.testing.assert_series_equal(batch["a"], pd.Series(_COL_A, name="a")) pd.testing.assert_series_equal(batch["b"], pd.Series(_COL_B, name="b")) def test_pandas_extractor_nested(self): pa_table = self._create_dummy_table().drop(["a", "b", "d"]) extractor = PandasArrowExtractor() row = extractor.extract_row(pa_table) self.assertEqual(row["c"][0][0].dtype, np.float64) self.assertEqual(row["c"].dtype, object) col = extractor.extract_column(pa_table) self.assertEqual(col[0][0].dtype, np.float64) self.assertEqual(col[0].dtype, object) self.assertEqual(col.dtype, object) batch = extractor.extract_batch(pa_table) self.assertEqual(batch["c"][0][0].dtype, np.float64) self.assertEqual(batch["c"][0].dtype, object) self.assertEqual(batch["c"].dtype, object) def test_pandas_extractor_temporal(self): pa_table = self._create_dummy_table().drop(["a", "b", "c"]) extractor = PandasArrowExtractor() row = extractor.extract_row(pa_table) self.assertTrue(pd.api.types.is_datetime64_any_dtype(row["d"].dtype)) col = extractor.extract_column(pa_table) self.assertTrue(isinstance(col[0], datetime.datetime)) self.assertTrue(pd.api.types.is_datetime64_any_dtype(col.dtype)) batch = extractor.extract_batch(pa_table) self.assertTrue(isinstance(batch["d"][0], datetime.datetime)) self.assertTrue(pd.api.types.is_datetime64_any_dtype(batch["d"].dtype)) class LazyDictTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C}) def _create_dummy_formatter(self): return PythonFormatter(lazy=True) def test_lazy_dict_copy(self): pa_table = self._create_dummy_table() formatter = self._create_dummy_formatter() lazy_batch = formatter.format_batch(pa_table) lazy_batch_copy = lazy_batch.copy() self.assertEqual(type(lazy_batch), type(lazy_batch_copy)) self.assertEqual(lazy_batch.items(), lazy_batch_copy.items()) lazy_batch["d"] = [1, 2, 3] self.assertNotEqual(lazy_batch.items(), lazy_batch_copy.items()) class FormatterTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_python_formatter(self): pa_table = self._create_dummy_table() formatter = PythonFormatter() row = formatter.format_row(pa_table) self.assertEqual(row, {"a": _COL_A[0], "b": _COL_B[0], "c": _COL_C[0]}) col = formatter.format_column(pa_table) self.assertEqual(col, _COL_A) batch = formatter.format_batch(pa_table) self.assertEqual(batch, {"a": _COL_A, "b": _COL_B, "c": _COL_C}) def test_python_formatter_lazy(self): pa_table = self._create_dummy_table() formatter = PythonFormatter(lazy=True) row = formatter.format_row(pa_table) self.assertIsInstance(row, LazyRow) self.assertEqual(row["a"], _COL_A[0]) self.assertEqual(row["b"], _COL_B[0]) self.assertEqual(row["c"], _COL_C[0]) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch, LazyBatch) self.assertEqual(batch["a"], _COL_A) self.assertEqual(batch["b"], _COL_B) self.assertEqual(batch["c"], _COL_C) def test_numpy_formatter(self): pa_table = self._create_dummy_table() formatter = NumpyFormatter() row = formatter.format_row(pa_table) np.testing.assert_equal(row, {"a": _COL_A[0], "b": _COL_B[0], "c": np.array(_COL_C[0])}) col = formatter.format_column(pa_table) np.testing.assert_equal(col, np.array(_COL_A)) batch = formatter.format_batch(pa_table) np.testing.assert_equal(batch, {"a": np.array(_COL_A), "b": np.array(_COL_B), "c": np.array(_COL_C)}) assert batch["c"].shape == np.array(_COL_C).shape def test_numpy_formatter_np_array_kwargs(self): pa_table = self._create_dummy_table().drop(["b"]) formatter = NumpyFormatter(dtype=np.float16) row = formatter.format_row(pa_table) self.assertEqual(row["c"].dtype, np.dtype(np.float16)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, np.float16) batch = formatter.format_batch(pa_table) self.assertEqual(batch["a"].dtype, np.dtype(np.float16)) self.assertEqual(batch["c"].dtype, np.dtype(np.float16)) @require_pil def test_numpy_formatter_image(self): # same dimensions pa_table = pa.table({"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}] * 2}) formatter = NumpyFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, np.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, np.uint8) self.assertEqual(col.shape, (2, 480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertEqual(batch["image"].dtype, np.uint8) self.assertEqual(batch["image"].shape, (2, 480, 640, 3)) # different dimensions pa_table = pa.table( {"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}, {"bytes": None, "path": str(IMAGE_PATH_2)}]} ) formatter = NumpyFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, np.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertIsInstance(col, np.ndarray) self.assertEqual(col.dtype, object) self.assertEqual(col[0].dtype, np.uint8) self.assertEqual(col[0].shape, (480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch["image"], np.ndarray) self.assertEqual(batch["image"].dtype, object) self.assertEqual(batch["image"][0].dtype, np.uint8) self.assertEqual(batch["image"][0].shape, (480, 640, 3)) @require_sndfile def test_numpy_formatter_audio(self): pa_table = pa.table({"audio": [{"bytes": None, "path": str(AUDIO_PATH_1)}]}) formatter = NumpyFormatter(features=Features({"audio": Audio()})) row = formatter.format_row(pa_table) self.assertEqual(row["audio"]["array"].dtype, np.dtype(np.float32)) col = formatter.format_column(pa_table) self.assertEqual(col[0]["array"].dtype, np.float32) batch = formatter.format_batch(pa_table) self.assertEqual(batch["audio"][0]["array"].dtype, np.dtype(np.float32)) def test_pandas_formatter(self): pa_table = self._create_dummy_table() formatter = PandasFormatter() row = formatter.format_row(pa_table) self.assertIsInstance(row, pd.DataFrame) pd.testing.assert_series_equal(row["a"], pd.Series(_COL_A, name="a")[:1]) pd.testing.assert_series_equal(row["b"], pd.Series(_COL_B, name="b")[:1]) col = formatter.format_column(pa_table) pd.testing.assert_series_equal(col, pd.Series(_COL_A, name="a")) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch, pd.DataFrame) pd.testing.assert_series_equal(batch["a"], pd.Series(_COL_A, name="a")) pd.testing.assert_series_equal(batch["b"], pd.Series(_COL_B, name="b")) @require_torch def test_torch_formatter(self): import torch from datasets.formatting import TorchFormatter pa_table = self._create_dummy_table() formatter = TorchFormatter() row = formatter.format_row(pa_table) torch.testing.assert_close(row["a"], torch.tensor(_COL_A, dtype=torch.int64)[0]) assert row["b"] == _COL_B[0] torch.testing.assert_close(row["c"], torch.tensor(_COL_C, dtype=torch.float32)[0]) col = formatter.format_column(pa_table) torch.testing.assert_close(col, torch.tensor(_COL_A, dtype=torch.int64)) batch = formatter.format_batch(pa_table) torch.testing.assert_close(batch["a"], torch.tensor(_COL_A, dtype=torch.int64)) assert batch["b"] == _COL_B torch.testing.assert_close(batch["c"], torch.tensor(_COL_C, dtype=torch.float32)) assert batch["c"].shape == np.array(_COL_C).shape @require_torch def test_torch_formatter_torch_tensor_kwargs(self): import torch from datasets.formatting import TorchFormatter pa_table = self._create_dummy_table().drop(["b"]) formatter = TorchFormatter(dtype=torch.float16) row = formatter.format_row(pa_table) self.assertEqual(row["c"].dtype, torch.float16) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, torch.float16) batch = formatter.format_batch(pa_table) self.assertEqual(batch["a"].dtype, torch.float16) self.assertEqual(batch["c"].dtype, torch.float16) @require_torch @require_pil def test_torch_formatter_image(self): import torch from datasets.formatting import TorchFormatter # same dimensions pa_table = pa.table({"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}] * 2}) formatter = TorchFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, torch.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, torch.uint8) self.assertEqual(col.shape, (2, 480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertEqual(batch["image"].dtype, torch.uint8) self.assertEqual(batch["image"].shape, (2, 480, 640, 3)) # different dimensions pa_table = pa.table( {"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}, {"bytes": None, "path": str(IMAGE_PATH_2)}]} ) formatter = TorchFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, torch.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertIsInstance(col, list) self.assertEqual(col[0].dtype, torch.uint8) self.assertEqual(col[0].shape, (480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch["image"], list) self.assertEqual(batch["image"][0].dtype, torch.uint8) self.assertEqual(batch["image"][0].shape, (480, 640, 3)) @require_torch @require_sndfile def test_torch_formatter_audio(self): import torch from datasets.formatting import TorchFormatter pa_table = pa.table({"audio": [{"bytes": None, "path": str(AUDIO_PATH_1)}]}) formatter = TorchFormatter(features=Features({"audio": Audio()})) row = formatter.format_row(pa_table) self.assertEqual(row["audio"]["array"].dtype, torch.float32) col = formatter.format_column(pa_table) self.assertEqual(col[0]["array"].dtype, torch.float32) batch = formatter.format_batch(pa_table) self.assertEqual(batch["audio"][0]["array"].dtype, torch.float32) @require_tf def test_tf_formatter(self): import tensorflow as tf from datasets.formatting import TFFormatter pa_table = self._create_dummy_table() formatter = TFFormatter() row = formatter.format_row(pa_table) tf.debugging.assert_equal(row["a"], tf.convert_to_tensor(_COL_A, dtype=tf.int64)[0]) tf.debugging.assert_equal(row["b"], tf.convert_to_tensor(_COL_B, dtype=tf.string)[0]) tf.debugging.assert_equal(row["c"], tf.convert_to_tensor(_COL_C, dtype=tf.float32)[0]) col = formatter.format_column(pa_table) tf.debugging.assert_equal(col, tf.ragged.constant(_COL_A, dtype=tf.int64)) batch = formatter.format_batch(pa_table) tf.debugging.assert_equal(batch["a"], tf.convert_to_tensor(_COL_A, dtype=tf.int64)) tf.debugging.assert_equal(batch["b"], tf.convert_to_tensor(_COL_B, dtype=tf.string)) self.assertIsInstance(batch["c"], tf.Tensor) self.assertEqual(batch["c"].dtype, tf.float32) tf.debugging.assert_equal( batch["c"].shape.as_list(), tf.convert_to_tensor(_COL_C, dtype=tf.float32).shape.as_list() ) tf.debugging.assert_equal(tf.convert_to_tensor(batch["c"]), tf.convert_to_tensor(_COL_C, dtype=tf.float32)) @require_tf def test_tf_formatter_tf_tensor_kwargs(self): import tensorflow as tf from datasets.formatting import TFFormatter pa_table = self._create_dummy_table().drop(["b"]) formatter = TFFormatter(dtype=tf.float16) row = formatter.format_row(pa_table) self.assertEqual(row["c"].dtype, tf.float16) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, tf.float16) batch = formatter.format_batch(pa_table) self.assertEqual(batch["a"].dtype, tf.float16) self.assertEqual(batch["c"].dtype, tf.float16) @require_tf @require_pil def test_tf_formatter_image(self): import tensorflow as tf from datasets.formatting import TFFormatter # same dimensions pa_table = pa.table({"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}] * 2}) formatter = TFFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, tf.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, tf.uint8) self.assertEqual(col.shape, (2, 480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertEqual(batch["image"][0].dtype, tf.uint8) self.assertEqual(batch["image"].shape, (2, 480, 640, 3)) # different dimensions pa_table = pa.table( {"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}, {"bytes": None, "path": str(IMAGE_PATH_2)}]} ) formatter = TFFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, tf.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertIsInstance(col, list) self.assertEqual(col[0].dtype, tf.uint8) self.assertEqual(col[0].shape, (480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch["image"], list) self.assertEqual(batch["image"][0].dtype, tf.uint8) self.assertEqual(batch["image"][0].shape, (480, 640, 3)) @require_tf @require_sndfile def test_tf_formatter_audio(self): import tensorflow as tf from datasets.formatting import TFFormatter pa_table = pa.table({"audio": [{"bytes": None, "path": str(AUDIO_PATH_1)}]}) formatter = TFFormatter(features=Features({"audio": Audio()})) row = formatter.format_row(pa_table) self.assertEqual(row["audio"]["array"].dtype, tf.float32) col = formatter.format_column(pa_table) self.assertEqual(col[0]["array"].dtype, tf.float32) batch = formatter.format_batch(pa_table) self.assertEqual(batch["audio"][0]["array"].dtype, tf.float32) @require_jax def test_jax_formatter(self): import jax import jax.numpy as jnp from datasets.formatting import JaxFormatter pa_table = self._create_dummy_table() formatter = JaxFormatter() row = formatter.format_row(pa_table) jnp.allclose(row["a"], jnp.array(_COL_A, dtype=jnp.int64 if jax.config.jax_enable_x64 else jnp.int32)[0]) assert row["b"] == _COL_B[0] jnp.allclose(row["c"], jnp.array(_COL_C, dtype=jnp.float32)[0]) col = formatter.format_column(pa_table) jnp.allclose(col, jnp.array(_COL_A, dtype=jnp.int64 if jax.config.jax_enable_x64 else jnp.int32)) batch = formatter.format_batch(pa_table) jnp.allclose(batch["a"], jnp.array(_COL_A, dtype=jnp.int64 if jax.config.jax_enable_x64 else jnp.int32)) assert batch["b"] == _COL_B jnp.allclose(batch["c"], jnp.array(_COL_C, dtype=jnp.float32)) assert batch["c"].shape == np.array(_COL_C).shape @require_jax def test_jax_formatter_jnp_array_kwargs(self): import jax.numpy as jnp from datasets.formatting import JaxFormatter pa_table = self._create_dummy_table().drop(["b"]) formatter = JaxFormatter(dtype=jnp.float16) row = formatter.format_row(pa_table) self.assertEqual(row["c"].dtype, jnp.float16) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, jnp.float16) batch = formatter.format_batch(pa_table) self.assertEqual(batch["a"].dtype, jnp.float16) self.assertEqual(batch["c"].dtype, jnp.float16) @require_jax @require_pil def test_jax_formatter_image(self): import jax.numpy as jnp from datasets.formatting import JaxFormatter # same dimensions pa_table = pa.table({"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}] * 2}) formatter = JaxFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, jnp.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertEqual(col.dtype, jnp.uint8) self.assertEqual(col.shape, (2, 480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertEqual(batch["image"].dtype, jnp.uint8) self.assertEqual(batch["image"].shape, (2, 480, 640, 3)) # different dimensions pa_table = pa.table( {"image": [{"bytes": None, "path": str(IMAGE_PATH_1)}, {"bytes": None, "path": str(IMAGE_PATH_2)}]} ) formatter = JaxFormatter(features=Features({"image": Image()})) row = formatter.format_row(pa_table) self.assertEqual(row["image"].dtype, jnp.uint8) self.assertEqual(row["image"].shape, (480, 640, 3)) col = formatter.format_column(pa_table) self.assertIsInstance(col, list) self.assertEqual(col[0].dtype, jnp.uint8) self.assertEqual(col[0].shape, (480, 640, 3)) batch = formatter.format_batch(pa_table) self.assertIsInstance(batch["image"], list) self.assertEqual(batch["image"][0].dtype, jnp.uint8) self.assertEqual(batch["image"][0].shape, (480, 640, 3)) @require_jax @require_sndfile def test_jax_formatter_audio(self): import jax.numpy as jnp from datasets.formatting import JaxFormatter pa_table = pa.table({"audio": [{"bytes": None, "path": str(AUDIO_PATH_1)}]}) formatter = JaxFormatter(features=Features({"audio": Audio()})) row = formatter.format_row(pa_table) self.assertEqual(row["audio"]["array"].dtype, jnp.float32) col = formatter.format_column(pa_table) self.assertEqual(col[0]["array"].dtype, jnp.float32) batch = formatter.format_batch(pa_table) self.assertEqual(batch["audio"][0]["array"].dtype, jnp.float32) @require_jax def test_jax_formatter_device(self): import jax from datasets.formatting import JaxFormatter pa_table = self._create_dummy_table() device = jax.devices()[0] formatter = JaxFormatter(device=str(device)) row = formatter.format_row(pa_table) assert row["a"].device() == device assert row["c"].device() == device col = formatter.format_column(pa_table) assert col.device() == device batch = formatter.format_batch(pa_table) assert batch["a"].device() == device assert batch["c"].device() == device class QueryTest(TestCase): def _create_dummy_table(self): return pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C}) def _create_dummy_arrow_indices(self): return pa.Table.from_arrays([pa.array(_INDICES, type=pa.uint64())], names=["indices"]) def assertTableEqual(self, first: pa.Table, second: pa.Table): self.assertEqual(first.schema, second.schema) for first_array, second_array in zip(first, second): self.assertEqual(first_array, second_array) self.assertEqual(first, second) def test_query_table_int(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) n = pa_table.num_rows # classical usage subtable = query_table(table, 0) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[:1], "b": _COL_B[:1], "c": _COL_C[:1]})) subtable = query_table(table, 1) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[1:2], "b": _COL_B[1:2], "c": _COL_C[1:2]})) subtable = query_table(table, -1) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[-1:], "b": _COL_B[-1:], "c": _COL_C[-1:]})) # raise an IndexError with self.assertRaises(IndexError): query_table(table, n) with self.assertRaises(IndexError): query_table(table, -(n + 1)) # with indices indices = InMemoryTable(self._create_dummy_arrow_indices()) subtable = query_table(table, 0, indices=indices) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": [_COL_A[_INDICES[0]]], "b": [_COL_B[_INDICES[0]]], "c": [_COL_C[_INDICES[0]]]}), ) with self.assertRaises(IndexError): assert len(indices) < n query_table(table, len(indices), indices=indices) def test_query_table_slice(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) n = pa_table.num_rows # classical usage subtable = query_table(table, slice(0, 1)) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[:1], "b": _COL_B[:1], "c": _COL_C[:1]})) subtable = query_table(table, slice(1, 2)) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[1:2], "b": _COL_B[1:2], "c": _COL_C[1:2]})) subtable = query_table(table, slice(-2, -1)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": _COL_A[-2:-1], "b": _COL_B[-2:-1], "c": _COL_C[-2:-1]}) ) # usage with None subtable = query_table(table, slice(-1, None)) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[-1:], "b": _COL_B[-1:], "c": _COL_C[-1:]})) subtable = query_table(table, slice(None, n + 1)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": _COL_A[: n + 1], "b": _COL_B[: n + 1], "c": _COL_C[: n + 1]}) ) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C})) subtable = query_table(table, slice(-(n + 1), None)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": _COL_A[-(n + 1) :], "b": _COL_B[-(n + 1) :], "c": _COL_C[-(n + 1) :]}) ) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A, "b": _COL_B, "c": _COL_C})) # usage with step subtable = query_table(table, slice(None, None, 2)) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A[::2], "b": _COL_B[::2], "c": _COL_C[::2]})) # empty ouput but no errors subtable = query_table(table, slice(-1, 0)) # usage with both negative and positive idx assert len(_COL_A[-1:0]) == 0 self.assertTableEqual(subtable, pa_table.slice(0, 0)) subtable = query_table(table, slice(2, 1)) assert len(_COL_A[2:1]) == 0 self.assertTableEqual(subtable, pa_table.slice(0, 0)) subtable = query_table(table, slice(n, n)) assert len(_COL_A[n:n]) == 0 self.assertTableEqual(subtable, pa_table.slice(0, 0)) subtable = query_table(table, slice(n, n + 1)) assert len(_COL_A[n : n + 1]) == 0 self.assertTableEqual(subtable, pa_table.slice(0, 0)) # it's not possible to get an error with a slice # with indices indices = InMemoryTable(self._create_dummy_arrow_indices()) subtable = query_table(table, slice(0, 1), indices=indices) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": [_COL_A[_INDICES[0]]], "b": [_COL_B[_INDICES[0]]], "c": [_COL_C[_INDICES[0]]]}), ) subtable = query_table(table, slice(n - 1, n), indices=indices) assert len(indices.column(0).to_pylist()[n - 1 : n]) == 0 self.assertTableEqual(subtable, pa_table.slice(0, 0)) def test_query_table_range(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) n = pa_table.num_rows np_A, np_B, np_C = np.array(_COL_A, dtype=np.int64), np.array(_COL_B), np.array(_COL_C) # classical usage subtable = query_table(table, range(0, 1)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[range(0, 1)], "b": np_B[range(0, 1)], "c": np_C[range(0, 1)].tolist()}), ) subtable = query_table(table, range(1, 2)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[range(1, 2)], "b": np_B[range(1, 2)], "c": np_C[range(1, 2)].tolist()}), ) subtable = query_table(table, range(-2, -1)) self.assertTableEqual( subtable, pa.Table.from_pydict( {"a": np_A[range(-2, -1)], "b": np_B[range(-2, -1)], "c": np_C[range(-2, -1)].tolist()} ), ) # usage with both negative and positive idx subtable = query_table(table, range(-1, 0)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[range(-1, 0)], "b": np_B[range(-1, 0)], "c": np_C[range(-1, 0)].tolist()}), ) subtable = query_table(table, range(-1, n)) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[range(-1, n)], "b": np_B[range(-1, n)], "c": np_C[range(-1, n)].tolist()}), ) # usage with step subtable = query_table(table, range(0, n, 2)) self.assertTableEqual( subtable, pa.Table.from_pydict( {"a": np_A[range(0, n, 2)], "b": np_B[range(0, n, 2)], "c": np_C[range(0, n, 2)].tolist()} ), ) subtable = query_table(table, range(0, n + 1, 2 * n)) self.assertTableEqual( subtable, pa.Table.from_pydict( { "a": np_A[range(0, n + 1, 2 * n)], "b": np_B[range(0, n + 1, 2 * n)], "c": np_C[range(0, n + 1, 2 * n)].tolist(), } ), ) # empty ouput but no errors subtable = query_table(table, range(2, 1)) assert len(np_A[range(2, 1)]) == 0 self.assertTableEqual(subtable, pa.Table.from_batches([], schema=pa_table.schema)) subtable = query_table(table, range(n, n)) assert len(np_A[range(n, n)]) == 0 self.assertTableEqual(subtable, pa.Table.from_batches([], schema=pa_table.schema)) # raise an IndexError with self.assertRaises(IndexError): with self.assertRaises(IndexError): np_A[range(0, n + 1)] query_table(table, range(0, n + 1)) with self.assertRaises(IndexError): with self.assertRaises(IndexError): np_A[range(-(n + 1), -1)] query_table(table, range(-(n + 1), -1)) with self.assertRaises(IndexError): with self.assertRaises(IndexError): np_A[range(n, n + 1)] query_table(table, range(n, n + 1)) # with indices indices = InMemoryTable(self._create_dummy_arrow_indices()) subtable = query_table(table, range(0, 1), indices=indices) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": [_COL_A[_INDICES[0]]], "b": [_COL_B[_INDICES[0]]], "c": [_COL_C[_INDICES[0]]]}), ) with self.assertRaises(IndexError): assert len(indices) < n query_table(table, range(len(indices), len(indices) + 1), indices=indices) def test_query_table_str(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) subtable = query_table(table, "a") self.assertTableEqual(subtable, pa.Table.from_pydict({"a": _COL_A})) with self.assertRaises(KeyError): query_table(table, "z") indices = InMemoryTable(self._create_dummy_arrow_indices()) subtable = query_table(table, "a", indices=indices) self.assertTableEqual(subtable, pa.Table.from_pydict({"a": [_COL_A[i] for i in _INDICES]})) def test_query_table_iterable(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) n = pa_table.num_rows np_A, np_B, np_C = np.array(_COL_A, dtype=np.int64), np.array(_COL_B), np.array(_COL_C) # classical usage subtable = query_table(table, [0]) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[[0]], "b": np_B[[0]], "c": np_C[[0]].tolist()}) ) subtable = query_table(table, [1]) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[[1]], "b": np_B[[1]], "c": np_C[[1]].tolist()}) ) subtable = query_table(table, [-1]) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[[-1]], "b": np_B[[-1]], "c": np_C[[-1]].tolist()}) ) subtable = query_table(table, [0, -1, 1]) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[[0, -1, 1]], "b": np_B[[0, -1, 1]], "c": np_C[[0, -1, 1]].tolist()}), ) # numpy iterable subtable = query_table(table, np.array([0, -1, 1])) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": np_A[[0, -1, 1]], "b": np_B[[0, -1, 1]], "c": np_C[[0, -1, 1]].tolist()}), ) # empty ouput but no errors subtable = query_table(table, []) assert len(np_A[[]]) == 0 self.assertTableEqual(subtable, pa.Table.from_batches([], schema=pa_table.schema)) # raise an IndexError with self.assertRaises(IndexError): with self.assertRaises(IndexError): np_A[[n]] query_table(table, [n]) with self.assertRaises(IndexError): with self.assertRaises(IndexError): np_A[[-(n + 1)]] query_table(table, [-(n + 1)]) # with indices indices = InMemoryTable(self._create_dummy_arrow_indices()) subtable = query_table(table, [0], indices=indices) self.assertTableEqual( subtable, pa.Table.from_pydict({"a": [_COL_A[_INDICES[0]]], "b": [_COL_B[_INDICES[0]]], "c": [_COL_C[_INDICES[0]]]}), ) with self.assertRaises(IndexError): assert len(indices) < n query_table(table, [len(indices)], indices=indices) def test_query_table_invalid_key_type(self): pa_table = self._create_dummy_table() table = InMemoryTable(pa_table) with self.assertRaises(TypeError): query_table(table, 0.0) with self.assertRaises(TypeError): query_table(table, [0, "a"]) with self.assertRaises(TypeError): query_table(table, int) with self.assertRaises(TypeError): def iter_to_inf(start=0): while True: yield start start += 1 query_table(table, iter_to_inf()) @pytest.fixture(scope="session") def arrow_table(): return pa.Table.from_pydict({"col_int": [0, 1, 2], "col_float": [0.0, 1.0, 2.0]}) @require_tf @pytest.mark.parametrize( "cast_schema", [ None, [("col_int", pa.int64()), ("col_float", pa.float64())], [("col_int", pa.int32()), ("col_float", pa.float64())], [("col_int", pa.int64()), ("col_float", pa.float32())], ], ) def test_tf_formatter_sets_default_dtypes(cast_schema, arrow_table): import tensorflow as tf from datasets.formatting import TFFormatter if cast_schema: arrow_table = arrow_table.cast(pa.schema(cast_schema)) arrow_table_dict = arrow_table.to_pydict() list_int = arrow_table_dict["col_int"] list_float = arrow_table_dict["col_float"] formatter = TFFormatter() row = formatter.format_row(arrow_table) tf.debugging.assert_equal(row["col_int"], tf.ragged.constant(list_int, dtype=tf.int64)[0]) tf.debugging.assert_equal(row["col_float"], tf.ragged.constant(list_float, dtype=tf.float32)[0]) col = formatter.format_column(arrow_table) tf.debugging.assert_equal(col, tf.ragged.constant(list_int, dtype=tf.int64)) batch = formatter.format_batch(arrow_table) tf.debugging.assert_equal(batch["col_int"], tf.ragged.constant(list_int, dtype=tf.int64)) tf.debugging.assert_equal(batch["col_float"], tf.ragged.constant(list_float, dtype=tf.float32)) @require_torch @pytest.mark.parametrize( "cast_schema", [ None, [("col_int", pa.int64()), ("col_float", pa.float64())], [("col_int", pa.int32()), ("col_float", pa.float64())], [("col_int", pa.int64()), ("col_float", pa.float32())], ], ) def test_torch_formatter_sets_default_dtypes(cast_schema, arrow_table): import torch from datasets.formatting import TorchFormatter if cast_schema: arrow_table = arrow_table.cast(pa.schema(cast_schema)) arrow_table_dict = arrow_table.to_pydict() list_int = arrow_table_dict["col_int"] list_float = arrow_table_dict["col_float"] formatter = TorchFormatter() row = formatter.format_row(arrow_table) torch.testing.assert_close(row["col_int"], torch.tensor(list_int, dtype=torch.int64)[0]) torch.testing.assert_close(row["col_float"], torch.tensor(list_float, dtype=torch.float32)[0]) col = formatter.format_column(arrow_table) torch.testing.assert_close(col, torch.tensor(list_int, dtype=torch.int64)) batch = formatter.format_batch(arrow_table) torch.testing.assert_close(batch["col_int"], torch.tensor(list_int, dtype=torch.int64)) torch.testing.assert_close(batch["col_float"], torch.tensor(list_float, dtype=torch.float32)) def test_iterable_dataset_of_arrays_format_to_arrow(any_arrays_dataset: IterableDataset): formatted = any_arrays_dataset.with_format("arrow") assert all(isinstance(example, pa.Table) for example in formatted) def test_iterable_dataset_of_arrays_format_to_numpy(any_arrays_dataset: IterableDataset): formatted = any_arrays_dataset.with_format("np") assert all(isinstance(example["array"], np.ndarray) for example in formatted) @require_torch def test_iterable_dataset_of_arrays_format_to_torch(any_arrays_dataset: IterableDataset): import torch formatted = any_arrays_dataset.with_format("torch") assert all(isinstance(example["array"], torch.Tensor) for example in formatted) @require_tf def test_iterable_dataset_of_arrays_format_to_tf(any_arrays_dataset: IterableDataset): import tensorflow as tf formatted = any_arrays_dataset.with_format("tf") assert all(isinstance(example["array"], tf.Tensor) for example in formatted) @require_jax def test_iterable_dataset_of_arrays_format_to_jax(any_arrays_dataset: IterableDataset): import jax.numpy as jnp formatted = any_arrays_dataset.with_format("jax") assert all(isinstance(example["array"], jnp.ndarray) for example in formatted)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/_test_patching.py
# isort: skip_file # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: F401 - this is just for tests import os as renamed_os # noqa: F401 - this is just for tests from os import path # noqa: F401 - this is just for tests from os import path as renamed_path # noqa: F401 - this is just for tests from os.path import join # noqa: F401 - this is just for tests from os.path import join as renamed_join # noqa: F401 - this is just for tests open = open # noqa we just need to have a builtin inside this module to test it properly
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_hub.py
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id", ["canonical_dataset_name", "org-name/dataset-name"]) @pytest.mark.parametrize("filename", ["filename.csv", "filename with blanks.csv"]) @pytest.mark.parametrize("revision", [None, "v2"]) def test_hf_hub_url(repo_id, filename, revision): url = hf_hub_url(repo_id=repo_id, filename=filename, revision=revision) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(filename)}"
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_readme_util.py
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): example_yaml_structure = yaml.safe_load( """\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) CORRECT_DICT = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } README_CORRECT = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ README_CORRECT_FOUR_LEVEL = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ CORRECT_DICT_FOUR_LEVEL = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } README_EMPTY_YAML = """\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_EMPTY_YAML = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) README_NO_YAML = """\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_NO_YAML = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) README_INCORRECT_YAML = """\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_INCORRECT_YAML = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." README_MISSING_TEXT = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_MISSING_TEXT = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." README_NONE_SUBSECTION = """\ --- language: - zh - en --- # Dataset Card for My Dataset """ EXPECTED_ERROR_README_NONE_SUBSECTION = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." README_MISSING_SUBSECTION = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ EXPECTED_ERROR_README_MISSING_SUBSECTION = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." README_MISSING_CONTENT = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ EXPECTED_ERROR_README_MISSING_CONTENT = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." README_MISSING_FIRST_LEVEL = """\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_MISSING_FIRST_LEVEL = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." README_MULTIPLE_WRONG_FIRST_LEVEL = """\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." README_WRONG_FIRST_LEVEL = """\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_WRONG_FIRST_LEVEL = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." README_EMPTY = "" EXPECTED_ERROR_README_EMPTY = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." README_MULTIPLE_SAME_HEADING_1 = """\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1 = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def test_readme_from_string_correct(readme_md, expected_dict): assert ReadMe.from_string(readme_md, example_yaml_structure).to_dict() == expected_dict @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def test_readme_from_string_validation_errors(readme_md, expected_error): with pytest.raises(ValueError, match=re.escape(expected_error.format(path="root"))): readme = ReadMe.from_string(readme_md, example_yaml_structure) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def test_readme_from_string_parsing_errors(readme_md, expected_error): with pytest.raises(ValueError, match=re.escape(expected_error.format(path="root"))): ReadMe.from_string(readme_md, example_yaml_structure) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def test_readme_from_string_suppress_parsing_errors(readme_md): ReadMe.from_string(readme_md, example_yaml_structure, suppress_parsing_errors=True) @pytest.mark.parametrize( "readme_md, expected_dict", [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def test_readme_from_readme_correct(readme_md, expected_dict): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(readme_md) out = ReadMe.from_readme(path, example_yaml_structure).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( "readme_md, expected_error", [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def test_readme_from_readme_error(readme_md, expected_error): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(readme_md) expected_error = expected_error.format(path=path) with pytest.raises(ValueError, match=re.escape(expected_error)): readme = ReadMe.from_readme(path, example_yaml_structure) readme.validate() @pytest.mark.parametrize( "readme_md, expected_error", [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def test_readme_from_readme_parsing_errors(readme_md, expected_error): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(readme_md) expected_error = expected_error.format(path=path) with pytest.raises(ValueError, match=re.escape(expected_error)): ReadMe.from_readme(path, example_yaml_structure) @pytest.mark.parametrize( "readme_md,", [ (README_MULTIPLE_SAME_HEADING_1), ], ) def test_readme_from_readme_suppress_parsing_errors(readme_md): with tempfile.TemporaryDirectory() as tmp_dir: path = Path(tmp_dir) / "README.md" with open(path, "w+") as readme_file: readme_file.write(readme_md) ReadMe.from_readme(path, example_yaml_structure, suppress_parsing_errors=True)
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_patching.py
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def test_patch_submodule(): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join mock = "__test_patch_submodule_mock__" with patch_submodule(_test_patching, "os.path.join", mock): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj) assert isinstance(_test_patching.os.path, _PatchedModuleObj) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def test_patch_submodule_builtin(): assert _test_patching.open is open mock = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, "open", mock): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def test_patch_submodule_missing(): # pandas.read_csv is not present in _test_patching mock = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching, "pandas.read_csv", mock): pass def test_patch_submodule_missing_builtin(): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point mock = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, "len", None) is None with patch_submodule(_test_patching, "len", mock): assert _test_patching.len is mock assert _test_patching.len is len def test_patch_submodule_start_and_stop(): mock = "__test_patch_submodule_start_and_stop_mock__" patch = patch_submodule(_test_patching, "open", mock) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def test_patch_submodule_successive(): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join mock_join = "__test_patch_submodule_successive_join__" mock_dirname = "__test_patch_submodule_successive_dirname__" mock_rename = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, "os.path.join", mock_join): with patch_submodule(_test_patching, "os.rename", mock_rename): with patch_submodule(_test_patching, "os.path.dirname", mock_dirname): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, "os.rename", mock_rename): with patch_submodule(_test_patching, "os.path.join", mock_join): with patch_submodule(_test_patching, "os.path.dirname", mock_dirname): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def test_patch_submodule_doesnt_exist(): mock = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching, "__module_that_doesn_exist__.__attribute_that_doesn_exist__", mock): pass with patch_submodule(_test_patching, "os.__attribute_that_doesn_exist__", mock): pass
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_info.py
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def test_from_dir(files, tmp_path_factory): dataset_infos_dir = tmp_path_factory.mktemp("dset_infos_dir") if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w") as f: f.write("---\ndataset_info:\n dataset_size: 42\n---") if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w") as f: f.write("") # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w") as f: f.write('{"default": {"dataset_size": 42}}') dataset_infos = DatasetInfosDict.from_directory(dataset_infos_dir) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32")}), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def test_dataset_info_dump_and_reload(tmp_path, dataset_info: DatasetInfo): tmp_path = str(tmp_path) dataset_info.write_to_directory(tmp_path) reloaded = DatasetInfo.from_directory(tmp_path) assert dataset_info == reloaded assert os.path.exists(os.path.join(tmp_path, "dataset_info.json")) def test_dataset_info_to_yaml_dict(): dataset_info = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32")}), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1337, post_processing_size=442, dataset_size=1234, size_in_bytes=1337 + 442 + 1234, ) dataset_info_yaml_dict = dataset_info._to_yaml_dict() assert sorted(dataset_info_yaml_dict) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str)) dataset_info_yaml = yaml.safe_dump(dataset_info_yaml_dict) reloaded = yaml.safe_load(dataset_info_yaml) assert dataset_info_yaml_dict == reloaded def test_dataset_info_to_yaml_dict_empty(): dataset_info = DatasetInfo() dataset_info_yaml_dict = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()}), DatasetInfosDict({"my_config_name": DatasetInfo()}), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32")}), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42), "v2": DatasetInfo(dataset_size=1337), } ), ], ) def test_dataset_infos_dict_dump_and_reload(tmp_path, dataset_infos_dict: DatasetInfosDict): tmp_path = str(tmp_path) dataset_infos_dict.write_to_directory(tmp_path) reloaded = DatasetInfosDict.from_directory(tmp_path) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): dataset_info.config_name = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml dataset_infos_dict[config_name] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict()) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(tmp_path, "README.md"))
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/conftest.py
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) def pytest_configure(config): config.addinivalue_line("markers", "torchaudio_latest: mark test to run with torchaudio>=0.12") @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_metrics_cache = test_hf_cache_home / "metrics" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE", str(test_hf_metrics_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
0
hf_public_repos/datasets
hf_public_repos/datasets/tests/test_filelock.py
import os from datasets.utils._filelock import FileLock def test_long_path(tmpdir): filename = "a" * 1000 + ".lock" lock1 = FileLock(str(tmpdir / filename)) assert lock1.lock_file.endswith(".lock") assert not lock1.lock_file.endswith(filename) assert len(os.path.basename(lock1.lock_file)) <= 255
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/io/test_json.py
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _check_json_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_json_keep_in_memory(keep_in_memory, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = JsonDatasetReader(jsonl_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_json_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_json_features(features, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = JsonDatasetReader(jsonl_path, features=features, cache_dir=cache_dir).read() _check_json_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ], ) def test_dataset_from_json_with_unsorted_column_names(features, jsonl_312_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_3": "float64", "col_1": "string", "col_2": "int64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = JsonDatasetReader(jsonl_312_path, features=features, cache_dir=cache_dir).read() assert isinstance(dataset, Dataset) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def test_dataset_from_json_with_mismatched_features(jsonl_312_path, tmp_path): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} features = {"col_2": "int64", "col_3": "float64", "col_1": "string"} expected_features = features.copy() features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) cache_dir = tmp_path / "cache" dataset = JsonDatasetReader(jsonl_312_path, features=features, cache_dir=cache_dir).read() assert isinstance(dataset, Dataset) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_json_split(split, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = JsonDatasetReader(jsonl_path, cache_dir=cache_dir, split=split).read() _check_json_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_json_path_type(path_type, jsonl_path, tmp_path): if issubclass(path_type, str): path = jsonl_path elif issubclass(path_type, list): path = [jsonl_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = JsonDatasetReader(path, cache_dir=cache_dir).read() _check_json_dataset(dataset, expected_features) def _check_json_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_json_keep_in_memory(keep_in_memory, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = JsonDatasetReader({"train": jsonl_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_json_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_datasetdict_from_json_features(features, jsonl_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = JsonDatasetReader({"train": jsonl_path}, features=features, cache_dir=cache_dir).read() _check_json_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_json_splits(split, jsonl_path, tmp_path): if split: path = {split: jsonl_path} else: split = "train" path = {"train": jsonl_path, "test": jsonl_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = JsonDatasetReader(path, cache_dir=cache_dir).read() _check_json_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def load_json(buffer): return json.load(buffer) def load_json_lines(buffer): return [json.loads(line) for line in buffer] class TestJsonDatasetWriter: @pytest.mark.parametrize("lines, load_json_function", [(True, load_json_lines), (False, load_json)]) def test_dataset_to_json_lines(self, lines, load_json_function, dataset): with io.BytesIO() as buffer: JsonDatasetWriter(dataset, buffer, lines=lines).write() buffer.seek(0) exported_content = load_json_function(buffer) assert isinstance(exported_content, list) assert isinstance(exported_content[0], dict) assert len(exported_content) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at", [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789"), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ], ) def test_dataset_to_json_orient(self, orient, container, keys, len_at, dataset): with io.BytesIO() as buffer: JsonDatasetWriter(dataset, buffer, lines=False, orient=orient).write() buffer.seek(0) exported_content = load_json(buffer) assert isinstance(exported_content, container) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(exported_content, "keys") and not hasattr(exported_content[0], "keys") if len_at: assert len(exported_content[len_at]) == 10 else: assert len(exported_content) == 10 @pytest.mark.parametrize("lines, load_json_function", [(True, load_json_lines), (False, load_json)]) def test_dataset_to_json_lines_multiproc(self, lines, load_json_function, dataset): with io.BytesIO() as buffer: JsonDatasetWriter(dataset, buffer, lines=lines, num_proc=2).write() buffer.seek(0) exported_content = load_json_function(buffer) assert isinstance(exported_content, list) assert isinstance(exported_content[0], dict) assert len(exported_content) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at", [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789"), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ], ) def test_dataset_to_json_orient_multiproc(self, orient, container, keys, len_at, dataset): with io.BytesIO() as buffer: JsonDatasetWriter(dataset, buffer, lines=False, orient=orient, num_proc=2).write() buffer.seek(0) exported_content = load_json(buffer) assert isinstance(exported_content, container) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(exported_content, "keys") and not hasattr(exported_content[0], "keys") if len_at: assert len(exported_content[len_at]) == 10 else: assert len(exported_content) == 10 def test_dataset_to_json_orient_invalidproc(self, dataset): with pytest.raises(ValueError): with io.BytesIO() as buffer: JsonDatasetWriter(dataset, buffer, num_proc=0) @pytest.mark.parametrize("compression, extension", [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")]) def test_dataset_to_json_compression(self, shared_datadir, tmp_path_factory, extension, compression, dataset): path = tmp_path_factory.mktemp("data") / f"test.json.{extension}" original_path = str(shared_datadir / f"test_file.json.{extension}") JsonDatasetWriter(dataset, path, compression=compression).write() with fsspec.open(path, "rb", compression="infer") as f: exported_content = f.read() with fsspec.open(original_path, "rb", compression="infer") as f: original_content = f.read() assert exported_content == original_content
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/io/test_sql.py
import contextlib import os import sqlite3 import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _check_sql_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_sql_keep_in_memory(keep_in_memory, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = SqlDatasetReader( "dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory ).read() _check_sql_dataset(dataset, expected_features) @require_sqlalchemy @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_sql_features(features, sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, features=features, cache_dir=cache_dir).read() _check_sql_dataset(dataset, expected_features) def iter_sql_file(sqlite_path): with contextlib.closing(sqlite3.connect(sqlite_path)) as con: cur = con.cursor() cur.execute("SELECT * FROM dataset") for row in cur: yield row @require_sqlalchemy def test_dataset_to_sql(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=1).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_multiproc(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=2).write() original_sql = iter_sql_file(sqlite_path) expected_sql = iter_sql_file(output_sqlite_path) for row1, row2 in zip(original_sql, expected_sql): assert row1 == row2 @require_sqlalchemy def test_dataset_to_sql_invalidproc(sqlite_path, tmp_path, set_sqlalchemy_silence_uber_warning): cache_dir = tmp_path / "cache" output_sqlite_path = os.path.join(cache_dir, "tmp.sql") dataset = SqlDatasetReader("dataset", "sqlite:///" + sqlite_path, cache_dir=cache_dir).read() with pytest.raises(ValueError): SqlDatasetWriter(dataset, "dataset", "sqlite:///" + output_sqlite_path, num_proc=0).write()
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/io/test_text.py
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _check_text_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_text_keep_in_memory(keep_in_memory, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = TextDatasetReader(text_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_text_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ], ) def test_dataset_from_text_features(features, text_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"text": "string"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = TextDatasetReader(text_path, features=features, cache_dir=cache_dir).read() _check_text_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_text_split(split, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = TextDatasetReader(text_path, cache_dir=cache_dir, split=split).read() _check_text_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_text_path_type(path_type, text_path, tmp_path): if issubclass(path_type, str): path = text_path elif issubclass(path_type, list): path = [text_path] cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = TextDatasetReader(path, cache_dir=cache_dir).read() _check_text_dataset(dataset, expected_features) def _check_text_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_datasetdict_from_text_keep_in_memory(keep_in_memory, text_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = TextDatasetReader({"train": text_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_text_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ], ) def test_datasetdict_from_text_features(features, text_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"text": "string"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = TextDatasetReader({"train": text_path}, features=features, cache_dir=cache_dir).read() _check_text_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_datasetdict_from_text_split(split, text_path, tmp_path): if split: path = {split: text_path} else: split = "train" path = {"train": text_path, "test": text_path} cache_dir = tmp_path / "cache" expected_features = {"text": "string"} dataset = TextDatasetReader(path, cache_dir=cache_dir).read() _check_text_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys())
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/io/test_parquet.py
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, IterableDatasetDict, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.info import DatasetInfo from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _check_parquet_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_parquet_keep_in_memory(keep_in_memory, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = ParquetDatasetReader(parquet_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_parquet_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_parquet_features(features, parquet_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = ParquetDatasetReader(parquet_path, features=features, cache_dir=cache_dir).read() _check_parquet_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_parquet_split(split, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = ParquetDatasetReader(parquet_path, cache_dir=cache_dir, split=split).read() _check_parquet_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_parquet_path_type(path_type, parquet_path, tmp_path): if issubclass(path_type, str): path = parquet_path elif issubclass(path_type, list): path = [parquet_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = ParquetDatasetReader(path, cache_dir=cache_dir).read() _check_parquet_dataset(dataset, expected_features) def _check_parquet_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, (DatasetDict, IterableDatasetDict)) for split in splits: dataset = dataset_dict[split] assert len(list(dataset)) == 4 assert dataset.features is not None assert set(dataset.features) == set(expected_features) for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_parquet_datasetdict_reader_keep_in_memory(keep_in_memory, parquet_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = ParquetDatasetReader( {"train": parquet_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory ).read() _check_parquet_datasetdict(dataset, expected_features) @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_parquet_datasetdict_reader_features(streaming, features, parquet_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = ParquetDatasetReader( {"train": parquet_path}, features=features, cache_dir=cache_dir, streaming=streaming ).read() _check_parquet_datasetdict(dataset, expected_features) @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize("columns", [None, ["col_1"]]) @pytest.mark.parametrize("pass_features", [False, True]) @pytest.mark.parametrize("pass_info", [False, True]) def test_parquet_datasetdict_reader_columns(streaming, columns, pass_features, pass_info, parquet_path, tmp_path): cache_dir = tmp_path / "cache" default_expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} info = ( DatasetInfo(features=Features({feature: Value(dtype) for feature, dtype in default_expected_features.items()})) if pass_info else None ) expected_features = ( {col: default_expected_features[col] for col in columns} if columns else default_expected_features ) features = ( Features({feature: Value(dtype) for feature, dtype in expected_features.items()}) if pass_features else None ) dataset = ParquetDatasetReader( {"train": parquet_path}, columns=columns, features=features, info=info, cache_dir=cache_dir, streaming=streaming, ).read() _check_parquet_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_parquet_datasetdict_reader_split(split, parquet_path, tmp_path): if split: path = {split: parquet_path} else: split = "train" path = {"train": parquet_path, "test": parquet_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "string", "col_2": "int64", "col_3": "float64"} dataset = ParquetDatasetReader(path, cache_dir=cache_dir).read() _check_parquet_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def test_parquet_write(dataset, tmp_path): writer = ParquetDatasetWriter(dataset, tmp_path / "foo.parquet") assert writer.write() > 0 pf = pq.ParquetFile(tmp_path / "foo.parquet") output_table = pf.read() assert dataset.data.table == output_table def test_dataset_to_parquet_keeps_features(shared_datadir, tmp_path): image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path]} features = Features({"image": Image()}) dataset = Dataset.from_dict(data, features=features) writer = ParquetDatasetWriter(dataset, tmp_path / "foo.parquet") assert writer.write() > 0 reloaded_dataset = Dataset.from_parquet(str(tmp_path / "foo.parquet")) assert dataset.features == reloaded_dataset.features reloaded_iterable_dataset = ParquetDatasetReader(str(tmp_path / "foo.parquet"), streaming=True).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected", [ (Features({"foo": Value("int32")}), None), (Features({"image": Image(), "foo": Value("int32")}), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio())}), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def test_get_writer_batch_size(feature, expected): assert get_writer_batch_size(feature) == expected
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/io/test_csv.py
import csv import os import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.csv import CsvDatasetReader, CsvDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _check_csv_dataset(dataset, expected_features): assert isinstance(dataset, Dataset) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_dataset_from_csv_keep_in_memory(keep_in_memory, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = CsvDatasetReader(csv_path, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_csv_dataset(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_dataset_from_csv_features(features, csv_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = CsvDatasetReader(csv_path, features=features, cache_dir=cache_dir).read() _check_csv_dataset(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_dataset_from_csv_split(split, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = CsvDatasetReader(csv_path, cache_dir=cache_dir, split=split).read() _check_csv_dataset(dataset, expected_features) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type", [str, list]) def test_dataset_from_csv_path_type(path_type, csv_path, tmp_path): if issubclass(path_type, str): path = csv_path elif issubclass(path_type, list): path = [csv_path] cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = CsvDatasetReader(path, cache_dir=cache_dir).read() _check_csv_dataset(dataset, expected_features) def _check_csv_datasetdict(dataset_dict, expected_features, splits=("train",)): assert isinstance(dataset_dict, DatasetDict) for split in splits: dataset = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory", [False, True]) def test_csv_datasetdict_reader_keep_in_memory(keep_in_memory, csv_path, tmp_path): cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir, keep_in_memory=keep_in_memory).read() _check_csv_datasetdict(dataset, expected_features) @pytest.mark.parametrize( "features", [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ], ) def test_csv_datasetdict_reader_features(features, csv_path, tmp_path): cache_dir = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" default_expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} expected_features = features.copy() if features else default_expected_features features = ( Features({feature: Value(dtype) for feature, dtype in features.items()}) if features is not None else None ) dataset = CsvDatasetReader({"train": csv_path}, features=features, cache_dir=cache_dir).read() _check_csv_datasetdict(dataset, expected_features) @pytest.mark.parametrize("split", [None, NamedSplit("train"), "train", "test"]) def test_csv_datasetdict_reader_split(split, csv_path, tmp_path): if split: path = {split: csv_path} else: path = {"train": csv_path, "test": csv_path} cache_dir = tmp_path / "cache" expected_features = {"col_1": "int64", "col_2": "int64", "col_3": "float64"} dataset = CsvDatasetReader(path, cache_dir=cache_dir).read() _check_csv_datasetdict(dataset, expected_features, splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def iter_csv_file(csv_path): with open(csv_path, encoding="utf-8") as csvfile: yield from csv.reader(csvfile) def test_dataset_to_csv(csv_path, tmp_path): cache_dir = tmp_path / "cache" output_csv = os.path.join(cache_dir, "tmp.csv") dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir).read() CsvDatasetWriter(dataset["train"], output_csv, num_proc=1).write() original_csv = iter_csv_file(csv_path) expected_csv = iter_csv_file(output_csv) for row1, row2 in zip(original_csv, expected_csv): assert row1 == row2 def test_dataset_to_csv_multiproc(csv_path, tmp_path): cache_dir = tmp_path / "cache" output_csv = os.path.join(cache_dir, "tmp.csv") dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir).read() CsvDatasetWriter(dataset["train"], output_csv, num_proc=2).write() original_csv = iter_csv_file(csv_path) expected_csv = iter_csv_file(output_csv) for row1, row2 in zip(original_csv, expected_csv): assert row1 == row2 def test_dataset_to_csv_invalidproc(csv_path, tmp_path): cache_dir = tmp_path / "cache" output_csv = os.path.join(cache_dir, "tmp.csv") dataset = CsvDatasetReader({"train": csv_path}, cache_dir=cache_dir).read() with pytest.raises(ValueError): CsvDatasetWriter(dataset["train"], output_csv, num_proc=0)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_cache.py
from pathlib import Path import pytest from datasets import load_dataset from datasets.packaged_modules.cache.cache import Cache SAMPLE_DATASET_TWO_CONFIG_IN_METADATA = "hf-internal-testing/audiofolder_two_configs_in_metadata" def test_cache(text_dir: Path): ds = load_dataset(str(text_dir)) hash = Path(ds["train"].cache_files[0]["filename"]).parts[-2] cache = Cache(dataset_name=text_dir.name, hash=hash) reloaded = cache.as_dataset() assert list(ds) == list(reloaded) assert list(ds["train"]) == list(reloaded["train"]) def test_cache_streaming(text_dir: Path): ds = load_dataset(str(text_dir)) hash = Path(ds["train"].cache_files[0]["filename"]).parts[-2] cache = Cache(dataset_name=text_dir.name, hash=hash) reloaded = cache.as_streaming_dataset() assert list(ds) == list(reloaded) assert list(ds["train"]) == list(reloaded["train"]) def test_cache_auto_hash(text_dir: Path): ds = load_dataset(str(text_dir)) cache = Cache(dataset_name=text_dir.name, version="auto", hash="auto") reloaded = cache.as_dataset() assert list(ds) == list(reloaded) assert list(ds["train"]) == list(reloaded["train"]) def test_cache_missing(text_dir: Path): load_dataset(str(text_dir)) Cache(dataset_name=text_dir.name, version="auto", hash="auto").download_and_prepare() with pytest.raises(ValueError): Cache(dataset_name="missing", version="auto", hash="auto").download_and_prepare() with pytest.raises(ValueError): Cache(dataset_name=text_dir.name, hash="missing").download_and_prepare() with pytest.raises(ValueError): Cache(dataset_name=text_dir.name, config_name="missing", version="auto", hash="auto").download_and_prepare() @pytest.mark.integration def test_cache_multi_configs(): repo_id = SAMPLE_DATASET_TWO_CONFIG_IN_METADATA dataset_name = repo_id.split("/")[-1] config_name = "v1" ds = load_dataset(repo_id, config_name) cache = Cache(dataset_name=dataset_name, repo_id=repo_id, config_name=config_name, version="auto", hash="auto") reloaded = cache.as_dataset() assert list(ds) == list(reloaded) assert len(ds["train"]) == len(reloaded["train"]) with pytest.raises(ValueError) as excinfo: Cache(dataset_name=dataset_name, repo_id=repo_id, config_name="missing", version="auto", hash="auto") assert config_name in str(excinfo.value)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_folder_based_builder.py
import importlib import shutil import textwrap import pytest from datasets import ClassLabel, DownloadManager, Features, Value from datasets.data_files import DataFilesDict, get_data_patterns from datasets.download.streaming_download_manager import StreamingDownloadManager from datasets.packaged_modules.folder_based_builder.folder_based_builder import ( FolderBasedBuilder, FolderBasedBuilderConfig, ) from datasets.tasks import TextClassification remote_files = [ "https://huggingface.co/datasets/hf-internal-testing/textfolder/resolve/main/hallo.txt", "https://huggingface.co/datasets/hf-internal-testing/textfolder/resolve/main/hello.txt", "https://huggingface.co/datasets/hf-internal-testing/textfolder/resolve/main/class1/bonjour.txt", "https://huggingface.co/datasets/hf-internal-testing/textfolder/resolve/main/class1/bonjour2.txt", ] class DummyFolderBasedBuilder(FolderBasedBuilder): BASE_FEATURE = dict BASE_COLUMN_NAME = "base" BUILDER_CONFIG_CLASS = FolderBasedBuilderConfig EXTENSIONS = [".txt"] CLASSIFICATION_TASK = TextClassification(text_column="base", label_column="label") @pytest.fixture def cache_dir(tmp_path): return str(tmp_path / "autofolder_cache_dir") @pytest.fixture def auto_text_file(text_file): return str(text_file) @pytest.fixture def data_files_with_labels_no_metadata(tmp_path, auto_text_file): data_dir = tmp_path / "data_files_with_labels_no_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "class0" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "class1" subdir_class_1.mkdir(parents=True, exist_ok=True) filename = subdir_class_0 / "file0.txt" shutil.copyfile(auto_text_file, filename) filename2 = subdir_class_1 / "file1.txt" shutil.copyfile(auto_text_file, filename2) data_files_with_labels_no_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) return data_files_with_labels_no_metadata @pytest.fixture def data_files_with_different_levels_no_metadata(tmp_path, auto_text_file): data_dir = tmp_path / "data_files_with_different_levels" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "class0" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "subdir" / "class1" subdir_class_1.mkdir(parents=True, exist_ok=True) filename = subdir_class_0 / "file0.txt" shutil.copyfile(auto_text_file, filename) filename2 = subdir_class_1 / "file1.txt" shutil.copyfile(auto_text_file, filename2) data_files_with_different_levels = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) return data_files_with_different_levels @pytest.fixture def data_files_with_one_label_no_metadata(tmp_path, auto_text_file): # only one label found = all files in a single dir/in a root dir data_dir = tmp_path / "data_files_with_one_label" data_dir.mkdir(parents=True, exist_ok=True) filename = data_dir / "file0.txt" shutil.copyfile(auto_text_file, filename) filename2 = data_dir / "file1.txt" shutil.copyfile(auto_text_file, filename2) data_files_with_one_label = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) return data_files_with_one_label @pytest.fixture def files_with_labels_and_duplicated_label_key_in_metadata(tmp_path, auto_text_file): data_dir = tmp_path / "files_with_labels_and_label_key_in_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "class0" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "class1" subdir_class_1.mkdir(parents=True, exist_ok=True) filename = subdir_class_0 / "file_class0.txt" shutil.copyfile(auto_text_file, filename) filename2 = subdir_class_1 / "file_class1.txt" shutil.copyfile(auto_text_file, filename2) metadata_filename = tmp_path / data_dir / "metadata.jsonl" metadata = textwrap.dedent( """\ {"file_name": "class0/file_class0.txt", "additional_feature": "First dummy file", "label": "CLASS_0"} {"file_name": "class1/file_class1.txt", "additional_feature": "Second dummy file", "label": "CLASS_1"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) return str(filename), str(filename2), str(metadata_filename) @pytest.fixture def file_with_metadata(tmp_path, text_file): filename = tmp_path / "file.txt" shutil.copyfile(text_file, filename) metadata_filename = tmp_path / "metadata.jsonl" metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) return str(filename), str(metadata_filename) @pytest.fixture() def files_with_metadata_that_misses_one_sample(tmp_path, auto_text_file): filename = tmp_path / "file.txt" shutil.copyfile(auto_text_file, filename) filename2 = tmp_path / "file2.txt" shutil.copyfile(auto_text_file, filename2) metadata_filename = tmp_path / "metadata.jsonl" metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) return str(filename), str(filename2), str(metadata_filename) @pytest.fixture def data_files_with_one_split_and_metadata(tmp_path, auto_text_file): data_dir = tmp_path / "autofolder_data_dir_with_metadata_one_split" data_dir.mkdir(parents=True, exist_ok=True) subdir = data_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) filename = data_dir / "file.txt" shutil.copyfile(auto_text_file, filename) filename2 = data_dir / "file2.txt" shutil.copyfile(auto_text_file, filename2) filename3 = subdir / "file3.txt" # in subdir shutil.copyfile(auto_text_file, filename3) metadata_filename = data_dir / "metadata.jsonl" metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} {"file_name": "file2.txt", "additional_feature": "Second dummy file"} {"file_name": "./subdir/file3.txt", "additional_feature": "Third dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) data_files_with_one_split_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_one_split_and_metadata) == 1 assert len(data_files_with_one_split_and_metadata["train"]) == 4 return data_files_with_one_split_and_metadata @pytest.fixture def data_files_with_two_splits_and_metadata(tmp_path, auto_text_file): data_dir = tmp_path / "autofolder_data_dir_with_metadata_two_splits" data_dir.mkdir(parents=True, exist_ok=True) train_dir = data_dir / "train" train_dir.mkdir(parents=True, exist_ok=True) test_dir = data_dir / "test" test_dir.mkdir(parents=True, exist_ok=True) filename = train_dir / "file.txt" # train shutil.copyfile(auto_text_file, filename) filename2 = train_dir / "file2.txt" # train shutil.copyfile(auto_text_file, filename2) filename3 = test_dir / "file3.txt" # test shutil.copyfile(auto_text_file, filename3) train_metadata_filename = train_dir / "metadata.jsonl" train_metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Train dummy file"} {"file_name": "file2.txt", "additional_feature": "Second train dummy file"} """ ) with open(train_metadata_filename, "w", encoding="utf-8") as f: f.write(train_metadata) test_metadata_filename = test_dir / "metadata.jsonl" test_metadata = textwrap.dedent( """\ {"file_name": "file3.txt", "additional_feature": "Test dummy file"} """ ) with open(test_metadata_filename, "w", encoding="utf-8") as f: f.write(test_metadata) data_files_with_two_splits_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_two_splits_and_metadata) == 2 assert len(data_files_with_two_splits_and_metadata["train"]) == 3 assert len(data_files_with_two_splits_and_metadata["test"]) == 2 return data_files_with_two_splits_and_metadata @pytest.fixture def data_files_with_zip_archives(tmp_path, auto_text_file): data_dir = tmp_path / "autofolder_data_dir_with_zip_archives" data_dir.mkdir(parents=True, exist_ok=True) archive_dir = data_dir / "archive" archive_dir.mkdir(parents=True, exist_ok=True) subdir = archive_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) filename = archive_dir / "file.txt" shutil.copyfile(auto_text_file, filename) filename2 = subdir / "file2.txt" # in subdir shutil.copyfile(auto_text_file, filename2) metadata_filename = archive_dir / "metadata.jsonl" metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} {"file_name": "subdir/file2.txt", "additional_feature": "Second dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) shutil.make_archive(archive_dir, "zip", archive_dir) shutil.rmtree(str(archive_dir)) data_files_with_zip_archives = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) assert len(data_files_with_zip_archives) == 1 assert len(data_files_with_zip_archives["train"]) == 1 return data_files_with_zip_archives def test_inferring_labels_from_data_dirs(data_files_with_labels_no_metadata, cache_dir): autofolder = DummyFolderBasedBuilder( data_files=data_files_with_labels_no_metadata, cache_dir=cache_dir, drop_labels=False ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs assert autofolder.info.features == Features({"base": {}, "label": ClassLabel(names=["class0", "class1"])}) generator = autofolder._generate_examples(**gen_kwargs) assert all(example["label"] in {"class0", "class1"} for _, example in generator) def test_default_folder_builder_not_usable(data_files_with_labels_no_metadata, cache_dir): # builder would try to access non-existing attributes of a default `BuilderConfig` class # as a custom one is not provided with pytest.raises(AttributeError): _ = FolderBasedBuilder( data_files=data_files_with_labels_no_metadata, cache_dir=cache_dir, ) # test that AutoFolder is extended for streaming when it's child class is instantiated: # see line 115 in src/datasets/streaming.py def test_streaming_patched(): _ = DummyFolderBasedBuilder() module = importlib.import_module(FolderBasedBuilder.__module__) assert hasattr(module, "_patched_for_streaming") assert module._patched_for_streaming @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_duplicated_label_key( files_with_labels_and_duplicated_label_key_in_metadata, drop_metadata, drop_labels, cache_dir, caplog ): class0_file, class1_file, metadata_file = files_with_labels_and_duplicated_label_key_in_metadata autofolder = DummyFolderBasedBuilder( data_files=[class0_file, class1_file, metadata_file], cache_dir=cache_dir, drop_metadata=drop_metadata, drop_labels=drop_labels, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = autofolder._generate_examples(**gen_kwargs) if drop_labels is False: # infer labels from directories even if metadata files are found warning_in_logs = any("ignoring metadata columns" in record.msg.lower() for record in caplog.records) assert warning_in_logs if drop_metadata is not True else not warning_in_logs assert autofolder.info.features["label"] == ClassLabel(names=["class0", "class1"]) assert all(example["label"] in ["class0", "class1"] for _, example in generator) else: if drop_metadata is not True: # labels are from metadata assert autofolder.info.features["label"] == Value("string") assert all(example["label"] in ["CLASS_0", "CLASS_1"] for _, example in generator) else: # drop both labels and metadata assert autofolder.info.features == Features({"base": {}}) assert all(example.keys() == {"base"} for _, example in generator) @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_labels( data_files_with_labels_no_metadata, auto_text_file, drop_metadata, drop_labels, cache_dir ): autofolder = DummyFolderBasedBuilder( data_files=data_files_with_labels_no_metadata, drop_metadata=drop_metadata, drop_labels=drop_labels, cache_dir=cache_dir, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # removing labels explicitly requires drop_labels=True assert gen_kwargs["add_labels"] is not bool(drop_labels) assert gen_kwargs["add_metadata"] is False generator = autofolder._generate_examples(**gen_kwargs) if not drop_labels: assert all( example.keys() == {"base", "label"} and all(val is not None for val in example.values()) for _, example in generator ) else: assert all( example.keys() == {"base"} and all(val is not None for val in example.values()) for _, example in generator ) @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_metadata(file_with_metadata, drop_metadata, drop_labels, cache_dir): file, metadata_file = file_with_metadata autofolder = DummyFolderBasedBuilder( data_files=[file, metadata_file], drop_metadata=drop_metadata, drop_labels=drop_labels, cache_dir=cache_dir, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # since the dataset has metadata, removing the metadata explicitly requires drop_metadata=True assert gen_kwargs["add_metadata"] is not bool(drop_metadata) # since the dataset has metadata, adding the labels explicitly requires drop_labels=False assert gen_kwargs["add_labels"] is (drop_labels is False) generator = autofolder._generate_examples(**gen_kwargs) expected_columns = {"base"} if gen_kwargs["add_metadata"]: expected_columns.add("additional_feature") if gen_kwargs["add_labels"]: expected_columns.add("label") result = [example for _, example in generator] assert len(result) == 1 example = result[0] assert example.keys() == expected_columns for column in expected_columns: assert example[column] is not None @pytest.mark.parametrize("remote", [True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_data_files_with_different_levels_no_metadata( data_files_with_different_levels_no_metadata, drop_labels, remote, cache_dir ): data_files = remote_files if remote else data_files_with_different_levels_no_metadata autofolder = DummyFolderBasedBuilder( data_files=data_files, cache_dir=cache_dir, drop_labels=drop_labels, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = autofolder._generate_examples(**gen_kwargs) if drop_labels is not False: # with None (default) we should drop labels if files are on different levels in dir structure assert "label" not in autofolder.info.features assert all(example.keys() == {"base"} for _, example in generator) else: assert "label" in autofolder.info.features assert isinstance(autofolder.info.features["label"], ClassLabel) assert all(example.keys() == {"base", "label"} for _, example in generator) @pytest.mark.parametrize("remote", [False, True]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_data_files_with_one_label_no_metadata(data_files_with_one_label_no_metadata, drop_labels, remote, cache_dir): data_files = remote_files[:2] if remote else data_files_with_one_label_no_metadata autofolder = DummyFolderBasedBuilder( data_files=data_files, cache_dir=cache_dir, drop_labels=drop_labels, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = autofolder._generate_examples(**gen_kwargs) if drop_labels is not False: # with None (default) we should drop labels if only one label is found (=if there is a single dir) assert "label" not in autofolder.info.features assert all(example.keys() == {"base"} for _, example in generator) else: assert "label" in autofolder.info.features assert isinstance(autofolder.info.features["label"], ClassLabel) assert all(example.keys() == {"base", "label"} for _, example in generator) @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_data_files_with_metadata_that_misses_one_sample( files_with_metadata_that_misses_one_sample, drop_metadata, cache_dir ): file, file2, metadata_file = files_with_metadata_that_misses_one_sample if not drop_metadata: features = Features({"base": None, "additional_feature": Value("string")}) else: features = Features({"base": None}) autofolder = DummyFolderBasedBuilder( data_files=[file, file2, metadata_file], drop_metadata=drop_metadata, features=features, cache_dir=cache_dir, ) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = autofolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"base"} and all(val is not None for val in example.values()) for _, example in generator ) @pytest.mark.parametrize("streaming", [False, True]) @pytest.mark.parametrize("n_splits", [1, 2]) def test_data_files_with_metadata_and_splits( streaming, cache_dir, n_splits, data_files_with_one_split_and_metadata, data_files_with_two_splits_and_metadata ): data_files = data_files_with_one_split_and_metadata if n_splits == 1 else data_files_with_two_splits_and_metadata autofolder = DummyFolderBasedBuilder( data_files=data_files, cache_dir=cache_dir, ) download_manager = StreamingDownloadManager() if streaming else DownloadManager() generated_splits = autofolder._split_generators(download_manager) for (split, files), generated_split in zip(data_files.items(), generated_splits): assert split == generated_split.name expected_num_of_examples = len(files) - 1 generated_examples = list(autofolder._generate_examples(**generated_split.gen_kwargs)) assert len(generated_examples) == expected_num_of_examples assert len({example["base"] for _, example in generated_examples}) == expected_num_of_examples assert len({example["additional_feature"] for _, example in generated_examples}) == expected_num_of_examples assert all(example["additional_feature"] is not None for _, example in generated_examples) @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_archives(streaming, cache_dir, data_files_with_zip_archives): autofolder = DummyFolderBasedBuilder(data_files=data_files_with_zip_archives, cache_dir=cache_dir) download_manager = StreamingDownloadManager() if streaming else DownloadManager() generated_splits = autofolder._split_generators(download_manager) for (split, files), generated_split in zip(data_files_with_zip_archives.items(), generated_splits): assert split == generated_split.name num_of_archives = len(files) expected_num_of_examples = 2 * num_of_archives generated_examples = list(autofolder._generate_examples(**generated_split.gen_kwargs)) assert len(generated_examples) == expected_num_of_examples assert len({example["base"] for _, example in generated_examples}) == expected_num_of_examples assert len({example["additional_feature"] for _, example in generated_examples}) == expected_num_of_examples assert all(example["additional_feature"] is not None for _, example in generated_examples) def test_data_files_with_wrong_metadata_file_name(cache_dir, tmp_path, auto_text_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(auto_text_file, data_dir / "file.txt") metadata_filename = data_dir / "bad_metadata.jsonl" # bad file metadata = textwrap.dedent( """\ {"file_name": "file.txt", "additional_feature": "Dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) autofolder = DummyFolderBasedBuilder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) gen_kwargs = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = autofolder._generate_examples(**gen_kwargs) assert all("additional_feature" not in example for _, example in generator) def test_data_files_with_wrong_file_name_column_in_metadata_file(cache_dir, tmp_path, auto_text_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(auto_text_file, data_dir / "file.txt") metadata_filename = data_dir / "metadata.jsonl" metadata = textwrap.dedent( # with bad column "bad_file_name" instead of "file_name" """\ {"bad_file_name": "file.txt", "additional_feature": "Dummy file"} """ ) with open(metadata_filename, "w", encoding="utf-8") as f: f.write(metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) autofolder = DummyFolderBasedBuilder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: _ = autofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs assert "`file_name` must be present" in str(exc_info.value)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_spark.py
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _get_expected_row_ids_and_row_dicts_for_partition_order(df, partition_order): expected_row_ids_and_row_dicts = [] for part_id in partition_order: partition = df.where(f"SPARK_PARTITION_ID() = {part_id}").collect() for row_idx, row in enumerate(partition): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def test_repartition_df_if_needed(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(100).repartition(1) spark_builder = Spark(df) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def test_generate_iterable_examples(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(10).repartition(2) partition_order = [1, 0] generate_fn = _generate_iterable_examples(df, partition_order) # Reverse the partitions. expected_row_ids_and_row_dicts = _get_expected_row_ids_and_row_dicts_for_partition_order(df, partition_order) for i, (row_id, row_dict) in enumerate(generate_fn()): expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def test_spark_examples_iterable(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(10).repartition(1) it = SparkExamplesIterable(df) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(it): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def test_spark_examples_iterable_shuffle(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: generator_mock.shuffle.side_effect = lambda x: x.reverse() expected_row_ids_and_row_dicts = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [2, 1, 0]) shuffled_it = SparkExamplesIterable(df).shuffle_data_sources(generator_mock) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(shuffled_it): expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def test_spark_examples_iterable_shard(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(20).repartition(4) # Partitions 0 and 2 shard_it_1 = SparkExamplesIterable(df).shard_data_sources(worker_id=0, num_workers=2) assert shard_it_1.n_shards == 2 expected_row_ids_and_row_dicts_1 = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [0, 2]) for i, (row_id, row_dict) in enumerate(shard_it_1): expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts_1[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 shard_it_2 = SparkExamplesIterable(df).shard_data_sources(worker_id=1, num_workers=2) assert shard_it_2.n_shards == 2 expected_row_ids_and_row_dicts_2 = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [1, 3]) for i, (row_id, row_dict) in enumerate(shard_it_2): expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts_2[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def test_repartition_df_if_needed_max_num_df_rows(): spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() df = spark.range(100).repartition(1) spark_builder = Spark(df) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_webdataset.py
import json import tarfile import numpy as np import pytest from datasets import Audio, DownloadManager, Features, Image, Value from datasets.packaged_modules.webdataset.webdataset import WebDataset from ..utils import require_pil, require_sndfile @pytest.fixture def image_wds_file(tmp_path, image_file): json_file = tmp_path / "data.json" filename = tmp_path / "file.tar" num_examples = 3 with json_file.open("w", encoding="utf-8") as f: f.write(json.dumps({"caption": "this is an image"})) with tarfile.open(str(filename), "w") as f: for example_idx in range(num_examples): f.add(json_file, f"{example_idx:05d}.json") f.add(image_file, f"{example_idx:05d}.jpg") return str(filename) @pytest.fixture def audio_wds_file(tmp_path, audio_file): json_file = tmp_path / "data.json" filename = tmp_path / "file.tar" num_examples = 3 with json_file.open("w", encoding="utf-8") as f: f.write(json.dumps({"transcript": "this is a transcript"})) with tarfile.open(str(filename), "w") as f: for example_idx in range(num_examples): f.add(json_file, f"{example_idx:05d}.json") f.add(audio_file, f"{example_idx:05d}.wav") return str(filename) @pytest.fixture def bad_wds_file(tmp_path, image_file, text_file): json_file = tmp_path / "data.json" filename = tmp_path / "bad_file.tar" with json_file.open("w", encoding="utf-8") as f: f.write(json.dumps({"caption": "this is an image"})) with tarfile.open(str(filename), "w") as f: f.add(image_file) f.add(json_file) return str(filename) @require_pil def test_image_webdataset(image_wds_file): import PIL.Image data_files = {"train": [image_wds_file]} webdataset = WebDataset(data_files=data_files) split_generators = webdataset._split_generators(DownloadManager()) assert webdataset.info.features == Features( { "__key__": Value("string"), "__url__": Value("string"), "json": {"caption": Value("string")}, "jpg": Image(), } ) assert len(split_generators) == 1 split_generator = split_generators[0] assert split_generator.name == "train" generator = webdataset._generate_examples(**split_generator.gen_kwargs) _, examples = zip(*generator) assert len(examples) == 3 assert isinstance(examples[0]["json"], dict) assert isinstance(examples[0]["json"]["caption"], str) assert isinstance(examples[0]["jpg"], dict) # keep encoded to avoid unecessary copies encoded = webdataset.info.features.encode_example(examples[0]) decoded = webdataset.info.features.decode_example(encoded) assert isinstance(decoded["json"], dict) assert isinstance(decoded["json"]["caption"], str) assert isinstance(decoded["jpg"], PIL.Image.Image) @require_sndfile def test_audio_webdataset(audio_wds_file): data_files = {"train": [audio_wds_file]} webdataset = WebDataset(data_files=data_files) split_generators = webdataset._split_generators(DownloadManager()) assert webdataset.info.features == Features( { "__key__": Value("string"), "__url__": Value("string"), "json": {"transcript": Value("string")}, "wav": Audio(), } ) assert len(split_generators) == 1 split_generator = split_generators[0] assert split_generator.name == "train" generator = webdataset._generate_examples(**split_generator.gen_kwargs) _, examples = zip(*generator) assert len(examples) == 3 assert isinstance(examples[0]["json"], dict) assert isinstance(examples[0]["json"]["transcript"], str) assert isinstance(examples[0]["wav"], dict) assert isinstance(examples[0]["wav"]["bytes"], bytes) # keep encoded to avoid unecessary copies encoded = webdataset.info.features.encode_example(examples[0]) decoded = webdataset.info.features.decode_example(encoded) assert isinstance(decoded["json"], dict) assert isinstance(decoded["json"]["transcript"], str) assert isinstance(decoded["wav"], dict) assert isinstance(decoded["wav"]["array"], np.ndarray) def test_webdataset_errors_on_bad_file(bad_wds_file): data_files = {"train": [bad_wds_file]} webdataset = WebDataset(data_files=data_files) with pytest.raises(ValueError): webdataset._split_generators(DownloadManager()) @require_pil def test_webdataset_with_features(image_wds_file): import PIL.Image data_files = {"train": [image_wds_file]} features = Features( { "__key__": Value("string"), "__url__": Value("string"), "json": {"caption": Value("string"), "additional_field": Value("int64")}, "jpg": Image(), } ) webdataset = WebDataset(data_files=data_files, features=features) split_generators = webdataset._split_generators(DownloadManager()) assert webdataset.info.features == features split_generator = split_generators[0] assert split_generator.name == "train" generator = webdataset._generate_examples(**split_generator.gen_kwargs) _, example = next(iter(generator)) encoded = webdataset.info.features.encode_example(example) decoded = webdataset.info.features.decode_example(encoded) assert decoded["json"]["additional_field"] is None assert isinstance(decoded["json"], dict) assert isinstance(decoded["json"]["caption"], str) assert isinstance(decoded["jpg"], PIL.Image.Image)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_imagefolder.py
import shutil import textwrap import numpy as np import pytest from datasets import ClassLabel, Features, Image, Value from datasets.data_files import DataFilesDict, get_data_patterns from datasets.download.streaming_download_manager import StreamingDownloadManager from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder from ..utils import require_pil @pytest.fixture def cache_dir(tmp_path): return str(tmp_path / "imagefolder_cache_dir") @pytest.fixture def data_files_with_labels_no_metadata(tmp_path, image_file): data_dir = tmp_path / "data_files_with_labels_no_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "cat" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "dog" subdir_class_1.mkdir(parents=True, exist_ok=True) image_filename = subdir_class_0 / "image_cat.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir_class_1 / "image_dog.jpg" shutil.copyfile(image_file, image_filename2) data_files_with_labels_no_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) return data_files_with_labels_no_metadata @pytest.fixture def image_files_with_labels_and_duplicated_label_key_in_metadata(tmp_path, image_file): data_dir = tmp_path / "image_files_with_labels_and_label_key_in_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "cat" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "dog" subdir_class_1.mkdir(parents=True, exist_ok=True) image_filename = subdir_class_0 / "image_cat.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir_class_1 / "image_dog.jpg" shutil.copyfile(image_file, image_filename2) image_metadata_filename = tmp_path / data_dir / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "cat/image_cat.jpg", "caption": "Nice image of a cat", "label": "Cat"} {"file_name": "dog/image_dog.jpg", "caption": "Nice image of a dog", "label": "Dog"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_filename2), str(image_metadata_filename) @pytest.fixture def image_file_with_metadata(tmp_path, image_file): image_filename = tmp_path / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_metadata_filename = tmp_path / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_metadata_filename) @pytest.fixture def image_files_with_metadata_that_misses_one_image(tmp_path, image_file): image_filename = tmp_path / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = tmp_path / "image_rgb2.jpg" shutil.copyfile(image_file, image_filename2) image_metadata_filename = tmp_path / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_filename2), str(image_metadata_filename) @pytest.fixture(params=["jsonl", "csv"]) def data_files_with_one_split_and_metadata(request, tmp_path, image_file): data_dir = tmp_path / "imagefolder_data_dir_with_metadata_one_split" data_dir.mkdir(parents=True, exist_ok=True) subdir = data_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) image_filename = data_dir / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = data_dir / "image_rgb2.jpg" shutil.copyfile(image_file, image_filename2) image_filename3 = subdir / "image_rgb3.jpg" # in subdir shutil.copyfile(image_file, image_filename3) image_metadata_filename = data_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} {"file_name": "image_rgb2.jpg", "caption": "Nice second image"} {"file_name": "subdir/image_rgb3.jpg", "caption": "Nice third image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice image image_rgb2.jpg,Nice second image subdir/image_rgb3.jpg,Nice third image """ ) ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_one_split_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_one_split_and_metadata) == 1 assert len(data_files_with_one_split_and_metadata["train"]) == 4 return data_files_with_one_split_and_metadata @pytest.fixture(params=["jsonl", "csv"]) def data_files_with_two_splits_and_metadata(request, tmp_path, image_file): data_dir = tmp_path / "imagefolder_data_dir_with_metadata_two_splits" data_dir.mkdir(parents=True, exist_ok=True) train_dir = data_dir / "train" train_dir.mkdir(parents=True, exist_ok=True) test_dir = data_dir / "test" test_dir.mkdir(parents=True, exist_ok=True) image_filename = train_dir / "image_rgb.jpg" # train image shutil.copyfile(image_file, image_filename) image_filename2 = train_dir / "image_rgb2.jpg" # train image shutil.copyfile(image_file, image_filename2) image_filename3 = test_dir / "image_rgb3.jpg" # test image shutil.copyfile(image_file, image_filename3) train_image_metadata_filename = train_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice train image"} {"file_name": "image_rgb2.jpg", "caption": "Nice second train image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice train image image_rgb2.jpg,Nice second train image """ ) ) with open(train_image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) test_image_metadata_filename = test_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb3.jpg", "caption": "Nice test image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb3.jpg,Nice test image """ ) ) with open(test_image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_two_splits_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_two_splits_and_metadata) == 2 assert len(data_files_with_two_splits_and_metadata["train"]) == 3 assert len(data_files_with_two_splits_and_metadata["test"]) == 2 return data_files_with_two_splits_and_metadata @pytest.fixture def data_files_with_zip_archives(tmp_path, image_file): from PIL import Image, ImageOps data_dir = tmp_path / "imagefolder_data_dir_with_zip_archives" data_dir.mkdir(parents=True, exist_ok=True) archive_dir = data_dir / "archive" archive_dir.mkdir(parents=True, exist_ok=True) subdir = archive_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) image_filename = archive_dir / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir / "image_rgb2.jpg" # in subdir # make sure they're two different images # Indeed we won't be able to compare the image.filename, since the archive is not extracted in streaming mode ImageOps.flip(Image.open(image_file)).save(image_filename2) image_metadata_filename = archive_dir / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} {"file_name": "subdir/image_rgb2.jpg", "caption": "Nice second image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) shutil.make_archive(archive_dir, "zip", archive_dir) shutil.rmtree(str(archive_dir)) data_files_with_zip_archives = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) assert len(data_files_with_zip_archives) == 1 assert len(data_files_with_zip_archives["train"]) == 1 return data_files_with_zip_archives @require_pil # check that labels are inferred correctly from dir names def test_generate_examples_with_labels(data_files_with_labels_no_metadata, cache_dir): # there are no metadata.jsonl files in this test case imagefolder = ImageFolder(data_files=data_files_with_labels_no_metadata, cache_dir=cache_dir, drop_labels=False) imagefolder.download_and_prepare() assert imagefolder.info.features == Features({"image": Image(), "label": ClassLabel(names=["cat", "dog"])}) dataset = list(imagefolder.as_dataset()["train"]) label_feature = imagefolder.info.features["label"] assert dataset[0]["label"] == label_feature._str2int["cat"] assert dataset[1]["label"] == label_feature._str2int["dog"] @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_duplicated_label_key( image_files_with_labels_and_duplicated_label_key_in_metadata, drop_metadata, drop_labels, cache_dir, caplog ): cat_image_file, dog_image_file, image_metadata_file = image_files_with_labels_and_duplicated_label_key_in_metadata imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=[cat_image_file, dog_image_file, image_metadata_file], cache_dir=cache_dir, ) if drop_labels is False: # infer labels from directories even if metadata files are found imagefolder.download_and_prepare() warning_in_logs = any("ignoring metadata columns" in record.msg.lower() for record in caplog.records) assert warning_in_logs if drop_metadata is not True else not warning_in_logs dataset = imagefolder.as_dataset()["train"] assert imagefolder.info.features["label"] == ClassLabel(names=["cat", "dog"]) assert all(example["label"] in imagefolder.info.features["label"]._str2int.values() for example in dataset) else: imagefolder.download_and_prepare() dataset = imagefolder.as_dataset()["train"] if drop_metadata is not True: # labels are from metadata assert imagefolder.info.features["label"] == Value("string") assert all(example["label"] in ["Cat", "Dog"] for example in dataset) else: # drop both labels and metadata assert imagefolder.info.features == Features({"image": Image()}) assert all(example.keys() == {"image"} for example in dataset) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_labels(data_files_with_labels_no_metadata, drop_metadata, drop_labels): imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=data_files_with_labels_no_metadata ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # removing the labels explicitly requires drop_labels=True assert gen_kwargs["add_labels"] is not bool(drop_labels) assert gen_kwargs["add_metadata"] is False generator = imagefolder._generate_examples(**gen_kwargs) if not drop_labels: assert all( example.keys() == {"image", "label"} and all(val is not None for val in example.values()) for _, example in generator ) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_metadata(image_file_with_metadata, drop_metadata, drop_labels): image_file, image_metadata_file = image_file_with_metadata imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files={"train": [image_file, image_metadata_file]} ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # since the dataset has metadata, removing the metadata explicitly requires drop_metadata=True assert gen_kwargs["add_metadata"] is not bool(drop_metadata) # since the dataset has metadata, adding the labels explicitly requires drop_labels=False assert gen_kwargs["add_labels"] is (drop_labels is False) generator = imagefolder._generate_examples(**gen_kwargs) expected_columns = {"image"} if gen_kwargs["add_metadata"]: expected_columns.add("caption") if gen_kwargs["add_labels"]: expected_columns.add("label") result = [example for _, example in generator] assert len(result) == 1 example = result[0] assert example.keys() == expected_columns for column in expected_columns: assert example[column] is not None @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_in_wrong_location(image_file, image_file_with_metadata, drop_metadata): _, image_metadata_file = image_file_with_metadata imagefolder = ImageFolder(drop_metadata=drop_metadata, data_files={"train": [image_file, image_metadata_file]}) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = imagefolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_that_misses_one_image( image_files_with_metadata_that_misses_one_image, drop_metadata ): image_file, image_file2, image_metadata_file = image_files_with_metadata_that_misses_one_image if not drop_metadata: features = Features({"image": Image(), "caption": Value("string")}) else: features = Features({"image": Image()}) imagefolder = ImageFolder( drop_metadata=drop_metadata, features=features, data_files={"train": [image_file, image_file2, image_metadata_file]}, ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = imagefolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_single_split(streaming, cache_dir, data_files_with_one_split_and_metadata): data_files = data_files_with_one_split_and_metadata imagefolder = ImageFolder(data_files=data_files, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_images = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({example["image"].filename for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_multiple_splits(streaming, cache_dir, data_files_with_two_splits_and_metadata): data_files = data_files_with_two_splits_and_metadata imagefolder = ImageFolder(data_files=data_files, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_images = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({example["image"].filename for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_archives(streaming, cache_dir, data_files_with_zip_archives): imagefolder = ImageFolder(data_files=data_files_with_zip_archives, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files_with_zip_archives.items(): num_of_archives = len(data_files) # the metadata file is inside the archive expected_num_of_images = 2 * num_of_archives assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({np.array(example["image"])[0, 0, 0] for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil def test_data_files_with_wrong_metadata_file_name(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename = data_dir / "bad_metadata.jsonl" # bad file image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) imagefolder.download_and_prepare() dataset = imagefolder.as_dataset(split="train") # check that there are no metadata, since the metadata file name doesn't have the right name assert "caption" not in dataset.column_names @require_pil def test_data_files_with_wrong_image_file_name_column_in_metadata_file(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename = data_dir / "metadata.jsonl" image_metadata = textwrap.dedent( # with bad column "bad_file_name" instead of "file_name" """\ {"bad_file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: imagefolder.download_and_prepare() assert "`file_name` must be present" in str(exc_info.value) @require_pil def test_data_files_with_with_metadata_in_different_formats(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_metadata_in_different_format" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename_jsonl = data_dir / "metadata.jsonl" image_metadata_jsonl = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename_jsonl, "w", encoding="utf-8") as f: f.write(image_metadata_jsonl) image_metadata_filename_csv = data_dir / "metadata.csv" image_metadata_csv = textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice image """ ) with open(image_metadata_filename_csv, "w", encoding="utf-8") as f: f.write(image_metadata_csv) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: imagefolder.download_and_prepare() assert "metadata files with different extensions" in str(exc_info.value)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_json.py
import textwrap import pyarrow as pa import pytest from datasets import Features, Value from datasets.packaged_modules.json.json import Json @pytest.fixture def jsonl_file(tmp_path): filename = tmp_path / "file.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def jsonl_file_utf16_encoded(tmp_path): filename = tmp_path / "file_utf16_encoded.jsonl" data = textwrap.dedent( """\ {"col_1": -1} {"col_1": 1, "col_2": 2} {"col_1": 10, "col_2": 20} """ ) with open(filename, "w", encoding="utf-16") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts(tmp_path): filename = tmp_path / "file_with_list_of_dicts.json" data = textwrap.dedent( """\ [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def json_file_with_list_of_dicts_field(tmp_path): filename = tmp_path / "file_with_list_of_dicts_field.json" data = textwrap.dedent( """\ { "field1": 1, "field2": "aabb", "field3": [ {"col_1": -1}, {"col_1": 1, "col_2": 2}, {"col_1": 10, "col_2": 20} ] } """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ("jsonl_file", {}), ("jsonl_file_utf16_encoded", {"encoding": "utf-16"}), ("json_file_with_list_of_dicts", {}), ("json_file_with_list_of_dicts_field", {"field": "field3"}), ], ) def test_json_generate_tables(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [-1, 1, 10], "col_2": [None, 2, 20]} @pytest.mark.parametrize( "file_fixture, config_kwargs", [ ( "jsonl_file", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts", {"features": Features({"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")})}, ), ( "json_file_with_list_of_dicts_field", { "field": "field3", "features": Features( {"col_1": Value("int64"), "col_2": Value("int64"), "missing_col": Value("string")} ), }, ), ], ) def test_json_generate_tables_with_missing_features(file_fixture, config_kwargs, request): json = Json(**config_kwargs) generator = json._generate_tables([[request.getfixturevalue(file_fixture)]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.to_pydict() == {"col_1": [-1, 1, 10], "col_2": [None, 2, 20], "missing_col": [None, None, None]}
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_audiofolder.py
import shutil import textwrap import librosa import numpy as np import pytest import soundfile as sf from datasets import Audio, ClassLabel, Features, Value from datasets.data_files import DataFilesDict, get_data_patterns from datasets.download.streaming_download_manager import StreamingDownloadManager from datasets.packaged_modules.audiofolder.audiofolder import AudioFolder from ..utils import require_sndfile @pytest.fixture def cache_dir(tmp_path): return str(tmp_path / "audiofolder_cache_dir") @pytest.fixture def data_files_with_labels_no_metadata(tmp_path, audio_file): data_dir = tmp_path / "data_files_with_labels_no_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "fr" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "uk" subdir_class_1.mkdir(parents=True, exist_ok=True) audio_filename = subdir_class_0 / "audio_fr.wav" shutil.copyfile(audio_file, audio_filename) audio_filename2 = subdir_class_1 / "audio_uk.wav" shutil.copyfile(audio_file, audio_filename2) data_files_with_labels_no_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) return data_files_with_labels_no_metadata @pytest.fixture def audio_files_with_labels_and_duplicated_label_key_in_metadata(tmp_path, audio_file): data_dir = tmp_path / "audio_files_with_labels_and_label_key_in_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "fr" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "uk" subdir_class_1.mkdir(parents=True, exist_ok=True) audio_filename = subdir_class_0 / "audio_fr.wav" shutil.copyfile(audio_file, audio_filename) audio_filename2 = subdir_class_1 / "audio_uk.wav" shutil.copyfile(audio_file, audio_filename2) audio_metadata_filename = tmp_path / data_dir / "metadata.jsonl" audio_metadata = textwrap.dedent( """\ {"file_name": "fr/audio_fr.wav", "text": "Audio in French", "label": "Fr"} {"file_name": "uk/audio_uk.wav", "text": "Audio in Ukrainian", "label": "Uk"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) return str(audio_filename), str(audio_filename2), str(audio_metadata_filename) @pytest.fixture def audio_file_with_metadata(tmp_path, audio_file): audio_filename = tmp_path / "audio_file.wav" shutil.copyfile(audio_file, audio_filename) audio_metadata_filename = tmp_path / "metadata.jsonl" audio_metadata = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "Audio transcription"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) return str(audio_filename), str(audio_metadata_filename) @pytest.fixture def audio_files_with_metadata_that_misses_one_audio(tmp_path, audio_file): audio_filename = tmp_path / "audio_file.wav" shutil.copyfile(audio_file, audio_filename) audio_filename2 = tmp_path / "audio_file2.wav" shutil.copyfile(audio_file, audio_filename2) audio_metadata_filename = tmp_path / "metadata.jsonl" audio_metadata = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "Audio transcription"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) return str(audio_filename), str(audio_filename2), str(audio_metadata_filename) @pytest.fixture def data_files_with_one_split_and_metadata(tmp_path, audio_file): data_dir = tmp_path / "audiofolder_data_dir_with_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir = data_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) audio_filename = data_dir / "audio_file.wav" shutil.copyfile(audio_file, audio_filename) audio_filename2 = data_dir / "audio_file2.wav" shutil.copyfile(audio_file, audio_filename2) audio_filename3 = subdir / "audio_file3.wav" # in subdir shutil.copyfile(audio_file, audio_filename3) audio_metadata_filename = data_dir / "metadata.jsonl" audio_metadata = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "First audio transcription"} {"file_name": "audio_file2.wav", "text": "Second audio transcription"} {"file_name": "subdir/audio_file3.wav", "text": "Third audio transcription (in subdir)"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) data_files_with_one_split_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_one_split_and_metadata) == 1 assert len(data_files_with_one_split_and_metadata["train"]) == 4 return data_files_with_one_split_and_metadata @pytest.fixture(params=["jsonl", "csv"]) def data_files_with_two_splits_and_metadata(request, tmp_path, audio_file): data_dir = tmp_path / "audiofolder_data_dir_with_metadata" data_dir.mkdir(parents=True, exist_ok=True) train_dir = data_dir / "train" train_dir.mkdir(parents=True, exist_ok=True) test_dir = data_dir / "test" test_dir.mkdir(parents=True, exist_ok=True) audio_filename = train_dir / "audio_file.wav" # train audio shutil.copyfile(audio_file, audio_filename) audio_filename2 = train_dir / "audio_file2.wav" # train audio shutil.copyfile(audio_file, audio_filename2) audio_filename3 = test_dir / "audio_file3.wav" # test audio shutil.copyfile(audio_file, audio_filename3) train_audio_metadata_filename = train_dir / f"metadata.{request.param}" audio_metadata = ( textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "First train audio transcription"} {"file_name": "audio_file2.wav", "text": "Second train audio transcription"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,text audio_file.wav,First train audio transcription audio_file2.wav,Second train audio transcription """ ) ) with open(train_audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) test_audio_metadata_filename = test_dir / f"metadata.{request.param}" audio_metadata = ( textwrap.dedent( """\ {"file_name": "audio_file3.wav", "text": "Test audio transcription"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,text audio_file3.wav,Test audio transcription """ ) ) with open(test_audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) data_files_with_two_splits_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_two_splits_and_metadata) == 2 assert len(data_files_with_two_splits_and_metadata["train"]) == 3 assert len(data_files_with_two_splits_and_metadata["test"]) == 2 return data_files_with_two_splits_and_metadata @pytest.fixture def data_files_with_zip_archives(tmp_path, audio_file): data_dir = tmp_path / "audiofolder_data_dir_with_zip_archives" data_dir.mkdir(parents=True, exist_ok=True) archive_dir = data_dir / "archive" archive_dir.mkdir(parents=True, exist_ok=True) subdir = archive_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) audio_filename = archive_dir / "audio_file.wav" shutil.copyfile(audio_file, audio_filename) audio_filename2 = subdir / "audio_file2.wav" # in subdir # make sure they're two different audios # Indeed we won't be able to compare the audio filenames, since the archive is not extracted in streaming mode array, sampling_rate = librosa.load(str(audio_filename), sr=16000) # original sampling rate is 44100 sf.write(str(audio_filename2), array, samplerate=16000) audio_metadata_filename = archive_dir / "metadata.jsonl" audio_metadata = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "First audio transcription"} {"file_name": "subdir/audio_file2.wav", "text": "Second audio transcription (in subdir)"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) shutil.make_archive(str(archive_dir), "zip", archive_dir) shutil.rmtree(str(archive_dir)) data_files_with_zip_archives = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) assert len(data_files_with_zip_archives) == 1 assert len(data_files_with_zip_archives["train"]) == 1 return data_files_with_zip_archives @require_sndfile # check that labels are inferred correctly from dir names def test_generate_examples_with_labels(data_files_with_labels_no_metadata, cache_dir): # there are no metadata.jsonl files in this test case audiofolder = AudioFolder(data_files=data_files_with_labels_no_metadata, cache_dir=cache_dir, drop_labels=False) audiofolder.download_and_prepare() assert audiofolder.info.features == Features({"audio": Audio(), "label": ClassLabel(names=["fr", "uk"])}) dataset = list(audiofolder.as_dataset()["train"]) label_feature = audiofolder.info.features["label"] assert dataset[0]["label"] == label_feature._str2int["fr"] assert dataset[1]["label"] == label_feature._str2int["uk"] @require_sndfile @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_duplicated_label_key( audio_files_with_labels_and_duplicated_label_key_in_metadata, drop_metadata, drop_labels, cache_dir, caplog ): fr_audio_file, uk_audio_file, audio_metadata_file = audio_files_with_labels_and_duplicated_label_key_in_metadata audiofolder = AudioFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=[fr_audio_file, uk_audio_file, audio_metadata_file], cache_dir=cache_dir, ) if drop_labels is False: # infer labels from directories even if metadata files are found audiofolder.download_and_prepare() warning_in_logs = any("ignoring metadata columns" in record.msg.lower() for record in caplog.records) assert warning_in_logs if drop_metadata is not True else not warning_in_logs dataset = audiofolder.as_dataset()["train"] assert audiofolder.info.features["label"] == ClassLabel(names=["fr", "uk"]) assert all(example["label"] in audiofolder.info.features["label"]._str2int.values() for example in dataset) else: audiofolder.download_and_prepare() dataset = audiofolder.as_dataset()["train"] if drop_metadata is not True: # labels are from metadata assert audiofolder.info.features["label"] == Value("string") assert all(example["label"] in ["Fr", "Uk"] for example in dataset) else: # drop both labels and metadata assert audiofolder.info.features == Features({"audio": Audio()}) assert all(example.keys() == {"audio"} for example in dataset) @require_sndfile @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_labels(data_files_with_labels_no_metadata, drop_metadata, drop_labels): audiofolder = AudioFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=data_files_with_labels_no_metadata ) gen_kwargs = audiofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # removing the labels explicitly requires drop_labels=True assert gen_kwargs["add_labels"] is not bool(drop_labels) assert gen_kwargs["add_metadata"] is False # metadata files is not present in this case generator = audiofolder._generate_examples(**gen_kwargs) if not drop_labels: assert all( example.keys() == {"audio", "label"} and all(val is not None for val in example.values()) for _, example in generator ) else: assert all( example.keys() == {"audio"} and all(val is not None for val in example.values()) for _, example in generator ) @require_sndfile @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_metadata(audio_file_with_metadata, drop_metadata, drop_labels): audio_file, audio_metadata_file = audio_file_with_metadata audiofolder = AudioFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files={"train": [audio_file, audio_metadata_file]} ) gen_kwargs = audiofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # since the dataset has metadata, removing the metadata explicitly requires drop_metadata=True assert gen_kwargs["add_metadata"] is not bool(drop_metadata) # since the dataset has metadata, adding the labels explicitly requires drop_labels=False assert gen_kwargs["add_labels"] is (drop_labels is False) generator = audiofolder._generate_examples(**gen_kwargs) expected_columns = {"audio"} if gen_kwargs["add_metadata"]: expected_columns.add("text") if gen_kwargs["add_labels"]: expected_columns.add("label") result = [example for _, example in generator] assert len(result) == 1 example = result[0] assert example.keys() == expected_columns for column in expected_columns: assert example[column] is not None @require_sndfile @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_in_wrong_location(audio_file, audio_file_with_metadata, drop_metadata): _, audio_metadata_file = audio_file_with_metadata audiofolder = AudioFolder(drop_metadata=drop_metadata, data_files={"train": [audio_file, audio_metadata_file]}) gen_kwargs = audiofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = audiofolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"audio"} and all(val is not None for val in example.values()) for _, example in generator ) @require_sndfile @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_that_misses_one_audio( audio_files_with_metadata_that_misses_one_audio, drop_metadata ): audio_file, audio_file2, audio_metadata_file = audio_files_with_metadata_that_misses_one_audio if not drop_metadata: features = Features({"audio": Audio(), "text": Value("string")}) else: features = Features({"audio": Audio()}) audiofolder = AudioFolder( drop_metadata=drop_metadata, features=features, data_files={"train": [audio_file, audio_file2, audio_metadata_file]}, ) gen_kwargs = audiofolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = audiofolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): _ = list(generator) else: assert all( example.keys() == {"audio"} and all(val is not None for val in example.values()) for _, example in generator ) @require_sndfile @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_single_split(streaming, cache_dir, data_files_with_one_split_and_metadata): data_files = data_files_with_one_split_and_metadata audiofolder = AudioFolder(data_files=data_files, cache_dir=cache_dir) audiofolder.download_and_prepare() datasets = audiofolder.as_streaming_dataset() if streaming else audiofolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_audios = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_audios # make sure each sample has its own audio and metadata assert len({example["audio"]["path"] for example in dataset}) == expected_num_of_audios assert len({example["text"] for example in dataset}) == expected_num_of_audios assert all(example["text"] is not None for example in dataset) @require_sndfile @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_multiple_splits(streaming, cache_dir, data_files_with_two_splits_and_metadata): data_files = data_files_with_two_splits_and_metadata audiofolder = AudioFolder(data_files=data_files, cache_dir=cache_dir) audiofolder.download_and_prepare() datasets = audiofolder.as_streaming_dataset() if streaming else audiofolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_audios = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_audios # make sure each sample has its own audio and metadata assert len({example["audio"]["path"] for example in dataset}) == expected_num_of_audios assert len({example["text"] for example in dataset}) == expected_num_of_audios assert all(example["text"] is not None for example in dataset) @require_sndfile @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_archives(streaming, cache_dir, data_files_with_zip_archives): audiofolder = AudioFolder(data_files=data_files_with_zip_archives, cache_dir=cache_dir) audiofolder.download_and_prepare() datasets = audiofolder.as_streaming_dataset() if streaming else audiofolder.as_dataset() for split, data_files in data_files_with_zip_archives.items(): num_of_archives = len(data_files) # the metadata file is inside the archive expected_num_of_audios = 2 * num_of_archives assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_audios # make sure each sample has its own audio (all arrays are different) and metadata assert ( sum(np.array_equal(dataset[0]["audio"]["array"], example["audio"]["array"]) for example in dataset[1:]) == 0 ) assert len({example["text"] for example in dataset}) == expected_num_of_audios assert all(example["text"] is not None for example in dataset) @require_sndfile def test_data_files_with_wrong_metadata_file_name(cache_dir, tmp_path, audio_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(audio_file, data_dir / "audio_file.wav") audio_metadata_filename = data_dir / "bad_metadata.jsonl" # bad file audio_metadata = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "Audio transcription"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) audiofolder = AudioFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) audiofolder.download_and_prepare() dataset = audiofolder.as_dataset(split="train") # check that there are no metadata, since the metadata file name doesn't have the right name assert "text" not in dataset.column_names @require_sndfile def test_data_files_with_wrong_audio_file_name_column_in_metadata_file(cache_dir, tmp_path, audio_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(audio_file, data_dir / "audio_file.wav") audio_metadata_filename = data_dir / "metadata.jsonl" audio_metadata = textwrap.dedent( # with bad column "bad_file_name" instead of "file_name" """\ {"bad_file_name_column": "audio_file.wav", "text": "Audio transcription"} """ ) with open(audio_metadata_filename, "w", encoding="utf-8") as f: f.write(audio_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) audiofolder = AudioFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: audiofolder.download_and_prepare() assert "`file_name` must be present" in str(exc_info.value) @require_sndfile def test_data_files_with_with_metadata_in_different_formats(cache_dir, tmp_path, audio_file): data_dir = tmp_path / "data_dir_with_metadata_in_different_format" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(audio_file, data_dir / "audio_file.wav") audio_metadata_filename_jsonl = data_dir / "metadata.jsonl" audio_metadata_jsonl = textwrap.dedent( """\ {"file_name": "audio_file.wav", "text": "Audio transcription"} """ ) with open(audio_metadata_filename_jsonl, "w", encoding="utf-8") as f: f.write(audio_metadata_jsonl) audio_metadata_filename_csv = data_dir / "metadata.csv" audio_metadata_csv = textwrap.dedent( """\ file_name,text audio_file.wav,Audio transcription """ ) with open(audio_metadata_filename_csv, "w", encoding="utf-8") as f: f.write(audio_metadata_csv) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) audiofolder = AudioFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: audiofolder.download_and_prepare() assert "metadata files with different extensions" in str(exc_info.value)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_text.py
import textwrap import pyarrow as pa import pytest from datasets import Features, Image from datasets.packaged_modules.text.text import Text from ..utils import require_pil @pytest.fixture def text_file(tmp_path): filename = tmp_path / "text.txt" data = textwrap.dedent( """\ Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Second paragraph: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. """ ) with open(filename, "w", encoding="utf-8") as f: f.write(data) return str(filename) @pytest.fixture def text_file_with_image(tmp_path, image_file): filename = tmp_path / "text_with_image.txt" with open(filename, "w", encoding="utf-8") as f: f.write(image_file) return str(filename) @pytest.mark.parametrize("keep_linebreaks", [True, False]) def test_text_linebreaks(text_file, keep_linebreaks): with open(text_file, encoding="utf-8") as f: expected_content = f.read().splitlines(keepends=keep_linebreaks) text = Text(keep_linebreaks=keep_linebreaks, encoding="utf-8") generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content @require_pil def test_text_cast_image(text_file_with_image): with open(text_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[0] text = Text(encoding="utf-8", features=Features({"image": Image()})) generator = text._generate_tables([[text_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] @pytest.mark.parametrize("sample_by", ["line", "paragraph", "document"]) def test_text_sample_by(sample_by, text_file): with open(text_file, encoding="utf-8") as f: expected_content = f.read() if sample_by == "line": expected_content = expected_content.splitlines() elif sample_by == "paragraph": expected_content = expected_content.split("\n\n") elif sample_by == "document": expected_content = [expected_content] text = Text(sample_by=sample_by, encoding="utf-8", chunksize=100) generator = text._generate_tables([[text_file]]) generated_content = pa.concat_tables([table for _, table in generator]).to_pydict()["text"] assert generated_content == expected_content
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/packaged_modules/test_csv.py
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def csv_file(tmp_path): filename = tmp_path / "file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def malformed_csv_file(tmp_path): filename = tmp_path / "malformed_file.csv" data = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_image(tmp_path, image_file): filename = tmp_path / "csv_with_image.csv" data = textwrap.dedent( f"""\ image {image_file} """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_label(tmp_path): filename = tmp_path / "csv_with_label.csv" data = textwrap.dedent( """\ label good bad good """ ) with open(filename, "w") as f: f.write(data) return str(filename) @pytest.fixture def csv_file_with_int_list(tmp_path): filename = tmp_path / "csv_with_int_list.csv" data = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(filename, "w") as f: f.write(data) return str(filename) def test_csv_generate_tables_raises_error_with_malformed_csv(csv_file, malformed_csv_file, caplog): csv = Csv() generator = csv._generate_tables([[csv_file, malformed_csv_file]]) with pytest.raises(ValueError, match="Error tokenizing data"): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(malformed_csv_file) in record.message for record in caplog.records ) @require_pil def test_csv_cast_image(csv_file_with_image): with open(csv_file_with_image, encoding="utf-8") as f: image_file = f.read().splitlines()[1] csv = Csv(encoding="utf-8", features=Features({"image": Image()})) generator = csv._generate_tables([[csv_file_with_image]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("image").type == Image()() generated_content = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def test_csv_cast_label(csv_file_with_label): with open(csv_file_with_label, encoding="utf-8") as f: labels = f.read().splitlines()[1:] csv = Csv(encoding="utf-8", features=Features({"label": ClassLabel(names=["good", "bad"])})) generator = csv._generate_tables([[csv_file_with_label]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field("label").type == ClassLabel(names=["good", "bad"])() generated_content = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"]).str2int(label) for label in labels] def test_csv_convert_int_list(csv_file_with_int_list): csv = Csv(encoding="utf-8", sep=",", converters={"int_list": lambda x: [int(i) for i in x.split()]}) generator = csv._generate_tables([[csv_file_with_int_list]]) pa_table = pa.concat_tables([table for _, table in generator]) assert pa.types.is_list(pa_table.schema.field("int_list").type) generated_content = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/features/test_audio.py
import os import tarfile import pyarrow as pa import pytest from datasets import Dataset, concatenate_datasets, load_dataset from datasets.features import Audio, Features, Sequence, Value from ..utils import ( require_sndfile, ) @pytest.fixture() def tar_wav_path(shared_datadir, tmp_path_factory): audio_path = str(shared_datadir / "test_audio_44100.wav") path = tmp_path_factory.mktemp("data") / "audio_data.wav.tar" with tarfile.TarFile(path, "w") as f: f.add(audio_path, arcname=os.path.basename(audio_path)) return path @pytest.fixture() def tar_mp3_path(shared_datadir, tmp_path_factory): audio_path = str(shared_datadir / "test_audio_44100.mp3") path = tmp_path_factory.mktemp("data") / "audio_data.mp3.tar" with tarfile.TarFile(path, "w") as f: f.add(audio_path, arcname=os.path.basename(audio_path)) return path def iter_archive(archive_path): with tarfile.open(archive_path) as tar: for tarinfo in tar: file_path = tarinfo.name file_obj = tar.extractfile(tarinfo) yield file_path, file_obj def test_audio_instantiation(): audio = Audio() assert audio.sampling_rate is None assert audio.mono is True assert audio.id is None assert audio.dtype == "dict" assert audio.pa_type == pa.struct({"bytes": pa.binary(), "path": pa.string()}) assert audio._type == "Audio" def test_audio_feature_type_to_arrow(): features = Features({"audio": Audio()}) assert features.arrow_schema == pa.schema({"audio": Audio().pa_type}) features = Features({"struct_containing_an_audio": {"audio": Audio()}}) assert features.arrow_schema == pa.schema({"struct_containing_an_audio": pa.struct({"audio": Audio().pa_type})}) features = Features({"sequence_of_audios": Sequence(Audio())}) assert features.arrow_schema == pa.schema({"sequence_of_audios": pa.list_(Audio().pa_type)}) @pytest.mark.parametrize( "build_example", [ lambda audio_path: audio_path, lambda audio_path: open(audio_path, "rb").read(), lambda audio_path: {"path": audio_path}, lambda audio_path: {"path": audio_path, "bytes": None}, lambda audio_path: {"path": audio_path, "bytes": open(audio_path, "rb").read()}, lambda audio_path: {"path": None, "bytes": open(audio_path, "rb").read()}, lambda audio_path: {"bytes": open(audio_path, "rb").read()}, lambda audio_path: {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], ) def test_audio_feature_encode_example(shared_datadir, build_example): audio_path = str(shared_datadir / "test_audio_44100.wav") audio = Audio() encoded_example = audio.encode_example(build_example(audio_path)) assert isinstance(encoded_example, dict) assert encoded_example.keys() == {"bytes", "path"} assert encoded_example["bytes"] is not None or encoded_example["path"] is not None decoded_example = audio.decode_example(encoded_example) assert decoded_example.keys() == {"path", "array", "sampling_rate"} @pytest.mark.parametrize( "build_example", [ lambda audio_path: {"path": audio_path, "sampling_rate": 16_000}, lambda audio_path: {"path": audio_path, "bytes": None, "sampling_rate": 16_000}, lambda audio_path: {"path": audio_path, "bytes": open(audio_path, "rb").read(), "sampling_rate": 16_000}, lambda audio_path: {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], ) def test_audio_feature_encode_example_pcm(shared_datadir, build_example): audio_path = str(shared_datadir / "test_audio_16000.pcm") audio = Audio(sampling_rate=16_000) encoded_example = audio.encode_example(build_example(audio_path)) assert isinstance(encoded_example, dict) assert encoded_example.keys() == {"bytes", "path"} assert encoded_example["bytes"] is not None or encoded_example["path"] is not None decoded_example = audio.decode_example(encoded_example) assert decoded_example.keys() == {"path", "array", "sampling_rate"} @require_sndfile def test_audio_decode_example(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") audio = Audio() decoded_example = audio.decode_example(audio.encode_example(audio_path)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path assert decoded_example["array"].shape == (202311,) assert decoded_example["sampling_rate"] == 44100 with pytest.raises(RuntimeError): Audio(decode=False).decode_example(audio_path) @require_sndfile def test_audio_resampling(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") audio = Audio(sampling_rate=16000) decoded_example = audio.decode_example(audio.encode_example(audio_path)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path assert decoded_example["array"].shape == (73401,) assert decoded_example["sampling_rate"] == 16000 @require_sndfile def test_audio_decode_example_mp3(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.mp3") audio = Audio() decoded_example = audio.decode_example(audio.encode_example(audio_path)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path assert decoded_example["array"].shape == (110592,) assert decoded_example["sampling_rate"] == 44100 @require_sndfile def test_audio_decode_example_opus(shared_datadir): audio_path = str(shared_datadir / "test_audio_48000.opus") audio = Audio() decoded_example = audio.decode_example(audio.encode_example(audio_path)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path assert decoded_example["array"].shape == (48000,) assert decoded_example["sampling_rate"] == 48000 @pytest.mark.parametrize("sampling_rate", [16_000, 48_000]) def test_audio_decode_example_pcm(shared_datadir, sampling_rate): audio_path = str(shared_datadir / "test_audio_16000.pcm") audio_input = {"path": audio_path, "sampling_rate": 16_000} audio = Audio(sampling_rate=sampling_rate) decoded_example = audio.decode_example(audio.encode_example(audio_input)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] is None assert decoded_example["array"].shape == (16208 * sampling_rate // 16_000,) assert decoded_example["sampling_rate"] == sampling_rate @require_sndfile def test_audio_resampling_mp3_different_sampling_rates(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.mp3") audio_path2 = str(shared_datadir / "test_audio_16000.mp3") audio = Audio(sampling_rate=48000) decoded_example = audio.decode_example(audio.encode_example(audio_path)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path assert decoded_example["array"].shape == (120373,) assert decoded_example["sampling_rate"] == 48000 decoded_example = audio.decode_example(audio.encode_example(audio_path2)) assert decoded_example.keys() == {"path", "array", "sampling_rate"} assert decoded_example["path"] == audio_path2 assert decoded_example["array"].shape == (122688,) assert decoded_example["sampling_rate"] == 48000 @require_sndfile def test_dataset_with_audio_feature(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (202311,) assert item["audio"]["sampling_rate"] == 44100 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (202311,) assert batch["audio"][0]["sampling_rate"] == 44100 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (202311,) assert column[0]["sampling_rate"] == 44100 @require_sndfile def test_dataset_with_audio_feature_tar_wav(tar_wav_path): audio_filename = "test_audio_44100.wav" data = {"audio": []} for file_path, file_obj in iter_archive(tar_wav_path): data["audio"].append({"path": file_path, "bytes": file_obj.read()}) break features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_filename assert item["audio"]["array"].shape == (202311,) assert item["audio"]["sampling_rate"] == 44100 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_filename assert batch["audio"][0]["array"].shape == (202311,) assert batch["audio"][0]["sampling_rate"] == 44100 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_filename assert column[0]["array"].shape == (202311,) assert column[0]["sampling_rate"] == 44100 @require_sndfile def test_dataset_with_audio_feature_tar_mp3(tar_mp3_path): audio_filename = "test_audio_44100.mp3" data = {"audio": []} for file_path, file_obj in iter_archive(tar_mp3_path): data["audio"].append({"path": file_path, "bytes": file_obj.read()}) break features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_filename assert item["audio"]["array"].shape == (110592,) assert item["audio"]["sampling_rate"] == 44100 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_filename assert batch["audio"][0]["array"].shape == (110592,) assert batch["audio"][0]["sampling_rate"] == 44100 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_filename assert column[0]["array"].shape == (110592,) assert column[0]["sampling_rate"] == 44100 @require_sndfile def test_dataset_with_audio_feature_with_none(): data = {"audio": [None]} features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"] is None batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"audio"} assert isinstance(batch["audio"], list) and all(item is None for item in batch["audio"]) column = dset["audio"] assert len(column) == 1 assert isinstance(column, list) and all(item is None for item in column) # nested tests data = {"audio": [[None]]} features = Features({"audio": Sequence(Audio())}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert all(i is None for i in item["audio"]) data = {"nested": [{"audio": None}]} features = Features({"nested": {"audio": Audio()}}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"nested"} assert item["nested"].keys() == {"audio"} assert item["nested"]["audio"] is None @require_sndfile def test_resampling_at_loading_dataset_with_audio_feature(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio(sampling_rate=16000)}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (73401,) assert item["audio"]["sampling_rate"] == 16000 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (73401,) assert batch["audio"][0]["sampling_rate"] == 16000 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (73401,) assert column[0]["sampling_rate"] == 16000 @require_sndfile def test_resampling_at_loading_dataset_with_audio_feature_mp3(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.mp3") data = {"audio": [audio_path]} features = Features({"audio": Audio(sampling_rate=16000)}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (40125,) assert item["audio"]["sampling_rate"] == 16000 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (40125,) assert batch["audio"][0]["sampling_rate"] == 16000 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (40125,) assert column[0]["sampling_rate"] == 16000 @require_sndfile def test_resampling_after_loading_dataset_with_audio_feature(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item["audio"]["sampling_rate"] == 44100 dset = dset.cast_column("audio", Audio(sampling_rate=16000)) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (73401,) assert item["audio"]["sampling_rate"] == 16000 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (73401,) assert batch["audio"][0]["sampling_rate"] == 16000 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (73401,) assert column[0]["sampling_rate"] == 16000 @require_sndfile def test_resampling_after_loading_dataset_with_audio_feature_mp3(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.mp3") data = {"audio": [audio_path]} features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item["audio"]["sampling_rate"] == 44100 dset = dset.cast_column("audio", Audio(sampling_rate=16000)) item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (40125,) assert item["audio"]["sampling_rate"] == 16000 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (40125,) assert batch["audio"][0]["sampling_rate"] == 16000 column = dset["audio"] assert len(column) == 1 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (40125,) assert column[0]["sampling_rate"] == 16000 @pytest.mark.parametrize( "build_data", [ lambda audio_path: {"audio": [audio_path]}, lambda audio_path: {"audio": [open(audio_path, "rb").read()]}, lambda audio_path: {"audio": [{"path": audio_path}]}, lambda audio_path: {"audio": [{"path": audio_path, "bytes": None}]}, lambda audio_path: {"audio": [{"path": audio_path, "bytes": open(audio_path, "rb").read()}]}, lambda audio_path: {"audio": [{"path": None, "bytes": open(audio_path, "rb").read()}]}, lambda audio_path: {"audio": [{"bytes": open(audio_path, "rb").read()}]}, ], ) def test_dataset_cast_to_audio_features(shared_datadir, build_data): audio_path = str(shared_datadir / "test_audio_44100.wav") data = build_data(audio_path) dset = Dataset.from_dict(data) item = dset.cast(Features({"audio": Audio()}))[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} item = dset.cast_column("audio", Audio())[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} def test_dataset_concatenate_audio_features(shared_datadir): # we use a different data structure between 1 and 2 to make sure they are compatible with each other audio_path = str(shared_datadir / "test_audio_44100.wav") data1 = {"audio": [audio_path]} dset1 = Dataset.from_dict(data1, features=Features({"audio": Audio()})) data2 = {"audio": [{"bytes": open(audio_path, "rb").read()}]} dset2 = Dataset.from_dict(data2, features=Features({"audio": Audio()})) concatenated_dataset = concatenate_datasets([dset1, dset2]) assert len(concatenated_dataset) == len(dset1) + len(dset2) assert concatenated_dataset[0]["audio"]["array"].shape == dset1[0]["audio"]["array"].shape assert concatenated_dataset[1]["audio"]["array"].shape == dset2[0]["audio"]["array"].shape def test_dataset_concatenate_nested_audio_features(shared_datadir): # we use a different data structure between 1 and 2 to make sure they are compatible with each other audio_path = str(shared_datadir / "test_audio_44100.wav") features = Features({"list_of_structs_of_audios": [{"audio": Audio()}]}) data1 = {"list_of_structs_of_audios": [[{"audio": audio_path}]]} dset1 = Dataset.from_dict(data1, features=features) data2 = {"list_of_structs_of_audios": [[{"audio": {"bytes": open(audio_path, "rb").read()}}]]} dset2 = Dataset.from_dict(data2, features=features) concatenated_dataset = concatenate_datasets([dset1, dset2]) assert len(concatenated_dataset) == len(dset1) + len(dset2) assert ( concatenated_dataset[0]["list_of_structs_of_audios"][0]["audio"]["array"].shape == dset1[0]["list_of_structs_of_audios"][0]["audio"]["array"].shape ) assert ( concatenated_dataset[1]["list_of_structs_of_audios"][0]["audio"]["array"].shape == dset2[0]["list_of_structs_of_audios"][0]["audio"]["array"].shape ) @require_sndfile def test_dataset_with_audio_feature_map_is_not_decoded(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path], "text": ["Hello"]} features = Features({"audio": Audio(), "text": Value("string")}) dset = Dataset.from_dict(data, features=features) expected_audio = features.encode_batch(data)["audio"][0] for item in dset.cast_column("audio", Audio(decode=False)): assert item.keys() == {"audio", "text"} assert item == {"audio": expected_audio, "text": "Hello"} def process_text(example): example["text"] = example["text"] + " World!" return example processed_dset = dset.map(process_text) for item in processed_dset.cast_column("audio", Audio(decode=False)): assert item.keys() == {"audio", "text"} assert item == {"audio": expected_audio, "text": "Hello World!"} @require_sndfile def test_dataset_with_audio_feature_map_is_decoded(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path], "text": ["Hello"]} features = Features({"audio": Audio(), "text": Value("string")}) dset = Dataset.from_dict(data, features=features) def process_audio_sampling_rate_by_example(example): example["double_sampling_rate"] = 2 * example["audio"]["sampling_rate"] return example decoded_dset = dset.map(process_audio_sampling_rate_by_example) for item in decoded_dset.cast_column("audio", Audio(decode=False)): assert item.keys() == {"audio", "text", "double_sampling_rate"} assert item["double_sampling_rate"] == 88200 def process_audio_sampling_rate_by_batch(batch): double_sampling_rates = [] for audio in batch["audio"]: double_sampling_rates.append(2 * audio["sampling_rate"]) batch["double_sampling_rate"] = double_sampling_rates return batch decoded_dset = dset.map(process_audio_sampling_rate_by_batch, batched=True) for item in decoded_dset.cast_column("audio", Audio(decode=False)): assert item.keys() == {"audio", "text", "double_sampling_rate"} assert item["double_sampling_rate"] == 88200 @require_sndfile def test_formatted_dataset_with_audio_feature(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path, audio_path]} features = Features({"audio": Audio()}) dset = Dataset.from_dict(data, features=features) with dset.formatted_as("numpy"): item = dset[0] assert item.keys() == {"audio"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (202311,) assert item["audio"]["sampling_rate"] == 44100 batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (202311,) assert batch["audio"][0]["sampling_rate"] == 44100 column = dset["audio"] assert len(column) == 2 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (202311,) assert column[0]["sampling_rate"] == 44100 with dset.formatted_as("pandas"): item = dset[0] assert item.shape == (1, 1) assert item.columns == ["audio"] assert item["audio"][0].keys() == {"path", "array", "sampling_rate"} assert item["audio"][0]["path"] == audio_path assert item["audio"][0]["array"].shape == (202311,) assert item["audio"][0]["sampling_rate"] == 44100 batch = dset[:1] assert batch.shape == (1, 1) assert batch.columns == ["audio"] assert batch["audio"][0].keys() == {"path", "array", "sampling_rate"} assert batch["audio"][0]["path"] == audio_path assert batch["audio"][0]["array"].shape == (202311,) assert batch["audio"][0]["sampling_rate"] == 44100 column = dset["audio"] assert len(column) == 2 assert column[0].keys() == {"path", "array", "sampling_rate"} assert column[0]["path"] == audio_path assert column[0]["array"].shape == (202311,) assert column[0]["sampling_rate"] == 44100 @pytest.fixture def jsonl_audio_dataset_path(shared_datadir, tmp_path_factory): import json audio_path = str(shared_datadir / "test_audio_44100.wav") data = [{"audio": audio_path, "text": "Hello world!"}] path = str(tmp_path_factory.mktemp("data") / "audio_dataset.jsonl") with open(path, "w") as f: for item in data: f.write(json.dumps(item) + "\n") return path @require_sndfile @pytest.mark.parametrize("streaming", [False, True]) def test_load_dataset_with_audio_feature(streaming, jsonl_audio_dataset_path, shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data_files = jsonl_audio_dataset_path features = Features({"audio": Audio(), "text": Value("string")}) dset = load_dataset("json", split="train", data_files=data_files, features=features, streaming=streaming) item = dset[0] if not streaming else next(iter(dset)) assert item.keys() == {"audio", "text"} assert item["audio"].keys() == {"path", "array", "sampling_rate"} assert item["audio"]["path"] == audio_path assert item["audio"]["array"].shape == (202311,) assert item["audio"]["sampling_rate"] == 44100 @require_sndfile @pytest.mark.integration def test_dataset_with_audio_feature_loaded_from_cache(): # load first time ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean") # load from cache ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") assert isinstance(ds, Dataset) def test_dataset_with_audio_feature_undecoded(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio(decode=False)}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"audio"} assert item["audio"] == {"path": audio_path, "bytes": None} batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0] == {"path": audio_path, "bytes": None} column = dset["audio"] assert len(column) == 1 assert column[0] == {"path": audio_path, "bytes": None} def test_formatted_dataset_with_audio_feature_undecoded(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio(decode=False)}) dset = Dataset.from_dict(data, features=features) with dset.formatted_as("numpy"): item = dset[0] assert item.keys() == {"audio"} assert item["audio"] == {"path": audio_path, "bytes": None} batch = dset[:1] assert batch.keys() == {"audio"} assert len(batch["audio"]) == 1 assert batch["audio"][0] == {"path": audio_path, "bytes": None} column = dset["audio"] assert len(column) == 1 assert column[0] == {"path": audio_path, "bytes": None} with dset.formatted_as("pandas"): item = dset[0] assert item.shape == (1, 1) assert item.columns == ["audio"] assert item["audio"][0] == {"path": audio_path, "bytes": None} batch = dset[:1] assert batch.shape == (1, 1) assert batch.columns == ["audio"] assert batch["audio"][0] == {"path": audio_path, "bytes": None} column = dset["audio"] assert len(column) == 1 assert column[0] == {"path": audio_path, "bytes": None} def test_dataset_with_audio_feature_map_undecoded(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") data = {"audio": [audio_path]} features = Features({"audio": Audio(decode=False)}) dset = Dataset.from_dict(data, features=features) def assert_audio_example_undecoded(example): assert example["audio"] == {"path": audio_path, "bytes": None} dset.map(assert_audio_example_undecoded) def assert_audio_batch_undecoded(batch): for audio in batch["audio"]: assert audio == {"path": audio_path, "bytes": None} dset.map(assert_audio_batch_undecoded, batched=True) def test_audio_embed_storage(shared_datadir): audio_path = str(shared_datadir / "test_audio_44100.wav") example = {"bytes": None, "path": audio_path} storage = pa.array([example], type=pa.struct({"bytes": pa.binary(), "path": pa.string()})) embedded_storage = Audio().embed_storage(storage) embedded_example = embedded_storage.to_pylist()[0] assert embedded_example == {"bytes": open(audio_path, "rb").read(), "path": "test_audio_44100.wav"}
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/features/test_image.py
import os import tarfile import warnings import numpy as np import pandas as pd import pyarrow as pa import pytest from datasets import Dataset, Features, Image, Sequence, Value, concatenate_datasets, load_dataset from datasets.features.image import encode_np_array, image_to_bytes from ..utils import require_pil @pytest.fixture def tar_jpg_path(shared_datadir, tmp_path_factory): image_path = str(shared_datadir / "test_image_rgb.jpg") path = tmp_path_factory.mktemp("data") / "image_data.jpg.tar" with tarfile.TarFile(path, "w") as f: f.add(image_path, arcname=os.path.basename(image_path)) return path def iter_archive(archive_path): with tarfile.open(archive_path) as tar: for tarinfo in tar: file_path = tarinfo.name file_obj = tar.extractfile(tarinfo) yield file_path, file_obj def test_image_instantiation(): image = Image() assert image.id is None assert image.dtype == "PIL.Image.Image" assert image.pa_type == pa.struct({"bytes": pa.binary(), "path": pa.string()}) assert image._type == "Image" def test_image_feature_type_to_arrow(): features = Features({"image": Image()}) assert features.arrow_schema == pa.schema({"image": Image().pa_type}) features = Features({"struct_containing_an_image": {"image": Image()}}) assert features.arrow_schema == pa.schema({"struct_containing_an_image": pa.struct({"image": Image().pa_type})}) features = Features({"sequence_of_images": Sequence(Image())}) assert features.arrow_schema == pa.schema({"sequence_of_images": pa.list_(Image().pa_type)}) @require_pil @pytest.mark.parametrize( "build_example", [ lambda image_path: image_path, lambda image_path: open(image_path, "rb").read(), lambda image_path: {"path": image_path}, lambda image_path: {"path": image_path, "bytes": None}, lambda image_path: {"path": image_path, "bytes": open(image_path, "rb").read()}, lambda image_path: {"path": None, "bytes": open(image_path, "rb").read()}, lambda image_path: {"bytes": open(image_path, "rb").read()}, ], ) def test_image_feature_encode_example(shared_datadir, build_example): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") image = Image() encoded_example = image.encode_example(build_example(image_path)) assert isinstance(encoded_example, dict) assert encoded_example.keys() == {"bytes", "path"} assert encoded_example["bytes"] is not None or encoded_example["path"] is not None decoded_example = image.decode_example(encoded_example) assert isinstance(decoded_example, PIL.Image.Image) @require_pil def test_image_decode_example(shared_datadir): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") image = Image() decoded_example = image.decode_example({"path": image_path, "bytes": None}) assert isinstance(decoded_example, PIL.Image.Image) assert os.path.samefile(decoded_example.filename, image_path) assert decoded_example.size == (640, 480) assert decoded_example.mode == "RGB" with pytest.raises(RuntimeError): Image(decode=False).decode_example(image_path) @require_pil def test_dataset_with_image_feature(shared_datadir): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path]} features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) assert os.path.samefile(item["image"].filename, image_path) assert item["image"].format == "JPEG" assert item["image"].size == (640, 480) assert item["image"].mode == "RGB" batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"image"} assert isinstance(batch["image"], list) and all(isinstance(item, PIL.Image.Image) for item in batch["image"]) assert os.path.samefile(batch["image"][0].filename, image_path) assert batch["image"][0].format == "JPEG" assert batch["image"][0].size == (640, 480) assert batch["image"][0].mode == "RGB" column = dset["image"] assert len(column) == 1 assert isinstance(column, list) and all(isinstance(item, PIL.Image.Image) for item in column) assert os.path.samefile(column[0].filename, image_path) assert column[0].format == "JPEG" assert column[0].size == (640, 480) assert column[0].mode == "RGB" @require_pil @pytest.mark.parametrize("infer_feature", [False, True]) def test_dataset_with_image_feature_from_pil_image(infer_feature, shared_datadir): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [PIL.Image.open(image_path)]} features = Features({"image": Image()}) if not infer_feature else None dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) assert os.path.samefile(item["image"].filename, image_path) assert item["image"].format == "JPEG" assert item["image"].size == (640, 480) assert item["image"].mode == "RGB" batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"image"} assert isinstance(batch["image"], list) and all(isinstance(item, PIL.Image.Image) for item in batch["image"]) assert os.path.samefile(batch["image"][0].filename, image_path) assert batch["image"][0].format == "JPEG" assert batch["image"][0].size == (640, 480) assert batch["image"][0].mode == "RGB" column = dset["image"] assert len(column) == 1 assert isinstance(column, list) and all(isinstance(item, PIL.Image.Image) for item in column) assert os.path.samefile(column[0].filename, image_path) assert column[0].format == "JPEG" assert column[0].size == (640, 480) assert column[0].mode == "RGB" @require_pil def test_dataset_with_image_feature_from_np_array(): import PIL.Image image_array = np.arange(640 * 480, dtype=np.int32).reshape(480, 640) data = {"image": [image_array]} features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) np.testing.assert_array_equal(np.array(item["image"]), image_array) assert item["image"].filename == "" assert item["image"].format in ["PNG", "TIFF"] assert item["image"].size == (640, 480) batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"image"} assert isinstance(batch["image"], list) and all(isinstance(item, PIL.Image.Image) for item in batch["image"]) np.testing.assert_array_equal(np.array(batch["image"][0]), image_array) assert batch["image"][0].filename == "" assert batch["image"][0].format in ["PNG", "TIFF"] assert batch["image"][0].size == (640, 480) column = dset["image"] assert len(column) == 1 assert isinstance(column, list) and all(isinstance(item, PIL.Image.Image) for item in column) np.testing.assert_array_equal(np.array(column[0]), image_array) assert column[0].filename == "" assert column[0].format in ["PNG", "TIFF"] assert column[0].size == (640, 480) @require_pil def test_dataset_with_image_feature_tar_jpg(tar_jpg_path): import PIL.Image data = {"image": []} for file_path, file_obj in iter_archive(tar_jpg_path): data["image"].append({"path": file_path, "bytes": file_obj.read()}) break features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) assert item["image"].filename == "" assert item["image"].format == "JPEG" assert item["image"].size == (640, 480) assert item["image"].mode == "RGB" batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"image"} assert isinstance(batch["image"], list) and all(isinstance(item, PIL.Image.Image) for item in batch["image"]) assert batch["image"][0].filename == "" assert batch["image"][0].format == "JPEG" assert batch["image"][0].size == (640, 480) assert batch["image"][0].mode == "RGB" column = dset["image"] assert len(column) == 1 assert isinstance(column, list) and all(isinstance(item, PIL.Image.Image) for item in column) assert column[0].filename == "" assert column[0].format == "JPEG" assert column[0].size == (640, 480) assert column[0].mode == "RGB" @require_pil def test_dataset_with_image_feature_with_none(): data = {"image": [None]} features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert item["image"] is None batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"image"} assert isinstance(batch["image"], list) and all(item is None for item in batch["image"]) column = dset["image"] assert len(column) == 1 assert isinstance(column, list) and all(item is None for item in column) # nested tests data = {"images": [[None]]} features = Features({"images": Sequence(Image())}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"images"} assert all(i is None for i in item["images"]) data = {"nested": [{"image": None}]} features = Features({"nested": {"image": Image()}}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"nested"} assert item["nested"].keys() == {"image"} assert item["nested"]["image"] is None @require_pil @pytest.mark.parametrize( "build_data", [ lambda image_path: {"image": [image_path]}, lambda image_path: {"image": [open(image_path, "rb").read()]}, lambda image_path: {"image": [{"path": image_path}]}, lambda image_path: {"image": [{"path": image_path, "bytes": None}]}, lambda image_path: {"image": [{"path": image_path, "bytes": open(image_path, "rb").read()}]}, lambda image_path: {"image": [{"path": None, "bytes": open(image_path, "rb").read()}]}, lambda image_path: {"image": [{"bytes": open(image_path, "rb").read()}]}, ], ) def test_dataset_cast_to_image_features(shared_datadir, build_data): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") data = build_data(image_path) dset = Dataset.from_dict(data) item = dset.cast(Features({"image": Image()}))[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) item = dset.cast_column("image", Image())[0] assert item.keys() == {"image"} assert isinstance(item["image"], PIL.Image.Image) @require_pil def test_dataset_concatenate_image_features(shared_datadir): # we use a different data structure between 1 and 2 to make sure they are compatible with each other image_path = str(shared_datadir / "test_image_rgb.jpg") data1 = {"image": [image_path]} dset1 = Dataset.from_dict(data1, features=Features({"image": Image()})) data2 = {"image": [{"bytes": open(image_path, "rb").read()}]} dset2 = Dataset.from_dict(data2, features=Features({"image": Image()})) concatenated_dataset = concatenate_datasets([dset1, dset2]) assert len(concatenated_dataset) == len(dset1) + len(dset2) assert concatenated_dataset[0]["image"] == dset1[0]["image"] assert concatenated_dataset[1]["image"] == dset2[0]["image"] @require_pil def test_dataset_concatenate_nested_image_features(shared_datadir): # we use a different data structure between 1 and 2 to make sure they are compatible with each other image_path = str(shared_datadir / "test_image_rgb.jpg") features = Features({"list_of_structs_of_images": [{"image": Image()}]}) data1 = {"list_of_structs_of_images": [[{"image": image_path}]]} dset1 = Dataset.from_dict(data1, features=features) data2 = {"list_of_structs_of_images": [[{"image": {"bytes": open(image_path, "rb").read()}}]]} dset2 = Dataset.from_dict(data2, features=features) concatenated_dataset = concatenate_datasets([dset1, dset2]) assert len(concatenated_dataset) == len(dset1) + len(dset2) assert ( concatenated_dataset[0]["list_of_structs_of_images"][0]["image"] == dset1[0]["list_of_structs_of_images"][0]["image"] ) assert ( concatenated_dataset[1]["list_of_structs_of_images"][0]["image"] == dset2[0]["list_of_structs_of_images"][0]["image"] ) @require_pil def test_dataset_with_image_feature_map(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path], "caption": ["cats sleeping"]} features = Features({"image": Image(), "caption": Value("string")}) dset = Dataset.from_dict(data, features=features) for item in dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption"} assert item == {"image": {"path": image_path, "bytes": None}, "caption": "cats sleeping"} # no decoding def process_caption(example): example["caption"] = "Two " + example["caption"] return example processed_dset = dset.map(process_caption) for item in processed_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption"} assert item == {"image": {"path": image_path, "bytes": None}, "caption": "Two cats sleeping"} # decoding example def process_image_by_example(example): example["mode"] = example["image"].mode return example decoded_dset = dset.map(process_image_by_example) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption", "mode"} assert os.path.samefile(item["image"]["path"], image_path) assert item["caption"] == "cats sleeping" assert item["mode"] == "RGB" # decoding batch def process_image_by_batch(batch): batch["mode"] = [image.mode for image in batch["image"]] return batch decoded_dset = dset.map(process_image_by_batch, batched=True) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption", "mode"} assert os.path.samefile(item["image"]["path"], image_path) assert item["caption"] == "cats sleeping" assert item["mode"] == "RGB" @require_pil def test_formatted_dataset_with_image_feature_map(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") pil_image = Image().decode_example({"path": image_path, "bytes": None}) data = {"image": [image_path], "caption": ["cats sleeping"]} features = Features({"image": Image(), "caption": Value("string")}) dset = Dataset.from_dict(data, features=features) for item in dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption"} assert item == {"image": {"path": image_path, "bytes": None}, "caption": "cats sleeping"} def process_image_by_example(example): example["num_channels"] = example["image"].shape[-1] return example decoded_dset = dset.with_format("numpy").map(process_image_by_example) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption", "num_channels"} assert item["image"] == encode_np_array(np.array(pil_image)) assert item["caption"] == "cats sleeping" assert item["num_channels"] == 3 def process_image_by_batch(batch): batch["num_channels"] = [image.shape[-1] for image in batch["image"]] return batch decoded_dset = dset.with_format("numpy").map(process_image_by_batch, batched=True) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image", "caption", "num_channels"} assert item["image"] == encode_np_array(np.array(pil_image)) assert item["caption"] == "cats sleeping" assert item["num_channels"] == 3 @require_pil def test_dataset_with_image_feature_map_change_image(shared_datadir): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") pil_image = Image().decode_example({"path": image_path, "bytes": None}) data = {"image": [image_path]} features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) for item in dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image"} assert item == { "image": { "bytes": None, "path": image_path, } } # return pil image def process_image_resize_by_example(example): example["image"] = example["image"].resize((100, 100)) return example decoded_dset = dset.map(process_image_resize_by_example) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image"} assert item == {"image": {"bytes": image_to_bytes(pil_image.resize((100, 100))), "path": None}} def process_image_resize_by_batch(batch): batch["image"] = [image.resize((100, 100)) for image in batch["image"]] return batch decoded_dset = dset.map(process_image_resize_by_batch, batched=True) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image"} assert item == {"image": {"bytes": image_to_bytes(pil_image.resize((100, 100))), "path": None}} # return np.ndarray (e.g. when using albumentations) def process_image_resize_by_example_return_np_array(example): example["image"] = np.array(example["image"].resize((100, 100))) return example decoded_dset = dset.map(process_image_resize_by_example_return_np_array) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image"} assert item == { "image": { "bytes": image_to_bytes(PIL.Image.fromarray(np.array(pil_image.resize((100, 100))))), "path": None, } } def process_image_resize_by_batch_return_np_array(batch): batch["image"] = [np.array(image.resize((100, 100))) for image in batch["image"]] return batch decoded_dset = dset.map(process_image_resize_by_batch_return_np_array, batched=True) for item in decoded_dset.cast_column("image", Image(decode=False)): assert item.keys() == {"image"} assert item == { "image": { "bytes": image_to_bytes(PIL.Image.fromarray(np.array(pil_image.resize((100, 100))))), "path": None, } } @require_pil def test_formatted_dataset_with_image_feature(shared_datadir): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path, image_path]} features = Features({"image": Image()}) dset = Dataset.from_dict(data, features=features) with dset.formatted_as("numpy"): item = dset[0] assert item.keys() == {"image"} assert isinstance(item["image"], np.ndarray) assert item["image"].shape == (480, 640, 3) batch = dset[:1] assert batch.keys() == {"image"} assert len(batch) == 1 assert isinstance(batch["image"], np.ndarray) assert batch["image"].shape == (1, 480, 640, 3) column = dset["image"] assert len(column) == 2 assert isinstance(column, np.ndarray) assert column.shape == (2, 480, 640, 3) with dset.formatted_as("pandas"): item = dset[0] assert item.shape == (1, 1) assert item.columns == ["image"] assert isinstance(item["image"][0], PIL.Image.Image) assert os.path.samefile(item["image"][0].filename, image_path) assert item["image"][0].format == "JPEG" assert item["image"][0].size == (640, 480) assert item["image"][0].mode == "RGB" batch = dset[:1] assert batch.shape == (1, 1) assert batch.columns == ["image"] assert isinstance(batch["image"], pd.Series) and all( isinstance(item, PIL.Image.Image) for item in batch["image"] ) assert os.path.samefile(batch["image"][0].filename, image_path) assert batch["image"][0].format == "JPEG" assert batch["image"][0].size == (640, 480) assert batch["image"][0].mode == "RGB" column = dset["image"] assert len(column) == 2 assert isinstance(column, pd.Series) and all(isinstance(item, PIL.Image.Image) for item in column) assert os.path.samefile(column[0].filename, image_path) assert column[0].format == "JPEG" assert column[0].size == (640, 480) assert column[0].mode == "RGB" # Currently, the JSONL reader doesn't support complex feature types so we create a temporary dataset script # to test streaming (without uploading the test dataset to the hub). DATASET_LOADING_SCRIPT_NAME = "__dummy_dataset__" DATASET_LOADING_SCRIPT_CODE = """ import os import datasets from datasets import DatasetInfo, Features, Image, Split, SplitGenerator, Value class __DummyDataset__(datasets.GeneratorBasedBuilder): def _info(self) -> DatasetInfo: return DatasetInfo(features=Features({"image": Image(), "caption": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator(Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_manager.manual_dir, "train.txt")}), ] def _generate_examples(self, filepath, **kwargs): with open(filepath, encoding="utf-8") as f: for i, line in enumerate(f): image_path, caption = line.split(",") yield i, {"image": image_path.strip(), "caption": caption.strip()} """ @pytest.fixture def data_dir(shared_datadir, tmp_path): data_dir = tmp_path / "dummy_dataset_data" data_dir.mkdir() image_path = str(shared_datadir / "test_image_rgb.jpg") with open(data_dir / "train.txt", "w") as f: f.write(f"{image_path},Two cats sleeping\n") return str(data_dir) @pytest.fixture def dataset_loading_script_dir(tmp_path): script_name = DATASET_LOADING_SCRIPT_NAME script_dir = tmp_path / script_name script_dir.mkdir() script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(DATASET_LOADING_SCRIPT_CODE) return str(script_dir) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_load_dataset_with_image_feature(shared_datadir, data_dir, dataset_loading_script_dir, streaming): import PIL.Image image_path = str(shared_datadir / "test_image_rgb.jpg") dset = load_dataset(dataset_loading_script_dir, split="train", data_dir=data_dir, streaming=streaming) item = dset[0] if not streaming else next(iter(dset)) assert item.keys() == {"image", "caption"} assert isinstance(item["image"], PIL.Image.Image) assert os.path.samefile(item["image"].filename, image_path) assert item["image"].format == "JPEG" assert item["image"].size == (640, 480) assert item["image"].mode == "RGB" @require_pil def test_dataset_with_image_feature_undecoded(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path]} features = Features({"image": Image(decode=False)}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"image"} assert item["image"] == {"path": image_path, "bytes": None} batch = dset[:1] assert batch.keys() == {"image"} assert len(batch["image"]) == 1 assert batch["image"][0] == {"path": image_path, "bytes": None} column = dset["image"] assert len(column) == 1 assert column[0] == {"path": image_path, "bytes": None} @require_pil def test_formatted_dataset_with_image_feature_undecoded(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path]} features = Features({"image": Image(decode=False)}) dset = Dataset.from_dict(data, features=features) with dset.formatted_as("numpy"): item = dset[0] assert item.keys() == {"image"} assert item["image"] == {"path": image_path, "bytes": None} batch = dset[:1] assert batch.keys() == {"image"} assert len(batch["image"]) == 1 assert batch["image"][0] == {"path": image_path, "bytes": None} column = dset["image"] assert len(column) == 1 assert column[0] == {"path": image_path, "bytes": None} with dset.formatted_as("pandas"): item = dset[0] assert item.shape == (1, 1) assert item.columns == ["image"] assert item["image"][0] == {"path": image_path, "bytes": None} batch = dset[:1] assert batch.shape == (1, 1) assert batch.columns == ["image"] assert batch["image"][0] == {"path": image_path, "bytes": None} column = dset["image"] assert len(column) == 1 assert column[0] == {"path": image_path, "bytes": None} @require_pil def test_dataset_with_image_feature_map_undecoded(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") data = {"image": [image_path]} features = Features({"image": Image(decode=False)}) dset = Dataset.from_dict(data, features=features) def assert_image_example_undecoded(example): assert example["image"] == {"path": image_path, "bytes": None} dset.map(assert_image_example_undecoded) def assert_image_batch_undecoded(batch): for image in batch["image"]: assert image == {"path": image_path, "bytes": None} dset.map(assert_image_batch_undecoded, batched=True) @require_pil def test_image_embed_storage(shared_datadir): image_path = str(shared_datadir / "test_image_rgb.jpg") example = {"bytes": None, "path": image_path} storage = pa.array([example], type=pa.struct({"bytes": pa.binary(), "path": pa.string()})) embedded_storage = Image().embed_storage(storage) embedded_example = embedded_storage.to_pylist()[0] assert embedded_example == {"bytes": open(image_path, "rb").read(), "path": "test_image_rgb.jpg"} @require_pil @pytest.mark.parametrize( "array, dtype_cast, expected_image_format", [ (np.arange(16).reshape(4, 4).astype(np.uint8), "exact_match", "PNG"), (np.arange(16).reshape(4, 4).astype(np.uint16), "exact_match", "TIFF"), (np.arange(16).reshape(4, 4).astype(np.int64), "downcast->|i4", "TIFF"), (np.arange(16).reshape(4, 4).astype(np.complex128), "error", None), (np.arange(16).reshape(2, 2, 4).astype(np.uint8), "exact_match", "PNG"), (np.arange(16).reshape(2, 2, 4), "downcast->|u1", "PNG"), (np.arange(16).reshape(2, 2, 4).astype(np.float64), "error", None), ], ) def test_encode_np_array(array, dtype_cast, expected_image_format): if dtype_cast.startswith("downcast"): _, dest_dtype = dtype_cast.split("->") dest_dtype = np.dtype(dest_dtype) with pytest.warns(UserWarning, match=f"Downcasting array dtype.+{dest_dtype}.+"): encoded_image = Image().encode_example(array) elif dtype_cast == "error": with pytest.raises(TypeError): Image().encode_example(array) return else: # exact_match (no warnings are raised) with warnings.catch_warnings(): warnings.simplefilter("error") encoded_image = Image().encode_example(array) assert isinstance(encoded_image, dict) assert encoded_image.keys() == {"path", "bytes"} assert encoded_image["path"] is None assert encoded_image["bytes"] is not None and isinstance(encoded_image["bytes"], bytes) decoded_image = Image().decode_example(encoded_image) assert decoded_image.format == expected_image_format np.testing.assert_array_equal(np.array(decoded_image), array)
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/features/test_array_xd.py
import os import random import tempfile import unittest import numpy as np import pandas as pd import pyarrow as pa import pytest from absl.testing import parameterized import datasets from datasets.arrow_writer import ArrowWriter from datasets.features import Array2D, Array3D, Array4D, Array5D, Value from datasets.features.features import Array3DExtensionType, PandasArrayExtensionDtype, _ArrayXD from datasets.formatting.formatting import NumpyArrowExtractor, SimpleArrowExtractor SHAPE_TEST_1 = (30, 487) SHAPE_TEST_2 = (36, 1024) SHAPE_TEST_3 = (None, 100) SPEED_TEST_SHAPE = (100, 100) SPEED_TEST_N_EXAMPLES = 100 DEFAULT_FEATURES = datasets.Features( { "text": Array2D(SHAPE_TEST_1, dtype="float32"), "image": Array2D(SHAPE_TEST_2, dtype="float32"), "dynamic": Array2D(SHAPE_TEST_3, dtype="float32"), } ) def generate_examples(features: dict, num_examples=100, seq_shapes=None): dummy_data = [] seq_shapes = seq_shapes or {} for i in range(num_examples): example = {} for col_id, (k, v) in enumerate(features.items()): if isinstance(v, _ArrayXD): if k == "dynamic": first_dim = random.randint(1, 3) data = np.random.rand(first_dim, *v.shape[1:]).astype(v.dtype) else: data = np.random.rand(*v.shape).astype(v.dtype) elif isinstance(v, datasets.Value): data = "foo" elif isinstance(v, datasets.Sequence): while isinstance(v, datasets.Sequence): v = v.feature shape = seq_shapes[k] data = np.random.rand(*shape).astype(v.dtype) example[k] = data dummy_data.append((i, example)) return dummy_data class ExtensionTypeCompatibilityTest(unittest.TestCase): def test_array2d_nonspecific_shape(self): with tempfile.TemporaryDirectory() as tmp_dir: my_features = DEFAULT_FEATURES.copy() with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: for key, record in generate_examples( features=my_features, num_examples=1, ): example = my_features.encode_example(record) writer.write(example) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) dataset.set_format("numpy") row = dataset[0] first_shape = row["image"].shape second_shape = row["text"].shape self.assertTrue(first_shape is not None and second_shape is not None, "need atleast 2 different shapes") self.assertEqual(len(first_shape), len(second_shape), "both shapes are supposed to be equal length") self.assertNotEqual(first_shape, second_shape, "shapes must not be the same") del dataset def test_multiple_extensions_same_row(self): with tempfile.TemporaryDirectory() as tmp_dir: my_features = DEFAULT_FEATURES.copy() with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: for key, record in generate_examples(features=my_features, num_examples=1): example = my_features.encode_example(record) writer.write(example) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) dataset.set_format("numpy") row = dataset[0] first_len = len(row["image"].shape) second_len = len(row["text"].shape) third_len = len(row["dynamic"].shape) self.assertEqual(first_len, 2, "use a sequence type if dim is < 2") self.assertEqual(second_len, 2, "use a sequence type if dim is < 2") self.assertEqual(third_len, 2, "use a sequence type if dim is < 2") del dataset def test_compatability_with_string_values(self): with tempfile.TemporaryDirectory() as tmp_dir: my_features = DEFAULT_FEATURES.copy() my_features["image_id"] = datasets.Value("string") with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: for key, record in generate_examples(features=my_features, num_examples=1): example = my_features.encode_example(record) writer.write(example) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) self.assertIsInstance(dataset[0]["image_id"], str, "image id must be of type string") del dataset def test_extension_indexing(self): with tempfile.TemporaryDirectory() as tmp_dir: my_features = DEFAULT_FEATURES.copy() my_features["explicit_ext"] = Array2D((3, 3), dtype="float32") with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: for key, record in generate_examples(features=my_features, num_examples=1): example = my_features.encode_example(record) writer.write(example) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) dataset.set_format("numpy") data = dataset[0]["explicit_ext"] self.assertIsInstance(data, np.ndarray, "indexed extension must return numpy.ndarray") del dataset def get_array_feature_types(): shape_1 = [3] * 5 shape_2 = [3, 4, 5, 6, 7] return [ { "testcase_name": f"{d}d", "array_feature": array_feature, "shape_1": tuple(shape_1[:d]), "shape_2": tuple(shape_2[:d]), } for d, array_feature in zip(range(2, 6), [Array2D, Array3D, Array4D, Array5D]) ] @parameterized.named_parameters(get_array_feature_types()) class ArrayXDTest(unittest.TestCase): def get_features(self, array_feature, shape_1, shape_2): return datasets.Features( { "image": array_feature(shape_1, dtype="float32"), "source": Value("string"), "matrix": array_feature(shape_2, dtype="float32"), } ) def get_dict_example_0(self, shape_1, shape_2): return { "image": np.random.rand(*shape_1).astype("float32"), "source": "foo", "matrix": np.random.rand(*shape_2).astype("float32"), } def get_dict_example_1(self, shape_1, shape_2): return { "image": np.random.rand(*shape_1).astype("float32"), "matrix": np.random.rand(*shape_2).astype("float32"), "source": "bar", } def get_dict_examples(self, shape_1, shape_2): return { "image": np.random.rand(2, *shape_1).astype("float32").tolist(), "source": ["foo", "bar"], "matrix": np.random.rand(2, *shape_2).astype("float32").tolist(), } def _check_getitem_output_type(self, dataset, shape_1, shape_2, first_matrix): matrix_column = dataset["matrix"] self.assertIsInstance(matrix_column, list) self.assertIsInstance(matrix_column[0], list) self.assertIsInstance(matrix_column[0][0], list) self.assertTupleEqual(np.array(matrix_column).shape, (2, *shape_2)) matrix_field_of_first_example = dataset[0]["matrix"] self.assertIsInstance(matrix_field_of_first_example, list) self.assertIsInstance(matrix_field_of_first_example, list) self.assertEqual(np.array(matrix_field_of_first_example).shape, shape_2) np.testing.assert_array_equal(np.array(matrix_field_of_first_example), np.array(first_matrix)) matrix_field_of_first_two_examples = dataset[:2]["matrix"] self.assertIsInstance(matrix_field_of_first_two_examples, list) self.assertIsInstance(matrix_field_of_first_two_examples[0], list) self.assertIsInstance(matrix_field_of_first_two_examples[0][0], list) self.assertTupleEqual(np.array(matrix_field_of_first_two_examples).shape, (2, *shape_2)) with dataset.formatted_as("numpy"): self.assertTupleEqual(dataset["matrix"].shape, (2, *shape_2)) self.assertEqual(dataset[0]["matrix"].shape, shape_2) self.assertTupleEqual(dataset[:2]["matrix"].shape, (2, *shape_2)) with dataset.formatted_as("pandas"): self.assertIsInstance(dataset["matrix"], pd.Series) self.assertIsInstance(dataset[0]["matrix"], pd.Series) self.assertIsInstance(dataset[:2]["matrix"], pd.Series) self.assertTupleEqual(dataset["matrix"].to_numpy().shape, (2, *shape_2)) self.assertTupleEqual(dataset[0]["matrix"].to_numpy().shape, (1, *shape_2)) self.assertTupleEqual(dataset[:2]["matrix"].to_numpy().shape, (2, *shape_2)) def test_write(self, array_feature, shape_1, shape_2): with tempfile.TemporaryDirectory() as tmp_dir: my_features = self.get_features(array_feature, shape_1, shape_2) my_examples = [ (0, self.get_dict_example_0(shape_1, shape_2)), (1, self.get_dict_example_1(shape_1, shape_2)), ] with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: for key, record in my_examples: example = my_features.encode_example(record) writer.write(example) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) self._check_getitem_output_type(dataset, shape_1, shape_2, my_examples[0][1]["matrix"]) del dataset def test_write_batch(self, array_feature, shape_1, shape_2): with tempfile.TemporaryDirectory() as tmp_dir: my_features = self.get_features(array_feature, shape_1, shape_2) dict_examples = self.get_dict_examples(shape_1, shape_2) dict_examples = my_features.encode_batch(dict_examples) with ArrowWriter(features=my_features, path=os.path.join(tmp_dir, "beta.arrow")) as writer: writer.write_batch(dict_examples) num_examples, num_bytes = writer.finalize() dataset = datasets.Dataset.from_file(os.path.join(tmp_dir, "beta.arrow")) self._check_getitem_output_type(dataset, shape_1, shape_2, dict_examples["matrix"][0]) del dataset def test_from_dict(self, array_feature, shape_1, shape_2): dict_examples = self.get_dict_examples(shape_1, shape_2) dataset = datasets.Dataset.from_dict( dict_examples, features=self.get_features(array_feature, shape_1, shape_2) ) self._check_getitem_output_type(dataset, shape_1, shape_2, dict_examples["matrix"][0]) del dataset class ArrayXDDynamicTest(unittest.TestCase): def get_one_col_dataset(self, first_dim_list, fixed_shape): features = datasets.Features({"image": Array3D(shape=(None, *fixed_shape), dtype="float32")}) dict_values = {"image": [np.random.rand(fdim, *fixed_shape).astype("float32") for fdim in first_dim_list]} dataset = datasets.Dataset.from_dict(dict_values, features=features) return dataset def get_two_col_datasset(self, first_dim_list, fixed_shape): features = datasets.Features( {"image": Array3D(shape=(None, *fixed_shape), dtype="float32"), "text": Value("string")} ) dict_values = { "image": [np.random.rand(fdim, *fixed_shape).astype("float32") for fdim in first_dim_list], "text": ["text" for _ in first_dim_list], } dataset = datasets.Dataset.from_dict(dict_values, features=features) return dataset def test_to_pylist(self): fixed_shape = (2, 2) first_dim_list = [1, 3, 10] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) arr_xd = SimpleArrowExtractor().extract_column(dataset._data) self.assertIsInstance(arr_xd.type, Array3DExtensionType) pylist = arr_xd.to_pylist() for first_dim, single_arr in zip(first_dim_list, pylist): self.assertIsInstance(single_arr, list) self.assertTupleEqual(np.array(single_arr).shape, (first_dim, *fixed_shape)) def test_to_numpy(self): fixed_shape = (2, 2) # ragged first_dim_list = [1, 3, 10] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) arr_xd = SimpleArrowExtractor().extract_column(dataset._data) self.assertIsInstance(arr_xd.type, Array3DExtensionType) # replace with arr_xd = arr_xd.combine_chunks() when 12.0.0 will be the minimal required PyArrow version arr_xd = arr_xd.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in arr_xd.chunks])) numpy_arr = arr_xd.to_numpy() self.assertIsInstance(numpy_arr, np.ndarray) self.assertEqual(numpy_arr.dtype, object) for first_dim, single_arr in zip(first_dim_list, numpy_arr): self.assertIsInstance(single_arr, np.ndarray) self.assertTupleEqual(single_arr.shape, (first_dim, *fixed_shape)) # non-ragged first_dim_list = [4, 4, 4] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) arr_xd = SimpleArrowExtractor().extract_column(dataset._data) self.assertIsInstance(arr_xd.type, Array3DExtensionType) # replace with arr_xd = arr_xd.combine_chunks() when 12.0.0 will be the minimal required PyArrow version arr_xd = arr_xd.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in arr_xd.chunks])) numpy_arr = arr_xd.to_numpy() self.assertIsInstance(numpy_arr, np.ndarray) self.assertNotEqual(numpy_arr.dtype, object) for first_dim, single_arr in zip(first_dim_list, numpy_arr): self.assertIsInstance(single_arr, np.ndarray) self.assertTupleEqual(single_arr.shape, (first_dim, *fixed_shape)) def test_iter_dataset(self): fixed_shape = (2, 2) first_dim_list = [1, 3, 10] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) for first_dim, ds_row in zip(first_dim_list, dataset): single_arr = ds_row["image"] self.assertIsInstance(single_arr, list) self.assertTupleEqual(np.array(single_arr).shape, (first_dim, *fixed_shape)) def test_to_pandas(self): fixed_shape = (2, 2) # ragged first_dim_list = [1, 3, 10] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) df = dataset.to_pandas() self.assertEqual(type(df.image.dtype), PandasArrayExtensionDtype) numpy_arr = df.image.to_numpy() self.assertIsInstance(numpy_arr, np.ndarray) self.assertEqual(numpy_arr.dtype, object) for first_dim, single_arr in zip(first_dim_list, numpy_arr): self.assertIsInstance(single_arr, np.ndarray) self.assertTupleEqual(single_arr.shape, (first_dim, *fixed_shape)) # non-ragged first_dim_list = [4, 4, 4] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) df = dataset.to_pandas() self.assertEqual(type(df.image.dtype), PandasArrayExtensionDtype) numpy_arr = df.image.to_numpy() self.assertIsInstance(numpy_arr, np.ndarray) self.assertNotEqual(numpy_arr.dtype, object) for first_dim, single_arr in zip(first_dim_list, numpy_arr): self.assertIsInstance(single_arr, np.ndarray) self.assertTupleEqual(single_arr.shape, (first_dim, *fixed_shape)) def test_map_dataset(self): fixed_shape = (2, 2) first_dim_list = [1, 3, 10] dataset = self.get_one_col_dataset(first_dim_list, fixed_shape) dataset = dataset.map(lambda a: {"image": np.concatenate([a] * 2)}, input_columns="image") # check also if above function resulted with 2x bigger first dim for first_dim, ds_row in zip(first_dim_list, dataset): single_arr = ds_row["image"] self.assertIsInstance(single_arr, list) self.assertTupleEqual(np.array(single_arr).shape, (first_dim * 2, *fixed_shape)) @pytest.mark.parametrize("dtype, dummy_value", [("int32", 1), ("bool", True), ("float64", 1)]) def test_table_to_pandas(dtype, dummy_value): features = datasets.Features({"foo": datasets.Array2D(dtype=dtype, shape=(2, 2))}) dataset = datasets.Dataset.from_dict({"foo": [[[dummy_value] * 2] * 2]}, features=features) df = dataset._data.to_pandas() assert type(df.foo.dtype) == PandasArrayExtensionDtype arr = df.foo.to_numpy() np.testing.assert_equal(arr, np.array([[[dummy_value] * 2] * 2], dtype=np.dtype(dtype))) @pytest.mark.parametrize("dtype, dummy_value", [("int32", 1), ("bool", True), ("float64", 1)]) def test_array_xd_numpy_arrow_extractor(dtype, dummy_value): features = datasets.Features({"foo": datasets.Array2D(dtype=dtype, shape=(2, 2))}) dataset = datasets.Dataset.from_dict({"foo": [[[dummy_value] * 2] * 2]}, features=features) arr = NumpyArrowExtractor().extract_column(dataset._data) assert isinstance(arr, np.ndarray) np.testing.assert_equal(arr, np.array([[[dummy_value] * 2] * 2], dtype=np.dtype(dtype))) def test_array_xd_with_none(): # Fixed shape features = datasets.Features({"foo": datasets.Array2D(dtype="int32", shape=(2, 2))}) dummy_array = np.array([[1, 2], [3, 4]], dtype="int32") dataset = datasets.Dataset.from_dict({"foo": [dummy_array, None, dummy_array, None]}, features=features) arr = NumpyArrowExtractor().extract_column(dataset._data) assert isinstance(arr, np.ndarray) and arr.dtype == np.float64 and arr.shape == (4, 2, 2) assert np.allclose(arr[0], dummy_array) and np.allclose(arr[2], dummy_array) assert np.all(np.isnan(arr[1])) and np.all(np.isnan(arr[3])) # broadcasted np.nan - use np.all # Dynamic shape features = datasets.Features({"foo": datasets.Array2D(dtype="int32", shape=(None, 2))}) dummy_array = np.array([[1, 2], [3, 4]], dtype="int32") dataset = datasets.Dataset.from_dict({"foo": [dummy_array, None, dummy_array, None]}, features=features) arr = NumpyArrowExtractor().extract_column(dataset._data) assert isinstance(arr, np.ndarray) and arr.dtype == object and arr.shape == (4,) np.testing.assert_equal(arr[0], dummy_array) np.testing.assert_equal(arr[2], dummy_array) assert np.isnan(arr[1]) and np.isnan(arr[3]) # a single np.nan value - np.all not needed @pytest.mark.parametrize("seq_type", ["no_sequence", "sequence", "sequence_of_sequence"]) @pytest.mark.parametrize( "dtype", [ "bool", "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float16", "float32", "float64", ], ) @pytest.mark.parametrize("shape, feature_class", [((2, 3), datasets.Array2D), ((2, 3, 4), datasets.Array3D)]) def test_array_xd_with_np(seq_type, dtype, shape, feature_class): feature = feature_class(dtype=dtype, shape=shape) data = np.zeros(shape, dtype=dtype) expected = data.tolist() if seq_type == "sequence": feature = datasets.Sequence(feature) data = [data] expected = [expected] elif seq_type == "sequence_of_sequence": feature = datasets.Sequence(datasets.Sequence(feature)) data = [[data]] expected = [[expected]] ds = datasets.Dataset.from_dict({"col": [data]}, features=datasets.Features({"col": feature})) assert ds[0]["col"] == expected @pytest.mark.parametrize("with_none", [False, True]) def test_dataset_map(with_none): ds = datasets.Dataset.from_dict({"path": ["path1", "path2"]}) def process_data(batch): batch = { "image": [ np.array( [ [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 20, 30], [40, 50, 60], [70, 80, 90]], [[100, 200, 300], [400, 500, 600], [700, 800, 900]], ] ) for _ in batch["path"] ] } if with_none: batch["image"][0] = None return batch features = datasets.Features({"image": Array3D(dtype="int32", shape=(3, 3, 3))}) processed_ds = ds.map(process_data, batched=True, remove_columns=ds.column_names, features=features) assert processed_ds.shape == (2, 1) with processed_ds.with_format("numpy") as pds: for i, example in enumerate(pds): assert "image" in example assert isinstance(example["image"], np.ndarray) assert example["image"].shape == (3, 3, 3) if with_none and i == 0: assert np.all(np.isnan(example["image"]))
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/features/test_features.py
import datetime from unittest import TestCase from unittest.mock import patch import numpy as np import pandas as pd import pyarrow as pa import pytest from datasets import Array2D from datasets.arrow_dataset import Dataset from datasets.features import Audio, ClassLabel, Features, Image, Sequence, Value from datasets.features.features import ( _arrow_to_datasets_dtype, _cast_to_python_objects, cast_to_python_objects, encode_nested_example, generate_from_dict, string_to_arrow, ) from datasets.features.translation import Translation, TranslationVariableLanguages from datasets.info import DatasetInfo from datasets.utils.py_utils import asdict from ..utils import require_jax, require_tf, require_torch class FeaturesTest(TestCase): def test_from_arrow_schema_simple(self): data = {"a": [{"b": {"c": "text"}}] * 10, "foo": [1] * 10} original_features = Features({"a": {"b": {"c": Value("string")}}, "foo": Value("int64")}) dset = Dataset.from_dict(data, features=original_features) new_features = dset.features new_dset = Dataset.from_dict(data, features=new_features) self.assertEqual(original_features.type, new_features.type) self.assertDictEqual(dset[0], new_dset[0]) self.assertDictEqual(dset[:], new_dset[:]) def test_from_arrow_schema_with_sequence(self): data = {"a": [{"b": {"c": ["text"]}}] * 10, "foo": [1] * 10} original_features = Features({"a": {"b": Sequence({"c": Value("string")})}, "foo": Value("int64")}) dset = Dataset.from_dict(data, features=original_features) new_features = dset.features new_dset = Dataset.from_dict(data, features=new_features) self.assertEqual(original_features.type, new_features.type) self.assertDictEqual(dset[0], new_dset[0]) self.assertDictEqual(dset[:], new_dset[:]) def test_string_to_arrow_bijection_for_primitive_types(self): supported_pyarrow_datatypes = [ pa.time32("s"), pa.time64("us"), pa.timestamp("s"), pa.timestamp("ns", tz="America/New_York"), pa.date32(), pa.date64(), pa.duration("s"), pa.decimal128(10, 2), pa.decimal256(40, -3), pa.string(), pa.int32(), pa.float64(), pa.array([datetime.time(1, 1, 1)]).type, # arrow type: DataType(time64[us]) ] for dt in supported_pyarrow_datatypes: self.assertEqual(dt, string_to_arrow(_arrow_to_datasets_dtype(dt))) unsupported_pyarrow_datatypes = [pa.list_(pa.float64())] for dt in unsupported_pyarrow_datatypes: with self.assertRaises(ValueError): string_to_arrow(_arrow_to_datasets_dtype(dt)) supported_datasets_dtypes = [ "time32[s]", "timestamp[ns]", "timestamp[ns, tz=+07:30]", "duration[us]", "decimal128(30, -4)", "int32", "float64", ] for sdt in supported_datasets_dtypes: self.assertEqual(sdt, _arrow_to_datasets_dtype(string_to_arrow(sdt))) unsupported_datasets_dtypes = [ "time32[ns]", "timestamp[blob]", "timestamp[[ns]]", "timestamp[ns, tz=[ns]]", "duration[[us]]", "decimal20(30, -4)", "int", ] for sdt in unsupported_datasets_dtypes: with self.assertRaises(ValueError): string_to_arrow(sdt) def test_feature_named_type(self): """reference: issue #1110""" features = Features({"_type": Value("string")}) ds_info = DatasetInfo(features=features) reloaded_features = Features.from_dict(asdict(ds_info)["features"]) assert features == reloaded_features def test_feature_named_self_as_kwarg(self): """reference: issue #5641""" features = Features(self=Value("string")) ds_info = DatasetInfo(features=features) reloaded_features = Features.from_dict(asdict(ds_info)["features"]) assert features == reloaded_features def test_class_label_feature_with_no_labels(self): """reference: issue #4681""" features = Features({"label": ClassLabel(names=[])}) ds_info = DatasetInfo(features=features) reloaded_features = Features.from_dict(asdict(ds_info)["features"]) assert features == reloaded_features def test_reorder_fields_as(self): features = Features( { "id": Value("string"), "document": { "title": Value("string"), "url": Value("string"), "html": Value("string"), "tokens": Sequence({"token": Value("string"), "is_html": Value("bool")}), }, "question": { "text": Value("string"), "tokens": Sequence(Value("string")), }, "annotations": Sequence( { "id": Value("string"), "long_answer": { "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), "end_byte": Value("int64"), }, "short_answers": Sequence( { "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), "end_byte": Value("int64"), "text": Value("string"), } ), "yes_no_answer": ClassLabel(names=["NO", "YES"]), } ), } ) other = Features( # same but with [] instead of sequences, and with a shuffled fields order { "id": Value("string"), "document": { "tokens": Sequence({"token": Value("string"), "is_html": Value("bool")}), "title": Value("string"), "url": Value("string"), "html": Value("string"), }, "question": { "text": Value("string"), "tokens": [Value("string")], }, "annotations": { "yes_no_answer": [ClassLabel(names=["NO", "YES"])], "id": [Value("string")], "long_answer": [ { "end_byte": Value("int64"), "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), } ], "short_answers": [ Sequence( { "text": Value("string"), "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), "end_byte": Value("int64"), } ) ], }, } ) expected = Features( { "id": Value("string"), "document": { "tokens": Sequence({"token": Value("string"), "is_html": Value("bool")}), "title": Value("string"), "url": Value("string"), "html": Value("string"), }, "question": { "text": Value("string"), "tokens": Sequence(Value("string")), }, "annotations": Sequence( { "yes_no_answer": ClassLabel(names=["NO", "YES"]), "id": Value("string"), "long_answer": { "end_byte": Value("int64"), "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), }, "short_answers": Sequence( { "text": Value("string"), "start_token": Value("int64"), "end_token": Value("int64"), "start_byte": Value("int64"), "end_byte": Value("int64"), } ), } ), } ) reordered_features = features.reorder_fields_as(other) self.assertDictEqual(reordered_features, expected) self.assertEqual(reordered_features.type, other.type) self.assertEqual(reordered_features.type, expected.type) self.assertNotEqual(reordered_features.type, features.type) def test_flatten(self): features = Features({"foo": {"bar1": Value("int32"), "bar2": {"foobar": Value("string")}}}) _features = features.copy() flattened_features = features.flatten() assert flattened_features == {"foo.bar1": Value("int32"), "foo.bar2.foobar": Value("string")} assert features == _features, "calling flatten shouldn't alter the current features" def test_flatten_with_sequence(self): features = Features({"foo": Sequence({"bar": {"my_value": Value("int32")}})}) _features = features.copy() flattened_features = features.flatten() assert flattened_features == {"foo.bar": [{"my_value": Value("int32")}]} assert features == _features, "calling flatten shouldn't alter the current features" def test_features_dicts_are_synced(self): def assert_features_dicts_are_synced(features: Features): assert ( hasattr(features, "_column_requires_decoding") and features.keys() == features._column_requires_decoding.keys() ) features = Features({"foo": Sequence({"bar": {"my_value": Value("int32")}})}) assert_features_dicts_are_synced(features) features["barfoo"] = Image() assert_features_dicts_are_synced(features) del features["barfoo"] assert_features_dicts_are_synced(features) features.update({"foobar": Value("string")}) assert_features_dicts_are_synced(features) features.pop("foobar") assert_features_dicts_are_synced(features) features.popitem() assert_features_dicts_are_synced(features) features.setdefault("xyz", Value("bool")) assert_features_dicts_are_synced(features) features.clear() assert_features_dicts_are_synced(features) def test_classlabel_init(tmp_path_factory): names = ["negative", "positive"] names_file = str(tmp_path_factory.mktemp("features") / "labels.txt") with open(names_file, "w", encoding="utf-8") as f: f.write("\n".join(names)) classlabel = ClassLabel(names=names) assert classlabel.names == names and classlabel.num_classes == len(names) classlabel = ClassLabel(names_file=names_file) assert classlabel.names == names and classlabel.num_classes == len(names) classlabel = ClassLabel(num_classes=len(names), names=names) assert classlabel.names == names and classlabel.num_classes == len(names) classlabel = ClassLabel(num_classes=len(names)) assert classlabel.names == [str(i) for i in range(len(names))] and classlabel.num_classes == len(names) with pytest.raises(ValueError): classlabel = ClassLabel(num_classes=len(names) + 1, names=names) with pytest.raises(ValueError): classlabel = ClassLabel(names=names, names_file=names_file) with pytest.raises(ValueError): classlabel = ClassLabel() with pytest.raises(TypeError): classlabel = ClassLabel(names=np.array(names)) def test_classlabel_str2int(): names = ["negative", "positive"] classlabel = ClassLabel(names=names) for label in names: assert classlabel.str2int(label) == names.index(label) with pytest.raises(ValueError): classlabel.str2int("__bad_label_name__") with pytest.raises(ValueError): classlabel.str2int(1) with pytest.raises(ValueError): classlabel.str2int(None) def test_classlabel_int2str(): names = ["negative", "positive"] classlabel = ClassLabel(names=names) for i in range(len(names)): assert classlabel.int2str(i) == names[i] with pytest.raises(ValueError): classlabel.int2str(len(names)) with pytest.raises(ValueError): classlabel.int2str(-1) with pytest.raises(ValueError): classlabel.int2str(None) def test_classlabel_cast_storage(): names = ["negative", "positive"] classlabel = ClassLabel(names=names) # from integers arr = pa.array([0, 1, -1, -100], type=pa.int64()) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [0, 1, -1, -100] arr = pa.array([0, 1, -1, -100], type=pa.int32()) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [0, 1, -1, -100] arr = pa.array([3]) with pytest.raises(ValueError): classlabel.cast_storage(arr) # from strings arr = pa.array(["negative", "positive"]) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [0, 1] arr = pa.array(["__label_that_doesnt_exist__"]) with pytest.raises(ValueError): classlabel.cast_storage(arr) # from nulls arr = pa.array([None]) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [None] # from empty arr = pa.array([], pa.int64()) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [] arr = pa.array([], pa.string()) result = classlabel.cast_storage(arr) assert result.type == pa.int64() assert result.to_pylist() == [] @pytest.mark.parametrize("class_label_arg", ["names", "names_file"]) def test_class_label_to_and_from_dict(class_label_arg, tmp_path_factory): names = ["negative", "positive"] names_file = str(tmp_path_factory.mktemp("features") / "labels.txt") with open(names_file, "w", encoding="utf-8") as f: f.write("\n".join(names)) if class_label_arg == "names": class_label = ClassLabel(names=names) elif class_label_arg == "names_file": class_label = ClassLabel(names_file=names_file) generated_class_label = generate_from_dict(asdict(class_label)) assert generated_class_label == class_label @pytest.mark.parametrize("inner_type", [Value("int32"), {"subcolumn": Value("int32")}]) def test_encode_nested_example_sequence_with_none(inner_type): schema = Sequence(inner_type) obj = None result = encode_nested_example(schema, obj) assert result is None def test_encode_batch_with_example_with_empty_first_elem(): features = Features( { "x": Sequence(Sequence(ClassLabel(names=["a", "b"]))), } ) encoded_batch = features.encode_batch( { "x": [ [["a"], ["b"]], [[], ["b"]], ] } ) assert encoded_batch == {"x": [[[0], [1]], [[], [1]]]} @pytest.mark.parametrize( "feature", [ Value("int32"), ClassLabel(num_classes=2), Translation(languages=["en", "fr"]), TranslationVariableLanguages(languages=["en", "fr"]), ], ) def test_dataset_feature_with_none(feature): data = {"col": [None]} features = Features({"col": feature}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"col"} assert item["col"] is None batch = dset[:1] assert len(batch) == 1 assert batch.keys() == {"col"} assert isinstance(batch["col"], list) and all(item is None for item in batch["col"]) column = dset["col"] assert len(column) == 1 assert isinstance(column, list) and all(item is None for item in column) # nested tests data = {"col": [[None]]} features = Features({"col": Sequence(feature)}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"col"} assert all(i is None for i in item["col"]) data = {"nested": [{"col": None}]} features = Features({"nested": {"col": feature}}) dset = Dataset.from_dict(data, features=features) item = dset[0] assert item.keys() == {"nested"} assert item["nested"].keys() == {"col"} assert item["nested"]["col"] is None def iternumpy(key1, value1, value2): if value1.dtype != value2.dtype: # check only for dtype raise AssertionError( f"dtype of '{key1}' key for casted object: {value1.dtype} and expected object: {value2.dtype} not matching" ) def dict_diff(d1: dict, d2: dict): # check if 2 dictionaries are equal np.testing.assert_equal(d1, d2) # sanity check if dict values are equal or not for (k1, v1), (k2, v2) in zip(d1.items(), d2.items()): # check if their values have same dtype or not if isinstance(v1, dict): # nested dictionary case dict_diff(v1, v2) elif isinstance(v1, np.ndarray): # checks if dtype and value of np.ndarray is equal iternumpy(k1, v1, v2) elif isinstance(v1, list): for element1, element2 in zip(v1, v2): # iterates over all elements of list if isinstance(element1, dict): dict_diff(element1, element2) elif isinstance(element1, np.ndarray): iternumpy(k1, element1, element2) class CastToPythonObjectsTest(TestCase): def test_cast_to_python_objects_list(self): obj = {"col_1": [{"vec": [1, 2, 3], "txt": "foo"}] * 3, "col_2": [[1, 2], [3, 4], [5, 6]]} expected_obj = {"col_1": [{"vec": [1, 2, 3], "txt": "foo"}] * 3, "col_2": [[1, 2], [3, 4], [5, 6]]} casted_obj = cast_to_python_objects(obj) self.assertDictEqual(casted_obj, expected_obj) def test_cast_to_python_objects_tuple(self): obj = {"col_1": [{"vec": (1, 2, 3), "txt": "foo"}] * 3, "col_2": [(1, 2), (3, 4), (5, 6)]} expected_obj = {"col_1": [{"vec": (1, 2, 3), "txt": "foo"}] * 3, "col_2": [(1, 2), (3, 4), (5, 6)]} casted_obj = cast_to_python_objects(obj) self.assertDictEqual(casted_obj, expected_obj) def test_cast_to_python_or_numpy(self): obj = {"col_1": [{"vec": np.arange(1, 4), "txt": "foo"}] * 3, "col_2": np.arange(1, 7).reshape(3, 2)} expected_obj = { "col_1": [{"vec": np.array([1, 2, 3]), "txt": "foo"}] * 3, "col_2": np.array([[1, 2], [3, 4], [5, 6]]), } casted_obj = cast_to_python_objects(obj) dict_diff(casted_obj, expected_obj) def test_cast_to_python_objects_series(self): obj = { "col_1": pd.Series([{"vec": [1, 2, 3], "txt": "foo"}] * 3), "col_2": pd.Series([[1, 2], [3, 4], [5, 6]]), } expected_obj = {"col_1": [{"vec": [1, 2, 3], "txt": "foo"}] * 3, "col_2": [[1, 2], [3, 4], [5, 6]]} casted_obj = cast_to_python_objects(obj) self.assertDictEqual(casted_obj, expected_obj) def test_cast_to_python_objects_dataframe(self): obj = pd.DataFrame({"col_1": [{"vec": [1, 2, 3], "txt": "foo"}] * 3, "col_2": [[1, 2], [3, 4], [5, 6]]}) expected_obj = {"col_1": [{"vec": [1, 2, 3], "txt": "foo"}] * 3, "col_2": [[1, 2], [3, 4], [5, 6]]} casted_obj = cast_to_python_objects(obj) self.assertDictEqual(casted_obj, expected_obj) def test_cast_to_python_objects_pandas_timestamp(self): obj = pd.Timestamp(2020, 1, 1) expected_obj = obj.to_pydatetime() casted_obj = cast_to_python_objects(obj) self.assertEqual(casted_obj, expected_obj) casted_obj = cast_to_python_objects(pd.Series([obj])) self.assertListEqual(casted_obj, [expected_obj]) casted_obj = cast_to_python_objects(pd.DataFrame({"a": [obj]})) self.assertDictEqual(casted_obj, {"a": [expected_obj]}) def test_cast_to_python_objects_pandas_timedelta(self): obj = pd.Timedelta(seconds=1) expected_obj = obj.to_pytimedelta() casted_obj = cast_to_python_objects(obj) self.assertEqual(casted_obj, expected_obj) casted_obj = cast_to_python_objects(pd.Series([obj])) self.assertListEqual(casted_obj, [expected_obj]) casted_obj = cast_to_python_objects(pd.DataFrame({"a": [obj]})) self.assertDictEqual(casted_obj, {"a": [expected_obj]}) @require_torch def test_cast_to_python_objects_torch(self): import torch obj = { "col_1": [{"vec": torch.tensor(np.arange(1, 4)), "txt": "foo"}] * 3, "col_2": torch.tensor(np.arange(1, 7).reshape(3, 2)), } expected_obj = { "col_1": [{"vec": np.array([1, 2, 3]), "txt": "foo"}] * 3, "col_2": np.array([[1, 2], [3, 4], [5, 6]]), } casted_obj = cast_to_python_objects(obj) dict_diff(casted_obj, expected_obj) @require_tf def test_cast_to_python_objects_tf(self): import tensorflow as tf obj = { "col_1": [{"vec": tf.constant(np.arange(1, 4)), "txt": "foo"}] * 3, "col_2": tf.constant(np.arange(1, 7).reshape(3, 2)), } expected_obj = { "col_1": [{"vec": np.array([1, 2, 3]), "txt": "foo"}] * 3, "col_2": np.array([[1, 2], [3, 4], [5, 6]]), } casted_obj = cast_to_python_objects(obj) dict_diff(casted_obj, expected_obj) @require_jax def test_cast_to_python_objects_jax(self): import jax.numpy as jnp obj = { "col_1": [{"vec": jnp.array(np.arange(1, 4)), "txt": "foo"}] * 3, "col_2": jnp.array(np.arange(1, 7).reshape(3, 2)), } assert obj["col_2"].dtype == jnp.int32 expected_obj = { "col_1": [{"vec": np.array([1, 2, 3], dtype=np.int32), "txt": "foo"}] * 3, "col_2": np.array([[1, 2], [3, 4], [5, 6]], dtype=np.int32), } casted_obj = cast_to_python_objects(obj) dict_diff(casted_obj, expected_obj) @patch("datasets.features.features._cast_to_python_objects", side_effect=_cast_to_python_objects) def test_dont_iterate_over_each_element_in_a_list(self, mocked_cast): obj = {"col_1": [[1, 2], [3, 4], [5, 6]]} cast_to_python_objects(obj) self.assertEqual(mocked_cast.call_count, 4) # 4 = depth of obj SIMPLE_FEATURES = [ Features(), Features({"a": Value("int32")}), Features({"a": Value("int32", id="my feature")}), Features({"a": Value("int32"), "b": Value("float64"), "c": Value("string")}), ] CUSTOM_FEATURES = [ Features({"label": ClassLabel(names=["negative", "positive"])}), Features({"array": Array2D(dtype="float32", shape=(4, 4))}), Features({"image": Image()}), Features({"audio": Audio()}), Features({"image": Image(decode=False)}), Features({"audio": Audio(decode=False)}), Features({"translation": Translation(["en", "fr"])}), Features({"translation": TranslationVariableLanguages(["en", "fr"])}), ] NESTED_FEATURES = [ Features({"foo": {}}), Features({"foo": {"bar": Value("int32")}}), Features({"foo": {"bar1": Value("int32"), "bar2": Value("float64")}}), Features({"foo": Sequence(Value("int32"))}), Features({"foo": Sequence({})}), Features({"foo": Sequence({"bar": Value("int32")})}), Features({"foo": [Value("int32")]}), Features({"foo": [{"bar": Value("int32")}]}), ] NESTED_CUSTOM_FEATURES = [ Features({"foo": {"bar": ClassLabel(names=["negative", "positive"])}}), Features({"foo": Sequence(ClassLabel(names=["negative", "positive"]))}), Features({"foo": Sequence({"bar": ClassLabel(names=["negative", "positive"])})}), Features({"foo": [ClassLabel(names=["negative", "positive"])]}), Features({"foo": [{"bar": ClassLabel(names=["negative", "positive"])}]}), ] @pytest.mark.parametrize("features", SIMPLE_FEATURES + CUSTOM_FEATURES + NESTED_FEATURES + NESTED_CUSTOM_FEATURES) def test_features_to_dict(features: Features): features_dict = features.to_dict() assert isinstance(features_dict, dict) reloaded = Features.from_dict(features_dict) assert features == reloaded @pytest.mark.parametrize("features", SIMPLE_FEATURES + CUSTOM_FEATURES + NESTED_FEATURES + NESTED_CUSTOM_FEATURES) def test_features_to_yaml_list(features: Features): features_yaml_list = features._to_yaml_list() assert isinstance(features_yaml_list, list) reloaded = Features._from_yaml_list(features_yaml_list) assert features == reloaded @pytest.mark.parametrize("features", SIMPLE_FEATURES + CUSTOM_FEATURES + NESTED_FEATURES + NESTED_CUSTOM_FEATURES) def test_features_to_arrow_schema(features: Features): arrow_schema = features.arrow_schema assert isinstance(arrow_schema, pa.Schema) reloaded = Features.from_arrow_schema(arrow_schema) assert features == reloaded
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/distributed_scripts/run_torch_distributed.py
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node NUM_SHARDS = 4 NUM_ITEMS_PER_SHARD = 3 class FailedTestError(RuntimeError): pass def gen(shards: List[str]): for shard in shards: for i in range(NUM_ITEMS_PER_SHARD): yield {"i": i, "shard": shard} def main(): rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) parser = ArgumentParser() parser.add_argument("--streaming", type=bool) parser.add_argument("--local_rank", type=int) parser.add_argument("--num_workers", type=int, default=0) args = parser.parse_args() streaming = args.streaming num_workers = args.num_workers gen_kwargs = {"shards": [f"shard_{shard_idx}" for shard_idx in range(NUM_SHARDS)]} ds = IterableDataset.from_generator(gen, gen_kwargs=gen_kwargs) if not streaming: ds = Dataset.from_list(list(ds)) ds = split_dataset_by_node(ds, rank=rank, world_size=world_size) dataloader = torch.utils.data.DataLoader(ds, num_workers=num_workers) full_size = NUM_SHARDS * NUM_ITEMS_PER_SHARD expected_local_size = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) local_size = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}") if __name__ == "__main__": main()
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/fixtures/fsspec.py
import posixpath from pathlib import Path from unittest.mock import patch import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path from fsspec.registry import _registry as _fsspec_registry class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path class TmpDirFileSystem(MockFileSystem): protocol = "tmp" tmp_dir = None def __init__(self, *args, **kwargs): assert self.tmp_dir is not None, "TmpDirFileSystem.tmp_dir is not set" super().__init__(*args, **kwargs, local_root_dir=self.tmp_dir, auto_mkdir=True) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("tmp://"): path = path[6:] return path @pytest.fixture def mock_fsspec(): _fsspec_registry["mock"] = MockFileSystem _fsspec_registry["tmp"] = TmpDirFileSystem yield del _fsspec_registry["mock"] del _fsspec_registry["tmp"] @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True) @pytest.fixture def tmpfs(tmp_path_factory, mock_fsspec): tmp_fs_dir = tmp_path_factory.mktemp("tmpfs") with patch.object(TmpDirFileSystem, "tmp_dir", tmp_fs_dir): yield TmpDirFileSystem() TmpDirFileSystem.clear_instance_cache()
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/fixtures/files.py
import contextlib import csv import json import os import sqlite3 import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config # dataset + arrow_file @pytest.fixture(scope="session") def dataset(): n = 10 features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"])), "answers": datasets.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), "id": datasets.Value("int64"), } ) dataset = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(n)), }, features=features, ) return dataset @pytest.fixture(scope="session") def arrow_file(tmp_path_factory, dataset): filename = str(tmp_path_factory.mktemp("data") / "file.arrow") dataset.map(cache_file_name=filename) return filename # FILE_CONTENT + files FILE_CONTENT = """\ Text data. Second line of data.""" @pytest.fixture(scope="session") def text_file(tmp_path_factory): filename = tmp_path_factory.mktemp("data") / "file.txt" data = FILE_CONTENT with open(filename, "w") as f: f.write(data) return filename @pytest.fixture(scope="session") def bz2_file(tmp_path_factory): import bz2 path = tmp_path_factory.mktemp("data") / "file.txt.bz2" data = bytes(FILE_CONTENT, "utf-8") with bz2.open(path, "wb") as f: f.write(data) return path @pytest.fixture(scope="session") def gz_file(tmp_path_factory): import gzip path = str(tmp_path_factory.mktemp("data") / "file.txt.gz") data = bytes(FILE_CONTENT, "utf-8") with gzip.open(path, "wb") as f: f.write(data) return path @pytest.fixture(scope="session") def lz4_file(tmp_path_factory): if datasets.config.LZ4_AVAILABLE: import lz4.frame path = tmp_path_factory.mktemp("data") / "file.txt.lz4" data = bytes(FILE_CONTENT, "utf-8") with lz4.frame.open(path, "wb") as f: f.write(data) return path @pytest.fixture(scope="session") def seven_zip_file(tmp_path_factory, text_file): if datasets.config.PY7ZR_AVAILABLE: import py7zr path = tmp_path_factory.mktemp("data") / "file.txt.7z" with py7zr.SevenZipFile(path, "w") as archive: archive.write(text_file, arcname=os.path.basename(text_file)) return path @pytest.fixture(scope="session") def tar_file(tmp_path_factory, text_file): import tarfile path = tmp_path_factory.mktemp("data") / "file.txt.tar" with tarfile.TarFile(path, "w") as f: f.add(text_file, arcname=os.path.basename(text_file)) return path @pytest.fixture(scope="session") def xz_file(tmp_path_factory): import lzma path = tmp_path_factory.mktemp("data") / "file.txt.xz" data = bytes(FILE_CONTENT, "utf-8") with lzma.open(path, "wb") as f: f.write(data) return path @pytest.fixture(scope="session") def zip_file(tmp_path_factory, text_file): import zipfile path = tmp_path_factory.mktemp("data") / "file.txt.zip" with zipfile.ZipFile(path, "w") as f: f.write(text_file, arcname=os.path.basename(text_file)) return path @pytest.fixture(scope="session") def zstd_file(tmp_path_factory): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd path = tmp_path_factory.mktemp("data") / "file.txt.zst" data = bytes(FILE_CONTENT, "utf-8") with zstd.open(path, "wb") as f: f.write(data) return path # xml_file @pytest.fixture(scope="session") def xml_file(tmp_path_factory): filename = tmp_path_factory.mktemp("data") / "file.xml" data = textwrap.dedent( """\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(filename, "w") as f: f.write(data) return filename DATA = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] DATA2 = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] DATA_DICT_OF_LISTS = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } DATA_312 = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] DATA_STR = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="session") def dataset_dict(): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session") def arrow_path(tmp_path_factory): dataset = datasets.Dataset.from_dict(DATA_DICT_OF_LISTS) path = str(tmp_path_factory.mktemp("data") / "dataset.arrow") dataset.map(cache_file_name=path) return path @pytest.fixture(scope="session") def sqlite_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.sqlite") with contextlib.closing(sqlite3.connect(path)) as con: cur = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)") for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values())) con.commit() return path @pytest.fixture(scope="session") def csv_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.csv") with open(path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(item) return path @pytest.fixture(scope="session") def csv2_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset2.csv") with open(path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(item) return path @pytest.fixture(scope="session") def bz2_csv_path(csv_path, tmp_path_factory): import bz2 path = tmp_path_factory.mktemp("data") / "dataset.csv.bz2" with open(csv_path, "rb") as f: data = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bz2.open(path, "wb") as f: f.write(data) return path @pytest.fixture(scope="session") def zip_csv_path(csv_path, csv2_path, tmp_path_factory): path = tmp_path_factory.mktemp("zip_csv_path") / "csv-dataset.zip" with zipfile.ZipFile(path, "w") as f: f.write(csv_path, arcname=os.path.basename(csv_path)) f.write(csv2_path, arcname=os.path.basename(csv2_path)) return path @pytest.fixture(scope="session") def zip_uppercase_csv_path(csv_path, csv2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(path, "w") as f: f.write(csv_path, arcname=os.path.basename(csv_path.replace(".csv", ".CSV"))) f.write(csv2_path, arcname=os.path.basename(csv2_path.replace(".csv", ".CSV"))) return path @pytest.fixture(scope="session") def zip_csv_with_dir_path(csv_path, csv2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset_with_dir.csv.zip" with zipfile.ZipFile(path, "w") as f: f.write(csv_path, arcname=os.path.join("main_dir", os.path.basename(csv_path))) f.write(csv2_path, arcname=os.path.join("main_dir", os.path.basename(csv2_path))) return path @pytest.fixture(scope="session") def parquet_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.parquet") schema = pa.schema( { "col_1": pa.string(), "col_2": pa.int64(), "col_3": pa.float64(), } ) with open(path, "wb") as f: writer = pq.ParquetWriter(f, schema=schema) pa_table = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(DATA))] for k in DATA[0]}, schema=schema) writer.write_table(pa_table) writer.close() return path @pytest.fixture(scope="session") def json_list_of_dicts_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.json") data = {"data": DATA} with open(path, "w") as f: json.dump(data, f) return path @pytest.fixture(scope="session") def json_dict_of_lists_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.json") data = {"data": DATA_DICT_OF_LISTS} with open(path, "w") as f: json.dump(data, f) return path @pytest.fixture(scope="session") def jsonl_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset.jsonl") with open(path, "w") as f: for item in DATA: f.write(json.dumps(item) + "\n") return path @pytest.fixture(scope="session") def jsonl2_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset2.jsonl") with open(path, "w") as f: for item in DATA: f.write(json.dumps(item) + "\n") return path @pytest.fixture(scope="session") def jsonl_312_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset_312.jsonl") with open(path, "w") as f: for item in DATA_312: f.write(json.dumps(item) + "\n") return path @pytest.fixture(scope="session") def jsonl_str_path(tmp_path_factory): path = str(tmp_path_factory.mktemp("data") / "dataset-str.jsonl") with open(path, "w") as f: for item in DATA_STR: f.write(json.dumps(item) + "\n") return path @pytest.fixture(scope="session") def text_gz_path(tmp_path_factory, text_path): import gzip path = str(tmp_path_factory.mktemp("data") / "dataset.txt.gz") with open(text_path, "rb") as orig_file: with gzip.open(path, "wb") as zipped_file: zipped_file.writelines(orig_file) return path @pytest.fixture(scope="session") def jsonl_gz_path(tmp_path_factory, jsonl_path): import gzip path = str(tmp_path_factory.mktemp("data") / "dataset.jsonl.gz") with open(jsonl_path, "rb") as orig_file: with gzip.open(path, "wb") as zipped_file: zipped_file.writelines(orig_file) return path @pytest.fixture(scope="session") def zip_jsonl_path(jsonl_path, jsonl2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.jsonl.zip" with zipfile.ZipFile(path, "w") as f: f.write(jsonl_path, arcname=os.path.basename(jsonl_path)) f.write(jsonl2_path, arcname=os.path.basename(jsonl2_path)) return path @pytest.fixture(scope="session") def zip_nested_jsonl_path(zip_jsonl_path, jsonl_path, jsonl2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.zip" with zipfile.ZipFile(path, "w") as f: f.write(zip_jsonl_path, arcname=os.path.join("nested", os.path.basename(zip_jsonl_path))) return path @pytest.fixture(scope="session") def zip_jsonl_with_dir_path(jsonl_path, jsonl2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(path, "w") as f: f.write(jsonl_path, arcname=os.path.join("main_dir", os.path.basename(jsonl_path))) f.write(jsonl2_path, arcname=os.path.join("main_dir", os.path.basename(jsonl2_path))) return path @pytest.fixture(scope="session") def tar_jsonl_path(jsonl_path, jsonl2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.jsonl.tar" with tarfile.TarFile(path, "w") as f: f.add(jsonl_path, arcname=os.path.basename(jsonl_path)) f.add(jsonl2_path, arcname=os.path.basename(jsonl2_path)) return path @pytest.fixture(scope="session") def tar_nested_jsonl_path(tar_jsonl_path, jsonl_path, jsonl2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.tar" with tarfile.TarFile(path, "w") as f: f.add(tar_jsonl_path, arcname=os.path.join("nested", os.path.basename(tar_jsonl_path))) return path @pytest.fixture(scope="session") def text_path(tmp_path_factory): data = ["0", "1", "2", "3"] path = str(tmp_path_factory.mktemp("data") / "dataset.txt") with open(path, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def text2_path(tmp_path_factory): data = ["0", "1", "2", "3"] path = str(tmp_path_factory.mktemp("data") / "dataset2.txt") with open(path, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def text_dir(tmp_path_factory): data = ["0", "1", "2", "3"] path = tmp_path_factory.mktemp("data_text_dir") / "dataset.txt" with open(path, "w") as f: for item in data: f.write(item + "\n") return path.parent @pytest.fixture(scope="session") def text_dir_with_unsupported_extension(tmp_path_factory): data = ["0", "1", "2", "3"] path = tmp_path_factory.mktemp("data") / "dataset.abc" with open(path, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def zip_text_path(text_path, text2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.text.zip" with zipfile.ZipFile(path, "w") as f: f.write(text_path, arcname=os.path.basename(text_path)) f.write(text2_path, arcname=os.path.basename(text2_path)) return path @pytest.fixture(scope="session") def zip_text_with_dir_path(text_path, text2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset_with_dir.text.zip" with zipfile.ZipFile(path, "w") as f: f.write(text_path, arcname=os.path.join("main_dir", os.path.basename(text_path))) f.write(text2_path, arcname=os.path.join("main_dir", os.path.basename(text2_path))) return path @pytest.fixture(scope="session") def zip_unsupported_ext_path(text_path, text2_path, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.ext.zip" with zipfile.ZipFile(path, "w") as f: f.write(text_path, arcname=os.path.basename("unsupported.ext")) f.write(text2_path, arcname=os.path.basename("unsupported_2.ext")) return path @pytest.fixture(scope="session") def text_path_with_unicode_new_lines(tmp_path_factory): text = "\n".join(["First", "Second\u2029with Unicode new line", "Third"]) path = str(tmp_path_factory.mktemp("data") / "dataset_with_unicode_new_lines.txt") with open(path, "w", encoding="utf-8") as f: f.write(text) return path @pytest.fixture(scope="session") def image_file(): return os.path.join("tests", "features", "data", "test_image_rgb.jpg") @pytest.fixture(scope="session") def audio_file(): return os.path.join("tests", "features", "data", "test_audio_44100.wav") @pytest.fixture(scope="session") def zip_image_path(image_file, tmp_path_factory): path = tmp_path_factory.mktemp("data") / "dataset.img.zip" with zipfile.ZipFile(path, "w") as f: f.write(image_file, arcname=os.path.basename(image_file)) f.write(image_file, arcname=os.path.basename(image_file).replace(".jpg", "2.jpg")) return path @pytest.fixture(scope="session") def data_dir_with_hidden_files(tmp_path_factory): data_dir = tmp_path_factory.mktemp("data_dir") (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) # hidden file with open(data_dir / "subdir" / ".test.txt", "w") as f: f.write("bar\n" * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / ".subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) return data_dir
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/fixtures/hub.py
import os import time import uuid from contextlib import contextmanager from typing import Optional import pytest import requests from huggingface_hub.hf_api import HfApi, RepositoryNotFoundError CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def set_ci_hub_access_token(ci_hub_config): old_environ = dict(os.environ) os.environ["HF_TOKEN"] = CI_HUB_USER_TOKEN yield os.environ.clear() os.environ.update(old_environ) @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(): yield CI_HUB_USER_TOKEN @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): hf_api.delete_repo(repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id: Optional[str] = None): repo_id = repo_id or f"{CI_HUB_USER}/test-dataset-{uuid.uuid4().hex[:6]}-{int(time.time() * 10e3)}" try: yield repo_id finally: try: cleanup_repo(repo_id) except RepositoryNotFoundError: pass return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e6)}" repo_id = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/commands/test_test.py
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _TestCommandArgs = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def is_1percent_close(source, target): return (abs(source - target) / target) < 0.01 @pytest.mark.integration def test_test_command(dataset_loading_script_dir): args = _TestCommandArgs(dataset=dataset_loading_script_dir, all_configs=True, save_infos=True) test_command = TestCommand(*args) test_command.run() dataset_readme_path = os.path.join(dataset_loading_script_dir, "README.md") assert os.path.exists(dataset_readme_path) dataset_infos = DatasetInfosDict.from_directory(dataset_loading_script_dir) expected_dataset_infos = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string")), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]) ), "langs": Sequence(Value("string")), "spans": Sequence(Value("string")), } ), splits=[ { "name": "train", "num_bytes": 2351563, "num_examples": 10000, }, { "name": "validation", "num_bytes": 238418, "num_examples": 1000, }, ], download_size=3940680, dataset_size=2589981, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: result, expected = getattr(dataset_infos["default"], key), getattr(expected_dataset_infos["default"], key) if key == "num_bytes": assert is_1percent_close(result, expected) elif key == "splits": assert list(result) == list(expected) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_1percent_close(result[split].num_bytes, expected[split].num_bytes) else: result == expected
0
hf_public_repos/datasets/tests
hf_public_repos/datasets/tests/commands/conftest.py
import pytest DATASET_LOADING_SCRIPT_NAME = "__dummy_dataset1__" DATASET_LOADING_SCRIPT_CODE = """ import json import os import datasets REPO_URL = "https://huggingface.co/datasets/hf-internal-testing/raw_jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def dataset_loading_script_name(): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def dataset_loading_script_code(): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def dataset_loading_script_dir(dataset_loading_script_name, dataset_loading_script_code, tmp_path): script_name = dataset_loading_script_name script_dir = tmp_path / "datasets" / script_name script_dir.mkdir(parents=True) script_path = script_dir / f"{script_name}.py" with open(script_path, "w") as f: f.write(dataset_loading_script_code) return str(script_dir)
0
hf_public_repos/datasets
hf_public_repos/datasets/docs/README.md
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Generating the documentation To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository: ```bash pip install -e ".[docs]" ``` Then you need to install our special tool that builds the documentation: ```bash pip install git+https://github.com/huggingface/doc-builder ``` --- **NOTE** You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to `git commit` the built documentation. --- ## Building the documentation Once you have setup the `doc-builder` and additional packages, you can generate the documentation by typing the following command: ```bash doc-builder build datasets docs/source/ --build_dir ~/tmp/test-build ``` You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor. ## Previewing the documentation To preview the docs, first install the `watchdog` module with: ```bash pip install watchdog ``` Then run the following command: ```bash doc-builder preview datasets docs/source/ ``` The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. --- **NOTE** The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). ## Adding a new element to the navigation bar Accepted files are Markdown (.md or .mdx). Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/datasets/blob/main/docs/source/_toctree.yml) file. ## Renaming section headers and moving sections It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: ``` Sections that were moved: [ <a href="#section-b">Section A</a><a id="section-a"></a> ] ``` and of course if you moved it to another file, then: ``` Sections that were moved: [ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ] ``` Use the relative style to link to the new file so that the versioned docs continue to work. For an example of a rich moved sections set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md). ## Writing Documentation - Specification The `huggingface/datasets` documentation follows the [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, although we can write them directly in Markdown. ### Adding a new tutorial Adding a new tutorial or section is done in two steps: - Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). - Link that file in `./source/_toctree.yml` on the correct toc-tree. Make sure to put your new file under the proper section. If you have a doubt, feel free to ask in a Github Issue or PR. ### Writing source documentation Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names and objects like True, None or any strings should usually be put in `code`. When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or function to be in the main package. If you want to create a link to some internal class or function, you need to provide its path. For instance: \[\`table.InMemoryTable\`\]. This will be converted into a link with `table.InMemoryTable` in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: \[\`~table.InMemoryTable\`\] will generate a link with `InMemoryTable` in the description. The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. #### Defining arguments in a method Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its description: ``` Args: n_layers (`int`): The number of layers of the model. ``` If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument. Here's an example showcasing everything so far: ``` Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) ``` For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature: ``` def my_function(x: str = None, a: float = 1): ``` then its documentation should look like this: ``` Args: x (`str`, *optional*): This argument controls ... a (`float`, *optional*, defaults to 1): This argument is used to ... ``` Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it into several lines. You can however write as many lines as you want in the indented description (see the example above with `input_ids`). #### Writing a multi-line code block Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: ```` ``` # first line of code # second line # etc ``` ```` #### Writing a return block The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return. Here's an example of a single value return: ``` Returns: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. ``` Here's an example of tuple return, comprising several objects: ``` Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``` #### Adding an image Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset. ## Writing documentation examples The syntax for Example docstrings can look as follows: ``` Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="validation") >>> def add_prefix(example): ... example["text"] = "Review: " + example["text"] ... return example >>> ds = ds.map(add_prefix) >>> ds[0:3]["text"] ['Review: compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .', 'Review: the soundtrack alone is worth the price of admission .', 'Review: rodriguez does a splendid job of racial profiling hollywood style--casting excellent latin actors of all ages--a trend long overdue .'] # process a batch of examples >>> ds = ds.map(lambda example: tokenizer(example["text"]), batched=True) # set number of processors >>> ds = ds.map(add_prefix, num_proc=4) ``` ``` The docstring should give a minimal, clear example of how the respective class or function is to be used in practice and also include the expected (ideally sensible) output. Often, readers will try out the example before even going through the function or class definitions. Therefore, it is of utmost importance that the example works as expected.
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/access.mdx
# Know your dataset There are two types of dataset objects, a regular [`Dataset`] and then an ✨ [`IterableDataset`] ✨. A [`Dataset`] provides fast random access to the rows, and memory-mapping so that loading even large datasets only uses a relatively small amount of device memory. But for really, really big datasets that won't even fit on disk or in memory, an [`IterableDataset`] allows you to access and use the dataset without waiting for it to download completely! This tutorial will show you how to load and access a [`Dataset`] and an [`IterableDataset`]. ## Dataset When you load a dataset split, you'll get a [`Dataset`] object. You can do many things with a [`Dataset`] object, which is why it's important to learn how to manipulate and interact with the data stored inside. This tutorial uses the [rotten_tomatoes](https://huggingface.co/datasets/rotten_tomatoes) dataset, but feel free to load any dataset you'd like and follow along! ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes", split="train") ``` ### Indexing A [`Dataset`] contains columns of data, and each column can be a different type of data. The *index*, or axis label, is used to access examples from the dataset. For example, indexing by the row returns a dictionary of an example from the dataset: ```py # Get the first row in the dataset >>> dataset[0] {'label': 1, 'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'} ``` Use the `-` operator to start from the end of the dataset: ```py # Get the last row in the dataset >>> dataset[-1] {'label': 0, 'text': 'things really get weird , though not particularly scary : the movie is all portent and no content .'} ``` Indexing by the column name returns a list of all the values in the column: ```py >>> dataset["text"] ['the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .', 'effective but too-tepid biopic', ..., 'things really get weird , though not particularly scary : the movie is all portent and no content .'] ``` You can combine row and column name indexing to return a specific value at a position: ```py >>> dataset[0]["text"] 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .' ``` But it is important to remember that indexing order matters, especially when working with large audio and image datasets. Indexing by the column name returns all the values in the column first, then loads the value at that position. For large datasets, it may be slower to index by the column name first. ```py >>> import time >>> start_time = time.time() >>> text = dataset[0]["text"] >>> end_time = time.time() >>> print(f"Elapsed time: {end_time - start_time:.4f} seconds") Elapsed time: 0.0031 seconds >>> start_time = time.time() >>> text = dataset["text"][0] >>> end_time = time.time() >>> print(f"Elapsed time: {end_time - start_time:.4f} seconds") Elapsed time: 0.0094 seconds ``` ### Slicing Slicing returns a slice - or subset - of the dataset, which is useful for viewing several rows at once. To slice a dataset, use the `:` operator to specify a range of positions. ```py # Get the first three rows >>> dataset[:3] {'label': [1, 1, 1], 'text': ['the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .', 'effective but too-tepid biopic']} # Get rows between three and six >>> dataset[3:6] {'label': [1, 1, 1], 'text': ['if you sometimes like to go to the movies to have fun , wasabi is a good place to start .', "emerges as something rare , an issue movie that's so honest and keenly observed that it doesn't feel like one .", 'the film provides some great insight into the neurotic mindset of all comics -- even those who have reached the absolute top of the game .']} ``` ## IterableDataset An [`IterableDataset`] is loaded when you set the `streaming` parameter to `True` in [`~datasets.load_dataset`]: ```py >>> from datasets import load_dataset >>> iterable_dataset = load_dataset("food101", split="train", streaming=True) >>> for example in iterable_dataset: ... print(example) ... break {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F0681F5C520>, 'label': 6} ``` You can also create an [`IterableDataset`] from an *existing* [`Dataset`], but it is faster than streaming mode because the dataset is streamed from local files: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes", split="train") >>> iterable_dataset = dataset.to_iterable_dataset() ``` An [`IterableDataset`] progressively iterates over a dataset one example at a time, so you don't have to wait for the whole dataset to download before you can use it. As you can imagine, this is quite useful for large datasets you want to use immediately! However, this means an [`IterableDataset`]'s behavior is different from a regular [`Dataset`]. You don't get random access to examples in an [`IterableDataset`]. Instead, you should iterate over its elements, for example, by calling `next(iter())` or with a `for` loop to return the next item from the [`IterableDataset`]: ```py >>> next(iter(iterable_dataset)) {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F0681F59B50>, 'label': 6} >>> for example in iterable_dataset: ... print(example) ... break {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F7479DE82B0>, 'label': 6} ``` You can return a subset of the dataset with a specific number of examples in it with [`IterableDataset.take`]: ```py # Get first three examples >>> list(iterable_dataset.take(3)) [{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F7479DEE9D0>, 'label': 6}, {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F7479DE8190>, 'label': 6}, {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x383 at 0x7F7479DE8310>, 'label': 6}] ``` But unlike [slicing](access/#slicing), [`IterableDataset.take`] creates a new [`IterableDataset`]. ## Next steps Interested in learning more about the differences between these two types of datasets? Learn more about them in the [Differences between `Dataset` and `IterableDataset`](about_mapstyle_vs_iterable) conceptual guide. To get more hands-on with these datasets types, check out the [Process](process) guide to learn how to preprocess a [`Dataset`] or the [Stream](stream) guide to learn how to preprocess an [`IterableDataset`].
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/load_hub.mdx
# Load a dataset from the Hub Finding high-quality datasets that are reproducible and accessible can be difficult. One of πŸ€— Datasets main goals is to provide a simple way to load a dataset of any format or type. The easiest way to get started is to discover an existing dataset on the [Hugging Face Hub](https://huggingface.co/datasets) - a community-driven collection of datasets for tasks in NLP, computer vision, and audio - and use πŸ€— Datasets to download and generate the dataset. This tutorial uses the [rotten_tomatoes](https://huggingface.co/datasets/rotten_tomatoes) and [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) datasets, but feel free to load any dataset you want and follow along. Head over to the Hub now and find a dataset for your task! ## Load a dataset Before you take the time to download a dataset, it's often helpful to quickly get some general information about a dataset. A dataset's information is stored inside [`DatasetInfo`] and can include information such as the dataset description, features, and dataset size. Use the [`load_dataset_builder`] function to load a dataset builder and inspect a dataset's attributes without committing to downloading it: ```py >>> from datasets import load_dataset_builder >>> ds_builder = load_dataset_builder("rotten_tomatoes") # Inspect dataset description >>> ds_builder.info.description Movie Review Dataset. This is a dataset of containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. This data was first used in Bo Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales.'', Proceedings of the ACL, 2005. # Inspect dataset features >>> ds_builder.info.features {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), 'text': Value(dtype='string', id=None)} ``` If you're happy with the dataset, then load it with [`load_dataset`]: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes", split="train") ``` ## Splits A split is a specific subset of a dataset like `train` and `test`. List a dataset's split names with the [`get_dataset_split_names`] function: ```py >>> from datasets import get_dataset_split_names >>> get_dataset_split_names("rotten_tomatoes") ['train', 'validation', 'test'] ``` Then you can load a specific split with the `split` parameter. Loading a dataset `split` returns a [`Dataset`] object: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes", split="train") >>> dataset Dataset({ features: ['text', 'label'], num_rows: 8530 }) ``` If you don't specify a `split`, πŸ€— Datasets returns a [`DatasetDict`] object instead: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes") DatasetDict({ train: Dataset({ features: ['text', 'label'], num_rows: 8530 }) validation: Dataset({ features: ['text', 'label'], num_rows: 1066 }) test: Dataset({ features: ['text', 'label'], num_rows: 1066 }) }) ``` ## Configurations Some datasets contain several sub-datasets. For example, the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset has several sub-datasets, each one containing audio data in a different language. These sub-datasets are known as *configurations*, and you must explicitly select one when loading the dataset. If you don't provide a configuration name, πŸ€— Datasets will raise a `ValueError` and remind you to choose a configuration. Use the [`get_dataset_config_names`] function to retrieve a list of all the possible configurations available to your dataset: ```py >>> from datasets import get_dataset_config_names >>> configs = get_dataset_config_names("PolyAI/minds14") >>> print(configs) ['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR', 'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN', 'all'] ``` Then load the configuration you want: ```py >>> from datasets import load_dataset >>> mindsFR = load_dataset("PolyAI/minds14", "fr-FR", split="train") ``` ## Remote code Certain datasets repositories contain a loading script with the Python code used to generate the dataset. Those datasets are generally exported to Parquet by Hugging Face, so that πŸ€— Datasets can load the dataset fast and without running a loading script. Even if a Parquet export is not available, you can still use any dataset with Python code in its repository with `load_dataset`. All files and code uploaded to the Hub are scanned for malware (refer to the Hub security documentation for more information), but you should still review the dataset loading scripts and authors to avoid executing malicious code on your machine. You should set `trust_remote_code=True` to use a dataset with a loading script, or you will get a warning: ```py >>> from datasets import get_dataset_config_names, get_dataset_split_names, load_dataset >>> c4 = load_dataset("c4", "en", split="train", trust_remote_code=True) >>> get_dataset_config_names("c4", trust_remote_code=True) ['en', 'realnewslike', 'en.noblocklist', 'en.noclean'] >>> get_dataset_split_names("c4", "en", trust_remote_code=True) ['train', 'validation'] ``` <Tip warning=true> In the next major release, the new safety features of πŸ€— Datasets will disable running dataset loading scripts by default, and you will have to pass `trust_remote_code=True` to load datasets that require running a dataset script. </Tip>
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/faiss_es.mdx
# Search index [FAISS](https://github.com/facebookresearch/faiss) and [Elasticsearch](https://www.elastic.co/elasticsearch/) enables searching for examples in a dataset. This can be useful when you want to retrieve specific examples from a dataset that are relevant to your NLP task. For example, if you are working on a Open Domain Question Answering task, you may want to only return examples that are relevant to answering your question. This guide will show you how to build an index for your dataset that will allow you to search it. ## FAISS FAISS retrieves documents based on the similarity of their vector representations. In this example, you will generate the vector representations with the [DPR](https://huggingface.co/transformers/model_doc/dpr.html) model. 1. Download the DPR model from πŸ€— Transformers: ```py >>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer >>> import torch >>> torch.set_grad_enabled(False) >>> ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") ``` 2. Load your dataset and compute the vector representations: ```py >>> from datasets import load_dataset >>> ds = load_dataset('crime_and_punish', split='train[:100]') >>> ds_with_embeddings = ds.map(lambda example: {'embeddings': ctx_encoder(**ctx_tokenizer(example["line"], return_tensors="pt"))[0][0].numpy()}) ``` 3. Create the index with [`Dataset.add_faiss_index`]: ```py >>> ds_with_embeddings.add_faiss_index(column='embeddings') ``` 4. Now you can query your dataset with the `embeddings` index. Load the DPR Question Encoder, and search for a question with [`Dataset.get_nearest_examples`]: ```py >>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer >>> q_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> q_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> question = "Is it serious ?" >>> question_embedding = q_encoder(**q_tokenizer(question, return_tensors="pt"))[0][0].numpy() >>> scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', question_embedding, k=10) >>> retrieved_examples["line"][0] '_that_ serious? It is not serious at all. It’s simply a fantasy to amuse\r\n' ``` 5. You can access the index with [`Dataset.get_index`] and use it for special operations, e.g. query it using `range_search`: ```py >>> faiss_index = ds_with_embeddings.get_index('embeddings').faiss_index >>> limits, distances, indices = faiss_index.range_search(x=question_embedding.reshape(1, -1), thresh=0.95) ``` 6. When you are done querying, save the index on disk with [`Dataset.save_faiss_index`]: ```py >>> ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss') ``` 7. Reload it at a later time with [`Dataset.load_faiss_index`]: ```py >>> ds = load_dataset('crime_and_punish', split='train[:100]') >>> ds.load_faiss_index('embeddings', 'my_index.faiss') ``` ## Elasticsearch Unlike FAISS, Elasticsearch retrieves documents based on exact matches. Start Elasticsearch on your machine, or see the [Elasticsearch installation guide](https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html) if you don't already have it installed. 1. Load the dataset you want to index: ```py >>> from datasets import load_dataset >>> squad = load_dataset('squad', split='validation') ``` 2. Build the index with [`Dataset.add_elasticsearch_index`]: ```py >>> squad.add_elasticsearch_index("context", host="localhost", port="9200") ``` 3. Then you can query the `context` index with [`Dataset.get_nearest_examples`]: ```py >>> query = "machine" >>> scores, retrieved_examples = squad.get_nearest_examples("context", query, k=10) >>> retrieved_examples["title"][0] 'Computational_complexity_theory' ``` 4. If you want to reuse the index, define the `es_index_name` parameter when you build the index: ```py >>> from datasets import load_dataset >>> squad = load_dataset('squad', split='validation') >>> squad.add_elasticsearch_index("context", host="localhost", port="9200", es_index_name="hf_squad_val_context") >>> squad.get_index("context").es_index_name hf_squad_val_context ``` 5. Reload it later with the index name when you call [`Dataset.load_elasticsearch_index`]: ```py >>> from datasets import load_dataset >>> squad = load_dataset('squad', split='validation') >>> squad.load_elasticsearch_index("context", host="localhost", port="9200", es_index_name="hf_squad_val_context") >>> query = "machine" >>> scores, retrieved_examples = squad.get_nearest_examples("context", query, k=10) ``` For more advanced Elasticsearch usage, you can specify your own configuration with custom settings: ```py >>> import elasticsearch as es >>> import elasticsearch.helpers >>> from elasticsearch import Elasticsearch >>> es_client = Elasticsearch([{"host": "localhost", "port": "9200"}]) # default client >>> es_config = { ... "settings": { ... "number_of_shards": 1, ... "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, ... }, ... "mappings": {"properties": {"text": {"type": "text", "analyzer": "standard", "similarity": "BM25"}}}, ... } # default config >>> es_index_name = "hf_squad_context" # name of the index in Elasticsearch >>> squad.add_elasticsearch_index("context", es_client=es_client, es_config=es_config, es_index_name=es_index_name) ```
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/image_load.mdx
# Load image data Image datasets have [`Image`] type columns, which contain PIL objects. <Tip> To work with image datasets, you need to have the `vision` dependency installed. Check out the [installation](./installation#vision) guide to learn how to install it. </Tip> When you load an image dataset and call the image column, the images are decoded as PIL Images: ```py >>> from datasets import load_dataset, Image >>> dataset = load_dataset("beans", split="train") >>> dataset[0]["image"] ``` <Tip warning={true}> Index into an image dataset using the row index first and then the `image` column - `dataset[0]["image"]` - to avoid decoding and resampling all the image objects in the dataset. Otherwise, this can be a slow and time-consuming process if you have a large dataset. </Tip> For a guide on how to load any type of dataset, take a look at the <a class="underline decoration-sky-400 decoration-2 font-semibold" href="./loading">general loading guide</a>. ## Local files You can load a dataset from the image path. Use the [`~Dataset.cast_column`] function to accept a column of image file paths, and decode it into a PIL image with the [`Image`] feature: ```py >>> from datasets import Dataset, Image >>> dataset = Dataset.from_dict({"image": ["path/to/image_1", "path/to/image_2", ..., "path/to/image_n"]}).cast_column("image", Image()) >>> dataset[0]["image"] <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x215 at 0x15E6D7160>] ``` If you only want to load the underlying path to the image dataset without decoding the image object, set `decode=False` in the [`Image`] feature: ```py >>> dataset = load_dataset("beans", split="train").cast_column("image", Image(decode=False)) >>> dataset[0]["image"] {'bytes': None, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/bean_rust/bean_rust_train.29.jpg'} ``` ## ImageFolder You can also load a dataset with an `ImageFolder` dataset builder which does not require writing a custom dataloader. This makes `ImageFolder` ideal for quickly creating and loading image datasets with several thousand images for different vision tasks. Your image dataset structure should look like this: ``` folder/train/dog/golden_retriever.png folder/train/dog/german_shepherd.png folder/train/dog/chihuahua.png folder/train/cat/maine_coon.png folder/train/cat/bengal.png folder/train/cat/birman.png ``` Load your dataset by specifying `imagefolder` and the directory of your dataset in `data_dir`: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("imagefolder", data_dir="/path/to/folder") >>> dataset["train"][0] {"image": <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x215 at 0x15E6D7160>, "label": 0} >>> dataset["train"][-1] {"image": <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x215 at 0x15E8DAD30>, "label": 1} ``` Load remote datasets from their URLs with the `data_files` parameter: ```py >>> dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip", split="train") ``` Some datasets have a metadata file (`metadata.csv`/`metadata.jsonl`) associated with it, containing other information about the data like bounding boxes, text captions, and labels. The metadata is automatically loaded when you call [`load_dataset`] and specify `imagefolder`. To ignore the information in the metadata file, set `drop_labels=False` in [`load_dataset`], and allow `ImageFolder` to automatically infer the label name from the directory name: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("imagefolder", data_dir="/path/to/folder", drop_labels=False) ``` <Tip> For more information about creating your own `ImageFolder` dataset, take a look at the [Create an image dataset](./image_dataset) guide. </Tip> ## WebDataset The [WebDataset](https://github.com/webdataset/webdataset) format is based on a folder of TAR archives and is suitable for big image datasets. Because of their size, WebDatasets are generally loaded in streaming mode (using `streaming=True`). You can load a WebDataset like this: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("webdataset", data_dir="/path/to/folder", streaming=True) ```
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/dataset_script.mdx
# Create a dataset loading script <Tip> The dataset loading script is likely not needed if your dataset is in one of the following formats: CSV, JSON, JSON lines, text, images, audio or Parquet. With those formats, you should be able to load your dataset automatically with [`~datasets.load_dataset`], as long as your dataset repository has a [required structure](./repository_structure). </Tip> <Tip warning=true> In the next major release, the new safety features of πŸ€— Datasets will disable running dataset loading scripts by default, and you will have to pass `trust_remote_code=True` to load datasets that require running a dataset script. </Tip> Write a dataset script to load and share datasets that consist of data files in unsupported formats or require more complex data preparation. This is a more advanced way to define a dataset than using [YAML metadata in the dataset card](./repository_structure#define-your-splits-in-yaml). A dataset script is a Python file that defines the different configurations and splits of your dataset, as well as how to download and process the data. The script can download data files from any website, or from the same dataset repository. A dataset loading script should have the same name as a dataset repository or directory. For example, a repository named `my_dataset` should contain `my_dataset.py` script. This way it can be loaded with: ``` my_dataset/ β”œβ”€β”€ README.md └── my_dataset.py ``` ```py >>> from datasets import load_dataset >>> load_dataset("path/to/my_dataset") ``` The following guide includes instructions for dataset scripts for how to: - Add dataset metadata. - Download data files. - Generate samples. - Generate dataset metadata. - Upload a dataset to the Hub. Open the [SQuAD dataset loading script](https://huggingface.co/datasets/squad/blob/main/squad.py) template to follow along on how to share a dataset. <Tip> To help you get started, try beginning with the dataset loading script [template](https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py)! </Tip> ## Add dataset attributes The first step is to add some information, or attributes, about your dataset in [`DatasetBuilder._info`]. The most important attributes you should specify are: 1. `DatasetInfo.description` provides a concise description of your dataset. The description informs the user what's in the dataset, how it was collected, and how it can be used for a NLP task. 2. `DatasetInfo.features` defines the name and type of each column in your dataset. This will also provide the structure for each example, so it is possible to create nested subfields in a column if you want. Take a look at [`Features`] for a full list of feature types you can use. ```py datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ) ``` 3. `DatasetInfo.homepage` contains the URL to the dataset homepage so users can find more details about the dataset. 4. `DatasetInfo.citation` contains a BibTeX citation for the dataset. After you've filled out all these fields in the template, it should look like the following example from the SQuAD loading script: ```py def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( {"text": datasets.Value("string"), "answer_start": datasets.Value("int32"),} ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://rajpurkar.github.io/SQuAD-explorer/", citation=_CITATION, ) ``` ### Multiple configurations In some cases, your dataset may have multiple configurations. For example, the [SuperGLUE](https://huggingface.co/datasets/super_glue) dataset is a collection of 5 datasets designed to evaluate language understanding tasks. πŸ€— Datasets provides [`BuilderConfig`] which allows you to create different configurations for the user to select from. Let's study the [SuperGLUE loading script](https://huggingface.co/datasets/super_glue/blob/main/super_glue.py) to see how you can define several configurations. 1. Create a [`BuilderConfig`] subclass with attributes about your dataset. These attributes can be the features of your dataset, label classes, and a URL to the data files. ```py class SuperGlueConfig(datasets.BuilderConfig): """BuilderConfig for SuperGLUE.""" def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs): """BuilderConfig for SuperGLUE. Args: features: *list[string]*, list of the features that will appear in the feature dict. Should not include "label". data_url: *string*, url to download the zip file from. citation: *string*, citation for the data set. url: *string*, url for information about the data set. label_classes: *list[string]*, the list of classes for the label if the label is present as a string. Non-string labels will be cast to either 'False' or 'True'. **kwargs: keyword arguments forwarded to super. """ # Version history: # 1.0.2: Fixed non-nondeterminism in ReCoRD. # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to # the full release (v2.0). # 1.0.0: S3 (new shuffling, sharding and slicing mechanism). # 0.0.2: Initial version. super().__init__(version=datasets.Version("1.0.2"), **kwargs) self.features = features self.label_classes = label_classes self.data_url = data_url self.citation = citation self.url = url ``` 2. Create instances of your config to specify the values of the attributes of each configuration. This gives you the flexibility to specify all the name and description of each configuration. These sub-class instances should be listed under `DatasetBuilder.BUILDER_CONFIGS`: ```py class SuperGlue(datasets.GeneratorBasedBuilder): """The SuperGLUE benchmark.""" BUILDER_CONFIG_CLASS = SuperGlueConfig BUILDER_CONFIGS = [ SuperGlueConfig( name="boolq", description=_BOOLQ_DESCRIPTION, features=["question", "passage"], data_url="https://dl.fbaipublicfiles.com/glue/superglue/data/v2/BoolQ.zip", citation=_BOOLQ_CITATION, url="https://github.com/google-research-datasets/boolean-questions", ), ... ... SuperGlueConfig( name="axg", description=_AXG_DESCRIPTION, features=["premise", "hypothesis"], label_classes=["entailment", "not_entailment"], data_url="https://dl.fbaipublicfiles.com/glue/superglue/data/v2/AX-g.zip", citation=_AXG_CITATION, url="https://github.com/rudinger/winogender-schemas", ), ``` 3. Now, users can load a specific configuration of the dataset with the configuration `name`: ```py >>> from datasets import load_dataset >>> dataset = load_dataset('super_glue', 'boolq') ``` Additionally, users can instantiate a custom builder configuration by passing the builder configuration arguments to [`load_dataset`]: ```py >>> from datasets import load_dataset >>> dataset = load_dataset('super_glue', data_url="https://custom_url") ``` ### Default configurations Users must specify a configuration name when they load a dataset with multiple configurations. Otherwise, πŸ€— Datasets will raise a `ValueError`, and prompt the user to select a configuration name. You can avoid this by setting a default dataset configuration with the `DEFAULT_CONFIG_NAME` attribute: ```py class NewDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), ] DEFAULT_CONFIG_NAME = "first_domain" ``` <Tip warning={true}> Only use a default configuration when it makes sense. Don't set one because it may be more convenient for the user to not specify a configuration when they load your dataset. For example, multi-lingual datasets often have a separate configuration for each language. An appropriate default may be an aggregated configuration that loads all the languages of the dataset if the user doesn't request a particular one. </Tip> ## Download data files and organize splits After you've defined the attributes of your dataset, the next step is to download the data files and organize them according to their splits. 1. Create a dictionary of URLs in the loading script that point to the original SQuAD data files: ```py _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/" _URLS = { "train": _URL + "train-v1.1.json", "dev": _URL + "dev-v1.1.json", } ``` <Tip> If the data files live in the same folder or repository of the dataset script, you can just pass the relative paths to the files instead of URLs. </Tip> 2. [`DownloadManager.download_and_extract`] takes this dictionary and downloads the data files. Once the files are downloaded, use [`SplitGenerator`] to organize each split in the dataset. This is a simple class that contains: - The `name` of each split. You should use the standard split names: `Split.TRAIN`, `Split.TEST`, and `Split.VALIDATION`. - `gen_kwargs` provides the file paths to the data files to load for each split. Your `DatasetBuilder._split_generator()` should look like this now: ```py def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), ] ``` ## Generate samples At this point, you have: - Added the dataset attributes. - Provided instructions for how to download the data files. - Organized the splits. The next step is to actually generate the samples in each split. 1. `DatasetBuilder._generate_examples` takes the file path provided by `gen_kwargs` to read and parse the data files. You need to write a function that loads the data files and extracts the columns. 2. Your function should yield a tuple of an `id_`, and an example from the dataset. ```py def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath) as f: squad = json.load(f) for article in squad["data"]: title = article.get("title", "").strip() for paragraph in article["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": {"answer_start": answer_starts, "text": answers,}, } ``` ## (Optional) Generate dataset metadata Adding dataset metadata is a great way to include information about your dataset. The metadata is stored in the dataset card `README.md` in YAML. It includes information like the number of examples required to confirm the dataset was correctly generated, and information about the dataset like its `features`. Run the following command to generate your dataset metadata in `README.md` and make sure your new dataset loading script works correctly: ``` datasets-cli test path/to/<your-dataset-loading-script> --save_info --all_configs ``` If your dataset loading script passed the test, you should now have a `README.md` file in your dataset folder containing a `dataset_info` field with some metadata. ## Upload to the Hub Once your script is ready, [create a dataset card](dataset_card) and [upload it to the Hub](share). Congratulations, you can now load your dataset from the Hub! πŸ₯³ ```py >>> from datasets import load_dataset >>> load_dataset("<username>/my_dataset") ``` ## Advanced features ### Sharding If your dataset is made of many big files, πŸ€— Datasets automatically runs your script in parallel to make it super fast! It can help if you have hundreds or thousands of TAR archives, or JSONL files like [oscar](https://huggingface.co/datasets/oscar/blob/main/oscar.py) for example. To make it work, we consider lists of files in `gen_kwargs` to be shards. Therefore πŸ€— Datasets can automatically spawn several workers to run `_generate_examples` in parallel, and each worker is given a subset of shards to process. ```python class MyShardedDataset(datasets.GeneratorBasedBuilder): def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloaded_files = dl_manager.download([f"data/shard_{i}.jsonl" for i in range(1024)]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files}), ] def _generate_examples(self, filepaths): # Each worker can be given a slice of the original `filepaths` list defined in the `gen_kwargs` # so that this code can run in parallel on several shards at the same time for filepath in filepaths: ... ``` Users can also specify `num_proc=` in `load_dataset()` to specify the number of processes to use as workers. ### ArrowBasedBuilder For some datasets it can be much faster to yield batches of data rather than examples one by one. You can speed up the dataset generation by yielding Arrow tables directly, instead of examples. This is especially useful if your data comes from Pandas DataFrames for example, since the conversion from Pandas to Arrow is as simple as: ```python import pyarrow as pa pa_table = pa.Table.from_pandas(df) ``` To yield Arrow tables instead of single examples, make your dataset builder inherit from [`ArrowBasedBuilder`] instead of [`GeneratorBasedBuilder`], and use `_generate_tables` instead of `_generate_examples`: ```python class MySuperFastDataset(datasets.ArrowBasedBuilder): def _generate_tables(self, filepaths): idx = 0 for filepath in filepaths: ... yield idx, pa_table idx += 1 ``` Don't forget to keep your script memory efficient, in case users run them on machines with a low amount of RAM.
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/loading.mdx
# Load Your data can be stored in various places; they can be on your local machine's disk, in a Github repository, and in in-memory data structures like Python dictionaries and Pandas DataFrames. Wherever a dataset is stored, πŸ€— Datasets can help you load it. This guide will show you how to load a dataset from: - The Hub without a dataset loading script - Local loading script - Local files - In-memory data - Offline - A specific slice of a split For more details specific to loading other dataset modalities, take a look at the <a class="underline decoration-pink-400 decoration-2 font-semibold" href="./audio_load">load audio dataset guide</a>, the <a class="underline decoration-yellow-400 decoration-2 font-semibold" href="./image_load">load image dataset guide</a>, or the <a class="underline decoration-green-400 decoration-2 font-semibold" href="./nlp_load">load text dataset guide</a>. <a id='load-from-the-hub'></a> ## Hugging Face Hub Datasets are loaded from a dataset loading script that downloads and generates the dataset. However, you can also load a dataset from any dataset repository on the Hub without a loading script! Begin by [creating a dataset repository](share#create-the-repository) and upload your data files. Now you can use the [`load_dataset`] function to load the dataset. For example, try loading the files from this [demo repository](https://huggingface.co/datasets/lhoestq/demo1) by providing the repository namespace and dataset name. This dataset repository contains CSV files, and the code below loads the dataset from the CSV files: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("lhoestq/demo1") ``` Some datasets may have more than one version based on Git tags, branches, or commits. Use the `revision` parameter to specify the dataset version you want to load: ```py >>> dataset = load_dataset( ... "lhoestq/custom_squad", ... revision="main" # tag name, or branch name, or commit hash ... ) ``` <Tip> Refer to the [Upload a dataset to the Hub](./upload_dataset) tutorial for more details on how to create a dataset repository on the Hub, and how to upload your data files. </Tip> A dataset without a loading script by default loads all the data into the `train` split. Use the `data_files` parameter to map data files to splits like `train`, `validation` and `test`: ```py >>> data_files = {"train": "train.csv", "test": "test.csv"} >>> dataset = load_dataset("namespace/your_dataset_name", data_files=data_files) ``` <Tip warning={true}> If you don't specify which data files to use, [`load_dataset`] will return all the data files. This can take a long time if you load a large dataset like C4, which is approximately 13TB of data. </Tip> You can also load a specific subset of the files with the `data_files` or `data_dir` parameter. These parameters can accept a relative path which resolves to the base path corresponding to where the dataset is loaded from. ```py >>> from datasets import load_dataset # load files that match the grep pattern >>> c4_subset = load_dataset("allenai/c4", data_files="en/c4-train.0000*-of-01024.json.gz") # load dataset from the en directory on the Hub >>> c4_subset = load_dataset("allenai/c4", data_dir="en") ``` The `split` parameter can also map a data file to a specific split: ```py >>> data_files = {"validation": "en/c4-validation.*.json.gz"} >>> c4_validation = load_dataset("allenai/c4", data_files=data_files, split="validation") ``` ## Local loading script You may have a πŸ€— Datasets loading script locally on your computer. In this case, load the dataset by passing one of the following paths to [`load_dataset`]: - The local path to the loading script file. - The local path to the directory containing the loading script file (only if the script file has the same name as the directory). Pass `trust_remote_code=True` to allow πŸ€— Datasets to execute the loading script: ```py >>> dataset = load_dataset("path/to/local/loading_script/loading_script.py", split="train", trust_remote_code=True) >>> dataset = load_dataset("path/to/local/loading_script", split="train", trust_remote_code=True) # equivalent because the file has the same name as the directory ``` ### Edit loading script You can also edit a loading script from the Hub to add your own modifications. Download the dataset repository locally so any data files referenced by a relative path in the loading script can be loaded: ```bash git clone https://huggingface.co/datasets/eli5 ``` Make your edits to the loading script and then load it by passing its local path to [`~datasets.load_dataset`]: ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("path/to/local/eli5") ``` ## Local and remote files Datasets can be loaded from local files stored on your computer and from remote files. The datasets are most likely stored as a `csv`, `json`, `txt` or `parquet` file. The [`load_dataset`] function can load each of these file types. ### CSV πŸ€— Datasets can read a dataset made up of one or several CSV files (in this case, pass your CSV files as a list): ```py >>> from datasets import load_dataset >>> dataset = load_dataset("csv", data_files="my_file.csv") ``` <Tip> For more details, check out the [how to load tabular datasets from CSV files](tabular_load#csv-files) guide. </Tip> ### JSON JSON files are loaded directly with [`load_dataset`] as shown below: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("json", data_files="my_file.json") ``` JSON files have diverse formats, but we think the most efficient format is to have multiple JSON objects; each line represents an individual row of data. For example: ```json {"a": 1, "b": 2.0, "c": "foo", "d": false} {"a": 4, "b": -5.5, "c": null, "d": true} ``` Another JSON format you may encounter is a nested field, in which case you'll need to specify the `field` argument as shown in the following: ```py {"version": "0.1.0", "data": [{"a": 1, "b": 2.0, "c": "foo", "d": false}, {"a": 4, "b": -5.5, "c": null, "d": true}] } >>> from datasets import load_dataset >>> dataset = load_dataset("json", data_files="my_file.json", field="data") ``` To load remote JSON files via HTTP, pass the URLs instead: ```py >>> base_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/" >>> dataset = load_dataset("json", data_files={"train": base_url + "train-v1.1.json", "validation": base_url + "dev-v1.1.json"}, field="data") ``` While these are the most common JSON formats, you'll see other datasets that are formatted differently. πŸ€— Datasets recognizes these other formats and will fallback accordingly on the Python JSON loading methods to handle them. ### Parquet Parquet files are stored in a columnar format, unlike row-based files like a CSV. Large datasets may be stored in a Parquet file because it is more efficient and faster at returning your query. To load a Parquet file: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("parquet", data_files={'train': 'train.parquet', 'test': 'test.parquet'}) ``` To load remote Parquet files via HTTP, pass the URLs instead: ```py >>> base_url = "https://storage.googleapis.com/huggingface-nlp/cache/datasets/wikipedia/20200501.en/1.0.0/" >>> data_files = {"train": base_url + "wikipedia-train.parquet"} >>> wiki = load_dataset("parquet", data_files=data_files, split="train") ``` ### Arrow Arrow files are stored in an in-memory columnar format, unlike row-based formats like CSV and uncompressed formats like Parquet. To load an Arrow file: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("arrow", data_files={'train': 'train.arrow', 'test': 'test.arrow'}) ``` To load remote Arrow files via HTTP, pass the URLs instead: ```py >>> base_url = "https://storage.googleapis.com/huggingface-nlp/cache/datasets/wikipedia/20200501.en/1.0.0/" >>> data_files = {"train": base_url + "wikipedia-train.arrow"} >>> wiki = load_dataset("arrow", data_files=data_files, split="train") ``` Arrow is the file format used by πŸ€— Datasets under the hood, therefore you can load a local Arrow file using [`Dataset.from_file`] directly: ```py >>> from datasets import Dataset >>> dataset = Dataset.from_file("data.arrow") ``` Unlike [`load_dataset`], [`Dataset.from_file`] memory maps the Arrow file without preparing the dataset in the cache, saving you disk space. The cache directory to store intermediate processing results will be the Arrow file directory in that case. For now only the Arrow streaming format is supported. The Arrow IPC file format (also known as Feather V2) is not supported. ### SQL Read database contents with [`~datasets.Dataset.from_sql`] by specifying the URI to connect to your database. You can read both table names and queries: ```py >>> from datasets import Dataset # load entire table >>> dataset = Dataset.from_sql("data_table_name", con="sqlite:///sqlite_file.db") # load from query >>> dataset = Dataset.from_sql("SELECT text FROM table WHERE length(text) > 100 LIMIT 10", con="sqlite:///sqlite_file.db") ``` <Tip> For more details, check out the [how to load tabular datasets from SQL databases](tabular_load#databases) guide. </Tip> ### WebDataset The [WebDataset](https://github.com/webdataset/webdataset) format is based on TAR archives and is suitable for big image datasets. Because of their size, WebDatasets are generally loaded in streaming mode (using `streaming=True`). You can load a WebDataset like this: ```python >>> from datasets import load_dataset >>> >>> path = "path/to/train/*.tar" >>> dataset = load_dataset("webdataset", data_files={"train": path}, split="train", streaming=True) ``` To load remote WebDatasets via HTTP, pass the URLs instead: ```python >>> from datasets import load_dataset >>> >>> base_url = "https://huggingface.co/datasets/lhoestq/small-publaynet-wds/resolve/main/publaynet-train-{i:06d}.tar" >>> urls = [base_url.format(i=i) for i in range(4)] >>> dataset = load_dataset("webdataset", data_files={"train": urls}, split="train", streaming=True) ``` ## Multiprocessing When a dataset is made of several files (that we call "shards"), it is possible to significantly speed up the dataset downloading and preparation step. You can choose how many processes you'd like to use to prepare a dataset in parallel using `num_proc`. In this case, each process is given a subset of shards to prepare: ```python from datasets import load_dataset imagenet = load_dataset("imagenet-1k", num_proc=8) ml_librispeech_spanish = load_dataset("facebook/multilingual_librispeech", "spanish", num_proc=8) ``` ## In-memory data πŸ€— Datasets will also allow you to create a [`Dataset`] directly from in-memory data structures like Python dictionaries and Pandas DataFrames. ### Python dictionary Load Python dictionaries with [`~Dataset.from_dict`]: ```py >>> from datasets import Dataset >>> my_dict = {"a": [1, 2, 3]} >>> dataset = Dataset.from_dict(my_dict) ``` ### Python list of dictionaries Load a list of Python dictionaries with [`~Dataset.from_list`]: ```py >>> from datasets import Dataset >>> my_list = [{"a": 1}, {"a": 2}, {"a": 3}] >>> dataset = Dataset.from_list(my_list) ``` ### Python generator Create a dataset from a Python generator with [`~Dataset.from_generator`]: ```py >>> from datasets import Dataset >>> def my_gen(): ... for i in range(1, 4): ... yield {"a": i} ... >>> dataset = Dataset.from_generator(my_gen) ``` This approach supports loading data larger than available memory. You can also define a sharded dataset by passing lists to `gen_kwargs`: ```py >>> def gen(shards): ... for shard in shards: ... with open(shard) as f: ... for line in f: ... yield {"line": line} ... >>> shards = [f"data{i}.txt" for i in range(32)] >>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards}) >>> ds = ds.shuffle(seed=42, buffer_size=10_000) # shuffles the shards order + uses a shuffle buffer >>> from torch.utils.data import DataLoader >>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4) # give each worker a subset of 32/4=8 shards ``` ### Pandas DataFrame Load Pandas DataFrames with [`~Dataset.from_pandas`]: ```py >>> from datasets import Dataset >>> import pandas as pd >>> df = pd.DataFrame({"a": [1, 2, 3]}) >>> dataset = Dataset.from_pandas(df) ``` <Tip> For more details, check out the [how to load tabular datasets from Pandas DataFrames](tabular_load#pandas-dataframes) guide. </Tip> ## Offline Even if you don't have an internet connection, it is still possible to load a dataset. As long as you've downloaded a dataset from the Hub repository before, it should be cached. This means you can reload the dataset from the cache and use it offline. If you know you won't have internet access, you can run πŸ€— Datasets in full offline mode. This saves time because instead of waiting for the Dataset builder download to time out, πŸ€— Datasets will look directly in the cache. Set the environment variable `HF_DATASETS_OFFLINE` to `1` to enable full offline mode. ## Slice splits You can also choose only to load specific slices of a split. There are two options for slicing a split: using strings or the [`ReadInstruction`] API. Strings are more compact and readable for simple cases, while [`ReadInstruction`] is easier to use with variable slicing parameters. Concatenate a `train` and `test` split by: ```py >>> train_test_ds = datasets.load_dataset("bookcorpus", split="train+test") ===STRINGAPI-READINSTRUCTION-SPLIT=== >>> ri = datasets.ReadInstruction("train") + datasets.ReadInstruction("test") >>> train_test_ds = datasets.load_dataset("bookcorpus", split=ri) ``` Select specific rows of the `train` split: ```py >>> train_10_20_ds = datasets.load_dataset("bookcorpus", split="train[10:20]") ===STRINGAPI-READINSTRUCTION-SPLIT=== >>> train_10_20_ds = datasets.load_dataset("bookcorpu", split=datasets.ReadInstruction("train", from_=10, to=20, unit="abs")) ``` Or select a percentage of a split with: ```py >>> train_10pct_ds = datasets.load_dataset("bookcorpus", split="train[:10%]") ===STRINGAPI-READINSTRUCTION-SPLIT=== >>> train_10_20_ds = datasets.load_dataset("bookcorpus", split=datasets.ReadInstruction("train", to=10, unit="%")) ``` Select a combination of percentages from each split: ```py >>> train_10_80pct_ds = datasets.load_dataset("bookcorpus", split="train[:10%]+train[-80%:]") ===STRINGAPI-READINSTRUCTION-SPLIT=== >>> ri = (datasets.ReadInstruction("train", to=10, unit="%") + datasets.ReadInstruction("train", from_=-80, unit="%")) >>> train_10_80pct_ds = datasets.load_dataset("bookcorpus", split=ri) ``` Finally, you can even create cross-validated splits. The example below creates 10-fold cross-validated splits. Each validation dataset is a 10% chunk, and the training dataset makes up the remaining complementary 90% chunk: ```py >>> val_ds = datasets.load_dataset("bookcorpus", split=[f"train[{k}%:{k+10}%]" for k in range(0, 100, 10)]) >>> train_ds = datasets.load_dataset("bookcorpus", split=[f"train[:{k}%]+train[{k+10}%:]" for k in range(0, 100, 10)]) ===STRINGAPI-READINSTRUCTION-SPLIT=== >>> val_ds = datasets.load_dataset("bookcorpus", [datasets.ReadInstruction("train", from_=k, to=k+10, unit="%") for k in range(0, 100, 10)]) >>> train_ds = datasets.load_dataset("bookcorpus", [(datasets.ReadInstruction("train", to=k, unit="%") + datasets.ReadInstruction("train", from_=k+10, unit="%")) for k in range(0, 100, 10)]) ``` ### Percent slicing and rounding The default behavior is to round the boundaries to the nearest integer for datasets where the requested slice boundaries do not divide evenly by 100. As shown below, some slices may contain more examples than others. For instance, if the following train split includes 999 records, then: ```py # 19 records, from 500 (included) to 519 (excluded). >>> train_50_52_ds = datasets.load_dataset("bookcorpus", split="train[50%:52%]") # 20 records, from 519 (included) to 539 (excluded). >>> train_52_54_ds = datasets.load_dataset("bookcorpus", split="train[52%:54%]") ``` If you want equal sized splits, use `pct1_dropremainder` rounding instead. This treats the specified percentage boundaries as multiples of 1%. ```py # 18 records, from 450 (included) to 468 (excluded). >>> train_50_52pct1_ds = datasets.load_dataset("bookcorpus", split=datasets.ReadInstruction("train", from_=50, to=52, unit="%", rounding="pct1_dropremainder")) # 18 records, from 468 (included) to 486 (excluded). >>> train_52_54pct1_ds = datasets.load_dataset("bookcorpus", split=datasets.ReadInstruction("train",from_=52, to=54, unit="%", rounding="pct1_dropremainder")) # Or equivalently: >>> train_50_52pct1_ds = datasets.load_dataset("bookcorpus", split="train[50%:52%](pct1_dropremainder)") >>> train_52_54pct1_ds = datasets.load_dataset("bookcorpus", split="train[52%:54%](pct1_dropremainder)") ``` <Tip warning={true}> `pct1_dropremainder` rounding may truncate the last examples in a dataset if the number of examples in your dataset don't divide evenly by 100. </Tip> <a id='troubleshoot'></a> ## Troubleshooting Sometimes, you may get unexpected results when you load a dataset. Two of the most common issues you may encounter are manually downloading a dataset and specifying features of a dataset. ### Manual download Certain datasets require you to manually download the dataset files due to licensing incompatibility or if the files are hidden behind a login page. This causes [`load_dataset`] to throw an `AssertionError`. But πŸ€— Datasets provides detailed instructions for downloading the missing files. After you've downloaded the files, use the `data_dir` argument to specify the path to the files you just downloaded. For example, if you try to download a configuration from the [MATINF](https://huggingface.co/datasets/matinf) dataset: ```py >>> dataset = load_dataset("matinf", "summarization") Downloading and preparing dataset matinf/summarization (download: Unknown size, generated: 246.89 MiB, post-processed: Unknown size, total: 246.89 MiB) to /root/.cache/huggingface/datasets/matinf/summarization/1.0.0/82eee5e71c3ceaf20d909bca36ff237452b4e4ab195d3be7ee1c78b53e6f540e... AssertionError: The dataset matinf with config summarization requires manual data. Please follow the manual download instructions: To use MATINF you have to download it manually. Please fill this google form (https://forms.gle/nkH4LVE4iNQeDzsc9). You will receive a download link and a password once you complete the form. Please extract all files in one folder and load the dataset with: *datasets.load_dataset('matinf', data_dir='path/to/folder/folder_name')*. Manual data can be loaded with `datasets.load_dataset(matinf, data_dir='<path/to/manual/data>') ``` If you've already downloaded a dataset from the *Hub with a loading script* to your computer, then you need to pass an absolute path to the `data_dir` or `data_files` parameter to load that dataset. Otherwise, if you pass a relative path, [`load_dataset`] will load the directory from the repository on the Hub instead of the local directory. ### Specify features When you create a dataset from local files, the [`Features`] are automatically inferred by [Apache Arrow](https://arrow.apache.org/docs/). However, the dataset's features may not always align with your expectations, or you may want to define the features yourself. The following example shows how you can add custom labels with the [`ClassLabel`] feature. Start by defining your own labels with the [`Features`] class: ```py >>> class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"] >>> emotion_features = Features({'text': Value('string'), 'label': ClassLabel(names=class_names)}) ``` Next, specify the `features` parameter in [`load_dataset`] with the features you just created: ```py >>> dataset = load_dataset('csv', data_files=file_dict, delimiter=';', column_names=['text', 'label'], features=emotion_features) ``` Now when you look at your dataset features, you can see it uses the custom labels you defined: ```py >>> dataset['train'].features {'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=6, names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'], names_file=None, id=None)} ``` ## Metrics <Tip warning={true}> Metrics is deprecated in πŸ€— Datasets. To learn more about how to use metrics, take a look at the library πŸ€— [Evaluate](https://huggingface.co/docs/evaluate/index)! In addition to metrics, you can find more tools for evaluating models and datasets. </Tip> When the metric you want to use is not supported by πŸ€— Datasets, you can write and use your own metric script. Load your metric by providing the path to your local metric loading script: ```py >>> from datasets import load_metric >>> metric = load_metric('PATH/TO/MY/METRIC/SCRIPT') >>> # Example of typical usage >>> for batch in dataset: ... inputs, references = batch ... predictions = model(inputs) ... metric.add_batch(predictions=predictions, references=references) >>> score = metric.compute() ``` <Tip> See the [Metrics](./how_to_metrics#custom-metric-loading-script) guide for more details on how to write your own metric loading script. </Tip> ### Load configurations It is possible for a metric to have different configurations. The configurations are stored in the `config_name` parameter in [`MetricInfo`] attribute. When you load a metric, provide the configuration name as shown in the following: ``` >>> from datasets import load_metric >>> metric = load_metric('bleurt', name='bleurt-base-128') >>> metric = load_metric('bleurt', name='bleurt-base-512') ``` ### Distributed setup When working in a distributed or parallel processing environment, loading and computing a metric can be tricky because these processes are executed in parallel on separate subsets of the data. πŸ€— Datasets supports distributed usage with a few additional arguments when you load a metric. For example, imagine you are training and evaluating on eight parallel processes. Here's how you would load a metric in this distributed setting: 1. Define the total number of processes with the `num_process` argument. 2. Set the process `rank` as an integer between zero and `num_process - 1`. 3. Load your metric with [`load_metric`] with these arguments: ```py >>> from datasets import load_metric >>> metric = load_metric('glue', 'mrpc', num_process=num_process, process_id=rank) ``` <Tip> Once you've loaded a metric for distributed usage, you can compute the metric as usual. Behind the scenes, [`Metric.compute`] gathers all the predictions and references from the nodes, and computes the final metric. </Tip> In some instances, you may be simultaneously running multiple independent distributed evaluations on the same server and files. To avoid any conflicts, it is important to provide an `experiment_id` to distinguish the separate evaluations: ```py >>> from datasets import load_metric >>> metric = load_metric('glue', 'mrpc', num_process=num_process, process_id=process_id, experiment_id="My_experiment_10") ```
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/use_with_pytorch.mdx
# Use with PyTorch This document is a quick introduction to using `datasets` with PyTorch, with a particular focus on how to get `torch.Tensor` objects out of our datasets, and how to use a PyTorch `DataLoader` and a Hugging Face `Dataset` with the best performance. ## Dataset format By default, datasets return regular python objects: integers, floats, strings, lists, etc. To get PyTorch tensors instead, you can set the format of the dataset to `pytorch` using [`Dataset.with_format`]: ```py >>> from datasets import Dataset >>> data = [[1, 2],[3, 4]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("torch") >>> ds[0] {'data': tensor([1, 2])} >>> ds[:2] {'data': tensor([[1, 2], [3, 4]])} ``` <Tip> A [`Dataset`] object is a wrapper of an Arrow table, which allows fast zero-copy reads from arrays in the dataset to PyTorch tensors. </Tip> To load the data as tensors on a GPU, specify the `device` argument: ```py >>> import torch >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> ds = ds.with_format("torch", device=device) >>> ds[0] {'data': tensor([1, 2], device='cuda:0')} ``` ## N-dimensional arrays If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists. In particular, a PyTorch formatted dataset outputs nested lists instead of a single tensor: ```py >>> from datasets import Dataset >>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("torch") >>> ds[0] {'data': [tensor([1, 2]), tensor([3, 4])]} ``` To get a single tensor, you must explicitly use the [`Array`] feature type and specify the shape of your tensors: ```py >>> from datasets import Dataset, Features, Array2D >>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]] >>> features = Features({"data": Array2D(shape=(2, 2), dtype='int32')}) >>> ds = Dataset.from_dict({"data": data}, features=features) >>> ds = ds.with_format("torch") >>> ds[0] {'data': tensor([[1, 2], [3, 4]])} >>> ds[:2] {'data': tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])} ``` ## Other feature types [`ClassLabel`] data are properly converted to tensors: ```py >>> from datasets import Dataset, Features, ClassLabel >>> labels = [0, 0, 1] >>> features = Features({"label": ClassLabel(names=["negative", "positive"])}) >>> ds = Dataset.from_dict({"label": labels}, features=features) >>> ds = ds.with_format("torch") >>> ds[:3] {'label': tensor([0, 0, 1])} ``` String and binary objects are unchanged, since PyTorch only supports numbers. The [`Image`] and [`Audio`] feature types are also supported. <Tip> To use the [`Image`] feature type, you'll need to install the `vision` extra as `pip install datasets[vision]`. </Tip> ```py >>> from datasets import Dataset, Features, Audio, Image >>> images = ["path/to/image.png"] * 10 >>> features = Features({"image": Image()}) >>> ds = Dataset.from_dict({"image": images}, features=features) >>> ds = ds.with_format("torch") >>> ds[0]["image"].shape torch.Size([512, 512, 4]) >>> ds[0] {'image': tensor([[[255, 215, 106, 255], [255, 215, 106, 255], ..., [255, 255, 255, 255], [255, 255, 255, 255]]], dtype=torch.uint8)} >>> ds[:2]["image"].shape torch.Size([2, 512, 512, 4]) >>> ds[:2] {'image': tensor([[[[255, 215, 106, 255], [255, 215, 106, 255], ..., [255, 255, 255, 255], [255, 255, 255, 255]]]], dtype=torch.uint8)} ``` <Tip> To use the [`Audio`] feature type, you'll need to install the `audio` extra as `pip install datasets[audio]`. </Tip> ```py >>> from datasets import Dataset, Features, Audio, Image >>> audio = ["path/to/audio.wav"] * 10 >>> features = Features({"audio": Audio()}) >>> ds = Dataset.from_dict({"audio": audio}, features=features) >>> ds = ds.with_format("torch") >>> ds[0]["audio"]["array"] tensor([ 6.1035e-05, 1.5259e-05, 1.6785e-04, ..., -1.5259e-05, -1.5259e-05, 1.5259e-05]) >>> ds[0]["audio"]["sampling_rate"] tensor(44100) ``` ## Data loading Like `torch.utils.data.Dataset` objects, a [`Dataset`] can be passed directly to a PyTorch `DataLoader`: ```py >>> import numpy as np >>> from datasets import Dataset >>> from torch.utils.data import DataLoader >>> data = np.random.rand(16) >>> label = np.random.randint(0, 2, size=16) >>> ds = Dataset.from_dict({"data": data, "label": label}).with_format("torch") >>> dataloader = DataLoader(ds, batch_size=4) >>> for batch in dataloader: ... print(batch) {'data': tensor([0.0047, 0.4979, 0.6726, 0.8105]), 'label': tensor([0, 1, 0, 1])} {'data': tensor([0.4832, 0.2723, 0.4259, 0.2224]), 'label': tensor([0, 0, 0, 0])} {'data': tensor([0.5837, 0.3444, 0.4658, 0.6417]), 'label': tensor([0, 1, 0, 0])} {'data': tensor([0.7022, 0.1225, 0.7228, 0.8259]), 'label': tensor([1, 1, 1, 1])} ``` ### Optimize data loading There are several ways you can increase the speed your data is loaded which can save you time, especially if you are working with large datasets. PyTorch offers parallelized data loading, retrieving batches of indices instead of individually, and streaming to iterate over the dataset without downloading it on disk. #### Use multiple Workers You can parallelize data loading with the `num_workers` argument of a PyTorch `DataLoader` and get a higher throughput. Under the hood, the `DataLoader` starts `num_workers` processes. Each process reloads the dataset passed to the `DataLoader` and is used to query examples. Reloading the dataset inside a worker doesn't fill up your RAM, since it simply memory-maps the dataset again from your disk. ```py >>> import numpy as np >>> from datasets import Dataset, load_from_disk >>> from torch.utils.data import DataLoader >>> data = np.random.rand(10_000) >>> Dataset.from_dict({"data": data}).save_to_disk("my_dataset") >>> ds = load_from_disk("my_dataset").with_format("torch") >>> dataloader = DataLoader(ds, batch_size=32, num_workers=4) ``` ### Stream data Stream a dataset by loading it as an [`IterableDataset`]. This allows you to progressively iterate over a remote dataset without downloading it on disk and or over local data files. Learn more about which type of dataset is best for your use case in the [choosing between a regular dataset or an iterable dataset](./about_mapstyle_vs_iterable) guide. An iterable dataset from `datasets` inherits from `torch.utils.data.IterableDataset` so you can pass it to a `torch.utils.data.DataLoader`: ```py >>> import numpy as np >>> from datasets import Dataset, load_dataset >>> from torch.utils.data import DataLoader >>> data = np.random.rand(10_000) >>> Dataset.from_dict({"data": data}).push_to_hub("<username>/my_dataset") # Upload to the Hugging Face Hub >>> my_iterable_dataset = load_dataset("<username>/my_dataset", streaming=True, split="train") >>> dataloader = DataLoader(my_iterable_dataset, batch_size=32) ``` If the dataset is split in several shards (i.e. if the dataset consists of multiple data files), then you can stream in parallel using `num_workers`: ```py >>> my_iterable_dataset = load_dataset("deepmind/code_contests", streaming=True, split="train") >>> my_iterable_dataset.n_shards 39 >>> dataloader = DataLoader(my_iterable_dataset, batch_size=32, num_workers=4) ``` In this case each worker is given a subset of the list of shards to stream from. ### Distributed To split your dataset across your training nodes, you can use [`datasets.distributed.split_dataset_by_node`]: ```python import os from datasets.distributed import split_dataset_by_node ds = split_dataset_by_node(ds, rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"])) ``` This works for both map-style datasets and iterable datasets. The dataset is split for the node at rank `rank` in a pool of nodes of size `world_size`. For map-style datasets: Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset. For iterable datasets: If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples. This can also be combined with a `torch.utils.data.DataLoader` if you want each node to use multiple workers to load the data.
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/create_dataset.mdx
# Create a dataset Sometimes, you may need to create a dataset if you're working with your own data. Creating a dataset with πŸ€— Datasets confers all the advantages of the library to your dataset: fast loading and processing, [stream enormous datasets](stream), [memory-mapping](https://huggingface.co/course/chapter5/4?fw=pt#the-magic-of-memory-mapping), and more. You can easily and rapidly create a dataset with πŸ€— Datasets low-code approaches, reducing the time it takes to start training a model. In many cases, it is as easy as [dragging and dropping](upload_dataset#upload-with-the-hub-ui) your data files into a dataset repository on the Hub. In this tutorial, you'll learn how to use πŸ€— Datasets low-code methods for creating all types of datasets: * Folder-based builders for quickly creating an image or audio dataset * `from_` methods for creating datasets from local files ## Folder-based builders There are two folder-based builders, [`ImageFolder`] and [`AudioFolder`]. These are low-code methods for quickly creating an image or speech and audio dataset with several thousand examples. They are great for rapidly prototyping computer vision and speech models before scaling to a larger dataset. Folder-based builders takes your data and automatically generates the dataset's features, splits, and labels. Under the hood: * [`ImageFolder`] uses the [`~datasets.Image`] feature to decode an image file. Many image extension formats are supported, such as jpg and png, but other formats are also supported. You can check the complete [list](https://github.com/huggingface/datasets/blob/b5672a956d5de864e6f5550e493527d962d6ae55/src/datasets/packaged_modules/imagefolder/imagefolder.py#L39) of supported image extensions. * [`AudioFolder`] uses the [`~datasets.Audio`] feature to decode an audio file. Audio extensions such as wav and mp3 are supported, and you can check the complete [list](https://github.com/huggingface/datasets/blob/b5672a956d5de864e6f5550e493527d962d6ae55/src/datasets/packaged_modules/audiofolder/audiofolder.py#L39) of supported audio extensions. The dataset splits are generated from the repository structure, and the label names are automatically inferred from the directory name. For example, if your image dataset (it is the same for an audio dataset) is stored like this: ``` pokemon/train/grass/bulbasaur.png pokemon/train/fire/charmander.png pokemon/train/water/squirtle.png pokemon/test/grass/ivysaur.png pokemon/test/fire/charmeleon.png pokemon/test/water/wartortle.png ``` Then this is how the folder-based builder generates an example: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/folder-based-builder.png"/> </div> Create the image dataset by specifying `imagefolder` in [`load_dataset`]: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("imagefolder", data_dir="/path/to/pokemon") ``` An audio dataset is created in the same way, except you specify `audiofolder` in [`load_dataset`] instead: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder") ``` Any additional information about your dataset, such as text captions or transcriptions, can be included with a `metadata.csv` file in the folder containing your dataset. The metadata file needs to have a `file_name` column that links the image or audio file to its corresponding metadata: ``` file_name, text bulbasaur.png, There is a plant seed on its back right from the day this PokΓ©mon is born. charmander.png, It has a preference for hot things. squirtle.png, When it retracts its long neck into its shell, it squirts out water with vigorous force. ``` To learn more about each of these folder-based builders, check out the and <a href="https://huggingface.co/docs/datasets/image_dataset#imagefolder"><span class="underline decoration-yellow-400 decoration-2 font-semibold">ImageFolder</span></a> or <a href="https://huggingface.co/docs/datasets/audio_dataset#audiofolder"><span class="underline decoration-pink-400 decoration-2 font-semibold">AudioFolder</span></a> guides. ## From local files You can also create a dataset from local files by specifying the path to the data files. There are two ways you can create a dataset using the `from_` methods: * The [`~Dataset.from_generator`] method is the most memory-efficient way to create a dataset from a [generator](https://wiki.python.org/moin/Generators) due to a generators iterative behavior. This is especially useful when you're working with a really large dataset that may not fit in memory, since the dataset is generated on disk progressively and then memory-mapped. ```py >>> from datasets import Dataset >>> def gen(): ... yield {"pokemon": "bulbasaur", "type": "grass"} ... yield {"pokemon": "squirtle", "type": "water"} >>> ds = Dataset.from_generator(gen) >>> ds[0] {"pokemon": "bulbasaur", "type": "grass"} ``` A generator-based [`IterableDataset`] needs to be iterated over with a `for` loop for example: ```py >>> from datasets import IterableDataset >>> ds = IterableDataset.from_generator(gen) >>> for example in ds: ... print(example) {"pokemon": "bulbasaur", "type": "grass"} {"pokemon": "squirtle", "type": "water"} ``` * The [`~Dataset.from_dict`] method is a straightforward way to create a dataset from a dictionary: ```py >>> from datasets import Dataset >>> ds = Dataset.from_dict({"pokemon": ["bulbasaur", "squirtle"], "type": ["grass", "water"]}) >>> ds[0] {"pokemon": "bulbasaur", "type": "grass"} ``` To create an image or audio dataset, chain the [`~Dataset.cast_column`] method with [`~Dataset.from_dict`] and specify the column and feature type. For example, to create an audio dataset: ```py >>> audio_dataset = Dataset.from_dict({"audio": ["path/to/audio_1", ..., "path/to/audio_n"]}).cast_column("audio", Audio()) ``` ## Next steps We didn't mention this in the tutorial, but you can also create a dataset with a loading script. A loading script is a more manual and code-intensive method for creating a dataset, but it also gives you the most flexibility and control over how a dataset is generated. It lets you configure additional options such as creating multiple configurations within a dataset, or enabling your dataset to be streamed. To learn more about how to write loading scripts, take a look at the <a href="https://huggingface.co/docs/datasets/main/en/image_dataset#loading-script"><span class="underline decoration-yellow-400 decoration-2 font-semibold">image loading script</span></a>, <a href="https://huggingface.co/docs/datasets/main/en/audio_dataset"><span class="underline decoration-pink-400 decoration-2 font-semibold">audio loading script</span></a>, and <a href="https://huggingface.co/docs/datasets/main/en/dataset_script"><span class="underline decoration-green-400 decoration-2 font-semibold">text loading script</span></a> guides. Now that you know how to create a dataset, consider sharing it on the Hub so the community can also benefit from your work! Go on to the next section to learn how to share your dataset.
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/tutorial.md
# Overview Welcome to the πŸ€— Datasets tutorials! These beginner-friendly tutorials will guide you through the fundamentals of working with πŸ€— Datasets. You'll load and prepare a dataset for training with your machine learning framework of choice. Along the way, you'll learn how to load different dataset configurations and splits, interact with and see what's inside your dataset, preprocess, and share a dataset to the [Hub](https://huggingface.co/datasets). The tutorials assume some basic knowledge of Python and a machine learning framework like PyTorch or TensorFlow. If you're already familiar with these, feel free to check out the [quickstart](./quickstart) to see what you can do with πŸ€— Datasets. <Tip> The tutorials only cover the basic skills you need to use πŸ€— Datasets. There are many other useful functionalities and applications that aren't discussed here. If you're interested in learning more, take a look at [Chapter 5](https://huggingface.co/course/chapter5/1?fw=pt) of the Hugging Face course. </Tip> If you have any questions about πŸ€— Datasets, feel free to join and ask the community on our [forum](https://discuss.huggingface.co/c/datasets/10). Let's get started! 🏁
0
hf_public_repos/datasets/docs
hf_public_repos/datasets/docs/source/dataset_card.mdx
# Create a dataset card Each dataset should have a dataset card to promote responsible usage and inform users of any potential biases within the dataset. This idea was inspired by the Model Cards proposed by [Mitchell, 2018](https://arxiv.org/abs/1810.03993). Dataset cards help users understand a dataset's contents, the context for using the dataset, how it was created, and any other considerations a user should be aware of. Creating a dataset card is easy and can be done in a just a few steps: 1. Go to your dataset repository on the [Hub](https://hf.co/new-dataset) and click on **Create Dataset Card** to create a new `README.md` file in your repository. 2. Use the **Metadata UI** to select the tags that describe your dataset. You can add a license, language, pretty_name, the task_categories, size_categories, and any other tags that you think are relevant. These tags help users discover and find your dataset on the Hub. <div class="flex justify-center"> <img class="block dark:hidden" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hub/datasets-metadata-ui.png"/> <img class="hidden dark:block" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/hub/datasets-metadata-ui-dark.png"/> </div> <Tip> For a complete, but not required, set of tag options you can also look at the [Dataset Card specifications](https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1). This'll have a few more tag options like `multilinguality` and `language_creators` which are useful but not absolutely necessary. </Tip> 3. Click on the **Import dataset card template** link to automatically create a template with all the relevant fields to complete. Fill out the template sections to the best of your ability. Take a look at the [Dataset Card Creation Guide](https://github.com/huggingface/datasets/blob/main/templates/README_guide.md) for more detailed information about what to include in each section of the card. For fields you are unable to complete, you can write **[More Information Needed]**. 4. Once you're done, commit the changes to the `README.md` file and you'll see the completed dataset card on your repository. YAML also allows you to customize the way your dataset is loaded by [defining splits and/or configurations](./repository_structure#define-your-splits-and-subsets-in-yaml) without the need to write any code. Feel free to take a look at the [SNLI](https://huggingface.co/datasets/snli), [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail), and [AllocinΓ©](https://huggingface.co/datasets/allocine) dataset cards as examples to help you get started.
0