repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/datasets/src/datasets/packaged_modules
hf_public_repos/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
import io import json from itertools import islice from typing import Any, Callable, Dict, List import numpy as np import pyarrow as pa import datasets logger = datasets.utils.logging.get_logger(__name__) class WebDataset(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 100 IMAGE_EXTENSIONS: List[str] # definition at the bottom of the script AUDIO_EXTENSIONS: List[str] # definition at the bottom of the script DECODERS: Dict[str, Callable[[Any], Any]] # definition at the bottom of the script NUM_EXAMPLES_FOR_FEATURES_INFERENCE = 5 @classmethod def _get_pipeline_from_tar(cls, tar_path, tar_iterator): current_example = {} for filename, f in tar_iterator: if "." in filename: example_key, field_name = filename.split(".", 1) if current_example and current_example["__key__"] != example_key: yield current_example current_example = {} current_example["__key__"] = example_key current_example["__url__"] = tar_path current_example[field_name.lower()] = f.read() if field_name in cls.DECODERS: current_example[field_name] = cls.DECODERS[field_name](current_example[field_name]) if current_example: yield current_example def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo() def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" # Download the data files if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download(self.config.data_files) if isinstance(data_files, (str, list, tuple)): tar_paths = data_files if isinstance(tar_paths, str): tar_paths = [tar_paths] tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} ) ] else: splits = [] for split_name, tar_paths in data_files.items(): if isinstance(tar_paths, str): tar_paths = [tar_paths] tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] splits.append( datasets.SplitGenerator( name=split_name, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} ) ) if not self.info.features: # Get one example to get the feature types pipeline = self._get_pipeline_from_tar(tar_paths[0], tar_iterators[0]) first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE)) if any(example.keys() != first_examples[0].keys() for example in first_examples): raise ValueError( "The TAR archives of the dataset should be in WebDataset format, " "but the files in the archive don't share the same prefix or the same types." ) pa_tables = [pa.Table.from_pylist([example]) for example in first_examples] if datasets.config.PYARROW_VERSION.major < 14: inferred_arrow_schema = pa.concat_tables(pa_tables, promote=True).schema else: inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema features = datasets.Features.from_arrow_schema(inferred_arrow_schema) # Set Image types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.IMAGE_EXTENSIONS: features[field_name] = datasets.Image() # Set Audio types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.AUDIO_EXTENSIONS: features[field_name] = datasets.Audio() self.info.features = features return splits def _generate_examples(self, tar_paths, tar_iterators): image_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image) ] audio_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio) ] for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)): for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)): for field_name in image_field_names + audio_field_names: example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]} yield f"{tar_idx}_{example_idx}", example # Obtained with: # ``` # import PIL.Image # IMAGE_EXTENSIONS = [] # PIL.Image.init() # for ext, format in PIL.Image.EXTENSION.items(): # if format in PIL.Image.OPEN: # IMAGE_EXTENSIONS.append(ext[1:]) # ``` # We intentionally do not run this code on launch because: # (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic IMAGE_EXTENSIONS = [ "blp", "bmp", "dib", "bufr", "cur", "pcx", "dcx", "dds", "ps", "eps", "fit", "fits", "fli", "flc", "ftc", "ftu", "gbr", "gif", "grib", "h5", "hdf", "png", "apng", "jp2", "j2k", "jpc", "jpf", "jpx", "j2c", "icns", "ico", "im", "iim", "tif", "tiff", "jfif", "jpe", "jpg", "jpeg", "mpg", "mpeg", "msp", "pcd", "pxr", "pbm", "pgm", "ppm", "pnm", "psd", "bw", "rgb", "rgba", "sgi", "ras", "tga", "icb", "vda", "vst", "webp", "wmf", "emf", "xbm", "xpm", ] WebDataset.IMAGE_EXTENSIONS = IMAGE_EXTENSIONS # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: # AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ "aiff", "au", "avr", "caf", "flac", "htk", "svx", "mat4", "mat5", "mpc2k", "ogg", "paf", "pvf", "raw", "rf64", "sd2", "sds", "ircam", "voc", "w64", "wav", "nist", "wavex", "wve", "xi", "mp3", "opus", ] WebDataset.AUDIO_EXTENSIONS = AUDIO_EXTENSIONS def text_loads(data: bytes): return data.decode("utf-8") def tenbin_loads(data: bytes): from . import _tenbin return _tenbin.decode_buffer(data) def msgpack_loads(data: bytes): import msgpack return msgpack.unpackb(data) def npy_loads(data: bytes): import numpy.lib.format stream = io.BytesIO(data) return numpy.lib.format.read_array(stream, allow_pickle=False) def npz_loads(data: bytes): return np.load(io.BytesIO(data), allow_pickle=False) def cbor_loads(data: bytes): import cbor return cbor.loads(data) # Obtained by checking `decoders` in `webdataset.autodecode` # and removing unsafe extension decoders. # Removed Pickle decoders: # - "pyd": lambda data: pickle.loads(data) # - "pickle": lambda data: pickle.loads(data) # Removed Torch decoders: # - "pth": lambda data: torch_loads(data) # Modified NumPy decoders to fix CVE-2019-6446 (add allow_pickle=False): # - "npy": npy_loads, # - "npz": lambda data: np.load(io.BytesIO(data)), DECODERS = { "txt": text_loads, "text": text_loads, "transcript": text_loads, "cls": int, "cls2": int, "index": int, "inx": int, "id": int, "json": json.loads, "jsn": json.loads, "ten": tenbin_loads, "tb": tenbin_loads, "mp": msgpack_loads, "msg": msgpack_loads, "npy": npy_loads, "npz": npz_loads, "cbor": cbor_loads, } WebDataset.DECODERS = DECODERS
0
hf_public_repos/datasets/src/datasets/packaged_modules
hf_public_repos/datasets/src/datasets/packaged_modules/webdataset/_tenbin.py
# # Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved. # This file coems from the WebDataset library. # See the LICENSE file for licensing terms (BSD-style). # """ Binary tensor encodings for PyTorch and NumPy. This defines efficient binary encodings for tensors. The format is 8 byte aligned and can be used directly for computations when transmitted, say, via RDMA. The format is supported by WebDataset with the `.ten` filename extension. It is also used by Tensorcom, Tensorcom RDMA, and can be used for fast tensor storage with LMDB and in disk files (which can be memory mapped) Data is encoded as a series of chunks: - magic number (int64) - length in bytes (int64) - bytes (multiple of 64 bytes long) Arrays are a header chunk followed by a data chunk. Header chunks have the following structure: - dtype (int64) - 8 byte array name - ndim (int64) - dim[0] - dim[1] - ... """ import struct import sys import numpy as np def bytelen(a): """Determine the length of a in bytes.""" if hasattr(a, "nbytes"): return a.nbytes elif isinstance(a, (bytearray, bytes)): return len(a) else: raise ValueError(a, "cannot determine nbytes") def bytedata(a): """Return a the raw data corresponding to a.""" if isinstance(a, (bytearray, bytes, memoryview)): return a elif hasattr(a, "data"): return a.data else: raise ValueError(a, "cannot return bytedata") # tables for converting between long/short NumPy dtypes long_to_short = """ float16 f2 float32 f4 float64 f8 int8 i1 int16 i2 int32 i4 int64 i8 uint8 u1 uint16 u2 unit32 u4 uint64 u8 """.strip() long_to_short = [x.split() for x in long_to_short.split("\n")] long_to_short = {x[0]: x[1] for x in long_to_short} short_to_long = {v: k for k, v in long_to_short.items()} def check_acceptable_input_type(data, allow64): """Check that the data has an acceptable type for tensor encoding. :param data: array :param allow64: allow 64 bit types """ for a in data: if a.dtype.name not in long_to_short: raise ValueError("unsupported dataypte") if not allow64 and a.dtype.name not in ["float64", "int64", "uint64"]: raise ValueError("64 bit datatypes not allowed unless explicitly enabled") def str64(s): """Convert a string to an int64.""" s = s + "\0" * (8 - len(s)) s = s.encode("ascii") return struct.unpack("@q", s)[0] def unstr64(i): """Convert an int64 to a string.""" b = struct.pack("@q", i) return b.decode("ascii").strip("\0") def check_infos(data, infos, required_infos=None): """Verify the info strings.""" if required_infos is False or required_infos is None: return data if required_infos is True: return data, infos if not isinstance(required_infos, (tuple, list)): raise ValueError("required_infos must be tuple or list") for required, actual in zip(required_infos, infos): raise ValueError(f"actual info {actual} doesn't match required info {required}") return data def encode_header(a, info=""): """Encode an array header as a byte array.""" if a.ndim >= 10: raise ValueError("too many dimensions") if a.nbytes != np.prod(a.shape) * a.itemsize: raise ValueError("mismatch between size and shape") if a.dtype.name not in long_to_short: raise ValueError("unsupported array type") header = [str64(long_to_short[a.dtype.name]), str64(info), len(a.shape)] + list(a.shape) return bytedata(np.array(header, dtype="i8")) def decode_header(h): """Decode a byte array into an array header.""" h = np.frombuffer(h, dtype="i8") if unstr64(h[0]) not in short_to_long: raise ValueError("unsupported array type") dtype = np.dtype(short_to_long[unstr64(h[0])]) info = unstr64(h[1]) rank = int(h[2]) shape = tuple(h[3 : 3 + rank]) return shape, dtype, info def encode_list(l, infos=None): # noqa: E741 """Given a list of arrays, encode them into a list of byte arrays.""" if infos is None: infos = [""] else: if len(l) != len(infos): raise ValueError(f"length of list {l} must muatch length of infos {infos}") result = [] for i, a in enumerate(l): header = encode_header(a, infos[i % len(infos)]) result += [header, bytedata(a)] return result def decode_list(l, infos=False): # noqa: E741 """Given a list of byte arrays, decode them into arrays.""" result = [] infos0 = [] for header, data in zip(l[::2], l[1::2]): shape, dtype, info = decode_header(header) a = np.frombuffer(data, dtype=dtype, count=np.prod(shape)).reshape(*shape) result += [a] infos0 += [info] return check_infos(result, infos0, infos) magic_str = "~TenBin~" magic = str64(magic_str) magic_bytes = unstr64(magic).encode("ascii") def roundup(n, k=64): """Round up to the next multiple of 64.""" return k * ((n + k - 1) // k) def encode_chunks(l): # noqa: E741 """Encode a list of chunks into a single byte array, with lengths and magics..""" size = sum(16 + roundup(b.nbytes) for b in l) result = bytearray(size) offset = 0 for b in l: result[offset : offset + 8] = magic_bytes offset += 8 result[offset : offset + 8] = struct.pack("@q", b.nbytes) offset += 8 result[offset : offset + bytelen(b)] = b offset += roundup(bytelen(b)) return result def decode_chunks(buf): """Decode a byte array into a list of chunks.""" result = [] offset = 0 total = bytelen(buf) while offset < total: if magic_bytes != buf[offset : offset + 8]: raise ValueError("magic bytes mismatch") offset += 8 nbytes = struct.unpack("@q", buf[offset : offset + 8])[0] offset += 8 b = buf[offset : offset + nbytes] offset += roundup(nbytes) result.append(b) return result def encode_buffer(l, infos=None): # noqa: E741 """Encode a list of arrays into a single byte array.""" if not isinstance(l, list): raise ValueError("requires list") return encode_chunks(encode_list(l, infos=infos)) def decode_buffer(buf, infos=False): """Decode a byte array into a list of arrays.""" return decode_list(decode_chunks(buf), infos=infos) def write_chunk(stream, buf): """Write a byte chunk to the stream with magics, length, and padding.""" nbytes = bytelen(buf) stream.write(magic_bytes) stream.write(struct.pack("@q", nbytes)) stream.write(bytedata(buf)) padding = roundup(nbytes) - nbytes if padding > 0: stream.write(b"\0" * padding) def read_chunk(stream): """Read a byte chunk from a stream with magics, length, and padding.""" magic = stream.read(8) if magic == b"": return None if magic != magic_bytes: raise ValueError("magic number does not match") nbytes = stream.read(8) nbytes = struct.unpack("@q", nbytes)[0] if nbytes < 0: raise ValueError("negative nbytes") data = stream.read(nbytes) padding = roundup(nbytes) - nbytes if padding > 0: stream.read(padding) return data def write(stream, l, infos=None): # noqa: E741 """Write a list of arrays to a stream, with magics, length, and padding.""" for chunk in encode_list(l, infos=infos): write_chunk(stream, chunk) def read(stream, n=sys.maxsize, infos=False): """Read a list of arrays from a stream, with magics, length, and padding.""" chunks = [] for _ in range(n): header = read_chunk(stream) if header is None: break data = read_chunk(stream) if data is None: raise ValueError("premature EOF") chunks += [header, data] return decode_list(chunks, infos=infos) def save(fname, *args, infos=None, nocheck=False): """Save a list of arrays to a file, with magics, length, and padding.""" if not nocheck and not fname.endswith(".ten"): raise ValueError("file name should end in .ten") with open(fname, "wb") as stream: write(stream, args, infos=infos) def load(fname, infos=False, nocheck=False): """Read a list of arrays from a file, with magics, length, and padding.""" if not nocheck and not fname.endswith(".ten"): raise ValueError("file name should end in .ten") with open(fname, "rb") as stream: return read(stream, infos=infos)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/features/features.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ This class handle features definition in datasets and some utilities to display table type.""" import copy import json import re import sys from collections.abc import Iterable, Mapping from collections.abc import Sequence as SequenceABC from dataclasses import InitVar, dataclass, field, fields from functools import reduce, wraps from operator import mul from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union from typing import Sequence as Sequence_ import numpy as np import pandas as pd import pyarrow as pa import pyarrow.compute as pc import pyarrow.types import pyarrow_hotfix # noqa: F401 # to fix vulnerability on pyarrow<14.0.1 from pandas.api.extensions import ExtensionArray as PandasExtensionArray from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype from .. import config from ..naming import camelcase_to_snakecase, snakecase_to_camelcase from ..table import array_cast from ..utils import logging from ..utils.py_utils import asdict, first_non_null_value, zip_dict from .audio import Audio from .image import Image, encode_pil_image from .translation import Translation, TranslationVariableLanguages logger = logging.get_logger(__name__) def _arrow_to_datasets_dtype(arrow_type: pa.DataType) -> str: """ _arrow_to_datasets_dtype takes a pyarrow.DataType and converts it to a datasets string dtype. In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` """ if pyarrow.types.is_null(arrow_type): return "null" elif pyarrow.types.is_boolean(arrow_type): return "bool" elif pyarrow.types.is_int8(arrow_type): return "int8" elif pyarrow.types.is_int16(arrow_type): return "int16" elif pyarrow.types.is_int32(arrow_type): return "int32" elif pyarrow.types.is_int64(arrow_type): return "int64" elif pyarrow.types.is_uint8(arrow_type): return "uint8" elif pyarrow.types.is_uint16(arrow_type): return "uint16" elif pyarrow.types.is_uint32(arrow_type): return "uint32" elif pyarrow.types.is_uint64(arrow_type): return "uint64" elif pyarrow.types.is_float16(arrow_type): return "float16" # pyarrow dtype is "halffloat" elif pyarrow.types.is_float32(arrow_type): return "float32" # pyarrow dtype is "float" elif pyarrow.types.is_float64(arrow_type): return "float64" # pyarrow dtype is "double" elif pyarrow.types.is_time32(arrow_type): return f"time32[{pa.type_for_alias(str(arrow_type)).unit}]" elif pyarrow.types.is_time64(arrow_type): return f"time64[{pa.type_for_alias(str(arrow_type)).unit}]" elif pyarrow.types.is_timestamp(arrow_type): if arrow_type.tz is None: return f"timestamp[{arrow_type.unit}]" elif arrow_type.tz: return f"timestamp[{arrow_type.unit}, tz={arrow_type.tz}]" else: raise ValueError(f"Unexpected timestamp object {arrow_type}.") elif pyarrow.types.is_date32(arrow_type): return "date32" # pyarrow dtype is "date32[day]" elif pyarrow.types.is_date64(arrow_type): return "date64" # pyarrow dtype is "date64[ms]" elif pyarrow.types.is_duration(arrow_type): return f"duration[{arrow_type.unit}]" elif pyarrow.types.is_decimal128(arrow_type): return f"decimal128({arrow_type.precision}, {arrow_type.scale})" elif pyarrow.types.is_decimal256(arrow_type): return f"decimal256({arrow_type.precision}, {arrow_type.scale})" elif pyarrow.types.is_binary(arrow_type): return "binary" elif pyarrow.types.is_large_binary(arrow_type): return "large_binary" elif pyarrow.types.is_string(arrow_type): return "string" elif pyarrow.types.is_large_string(arrow_type): return "large_string" else: raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.") def string_to_arrow(datasets_dtype: str) -> pa.DataType: """ string_to_arrow takes a datasets string dtype and converts it to a pyarrow.DataType. In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` This is necessary because the datasets.Value() primitive type is constructed using a string dtype Value(dtype=str) But Features.type (via `get_nested_type()` expects to resolve Features into a pyarrow Schema, which means that each Value() must be able to resolve into a corresponding pyarrow.DataType, which is the purpose of this function. """ def _dtype_error_msg(dtype, pa_dtype, examples=None, urls=None): msg = f"{dtype} is not a validly formatted string representation of the pyarrow {pa_dtype} type." if examples: examples = ", ".join(examples[:-1]) + " or " + examples[-1] if len(examples) > 1 else examples[0] msg += f"\nValid examples include: {examples}." if urls: urls = ", ".join(urls[:-1]) + " and " + urls[-1] if len(urls) > 1 else urls[0] msg += f"\nFor more insformation, see: {urls}." return msg if datasets_dtype in pa.__dict__: return pa.__dict__[datasets_dtype]() if (datasets_dtype + "_") in pa.__dict__: return pa.__dict__[datasets_dtype + "_"]() timestamp_matches = re.search(r"^timestamp\[(.*)\]$", datasets_dtype) if timestamp_matches: timestamp_internals = timestamp_matches.group(1) internals_matches = re.search(r"^(s|ms|us|ns),\s*tz=([a-zA-Z0-9/_+\-:]*)$", timestamp_internals) if timestamp_internals in ["s", "ms", "us", "ns"]: return pa.timestamp(timestamp_internals) elif internals_matches: return pa.timestamp(internals_matches.group(1), internals_matches.group(2)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "timestamp", examples=["timestamp[us]", "timestamp[us, tz=America/New_York"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.timestamp.html"], ) ) duration_matches = re.search(r"^duration\[(.*)\]$", datasets_dtype) if duration_matches: duration_internals = duration_matches.group(1) if duration_internals in ["s", "ms", "us", "ns"]: return pa.duration(duration_internals) else: raise ValueError( _dtype_error_msg( datasets_dtype, "duration", examples=["duration[s]", "duration[us]"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.duration.html"], ) ) time_matches = re.search(r"^time(.*)\[(.*)\]$", datasets_dtype) if time_matches: time_internals_bits = time_matches.group(1) if time_internals_bits == "32": time_internals_unit = time_matches.group(2) if time_internals_unit in ["s", "ms"]: return pa.time32(time_internals_unit) else: raise ValueError( f"{time_internals_unit} is not a valid unit for the pyarrow time32 type. Supported units: s (second) and ms (millisecond)." ) elif time_internals_bits == "64": time_internals_unit = time_matches.group(2) if time_internals_unit in ["us", "ns"]: return pa.time64(time_internals_unit) else: raise ValueError( f"{time_internals_unit} is not a valid unit for the pyarrow time64 type. Supported units: us (microsecond) and ns (nanosecond)." ) else: raise ValueError( _dtype_error_msg( datasets_dtype, "time", examples=["time32[s]", "time64[us]"], urls=[ "https://arrow.apache.org/docs/python/generated/pyarrow.time32.html", "https://arrow.apache.org/docs/python/generated/pyarrow.time64.html", ], ) ) decimal_matches = re.search(r"^decimal(.*)\((.*)\)$", datasets_dtype) if decimal_matches: decimal_internals_bits = decimal_matches.group(1) if decimal_internals_bits == "128": decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) if decimal_internals_precision_and_scale: precision = decimal_internals_precision_and_scale.group(1) scale = decimal_internals_precision_and_scale.group(2) return pa.decimal128(int(precision), int(scale)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal128", examples=["decimal128(10, 2)", "decimal128(4, -2)"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html"], ) ) elif decimal_internals_bits == "256": decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) if decimal_internals_precision_and_scale: precision = decimal_internals_precision_and_scale.group(1) scale = decimal_internals_precision_and_scale.group(2) return pa.decimal256(int(precision), int(scale)) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal256", examples=["decimal256(30, 2)", "decimal256(38, -4)"], urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html"], ) ) else: raise ValueError( _dtype_error_msg( datasets_dtype, "decimal", examples=["decimal128(12, 3)", "decimal256(40, 6)"], urls=[ "https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html", "https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html", ], ) ) raise ValueError( f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. " f"Please make sure to use a correct data type, see: " f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions" ) def _cast_to_python_objects(obj: Any, only_1d_for_numpy: bool, optimize_list_casting: bool) -> Tuple[Any, bool]: """ Cast pytorch/tensorflow/pandas objects to python numpy array/lists. It works recursively. If `optimize_list_casting` is True, to avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. Args: obj: the object (nested struct) to cast. only_1d_for_numpy (bool): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. Indeed Arrow only support converting 1-dimensional array values. optimize_list_casting (bool): whether to optimize list casting by checking the first non-null element to see if it needs to be casted and if it doesn't, not checking the rest of the list elements. Returns: casted_obj: the casted object has_changed (bool): True if the object has been changed, False if it is identical """ if config.TF_AVAILABLE and "tensorflow" in sys.modules: import tensorflow as tf if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if config.JAX_AVAILABLE and "jax" in sys.modules: import jax.numpy as jnp if config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(obj, np.ndarray): if obj.ndim == 0: return obj[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj, False else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj ], True, ) elif config.TORCH_AVAILABLE and "torch" in sys.modules and isinstance(obj, torch.Tensor): if obj.ndim == 0: return obj.detach().cpu().numpy()[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj.detach().cpu().numpy(), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj.detach().cpu().numpy() ], True, ) elif config.TF_AVAILABLE and "tensorflow" in sys.modules and isinstance(obj, tf.Tensor): if obj.ndim == 0: return obj.numpy()[()], True elif not only_1d_for_numpy or obj.ndim == 1: return obj.numpy(), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in obj.numpy() ], True, ) elif config.JAX_AVAILABLE and "jax" in sys.modules and isinstance(obj, jnp.ndarray): if obj.ndim == 0: return np.asarray(obj)[()], True elif not only_1d_for_numpy or obj.ndim == 1: return np.asarray(obj), True else: return ( [ _cast_to_python_objects( x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for x in np.asarray(obj) ], True, ) elif config.PIL_AVAILABLE and "PIL" in sys.modules and isinstance(obj, PIL.Image.Image): return encode_pil_image(obj), True elif isinstance(obj, pd.Series): return ( _cast_to_python_objects( obj.tolist(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0], True, ) elif isinstance(obj, pd.DataFrame): return ( { key: _cast_to_python_objects( value, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for key, value in obj.to_dict("list").items() }, True, ) elif isinstance(obj, pd.Timestamp): return obj.to_pydatetime(), True elif isinstance(obj, pd.Timedelta): return obj.to_pytimedelta(), True elif isinstance(obj, Mapping): has_changed = not isinstance(obj, dict) output = {} for k, v in obj.items(): casted_v, has_changed_v = _cast_to_python_objects( v, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting ) has_changed |= has_changed_v output[k] = casted_v return output if has_changed else obj, has_changed elif hasattr(obj, "__array__"): return ( _cast_to_python_objects( obj.__array__(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0], True, ) elif isinstance(obj, (list, tuple)): if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt): break casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects( first_elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting ) if has_changed_first_elmt or not optimize_list_casting: return ( [ _cast_to_python_objects( elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] for elmt in obj ], True, ) else: if isinstance(obj, (list, tuple)): return obj, False else: return list(obj), True else: return obj, False else: return obj, False def cast_to_python_objects(obj: Any, only_1d_for_numpy=False, optimize_list_casting=True) -> Any: """ Cast numpy/pytorch/tensorflow/pandas objects to python lists. It works recursively. If `optimize_list_casting` is True, To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. Args: obj: the object (nested struct) to cast only_1d_for_numpy (bool, default ``False``): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. Indeed Arrow only support converting 1-dimensional array values. optimize_list_casting (bool, default ``True``): whether to optimize list casting by checking the first non-null element to see if it needs to be casted and if it doesn't, not checking the rest of the list elements. Returns: casted_obj: the casted object """ return _cast_to_python_objects( obj, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting )[0] @dataclass class Value: """ The `Value` dtypes are as follows: - `null` - `bool` - `int8` - `int16` - `int32` - `int64` - `uint8` - `uint16` - `uint32` - `uint64` - `float16` - `float32` (alias float) - `float64` (alias double) - `time32[(s|ms)]` - `time64[(us|ns)]` - `timestamp[(s|ms|us|ns)]` - `timestamp[(s|ms|us|ns), tz=(tzstring)]` - `date32` - `date64` - `duration[(s|ms|us|ns)]` - `decimal128(precision, scale)` - `decimal256(precision, scale)` - `binary` - `large_binary` - `string` - `large_string` Example: ```py >>> from datasets import Features >>> features = Features({'stars': Value(dtype='int32')}) >>> features {'stars': Value(dtype='int32', id=None)} ``` """ dtype: str id: Optional[str] = None # Automatically constructed pa_type: ClassVar[Any] = None _type: str = field(default="Value", init=False, repr=False) def __post_init__(self): if self.dtype == "double": # fix inferred type self.dtype = "float64" if self.dtype == "float": # fix inferred type self.dtype = "float32" self.pa_type = string_to_arrow(self.dtype) def __call__(self): return self.pa_type def encode_example(self, value): if pa.types.is_boolean(self.pa_type): return bool(value) elif pa.types.is_integer(self.pa_type): return int(value) elif pa.types.is_floating(self.pa_type): return float(value) elif pa.types.is_string(self.pa_type): return str(value) else: return value class _ArrayXD: def __post_init__(self): self.shape = tuple(self.shape) def __call__(self): pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype) return pa_type def encode_example(self, value): return value @dataclass class Array2D(_ArrayXD): """Create a two-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array2D(shape=(1, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array2D", init=False, repr=False) @dataclass class Array3D(_ArrayXD): """Create a three-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array3D(shape=(1, 2, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array3D", init=False, repr=False) @dataclass class Array4D(_ArrayXD): """Create a four-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array4D(shape=(1, 2, 2, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array4D", init=False, repr=False) @dataclass class Array5D(_ArrayXD): """Create a five-dimensional array. Args: shape (`tuple`): The size of each dimension. dtype (`str`): The value of the data type. Example: ```py >>> from datasets import Features >>> features = Features({'x': Array5D(shape=(1, 2, 2, 3, 3), dtype='int32')}) ``` """ shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array5D", init=False, repr=False) class _ArrayXDExtensionType(pa.ExtensionType): ndims: Optional[int] = None def __init__(self, shape: tuple, dtype: str): if self.ndims is None or self.ndims <= 1: raise ValueError("You must instantiate an array type with a value for dim that is > 1") if len(shape) != self.ndims: raise ValueError(f"shape={shape} and ndims={self.ndims} don't match") for dim in range(1, self.ndims): if shape[dim] is None: raise ValueError(f"Support only dynamic size on first dimension. Got: {shape}") self.shape = tuple(shape) self.value_type = dtype self.storage_dtype = self._generate_dtype(self.value_type) pa.ExtensionType.__init__(self, self.storage_dtype, f"{self.__class__.__module__}.{self.__class__.__name__}") def __arrow_ext_serialize__(self): return json.dumps((self.shape, self.value_type)).encode() @classmethod def __arrow_ext_deserialize__(cls, storage_type, serialized): args = json.loads(serialized) return cls(*args) # This was added to pa.ExtensionType in pyarrow >= 13.0.0 def __reduce__(self): return self.__arrow_ext_deserialize__, (self.storage_type, self.__arrow_ext_serialize__()) def __hash__(self): return hash((self.__class__, self.shape, self.value_type)) def __arrow_ext_class__(self): return ArrayExtensionArray def _generate_dtype(self, dtype): dtype = string_to_arrow(dtype) for d in reversed(self.shape): dtype = pa.list_(dtype) # Don't specify the size of the list, since fixed length list arrays have issues # being validated after slicing in pyarrow 0.17.1 return dtype def to_pandas_dtype(self): return PandasArrayExtensionDtype(self.value_type) class Array2DExtensionType(_ArrayXDExtensionType): ndims = 2 class Array3DExtensionType(_ArrayXDExtensionType): ndims = 3 class Array4DExtensionType(_ArrayXDExtensionType): ndims = 4 class Array5DExtensionType(_ArrayXDExtensionType): ndims = 5 # Register the extension types for deserialization pa.register_extension_type(Array2DExtensionType((1, 2), "int64")) pa.register_extension_type(Array3DExtensionType((1, 2, 3), "int64")) pa.register_extension_type(Array4DExtensionType((1, 2, 3, 4), "int64")) pa.register_extension_type(Array5DExtensionType((1, 2, 3, 4, 5), "int64")) def _is_zero_copy_only(pa_type: pa.DataType, unnest: bool = False) -> bool: """ When converting a pyarrow array to a numpy array, we must know whether this could be done in zero-copy or not. This function returns the value of the ``zero_copy_only`` parameter to pass to ``.to_numpy()``, given the type of the pyarrow array. # zero copy is available for all primitive types except booleans and temporal types (date, time, timestamp or duration) # primitive types are types for which the physical representation in arrow and in numpy # https://github.com/wesm/arrow/blob/c07b9b48cf3e0bbbab493992a492ae47e5b04cad/python/pyarrow/types.pxi#L821 # see https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy # and https://issues.apache.org/jira/browse/ARROW-2871?jql=text%20~%20%22boolean%20to_numpy%22 """ def _unnest_pa_type(pa_type: pa.DataType) -> pa.DataType: if pa.types.is_list(pa_type): return _unnest_pa_type(pa_type.value_type) return pa_type if unnest: pa_type = _unnest_pa_type(pa_type) return pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type)) class ArrayExtensionArray(pa.ExtensionArray): def __array__(self): zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) return self.to_numpy(zero_copy_only=zero_copy_only) def __getitem__(self, i): return self.storage[i] def to_numpy(self, zero_copy_only=True): storage: pa.ListArray = self.storage null_mask = storage.is_null().to_numpy(zero_copy_only=False) if self.type.shape[0] is not None: size = 1 null_indices = np.arange(len(storage))[null_mask] - np.arange(np.sum(null_mask)) for i in range(self.type.ndims): size *= self.type.shape[i] storage = storage.flatten() numpy_arr = storage.to_numpy(zero_copy_only=zero_copy_only) numpy_arr = numpy_arr.reshape(len(self) - len(null_indices), *self.type.shape) if len(null_indices): numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0) else: shape = self.type.shape ndims = self.type.ndims arrays = [] first_dim_offsets = np.array([off.as_py() for off in storage.offsets]) for i, is_null in enumerate(null_mask): if is_null: arrays.append(np.nan) else: storage_el = storage[i : i + 1] first_dim = first_dim_offsets[i + 1] - first_dim_offsets[i] # flatten storage for _ in range(ndims): storage_el = storage_el.flatten() numpy_arr = storage_el.to_numpy(zero_copy_only=zero_copy_only) arrays.append(numpy_arr.reshape(first_dim, *shape[1:])) if len(np.unique(np.diff(first_dim_offsets))) > 1: # ragged numpy_arr = np.empty(len(arrays), dtype=object) numpy_arr[:] = arrays else: numpy_arr = np.array(arrays) return numpy_arr def to_pylist(self): zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) numpy_arr = self.to_numpy(zero_copy_only=zero_copy_only) if self.type.shape[0] is None and numpy_arr.dtype == object: return [arr.tolist() for arr in numpy_arr.tolist()] else: return numpy_arr.tolist() class PandasArrayExtensionDtype(PandasExtensionDtype): _metadata = "value_type" def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]): self._value_type = value_type def __from_arrow__(self, array: Union[pa.Array, pa.ChunkedArray]): if isinstance(array, pa.ChunkedArray): array = array.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in array.chunks])) zero_copy_only = _is_zero_copy_only(array.storage.type, unnest=True) numpy_arr = array.to_numpy(zero_copy_only=zero_copy_only) return PandasArrayExtensionArray(numpy_arr) @classmethod def construct_array_type(cls): return PandasArrayExtensionArray @property def type(self) -> type: return np.ndarray @property def kind(self) -> str: return "O" @property def name(self) -> str: return f"array[{self.value_type}]" @property def value_type(self) -> np.dtype: return self._value_type class PandasArrayExtensionArray(PandasExtensionArray): def __init__(self, data: np.ndarray, copy: bool = False): self._data = data if not copy else np.array(data) self._dtype = PandasArrayExtensionDtype(data.dtype) def __array__(self, dtype=None): """ Convert to NumPy Array. Note that Pandas expects a 1D array when dtype is set to object. But for other dtypes, the returned shape is the same as the one of ``data``. More info about pandas 1D requirement for PandasExtensionArray here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray """ if dtype == object: out = np.empty(len(self._data), dtype=object) for i in range(len(self._data)): out[i] = self._data[i] return out if dtype is None: return self._data else: return self._data.astype(dtype) def copy(self, deep: bool = False) -> "PandasArrayExtensionArray": return PandasArrayExtensionArray(self._data, copy=True) @classmethod def _from_sequence( cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False ) -> "PandasArrayExtensionArray": if len(scalars) > 1 and all( isinstance(x, np.ndarray) and x.shape == scalars[0].shape and x.dtype == scalars[0].dtype for x in scalars ): data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy) else: data = np.empty(len(scalars), dtype=object) data[:] = scalars return cls(data, copy=copy) @classmethod def _concat_same_type(cls, to_concat: Sequence_["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray": if len(to_concat) > 1 and all( va._data.shape == to_concat[0]._data.shape and va._data.dtype == to_concat[0]._data.dtype for va in to_concat ): data = np.vstack([va._data for va in to_concat]) else: data = np.empty(len(to_concat), dtype=object) data[:] = [va._data for va in to_concat] return cls(data, copy=False) @property def dtype(self) -> PandasArrayExtensionDtype: return self._dtype @property def nbytes(self) -> int: return self._data.nbytes def isna(self) -> np.ndarray: return np.array([pd.isna(arr).any() for arr in self._data]) def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None: raise NotImplementedError() def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]: if isinstance(item, int): return self._data[item] return PandasArrayExtensionArray(self._data[item], copy=False) def take( self, indices: Sequence_[int], allow_fill: bool = False, fill_value: bool = None ) -> "PandasArrayExtensionArray": indices: np.ndarray = np.asarray(indices, dtype=int) if allow_fill: fill_value = ( self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type) ) mask = indices == -1 if (indices < -1).any(): raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True") elif len(self) > 0: pass elif not np.all(mask): raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.") else: data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type) return PandasArrayExtensionArray(data, copy=False) took = self._data.take(indices, axis=0) if allow_fill and mask.any(): took[mask] = [fill_value] * np.sum(mask) return PandasArrayExtensionArray(took, copy=False) def __len__(self) -> int: return len(self._data) def __eq__(self, other) -> np.ndarray: if not isinstance(other, PandasArrayExtensionArray): raise NotImplementedError(f"Invalid type to compare to: {type(other)}") return (self._data == other._data).all() def pandas_types_mapper(dtype): if isinstance(dtype, _ArrayXDExtensionType): return PandasArrayExtensionDtype(dtype.value_type) @dataclass class ClassLabel: """Feature type for integer class labels. There are 3 ways to define a `ClassLabel`, which correspond to the 3 arguments: * `num_classes`: Create 0 to (num_classes-1) labels. * `names`: List of label strings. * `names_file`: File containing the list of labels. Under the hood the labels are stored as integers. You can use negative integers to represent unknown/missing labels. Args: num_classes (`int`, *optional*): Number of classes. All labels must be < `num_classes`. names (`list` of `str`, *optional*): String names for the integer classes. The order in which the names are provided is kept. names_file (`str`, *optional*): Path to a file with names for the integer classes, one per line. Example: ```py >>> from datasets import Features >>> features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])}) >>> features {'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'], id=None)} ``` """ num_classes: InitVar[Optional[int]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict names: List[str] = None names_file: InitVar[Optional[str]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "int64" pa_type: ClassVar[Any] = pa.int64() _str2int: ClassVar[Dict[str, int]] = None _int2str: ClassVar[Dict[int, int]] = None _type: str = field(default="ClassLabel", init=False, repr=False) def __post_init__(self, num_classes, names_file): self.num_classes = num_classes self.names_file = names_file if self.names_file is not None and self.names is not None: raise ValueError("Please provide either names or names_file but not both.") # Set self.names if self.names is None: if self.names_file is not None: self.names = self._load_names_from_file(self.names_file) elif self.num_classes is not None: self.names = [str(i) for i in range(self.num_classes)] else: raise ValueError("Please provide either num_classes, names or names_file.") elif not isinstance(self.names, SequenceABC): raise TypeError(f"Please provide names as a list, is {type(self.names)}") # Set self.num_classes if self.num_classes is None: self.num_classes = len(self.names) elif self.num_classes != len(self.names): raise ValueError( "ClassLabel number of names do not match the defined num_classes. " f"Got {len(self.names)} names VS {self.num_classes} num_classes" ) # Prepare mappings self._int2str = [str(name) for name in self.names] self._str2int = {name: i for i, name in enumerate(self._int2str)} if len(self._int2str) != len(self._str2int): raise ValueError("Some label names are duplicated. Each label name should be unique.") def __call__(self): return self.pa_type def str2int(self, values: Union[str, Iterable]) -> Union[int, Iterable]: """Conversion class name `string` => `integer`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> ds.features["label"].str2int('neg') 0 ``` """ if not isinstance(values, str) and not isinstance(values, Iterable): raise ValueError( f"Values {values} should be a string or an Iterable (list, numpy array, pytorch, tensorflow tensors)" ) return_list = True if isinstance(values, str): values = [values] return_list = False output = [self._strval2int(value) for value in values] return output if return_list else output[0] def _strval2int(self, value: str) -> int: failed_parse = False value = str(value) # first attempt - raw string value int_value = self._str2int.get(value) if int_value is None: # second attempt - strip whitespace int_value = self._str2int.get(value.strip()) if int_value is None: # third attempt - convert str to int try: int_value = int(value) except ValueError: failed_parse = True else: if int_value < -1 or int_value >= self.num_classes: failed_parse = True if failed_parse: raise ValueError(f"Invalid string class label {value}") return int_value def int2str(self, values: Union[int, Iterable]) -> Union[str, Iterable]: """Conversion `integer` => class name `string`. Regarding unknown/missing labels: passing negative integers raises `ValueError`. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> ds.features["label"].int2str(0) 'neg' ``` """ if not isinstance(values, int) and not isinstance(values, Iterable): raise ValueError( f"Values {values} should be an integer or an Iterable (list, numpy array, pytorch, tensorflow tensors)" ) return_list = True if isinstance(values, int): values = [values] return_list = False for v in values: if not 0 <= v < self.num_classes: raise ValueError(f"Invalid integer class label {v:d}") output = [self._int2str[int(v)] for v in values] return output if return_list else output[0] def encode_example(self, example_data): if self.num_classes is None: raise ValueError( "Trying to use ClassLabel feature with undefined number of class. " "Please set ClassLabel.names or num_classes." ) # If a string is given, convert to associated integer if isinstance(example_data, str): example_data = self.str2int(example_data) # Allowing -1 to mean no label. if not -1 <= example_data < self.num_classes: raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}") return example_data def cast_storage(self, storage: Union[pa.StringArray, pa.IntegerArray]) -> pa.Int64Array: """Cast an Arrow array to the `ClassLabel` arrow storage type. The Arrow types that can be converted to the `ClassLabel` pyarrow storage type are: - `pa.string()` - `pa.int()` Args: storage (`Union[pa.StringArray, pa.IntegerArray]`): PyArrow array to cast. Returns: `pa.Int64Array`: Array in the `ClassLabel` arrow storage type. """ if isinstance(storage, pa.IntegerArray) and len(storage) > 0: min_max = pc.min_max(storage).as_py() if min_max["max"] is not None and min_max["max"] >= self.num_classes: raise ValueError( f"Class label {min_max['max']} greater than configured num_classes {self.num_classes}" ) elif isinstance(storage, pa.StringArray): storage = pa.array( [self._strval2int(label) if label is not None else None for label in storage.to_pylist()] ) return array_cast(storage, self.pa_type) @staticmethod def _load_names_from_file(names_filepath): with open(names_filepath, encoding="utf-8") as f: return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names @dataclass class Sequence: """Construct a list of feature from a single type or a dict of types. Mostly here for compatiblity with tfds. Args: feature: A list of features of a single type or a dictionary of types. length (`int`): Length of the sequence. Example: ```py >>> from datasets import Features, Sequence, Value, ClassLabel >>> features = Features({'post': Sequence(feature={'text': Value(dtype='string'), 'upvotes': Value(dtype='int32'), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'])})}) >>> features {'post': Sequence(feature={'text': Value(dtype='string', id=None), 'upvotes': Value(dtype='int32', id=None), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'], id=None)}, length=-1, id=None)} ``` """ feature: Any length: int = -1 id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "list" pa_type: ClassVar[Any] = None _type: str = field(default="Sequence", init=False, repr=False) FeatureType = Union[ dict, list, tuple, Value, ClassLabel, Translation, TranslationVariableLanguages, Sequence, Array2D, Array3D, Array4D, Array5D, Audio, Image, ] def _check_non_null_non_empty_recursive(obj, schema: Optional[FeatureType] = None) -> bool: """ Check if the object is not None. If the object is a list or a tuple, recursively check the first element of the sequence and stop if at any point the first element is not a sequence or is an empty sequence. """ if obj is None: return False elif isinstance(obj, (list, tuple)) and (schema is None or isinstance(schema, (list, tuple, Sequence))): if len(obj) > 0: if schema is None: pass elif isinstance(schema, (list, tuple)): schema = schema[0] else: schema = schema.feature return _check_non_null_non_empty_recursive(obj[0], schema) else: return False else: return True def get_nested_type(schema: FeatureType) -> pa.DataType: """ get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of generate_from_arrow_type(). It performs double-duty as the implementation of Features.type and handles the conversion of datasets.Feature->pa.struct """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, Features): return pa.struct( {key: get_nested_type(schema[key]) for key in schema} ) # Features is subclass of dict, and dict order is deterministic since Python 3.6 elif isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key]) for key in schema} ) # however don't sort on struct types since the order matters elif isinstance(schema, (list, tuple)): if len(schema) != 1: raise ValueError("When defining list feature, you should just provide one example of the inner type") value_type = get_nested_type(schema[0]) return pa.list_(value_type) elif isinstance(schema, Sequence): value_type = get_nested_type(schema.feature) # We allow to reverse list of dict => dict of list for compatibility with tfds if isinstance(schema.feature, dict): return pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type}) return pa.list_(value_type, schema.length) # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) return schema() def encode_nested_example(schema, obj, level=0): """Encode a nested example. This is used since some features (in particular ClassLabel) have some logic during encoding. To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be encoded. If the first element needs to be encoded, then all the elements of the list will be encoded, otherwise they'll stay the same. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): if level == 0 and obj is None: raise ValueError("Got None but expected a dictionary instead") return ( {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} if obj is not None else None ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, sub_schema): break if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt: return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj] return list(obj) elif isinstance(schema, Sequence): if obj is None: return None # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): # dict of list to fill list_dict = {} if isinstance(obj, (list, tuple)): # obj is a list of dict for k in schema.feature: list_dict[k] = [encode_nested_example(schema.feature[k], o.get(k), level=level + 1) for o in obj] return list_dict else: # obj is a single dict for k in schema.feature: list_dict[k] = ( [encode_nested_example(schema.feature[k], o, level=level + 1) for o in obj[k]] if k in obj else None ) return list_dict # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError(f"Got a string but expected a list instead: '{obj}'") else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, schema.feature): break # be careful when comparing tensors here if ( not isinstance(first_elmt, list) or encode_nested_example(schema.feature, first_elmt, level=level + 1) != first_elmt ): return [encode_nested_example(schema.feature, o, level=level + 1) for o in obj] return list(obj) # Object with special encoding: # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks elif isinstance(schema, (Audio, Image, ClassLabel, TranslationVariableLanguages, Value, _ArrayXD)): return schema.encode_example(obj) if obj is not None else None # Other object should be directly convertible to a native Arrow type (like Translation and Translation) return obj def decode_nested_example(schema, obj, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode a nested example. This is used since some features (in particular Audio and Image) have some logic during decoding. To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded. If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return ( {k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)} if obj is not None else None ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, sub_schema): break if decode_nested_example(sub_schema, first_elmt) != first_elmt: return [decode_nested_example(sub_schema, o) for o in obj] return list(obj) elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature} else: return decode_nested_example([schema.feature], obj) # Object with special decoding: elif isinstance(schema, (Audio, Image)): # we pass the token to read and decode files from private repositories in streaming mode if obj is not None and schema.decode: return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) return obj def generate_from_dict(obj: Any): """Regenerate the nested feature object from a deserialized dict. We use the '_type' fields to get the dataclass name to load. generate_from_dict is the recursive helper for Features.from_dict, and allows for a convenient constructor syntax to define features from deserialized JSON dictionaries. This function is used in particular when deserializing a :class:`DatasetInfo` that was dumped to a JSON object. This acts as an analogue to :meth:`Features.from_arrow_schema` and handles the recursive field-by-field instantiation, but doesn't require any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes that :class:`Value` automatically performs. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(obj, list): return [generate_from_dict(value) for value in obj] # Otherwise we have a dict or a dataclass if "_type" not in obj or isinstance(obj["_type"], dict): return {key: generate_from_dict(value) for key, value in obj.items()} obj = dict(obj) class_type = globals()[obj.pop("_type")] if class_type == Sequence: return Sequence(feature=generate_from_dict(obj["feature"]), length=obj.get("length", -1)) field_names = {f.name for f in fields(class_type)} return class_type(**{k: v for k, v in obj.items() if k in field_names}) def generate_from_arrow_type(pa_type: pa.DataType) -> FeatureType: """ generate_from_arrow_type accepts an arrow DataType and returns a datasets FeatureType to be used as the type for a single field. This is the high-level arrow->datasets type conversion and is inverted by get_nested_type(). This operates at the individual *field* level, whereas Features.from_arrow_schema() operates at the full schema level and holds the methods that represent the bijection from Features<->pyarrow.Schema """ if isinstance(pa_type, pa.StructType): return {field.name: generate_from_arrow_type(field.type) for field in pa_type} elif isinstance(pa_type, pa.FixedSizeListType): return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size) elif isinstance(pa_type, pa.ListType): feature = generate_from_arrow_type(pa_type.value_type) if isinstance(feature, (dict, tuple, list)): return [feature] return Sequence(feature=feature) elif isinstance(pa_type, _ArrayXDExtensionType): array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims] return array_feature(shape=pa_type.shape, dtype=pa_type.value_type) elif isinstance(pa_type, pa.DictionaryType): raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table elif isinstance(pa_type, pa.DataType): return Value(dtype=_arrow_to_datasets_dtype(pa_type)) else: raise ValueError(f"Cannot convert {pa_type} to a Feature type.") def numpy_to_pyarrow_listarray(arr: np.ndarray, type: pa.DataType = None) -> pa.ListArray: """Build a PyArrow ListArray from a multidimensional NumPy array""" arr = np.array(arr) values = pa.array(arr.flatten(), type=type) for i in range(arr.ndim - 1): n_offsets = reduce(mul, arr.shape[: arr.ndim - i - 1], 1) step_offsets = arr.shape[arr.ndim - i - 1] offsets = pa.array(np.arange(n_offsets + 1) * step_offsets, type=pa.int32()) values = pa.ListArray.from_arrays(offsets, values) return values def list_of_pa_arrays_to_pyarrow_listarray(l_arr: List[Optional[pa.Array]]) -> pa.ListArray: null_mask = np.array([arr is None for arr in l_arr]) null_indices = np.arange(len(null_mask))[null_mask] - np.arange(np.sum(null_mask)) l_arr = [arr for arr in l_arr if arr is not None] offsets = np.cumsum( [0] + [len(arr) for arr in l_arr], dtype=object ) # convert to dtype object to allow None insertion offsets = np.insert(offsets, null_indices, None) offsets = pa.array(offsets, type=pa.int32()) values = pa.concat_arrays(l_arr) return pa.ListArray.from_arrays(offsets, values) def list_of_np_array_to_pyarrow_listarray(l_arr: List[np.ndarray], type: pa.DataType = None) -> pa.ListArray: """Build a PyArrow ListArray from a possibly nested list of NumPy arrays""" if len(l_arr) > 0: return list_of_pa_arrays_to_pyarrow_listarray( [numpy_to_pyarrow_listarray(arr, type=type) if arr is not None else None for arr in l_arr] ) else: return pa.array([], type=type) def contains_any_np_array(data: Any): """Return `True` if data is a NumPy ndarray or (recursively) if first non-null value in list is a NumPy ndarray. Args: data (Any): Data. Returns: bool """ if isinstance(data, np.ndarray): return True elif isinstance(data, list): return contains_any_np_array(first_non_null_value(data)[1]) else: return False def any_np_array_to_pyarrow_listarray(data: Union[np.ndarray, List], type: pa.DataType = None) -> pa.ListArray: """Convert to PyArrow ListArray either a NumPy ndarray or (recursively) a list that may contain any NumPy ndarray. Args: data (Union[np.ndarray, List]): Data. type (pa.DataType): Explicit PyArrow DataType passed to coerce the ListArray data type. Returns: pa.ListArray """ if isinstance(data, np.ndarray): return numpy_to_pyarrow_listarray(data, type=type) elif isinstance(data, list): return list_of_pa_arrays_to_pyarrow_listarray([any_np_array_to_pyarrow_listarray(i, type=type) for i in data]) def to_pyarrow_listarray(data: Any, pa_type: _ArrayXDExtensionType) -> pa.Array: """Convert to PyArrow ListArray. Args: data (Any): Sequence, iterable, np.ndarray or pd.Series. pa_type (_ArrayXDExtensionType): Any of the ArrayNDExtensionType. Returns: pyarrow.Array """ if contains_any_np_array(data): return any_np_array_to_pyarrow_listarray(data, type=pa_type.value_type) else: return pa.array(data, pa_type.storage_dtype) def _visit(feature: FeatureType, func: Callable[[FeatureType], Optional[FeatureType]]) -> FeatureType: """Visit a (possibly nested) feature. Args: feature (FeatureType): the feature type to be checked Returns: visited feature (FeatureType) """ if isinstance(feature, dict): out = func({k: _visit(f, func) for k, f in feature.items()}) elif isinstance(feature, (list, tuple)): out = func([_visit(feature[0], func)]) elif isinstance(feature, Sequence): out = func(Sequence(_visit(feature.feature, func), length=feature.length)) else: out = func(feature) return feature if out is None else out def require_decoding(feature: FeatureType, ignore_decode_attribute: bool = False) -> bool: """Check if a (possibly nested) feature requires decoding. Args: feature (FeatureType): the feature type to be checked ignore_decode_attribute (:obj:`bool`, default ``False``): Whether to ignore the current value of the `decode` attribute of the decodable feature types. Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_decoding(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_decoding(feature[0]) elif isinstance(feature, Sequence): return require_decoding(feature.feature) else: return hasattr(feature, "decode_example") and (feature.decode if not ignore_decode_attribute else True) def require_storage_cast(feature: FeatureType) -> bool: """Check if a (possibly nested) feature requires storage casting. Args: feature (FeatureType): the feature type to be checked Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_storage_cast(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_storage_cast(feature[0]) elif isinstance(feature, Sequence): return require_storage_cast(feature.feature) else: return hasattr(feature, "cast_storage") def require_storage_embed(feature: FeatureType) -> bool: """Check if a (possibly nested) feature requires embedding data into storage. Args: feature (FeatureType): the feature type to be checked Returns: :obj:`bool` """ if isinstance(feature, dict): return any(require_storage_cast(f) for f in feature.values()) elif isinstance(feature, (list, tuple)): return require_storage_cast(feature[0]) elif isinstance(feature, Sequence): return require_storage_cast(feature.feature) else: return hasattr(feature, "embed_storage") def keep_features_dicts_synced(func): """ Wrapper to keep the secondary dictionary, which tracks whether keys are decodable, of the :class:`datasets.Features` object in sync with the main dictionary. """ @wraps(func) def wrapper(*args, **kwargs): if args: self: "Features" = args[0] args = args[1:] else: self: "Features" = kwargs.pop("self") out = func(self, *args, **kwargs) assert hasattr(self, "_column_requires_decoding") self._column_requires_decoding = {col: require_decoding(feature) for col, feature in self.items()} return out wrapper._decorator_name_ = "_keep_dicts_synced" return wrapper class Features(dict): """A special dictionary that defines the internal structure of a dataset. Instantiated with a dictionary of type `dict[str, FieldType]`, where keys are the desired column names, and values are the type of that column. `FieldType` can be one of the following: - a [`~datasets.Value`] feature specifies a single typed value, e.g. `int64` or `string`. - a [`~datasets.ClassLabel`] feature specifies a field with a predefined set of classes which can have labels associated to them and will be stored as integers in the dataset. - a python `dict` which specifies that the field is a nested field containing a mapping of sub-fields to sub-fields features. It's possible to have nested fields of nested fields in an arbitrary manner. - a python `list` or a [`~datasets.Sequence`] specifies that the field contains a list of objects. The python `list` or [`~datasets.Sequence`] should be provided with a single sub-feature as an example of the feature type hosted in this list. <Tip> A [`~datasets.Sequence`] with a internal dictionary feature will be automatically converted into a dictionary of lists. This behavior is implemented to have a compatilbity layer with the TensorFlow Datasets library but may be un-wanted in some cases. If you don't want this behavior, you can use a python `list` instead of the [`~datasets.Sequence`]. </Tip> - a [`Array2D`], [`Array3D`], [`Array4D`] or [`Array5D`] feature for multidimensional arrays. - an [`Audio`] feature to store the absolute path to an audio file or a dictionary with the relative path to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio data. - an [`Image`] feature to store the absolute path to an image file, an `np.ndarray` object, a `PIL.Image.Image` object or a dictionary with the relative path to an image file ("path" key) and its bytes content ("bytes" key). This feature extracts the image data. - [`~datasets.Translation`] and [`~datasets.TranslationVariableLanguages`], the two features specific to Machine Translation. """ def __init__(*args, **kwargs): # self not in the signature to allow passing self as a kwarg if not args: raise TypeError("descriptor '__init__' of 'Features' object needs an argument") self, *args = args super(Features, self).__init__(*args, **kwargs) self._column_requires_decoding: Dict[str, bool] = { col: require_decoding(feature) for col, feature in self.items() } __setitem__ = keep_features_dicts_synced(dict.__setitem__) __delitem__ = keep_features_dicts_synced(dict.__delitem__) update = keep_features_dicts_synced(dict.update) setdefault = keep_features_dicts_synced(dict.setdefault) pop = keep_features_dicts_synced(dict.pop) popitem = keep_features_dicts_synced(dict.popitem) clear = keep_features_dicts_synced(dict.clear) def __reduce__(self): return Features, (dict(self),) @property def type(self): """ Features field types. Returns: :obj:`pyarrow.DataType` """ return get_nested_type(self) @property def arrow_schema(self): """ Features schema. Returns: :obj:`pyarrow.Schema` """ hf_metadata = {"info": {"features": self.to_dict()}} return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)}) @classmethod def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features": """ Construct [`Features`] from Arrow Schema. It also checks the schema metadata for Hugging Face Datasets features. Non-nullable fields are not supported and set to nullable. Args: pa_schema (`pyarrow.Schema`): Arrow Schema. Returns: [`Features`] """ # try to load features from the arrow schema metadata if pa_schema.metadata is not None and "huggingface".encode("utf-8") in pa_schema.metadata: metadata = json.loads(pa_schema.metadata["huggingface".encode("utf-8")].decode()) if "info" in metadata and "features" in metadata["info"] and metadata["info"]["features"] is not None: return Features.from_dict(metadata["info"]["features"]) obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} return cls(**obj) @classmethod def from_dict(cls, dic) -> "Features": """ Construct [`Features`] from dict. Regenerate the nested feature object from a deserialized dict. We use the `_type` key to infer the dataclass name of the feature `FieldType`. It allows for a convenient constructor syntax to define features from deserialized JSON dictionaries. This function is used in particular when deserializing a [`DatasetInfo`] that was dumped to a JSON object. This acts as an analogue to [`Features.from_arrow_schema`] and handles the recursive field-by-field instantiation, but doesn't require any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes that [`Value`] automatically performs. Args: dic (`dict[str, Any]`): Python dictionary. Returns: `Features` Example:: >>> Features.from_dict({'_type': {'dtype': 'string', 'id': None, '_type': 'Value'}}) {'_type': Value(dtype='string', id=None)} """ obj = generate_from_dict(dic) return cls(**obj) def to_dict(self): return asdict(self) def _to_yaml_list(self) -> list: # we compute the YAML list from the dict representation that is used for JSON dump yaml_data = self.to_dict() def simplify(feature: dict) -> dict: if not isinstance(feature, dict): raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") # # sequence: -> sequence: int32 # dtype: int32 -> # if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["dtype"]: feature["sequence"] = feature["sequence"]["dtype"] # # sequence: -> sequence: # struct: -> - name: foo # - name: foo -> dtype: int32 # dtype: int32 -> # if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["struct"]: feature["sequence"] = feature["sequence"]["struct"] # # list: -> list: int32 # dtype: int32 -> # if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["dtype"]: feature["list"] = feature["list"]["dtype"] # # list: -> list: # struct: -> - name: foo # - name: foo -> dtype: int32 # dtype: int32 -> # if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["struct"]: feature["list"] = feature["list"]["struct"] # # class_label: -> class_label: # names: -> names: # - negative -> '0': negative # - positive -> '1': positive # if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), list): # server-side requirement: keys must be strings feature["class_label"]["names"] = { str(label_id): label_name for label_id, label_name in enumerate(feature["class_label"]["names"]) } return feature def to_yaml_inner(obj: Union[dict, list]) -> dict: if isinstance(obj, dict): _type = obj.pop("_type", None) if _type == "Sequence": _feature = obj.pop("feature") return simplify({"sequence": to_yaml_inner(_feature), **obj}) elif _type == "Value": return obj elif _type and not obj: return {"dtype": camelcase_to_snakecase(_type)} elif _type: return {"dtype": simplify({camelcase_to_snakecase(_type): obj})} else: return {"struct": [{"name": name, **to_yaml_inner(_feature)} for name, _feature in obj.items()]} elif isinstance(obj, list): return simplify({"list": simplify(to_yaml_inner(obj[0]))}) elif isinstance(obj, tuple): return to_yaml_inner(list(obj)) else: raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") def to_yaml_types(obj: dict) -> dict: if isinstance(obj, dict): return {k: to_yaml_types(v) for k, v in obj.items()} elif isinstance(obj, list): return [to_yaml_types(v) for v in obj] elif isinstance(obj, tuple): return to_yaml_types(list(obj)) else: return obj return to_yaml_types(to_yaml_inner(yaml_data)["struct"]) @classmethod def _from_yaml_list(cls, yaml_data: list) -> "Features": yaml_data = copy.deepcopy(yaml_data) # we convert the list obtained from YAML data into the dict representation that is used for JSON dump def unsimplify(feature: dict) -> dict: if not isinstance(feature, dict): raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") # # sequence: int32 -> sequence: # -> dtype: int32 # if isinstance(feature.get("sequence"), str): feature["sequence"] = {"dtype": feature["sequence"]} # # list: int32 -> list: # -> dtype: int32 # if isinstance(feature.get("list"), str): feature["list"] = {"dtype": feature["list"]} # # class_label: -> class_label: # names: -> names: # '0': negative -> - negative # '1': positive -> - positive # if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict): label_ids = sorted(feature["class_label"]["names"], key=int) if label_ids and [int(label_id) for label_id in label_ids] != list(range(int(label_ids[-1]) + 1)): raise ValueError( f"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing." ) feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids] return feature def from_yaml_inner(obj: Union[dict, list]) -> Union[dict, list]: if isinstance(obj, dict): if not obj: return {} _type = next(iter(obj)) if _type == "sequence": _feature = unsimplify(obj).pop(_type) return {"feature": from_yaml_inner(_feature), **obj, "_type": "Sequence"} if _type == "list": return [from_yaml_inner(unsimplify(obj)[_type])] if _type == "struct": return from_yaml_inner(obj["struct"]) elif _type == "dtype": if isinstance(obj["dtype"], str): # e.g. int32, float64, string, audio, image try: Value(obj["dtype"]) return {**obj, "_type": "Value"} except ValueError: # e.g. Audio, Image, ArrayXD return {"_type": snakecase_to_camelcase(obj["dtype"])} else: return from_yaml_inner(obj["dtype"]) else: return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]} elif isinstance(obj, list): names = [_feature.pop("name") for _feature in obj] return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)} else: raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") return cls.from_dict(from_yaml_inner(yaml_data)) def encode_example(self, example): """ Encode example into a format for Arrow. Args: example (`dict[str, Any]`): Data in a Dataset row. Returns: `dict[str, Any]` """ example = cast_to_python_objects(example) return encode_nested_example(self, example) def encode_column(self, column, column_name: str): """ Encode column into a format for Arrow. Args: column (`list[Any]`): Data in a Dataset column. column_name (`str`): Dataset column name. Returns: `list[Any]` """ column = cast_to_python_objects(column) return [encode_nested_example(self[column_name], obj) for obj in column] def encode_batch(self, batch): """ Encode batch into a format for Arrow. Args: batch (`dict[str, list[Any]]`): Data in a Dataset batch. Returns: `dict[str, list[Any]]` """ encoded_batch = {} if set(batch) != set(self): raise ValueError(f"Column mismatch between batch {set(batch)} and features {set(self)}") for key, column in batch.items(): column = cast_to_python_objects(column) encoded_batch[key] = [encode_nested_example(self[key], obj) for obj in column] return encoded_batch def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode example with custom feature decoding. Args: example (`dict[str, Any]`): Dataset row data. token_per_repo_id (`dict`, *optional*): To access and decode audio or image files from private repositories on the Hub, you can pass a dictionary `repo_id (str) -> token (bool or str)`. Returns: `dict[str, Any]` """ return { column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) if self._column_requires_decoding[column_name] else value for column_name, (feature, value) in zip_dict( {key: value for key, value in self.items() if key in example}, example ) } def decode_column(self, column: list, column_name: str): """Decode column with custom feature decoding. Args: column (`list[Any]`): Dataset column data. column_name (`str`): Dataset column name. Returns: `list[Any]` """ return ( [decode_nested_example(self[column_name], value) if value is not None else None for value in column] if self._column_requires_decoding[column_name] else column ) def decode_batch(self, batch: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): """Decode batch with custom feature decoding. Args: batch (`dict[str, list[Any]]`): Dataset batch data. token_per_repo_id (`dict`, *optional*): To access and decode audio or image files from private repositories on the Hub, you can pass a dictionary repo_id (str) -> token (bool or str) Returns: `dict[str, list[Any]]` """ decoded_batch = {} for column_name, column in batch.items(): decoded_batch[column_name] = ( [ decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id) if value is not None else None for value in column ] if self._column_requires_decoding[column_name] else column ) return decoded_batch def copy(self) -> "Features": """ Make a deep copy of [`Features`]. Returns: [`Features`] Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> copy_of_features = ds.features.copy() >>> copy_of_features {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), 'text': Value(dtype='string', id=None)} ``` """ return copy.deepcopy(self) def reorder_fields_as(self, other: "Features") -> "Features": """ Reorder Features fields to match the field order of other [`Features`]. The order of the fields is important since it matters for the underlying arrow data. Re-ordering the fields allows to make the underlying arrow data type match. Args: other ([`Features`]): The other [`Features`] to align with. Returns: [`Features`] Example:: >>> from datasets import Features, Sequence, Value >>> # let's say we have to features with a different order of nested fields (for a and b for example) >>> f1 = Features({"root": Sequence({"a": Value("string"), "b": Value("string")})}) >>> f2 = Features({"root": {"b": Sequence(Value("string")), "a": Sequence(Value("string"))}}) >>> assert f1.type != f2.type >>> # re-ordering keeps the base structure (here Sequence is defined at the root level), but make the fields order match >>> f1.reorder_fields_as(f2) {'root': Sequence(feature={'b': Value(dtype='string', id=None), 'a': Value(dtype='string', id=None)}, length=-1, id=None)} >>> assert f1.reorder_fields_as(f2).type == f2.type """ def recursive_reorder(source, target, stack=""): stack_position = " at " + stack[1:] if stack else "" if isinstance(target, Sequence): target = target.feature if isinstance(target, dict): target = {k: [v] for k, v in target.items()} else: target = [target] if isinstance(source, Sequence): source, id_, length = source.feature, source.id, source.length if isinstance(source, dict): source = {k: [v] for k, v in source.items()} reordered = recursive_reorder(source, target, stack) return Sequence({k: v[0] for k, v in reordered.items()}, id=id_, length=length) else: source = [source] reordered = recursive_reorder(source, target, stack) return Sequence(reordered[0], id=id_, length=length) elif isinstance(source, dict): if not isinstance(target, dict): raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) if sorted(source) != sorted(target): message = ( f"Keys mismatch: between {source} (source) and {target} (target).\n" f"{source.keys()-target.keys()} are missing from target " f"and {target.keys()-source.keys()} are missing from source" + stack_position ) raise ValueError(message) return {key: recursive_reorder(source[key], target[key], stack + f".{key}") for key in target} elif isinstance(source, list): if not isinstance(target, list): raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) if len(source) != len(target): raise ValueError(f"Length mismatch: between {source} and {target}" + stack_position) return [recursive_reorder(source[i], target[i], stack + ".<list>") for i in range(len(target))] else: return source return Features(recursive_reorder(self, other)) def flatten(self, max_depth=16) -> "Features": """Flatten the features. Every dictionary column is removed and is replaced by all the subfields it contains. The new fields are named by concatenating the name of the original column and the subfield name like this: `<original>.<subfield>`. If a column contains nested dictionaries, then all the lower-level subfields names are also concatenated to form new columns: `<original>.<subfield>.<subsubfield>`, etc. Returns: [`Features`]: The flattened features. Example: ```py >>> from datasets import load_dataset >>> ds = load_dataset("squad", split="train") >>> ds.features.flatten() {'answers.answer_start': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None), 'answers.text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'context': Value(dtype='string', id=None), 'id': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None)} ``` """ for depth in range(1, max_depth): no_change = True flattened = self.copy() for column_name, subfeature in self.items(): if isinstance(subfeature, dict): no_change = False flattened.update({f"{column_name}.{k}": v for k, v in subfeature.items()}) del flattened[column_name] elif isinstance(subfeature, Sequence) and isinstance(subfeature.feature, dict): no_change = False flattened.update( { f"{column_name}.{k}": Sequence(v) if not isinstance(v, dict) else [v] for k, v in subfeature.feature.items() } ) del flattened[column_name] elif hasattr(subfeature, "flatten") and subfeature.flatten() != subfeature: no_change = False flattened.update({f"{column_name}.{k}": v for k, v in subfeature.flatten().items()}) del flattened[column_name] self = flattened if no_change: break return self def _align_features(features_list: List[Features]) -> List[Features]: """Align dictionaries of features so that the keys that are found in multiple dictionaries share the same feature.""" name2feature = {} for features in features_list: for k, v in features.items(): if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): name2feature[k] = v return [Features({k: name2feature[k] for k in features.keys()}) for features in features_list] def _check_if_features_can_be_aligned(features_list: List[Features]): """Check if the dictionaries of features can be aligned. Two dictonaries of features can be aligned if the keys they share have the same type or some of them is of type `Value("null")`. """ name2feature = {} for features in features_list: for k, v in features.items(): if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): name2feature[k] = v for features in features_list: for k, v in features.items(): if not (isinstance(v, Value) and v.dtype == "null") and name2feature[k] != v: raise ValueError( f'The features can\'t be aligned because the key {k} of features {features} has unexpected type - {v} (expected either {name2feature[k]} or Value("null").' )
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/features/translation.py
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to string translations. Example: ```python >>> # At construction time: >>> datasets.features.Translation(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': 'le chat', ... 'de': 'die katze' ... } ``` """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the Translation feature into a dictionary.""" from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Args: languages (`dict`): A dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Returns: - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): Language codes sorted in ascending order or plain text translations, sorted to align with language codes. Example: ```python >>> # At construction time: >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) >>> # During data generation: >>> yield { ... 'en': 'the cat', ... 'fr': ['le chat', 'la chatte,'] ... 'de': 'die katze' ... } >>> # Tensor returned : >>> { ... 'language': ['en', 'de', 'fr', 'fr'], ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], ... } ``` """ languages: Optional[List] = None num_languages: Optional[int] = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = sorted(set(self.languages)) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if set(translation_dict) == {"language", "translation"}: return translation_dict elif self.languages and set(translation_dict) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """Flatten the TranslationVariableLanguages feature into a dictionary.""" from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/features/image.py
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.download_config import DownloadConfig from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _IMAGE_COMPRESSION_FORMATS: Optional[List[str]] = None _NATIVE_BYTEORDER = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _VALID_IMAGE_ARRAY_DTPYES = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class Image: """Image [`Feature`] to read image data from an image file. Input: The Image feature accepts as input: - A `str`: Absolute path to the image file (i.e. random access is allowed). - A `dict` with the keys: - `path`: String with relative path of the image file to the archive file. - `bytes`: Bytes of the image file. This is useful for archived files with sequential access. - An `np.ndarray`: NumPy array representing an image. - A `PIL.Image.Image`: PIL image object. Args: decode (`bool`, defaults to `True`): Whether to decode the image data. If `False`, returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`. Examples: ```py >>> from datasets import load_dataset, Image >>> ds = load_dataset("beans", split="train") >>> ds.features["image"] Image(decode=True, id=None) >>> ds[0]["image"] <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x15E52E7F0> >>> ds = ds.cast_column('image', Image(decode=False)) {'bytes': None, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'} ``` """ decode: bool = True id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "PIL.Image.Image" pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) _type: str = field(default="Image", init=False, repr=False) def __call__(self): return self.pa_type def encode_example(self, value: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: """Encode example into a format for Arrow. Args: value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`): Data passed as input to Image feature. Returns: `dict` with "path" and "bytes" fields """ if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(value, list): value = np.array(value) if isinstance(value, str): return {"path": value, "bytes": None} elif isinstance(value, bytes): return {"path": None, "bytes": value} elif isinstance(value, np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(value) elif isinstance(value, PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(value) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image": """Decode example image file into image data. Args: value (`str` or `dict`): A string with the absolute image file path, a dictionary with keys: - `path`: String with absolute or relative image file path. - `bytes`: The bytes of the image file. token_per_repo_id (`dict`, *optional*): To access and decode image files from private repositories on the Hub, you can pass a dictionary repo_id (`str`) -> token (`bool` or `str`). Returns: `PIL.Image.Image` """ if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: token_per_repo_id = {} path, bytes_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") else: if is_local_path(path): image = PIL.Image.open(path) else: source_url = path.split("::")[-1] pattern = ( config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL ) try: repo_id = string_to_dict(source_url, pattern)["repo_id"] token = token_per_repo_id.get(repo_id) except ValueError: token = None download_config = DownloadConfig(token=token) with xopen(path, "rb", download_config=download_config) as f: bytes_ = BytesIO(f.read()) image = PIL.Image.open(bytes_) else: image = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary.""" from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: """Cast an Arrow array to the Image arrow storage type. The Arrow types that can be converted to the Image pyarrow storage type are: - `pa.string()` - it must contain the "path" data - `pa.binary()` - it must contain the image bytes - `pa.struct({"bytes": pa.binary()})` - `pa.struct({"path": pa.string()})` - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter - `pa.list(*)` - it must contain the image array data Args: storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`): PyArrow array to cast. Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path") else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_list(storage.type): bytes_array = pa.array( [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(storage, self.pa_type) def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: """Embed image files into the Arrow array. Args: storage (`pa.StructArray`): PyArrow array to embed. Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ @no_op_if_value_is_null def path_to_bytes(path): with xopen(path, "rb") as f: bytes_ = f.read() return bytes_ bytes_array = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) path_array = pa.array( [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(storage, self.pa_type) def list_image_compression_formats() -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _IMAGE_COMPRESSION_FORMATS = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def image_to_bytes(image: "PIL.Image.Image") -> bytes: """Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG/TIFF compression.""" buffer = BytesIO() if image.format in list_image_compression_formats(): format = image.format else: format = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(buffer, format=format) return buffer.getvalue() def encode_pil_image(image: "PIL.Image.Image") -> dict: if hasattr(image, "filename") and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(image)} def encode_np_array(array: np.ndarray) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") dtype = array.dtype dtype_byteorder = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER dtype_kind = dtype.kind dtype_itemsize = dtype.itemsize dest_dtype = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) dest_dtype = np.dtype("|u1") if dtype != dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: dest_dtype = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: dtype_str = dtype_byteorder + dtype_kind + str(dtype_itemsize) if np.dtype(dtype_str) in _VALID_IMAGE_ARRAY_DTPYES: dest_dtype = np.dtype(dtype_str) warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot downcast dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) image = PIL.Image.fromarray(array.astype(dest_dtype)) return {"path": None, "bytes": image_to_bytes(image)} def objects_to_list_of_image_dicts( objs: Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]], ) -> List[dict]: """Encode a list of objects into a format suitable for creating an extension array of type `ImageExtensionType`.""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if objs: _, obj = first_non_null_value(objs) if isinstance(obj, str): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(obj, np.ndarray): obj_to_image_dict_func = no_op_if_value_is_null(encode_np_array) return [obj_to_image_dict_func(obj) for obj in objs] elif isinstance(obj, PIL.Image.Image): obj_to_image_dict_func = no_op_if_value_is_null(encode_pil_image) return [obj_to_image_dict_func(obj) for obj in objs] else: return objs else: return objs
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/features/audio.py
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.download_config import DownloadConfig from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType @dataclass class Audio: """Audio [`Feature`] to extract audio data from an audio file. Input: The Audio feature accepts as input: - A `str`: Absolute path to the audio file (i.e. random access is allowed). - A `dict` with the keys: - `path`: String with relative path of the audio file to the archive file. - `bytes`: Bytes content of the audio file. This is useful for archived files with sequential access. - A `dict` with the keys: - `path`: String with relative path of the audio file to the archive file. - `array`: Array containing the audio sample - `sampling_rate`: Integer corresponding to the sampling rate of the audio sample. This is useful for archived files with sequential access. Args: sampling_rate (`int`, *optional*): Target sampling rate. If `None`, the native sampling rate is used. mono (`bool`, defaults to `True`): Whether to convert the audio signal to mono by averaging samples across channels. decode (`bool`, defaults to `True`): Whether to decode the audio data. If `False`, returns the underlying dictionary in the format `{"path": audio_path, "bytes": audio_bytes}`. Example: ```py >>> from datasets import load_dataset, Audio >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) >>> ds[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` """ sampling_rate: Optional[int] = None mono: bool = True decode: bool = True id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) _type: str = field(default="Audio", init=False, repr=False) def __call__(self): return self.pa_type def encode_example(self, value: Union[str, bytes, dict]) -> dict: """Encode example into a format for Arrow. Args: value (`str` or `dict`): Data passed as input to Audio feature. Returns: `dict` """ try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'.") from err if isinstance(value, str): return {"bytes": None, "path": value} elif isinstance(value, bytes): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes buffer = BytesIO() sf.write(buffer, value["array"], value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm"): # "PCM" only has raw audio bytes if value.get("sampling_rate") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object") if value.get("bytes"): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) bytes_value = np.frombuffer(value["bytes"], dtype=np.int16).astype(np.float32) / 32767 else: bytes_value = np.memmap(value["path"], dtype="h", mode="r").astype(np.float32) / 32767 buffer = BytesIO(bytes()) sf.write(buffer, bytes_value, value["sampling_rate"], format="wav") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def decode_example( self, value: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """Decode example audio file into audio data. Args: value (`dict`): A dictionary with keys: - `path`: String with relative audio file path. - `bytes`: Bytes of the audio file. token_per_repo_id (`dict`, *optional*): To access and decode audio files from private repositories on the Hub, you can pass a dictionary repo_id (`str`) -> token (`bool` or `str`) Returns: `dict` """ if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.") path, file = (value["path"], BytesIO(value["bytes"])) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err audio_format = xsplitext(path)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: token_per_repo_id = token_per_repo_id or {} source_url = path.split("::")[-1] pattern = ( config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL ) try: repo_id = string_to_dict(source_url, pattern)["repo_id"] token = token_per_repo_id[repo_id] except (ValueError, KeyError): token = None download_config = DownloadConfig(token=token) with xopen(path, "rb", download_config=download_config) as f: array, sampling_rate = sf.read(f) else: array, sampling_rate = sf.read(file) array = array.T if self.mono: array = librosa.to_mono(array) if self.sampling_rate and self.sampling_rate != sampling_rate: array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate) sampling_rate = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """If in the decodable state, raise an error, otherwise flatten the feature into a dictionary.""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature.") return { "bytes": Value("binary"), "path": Value("string"), } def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: """Cast an Arrow array to the Audio arrow storage type. The Arrow types that can be converted to the Audio pyarrow storage type are: - `pa.string()` - it must contain the "path" data - `pa.binary()` - it must contain the audio bytes - `pa.struct({"bytes": pa.binary()})` - `pa.struct({"path": pa.string()})` - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter Args: storage (`Union[pa.StringArray, pa.StructArray]`): PyArrow array to cast. Returns: `pa.StructArray`: Array in the Audio arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})` """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"): storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path") else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) return array_cast(storage, self.pa_type) def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: """Embed audio files into the Arrow array. Args: storage (`pa.StructArray`): PyArrow array to embed. Returns: `pa.StructArray`: Array in the Audio arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ @no_op_if_value_is_null def path_to_bytes(path): with xopen(path, "rb") as f: bytes_ = f.read() return bytes_ bytes_array = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) path_array = pa.array( [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(storage, self.pa_type)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/features/__init__.py
# flake8: noqa __all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/readme.py
# loading package files: https://stackoverflow.com/a/20885799 import importlib.resources as pkg_resources import logging from pathlib import Path from typing import Any, List, Tuple import yaml from . import resources from .deprecation_utils import deprecated BASE_REF_URL = "https://github.com/huggingface/datasets/tree/main/src/datasets/utils" this_url = f"{BASE_REF_URL}/{__file__}" logger = logging.getLogger(__name__) def load_yaml_resource(resource: str) -> Tuple[Any, str]: content = pkg_resources.read_text(resources, resource) return yaml.safe_load(content), f"{BASE_REF_URL}/resources/{resource}" readme_structure, known_readme_structure_url = load_yaml_resource("readme_structure.yaml") FILLER_TEXT = [ "[Needs More Information]", "[More Information Needed]", "(https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)", ] # Dictionary representation of section/readme, error_list, warning_list ReadmeValidatorOutput = Tuple[dict, List[str], List[str]] class Section: def __init__(self, name: str, level: str, lines: List[str] = None, suppress_parsing_errors: bool = False): self.name = name self.level = level self.lines = lines self.text = "" self.is_empty_text = True self.content = {} self.parsing_error_list = [] self.parsing_warning_list = [] if self.lines is not None: self.parse(suppress_parsing_errors=suppress_parsing_errors) def parse(self, suppress_parsing_errors: bool = False): current_sub_level = "" current_lines = [] code_start = False for line in self.lines: if line.strip(" \n") == "": continue elif line.strip(" \n")[:3] == "```": code_start = not code_start elif line.split()[0] == self.level + "#" and not code_start: if current_sub_level != "": self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) current_lines = [] else: if current_lines != []: self.text += "".join(current_lines).strip() if self.text != "" and self.text not in FILLER_TEXT: self.is_empty_text = False current_lines = [] current_sub_level = " ".join(line.split()[1:]).strip(" \n") else: current_lines.append(line) else: if current_sub_level != "": if current_sub_level in self.content: self.parsing_error_list.append( f"Multiple sections with the same heading `{current_sub_level}` have been found. Please keep only one of these sections." ) self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) else: if current_lines != []: self.text += "".join(current_lines).strip() if self.text != "" and self.text not in FILLER_TEXT: self.is_empty_text = False if self.level == "" and not suppress_parsing_errors: if self.parsing_error_list != [] or self.parsing_warning_list != []: errors = errors = "\n".join("-\t" + x for x in self.parsing_error_list + self.parsing_warning_list) error_string = f"The following issues were found while parsing the README at `{self.name}`:\n" + errors raise ValueError(error_string) def validate(self, structure: dict) -> ReadmeValidatorOutput: """Validates a Section class object recursively using the structure provided as a dictionary. Args: structute (:obj: `dict`): The dictionary representing expected structure. Returns: :obj: `ReadmeValidatorOutput`: The dictionary representation of the section, and the errors. """ # Header text validation error_list = [] warning_list = [] if structure["allow_empty"] is False: # If content is expected if self.is_empty_text and self.content == {}: # If no content is found, mention it in the error_list error_list.append(f"Expected some content in section `{self.name}` but it is empty.") if structure["allow_empty_text"] is False: # If some text is expected if self.is_empty_text: # If no text is found, mention it in the error_list error_list.append( f"Expected some text in section `{self.name}` but it is empty (text in subsections are ignored)." ) # Subsections Validation if structure["subsections"] is not None: # If subsections are expected if self.content == {}: # If no subsections are present values = [subsection["name"] for subsection in structure["subsections"]] # Mention the expected values in the error_list error_list.append( f"Section `{self.name}` expected the following subsections: {', '.join(['`'+x+'`' for x in values])}. Found 'None'." ) else: # If some subsections are present structure_names = [subsection["name"] for subsection in structure["subsections"]] has_missing_subsections = False for idx, name in enumerate(structure_names): if name not in self.content: # If the expected subsection is not present error_list.append(f"Section `{self.name}` is missing subsection: `{name}`.") has_missing_subsections = True else: # If the subsection is present, validate subsection, return the result # and concat the errors from subsection to section error_list # Skip sublevel validation if current level is `###` if self.level == "###": continue else: _, subsec_error_list, subsec_warning_list = self.content[name].validate( structure["subsections"][idx] ) error_list += subsec_error_list warning_list += subsec_warning_list if has_missing_subsections: # we only allow to have extra subsections if all the other ones are here for name in self.content: if name not in structure_names: # If an extra subsection is present warning_list.append( f"`{self.name}` has an extra subsection: `{name}`. Skipping further validation checks for this subsection as expected structure is unknown." ) if error_list: # If there are errors, do not return the dictionary as it is invalid return {}, error_list, warning_list else: return self.to_dict(), error_list, warning_list def to_dict(self) -> dict: """Returns the dictionary representation of a section.""" return { "name": self.name, "text": self.text, "is_empty_text": self.is_empty_text, "subsections": [value.to_dict() for value in self.content.values()], } @deprecated("Use `huggingface_hub.DatasetCard` instead.") class ReadMe(Section): # Level 0 def __init__(self, name: str, lines: List[str], structure: dict = None, suppress_parsing_errors: bool = False): super().__init__(name=name, level="") # Not using lines here as we need to use a child class parse self.structure = structure self.yaml_tags_line_count = -2 self.tag_count = 0 self.lines = lines if self.lines is not None: self.parse(suppress_parsing_errors=suppress_parsing_errors) def validate(self): if self.structure is None: content, error_list, warning_list = self._validate(readme_structure) else: content, error_list, warning_list = self._validate(self.structure) if error_list != [] or warning_list != []: errors = "\n".join(["-\t" + x for x in error_list + warning_list]) error_string = f"The following issues were found for the README at `{self.name}`:\n" + errors raise ValueError(error_string) @classmethod def from_readme(cls, path: Path, structure: dict = None, suppress_parsing_errors: bool = False): with open(path, encoding="utf-8") as f: lines = f.readlines() return cls(path, lines, structure, suppress_parsing_errors=suppress_parsing_errors) @classmethod def from_string( cls, string: str, structure: dict = None, root_name: str = "root", suppress_parsing_errors: bool = False ): lines = string.split("\n") return cls(root_name, lines, structure, suppress_parsing_errors=suppress_parsing_errors) def parse(self, suppress_parsing_errors: bool = False): # Skip Tags line_count = 0 for line in self.lines: self.yaml_tags_line_count += 1 if line.strip(" \n") == "---": self.tag_count += 1 if self.tag_count == 2: break line_count += 1 if self.tag_count == 2: self.lines = self.lines[line_count + 1 :] # Get the last + 1 th item. else: self.lines = self.lines[self.tag_count :] super().parse(suppress_parsing_errors=suppress_parsing_errors) def __str__(self): """Returns the string of dictionary representation of the ReadMe.""" return str(self.to_dict()) def _validate(self, readme_structure): error_list = [] warning_list = [] if self.yaml_tags_line_count == 0: warning_list.append("Empty YAML markers are present in the README.") elif self.tag_count == 0: warning_list.append("No YAML markers are present in the README.") elif self.tag_count == 1: warning_list.append("Only the start of YAML tags present in the README.") # Check how many first level sections are present. num_first_level_keys = len(self.content.keys()) if num_first_level_keys > 1: # If more than one, add to the error list, continue error_list.append( f"The README has several first-level headings: {', '.join(['`'+x+'`' for x in list(self.content.keys())])}. Only one heading is expected. Skipping further validation for this README." ) elif num_first_level_keys < 1: # If less than one, append error. error_list.append( "The README has no first-level headings. One heading is expected. Skipping further validation for this README." ) else: # If one exactly start_key = list(self.content.keys())[0] # Get the key if start_key.startswith("Dataset Card for"): # Check correct start # If the starting is correct, validate all the sections _, sec_error_list, sec_warning_list = self.content[start_key].validate( readme_structure["subsections"][0] ) error_list += sec_error_list warning_list += sec_warning_list else: # If not found, append error error_list.append( "No first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." ) if error_list: # If there are errors, do not return the dictionary as it is invalid return {}, error_list, warning_list else: return self.to_dict(), error_list, warning_list if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the content (excluding YAML tags) of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) readme = ReadMe.from_readme(readme_filepath)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/tf_utils.py
# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF-specific utils import.""" import os import warnings from functools import partial from math import ceil from uuid import uuid4 import numpy as np import pyarrow as pa from multiprocess import get_context try: from multiprocess.shared_memory import SharedMemory except ImportError: SharedMemory = None # Version checks should prevent this being called on older Python versions from .. import config def minimal_tf_collate_fn(features): if isinstance(features, dict): # case batch_size=None: nothing to collate return features elif config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") first = features[0] batch = {} for k, v in first.items(): if isinstance(v, np.ndarray): batch[k] = np.stack([f[k] for f in features]) elif isinstance(v, tf.Tensor): batch[k] = tf.stack([f[k] for f in features]) else: batch[k] = np.array([f[k] for f in features]) return batch def minimal_tf_collate_fn_with_renaming(features): batch = minimal_tf_collate_fn(features) if "label" in batch: batch["labels"] = batch["label"] del batch["label"] return batch def is_numeric_pa_type(pa_type): if pa.types.is_list(pa_type): return is_numeric_pa_type(pa_type.value_type) return pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_decimal(pa_type) def is_numeric_feature(feature): from .. import ClassLabel, Sequence, Value from ..features.features import _ArrayXD if isinstance(feature, Sequence): return is_numeric_feature(feature.feature) elif isinstance(feature, list): return is_numeric_feature(feature[0]) elif isinstance(feature, _ArrayXD): return is_numeric_pa_type(feature().storage_dtype) elif isinstance(feature, Value): return is_numeric_pa_type(feature()) elif isinstance(feature, ClassLabel): return True else: return False def np_get_batch( indices, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, return_dict=False ): if not isinstance(indices, np.ndarray): indices = indices.numpy() is_batched = True # Optimization - if we're loading a sequential batch, do it with slicing instead of a list of indices if isinstance(indices, np.integer): batch = dataset[indices.item()] is_batched = False elif np.all(np.diff(indices) == 1): batch = dataset[indices[0] : indices[-1] + 1] elif isinstance(indices, np.ndarray): batch = dataset[indices] else: raise RuntimeError("Unexpected type for indices: {}".format(type(indices))) if cols_to_retain is not None: batch = { key: value for key, value in batch.items() if key in cols_to_retain or key in ("label", "label_ids", "labels") } if is_batched: actual_size = len(list(batch.values())[0]) # Get the length of one of the arrays, assume all same # Our collators expect a list of dicts, not a dict of lists/arrays, so we invert batch = [{key: value[i] for key, value in batch.items()} for i in range(actual_size)] batch = collate_fn(batch, **collate_fn_args) if return_dict: out_batch = {} for col, cast_dtype in columns_to_np_types.items(): # In case the collate_fn returns something strange array = np.array(batch[col]) array = array.astype(cast_dtype) out_batch[col] = array else: out_batch = [] for col, cast_dtype in columns_to_np_types.items(): # In case the collate_fn returns something strange array = np.array(batch[col]) array = array.astype(cast_dtype) out_batch.append(array) return out_batch def dataset_to_tf( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, ): """Create a tf.data.Dataset from the underlying Dataset. This is a single-process method - the multiprocess equivalent is multiprocess_dataset_to_tf. Args: dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. cols_to_retain (`List[str]`): Dataset column(s) to load in the tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and that do not exist in the original dataset. collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate lists of samples into a batch. collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the `collate_fn`. Can be empty. columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to `tf.TensorSpec` objects. shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for validation/evaluation. batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, defaults to the same setting as shuffle. Returns: `tf.data.Dataset` """ if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") # TODO Matt: When our minimum Python version is 3.8 or higher, we can delete all of this and move everything # to the NumPy multiprocessing path. if hasattr(tf, "random_index_shuffle"): random_index_shuffle = tf.random_index_shuffle elif hasattr(tf.random.experimental, "index_shuffle"): random_index_shuffle = tf.random.experimental.index_shuffle else: if len(dataset) > 10_000_000: warnings.warn( "to_tf_dataset() can be memory-inefficient on versions of TensorFlow older than 2.9. " "If you are iterating over a dataset with a very large number of samples, consider " "upgrading to TF >= 2.9." ) random_index_shuffle = None getter_fn = partial( np_get_batch, dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, return_dict=False, ) # This works because dictionaries always output in the same order tout = [tf.dtypes.as_dtype(dtype) for dtype in columns_to_np_types.values()] @tf.function(input_signature=[tf.TensorSpec(None, tf.int64)]) def fetch_function(indices): output = tf.py_function( getter_fn, inp=[indices], Tout=tout, ) return {key: output[i] for i, key in enumerate(columns_to_np_types.keys())} tf_dataset = tf.data.Dataset.range(len(dataset)) if shuffle and random_index_shuffle is not None: base_seed = tf.fill((3,), value=tf.cast(-1, dtype=tf.int64)) def scan_random_index(state, index): if tf.reduce_all(state == -1): # This generates a new random seed once per epoch only, # to ensure that we iterate over each sample exactly once per epoch state = tf.random.uniform(shape=(3,), maxval=2**62, dtype=tf.int64) shuffled_index = random_index_shuffle(index=index, seed=state, max_index=len(dataset) - 1) return state, shuffled_index tf_dataset = tf_dataset.scan(base_seed, scan_random_index) elif shuffle: tf_dataset = tf_dataset.shuffle(tf_dataset.cardinality()) if batch_size is not None: tf_dataset = tf_dataset.batch(batch_size, drop_remainder=drop_remainder) tf_dataset = tf_dataset.map(fetch_function) if batch_size is not None: def ensure_shapes(input_dict): return {key: tf.ensure_shape(val, output_signature[key].shape) for key, val in input_dict.items()} else: # Ensure shape but remove batch dimension of output_signature[key].shape def ensure_shapes(input_dict): return {key: tf.ensure_shape(val, output_signature[key].shape[1:]) for key, val in input_dict.items()} return tf_dataset.map(ensure_shapes) class SharedMemoryContext: # This is a context manager for creating shared memory that ensures cleanup happens even if a process is interrupted # The process that creates shared memory is always the one responsible for unlinking it in the end def __init__(self): self.created_shms = [] self.opened_shms = [] def get_shm(self, name, size, create): shm = SharedMemory(size=int(size), name=name, create=create) if create: # We only unlink the ones we created in this context self.created_shms.append(shm) else: # If we didn't create it, we only close it when done, we don't unlink it self.opened_shms.append(shm) return shm def get_array(self, name, shape, dtype, create): shm = self.get_shm(name=name, size=np.prod(shape) * np.dtype(dtype).itemsize, create=create) return np.ndarray(shape, dtype=dtype, buffer=shm.buf) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): for shm in self.created_shms: shm.close() shm.unlink() for shm in self.opened_shms: shm.close() class NumpyMultiprocessingGenerator: def __init__( self, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, num_workers, ): self.dataset = dataset self.cols_to_retain = cols_to_retain self.collate_fn = collate_fn self.collate_fn_args = collate_fn_args self.string_columns = [col for col, dtype in columns_to_np_types.items() if dtype in (np.unicode_, np.str_)] # Strings will be converted to arrays of single unicode chars, so that we can have a constant itemsize self.columns_to_np_types = { col: dtype if col not in self.string_columns else np.dtype("U1") for col, dtype in columns_to_np_types.items() } self.output_signature = output_signature self.shuffle = shuffle self.batch_size = batch_size self.drop_remainder = drop_remainder self.num_workers = num_workers # Because strings are converted to characters, we need to add one extra dimension to the shape self.columns_to_ranks = { col: int(spec.shape.rank) if col not in self.string_columns else int(spec.shape.rank) + 1 for col, spec in output_signature.items() } def __iter__(self): # Make sure we only spawn workers if they have work to do num_workers = min(self.num_workers, int(ceil(len(self.dataset) / self.batch_size))) # Do the shuffling in iter so that it's done at the start of each epoch per_worker_batches, final_batch, final_batch_worker = self.distribute_batches( self.dataset, self.batch_size, self.drop_remainder, num_workers, self.shuffle ) ctx = get_context("spawn") names = [] shape_arrays = [] workers = [] array_ready_events = [ctx.Event() for _ in range(num_workers)] array_loaded_events = [ctx.Event() for _ in range(num_workers)] base_args = { "dataset": self.dataset, "cols_to_retain": self.cols_to_retain, "collate_fn": self.collate_fn, "collate_fn_args": self.collate_fn_args, "columns_to_np_types": self.columns_to_np_types, "columns_to_ranks": self.columns_to_ranks, "string_columns": self.string_columns, } with SharedMemoryContext() as shm_ctx: for i in range(num_workers): worker_random_id = str(uuid4()) worker_name = f"dw_{i}_{worker_random_id}"[:10] names.append(worker_name) worker_shape_arrays = { col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=True) for col, rank in self.columns_to_ranks.items() } shape_arrays.append(worker_shape_arrays) worker_indices = per_worker_batches[i] if i == final_batch_worker and final_batch is not None: final_batch_arg = final_batch else: final_batch_arg = None worker_kwargs = { "worker_name": worker_name, "indices": worker_indices, "extra_batch": final_batch_arg, "array_ready_event": array_ready_events[i], "array_loaded_event": array_loaded_events[i], **base_args, } worker = ctx.Process(target=self.worker_loop, kwargs=worker_kwargs, daemon=True) worker.start() workers.append(worker) end_signal_received = False while not end_signal_received: for i in range(num_workers): if not array_ready_events[i].wait(timeout=60): raise TimeoutError("Data loading worker timed out!") array_ready_events[i].clear() array_shapes = shape_arrays[i] if any(np.any(shape < 0) for shape in array_shapes.values()): # Child processes send negative array shapes to indicate # that no more data is going to be sent end_signal_received = True break # Matt: Because array shapes are variable we recreate the shared memory each iteration. # I suspect repeatedly opening lots of shared memory is the bottleneck for the parent process. # A future optimization, at the cost of some code complexity, could be to reuse shared memory # between iterations, but this would require knowing in advance the maximum size, or having # a system to only create a new memory block when a new maximum size is seen. # Another potential optimization would be to figure out which memory copies are necessary, # or whether we can yield objects straight out of shared memory. with SharedMemoryContext() as batch_shm_ctx: # This memory context only lasts long enough to copy everything out of the batch arrays = { col: batch_shm_ctx.get_array( f"{names[i]}_{col}", shape=shape, dtype=self.columns_to_np_types[col], create=False, ) for col, shape in array_shapes.items() } # Copy everything out of shm because the memory # will be unlinked by the child process at some point arrays = {col: np.copy(arr) for col, arr in arrays.items()} # Now we convert any unicode char arrays to strings for string_col in self.string_columns: arrays[string_col] = ( arrays[string_col].view(f"U{arrays[string_col].shape[-1]}").squeeze(-1) ) yield arrays array_loaded_events[i].set() # Now we just do some cleanup # Shared memory is cleaned up by the context manager, so we just make sure workers finish for worker in workers: worker.join() def __call__(self): return self @staticmethod def worker_loop( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, columns_to_ranks, string_columns, indices, extra_batch, worker_name, array_ready_event, array_loaded_event, ): os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory def send_batch_to_parent(indices): batch = np_get_batch( indices=indices, dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, return_dict=True, ) # Now begins the fun part where we start shovelling shared memory at the parent process out_arrays = {} with SharedMemoryContext() as batch_shm_ctx: # The batch shared memory context exists only as long as it takes for the parent process # to read everything, after which it cleans everything up again for col, cast_dtype in columns_to_np_types.items(): # Everything has to be np.array for this to work, even if the collate_fn is giving us tf.Tensor array = batch[col] if col in string_columns: # We can't send unicode arrays over shared memory, so we convert to single chars ("U1") # which have a fixed width of 4 bytes. The parent process will convert these back to strings. array = array.view("U1").reshape(array.shape + (-1,)) shape_arrays[col][:] = array.shape out_arrays[col] = batch_shm_ctx.get_array( f"{worker_name}_{col}", shape=array.shape, dtype=cast_dtype, create=True ) out_arrays[col][:] = array array_ready_event.set() array_loaded_event.wait() array_loaded_event.clear() with SharedMemoryContext() as shm_ctx: shape_arrays = { col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=False) for col, rank in columns_to_ranks.items() } for batch in indices: send_batch_to_parent(batch) if extra_batch is not None: send_batch_to_parent(extra_batch) # Now we send a batsignal to the parent process that we're done for col, array in shape_arrays.items(): array[:] = -1 array_ready_event.set() @staticmethod def distribute_batches(dataset, batch_size, drop_remainder, num_workers, shuffle): indices = np.arange(len(dataset)) if shuffle: np.random.shuffle(indices) num_samples = len(indices) # We distribute the batches so that reading from the workers in round-robin order yields the exact # order specified in indices. This is only important when shuffle is False, but we do it regardless. incomplete_batch_cutoff = num_samples - (num_samples % batch_size) indices, last_incomplete_batch = np.split(indices, [incomplete_batch_cutoff]) if drop_remainder or len(last_incomplete_batch) == 0: last_incomplete_batch = None indices = indices.reshape(-1, batch_size) num_batches = len(indices) final_batches_cutoff = num_batches - (num_batches % num_workers) indices, final_batches = np.split(indices, [final_batches_cutoff]) indices = indices.reshape(-1, num_workers, batch_size) per_worker_indices = np.split(indices, indices.shape[1], axis=1) per_worker_indices = [np.squeeze(worker_indices, 1) for worker_indices in per_worker_indices] # Distribute the final batches to the first workers for i in range(len(final_batches)): # len(final_batches) can be zero, and is always less than num_workers per_worker_indices[i] = np.concatenate([per_worker_indices[i], final_batches[i].reshape(1, -1)], axis=0) # Add the last incomplete batch to the next worker, which might be the first worker if last_incomplete_batch is not None: incomplete_batch_worker_idx = len(final_batches) else: incomplete_batch_worker_idx = None return per_worker_indices, last_incomplete_batch, incomplete_batch_worker_idx def multiprocess_dataset_to_tf( dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, output_signature, shuffle, batch_size, drop_remainder, num_workers, ): """Create a tf.data.Dataset from the underlying Dataset. This is a multi-process method - the single-process equivalent is dataset_to_tf. Args: dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. cols_to_retain (`List[str]`): Dataset column(s) to load in the tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and that do not exist in the original dataset. collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate lists of samples into a batch. collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the `collate_fn`. Can be empty. columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to `tf.TensorSpec` objects. shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for validation/evaluation. batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, defaults to the same setting as shuffle. num_workers (`int`): Number of workers to use for loading the dataset. Should be >= 1. Returns: `tf.data.Dataset` """ if config.TF_AVAILABLE: import tensorflow as tf else: raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") data_generator = NumpyMultiprocessingGenerator( dataset=dataset, cols_to_retain=cols_to_retain, collate_fn=collate_fn, collate_fn_args=collate_fn_args, columns_to_np_types=columns_to_np_types, output_signature=output_signature, shuffle=shuffle, batch_size=batch_size, drop_remainder=drop_remainder, num_workers=num_workers, ) tf_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature) if drop_remainder: dataset_length = int(len(dataset) // batch_size) else: dataset_length = int(ceil(len(dataset) / batch_size)) return tf_dataset.apply(tf.data.experimental.assert_cardinality(dataset_length))
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/_filelock.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """Utilities to handle file locking in `datasets`.""" import os from filelock import FileLock as FileLock_ from filelock import UnixFileLock class FileLock(FileLock_): """ A `filelock.FileLock` initializer that handles long paths. """ MAX_FILENAME_LENGTH = 255 def __init__(self, lock_file, *args, **kwargs): lock_file = self.hash_filename_if_too_long(lock_file) super().__init__(lock_file, *args, **kwargs) @classmethod def hash_filename_if_too_long(cls, path: str) -> str: filename = os.path.basename(path) max_filename_length = cls.MAX_FILENAME_LENGTH if issubclass(cls, UnixFileLock): max_filename_length = min(max_filename_length, os.statvfs(os.path.dirname(path)).f_namemax) if len(filename) > max_filename_length: dirname = os.path.dirname(path) hashed_filename = str(hash(filename)) new_filename = ( filename[: max_filename_length - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock" ) return os.path.join(dirname, new_filename) else: return path
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/doc_utils.py
from typing import Callable def is_documented_by(function_with_docstring: Callable): """Decorator to share docstrings across common functions. Args: function_with_docstring (`Callable`): Name of the function with the docstring. """ def wrapper(target_function): target_function.__doc__ = function_with_docstring.__doc__ return target_function return wrapper
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/stratify.py
import numpy as np def approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Args ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: (inds,) = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = rng.choice(inds, size=add_now, replace=False) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int64) def stratified_shuffle_split_generate_indices(y, n_train, n_test, rng, n_splits=10): """ Provides train/test indices to split data in train/test sets. It's reference is taken from StratifiedShuffleSplit implementation of scikit-learn library. Args ---------- n_train : int, represents the absolute number of train samples. n_test : int, represents the absolute number of test samples. random_state : int or RandomState instance, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. n_splits : int, default=10 Number of re-shuffling & splitting iterations. """ classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("Minimum class count error") if n_train < n_classes: raise ValueError( "The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes) ) if n_test < n_classes: raise ValueError( "The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes) ) class_indices = np.split(np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]) for _ in range(n_splits): n_i = approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i in range(n_classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = class_indices[i].take(permutation, mode="clip") train.extend(perm_indices_class_i[: n_i[i]]) test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/download_manager.py
# deprecated, please use datasets.download.download_manager
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/beam_utils.py
import os from apache_beam.io.filesystems import FileSystems from apache_beam.pipeline import Pipeline from .logging import get_logger CHUNK_SIZE = 2 << 20 # 2mb logger = get_logger(__name__) class BeamPipeline(Pipeline): """Wrapper over `apache_beam.pipeline.Pipeline` for convenience""" def is_local(self): runner = self._options.get_all_options().get("runner") return runner in [None, "DirectRunner", "PortableRunner"] def upload_local_to_remote(local_file_path, remote_file_path, force_upload=False): """Use the Beam Filesystems to upload to a remote directory on gcs/s3/hdfs...""" fs = FileSystems if fs.exists(remote_file_path): if force_upload: logger.info(f"Remote path already exist: {remote_file_path}. Overwriting it as force_upload=True.") else: logger.info(f"Remote path already exist: {remote_file_path}. Skipping it as force_upload=False.") return with fs.create(remote_file_path) as remote_file: with open(local_file_path, "rb") as local_file: chunk = local_file.read(CHUNK_SIZE) while chunk: remote_file.write(chunk) chunk = local_file.read(CHUNK_SIZE) def download_remote_to_local(remote_file_path, local_file_path, force_download=False): """Use the Beam Filesystems to download from a remote directory on gcs/s3/hdfs...""" fs = FileSystems if os.path.exists(local_file_path): if force_download: logger.info(f"Local path already exist: {remote_file_path}. Overwriting it as force_upload=True.") else: logger.info(f"Local path already exist: {remote_file_path}. Skipping it as force_upload=False.") return with fs.open(remote_file_path) as remote_file: with open(local_file_path, "wb") as local_file: chunk = remote_file.read(CHUNK_SIZE) while chunk: local_file.write(chunk) chunk = remote_file.read(CHUNK_SIZE)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/deprecation_utils.py
import enum import inspect import warnings from functools import wraps from typing import Callable, Optional from .logging import get_logger _emitted_deprecation_warnings = set() logger = get_logger(__name__) def deprecated(help_message: Optional[str] = None): """Decorator to mark a class or a function as deprecated. Args: help_message (:obj:`str`, optional): An optional message to guide the user on how to switch to non-deprecated usage of the library. """ def decorator(deprecated_class_or_function: Callable): global _emitted_deprecation_warnings if inspect.isclass(deprecated_class_or_function): deprecated_function = deprecated_class_or_function.__init__ name = deprecated_class_or_function.__name__ else: deprecated_function = deprecated_class_or_function name = deprecated_function.__name__ # Support deprecating __init__ class method: class name instead name = name if name != "__init__" else deprecated_function.__qualname__.split(".")[-2] warning_msg = ( f"{name} is deprecated and will be removed in the next major version of datasets." + f" {help_message}" if help_message else "" ) @wraps(deprecated_function) def wrapper(*args, **kwargs): func_hash = hash(deprecated_function) if func_hash not in _emitted_deprecation_warnings: warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) _emitted_deprecation_warnings.add(func_hash) return deprecated_function(*args, **kwargs) wrapper._decorator_name_ = "deprecated" if inspect.isclass(deprecated_class_or_function): deprecated_class_or_function.__init__ = wrapper return deprecated_class_or_function else: return wrapper return decorator class OnAccess(enum.EnumMeta): """ Enum metaclass that calls a user-specified function whenever a member is accessed. """ def __getattribute__(cls, name): obj = super().__getattribute__(name) if isinstance(obj, enum.Enum) and obj._on_access: obj._on_access() return obj def __getitem__(cls, name): member = super().__getitem__(name) if member._on_access: member._on_access() return member def __call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1): obj = super().__call__(value, names, module=module, qualname=qualname, type=type, start=start) if isinstance(obj, enum.Enum) and obj._on_access: obj._on_access() return obj class DeprecatedEnum(enum.Enum, metaclass=OnAccess): """ Enum class that calls `deprecate` method whenever a member is accessed. """ def __new__(cls, value): member = object.__new__(cls) member._value_ = value member._on_access = member.deprecate return member @property def help_message(self): return "" def deprecate(self): help_message = f" {self.help_message}" if self.help_message else "" warnings.warn( f"'{self.__objclass__.__name__}' is deprecated and will be removed in the next major version of datasets." + help_message, FutureWarning, stacklevel=3, )
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/typing.py
import os from typing import Dict, List, Tuple, TypeVar, Union T = TypeVar("T") ListLike = Union[List[T], Tuple[T, ...]] NestedDataStructureLike = Union[T, List[T], Dict[str, T]] PathLike = Union[str, bytes, os.PathLike]
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/extract.py
import bz2 import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from ._filelock import FileLock from .logging import get_logger logger = get_logger(__name__) class ExtractManager: def __init__(self, cache_dir: Optional[str] = None): self.extract_dir = ( os.path.join(cache_dir, config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) self.extractor = Extractor def _get_output_path(self, path: str) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" abs_path = os.path.abspath(path) return os.path.join(self.extract_dir, hash_url_to_filename(abs_path)) def _do_extract(self, output_path: str, force_extract: bool) -> bool: return force_extract or ( not os.path.isfile(output_path) and not (os.path.isdir(output_path) and os.listdir(output_path)) ) def extract(self, input_path: str, force_extract: bool = False) -> str: extractor_format = self.extractor.infer_extractor_format(input_path) if not extractor_format: return input_path output_path = self._get_output_path(input_path) if self._do_extract(output_path, force_extract): self.extractor.extract(input_path, output_path, extractor_format) return output_path class BaseExtractor(ABC): @classmethod @abstractmethod def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool: ... @staticmethod @abstractmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: ... class MagicNumberBaseExtractor(BaseExtractor, ABC): magic_numbers: List[bytes] = [] @staticmethod def read_magic_number(path: Union[Path, str], magic_number_length: int): with open(path, "rb") as f: return f.read(magic_number_length) @classmethod def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool: if not magic_number: magic_number_length = max(len(cls_magic_number) for cls_magic_number in cls.magic_numbers) try: magic_number = cls.read_magic_number(path, magic_number_length) except OSError: return False return any(magic_number.startswith(cls_magic_number) for cls_magic_number in cls.magic_numbers) class TarExtractor(BaseExtractor): @classmethod def is_extractable(cls, path: Union[Path, str], **kwargs) -> bool: return tarfile.is_tarfile(path) @staticmethod def safemembers(members, output_path): """ Fix for CVE-2007-4559 Desc: Directory traversal vulnerability in the (1) extract and (2) extractall functions in the tarfile module in Python allows user-assisted remote attackers to overwrite arbitrary files via a .. (dot dot) sequence in filenames in a TAR archive, a related issue to CVE-2001-1267. See: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-4559 From: https://stackoverflow.com/a/10077309 """ def resolved(path: str) -> str: return os.path.realpath(os.path.abspath(path)) def badpath(path: str, base: str) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(base, path)).startswith(base) def badlink(info, base: str) -> bool: # Links are interpreted relative to the directory containing the link tip = resolved(os.path.join(base, os.path.dirname(info.name))) return badpath(info.linkname, base=tip) base = resolved(output_path) for finfo in members: if badpath(finfo.name, base): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)") elif finfo.issym() and badlink(finfo, base): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}") elif finfo.islnk() and badlink(finfo, base): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}") else: yield finfo @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: os.makedirs(output_path, exist_ok=True) tar_file = tarfile.open(input_path) tar_file.extractall(output_path, members=TarExtractor.safemembers(tar_file, output_path)) tar_file.close() class GzipExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x1F\x8B"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with gzip.open(input_path, "rb") as gzip_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(gzip_file, extracted_file) class ZipExtractor(MagicNumberBaseExtractor): magic_numbers = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def is_extractable(cls, path: Union[Path, str], magic_number: bytes = b"") -> bool: if super().is_extractable(path, magic_number=magic_number): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(path, "rb") as fp: endrec = _EndRecData(fp) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: data = fp.read(sizeCentralDir) # CD is where we expect it to be if len(data) == sizeCentralDir: centdir = struct.unpack(structCentralDir, data) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: os.makedirs(output_path, exist_ok=True) with zipfile.ZipFile(input_path, "r") as zip_file: zip_file.extractall(output_path) zip_file.close() class XzExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with lzma.open(input_path) as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class RarExtractor(MagicNumberBaseExtractor): magic_numbers = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile") import rarfile os.makedirs(output_path, exist_ok=True) rf = rarfile.RarFile(input_path) rf.extractall(output_path) rf.close() class ZstdExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x28\xb5\x2F\xFD"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard") import zstandard as zstd dctx = zstd.ZstdDecompressor() with open(input_path, "rb") as ifh, open(output_path, "wb") as ofh: dctx.copy_stream(ifh, ofh) class Bzip2Extractor(MagicNumberBaseExtractor): magic_numbers = [b"\x42\x5A\x68"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: with bz2.open(input_path, "rb") as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class SevenZipExtractor(MagicNumberBaseExtractor): magic_numbers = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr") import py7zr os.makedirs(output_path, exist_ok=True) with py7zr.SevenZipFile(input_path, "r") as archive: archive.extractall(output_path) class Lz4Extractor(MagicNumberBaseExtractor): magic_numbers = [b"\x04\x22\x4D\x18"] @staticmethod def extract(input_path: Union[Path, str], output_path: Union[Path, str]) -> None: if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4") import lz4.frame with lz4.frame.open(input_path, "rb") as compressed_file: with open(output_path, "wb") as extracted_file: shutil.copyfileobj(compressed_file, extracted_file) class Extractor: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) extractors: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": Bzip2Extractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": Lz4Extractor, # <Added version="2.4.0"/> } @classmethod def _get_magic_number_max_length(cls): return max( len(extractor_magic_number) for extractor in cls.extractors.values() if issubclass(extractor, MagicNumberBaseExtractor) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _read_magic_number(path: Union[Path, str], magic_number_length: int): try: return MagicNumberBaseExtractor.read_magic_number(path, magic_number_length=magic_number_length) except OSError: return b"" @classmethod def is_extractable(cls, path: Union[Path, str], return_extractor: bool = False) -> bool: warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.", category=FutureWarning, ) extractor_format = cls.infer_extractor_format(path) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def infer_extractor_format(cls, path: Union[Path, str]) -> str: # <Added version="2.4.0"/> magic_number_max_length = cls._get_magic_number_max_length() magic_number = cls._read_magic_number(path, magic_number_max_length) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(path, magic_number=magic_number): return extractor_format @classmethod def extract( cls, input_path: Union[Path, str], output_path: Union[Path, str], extractor_format: Optional[str] = None, # <Added version="2.4.0"/> extractor: Optional[BaseExtractor] = "deprecated", ) -> None: os.makedirs(os.path.dirname(output_path), exist_ok=True) # Prevent parallel extractions lock_path = str(Path(output_path).with_suffix(".lock")) with FileLock(lock_path): shutil.rmtree(output_path, ignore_errors=True) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(extractor_format, str): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.", category=FutureWarning, ) extractor = extractor if extractor != "deprecated" else extractor_format else: extractor = cls.extractors[extractor_format] return extractor.extract(input_path, output_path) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.", category=FutureWarning, ) for extractor in cls.extractors.values(): if extractor.is_extractable(input_path): return extractor.extract(input_path, output_path)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/py_utils.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Some python utils function and classes. """ import copy import functools import itertools import multiprocessing.pool import os import queue import re import types import warnings from contextlib import contextmanager from dataclasses import fields, is_dataclass from multiprocessing import Manager from queue import Empty from shutil import disk_usage from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union from urllib.parse import urlparse import multiprocess import multiprocess.pool import numpy as np from tqdm.auto import tqdm from .. import config from ..parallel import parallel_map from . import logging from . import tqdm as hf_tqdm from ._dill import ( # noqa: F401 # imported for backward compatibility. TODO: remove in 3.0.0 Pickler, dump, dumps, pklregister, ) try: # pragma: no branch import typing_extensions as _typing_extensions from typing_extensions import Final, Literal except ImportError: _typing_extensions = Literal = Final = None logger = logging.get_logger(__name__) # NOTE: When used on an instance method, the cache is shared across all # instances and IS NOT per-instance. # See # https://stackoverflow.com/questions/14946264/python-lru-cache-decorator-per-instance # For @property methods, use @memoized_property below. memoize = functools.lru_cache def size_str(size_in_bytes): """Returns a human readable size string. If size_in_bytes is None, then returns "Unknown size". For example `size_str(1.5 * datasets.units.GiB) == "1.50 GiB"`. Args: size_in_bytes: `int` or `None`, the size, in bytes, that we want to format as a human-readable size string. """ if not size_in_bytes: return "Unknown size" _NAME_LIST = [("PiB", 2**50), ("TiB", 2**40), ("GiB", 2**30), ("MiB", 2**20), ("KiB", 2**10)] size_in_bytes = float(size_in_bytes) for name, size_bytes in _NAME_LIST: value = size_in_bytes / size_bytes if value >= 1.0: return f"{value:.2f} {name}" return f"{int(size_in_bytes)} bytes" def convert_file_size_to_int(size: Union[int, str]) -> int: """ Converts a size expressed as a string with digits an unit (like `"50MB"`) to an integer (in bytes). Args: size (`int` or `str`): The size to convert. Will be directly returned if an `int`. Example: ```py >>> convert_file_size_to_int("1MiB") 1048576 ``` """ if isinstance(size, int): return size if size.upper().endswith("PIB"): return int(size[:-3]) * (2**50) if size.upper().endswith("TIB"): return int(size[:-3]) * (2**40) if size.upper().endswith("GIB"): return int(size[:-3]) * (2**30) if size.upper().endswith("MIB"): return int(size[:-3]) * (2**20) if size.upper().endswith("KIB"): return int(size[:-3]) * (2**10) if size.upper().endswith("PB"): int_size = int(size[:-2]) * (10**15) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("TB"): int_size = int(size[:-2]) * (10**12) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("GB"): int_size = int(size[:-2]) * (10**9) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("MB"): int_size = int(size[:-2]) * (10**6) return int_size // 8 if size.endswith("b") else int_size if size.upper().endswith("KB"): int_size = int(size[:-2]) * (10**3) return int_size // 8 if size.endswith("b") else int_size raise ValueError(f"`size={size}` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") def glob_pattern_to_regex(pattern): # partially taken from fsspec: # https://github.com/fsspec/filesystem_spec/blob/697d0f8133d8a5fbc3926e4761d7ecd51337ce50/fsspec/asyn.py#L735 return ( pattern.replace("\\", r"\\") .replace(".", r"\.") .replace("*", ".*") .replace("+", r"\+") .replace("//", "/") .replace("(", r"\(") .replace(")", r"\)") .replace("|", r"\|") .replace("^", r"\^") .replace("$", r"\$") .rstrip("/") .replace("?", ".") ) def string_to_dict(string: str, pattern: str) -> Dict[str, str]: """Un-format a string using a python f-string pattern. From https://stackoverflow.com/a/36838374 Example:: >>> p = 'hello, my name is {name} and I am a {age} year old {what}' >>> s = p.format(name='cody', age=18, what='quarterback') >>> s 'hello, my name is cody and I am a 18 year old quarterback' >>> string_to_dict(s, p) {'age': '18', 'name': 'cody', 'what': 'quarterback'} Args: string (str): input string pattern (str): pattern formatted like a python f-string Returns: Dict[str, str]: dictionary of variable -> value, retrieved from the input using the pattern Raises: ValueError: if the string doesn't match the pattern """ regex = re.sub(r"{(.+?)}", r"(?P<_\1>.+)", pattern) result = re.search(regex, string) if result is None: raise ValueError(f"String {string} doesn't match the pattern {pattern}") values = list(result.groups()) keys = re.findall(r"{(.+?)}", pattern) _dict = dict(zip(keys, values)) return _dict def asdict(obj): """Convert an object to its dictionary representation recursively. <Added version="2.4.0"/> """ # Implementation based on https://docs.python.org/3/library/dataclasses.html#dataclasses.asdict def _is_dataclass_instance(obj): # https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass return is_dataclass(obj) and not isinstance(obj, type) def _asdict_inner(obj): if _is_dataclass_instance(obj): result = {} for f in fields(obj): value = _asdict_inner(getattr(obj, f.name)) if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False): result[f.name] = value return result elif isinstance(obj, tuple) and hasattr(obj, "_fields"): # obj is a namedtuple return type(obj)(*[_asdict_inner(v) for v in obj]) elif isinstance(obj, (list, tuple)): # Assume we can create an object of this type by passing in a # generator (which is not true for namedtuples, handled # above). return type(obj)(_asdict_inner(v) for v in obj) elif isinstance(obj, dict): return {_asdict_inner(k): _asdict_inner(v) for k, v in obj.items()} else: return copy.deepcopy(obj) if not isinstance(obj, dict) and not _is_dataclass_instance(obj): raise TypeError(f"{obj} is not a dict or a dataclass") return _asdict_inner(obj) @contextmanager def temporary_assignment(obj, attr, value): """Temporarily assign obj.attr to value.""" original = getattr(obj, attr, None) setattr(obj, attr, value) try: yield finally: setattr(obj, attr, original) @contextmanager def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False): """Temporarily set the random seed. This works for python numpy, pytorch and tensorflow.""" np_state = np.random.get_state() np.random.seed(seed) if set_pytorch and config.TORCH_AVAILABLE: import torch torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) if set_tensorflow and config.TF_AVAILABLE: import tensorflow as tf from tensorflow.python.eager import context as tfpycontext tf_state = tf.random.get_global_generator() temp_gen = tf.random.Generator.from_seed(seed) tf.random.set_global_generator(temp_gen) if not tf.executing_eagerly(): raise ValueError("Setting random seed for TensorFlow is only available in eager mode") tf_context = tfpycontext.context() # eager mode context tf_seed = tf_context._seed tf_rng_initialized = hasattr(tf_context, "_rng") if tf_rng_initialized: tf_rng = tf_context._rng tf_context._set_global_seed(seed) try: yield finally: np.random.set_state(np_state) if set_pytorch and config.TORCH_AVAILABLE: torch.random.set_rng_state(torch_state) if torch.cuda.is_available(): torch.cuda.set_rng_state_all(torch_cuda_states) if set_tensorflow and config.TF_AVAILABLE: tf.random.set_global_generator(tf_state) tf_context._seed = tf_seed if tf_rng_initialized: tf_context._rng = tf_rng else: delattr(tf_context, "_rng") def unique_values(values): """Iterate over iterable and return only unique values in order.""" seen = set() for value in values: if value not in seen: seen.add(value) yield value def no_op_if_value_is_null(func): """If the value is None, return None, else call `func`.""" def wrapper(value): return func(value) if value is not None else None return wrapper def first_non_null_value(iterable): """Return the index and the value of the first non-null value in the iterable. If all values are None, return -1 as index.""" for i, value in enumerate(iterable): if value is not None: return i, value return -1, None def zip_dict(*dicts): """Iterate over items of dictionaries grouped by their keys.""" for key in unique_values(itertools.chain(*dicts)): # set merge all keys # Will raise KeyError if the dict don't have the same keys yield key, tuple(d[key] for d in dicts) class NonMutableDict(dict): """Dict where keys can only be added but not modified. Will raise an error if the user try to overwrite one key. The error message can be customized during construction. It will be formatted using {key} for the overwritten key. """ def __init__(self, *args, **kwargs): self._error_msg = kwargs.pop( "error_msg", "Try to overwrite existing key: {key}", ) if kwargs: raise ValueError("NonMutableDict cannot be initialized with kwargs.") super().__init__(*args, **kwargs) def __setitem__(self, key, value): if key in self: raise ValueError(self._error_msg.format(key=key)) return super().__setitem__(key, value) def update(self, other): if any(k in self for k in other): raise ValueError(self._error_msg.format(key=set(self) & set(other))) return super().update(other) class classproperty(property): # pylint: disable=invalid-name """Descriptor to be used as decorator for @classmethods.""" def __get__(self, obj, objtype=None): return self.fget.__get__(None, objtype)() def _single_map_nested(args): """Apply a function recursively to each element of a nested data struct.""" function, data_struct, types, rank, disable_tqdm, desc = args # Singleton first to spare some computation if not isinstance(data_struct, dict) and not isinstance(data_struct, types): return function(data_struct) # Reduce logging to keep things readable in multiprocessing with tqdm if rank is not None and logging.get_verbosity() < logging.WARNING: logging.set_verbosity_warning() # Print at least one thing to fix tqdm in notebooks in multiprocessing # see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308 if rank is not None and not disable_tqdm and any("notebook" in tqdm_cls.__name__ for tqdm_cls in tqdm.__mro__): print(" ", end="", flush=True) # Loop over single examples or batches and write to buffer/file if examples are to be updated pbar_iterable = data_struct.items() if isinstance(data_struct, dict) else data_struct pbar_desc = (desc + " " if desc is not None else "") + "#" + str(rank) if rank is not None else desc with hf_tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) as pbar: if isinstance(data_struct, dict): return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} else: mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] if isinstance(data_struct, list): return mapped elif isinstance(data_struct, tuple): return tuple(mapped) else: return np.array(mapped) def map_nested( function: Callable[[Any], Any], data_struct: Any, dict_only: bool = False, map_list: bool = True, map_tuple: bool = False, map_numpy: bool = False, num_proc: Optional[int] = None, parallel_min_length: int = 2, types: Optional[tuple] = None, disable_tqdm: bool = True, desc: Optional[str] = None, ) -> Any: """Apply a function recursively to each element of a nested data struct. Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to `parallel_min_length`. <Changed version="2.5.0"> Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``. Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and multiprocessing is used. </Changed> Args: function (`Callable`): Function to be applied to `data_struct`. data_struct (`Any`): Data structure to apply `function` to. dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in `data_struct`. map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict` values). map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides `dict` values). map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides `dict` values). num_proc (`int`, *optional*): Number of processes. parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel processing. <Added version="2.5.0"/> types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their elements. disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar. desc (`str`, *optional*): Prefix for the tqdm progressbar. Returns: `Any` """ if types is None: types = [] if not dict_only: if map_list: types.append(list) if map_tuple: types.append(tuple) if map_numpy: types.append(np.ndarray) types = tuple(types) # Singleton if not isinstance(data_struct, dict) and not isinstance(data_struct, types): return function(data_struct) iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct if num_proc is None: num_proc = 1 if any(isinstance(v, types) and len(v) > len(iterable) for v in iterable): mapped = [ map_nested( function=function, data_struct=obj, num_proc=num_proc, parallel_min_length=parallel_min_length, types=types, ) for obj in iterable ] elif num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length: mapped = [ _single_map_nested((function, obj, types, None, True, None)) for obj in hf_tqdm(iterable, disable=disable_tqdm, desc=desc) ] else: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".* is experimental and might be subject to breaking changes in the future\\.$", category=UserWarning, ) mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested) if isinstance(data_struct, dict): return dict(zip(data_struct.keys(), mapped)) else: if isinstance(data_struct, list): return mapped elif isinstance(data_struct, tuple): return tuple(mapped) else: return np.array(mapped) class NestedDataStructure: def __init__(self, data=None): self.data = data if data is not None else [] def flatten(self, data=None): data = data if data is not None else self.data if isinstance(data, dict): return self.flatten(list(data.values())) elif isinstance(data, (list, tuple)): return [flattened for item in data for flattened in self.flatten(item)] else: return [data] def has_sufficient_disk_space(needed_bytes, directory="."): try: free_bytes = disk_usage(os.path.abspath(directory)).free except OSError: return True return needed_bytes < free_bytes def _convert_github_url(url_path: str) -> Tuple[str, Optional[str]]: """Convert a link to a file on a github repo in a link to the raw github object.""" parsed = urlparse(url_path) sub_directory = None if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com": if "blob" in url_path: if not url_path.endswith(".py"): raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'") url_path = url_path.replace("blob", "raw") # Point to the raw file else: # Parse github url to point to zip github_path = parsed.path[1:] repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master") repo_owner, repo_name = repo_info.split("/") url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip" sub_directory = f"{repo_name}-{branch}" return url_path, sub_directory def get_imports(file_path: str) -> Tuple[str, str, str, str]: """Find whether we should import or clone additional files for a given processing script. And list the import. We allow: - library dependencies, - local dependencies and - external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository. external dependencies will be downloaded (and extracted if needed in the dataset folder). We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script. Note that only direct import in the dataset processing script will be handled We don't recursively explore the additional import to download further files. Example:: import tensorflow import .c4_utils import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset """ lines = [] with open(file_path, encoding="utf-8") as f: lines.extend(f.readlines()) logger.debug(f"Checking {file_path} for additional imports.") imports: List[Tuple[str, str, str, Optional[str]]] = [] is_in_docstring = False for line in lines: docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line) if len(docstr_start_match) == 1: # flip True <=> False only if doctstring # starts at line without finishing is_in_docstring = not is_in_docstring if is_in_docstring: # import statements in doctstrings should # not be added as required dependencies continue match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE) if match is None: match = re.match( r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE, ) if match is None: continue if match.group(1): # The import starts with a '.', we will download the relevant file if any(imp[1] == match.group(2) for imp in imports): # We already have this import continue if match.group(3): # The import has a comment with 'From:', we'll retrieve it from the given url url_path = match.group(3) url_path, sub_directory = _convert_github_url(url_path) imports.append(("external", match.group(2), url_path, sub_directory)) elif match.group(2): # The import should be at the same place as the file imports.append(("internal", match.group(2), match.group(2), None)) else: if match.group(3): # The import has a comment with `From: git+https:...`, asks user to pip install from git. url_path = match.group(3) imports.append(("library", match.group(2), url_path, None)) else: imports.append(("library", match.group(2), match.group(2), None)) return imports def copyfunc(func): result = types.FunctionType(func.__code__, func.__globals__, func.__name__, func.__defaults__, func.__closure__) result.__kwdefaults__ = func.__kwdefaults__ return result Y = TypeVar("Y") def _write_generator_to_queue(queue: queue.Queue, func: Callable[..., Iterable[Y]], kwargs: dict) -> int: for i, result in enumerate(func(**kwargs)): queue.put(result) return i def _get_pool_pid(pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool]) -> Set[int]: return {f.pid for f in pool._pool} def iflatmap_unordered( pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool], func: Callable[..., Iterable[Y]], *, kwargs_iterable: Iterable[dict], ) -> Iterable[Y]: initial_pool_pid = _get_pool_pid(pool) pool_changed = False manager_cls = Manager if isinstance(pool, multiprocessing.pool.Pool) else multiprocess.Manager with manager_cls() as manager: queue = manager.Queue() async_results = [ pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable ] try: while True: try: yield queue.get(timeout=0.05) except Empty: if all(async_result.ready() for async_result in async_results) and queue.empty(): break if _get_pool_pid(pool) != initial_pool_pid: pool_changed = True # One of the subprocesses has died. We should not wait forever. raise RuntimeError( "One of the subprocesses has abruptly died during map operation." "To debug the error, disable multiprocessing." ) finally: if not pool_changed: # we get the result in case there's an error to raise [async_result.get(timeout=0.05) for async_result in async_results]
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/filelock.py
# deprecated, please use the `filelock` package instead from filelock import ( # noqa: F401 # imported for backward compatibility TODO: remove in 3.0.0 BaseFileLock, SoftFileLock, Timeout, UnixFileLock, WindowsFileLock, ) from ._filelock import FileLock # noqa: F401 # imported for backward compatibility. TODO: remove in 3.0.0
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/track.py
from collections.abc import Iterator from typing import Iterable class tracked_str(str): origins = {} def set_origin(self, origin: str): if super().__repr__() not in self.origins: self.origins[super().__repr__()] = origin def get_origin(self): return self.origins.get(super().__repr__(), str(self)) def __repr__(self) -> str: if super().__repr__() not in self.origins or self.origins[super().__repr__()] == self: return super().__repr__() else: return f"{str(self)} (origin={self.origins[super().__repr__()]})" class tracked_list(list): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.last_item = None def __iter__(self) -> Iterator: for x in super().__iter__(): self.last_item = x yield x self.last_item = None def __repr__(self) -> str: if self.last_item is None: return super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})" class TrackedIterable(Iterable): def __init__(self) -> None: super().__init__() self.last_item = None def __repr__(self) -> str: if self.last_item is None: super().__repr__() else: return f"{self.__class__.__name__}(current={self.last_item})"
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/experimental.py
"""Contains utilities to flag a feature as "experimental" in datasets.""" import warnings from functools import wraps from typing import Callable def experimental(fn: Callable) -> Callable: """Decorator to flag a feature as experimental. An experimental feature trigger a warning when used as it might be subject to breaking changes in the future. Args: fn (`Callable`): The function to flag as experimental. Returns: `Callable`: The decorated function. Example: ```python >>> from datasets.utils import experimental >>> @experimental ... def my_function(): ... print("Hello world!") >>> my_function() UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future. Hello world! ``` """ @wraps(fn) def _inner_fn(*args, **kwargs): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future."), UserWarning, ) return fn(*args, **kwargs) return _inner_fn
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/tqdm.py
"""Utility helpers to handle progress bars in `datasets`. Example: 1. Use `datasets.utils.tqdm` as you would use `tqdm.tqdm` or `tqdm.auto.tqdm`. 2. To disable progress bars, either use `disable_progress_bars()` helper or set the environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` to 1. 3. To re-enable progress bars, use `enable_progress_bars()`. 4. To check whether progress bars are disabled, use `are_progress_bars_disabled()`. NOTE: Environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` has the priority. Example: ```py from datasets.utils import ( are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm, ) # Disable progress bars globally disable_progress_bars() # Use as normal `tqdm` for _ in tqdm(range(5)): do_something() # Still not showing progress bars, as `disable=False` is overwritten to `True`. for _ in tqdm(range(5), disable=False): do_something() are_progress_bars_disabled() # True # Re-enable progress bars globally enable_progress_bars() # Progress bar will be shown ! for _ in tqdm(range(5)): do_something() ``` """ import warnings from tqdm.auto import tqdm as old_tqdm from ..config import HF_DATASETS_DISABLE_PROGRESS_BARS # `HF_DATASETS_DISABLE_PROGRESS_BARS` is `Optional[bool]` while `_hf_datasets_progress_bars_disabled` # is a `bool`. If `HF_DATASETS_DISABLE_PROGRESS_BARS` is set to True or False, it has priority. # If `HF_DATASETS_DISABLE_PROGRESS_BARS` is None, it means the user have not set the # environment variable and is free to enable/disable progress bars programmatically. # TL;DR: env variable has priority over code. # # By default, progress bars are enabled. _hf_datasets_progress_bars_disabled: bool = HF_DATASETS_DISABLE_PROGRESS_BARS or False def disable_progress_bars() -> None: """ Disable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment variable has been set. Use [`~utils.enable_progress_bars`] to re-enable them. """ if HF_DATASETS_DISABLE_PROGRESS_BARS is False: warnings.warn( "Cannot disable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=0` is set and has" " priority." ) return global _hf_datasets_progress_bars_disabled _hf_datasets_progress_bars_disabled = True def enable_progress_bars() -> None: """ Enable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment variable has been set. Use [`~utils.disable_progress_bars`] to disable them. """ if HF_DATASETS_DISABLE_PROGRESS_BARS is True: warnings.warn( "Cannot enable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=1` is set and has" " priority." ) return global _hf_datasets_progress_bars_disabled _hf_datasets_progress_bars_disabled = False def are_progress_bars_disabled() -> bool: """Return whether progress bars are globally disabled or not. Progress bars used in `datasets` can be enable or disabled globally using [`~utils.enable_progress_bars`] and [`~utils.disable_progress_bars`] or by setting `HF_DATASETS_DISABLE_PROGRESS_BAR` as environment variable. """ global _hf_datasets_progress_bars_disabled return _hf_datasets_progress_bars_disabled class tqdm(old_tqdm): """ Class to override `disable` argument in case progress bars are globally disabled. Taken from https://github.com/tqdm/tqdm/issues/619#issuecomment-619639324. """ def __init__(self, *args, **kwargs): if are_progress_bars_disabled(): kwargs["disable"] = True super().__init__(*args, **kwargs) def __delattr__(self, attr: str) -> None: """Fix for https://github.com/huggingface/datasets/issues/6066""" try: super().__delattr__(attr) except AttributeError: if attr != "_lock": raise # backward compatibility enable_progress_bar = enable_progress_bars disable_progress_bar = disable_progress_bars def is_progress_bar_enabled(): return not are_progress_bars_disabled()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/metadata.py
import textwrap from collections import Counter from itertools import groupby from operator import itemgetter from pathlib import Path from typing import Any, ClassVar, Dict, List, Optional, Tuple, Union import yaml from huggingface_hub import DatasetCardData from ..config import METADATA_CONFIGS_FIELD from ..info import DatasetInfo, DatasetInfosDict from ..utils.logging import get_logger from .deprecation_utils import deprecated logger = get_logger(__name__) class _NoDuplicateSafeLoader(yaml.SafeLoader): def _check_no_duplicates_on_constructed_node(self, node): keys = [self.constructed_objects[key_node] for key_node, _ in node.value] keys = [tuple(key) if isinstance(key, list) else key for key in keys] counter = Counter(keys) duplicate_keys = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}") def construct_mapping(self, node, deep=False): mapping = super().construct_mapping(node, deep=deep) self._check_no_duplicates_on_constructed_node(node) return mapping def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]: full_content = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: sep_idx = full_content[1:].index("---") + 1 yamlblock = "\n".join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(full_content) @deprecated("Use `huggingface_hub.DatasetCardData` instead.") class DatasetMetadata(dict): # class attributes _FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def from_readme(cls, path: Union[Path, str]) -> "DatasetMetadata": """Loads and validates the dataset metadata from its dataset card (README.md) Args: path (:obj:`Path`): Path to the dataset card (its README.md file) Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ with open(path, encoding="utf-8") as readme_file: yaml_string, _ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(yaml_string) else: return cls() def to_readme(self, path: Path): if path.exists(): with open(path, encoding="utf-8") as readme_file: readme_content = readme_file.read() else: readme_content = None updated_readme_content = self._to_readme(readme_content) with open(path, "w", encoding="utf-8") as readme_file: readme_file.write(updated_readme_content) def _to_readme(self, readme_content: Optional[str] = None) -> str: if readme_content is not None: _, content = _split_yaml_from_readme(readme_content) full_content = "---\n" + self.to_yaml_string() + "---\n" + content else: full_content = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def from_yaml_string(cls, string: str) -> "DatasetMetadata": """Loads and validates the dataset metadata from a YAML string Args: string (:obj:`str`): The YAML string Returns: :class:`DatasetMetadata`: The dataset's metadata Raises: :obj:`TypeError`: If the dataset's metadata is invalid """ metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields metadata_dict = { (key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**metadata_dict) def to_yaml_string(self) -> str: return yaml.safe_dump( { (key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() }, sort_keys=False, allow_unicode=True, encoding="utf-8", ).decode("utf-8") class MetadataConfigs(Dict[str, Dict[str, Any]]): """Should be in format {config_name: {**config_params}}.""" FIELD_NAME: ClassVar[str] = METADATA_CONFIGS_FIELD @staticmethod def _raise_if_data_files_field_not_valid(metadata_config: dict): yaml_data_files = metadata_config.get("data_files") if yaml_data_files is not None: yaml_error_message = textwrap.dedent( f""" Expected data_files in YAML to be either a string or a list of strings or a list of dicts with two keys: 'split' and 'path', but got {yaml_data_files} Examples of data_files in YAML: data_files: data.csv data_files: data/*.png data_files: - part0/* - part1/* data_files: - split: train path: train/* - split: test path: test/* data_files: - split: train path: - train/part1/* - train/part2/* - split: test path: test/* """ ) if not isinstance(yaml_data_files, (list, str)): raise ValueError(yaml_error_message) if isinstance(yaml_data_files, list): for yaml_data_files_item in yaml_data_files: if ( not isinstance(yaml_data_files_item, (str, dict)) or isinstance(yaml_data_files_item, dict) and not ( len(yaml_data_files_item) == 2 and "split" in yaml_data_files_item and isinstance(yaml_data_files_item.get("path"), (str, list)) ) ): raise ValueError(yaml_error_message) @classmethod def _from_exported_parquet_files_and_dataset_infos( cls, revision: str, exported_parquet_files: List[Dict[str, Any]], dataset_infos: DatasetInfosDict, ) -> "MetadataConfigs": metadata_configs = { config_name: { "data_files": [ { "split": split_name, "path": [ parquet_file["url"].replace("refs%2Fconvert%2Fparquet", revision) for parquet_file in parquet_files_for_split ], } for split_name, parquet_files_for_split in groupby(parquet_files_for_config, itemgetter("split")) ], "version": str(dataset_infos.get(config_name, DatasetInfo()).version or "0.0.0"), } for config_name, parquet_files_for_config in groupby(exported_parquet_files, itemgetter("config")) } if dataset_infos: # Preserve order of configs and splits metadata_configs = { config_name: { "data_files": [ data_file for split_name in dataset_info.splits for data_file in metadata_configs[config_name]["data_files"] if data_file["split"] == split_name ], "version": metadata_configs[config_name]["version"], } for config_name, dataset_info in dataset_infos.items() } return cls(metadata_configs) @classmethod def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "MetadataConfigs": if dataset_card_data.get(cls.FIELD_NAME): metadata_configs = dataset_card_data[cls.FIELD_NAME] if not isinstance(metadata_configs, list): raise ValueError(f"Expected {cls.FIELD_NAME} to be a list, but got '{metadata_configs}'") for metadata_config in metadata_configs: if "config_name" not in metadata_config: raise ValueError( f"Each config must include `config_name` field with a string name of a config, " f"but got {metadata_config}. " ) cls._raise_if_data_files_field_not_valid(metadata_config) return cls( { config["config_name"]: {param: value for param, value in config.items() if param != "config_name"} for config in metadata_configs } ) return cls() def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None: if self: for metadata_config in self.values(): self._raise_if_data_files_field_not_valid(metadata_config) current_metadata_configs = self.from_dataset_card_data(dataset_card_data) total_metadata_configs = dict(sorted({**current_metadata_configs, **self}.items())) for config_name, config_metadata in total_metadata_configs.items(): config_metadata.pop("config_name", None) dataset_card_data[self.FIELD_NAME] = [ {"config_name": config_name, **config_metadata} for config_name, config_metadata in total_metadata_configs.items() ] def get_default_config_name(self) -> Optional[str]: default_config_name = None for config_name, metadata_config in self.items(): if config_name == "default" or metadata_config.get("default"): if default_config_name is None: default_config_name = config_name else: raise ValueError( f"Dataset has several default configs: '{default_config_name}' and '{config_name}'." ) return default_config_name # DEPRECATED - just here to support old versions of evaluate like 0.2.2 # To support new tasks on the Hugging Face Hub, please open a PR for this file: # https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/pipelines.ts known_task_ids = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") args = ap.parse_args() readme_filepath = Path(args.readme_filepath) dataset_metadata = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/__init__.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa # Lint as: python3 from . import tqdm as _tqdm # _tqdm is the module from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental from .tqdm import ( disable_progress_bars, enable_progress_bars, are_progress_bars_disabled, tqdm, )
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/logging.py
# Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities. """ import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from .tqdm import ( # noqa: F401 # imported for backward compatibility disable_progress_bar, enable_progress_bar, is_progress_bar_enabled, tqdm, ) log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING def _get_default_logging_level(): """ If DATASETS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to ``_default_log_level`` """ env_level_str = os.getenv("DATASETS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(logging.StreamHandler()) library_root_logger.setLevel(_get_default_logging_level()) def _reset_library_root_logger() -> None: library_root_logger = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def get_logger(name: Optional[str] = None) -> logging.Logger: """Return a logger with the specified name. This function can be used in dataset scripts. """ if name is None: name = _get_library_name() return logging.getLogger(name) def get_verbosity() -> int: """Return the current level for the HuggingFace datasets library's root logger. Returns: Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. <Tip> HuggingFace datasets library has following logging levels: - `datasets.logging.CRITICAL`, `datasets.logging.FATAL` - `datasets.logging.ERROR` - `datasets.logging.WARNING`, `datasets.logging.WARN` - `datasets.logging.INFO` - `datasets.logging.DEBUG` </Tip> """ return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """Set the level for the Hugging Face Datasets library's root logger. Args: verbosity: Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. """ _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the level for the Hugging Face datasets library's root logger to `INFO`. This will display most of the logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.INFO)`. """ return set_verbosity(INFO) def set_verbosity_warning(): """Set the level for the Hugging Face datasets library's root logger to `WARNING`. This will display only the warning and errors logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.WARNING)`. """ return set_verbosity(WARNING) def set_verbosity_debug(): """Set the level for the Hugging Face datasets library's root logger to `DEBUG`. This will display all the logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.DEBUG)`. """ return set_verbosity(DEBUG) def set_verbosity_error(): """Set the level for the Hugging Face datasets library's root logger to `ERROR`. This will display only the errors logging information and tqdm bars. Shortcut to `datasets.logging.set_verbosity(datasets.logging.ERROR)`. """ return set_verbosity(ERROR) def disable_propagation() -> None: """Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _get_library_root_logger().propagate = False def enable_propagation() -> None: """Enable propagation of the library log outputs. Please disable the Hugging Face datasets library's default handler to prevent double logging if the root logger has been configured. """ _get_library_root_logger().propagate = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/hub.py
import time from functools import partial from huggingface_hub import HfApi, hf_hub_url from huggingface_hub.hf_api import RepoFile from packaging import version from requests import ConnectionError, HTTPError from .. import config from . import logging logger = logging.get_logger(__name__) # Retry `preupload_lfs_files` in `huggingface_hub<0.20.0` on the "500 (Internal Server Error)" and "503 (Service Unavailable)" HTTP errors if config.HF_HUB_VERSION.release < version.parse("0.20.0").release: def preupload_lfs_files(hf_api: HfApi, **kwargs): max_retries = 5 base_wait_time = 1 max_wait_time = 8 retry = 0 while True: try: hf_api.preupload_lfs_files(**kwargs) except (RuntimeError, HTTPError, ConnectionError) as err: if isinstance(err, RuntimeError): if isinstance(err.__cause__, (HTTPError, ConnectionError)): err = err.__cause__ else: raise err if retry >= max_retries or err.response and err.response.status_code not in [500, 503]: raise err else: sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff logger.info( f"{hf_api.preupload_lfs_files} timed out, retrying in {sleep_time}s... [{retry/max_retries}]" ) time.sleep(sleep_time) retry += 1 else: break else: def preupload_lfs_files(hf_api: HfApi, **kwargs): hf_api.preupload_lfs_files(**kwargs) # `list_files_info` is deprecated in favor of `list_repo_tree` in `huggingface_hub>=0.20.0` if config.HF_HUB_VERSION.release < version.parse("0.20.0").release: def list_files_info(hf_api: HfApi, **kwargs): yield from hf_api.list_files_info(**kwargs) else: def list_files_info(hf_api: HfApi, **kwargs): kwargs = {**kwargs, "recursive": True} for repo_path in hf_api.list_repo_tree(**kwargs): if isinstance(repo_path, RepoFile): yield repo_path # bakckward compatibility hf_hub_url = partial(hf_hub_url, repo_type="dataset")
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/sharding.py
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/_dill.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extends `dill` to support pickling more types and produce more consistent dumps.""" import os import sys from io import BytesIO from types import CodeType, FunctionType import dill from packaging import version from .. import config class Pickler(dill.Pickler): dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) _legacy_no_dict_keys_sorting = False def save(self, obj, save_persistent_id=True): obj_type = type(obj) if obj_type not in self.dispatch: if "regex" in sys.modules: import regex # type: ignore if obj_type is regex.Pattern: pklregister(obj_type)(_save_regexPattern) if "spacy" in sys.modules: import spacy # type: ignore if issubclass(obj_type, spacy.Language): pklregister(obj_type)(_save_spacyLanguage) if "tiktoken" in sys.modules: import tiktoken # type: ignore if obj_type is tiktoken.Encoding: pklregister(obj_type)(_save_tiktokenEncoding) if "torch" in sys.modules: import torch # type: ignore if issubclass(obj_type, torch.Tensor): pklregister(obj_type)(_save_torchTensor) if obj_type is torch.Generator: pklregister(obj_type)(_save_torchGenerator) # Unwrap `torch.compile`-ed modules if issubclass(obj_type, torch.nn.Module): obj = getattr(obj, "_orig_mod", obj) if "transformers" in sys.modules: import transformers # type: ignore if issubclass(obj_type, transformers.PreTrainedTokenizerBase): pklregister(obj_type)(_save_transformersPreTrainedTokenizerBase) # Unwrap `torch.compile`-ed functions if obj_type is FunctionType: obj = getattr(obj, "_torchdynamo_orig_callable", obj) dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) def _batch_setitems(self, items): if self._legacy_no_dict_keys_sorting: return super()._batch_setitems(items) # Ignore the order of keys in a dict try: # Faster, but fails for unorderable elements items = sorted(items) except Exception: # TypeError, decimal.InvalidOperation, etc. from datasets.fingerprint import Hasher items = sorted(items, key=lambda x: Hasher.hash(x[0])) dill.Pickler._batch_setitems(self, items) def memoize(self, obj): # Don't memoize strings since two identical strings can have different Python ids if type(obj) is not str: # noqa: E721 dill.Pickler.memoize(self, obj) def pklregister(t): """Register a custom reducer for the type.""" def proxy(func): Pickler.dispatch[t] = func return func return proxy def dump(obj, file): """Pickle an object to a file.""" Pickler(file, recurse=True).dump(obj) def dumps(obj): """Pickle an object to a string.""" file = BytesIO() dump(obj, file) return file.getvalue() if config.DILL_VERSION < version.parse("0.3.6"): def log(pickler, msg): dill._dill.log.info(msg) elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]: def log(pickler, msg): dill._dill.logger.trace(pickler, msg) @pklregister(set) def _save_set(pickler, obj): log(pickler, f"Se: {obj}") try: # Faster, but fails for unorderable elements args = (sorted(obj),) except Exception: # TypeError, decimal.InvalidOperation, etc. from datasets.fingerprint import Hasher args = (sorted(obj, key=Hasher.hash),) pickler.save_reduce(set, args, obj=obj) log(pickler, "# Se") def _save_regexPattern(pickler, obj): import regex # type: ignore log(pickler, f"Re: {obj}") args = (obj.pattern, obj.flags) pickler.save_reduce(regex.compile, args, obj=obj) log(pickler, "# Re") def _save_tiktokenEncoding(pickler, obj): import tiktoken # type: ignore log(pickler, f"Enc: {obj}") args = (obj.name, obj._pat_str, obj._mergeable_ranks, obj._special_tokens) pickler.save_reduce(tiktoken.Encoding, args, obj=obj) log(pickler, "# Enc") def _save_torchTensor(pickler, obj): import torch # type: ignore # `torch.from_numpy` is not picklable in `torch>=1.11.0` def create_torchTensor(np_array): return torch.from_numpy(np_array) log(pickler, f"To: {obj}") args = (obj.detach().cpu().numpy(),) pickler.save_reduce(create_torchTensor, args, obj=obj) log(pickler, "# To") def _save_torchGenerator(pickler, obj): import torch # type: ignore def create_torchGenerator(state): generator = torch.Generator() generator.set_state(state) return generator log(pickler, f"Ge: {obj}") args = (obj.get_state(),) pickler.save_reduce(create_torchGenerator, args, obj=obj) log(pickler, "# Ge") def _save_spacyLanguage(pickler, obj): import spacy # type: ignore def create_spacyLanguage(config, bytes): lang_cls = spacy.util.get_lang_class(config["nlp"]["lang"]) lang_inst = lang_cls.from_config(config) return lang_inst.from_bytes(bytes) log(pickler, f"Sp: {obj}") args = (obj.config, obj.to_bytes()) pickler.save_reduce(create_spacyLanguage, args, obj=obj) log(pickler, "# Sp") def _save_transformersPreTrainedTokenizerBase(pickler, obj): log(pickler, f"Tok: {obj}") # Ignore the `cache` attribute state = obj.__dict__ if "cache" in state and isinstance(state["cache"], dict): state["cache"] = {} pickler.save_reduce(type(obj), (), state=state, obj=obj) log(pickler, "# Tok") if config.DILL_VERSION < version.parse("0.3.6"): @pklregister(CodeType) def _save_code(pickler, obj): """ From dill._dill.save_code This is a modified version that removes the origin (filename + line no.) of functions created in notebooks or shells for example. """ dill._dill.log.info(f"Co: {obj}") # The filename of a function is the .py file where it is defined. # Filenames of functions created in notebooks or shells start with '<' # ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell # Filenames of functions created in ipykernel the filename # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" # Moreover lambda functions have a special name: '<lambda>' # ex: (lambda x: x).__code__.co_name == "<lambda>" # True # # For the hashing mechanism we ignore where the function has been defined # More specifically: # - we ignore the filename of special functions (filename starts with '<') # - we always ignore the line number # - we only use the base name of the file instead of the whole path, # to be robust in case a script is moved for example. # # Only those two lines are different from the original implementation: co_filename = ( "" if obj.co_filename.startswith("<") or ( len(obj.co_filename.split(os.path.sep)) > 1 and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") ) or obj.co_name == "<lambda>" else os.path.basename(obj.co_filename) ) co_firstlineno = 1 # The rest is the same as in the original dill implementation if dill._dill.PY3: if hasattr(obj, "co_posonlyargcount"): args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: args = ( obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: args = ( obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, obj.co_name, co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) pickler.save_reduce(CodeType, args, obj=obj) dill._dill.log.info("# Co") return elif config.DILL_VERSION.release[:3] in [version.parse("0.3.6").release, version.parse("0.3.7").release]: # From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1104 @pklregister(CodeType) def save_code(pickler, obj): dill._dill.logger.trace(pickler, "Co: %s", obj) ############################################################################################################ # Modification here for huggingface/datasets # The filename of a function is the .py file where it is defined. # Filenames of functions created in notebooks or shells start with '<' # ex: <ipython-input-13-9ed2afe61d25> for ipython, and <stdin> for shell # Filenames of functions created in ipykernel the filename # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" # Moreover lambda functions have a special name: '<lambda>' # ex: (lambda x: x).__code__.co_name == "<lambda>" # True # # For the hashing mechanism we ignore where the function has been defined # More specifically: # - we ignore the filename of special functions (filename starts with '<') # - we always ignore the line number # - we only use the base name of the file instead of the whole path, # to be robust in case a script is moved for example. # # Only those two lines are different from the original implementation: co_filename = ( "" if obj.co_filename.startswith("<") or ( len(obj.co_filename.split(os.path.sep)) > 1 and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") ) or obj.co_name == "<lambda>" else os.path.basename(obj.co_filename) ) co_firstlineno = 1 # The rest is the same as in the original dill implementation, except for the replacements: # - obj.co_filename => co_filename # - obj.co_firstlineno => co_firstlineno ############################################################################################################ if hasattr(obj, "co_endlinetable"): # python 3.11a (20 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, obj.co_qualname, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_endlinetable, obj.co_columntable, obj.co_exceptiontable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_exceptiontable"): # python 3.11 (18 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, obj.co_qualname, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_exceptiontable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_linetable"): # python 3.10 (16 args) args = ( obj.co_lnotab, # for < python 3.10 [not counted in args] obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_linetable, obj.co_freevars, obj.co_cellvars, ) elif hasattr(obj, "co_posonlyargcount"): # python 3.8 (16 args) args = ( obj.co_argcount, obj.co_posonlyargcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) else: # python 3.7 (15 args) args = ( obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames, co_filename, # Modification for huggingface/datasets ############################################ obj.co_name, co_firstlineno, # Modification for huggingface/datasets ######################################### obj.co_lnotab, obj.co_freevars, obj.co_cellvars, ) pickler.save_reduce(dill._dill._create_code, args, obj=obj) dill._dill.logger.trace(pickler, "# Co") return
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/version.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Version utils.""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _VERSION_REG = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class Version: """Dataset version `MAJOR.MINOR.PATCH`. Args: version_str (`str`): The dataset version. description (`str`): A description of what is new in this version. major (`str`): minor (`str`): patch (`str`): Example: ```py >>> VERSION = datasets.Version("1.0.0") ``` """ version_str: str description: Optional[str] = None major: Optional[Union[str, int]] = None minor: Optional[Union[str, int]] = None patch: Optional[Union[str, int]] = None def __post_init__(self): self.major, self.minor, self.patch = _str_to_version_tuple(self.version_str) def __repr__(self): return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def tuple(self): return self.major, self.minor, self.patch def _validate_operand(self, other): if isinstance(other, str): return Version(other) elif isinstance(other, Version): return other raise TypeError(f"{other} (type {type(other)}) cannot be compared to version.") def __eq__(self, other): try: other = self._validate_operand(other) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self, other): other = self._validate_operand(other) return self.tuple < other.tuple def __hash__(self): return hash(_version_tuple_to_str(self.tuple)) @classmethod def from_dict(cls, dic): field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _to_yaml_string(self) -> str: return self.version_str def _str_to_version_tuple(version_str): """Return the tuple (major, minor, patch) version extracted from the str.""" res = _VERSION_REG.match(version_str) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.") return tuple(int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")]) def _version_tuple_to_str(version_tuple): """Return the str version from the version tuple (major, minor, patch).""" return ".".join(str(v) for v in version_tuple)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/_datasets_server.py
from typing import Any, Dict, List, Optional, Union from .. import config from ..exceptions import DatasetsError from .file_utils import ( get_authentication_headers_for_url, http_get, ) from .logging import get_logger logger = get_logger(__name__) class DatasetsServerError(DatasetsError): """Dataset-server error. Raised when trying to use the Datasets-server HTTP API and when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. - unavailable /parquet or /info responses """ def get_exported_parquet_files(dataset: str, revision: str, token: Optional[Union[str, bool]]) -> List[Dict[str, Any]]: """ Get the dataset exported parquet files Docs: https://huggingface.co/docs/datasets-server/parquet """ datasets_server_parquet_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/parquet?dataset=" try: parquet_data_files_response = http_get( url=datasets_server_parquet_url + dataset, temp_file=None, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, max_retries=3, ) parquet_data_files_response.raise_for_status() if "X-Revision" in parquet_data_files_response.headers: if parquet_data_files_response.headers["X-Revision"] == revision or revision is None: parquet_data_files_response_json = parquet_data_files_response.json() if ( parquet_data_files_response_json.get("partial") is False and not parquet_data_files_response_json.get("pending", True) and not parquet_data_files_response_json.get("failed", True) and "parquet_files" in parquet_data_files_response_json ): return parquet_data_files_response_json["parquet_files"] else: logger.debug(f"Parquet export for {dataset} is not completely ready yet.") else: logger.debug( f"Parquet export for {dataset} is available but outdated (revision='{parquet_data_files_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the datasets-server and consider the parquet export doesn't exist logger.debug(f"No parquet export for {dataset} available ({type(e).__name__}: {e})") raise DatasetsServerError("No exported Parquet files available.") def get_exported_dataset_infos( dataset: str, revision: str, token: Optional[Union[str, bool]] ) -> Dict[str, Dict[str, Any]]: """ Get the dataset information, can be useful to get e.g. the dataset features. Docs: https://huggingface.co/docs/datasets-server/info """ datasets_server_info_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/info?dataset=" try: info_response = http_get( url=datasets_server_info_url + dataset, temp_file=None, headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), timeout=100.0, max_retries=3, ) info_response.raise_for_status() if "X-Revision" in info_response.headers: if info_response.headers["X-Revision"] == revision or revision is None: info_response = info_response.json() if ( info_response.get("partial") is False and not info_response.get("pending", True) and not info_response.get("failed", True) and "dataset_info" in info_response ): return info_response["dataset_info"] else: logger.debug(f"Dataset info for {dataset} is not completely ready yet.") else: logger.debug( f"Dataset info for {dataset} is available but outdated (revision='{info_response.headers['X-Revision']}')" ) except Exception as e: # noqa catch any exception of the datasets-server and consider the dataset info doesn't exist logger.debug(f"No dataset info for {dataset} available ({type(e).__name__}: {e})") raise DatasetsServerError("No exported dataset infos available.")
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/patching.py
from importlib import import_module from .logging import get_logger logger = get_logger(__name__) class _PatchedModuleObj: """Set all the modules components as attributes of the _PatchedModuleObj object.""" def __init__(self, module, attrs=None): attrs = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__"): setattr(self, key, getattr(module, key)) self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module class patch_submodule: """ Patch a submodule attribute of an object, by keeping all other submodules intact at all levels. Example:: >>> import importlib >>> from datasets.load import dataset_module_factory >>> from datasets.streaming import patch_submodule, xjoin >>> >>> dataset_module = dataset_module_factory("snli") >>> snli_module = importlib.import_module(dataset_module.module_path) >>> patcher = patch_submodule(snli_module, "os.path.join", xjoin) >>> patcher.start() >>> assert snli_module.os.path.join is xjoin """ _active_patches = [] def __init__(self, obj, target: str, new, attrs=None): self.obj = obj self.target = target self.new = new self.key = target.split(".")[0] self.original = {} self.attrs = attrs or [] def __enter__(self): *submodules, target_attr = self.target.split(".") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(submodules)): try: submodule = import_module(".".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): obj_attr = getattr(self.obj, attr) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule ): self.original[attr] = obj_attr # patch at top level setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs)) patched = getattr(self.obj, attr) # construct lower levels patches for key in submodules[i + 1 :]: setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs)) patched = getattr(patched, key) # finally set the target attribute setattr(patched, target_attr, self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: attr_value = getattr(import_module(".".join(submodules)), target_attr) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, attr) is attr_value: self.original[attr] = getattr(self.obj, attr) setattr(self.obj, attr, self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" self.original[target_attr] = globals()["__builtins__"][target_attr] setattr(self.obj, target_attr, self.new) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") def __exit__(self, *exc_info): for attr in list(self.original): setattr(self.obj, attr, self.original.pop(attr)) def start(self): """Activate a patch.""" self.__enter__() self._active_patches.append(self) def stop(self): """Stop an active patch.""" try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/info_utils.py
import enum import os from typing import Optional from huggingface_hub.utils import insecure_hashlib from .. import config from .logging import get_logger logger = get_logger(__name__) class VerificationMode(enum.Enum): """`Enum` that specifies which verification checks to run. The default mode is `BASIC_CHECKS`, which will perform only rudimentary checks to avoid slowdowns when generating/downloading a dataset for the first time. The verification modes: | | Verification checks | |---------------------------|------------------------------------------------------------------------------ | | `ALL_CHECKS` | Split checks, uniqueness of the keys yielded in case of the GeneratorBuilder | | | and the validity (number of files, checksums, etc.) of downloaded files | | `BASIC_CHECKS` (default) | Same as `ALL_CHECKS` but without checking downloaded files | | `NO_CHECKS` | None | """ ALL_CHECKS = "all_checks" BASIC_CHECKS = "basic_checks" NO_CHECKS = "no_checks" class ChecksumVerificationException(Exception): """Exceptions during checksums verifications of downloaded files.""" class UnexpectedDownloadedFile(ChecksumVerificationException): """Some downloaded files were not expected.""" class ExpectedMoreDownloadedFiles(ChecksumVerificationException): """Some files were supposed to be downloaded but were not.""" class NonMatchingChecksumError(ChecksumVerificationException): """The downloaded file checksum don't match the expected checksum.""" def verify_checksums(expected_checksums: Optional[dict], recorded_checksums: dict, verification_name=None): if expected_checksums is None: logger.info("Unable to verify checksums.") return if len(set(expected_checksums) - set(recorded_checksums)) > 0: raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums))) if len(set(recorded_checksums) - set(expected_checksums)) > 0: raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums))) bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] for_verification_name = " for " + verification_name if verification_name is not None else "" if len(bad_urls) > 0: raise NonMatchingChecksumError( f"Checksums didn't match{for_verification_name}:\n" f"{bad_urls}\n" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name) class SplitsVerificationException(Exception): """Exceptions during splis verifications""" class UnexpectedSplits(SplitsVerificationException): """The expected splits of the downloaded file is missing.""" class ExpectedMoreSplits(SplitsVerificationException): """Some recorded splits are missing.""" class NonMatchingSplitsSizesError(SplitsVerificationException): """The splits sizes don't match the expected splits sizes.""" def verify_splits(expected_splits: Optional[dict], recorded_splits: dict): if expected_splits is None: logger.info("Unable to verify splits sizes.") return if len(set(expected_splits) - set(recorded_splits)) > 0: raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) if len(set(recorded_splits) - set(expected_splits)) > 0: raise UnexpectedSplits(str(set(recorded_splits) - set(expected_splits))) bad_splits = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(bad_splits) > 0: raise NonMatchingSplitsSizesError(str(bad_splits)) logger.info("All the splits matched successfully.") def get_size_checksum_dict(path: str, record_checksum: bool = True) -> dict: """Compute the file size and the sha256 checksum of a file""" if record_checksum: m = insecure_hashlib.sha256() with open(path, "rb") as f: for chunk in iter(lambda: f.read(1 << 20), b""): m.update(chunk) checksum = m.hexdigest() else: checksum = None return {"num_bytes": os.path.getsize(path), "checksum": checksum} def is_small_dataset(dataset_size): """Check if `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. Args: dataset_size (int): Dataset size in bytes. Returns: bool: Whether `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. """ if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/utils/file_utils.py
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import copy import io import json import multiprocessing import os import posixpath import re import shutil import sys import time import urllib import warnings from contextlib import closing, contextmanager from functools import partial from pathlib import Path from typing import Optional, TypeVar, Union from unittest.mock import patch from urllib.parse import urljoin, urlparse import fsspec import huggingface_hub import requests from fsspec.core import strip_protocol from fsspec.utils import can_be_local from huggingface_hub.utils import insecure_hashlib from packaging import version from .. import __version__, config from ..download.download_config import DownloadConfig from . import _tqdm, logging from . import tqdm as hf_tqdm from ._filelock import FileLock from .extract import ExtractManager logger = logging.get_logger(__name__) # pylint: disable=invalid-name INCOMPLETE_SUFFIX = ".incomplete" T = TypeVar("T", str, Path) def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str: """ Add hf_modules_cache to the python path. By default hf_modules_cache='~/.cache/huggingface/modules'. It can also be set with the environment variable HF_MODULES_CACHE. This is used to add modules such as `datasets_modules` """ hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE hf_modules_cache = str(hf_modules_cache) if hf_modules_cache not in sys.path: sys.path.append(hf_modules_cache) os.makedirs(hf_modules_cache, exist_ok=True) if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")): with open(os.path.join(hf_modules_cache, "__init__.py"), "w"): pass return hf_modules_cache def is_remote_url(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme != "" and not os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_local_path(url_or_filename: str) -> bool: # On unix the scheme of a local path is empty (for both absolute and relative), # while on windows the scheme is the drive name (ex: "c") for absolute paths. # for details on the windows behavior, see https://bugs.python.org/issue42215 return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_relative_path(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename) def relative_to_absolute_path(path: T) -> T: """Convert relative path to absolute path.""" abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path)))) return Path(abs_path_str) if isinstance(path, Path) else abs_path_str def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str: if dataset: endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX else: endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX return "/".join((endpoint, identifier, filename)) def head_hf_s3( identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0 ) -> Union[requests.Response, Exception]: return http_head( hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset), max_retries=max_retries, ) def hf_github_url(path: str, name: str, dataset=True, revision: Optional[str] = None) -> str: default_revision = "main" if version.parse(__version__).is_devrelease else __version__ revision = revision or default_revision if dataset: return config.REPO_DATASETS_URL.format(revision=revision, path=path, name=name) else: return config.REPO_METRICS_URL.format(revision=revision, path=path, name=name) def url_or_path_join(base_name: str, *pathnames: str) -> str: if is_remote_url(base_name): return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames)) else: return Path(base_name, *pathnames).as_posix() def url_or_path_parent(url_or_path: str) -> str: if is_remote_url(url_or_path): return url_or_path[: url_or_path.rindex("/")] else: return os.path.dirname(url_or_path) def hash_url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = insecure_hashlib.sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = insecure_hashlib.sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".py"): filename += ".py" return filename def cached_path( url_or_filename, download_config=None, **download_kwargs, ) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk ValueError: if it couldn't parse the url or filename correctly requests.exceptions.ConnectionError: in case of internet connection issue """ if download_config is None: download_config = DownloadConfig(**download_kwargs) cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) # Convert fsspec URL in the format "file://local/path" to "local/path" if can_be_local(url_or_filename): url_or_filename = strip_protocol(url_or_filename) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=download_config.force_download, proxies=download_config.proxies, resume_download=download_config.resume_download, user_agent=download_config.user_agent, local_files_only=download_config.local_files_only, use_etag=download_config.use_etag, max_retries=download_config.max_retries, token=download_config.token, ignore_url_params=download_config.ignore_url_params, storage_options=download_config.storage_options, download_desc=download_config.download_desc, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif is_local_path(url_or_filename): # File, but it doesn't exist. raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") else: # Something unknown raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path") if output_path is None: return output_path if download_config.extract_compressed_file: output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( output_path, force_extract=download_config.force_extract ) return relative_to_absolute_path(output_path) def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str: ua = f"datasets/{__version__}" ua += f"; python/{config.PY_VERSION}" ua += f"; huggingface_hub/{huggingface_hub.__version__}" ua += f"; pyarrow/{config.PYARROW_VERSION}" if config.TORCH_AVAILABLE: ua += f"; torch/{config.TORCH_VERSION}" if config.TF_AVAILABLE: ua += f"; tensorflow/{config.TF_VERSION}" if config.JAX_AVAILABLE: ua += f"; jax/{config.JAX_VERSION}" if config.BEAM_AVAILABLE: ua += f"; apache_beam/{config.BEAM_VERSION}" if isinstance(user_agent, dict): ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}" elif isinstance(user_agent, str): ua += "; " + user_agent return ua def get_authentication_headers_for_url( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> dict: """Handle the HF authentication""" if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if url.startswith(config.HF_ENDPOINT): return huggingface_hub.utils.build_hf_headers( token=token, library_name="datasets", library_version=__version__ ) else: return {} class OfflineModeIsEnabled(ConnectionError): pass def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None): """Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_DATASETS_OFFLINE is True.""" if config.HF_DATASETS_OFFLINE: raise OfflineModeIsEnabled( "Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg) ) def _request_with_retry( method: str, url: str, max_retries: int = 0, base_wait_time: float = 0.5, max_wait_time: float = 2, timeout: float = 10.0, **params, ) -> requests.Response: """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff. Note that if the environment variable HF_DATASETS_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised. Args: method (str): HTTP method, such as 'GET' or 'HEAD'. url (str): The URL of the resource to fetch. max_retries (int): Maximum number of retries, defaults to 0 (no retries). base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between retries then grows exponentially, capped by max_wait_time. max_wait_time (float): Maximum amount of time between two retries, in seconds. **params (additional keyword arguments): Params to pass to :obj:`requests.request`. """ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") tries, success = 0, False while not success: tries += 1 try: response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) success = True except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err: if tries > max_retries: raise err else: logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]") sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff time.sleep(sleep_time) return response def fsspec_head(url, storage_options=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options) if len(paths) > 1: raise ValueError(f"HEAD can be called with at most one path but was called with {paths}") return fs.info(paths[0]) def stack_multiprocessing_download_progress_bars(): # Stack downloads progress bars automatically using HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS=1 # We use environment variables since the download may happen in a subprocess return patch.dict(os.environ, {"HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS": "1"}) class TqdmCallback(fsspec.callbacks.TqdmCallback): def __init__(self, tqdm_kwargs=None, *args, **kwargs): super().__init__(tqdm_kwargs, *args, **kwargs) self._tqdm = _tqdm # replace tqdm.tqdm by datasets.tqdm.tqdm def fsspec_get(url, temp_file, storage_options=None, desc=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, _, paths = fsspec.get_fs_token_paths(url, storage_options=storage_options) if len(paths) > 1: raise ValueError(f"GET can be called with at most one path but was called with {paths}") callback = TqdmCallback( tqdm_kwargs={ "desc": desc or "Downloading", "unit": "B", "unit_scale": True, "position": multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" and multiprocessing.current_process()._identity else None, } ) fs.get_file(paths[0], temp_file.name, callback=callback) def ftp_head(url, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: with closing(urllib.request.urlopen(url, timeout=timeout)) as r: r.read(1) except Exception: return False return True def ftp_get(url, temp_file, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: logger.info(f"Getting through FTP {url} into {temp_file.name}") with closing(urllib.request.urlopen(url, timeout=timeout)) as r: shutil.copyfileobj(r, temp_file) except urllib.error.URLError as e: raise ConnectionError(e) from None def http_get( url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=100.0, max_retries=0, desc=None ) -> Optional[requests.Response]: headers = dict(headers) if headers is not None else {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) if resume_size > 0: headers["Range"] = f"bytes={resume_size:d}-" response = _request_with_retry( method="GET", url=url, stream=True, proxies=proxies, headers=headers, cookies=cookies, max_retries=max_retries, timeout=timeout, ) if temp_file is None: return response if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None with hf_tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc=desc or "Downloading", position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" and multiprocessing.current_process()._identity else None, ) as progress: for chunk in response.iter_content(chunk_size=1024): progress.update(len(chunk)) temp_file.write(chunk) def http_head( url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0 ) -> requests.Response: headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) response = _request_with_retry( method="HEAD", url=url, proxies=proxies, headers=headers, cookies=cookies, allow_redirects=allow_redirects, timeout=timeout, max_retries=max_retries, ) return response def request_etag( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> Optional[str]: if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if urlparse(url).scheme not in ("http", "https"): return None headers = get_authentication_headers_for_url(url, token=token) response = http_head(url, headers=headers, max_retries=3) response.raise_for_status() etag = response.headers.get("ETag") if response.ok else None return etag def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=100, resume_download=False, user_agent=None, local_files_only=False, use_etag=True, max_retries=0, token=None, use_auth_token="deprecated", ignore_url_params=False, storage_options=None, download_desc=None, ) -> str: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if cache_dir is None: cache_dir = config.HF_DATASETS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) if ignore_url_params: # strip all query parameters and #fragments from the URL cached_url = urljoin(url, urlparse(url).path) else: cached_url = url # additional parameters may be added to the given URL connected = False response = None cookies = None etag = None head_error = None scheme = None # Try a first time to file the file on the local file system without eTag (None) # if we don't ask for 'force_download' then we spare a request filename = hash_url_to_filename(cached_url, etag=None) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download and not use_etag: return cache_path # Prepare headers for authentication headers = get_authentication_headers_for_url(url, token=token) if user_agent is not None: headers["user-agent"] = user_agent # We don't have the file locally or we need an eTag if not local_files_only: scheme = urlparse(url).scheme if scheme == "ftp": connected = ftp_head(url) elif scheme not in ("http", "https"): response = fsspec_head(url, storage_options=storage_options) # s3fs uses "ETag", gcsfs uses "etag" etag = (response.get("ETag", None) or response.get("etag", None)) if use_etag else None connected = True try: response = http_head( url, allow_redirects=True, proxies=proxies, timeout=etag_timeout, max_retries=max_retries, headers=headers, ) if response.status_code == 200: # ok etag = response.headers.get("ETag") if use_etag else None for k, v in response.cookies.items(): # In some edge cases, we need to get a confirmation token if k.startswith("download_warning") and "drive.google.com" in url: url += "&confirm=" + v cookies = response.cookies connected = True # Fix Google Drive URL to avoid Virus scan warning if "drive.google.com" in url and "confirm=" not in url: url += "&confirm=t" # In some edge cases, head request returns 400 but the connection is actually ok elif ( (response.status_code == 400 and "firebasestorage.googleapis.com" in url) or (response.status_code == 405 and "drive.google.com" in url) or ( response.status_code == 403 and ( re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url) ) ) or (response.status_code == 403 and "ndownloader.figstatic.com" in url) ): connected = True logger.info(f"Couldn't get ETag version for url {url}") elif response.status_code == 401 and config.HF_ENDPOINT in url and token is None: raise ConnectionError( f"Unauthorized for URL {url}. Please use the parameter `token=True` after logging in with `huggingface-cli login`" ) except (OSError, requests.exceptions.Timeout) as e: # not connected head_error = e pass # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if not connected: if os.path.exists(cache_path) and not force_download: return cache_path if local_files_only: raise FileNotFoundError( f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" " disabled. To enable file online look-ups, set 'local_files_only' to False." ) elif response is not None and response.status_code == 404: raise FileNotFoundError(f"Couldn't find file at {url}") _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") if head_error is not None: raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") elif response is not None: raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") else: raise ConnectionError(f"Couldn't reach {url}") # Try a second time filename = hash_url_to_filename(cached_url, etag) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download: return cache_path # From now on, connected is True. # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): # Retry in case previously locked processes just enter after the precedent process releases the lock if os.path.exists(cache_path) and not force_download: return cache_path incomplete_path = cache_path + ".incomplete" @contextmanager def temp_file_manager(mode="w+b"): with open(incomplete_path, mode) as f: yield f resume_size = 0 if resume_download: temp_file_manager = partial(temp_file_manager, mode="a+b") if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size # Download to temporary file, then copy to cache path once finished. # Otherwise, you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}") # GET file object if scheme == "ftp": ftp_get(url, temp_file) elif scheme not in ("http", "https"): fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc) else: http_get( url, temp_file=temp_file, proxies=proxies, resume_size=resume_size, headers=headers, cookies=cookies, max_retries=max_retries, desc=download_desc, ) logger.info(f"storing {url} in cache at {cache_path}") shutil.move(temp_file.name, cache_path) umask = os.umask(0o666) os.umask(umask) os.chmod(cache_path, 0o666 & ~umask) logger.info(f"creating metadata file for {cache_path}") meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w", encoding="utf-8") as meta_file: json.dump(meta, meta_file) return cache_path def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr) return fn return docstring_decorator def estimate_dataset_size(paths): return sum(path.stat().st_size for path in paths) def readline(f: io.RawIOBase): # From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525 res = bytearray() while True: b = f.read(1) if not b: break res += b if res.endswith(b"\n"): break return bytes(res)
0
hf_public_repos/datasets/src/datasets/utils
hf_public_repos/datasets/src/datasets/utils/resources/creators.json
{ "language": [ "found", "crowdsourced", "expert-generated", "machine-generated", "other" ], "annotations": [ "found", "crowdsourced", "expert-generated", "machine-generated", "no-annotation", "other" ] }
0
hf_public_repos/datasets/src/datasets/utils
hf_public_repos/datasets/src/datasets/utils/resources/size_categories.json
[ "unknown", "n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "1M<n<10M", "10M<n<100M", "100M<n<1B", "1B<n<10B", "10B<n<100B", "100B<n<1T", "n>1T" ]
0
hf_public_repos/datasets/src/datasets/utils
hf_public_repos/datasets/src/datasets/utils/resources/languages.json
{ "code": "Programming language (C++, Java, Javascript, Python, etc.)", "aa": "Afar", "aaa": "Ghotuo", "aab": "Alumu-Tesu", "aac": "Ari", "aad": "Amal", "aae": "Arbëreshë Albanian", "aaf": "Aranadan", "aag": "Ambrak", "aah": "Abu' Arapesh", "aai": "Arifama-Miniafia", "aak": "Ankave", "aal": "Afade", "aan": "Anambé", "aao": "Algerian Saharan Arabic", "aap": "Pará Arára", "aaq": "Eastern Abnaki", "aas": "Aasáx", "aat": "Arvanitika Albanian", "aau": "Abau", "aav": "Austro-Asiatic languages", "aaw": "Solong", "aax": "Mandobo Atas", "aaz": "Amarasi", "ab": "Abkhazian", "aba": "Abé", "abb": "Bankon", "abc": "Ambala Ayta", "abd": "Manide", "abe": "Western Abnaki", "abf": "Abai Sungai", "abg": "Abaga", "abh": "Tajiki Arabic", "abi": "Abidji", "abj": "Aka-Bea", "abl": "Lampung Nyo", "abm": "Abanyom", "abn": "Abua", "abo": "Abon", "abp": "Abellen Ayta", "abq": "Abaza", "abr": "Abron", "abs": "Ambonese Malay", "abt": "Ambulas", "abu": "Abure", "abv": "Baharna Arabic", "abw": "Pal", "abx": "Inabaknon", "aby": "Aneme Wake", "abz": "Abui", "aca": "Achagua", "acb": "Áncá", "acd": "Gikyode", "ace": "Achinese", "acf": "Saint Lucian Creole French", "ach": "Acoli", "aci": "Aka-Cari", "ack": "Aka-Kora", "acl": "Akar-Bale", "acm": "Mesopotamian Arabic", "acn": "Achang", "acp": "Eastern Acipa", "acq": "Ta'izzi-Adeni Arabic", "acr": "Achi", "acs": "Acroá", "act": "Achterhoeks", "acu": "Achuar-Shiwiar", "acv": "Achumawi", "acw": "Hijazi Arabic", "acx": "Omani Arabic", "acy": "Cypriot Arabic", "acz": "Acheron", "ada": "Adangme", "adb": "Atauran", "add": "Lidzonka; Dzodinka", "ade": "Adele", "adf": "Dhofari Arabic", "adg": "Andegerebinha", "adh": "Adhola", "adi": "Adi", "adj": "Adioukrou", "adl": "Galo", "adn": "Adang", "ado": "Abu", "adq": "Adangbe", "adr": "Adonara", "ads": "Adamorobe Sign Language", "adt": "Adnyamathanha", "adu": "Aduge", "adw": "Amundava", "adx": "Amdo Tibetan", "ady": "Adyghe; Adygei", "adz": "Adzera", "ae": "Avestan", "aea": "Areba", "aeb": "Tunisian Arabic", "aec": "Saidi Arabic", "aed": "Argentine Sign Language", "aee": "Northeast Pashai; Northeast Pashayi", "aek": "Haeke", "ael": "Ambele", "aem": "Arem", "aen": "Armenian Sign Language", "aeq": "Aer", "aer": "Eastern Arrernte", "aes": "Alsea", "aeu": "Akeu", "aew": "Ambakich", "aey": "Amele", "aez": "Aeka", "af": "Afrikaans", "afa": "Afro-Asiatic languages", "afb": "Gulf Arabic", "afd": "Andai", "afe": "Putukwam", "afg": "Afghan Sign Language", "afh": "Afrihili", "afi": "Akrukay; Chini", "afk": "Nanubae", "afn": "Defaka", "afo": "Eloyi", "afp": "Tapei", "afs": "Afro-Seminole Creole", "aft": "Afitti", "afu": "Awutu", "afz": "Obokuitai", "aga": "Aguano", "agb": "Legbo", "agc": "Agatu", "agd": "Agarabi", "age": "Angal", "agf": "Arguni", "agg": "Angor", "agh": "Ngelima", "agi": "Agariya", "agj": "Argobba", "agk": "Isarog Agta", "agl": "Fembe", "agm": "Angaataha", "agn": "Agutaynen", "ago": "Tainae", "agq": "Aghem", "agr": "Aguaruna", "ags": "Esimbi", "agt": "Central Cagayan Agta", "agu": "Aguacateco", "agv": "Remontado Dumagat", "agw": "Kahua", "agx": "Aghul", "agy": "Southern Alta", "agz": "Mt. Iriga Agta", "aha": "Ahanta", "ahb": "Axamb", "ahg": "Qimant", "ahh": "Aghu", "ahi": "Tiagbamrin Aizi", "ahk": "Akha", "ahl": "Igo", "ahm": "Mobumrin Aizi", "ahn": "Àhàn", "aho": "Ahom", "ahp": "Aproumu Aizi", "ahr": "Ahirani", "ahs": "Ashe", "aht": "Ahtena", "aia": "Arosi", "aib": "Ainu (China)", "aic": "Ainbai", "aid": "Alngith", "aie": "Amara", "aif": "Agi", "aig": "Antigua and Barbuda Creole English", "aih": "Ai-Cham", "aii": "Assyrian Neo-Aramaic", "aij": "Lishanid Noshan", "aik": "Ake", "ail": "Aimele", "aim": "Aimol", "ain": "Ainu (Japan)", "aio": "Aiton", "aip": "Burumakok", "aiq": "Aimaq", "air": "Airoran", "ait": "Arikem", "aiw": "Aari", "aix": "Aighon", "aiy": "Ali", "aja": "Aja (South Sudan)", "ajg": "Aja (Benin)", "aji": "Ajië", "ajn": "Andajin", "ajp": "South Levantine Arabic", "ajs": "Algerian Jewish Sign Language", "aju": "Judeo-Moroccan Arabic", "ajw": "Ajawa", "ajz": "Amri Karbi", "ak": "Akan", "akb": "Batak Angkola", "akc": "Mpur", "akd": "Ukpet-Ehom", "ake": "Akawaio", "akf": "Akpa", "akg": "Anakalangu", "akh": "Angal Heneng", "aki": "Aiome", "akj": "Aka-Jeru", "akk": "Akkadian", "akl": "Aklanon", "akm": "Aka-Bo", "ako": "Akurio", "akp": "Siwu", "akq": "Ak", "akr": "Araki", "aks": "Akaselem", "akt": "Akolet", "aku": "Akum", "akv": "Akhvakh", "akw": "Akwa", "akx": "Aka-Kede", "aky": "Aka-Kol", "akz": "Alabama", "ala": "Alago", "alc": "Qawasqar", "ald": "Alladian", "ale": "Aleut", "alf": "Alege", "alg": "Algonquian languages", "alh": "Alawa", "ali": "Amaimon", "alj": "Alangan", "alk": "Alak", "all": "Allar", "alm": "Amblong", "aln": "Gheg Albanian", "alo": "Larike-Wakasihu", "alp": "Alune", "alq": "Algonquin", "alr": "Alutor", "als": "Tosk Albanian", "alt": "Southern Altai", "alu": "'Are'are", "alv": "Atlantic-Congo languages", "alw": "Alaba-K’abeena; Wanbasana", "alx": "Amol", "aly": "Alyawarr", "alz": "Alur", "am": "Amharic", "ama": "Amanayé", "amb": "Ambo", "amc": "Amahuaca", "ame": "Yanesha'", "amf": "Hamer-Banna", "amg": "Amurdak", "ami": "Amis", "amj": "Amdang", "amk": "Ambai", "aml": "War-Jaintia", "amm": "Ama (Papua New Guinea)", "amn": "Amanab", "amo": "Amo", "amp": "Alamblak", "amq": "Amahai", "amr": "Amarakaeri", "ams": "Southern Amami-Oshima", "amt": "Amto", "amu": "Guerrero Amuzgo", "amv": "Ambelau", "amw": "Western Neo-Aramaic", "amx": "Anmatyerre", "amy": "Ami", "amz": "Atampaya", "an": "Aragonese", "ana": "Andaqui", "anb": "Andoa", "anc": "Ngas", "and": "Ansus", "ane": "Xârâcùù", "anf": "Animere", "ang": "Old English (ca. 450-1100)", "anh": "Nend", "ani": "Andi", "anj": "Anor", "ank": "Goemai", "anl": "Anu-Hkongso Chin", "anm": "Anal", "ann": "Obolo", "ano": "Andoque", "anp": "Angika", "anq": "Jarawa (India)", "anr": "Andh", "ans": "Anserma", "ant": "Antakarinya; Antikarinya", "anu": "Anuak", "anv": "Denya", "anw": "Anaang", "anx": "Andra-Hus", "any": "Anyin", "anz": "Anem", "aoa": "Angolar", "aob": "Abom", "aoc": "Pemon", "aod": "Andarum", "aoe": "Angal Enen", "aof": "Bragat", "aog": "Angoram", "aoi": "Anindilyakwa", "aoj": "Mufian", "aok": "Arhö", "aol": "Alor", "aom": "Ömie", "aon": "Bumbita Arapesh", "aor": "Aore", "aos": "Taikat", "aot": "Atong (India); A'tong", "aou": "A'ou", "aox": "Atorada", "aoz": "Uab Meto", "apa": "Apache languages", "apb": "Sa'a", "apc": "North Levantine Arabic", "apd": "Sudanese Arabic", "ape": "Bukiyip", "apf": "Pahanan Agta", "apg": "Ampanang", "aph": "Athpariya", "api": "Apiaká", "apj": "Jicarilla Apache", "apk": "Kiowa Apache", "apl": "Lipan Apache", "apm": "Mescalero-Chiricahua Apache", "apn": "Apinayé", "apo": "Ambul", "app": "Apma", "apq": "A-Pucikwar", "apr": "Arop-Lokep", "aps": "Arop-Sissano", "apt": "Apatani", "apu": "Apurinã", "apv": "Alapmunte", "apw": "Western Apache", "apx": "Aputai", "apy": "Apalaí", "apz": "Safeyoka", "aqa": "Alacalufan languages", "aqc": "Archi", "aqd": "Ampari Dogon", "aqg": "Arigidi", "aqk": "Aninka", "aql": "Algic languages", "aqm": "Atohwaim", "aqn": "Northern Alta", "aqp": "Atakapa", "aqr": "Arhâ", "aqt": "Angaité", "aqz": "Akuntsu", "ar": "Arabic", "arb": "Standard Arabic", "arc": "Official Aramaic (700-300 BCE); Imperial Aramaic (700-300 BCE)", "ard": "Arabana", "are": "Western Arrarnta", "arh": "Arhuaco", "ari": "Arikara", "arj": "Arapaso", "ark": "Arikapú", "arl": "Arabela", "arn": "Mapudungun; Mapuche", "aro": "Araona", "arp": "Arapaho", "arq": "Algerian Arabic", "arr": "Karo (Brazil)", "ars": "Najdi Arabic", "art": "Artificial languages", "aru": "Aruá (Amazonas State); Arawá", "arv": "Arbore", "arw": "Arawak", "arx": "Aruá (Rodonia State)", "ary": "Moroccan Arabic", "arz": "Egyptian Arabic", "as": "Assamese", "asa": "Asu (Tanzania)", "asb": "Assiniboine", "asc": "Casuarina Coast Asmat", "ase": "American Sign Language", "asf": "Auslan; Australian Sign Language", "asg": "Cishingini", "ash": "Abishira", "asi": "Buruwai", "asj": "Sari", "ask": "Ashkun", "asl": "Asilulu", "asn": "Xingú Asuriní", "aso": "Dano", "asp": "Algerian Sign Language", "asq": "Austrian Sign Language", "asr": "Asuri", "ass": "Ipulo", "ast": "Asturian; Asturleonese; Bable; Leonese", "asu": "Tocantins Asurini", "asv": "Asoa", "asw": "Australian Aborigines Sign Language", "asx": "Muratayak", "asy": "Yaosakor Asmat", "asz": "As", "ata": "Pele-Ata", "atb": "Zaiwa", "atc": "Atsahuaca", "atd": "Ata Manobo", "ate": "Atemble", "atg": "Ivbie North-Okpela-Arhe", "ath": "Athapascan languages", "ati": "Attié", "atj": "Atikamekw", "atk": "Ati", "atl": "Mt. Iraya Agta", "atm": "Ata", "atn": "Ashtiani", "ato": "Atong (Cameroon)", "atp": "Pudtol Atta", "atq": "Aralle-Tabulahan", "atr": "Waimiri-Atroari", "ats": "Gros Ventre", "att": "Pamplona Atta", "atu": "Reel", "atv": "Northern Altai", "atw": "Atsugewi", "atx": "Arutani", "aty": "Aneityum", "atz": "Arta", "aua": "Asumboa", "aub": "Alugu", "auc": "Waorani", "aud": "Anuta", "auf": "Arauan languages", "aug": "Aguna", "auh": "Aushi", "aui": "Anuki", "auj": "Awjilah", "auk": "Heyo", "aul": "Aulua", "aum": "Asu (Nigeria)", "aun": "Molmo One", "auo": "Auyokawa", "aup": "Makayam", "auq": "Anus; Korur", "aur": "Aruek", "aus": "Australian languages", "aut": "Austral", "auu": "Auye", "auw": "Awyi", "aux": "Aurá", "auy": "Awiyaana", "auz": "Uzbeki Arabic", "av": "Avaric", "avb": "Avau", "avd": "Alviri-Vidari", "avi": "Avikam", "avk": "Kotava", "avl": "Eastern Egyptian Bedawi Arabic", "avm": "Angkamuthi", "avn": "Avatime", "avo": "Agavotaguerra", "avs": "Aushiri", "avt": "Au", "avu": "Avokaya", "avv": "Avá-Canoeiro", "awa": "Awadhi", "awb": "Awa (Papua New Guinea)", "awc": "Cicipu", "awd": "Arawakan languages", "awe": "Awetí", "awg": "Anguthimri", "awh": "Awbono", "awi": "Aekyom", "awk": "Awabakal", "awm": "Arawum", "awn": "Awngi", "awo": "Awak", "awr": "Awera", "aws": "South Awyu", "awt": "Araweté", "awu": "Central Awyu", "awv": "Jair Awyu", "aww": "Awun", "awx": "Awara", "awy": "Edera Awyu", "axb": "Abipon", "axe": "Ayerrerenge", "axg": "Mato Grosso Arára", "axk": "Yaka (Central African Republic)", "axl": "Lower Southern Aranda", "axm": "Middle Armenian", "axx": "Xârâgurè", "ay": "Aymara", "aya": "Awar", "ayb": "Ayizo Gbe", "ayc": "Southern Aymara", "ayd": "Ayabadhu", "aye": "Ayere", "ayg": "Ginyanga", "ayh": "Hadrami Arabic", "ayi": "Leyigha", "ayk": "Akuku", "ayl": "Libyan Arabic", "ayn": "Sanaani Arabic", "ayo": "Ayoreo", "ayp": "North Mesopotamian Arabic", "ayq": "Ayi (Papua New Guinea)", "ayr": "Central Aymara", "ays": "Sorsogon Ayta", "ayt": "Magbukun Ayta", "ayu": "Ayu", "ayz": "Mai Brat", "az": "Azerbaijani", "aza": "Azha", "azb": "South Azerbaijani", "azc": "Uto-Aztecan languages", "azd": "Eastern Durango Nahuatl", "azg": "San Pedro Amuzgos Amuzgo", "azj": "North Azerbaijani", "azm": "Ipalapa Amuzgo", "azn": "Western Durango Nahuatl", "azo": "Awing", "azt": "Faire Atta", "azz": "Highland Puebla Nahuatl", "ba": "Bashkir", "baa": "Babatana", "bab": "Bainouk-Gunyuño", "bac": "Badui", "bad": "Banda languages", "bae": "Baré", "baf": "Nubaca", "bag": "Tuki", "bah": "Bahamas Creole English", "bai": "Bamileke languages", "baj": "Barakai", "bal": "Baluchi", "ban": "Balinese", "bao": "Waimaha", "bap": "Bantawa", "bar": "Bavarian", "bas": "Basa (Cameroon)", "bat": "Baltic languages", "bau": "Bada (Nigeria)", "bav": "Vengo", "baw": "Bambili-Bambui", "bax": "Bamun", "bay": "Batuley", "bba": "Baatonum", "bbb": "Barai", "bbc": "Batak Toba", "bbd": "Bau", "bbe": "Bangba", "bbf": "Baibai", "bbg": "Barama", "bbh": "Bugan", "bbi": "Barombi", "bbj": "Ghomálá'", "bbk": "Babanki", "bbl": "Bats", "bbm": "Babango", "bbn": "Uneapa", "bbo": "Northern Bobo Madaré; Konabéré", "bbp": "West Central Banda", "bbq": "Bamali", "bbr": "Girawa", "bbs": "Bakpinka", "bbt": "Mburku", "bbu": "Kulung (Nigeria)", "bbv": "Karnai", "bbw": "Baba", "bbx": "Bubia", "bby": "Befang", "bca": "Central Bai", "bcb": "Bainouk-Samik", "bcc": "Southern Balochi", "bcd": "North Babar", "bce": "Bamenyam", "bcf": "Bamu", "bcg": "Baga Pokur", "bch": "Bariai", "bci": "Baoulé", "bcj": "Bardi", "bck": "Bunuba", "bcl": "Central Bikol", "bcm": "Bannoni", "bcn": "Bali (Nigeria)", "bco": "Kaluli", "bcp": "Bali (Democratic Republic of Congo)", "bcq": "Bench", "bcr": "Babine", "bcs": "Kohumono", "bct": "Bendi", "bcu": "Awad Bing", "bcv": "Shoo-Minda-Nye", "bcw": "Bana", "bcy": "Bacama", "bcz": "Bainouk-Gunyaamolo", "bda": "Bayot", "bdb": "Basap", "bdc": "Emberá-Baudó", "bdd": "Bunama", "bde": "Bade", "bdf": "Biage", "bdg": "Bonggi", "bdh": "Baka (South Sudan)", "bdi": "Burun", "bdj": "Bai (South Sudan); Bai", "bdk": "Budukh", "bdl": "Indonesian Bajau", "bdm": "Buduma", "bdn": "Baldemu", "bdo": "Morom", "bdp": "Bende", "bdq": "Bahnar", "bdr": "West Coast Bajau", "bds": "Burunge", "bdt": "Bokoto", "bdu": "Oroko", "bdv": "Bodo Parja", "bdw": "Baham", "bdx": "Budong-Budong", "bdy": "Bandjalang", "bdz": "Badeshi", "be": "Belarusian", "bea": "Beaver", "beb": "Bebele", "bec": "Iceve-Maci", "bed": "Bedoanas", "bee": "Byangsi", "bef": "Benabena", "beg": "Belait", "beh": "Biali", "bei": "Bekati'", "bej": "Beja; Bedawiyet", "bek": "Bebeli", "bem": "Bemba (Zambia)", "beo": "Beami", "bep": "Besoa", "beq": "Beembe", "ber": "Berber languages", "bes": "Besme", "bet": "Guiberoua Béte", "beu": "Blagar", "bev": "Daloa Bété", "bew": "Betawi", "bex": "Jur Modo", "bey": "Beli (Papua New Guinea)", "bez": "Bena (Tanzania)", "bfa": "Bari", "bfb": "Pauri Bareli", "bfc": "Panyi Bai; Northern Bai", "bfd": "Bafut", "bfe": "Betaf; Tena", "bff": "Bofi", "bfg": "Busang Kayan", "bfh": "Blafe", "bfi": "British Sign Language", "bfj": "Bafanji", "bfk": "Ban Khor Sign Language", "bfl": "Banda-Ndélé", "bfm": "Mmen", "bfn": "Bunak", "bfo": "Malba Birifor", "bfp": "Beba", "bfq": "Badaga", "bfr": "Bazigar", "bfs": "Southern Bai", "bft": "Balti", "bfu": "Gahri", "bfw": "Bondo", "bfx": "Bantayanon", "bfy": "Bagheli", "bfz": "Mahasu Pahari", "bg": "Bulgarian", "bga": "Gwamhi-Wuri", "bgb": "Bobongko", "bgc": "Haryanvi", "bgd": "Rathwi Bareli", "bge": "Bauria", "bgf": "Bangandu", "bgg": "Bugun", "bgi": "Giangan", "bgj": "Bangolan", "bgk": "Bit; Buxinhua", "bgl": "Bo (Laos)", "bgn": "Western Balochi", "bgo": "Baga Koga", "bgp": "Eastern Balochi", "bgq": "Bagri", "bgr": "Bawm Chin", "bgs": "Tagabawa", "bgt": "Bughotu", "bgu": "Mbongno", "bgv": "Warkay-Bipim", "bgw": "Bhatri", "bgx": "Balkan Gagauz Turkish", "bgy": "Benggoi", "bgz": "Banggai", "bh": "Bihari languages", "bha": "Bharia", "bhb": "Bhili", "bhc": "Biga", "bhd": "Bhadrawahi", "bhe": "Bhaya", "bhf": "Odiai", "bhg": "Binandere", "bhh": "Bukharic", "bhi": "Bhilali", "bhj": "Bahing", "bhl": "Bimin", "bhm": "Bathari", "bhn": "Bohtan Neo-Aramaic", "bho": "Bhojpuri", "bhp": "Bima", "bhq": "Tukang Besi South", "bhr": "Bara Malagasy", "bhs": "Buwal", "bht": "Bhattiyali", "bhu": "Bhunjia", "bhv": "Bahau", "bhw": "Biak", "bhx": "Bhalay", "bhy": "Bhele", "bhz": "Bada (Indonesia)", "bi": "Bislama", "bia": "Badimaya", "bib": "Bissa; Bisa", "bid": "Bidiyo", "bie": "Bepour", "bif": "Biafada", "big": "Biangai", "bik": "Bikol", "bil": "Bile", "bim": "Bimoba", "bin": "Bini; Edo", "bio": "Nai", "bip": "Bila", "biq": "Bipi", "bir": "Bisorio", "bit": "Berinomo", "biu": "Biete", "biv": "Southern Birifor", "biw": "Kol (Cameroon)", "bix": "Bijori", "biy": "Birhor", "biz": "Baloi", "bja": "Budza", "bjb": "Banggarla", "bjc": "Bariji", "bje": "Biao-Jiao Mien", "bjf": "Barzani Jewish Neo-Aramaic", "bjg": "Bidyogo", "bjh": "Bahinemo", "bji": "Burji", "bjj": "Kanauji", "bjk": "Barok", "bjl": "Bulu (Papua New Guinea)", "bjm": "Bajelani", "bjn": "Banjar", "bjo": "Mid-Southern Banda", "bjp": "Fanamaket", "bjr": "Binumarien", "bjs": "Bajan", "bjt": "Balanta-Ganja", "bju": "Busuu", "bjv": "Bedjond", "bjw": "Bakwé", "bjx": "Banao Itneg", "bjy": "Bayali", "bjz": "Baruga", "bka": "Kyak", "bkc": "Baka (Cameroon)", "bkd": "Binukid; Talaandig", "bkf": "Beeke", "bkg": "Buraka", "bkh": "Bakoko", "bki": "Baki", "bkj": "Pande", "bkk": "Brokskat", "bkl": "Berik", "bkm": "Kom (Cameroon)", "bkn": "Bukitan", "bko": "Kwa'", "bkp": "Boko (Democratic Republic of Congo)", "bkq": "Bakairí", "bkr": "Bakumpai", "bks": "Northern Sorsoganon", "bkt": "Boloki", "bku": "Buhid", "bkv": "Bekwarra", "bkw": "Bekwel", "bkx": "Baikeno", "bky": "Bokyi", "bkz": "Bungku", "bla": "Siksika", "blb": "Bilua", "blc": "Bella Coola", "bld": "Bolango", "ble": "Balanta-Kentohe", "blf": "Buol", "blh": "Kuwaa", "bli": "Bolia", "blj": "Bolongan", "blk": "Pa'o Karen; Pa'O", "bll": "Biloxi", "blm": "Beli (South Sudan)", "bln": "Southern Catanduanes Bikol", "blo": "Anii", "blp": "Blablanga", "blq": "Baluan-Pam", "blr": "Blang", "bls": "Balaesang", "blt": "Tai Dam", "blv": "Kibala; Bolo", "blw": "Balangao", "blx": "Mag-Indi Ayta", "bly": "Notre", "blz": "Balantak", "bm": "Bambara", "bma": "Lame", "bmb": "Bembe", "bmc": "Biem", "bmd": "Baga Manduri", "bme": "Limassa", "bmf": "Bom-Kim", "bmg": "Bamwe", "bmh": "Kein", "bmi": "Bagirmi", "bmj": "Bote-Majhi", "bmk": "Ghayavi", "bml": "Bomboli", "bmm": "Northern Betsimisaraka Malagasy", "bmn": "Bina (Papua New Guinea)", "bmo": "Bambalang", "bmp": "Bulgebi", "bmq": "Bomu", "bmr": "Muinane", "bms": "Bilma Kanuri", "bmt": "Biao Mon", "bmu": "Somba-Siawari", "bmv": "Bum", "bmw": "Bomwali", "bmx": "Baimak", "bmz": "Baramu", "bn": "Bengali; Bangla", "bna": "Bonerate", "bnb": "Bookan", "bnc": "Bontok", "bnd": "Banda (Indonesia)", "bne": "Bintauna", "bnf": "Masiwang", "bng": "Benga", "bni": "Bangi", "bnj": "Eastern Tawbuid", "bnk": "Bierebo", "bnl": "Boon", "bnm": "Batanga", "bnn": "Bunun", "bno": "Bantoanon", "bnp": "Bola", "bnq": "Bantik", "bnr": "Butmas-Tur", "bns": "Bundeli", "bnt": "Bantu languages", "bnu": "Bentong", "bnv": "Bonerif; Beneraf; Edwas", "bnw": "Bisis", "bnx": "Bangubangu", "bny": "Bintulu", "bnz": "Beezen", "bo": "Tibetan", "boa": "Bora", "bob": "Aweer", "boe": "Mundabli", "bof": "Bolon", "bog": "Bamako Sign Language", "boh": "Boma", "boi": "Barbareño", "boj": "Anjam", "bok": "Bonjo", "bol": "Bole", "bom": "Berom", "bon": "Bine", "boo": "Tiemacèwè Bozo", "bop": "Bonkiman", "boq": "Bogaya", "bor": "Borôro", "bot": "Bongo", "bou": "Bondei", "bov": "Tuwuli", "bow": "Rema", "box": "Buamu", "boy": "Bodo (Central African Republic)", "boz": "Tiéyaxo Bozo", "bpa": "Daakaka", "bpc": "Mbuk", "bpd": "Banda-Banda", "bpe": "Bauni", "bpg": "Bonggo", "bph": "Botlikh", "bpi": "Bagupi", "bpj": "Binji", "bpk": "Orowe; 'Ôrôê", "bpl": "Broome Pearling Lugger Pidgin", "bpm": "Biyom", "bpn": "Dzao Min", "bpo": "Anasi", "bpp": "Kaure", "bpq": "Banda Malay", "bpr": "Koronadal Blaan", "bps": "Sarangani Blaan", "bpt": "Barrow Point", "bpu": "Bongu", "bpv": "Bian Marind", "bpw": "Bo (Papua New Guinea)", "bpx": "Palya Bareli", "bpy": "Bishnupriya", "bpz": "Bilba", "bqa": "Tchumbuli", "bqb": "Bagusa", "bqc": "Boko (Benin); Boo", "bqd": "Bung", "bqf": "Baga Kaloum", "bqg": "Bago-Kusuntu", "bqh": "Baima", "bqi": "Bakhtiari", "bqj": "Bandial", "bqk": "Banda-Mbrès", "bql": "Bilakura", "bqm": "Wumboko", "bqn": "Bulgarian Sign Language", "bqo": "Balo", "bqp": "Busa", "bqq": "Biritai", "bqr": "Burusu", "bqs": "Bosngun", "bqt": "Bamukumbit", "bqu": "Boguru", "bqv": "Koro Wachi; Begbere-Ejar", "bqw": "Buru (Nigeria)", "bqx": "Baangi", "bqy": "Bengkala Sign Language", "bqz": "Bakaka", "br": "Breton", "bra": "Braj", "brb": "Brao; Lave", "brc": "Berbice Creole Dutch", "brd": "Baraamu", "brf": "Bira", "brg": "Baure", "brh": "Brahui", "bri": "Mokpwe", "brj": "Bieria", "brk": "Birked", "brl": "Birwa", "brm": "Barambu", "brn": "Boruca", "bro": "Brokkat", "brp": "Barapasi", "brq": "Breri", "brr": "Birao", "brs": "Baras", "brt": "Bitare", "bru": "Eastern Bru", "brv": "Western Bru", "brw": "Bellari", "brx": "Bodo (India)", "bry": "Burui", "brz": "Bilbil", "bs": "Bosnian", "bsa": "Abinomn", "bsb": "Brunei Bisaya", "bsc": "Bassari; Oniyan", "bse": "Wushi", "bsf": "Bauchi", "bsg": "Bashkardi", "bsh": "Kati", "bsi": "Bassossi", "bsj": "Bangwinji", "bsk": "Burushaski", "bsl": "Basa-Gumna", "bsm": "Busami", "bsn": "Barasana-Eduria", "bso": "Buso", "bsp": "Baga Sitemu", "bsq": "Bassa", "bsr": "Bassa-Kontagora", "bss": "Akoose", "bst": "Basketo", "bsu": "Bahonsuai", "bsv": "Baga Sobané", "bsw": "Baiso", "bsx": "Yangkam", "bsy": "Sabah Bisaya", "bta": "Bata", "btc": "Bati (Cameroon)", "btd": "Batak Dairi", "bte": "Gamo-Ningi", "btf": "Birgit", "btg": "Gagnoa Bété", "bth": "Biatah Bidayuh", "bti": "Burate", "btj": "Bacanese Malay", "btk": "Batak languages", "btm": "Batak Mandailing", "btn": "Ratagnon", "bto": "Rinconada Bikol", "btp": "Budibud", "btq": "Batek", "btr": "Baetora", "bts": "Batak Simalungun", "btt": "Bete-Bendi", "btu": "Batu", "btv": "Bateri", "btw": "Butuanon", "btx": "Batak Karo", "bty": "Bobot", "btz": "Batak Alas-Kluet", "bua": "Buriat", "bub": "Bua", "buc": "Bushi", "bud": "Ntcham", "bue": "Beothuk", "buf": "Bushoong", "bug": "Buginese", "buh": "Younuo Bunu", "bui": "Bongili", "buj": "Basa-Gurmana", "buk": "Bugawac", "bum": "Bulu (Cameroon)", "bun": "Sherbro", "buo": "Terei", "bup": "Busoa", "buq": "Brem", "bus": "Bokobaru", "but": "Bungain", "buu": "Budu", "buv": "Bun", "buw": "Bubi", "bux": "Boghom", "buy": "Bullom So", "buz": "Bukwen", "bva": "Barein", "bvb": "Bube", "bvc": "Baelelea", "bvd": "Baeggu", "bve": "Berau Malay", "bvf": "Boor", "bvg": "Bonkeng", "bvh": "Bure", "bvi": "Belanda Viri", "bvj": "Baan", "bvk": "Bukat", "bvl": "Bolivian Sign Language", "bvm": "Bamunka", "bvn": "Buna", "bvo": "Bolgo", "bvp": "Bumang", "bvq": "Birri", "bvr": "Burarra", "bvt": "Bati (Indonesia)", "bvu": "Bukit Malay", "bvv": "Baniva", "bvw": "Boga", "bvx": "Dibole", "bvy": "Baybayanon", "bvz": "Bauzi", "bwa": "Bwatoo", "bwb": "Namosi-Naitasiri-Serua", "bwc": "Bwile", "bwd": "Bwaidoka", "bwe": "Bwe Karen", "bwf": "Boselewa", "bwg": "Barwe", "bwh": "Bishuo", "bwi": "Baniwa", "bwj": "Láá Láá Bwamu", "bwk": "Bauwaki", "bwl": "Bwela", "bwm": "Biwat", "bwn": "Wunai Bunu", "bwo": "Boro (Ethiopia); Borna (Ethiopia)", "bwp": "Mandobo Bawah", "bwq": "Southern Bobo Madaré", "bwr": "Bura-Pabir", "bws": "Bomboma", "bwt": "Bafaw-Balong", "bwu": "Buli (Ghana)", "bww": "Bwa", "bwx": "Bu-Nao Bunu", "bwy": "Cwi Bwamu", "bwz": "Bwisi", "bxa": "Tairaha", "bxb": "Belanda Bor", "bxc": "Molengue", "bxd": "Pela", "bxe": "Birale", "bxf": "Bilur; Minigir", "bxg": "Bangala", "bxh": "Buhutu", "bxi": "Pirlatapa", "bxj": "Bayungu", "bxk": "Bukusu; Lubukusu", "bxl": "Jalkunan", "bxm": "Mongolia Buriat", "bxn": "Burduna", "bxo": "Barikanchi", "bxp": "Bebil", "bxq": "Beele", "bxr": "Russia Buriat", "bxs": "Busam", "bxu": "China Buriat", "bxv": "Berakou", "bxw": "Bankagooma", "bxz": "Binahari", "bya": "Batak", "byb": "Bikya", "byc": "Ubaghara", "byd": "Benyadu'", "bye": "Pouye", "byf": "Bete", "byg": "Baygo", "byh": "Bhujel", "byi": "Buyu", "byj": "Bina (Nigeria)", "byk": "Biao", "byl": "Bayono", "bym": "Bidjara", "byn": "Bilin; Blin", "byo": "Biyo", "byp": "Bumaji", "byq": "Basay", "byr": "Baruya; Yipma", "bys": "Burak", "byt": "Berti", "byv": "Medumba", "byw": "Belhariya", "byx": "Qaqet", "byz": "Banaro", "bza": "Bandi", "bzb": "Andio", "bzc": "Southern Betsimisaraka Malagasy", "bzd": "Bribri", "bze": "Jenaama Bozo", "bzf": "Boikin", "bzg": "Babuza", "bzh": "Mapos Buang", "bzi": "Bisu", "bzj": "Belize Kriol English", "bzk": "Nicaragua Creole English", "bzl": "Boano (Sulawesi)", "bzm": "Bolondo", "bzn": "Boano (Maluku)", "bzo": "Bozaba", "bzp": "Kemberano", "bzq": "Buli (Indonesia)", "bzr": "Biri", "bzs": "Brazilian Sign Language", "bzt": "Brithenig", "bzu": "Burmeso", "bzv": "Naami", "bzw": "Basa (Nigeria)", "bzx": "Kɛlɛngaxo Bozo", "bzy": "Obanliku", "bzz": "Evant", "ca": "Catalan; Valencian", "caa": "Chortí", "cab": "Garifuna", "cac": "Chuj", "cad": "Caddo", "cae": "Lehar; Laalaa", "caf": "Southern Carrier", "cag": "Nivaclé", "cah": "Cahuarano", "cai": "Central American Indian languages", "caj": "Chané", "cak": "Kaqchikel; Cakchiquel", "cal": "Carolinian", "cam": "Cemuhî", "can": "Chambri", "cao": "Chácobo", "cap": "Chipaya", "caq": "Car Nicobarese", "car": "Galibi Carib", "cas": "Tsimané", "cau": "Caucasian languages", "cav": "Cavineña", "caw": "Callawalla", "cax": "Chiquitano", "cay": "Cayuga", "caz": "Canichana", "cba": "Chibchan languages", "cbb": "Cabiyarí", "cbc": "Carapana", "cbd": "Carijona", "cbg": "Chimila", "cbi": "Chachi", "cbj": "Ede Cabe", "cbk": "Chavacano", "cbl": "Bualkhaw Chin", "cbn": "Nyahkur", "cbo": "Izora", "cbq": "Tsucuba; Cuba", "cbr": "Cashibo-Cacataibo", "cbs": "Cashinahua", "cbt": "Chayahuita", "cbu": "Candoshi-Shapra", "cbv": "Cacua", "cbw": "Kinabalian", "cby": "Carabayo", "ccc": "Chamicuro", "ccd": "Cafundo Creole", "cce": "Chopi", "ccg": "Samba Daka", "cch": "Atsam", "ccj": "Kasanga", "ccl": "Cutchi-Swahili", "ccm": "Malaccan Creole Malay", "ccn": "North Caucasian languages", "cco": "Comaltepec Chinantec", "ccp": "Chakma", "ccr": "Cacaopera", "ccs": "South Caucasian languages", "cda": "Choni", "cdc": "Chadic languages", "cdd": "Caddoan languages", "cde": "Chenchu", "cdf": "Chiru", "cdh": "Chambeali", "cdi": "Chodri", "cdj": "Churahi", "cdm": "Chepang", "cdn": "Chaudangsi", "cdo": "Min Dong Chinese", "cdr": "Cinda-Regi-Tiyal", "cds": "Chadian Sign Language", "cdy": "Chadong", "cdz": "Koda", "ce": "Chechen", "cea": "Lower Chehalis", "ceb": "Cebuano", "ceg": "Chamacoco", "cek": "Eastern Khumi Chin", "cel": "Celtic languages", "cen": "Cen", "cet": "Centúúm", "cey": "Ekai Chin", "cfa": "Dijim-Bwilim", "cfd": "Cara", "cfg": "Como Karim", "cfm": "Falam Chin", "cga": "Changriwa", "cgc": "Kagayanen", "cgg": "Chiga", "cgk": "Chocangacakha", "ch": "Chamorro", "chb": "Chibcha", "chc": "Catawba", "chd": "Highland Oaxaca Chontal", "chf": "Tabasco Chontal", "chg": "Chagatai", "chh": "Chinook", "chj": "Ojitlán Chinantec", "chk": "Chuukese", "chl": "Cahuilla", "chm": "Mari (Russia)", "chn": "Chinook jargon", "cho": "Choctaw", "chp": "Chipewyan; Dene Suline", "chq": "Quiotepec Chinantec", "chr": "Cherokee", "cht": "Cholón", "chw": "Chuwabu", "chx": "Chantyal", "chy": "Cheyenne", "chz": "Ozumacín Chinantec", "cia": "Cia-Cia", "cib": "Ci Gbe", "cic": "Chickasaw", "cid": "Chimariko", "cie": "Cineni", "cih": "Chinali", "cik": "Chitkuli Kinnauri", "cim": "Cimbrian", "cin": "Cinta Larga", "cip": "Chiapanec", "cir": "Tiri; Haméa; Méa", "ciw": "Chippewa", "ciy": "Chaima", "cja": "Western Cham", "cje": "Chru", "cjh": "Upper Chehalis", "cji": "Chamalal", "cjk": "Chokwe", "cjm": "Eastern Cham", "cjn": "Chenapian", "cjo": "Ashéninka Pajonal", "cjp": "Cabécar", "cjs": "Shor", "cjv": "Chuave", "cjy": "Jinyu Chinese", "ckb": "Central Kurdish", "ckh": "Chak", "ckl": "Cibak", "ckm": "Chakavian", "ckn": "Kaang Chin", "cko": "Anufo", "ckq": "Kajakse", "ckr": "Kairak", "cks": "Tayo", "ckt": "Chukot", "cku": "Koasati", "ckv": "Kavalan", "ckx": "Caka", "cky": "Cakfem-Mushere", "ckz": "Cakchiquel-Quiché Mixed Language", "cla": "Ron", "clc": "Chilcotin", "cld": "Chaldean Neo-Aramaic", "cle": "Lealao Chinantec", "clh": "Chilisso", "cli": "Chakali", "clj": "Laitu Chin", "clk": "Idu-Mishmi", "cll": "Chala", "clm": "Clallam", "clo": "Lowland Oaxaca Chontal", "clt": "Lautu Chin", "clu": "Caluyanun", "clw": "Chulym", "cly": "Eastern Highland Chatino", "cma": "Maa", "cmc": "Chamic languages", "cme": "Cerma", "cmg": "Classical Mongolian", "cmi": "Emberá-Chamí", "cml": "Campalagian", "cmm": "Michigamea", "cmn": "Mandarin Chinese", "cmo": "Central Mnong", "cmr": "Mro-Khimi Chin", "cms": "Messapic", "cmt": "Camtho", "cna": "Changthang", "cnb": "Chinbon Chin", "cnc": "Côông", "cng": "Northern Qiang", "cnh": "Hakha Chin; Haka Chin", "cni": "Asháninka", "cnk": "Khumi Chin", "cnl": "Lalana Chinantec", "cno": "Con", "cnp": "Northern Ping Chinese; Northern Pinghua", "cnq": "Chung", "cnr": "Montenegrin", "cns": "Central Asmat", "cnt": "Tepetotutla Chinantec", "cnu": "Chenoua", "cnw": "Ngawn Chin", "cnx": "Middle Cornish", "co": "Corsican", "coa": "Cocos Islands Malay", "cob": "Chicomuceltec", "coc": "Cocopa", "cod": "Cocama-Cocamilla", "coe": "Koreguaje", "cof": "Colorado", "cog": "Chong", "coh": "Chonyi-Dzihana-Kauma; Chichonyi-Chidzihana-Chikauma", "coj": "Cochimi", "cok": "Santa Teresa Cora", "col": "Columbia-Wenatchi", "com": "Comanche", "con": "Cofán", "coo": "Comox", "cop": "Coptic", "coq": "Coquille", "cot": "Caquinte", "cou": "Wamey", "cov": "Cao Miao", "cow": "Cowlitz", "cox": "Nanti", "coz": "Chochotec", "cpa": "Palantla Chinantec", "cpb": "Ucayali-Yurúa Ashéninka", "cpc": "Ajyíninka Apurucayali", "cpe": "English-based creoles and pidgins", "cpf": "French-based creoles and pidgins", "cpg": "Cappadocian Greek", "cpi": "Chinese Pidgin English", "cpn": "Cherepon", "cpo": "Kpeego", "cpp": "Portuguese-based creoles and pidgins", "cps": "Capiznon", "cpu": "Pichis Ashéninka", "cpx": "Pu-Xian Chinese", "cpy": "South Ucayali Ashéninka", "cqd": "Chuanqiandian Cluster Miao", "cr": "Cree", "cra": "Chara", "crb": "Island Carib", "crc": "Lonwolwol", "crd": "Coeur d'Alene", "crf": "Caramanta", "crg": "Michif", "crh": "Crimean Tatar; Crimean Turkish", "cri": "Sãotomense", "crj": "Southern East Cree", "crk": "Plains Cree", "crl": "Northern East Cree", "crm": "Moose Cree", "crn": "El Nayar Cora", "cro": "Crow", "crp": "Creoles and pidgins", "crq": "Iyo'wujwa Chorote", "crr": "Carolina Algonquian", "crs": "Seselwa Creole French", "crt": "Iyojwa'ja Chorote", "crv": "Chaura", "crw": "Chrau", "crx": "Carrier", "cry": "Cori", "crz": "Cruzeño", "cs": "Czech", "csa": "Chiltepec Chinantec", "csb": "Kashubian", "csc": "Catalan Sign Language; Lengua de señas catalana; Llengua de Signes Catalana", "csd": "Chiangmai Sign Language", "cse": "Czech Sign Language", "csf": "Cuba Sign Language", "csg": "Chilean Sign Language", "csh": "Asho Chin", "csi": "Coast Miwok", "csj": "Songlai Chin", "csk": "Jola-Kasa", "csl": "Chinese Sign Language", "csm": "Central Sierra Miwok", "csn": "Colombian Sign Language", "cso": "Sochiapam Chinantec; Sochiapan Chinantec", "csp": "Southern Ping Chinese; Southern Pinghua", "csq": "Croatia Sign Language", "csr": "Costa Rican Sign Language", "css": "Southern Ohlone", "cst": "Northern Ohlone", "csu": "Central Sudanic languages", "csv": "Sumtu Chin", "csw": "Swampy Cree", "csx": "Cambodian Sign Language", "csy": "Siyin Chin", "csz": "Coos", "cta": "Tataltepec Chatino", "ctc": "Chetco", "ctd": "Tedim Chin", "cte": "Tepinapa Chinantec", "ctg": "Chittagonian", "cth": "Thaiphum Chin", "ctl": "Tlacoatzintepec Chinantec", "ctm": "Chitimacha", "ctn": "Chhintange", "cto": "Emberá-Catío", "ctp": "Western Highland Chatino", "cts": "Northern Catanduanes Bikol", "ctt": "Wayanad Chetti", "ctu": "Chol", "cty": "Moundadan Chetty", "ctz": "Zacatepec Chatino", "cu": "Church Slavic; Church Slavonic; Old Bulgarian; Old Church Slavonic; Old Slavonic", "cua": "Cua", "cub": "Cubeo", "cuc": "Usila Chinantec", "cuh": "Chuka; Gichuka", "cui": "Cuiba", "cuj": "Mashco Piro", "cuk": "San Blas Kuna", "cul": "Culina; Kulina", "cuo": "Cumanagoto", "cup": "Cupeño", "cuq": "Cun", "cur": "Chhulung", "cus": "Cushitic languages", "cut": "Teutila Cuicatec", "cuu": "Tai Ya", "cuv": "Cuvok", "cuw": "Chukwa", "cux": "Tepeuxila Cuicatec", "cuy": "Cuitlatec", "cv": "Chuvash", "cvg": "Chug", "cvn": "Valle Nacional Chinantec", "cwa": "Kabwa", "cwb": "Maindo", "cwd": "Woods Cree", "cwe": "Kwere", "cwg": "Chewong; Cheq Wong", "cwt": "Kuwaataay", "cy": "Welsh", "cya": "Nopala Chatino", "cyb": "Cayubaba", "cyo": "Cuyonon", "czh": "Huizhou Chinese", "czk": "Knaanic", "czn": "Zenzontepec Chatino", "czo": "Min Zhong Chinese", "czt": "Zotung Chin", "da": "Danish", "daa": "Dangaléat", "dac": "Dambi", "dad": "Marik", "dae": "Duupa", "dag": "Dagbani", "dah": "Gwahatike", "dai": "Day", "daj": "Dar Fur Daju", "dak": "Dakota", "dal": "Dahalo", "dam": "Damakawa", "dao": "Daai Chin", "daq": "Dandami Maria", "dar": "Dargwa", "das": "Daho-Doo", "dau": "Dar Sila Daju", "dav": "Taita; Dawida", "daw": "Davawenyo", "dax": "Dayi", "day": "Land Dayak languages", "daz": "Dao", "dba": "Bangime", "dbb": "Deno", "dbd": "Dadiya", "dbe": "Dabe", "dbf": "Edopi", "dbg": "Dogul Dom Dogon", "dbi": "Doka", "dbj": "Ida'an", "dbl": "Dyirbal", "dbm": "Duguri", "dbn": "Duriankere", "dbo": "Dulbu", "dbp": "Duwai", "dbq": "Daba", "dbr": "Dabarre", "dbt": "Ben Tey Dogon", "dbu": "Bondum Dom Dogon", "dbv": "Dungu", "dbw": "Bankan Tey Dogon", "dby": "Dibiyaso", "dcc": "Deccan", "dcr": "Negerhollands", "dda": "Dadi Dadi", "ddd": "Dongotono", "dde": "Doondo", "ddg": "Fataluku", "ddi": "West Goodenough", "ddj": "Jaru", "ddn": "Dendi (Benin)", "ddo": "Dido", "ddr": "Dhudhuroa", "dds": "Donno So Dogon", "ddw": "Dawera-Daweloor", "de": "German", "dec": "Dagik", "ded": "Dedua", "dee": "Dewoin", "def": "Dezfuli", "deg": "Degema", "deh": "Dehwari", "dei": "Demisa", "dek": "Dek", "del": "Delaware", "dem": "Dem", "den": "Slave (Athapascan)", "dep": "Pidgin Delaware", "deq": "Dendi (Central African Republic)", "der": "Deori", "des": "Desano", "dev": "Domung", "dez": "Dengese", "dga": "Southern Dagaare", "dgb": "Bunoge Dogon", "dgc": "Casiguran Dumagat Agta", "dgd": "Dagaari Dioula", "dge": "Degenan", "dgg": "Doga", "dgh": "Dghwede", "dgi": "Northern Dagara", "dgk": "Dagba", "dgl": "Andaandi; Dongolawi", "dgn": "Dagoman", "dgo": "Dogri (individual language)", "dgr": "Dogrib; Tłı̨chǫ", "dgs": "Dogoso", "dgt": "Ndra'ngith", "dgw": "Daungwurrung", "dgx": "Doghoro", "dgz": "Daga", "dhd": "Dhundari", "dhg": "Dhangu-Djangu; Dhangu; Djangu", "dhi": "Dhimal", "dhl": "Dhalandji", "dhm": "Zemba", "dhn": "Dhanki", "dho": "Dhodia", "dhr": "Dhargari", "dhs": "Dhaiso", "dhu": "Dhurga", "dhv": "Dehu; Drehu", "dhw": "Dhanwar (Nepal)", "dhx": "Dhungaloo", "dia": "Dia", "dib": "South Central Dinka", "dic": "Lakota Dida", "did": "Didinga", "dif": "Dieri; Diyari", "dig": "Digo; Chidigo", "dih": "Kumiai", "dii": "Dimbong", "dij": "Dai", "dik": "Southwestern Dinka", "dil": "Dilling", "dim": "Dime", "din": "Dinka", "dio": "Dibo", "dip": "Northeastern Dinka", "diq": "Dimli (individual language)", "dir": "Dirim", "dis": "Dimasa", "diu": "Diriku", "diw": "Northwestern Dinka", "dix": "Dixon Reef", "diy": "Diuwe", "diz": "Ding", "dja": "Djadjawurrung", "djb": "Djinba", "djc": "Dar Daju Daju", "djd": "Djamindjung; Ngaliwurru", "dje": "Zarma", "djf": "Djangun", "dji": "Djinang", "djj": "Djeebbana", "djk": "Eastern Maroon Creole; Businenge Tongo; Nenge", "djm": "Jamsay Dogon", "djn": "Jawoyn; Djauan", "djo": "Jangkang", "djr": "Djambarrpuyngu", "dju": "Kapriman", "djw": "Djawi", "dka": "Dakpakha", "dkg": "Kadung", "dkk": "Dakka", "dkr": "Kuijau", "dks": "Southeastern Dinka", "dkx": "Mazagway", "dlg": "Dolgan", "dlk": "Dahalik", "dlm": "Dalmatian", "dln": "Darlong", "dma": "Duma", "dmb": "Mombo Dogon", "dmc": "Gavak", "dmd": "Madhi Madhi", "dme": "Dugwor", "dmf": "Medefaidrin", "dmg": "Upper Kinabatangan", "dmk": "Domaaki", "dml": "Dameli", "dmm": "Dama", "dmn": "Mande languages", "dmo": "Kemedzung", "dmr": "East Damar", "dms": "Dampelas", "dmu": "Dubu; Tebi", "dmv": "Dumpas", "dmw": "Mudburra", "dmx": "Dema", "dmy": "Demta; Sowari", "dna": "Upper Grand Valley Dani", "dnd": "Daonda", "dne": "Ndendeule", "dng": "Dungan", "dni": "Lower Grand Valley Dani", "dnj": "Dan", "dnk": "Dengka", "dnn": "Dzùùngoo", "dno": "Ndrulo; Northern Lendu", "dnr": "Danaru", "dnt": "Mid Grand Valley Dani", "dnu": "Danau", "dnv": "Danu", "dnw": "Western Dani", "dny": "Dení", "doa": "Dom", "dob": "Dobu", "doc": "Northern Dong", "doe": "Doe", "dof": "Domu", "doh": "Dong", "doi": "Dogri (macrolanguage)", "dok": "Dondo", "dol": "Doso", "don": "Toura (Papua New Guinea)", "doo": "Dongo", "dop": "Lukpa", "doq": "Dominican Sign Language", "dor": "Dori'o", "dos": "Dogosé", "dot": "Dass", "dov": "Dombe", "dow": "Doyayo", "dox": "Bussa", "doy": "Dompo", "doz": "Dorze", "dpp": "Papar", "dra": "Dravidian languages", "drb": "Dair", "drc": "Minderico", "drd": "Darmiya", "dre": "Dolpo", "drg": "Rungus", "dri": "C'Lela", "drl": "Paakantyi", "drn": "West Damar", "dro": "Daro-Matu Melanau", "drq": "Dura", "drs": "Gedeo", "drt": "Drents", "dru": "Rukai", "dry": "Darai", "dsb": "Lower Sorbian", "dse": "Dutch Sign Language", "dsh": "Daasanach", "dsi": "Disa", "dsl": "Danish Sign Language", "dsn": "Dusner", "dso": "Desiya", "dsq": "Tadaksahak", "dsz": "Mardin Sign Language", "dta": "Daur", "dtb": "Labuk-Kinabatangan Kadazan", "dtd": "Ditidaht", "dth": "Adithinngithigh", "dti": "Ana Tinga Dogon", "dtk": "Tene Kan Dogon", "dtm": "Tomo Kan Dogon", "dtn": "Daatsʼíin", "dto": "Tommo So Dogon", "dtp": "Kadazan Dusun; Central Dusun", "dtr": "Lotud", "dts": "Toro So Dogon", "dtt": "Toro Tegu Dogon", "dtu": "Tebul Ure Dogon", "dty": "Dotyali", "dua": "Duala", "dub": "Dubli", "duc": "Duna", "due": "Umiray Dumaget Agta", "duf": "Dumbea; Drubea", "dug": "Duruma; Chiduruma", "duh": "Dungra Bhil", "dui": "Dumun", "duk": "Uyajitaya", "dul": "Alabat Island Agta", "dum": "Middle Dutch (ca. 1050-1350)", "dun": "Dusun Deyah", "duo": "Dupaninan Agta", "dup": "Duano", "duq": "Dusun Malang", "dur": "Dii", "dus": "Dumi", "duu": "Drung", "duv": "Duvle", "duw": "Dusun Witu", "dux": "Duungooma", "duy": "Dicamay Agta", "duz": "Duli-Gey", "dv": "Dhivehi; Divehi; Maldivian", "dva": "Duau", "dwa": "Diri", "dwk": "Dawik Kui", "dwr": "Dawro", "dws": "Dutton World Speedwords", "dwu": "Dhuwal", "dww": "Dawawa", "dwy": "Dhuwaya", "dwz": "Dewas Rai", "dya": "Dyan", "dyb": "Dyaberdyaber", "dyd": "Dyugun", "dyg": "Villa Viciosa Agta", "dyi": "Djimini Senoufo", "dym": "Yanda Dom Dogon", "dyn": "Dyangadi; Dhanggatti", "dyo": "Jola-Fonyi", "dyu": "Dyula", "dyy": "Djabugay; Dyaabugay", "dz": "Dzongkha", "dza": "Tunzu", "dze": "Djiwarli", "dzg": "Dazaga", "dzl": "Dzalakha", "dzn": "Dzando", "eaa": "Karenggapa", "ebc": "Beginci", "ebg": "Ebughu", "ebk": "Eastern Bontok", "ebo": "Teke-Ebo", "ebr": "Ebrié", "ebu": "Embu; Kiembu", "ecr": "Eteocretan", "ecs": "Ecuadorian Sign Language", "ecy": "Eteocypriot", "ee": "Ewe", "eee": "E", "efa": "Efai", "efe": "Efe", "efi": "Efik", "ega": "Ega", "egl": "Emilian", "egm": "Benamanga", "ego": "Eggon", "egx": "Egyptian languages", "egy": "Egyptian (Ancient)", "ehs": "Miyakubo Sign Language", "ehu": "Ehueun", "eip": "Eipomek", "eit": "Eitiep", "eiv": "Askopan", "eja": "Ejamat", "eka": "Ekajuk", "eke": "Ekit", "ekg": "Ekari", "eki": "Eki", "ekk": "Standard Estonian", "ekl": "Kol (Bangladesh); Kol", "ekm": "Elip", "eko": "Koti", "ekp": "Ekpeye", "ekr": "Yace", "eky": "Eastern Kayah", "el": "Modern Greek (1453-)", "ele": "Elepi", "elh": "El Hugeirat", "eli": "Nding", "elk": "Elkei", "elm": "Eleme", "elo": "El Molo", "elu": "Elu", "elx": "Elamite", "ema": "Emai-Iuleha-Ora", "emb": "Embaloh", "eme": "Emerillon", "emg": "Eastern Meohang", "emi": "Mussau-Emira", "emk": "Eastern Maninkakan", "emm": "Mamulique", "emn": "Eman", "emp": "Northern Emberá", "emq": "Eastern Minyag", "ems": "Pacific Gulf Yupik", "emu": "Eastern Muria", "emw": "Emplawas", "emx": "Erromintxela", "emy": "Epigraphic Mayan", "emz": "Mbessa", "en": "English", "ena": "Apali", "enb": "Markweeta", "enc": "En", "end": "Ende", "enf": "Forest Enets", "enh": "Tundra Enets", "enl": "Enlhet", "enm": "Middle English (1100-1500)", "enn": "Engenni", "eno": "Enggano", "enq": "Enga", "enr": "Emumu; Emem", "enu": "Enu", "env": "Enwan (Edo State)", "enw": "Enwan (Akwa Ibom State)", "enx": "Enxet", "eo": "Esperanto", "eot": "Beti (Côte d'Ivoire)", "epi": "Epie", "era": "Eravallan", "erg": "Sie", "erh": "Eruwa", "eri": "Ogea", "erk": "South Efate", "ero": "Horpa", "err": "Erre", "ers": "Ersu", "ert": "Eritai", "erw": "Erokwanas", "es": "Spanish; Castilian", "ese": "Ese Ejja", "esg": "Aheri Gondi", "esh": "Eshtehardi", "esi": "North Alaskan Inupiatun", "esk": "Northwest Alaska Inupiatun", "esl": "Egypt Sign Language", "esm": "Esuma", "esn": "Salvadoran Sign Language", "eso": "Estonian Sign Language", "esq": "Esselen", "ess": "Central Siberian Yupik", "esu": "Central Yupik", "esx": "Eskimo-Aleut languages", "esy": "Eskayan", "et": "Estonian", "etb": "Etebi", "etc": "Etchemin", "eth": "Ethiopian Sign Language", "etn": "Eton (Vanuatu)", "eto": "Eton (Cameroon)", "etr": "Edolo", "ets": "Yekhee", "ett": "Etruscan", "etu": "Ejagham", "etx": "Eten", "etz": "Semimi", "eu": "Basque", "euq": "Basque (family)", "eve": "Even", "evh": "Uvbie", "evn": "Evenki", "ewo": "Ewondo", "ext": "Extremaduran", "eya": "Eyak", "eyo": "Keiyo", "eza": "Ezaa", "eze": "Uzekwe", "fa": "Persian", "faa": "Fasu", "fab": "Fa d'Ambu", "fad": "Wagi", "faf": "Fagani", "fag": "Finongan", "fah": "Baissa Fali", "fai": "Faiwol", "faj": "Faita", "fak": "Fang (Cameroon)", "fal": "South Fali", "fam": "Fam", "fan": "Fang (Equatorial Guinea)", "fap": "Paloor", "far": "Fataleka", "fat": "Fanti", "fau": "Fayu", "fax": "Fala", "fay": "Southwestern Fars", "faz": "Northwestern Fars", "fbl": "West Albay Bikol", "fcs": "Quebec Sign Language", "fer": "Feroge", "ff": "Fulah", "ffi": "Foia Foia", "ffm": "Maasina Fulfulde", "fgr": "Fongoro", "fi": "Finnish", "fia": "Nobiin", "fie": "Fyer", "fif": "Faifi", "fil": "Filipino; Pilipino", "fip": "Fipa", "fir": "Firan", "fit": "Tornedalen Finnish; Meänkieli", "fiu": "Finno-Ugrian languages", "fiw": "Fiwaga", "fj": "Fijian", "fkk": "Kirya-Konzəl", "fkv": "Kven Finnish", "fla": "Kalispel-Pend d'Oreille", "flh": "Foau", "fli": "Fali", "fll": "North Fali", "fln": "Flinders Island", "flr": "Fuliiru", "fly": "Flaaitaal; Tsotsitaal", "fmp": "Fe'fe'", "fmu": "Far Western Muria", "fnb": "Fanbak", "fng": "Fanagalo", "fni": "Fania", "fo": "Faroese", "fod": "Foodo", "foi": "Foi", "fom": "Foma", "fon": "Fon", "for": "Fore", "fos": "Siraya", "fox": "Formosan languages", "fpe": "Fernando Po Creole English", "fqs": "Fas", "fr": "French", "frc": "Cajun French", "frd": "Fordata", "frk": "Frankish", "frm": "Middle French (ca. 1400-1600)", "fro": "Old French (842-ca. 1400)", "frp": "Arpitan; Francoprovençal", "frq": "Forak", "frr": "Northern Frisian", "frs": "Eastern Frisian", "frt": "Fortsenal", "fse": "Finnish Sign Language", "fsl": "French Sign Language", "fss": "Finland-Swedish Sign Language; finlandssvenskt teckenspråk; suomenruotsalainen viittomakieli", "fub": "Adamawa Fulfulde", "fuc": "Pulaar", "fud": "East Futuna", "fue": "Borgu Fulfulde", "fuf": "Pular", "fuh": "Western Niger Fulfulde", "fui": "Bagirmi Fulfulde", "fuj": "Ko", "fum": "Fum", "fun": "Fulniô", "fuq": "Central-Eastern Niger Fulfulde", "fur": "Friulian", "fut": "Futuna-Aniwa", "fuu": "Furu", "fuv": "Nigerian Fulfulde", "fuy": "Fuyug", "fvr": "Fur", "fwa": "Fwâi", "fwe": "Fwe", "fy": "Western Frisian", "ga": "Irish", "gaa": "Ga", "gab": "Gabri", "gac": "Mixed Great Andamanese", "gad": "Gaddang", "gae": "Guarequena", "gaf": "Gende", "gag": "Gagauz", "gah": "Alekano", "gai": "Borei", "gaj": "Gadsup", "gak": "Gamkonora", "gal": "Galolen", "gam": "Kandawo", "gan": "Gan Chinese", "gao": "Gants", "gap": "Gal", "gaq": "Gata'", "gar": "Galeya", "gas": "Adiwasi Garasia", "gat": "Kenati", "gau": "Mudhili Gadaba", "gaw": "Nobonob", "gax": "Borana-Arsi-Guji Oromo", "gay": "Gayo", "gaz": "West Central Oromo", "gba": "Gbaya (Central African Republic)", "gbb": "Kaytetye", "gbd": "Karajarri", "gbe": "Niksek", "gbf": "Gaikundi", "gbg": "Gbanziri", "gbh": "Defi Gbe", "gbi": "Galela", "gbj": "Bodo Gadaba", "gbk": "Gaddi", "gbl": "Gamit", "gbm": "Garhwali", "gbn": "Mo'da", "gbo": "Northern Grebo", "gbp": "Gbaya-Bossangoa", "gbq": "Gbaya-Bozoum", "gbr": "Gbagyi", "gbs": "Gbesi Gbe", "gbu": "Gagadu", "gbv": "Gbanu", "gbw": "Gabi-Gabi", "gbx": "Eastern Xwla Gbe", "gby": "Gbari", "gbz": "Zoroastrian Dari", "gcc": "Mali", "gcd": "Ganggalida", "gce": "Galice", "gcf": "Guadeloupean Creole French", "gcl": "Grenadian Creole English", "gcn": "Gaina", "gcr": "Guianese Creole French", "gct": "Colonia Tovar German", "gd": "Scottish Gaelic; Gaelic", "gda": "Gade Lohar", "gdb": "Pottangi Ollar Gadaba", "gdc": "Gugu Badhun", "gdd": "Gedaged", "gde": "Gude", "gdf": "Guduf-Gava", "gdg": "Ga'dang", "gdh": "Gadjerawang; Gajirrabeng", "gdi": "Gundi", "gdj": "Gurdjar", "gdk": "Gadang", "gdl": "Dirasha", "gdm": "Laal", "gdn": "Umanakaina", "gdo": "Ghodoberi", "gdq": "Mehri", "gdr": "Wipi", "gds": "Ghandruk Sign Language", "gdt": "Kungardutyi", "gdu": "Gudu", "gdx": "Godwari", "gea": "Geruma", "geb": "Kire", "gec": "Gboloo Grebo", "ged": "Gade", "gef": "Gerai", "geg": "Gengle", "geh": "Hutterite German; Hutterisch", "gei": "Gebe", "gej": "Gen", "gek": "Ywom", "gel": "ut-Ma'in", "gem": "Germanic languages", "geq": "Geme", "ges": "Geser-Gorom", "gev": "Eviya", "gew": "Gera", "gex": "Garre", "gey": "Enya", "gez": "Geez", "gfk": "Patpatar", "gft": "Gafat", "gga": "Gao", "ggb": "Gbii", "ggd": "Gugadj", "gge": "Gurr-goni", "ggg": "Gurgula", "ggk": "Kungarakany", "ggl": "Ganglau", "ggt": "Gitua", "ggu": "Gagu; Gban", "ggw": "Gogodala", "gha": "Ghadamès", "ghc": "Hiberno-Scottish Gaelic", "ghe": "Southern Ghale", "ghh": "Northern Ghale", "ghk": "Geko Karen", "ghl": "Ghulfan", "ghn": "Ghanongga", "gho": "Ghomara", "ghr": "Ghera", "ghs": "Guhu-Samane", "ght": "Kuke; Kutang Ghale", "gia": "Kija", "gib": "Gibanawa", "gic": "Gail", "gid": "Gidar", "gie": "Gaɓogbo; Guébie", "gig": "Goaria", "gih": "Githabul", "gii": "Girirra", "gil": "Gilbertese", "gim": "Gimi (Eastern Highlands)", "gin": "Hinukh", "gip": "Gimi (West New Britain)", "giq": "Green Gelao", "gir": "Red Gelao", "gis": "North Giziga", "git": "Gitxsan", "giu": "Mulao", "giw": "White Gelao", "gix": "Gilima", "giy": "Giyug", "giz": "South Giziga", "gjk": "Kachi Koli", "gjm": "Gunditjmara", "gjn": "Gonja", "gjr": "Gurindji Kriol", "gju": "Gujari", "gka": "Guya", "gkd": "Magɨ (Madang Province)", "gke": "Ndai", "gkn": "Gokana", "gko": "Kok-Nar", "gkp": "Guinea Kpelle", "gku": "ǂUngkue", "gl": "Galician", "glb": "Belning", "glc": "Bon Gula", "gld": "Nanai", "glh": "Northwest Pashai; Northwest Pashayi", "glj": "Gula Iro", "glk": "Gilaki", "gll": "Garlali", "glo": "Galambu", "glr": "Glaro-Twabo", "glu": "Gula (Chad)", "glw": "Glavda", "gly": "Gule", "gma": "Gambera", "gmb": "Gula'alaa", "gmd": "Mághdì", "gme": "East Germanic languages", "gmg": "Magɨyi", "gmh": "Middle High German (ca. 1050-1500)", "gml": "Middle Low German", "gmm": "Gbaya-Mbodomo", "gmn": "Gimnime", "gmq": "North Germanic languages", "gmr": "Mirning; Mirniny", "gmu": "Gumalu", "gmv": "Gamo", "gmw": "West Germanic languages", "gmx": "Magoma", "gmy": "Mycenaean Greek", "gmz": "Mgbolizhia", "gn": "Guarani", "gna": "Kaansa", "gnb": "Gangte", "gnc": "Guanche", "gnd": "Zulgo-Gemzek", "gne": "Ganang", "gng": "Ngangam", "gnh": "Lere", "gni": "Gooniyandi", "gnj": "Ngen", "gnk": "ǁGana", "gnl": "Gangulu", "gnm": "Ginuman", "gnn": "Gumatj", "gno": "Northern Gondi", "gnq": "Gana", "gnr": "Gureng Gureng", "gnt": "Guntai", "gnu": "Gnau", "gnw": "Western Bolivian Guaraní", "gnz": "Ganzi", "goa": "Guro", "gob": "Playero", "goc": "Gorakor", "god": "Godié", "goe": "Gongduk", "gof": "Gofa", "gog": "Gogo", "goh": "Old High German (ca. 750-1050)", "goi": "Gobasi", "goj": "Gowlan", "gok": "Gowli", "gol": "Gola", "gom": "Goan Konkani", "gon": "Gondi", "goo": "Gone Dau", "gop": "Yeretuar", "goq": "Gorap", "gor": "Gorontalo", "gos": "Gronings", "got": "Gothic", "gou": "Gavar", "gov": "Goo", "gow": "Gorowa", "gox": "Gobu", "goy": "Goundo", "goz": "Gozarkhani", "gpa": "Gupa-Abawa", "gpe": "Ghanaian Pidgin English", "gpn": "Taiap", "gqa": "Ga'anda", "gqi": "Guiqiong", "gqn": "Guana (Brazil)", "gqr": "Gor", "gqu": "Qau", "gra": "Rajput Garasia", "grb": "Grebo", "grc": "Ancient Greek (to 1453)", "grd": "Guruntum-Mbaaru", "grg": "Madi", "grh": "Gbiri-Niragu", "gri": "Ghari", "grj": "Southern Grebo", "grk": "Greek languages", "grm": "Kota Marudu Talantang", "gro": "Groma", "grq": "Gorovu", "grr": "Taznatit", "grs": "Gresi", "grt": "Garo", "gru": "Kistane", "grv": "Central Grebo", "grw": "Gweda", "grx": "Guriaso", "gry": "Barclayville Grebo", "grz": "Guramalum", "gse": "Ghanaian Sign Language", "gsg": "German Sign Language", "gsl": "Gusilay", "gsm": "Guatemalan Sign Language", "gsn": "Nema; Gusan", "gso": "Southwest Gbaya", "gsp": "Wasembo", "gss": "Greek Sign Language", "gsw": "Swiss German; Alemannic; Alsatian", "gta": "Guató", "gtu": "Aghu-Tharnggala", "gu": "Gujarati", "gua": "Shiki", "gub": "Guajajára", "guc": "Wayuu", "gud": "Yocoboué Dida", "gue": "Gurindji", "guf": "Gupapuyngu", "gug": "Paraguayan Guaraní", "guh": "Guahibo", "gui": "Eastern Bolivian Guaraní", "guk": "Gumuz", "gul": "Sea Island Creole English", "gum": "Guambiano", "gun": "Mbyá Guaraní", "guo": "Guayabero", "gup": "Gunwinggu", "guq": "Aché", "gur": "Farefare", "gus": "Guinean Sign Language", "gut": "Maléku Jaíka", "guu": "Yanomamö", "guw": "Gun", "gux": "Gourmanchéma", "guz": "Gusii; Ekegusii", "gv": "Manx", "gva": "Guana (Paraguay)", "gvc": "Guanano", "gve": "Duwet", "gvf": "Golin", "gvj": "Guajá", "gvl": "Gulay", "gvm": "Gurmana", "gvn": "Kuku-Yalanji", "gvo": "Gavião Do Jiparaná", "gvp": "Pará Gavião", "gvr": "Gurung", "gvs": "Gumawana", "gvy": "Guyani", "gwa": "Mbato", "gwb": "Gwa", "gwc": "Gawri; Kalami", "gwd": "Gawwada", "gwe": "Gweno", "gwf": "Gowro", "gwg": "Moo", "gwi": "Gwichʼin", "gwj": "ǀGwi", "gwm": "Awngthim", "gwn": "Gwandara", "gwr": "Gwere", "gwt": "Gawar-Bati", "gwu": "Guwamu", "gww": "Kwini", "gwx": "Gua", "gxx": "Wè Southern", "gya": "Northwest Gbaya", "gyb": "Garus", "gyd": "Kayardild", "gye": "Gyem", "gyf": "Gungabula", "gyg": "Gbayi", "gyi": "Gyele", "gyl": "Gayil", "gym": "Ngäbere", "gyn": "Guyanese Creole English", "gyo": "Gyalsumdo", "gyr": "Guarayu", "gyy": "Gunya", "gyz": "Geji; Gyaazi", "gza": "Ganza", "gzi": "Gazi", "gzn": "Gane", "ha": "Hausa", "haa": "Han", "hab": "Hanoi Sign Language", "hac": "Gurani", "had": "Hatam", "hae": "Eastern Oromo", "haf": "Haiphong Sign Language", "hag": "Hanga", "hah": "Hahon", "hai": "Haida", "haj": "Hajong", "hak": "Hakka Chinese", "hal": "Halang", "ham": "Hewa", "han": "Hangaza", "hao": "Hakö", "hap": "Hupla", "haq": "Ha", "har": "Harari", "has": "Haisla", "hav": "Havu", "haw": "Hawaiian", "hax": "Southern Haida", "hay": "Haya", "haz": "Hazaragi", "hba": "Hamba", "hbb": "Huba", "hbn": "Heiban", "hbo": "Ancient Hebrew", "hbu": "Habu", "hca": "Andaman Creole Hindi", "hch": "Huichol", "hdn": "Northern Haida", "hds": "Honduras Sign Language", "hdy": "Hadiyya", "he": "Hebrew", "hea": "Northern Qiandong Miao", "hed": "Herdé", "heg": "Helong", "heh": "Hehe", "hei": "Heiltsuk", "hem": "Hemba", "hgm": "Haiǁom", "hgw": "Haigwai", "hhi": "Hoia Hoia", "hhr": "Kerak", "hhy": "Hoyahoya", "hi": "Hindi", "hia": "Lamang", "hib": "Hibito", "hid": "Hidatsa", "hif": "Fiji Hindi", "hig": "Kamwe", "hih": "Pamosu", "hii": "Hinduri", "hij": "Hijuk", "hik": "Seit-Kaitetu", "hil": "Hiligaynon", "him": "Himachali languages; Western Pahari languages", "hio": "Tsoa", "hir": "Himarimã", "hit": "Hittite", "hiw": "Hiw", "hix": "Hixkaryána", "hji": "Haji", "hka": "Kahe", "hke": "Hunde", "hkh": "Khah; Poguli", "hkk": "Hunjara-Kaina Ke", "hkn": "Mel-Khaonh", "hks": "Hong Kong Sign Language; Heung Kong Sau Yue", "hla": "Halia", "hlb": "Halbi", "hld": "Halang Doan", "hle": "Hlersu", "hlt": "Matu Chin", "hlu": "Hieroglyphic Luwian", "hma": "Southern Mashan Hmong; Southern Mashan Miao", "hmb": "Humburi Senni Songhay", "hmc": "Central Huishui Hmong; Central Huishui Miao", "hmd": "Large Flowery Miao; A-hmaos; Da-Hua Miao", "hme": "Eastern Huishui Hmong; Eastern Huishui Miao", "hmf": "Hmong Don", "hmg": "Southwestern Guiyang Hmong", "hmh": "Southwestern Huishui Hmong; Southwestern Huishui Miao", "hmi": "Northern Huishui Hmong; Northern Huishui Miao", "hmj": "Ge; Gejia", "hmk": "Maek", "hml": "Luopohe Hmong; Luopohe Miao", "hmm": "Central Mashan Hmong; Central Mashan Miao", "hmn": "Hmong; Mong", "hmp": "Northern Mashan Hmong; Northern Mashan Miao", "hmq": "Eastern Qiandong Miao", "hmr": "Hmar", "hms": "Southern Qiandong Miao", "hmt": "Hamtai", "hmu": "Hamap", "hmv": "Hmong Dô", "hmw": "Western Mashan Hmong; Western Mashan Miao", "hmx": "Hmong-Mien languages", "hmy": "Southern Guiyang Hmong; Southern Guiyang Miao", "hmz": "Hmong Shua; Sinicized Miao", "hna": "Mina (Cameroon)", "hnd": "Southern Hindko", "hne": "Chhattisgarhi", "hng": "Hungu", "hnh": "ǁAni", "hni": "Hani", "hnj": "Hmong Njua; Mong Leng; Mong Njua", "hnn": "Hanunoo", "hno": "Northern Hindko", "hns": "Caribbean Hindustani", "hnu": "Hung", "ho": "Hiri Motu", "hoa": "Hoava", "hob": "Mari (Madang Province)", "hoc": "Ho", "hod": "Holma", "hoe": "Horom", "hoh": "Hobyót", "hoi": "Holikachuk", "hoj": "Hadothi; Haroti", "hok": "Hokan languages", "hol": "Holu", "hom": "Homa", "hoo": "Holoholo", "hop": "Hopi", "hor": "Horo", "hos": "Ho Chi Minh City Sign Language", "hot": "Hote; Malê", "hov": "Hovongan", "how": "Honi", "hoy": "Holiya", "hoz": "Hozo", "hpo": "Hpon", "hps": "Hawai'i Sign Language (HSL); Hawai'i Pidgin Sign Language", "hr": "Croatian", "hra": "Hrangkhol", "hrc": "Niwer Mil", "hre": "Hre", "hrk": "Haruku", "hrm": "Horned Miao", "hro": "Haroi", "hrp": "Nhirrpi", "hrt": "Hértevin", "hru": "Hruso", "hrw": "Warwar Feni", "hrx": "Hunsrik", "hrz": "Harzani", "hsb": "Upper Sorbian", "hsh": "Hungarian Sign Language", "hsl": "Hausa Sign Language", "hsn": "Xiang Chinese", "hss": "Harsusi", "ht": "Haitian; Haitian Creole", "hti": "Hoti", "hto": "Minica Huitoto", "hts": "Hadza", "htu": "Hitu", "htx": "Middle Hittite", "hu": "Hungarian", "hub": "Huambisa", "huc": "ǂHua; ǂʼAmkhoe", "hud": "Huaulu", "hue": "San Francisco Del Mar Huave", "huf": "Humene", "hug": "Huachipaeri", "huh": "Huilliche", "hui": "Huli", "huj": "Northern Guiyang Hmong; Northern Guiyang Miao", "huk": "Hulung", "hul": "Hula", "hum": "Hungana", "huo": "Hu", "hup": "Hupa", "huq": "Tsat", "hur": "Halkomelem", "hus": "Huastec", "hut": "Humla", "huu": "Murui Huitoto", "huv": "San Mateo Del Mar Huave", "huw": "Hukumina", "hux": "Nüpode Huitoto", "huy": "Hulaulá", "huz": "Hunzib", "hvc": "Haitian Vodoun Culture Language", "hve": "San Dionisio Del Mar Huave", "hvk": "Haveke", "hvn": "Sabu", "hvv": "Santa María Del Mar Huave", "hwa": "Wané", "hwc": "Hawai'i Creole English; Hawai'i Pidgin", "hwo": "Hwana", "hy": "Armenian", "hya": "Hya", "hyw": "Western Armenian", "hyx": "Armenian (family)", "hz": "Herero", "ia": "Interlingua (International Auxiliary Language Association)", "iai": "Iaai", "ian": "Iatmul", "iar": "Purari", "iba": "Iban", "ibb": "Ibibio", "ibd": "Iwaidja", "ibe": "Akpes", "ibg": "Ibanag", "ibh": "Bih", "ibl": "Ibaloi", "ibm": "Agoi", "ibn": "Ibino", "ibr": "Ibuoro", "ibu": "Ibu", "iby": "Ibani", "ica": "Ede Ica", "ich": "Etkywan", "icl": "Icelandic Sign Language", "icr": "Islander Creole English", "id": "Indonesian", "ida": "Idakho-Isukha-Tiriki; Luidakho-Luisukha-Lutirichi", "idb": "Indo-Portuguese", "idc": "Idon; Ajiya", "idd": "Ede Idaca", "ide": "Idere", "idi": "Idi", "idr": "Indri", "ids": "Idesa", "idt": "Idaté", "idu": "Idoma", "ie": "Interlingue; Occidental", "ifa": "Amganad Ifugao", "ifb": "Batad Ifugao; Ayangan Ifugao", "ife": "Ifè", "iff": "Ifo", "ifk": "Tuwali Ifugao", "ifm": "Teke-Fuumu", "ifu": "Mayoyao Ifugao", "ify": "Keley-I Kallahan", "ig": "Igbo", "igb": "Ebira", "ige": "Igede", "igg": "Igana", "igl": "Igala", "igm": "Kanggape", "ign": "Ignaciano", "igo": "Isebe", "igs": "Interglossa", "igw": "Igwe", "ihb": "Iha Based Pidgin", "ihi": "Ihievbe", "ihp": "Iha", "ihw": "Bidhawal", "ii": "Sichuan Yi; Nuosu", "iin": "Thiin", "iir": "Indo-Iranian languages", "ijc": "Izon", "ije": "Biseni", "ijj": "Ede Ije", "ijn": "Kalabari", "ijo": "Ijo languages", "ijs": "Southeast Ijo", "ik": "Inupiaq", "ike": "Eastern Canadian Inuktitut", "iki": "Iko", "ikk": "Ika", "ikl": "Ikulu", "iko": "Olulumo-Ikom", "ikp": "Ikpeshi", "ikr": "Ikaranggal", "iks": "Inuit Sign Language", "ikt": "Inuinnaqtun; Western Canadian Inuktitut", "ikv": "Iku-Gora-Ankwa", "ikw": "Ikwere", "ikx": "Ik", "ikz": "Ikizu", "ila": "Ile Ape", "ilb": "Ila", "ilg": "Garig-Ilgar", "ili": "Ili Turki", "ilk": "Ilongot", "ilm": "Iranun (Malaysia)", "ilo": "Iloko", "ilp": "Iranun (Philippines)", "ils": "International Sign", "ilu": "Ili'uun", "ilv": "Ilue", "ima": "Mala Malasar", "imi": "Anamgura", "iml": "Miluk", "imn": "Imonda", "imo": "Imbongu", "imr": "Imroing", "ims": "Marsian", "imt": "Imotong", "imy": "Milyan", "inb": "Inga", "inc": "Indic languages", "ine": "Indo-European languages", "ing": "Degexit'an", "inh": "Ingush", "inj": "Jungle Inga", "inl": "Indonesian Sign Language", "inm": "Minaean", "inn": "Isinai", "ino": "Inoke-Yate", "inp": "Iñapari", "ins": "Indian Sign Language", "int": "Intha", "inz": "Ineseño", "io": "Ido", "ior": "Inor", "iou": "Tuma-Irumu", "iow": "Iowa-Oto", "ipi": "Ipili", "ipo": "Ipiko", "iqu": "Iquito", "iqw": "Ikwo", "ira": "Iranian languages", "ire": "Iresim", "irh": "Irarutu", "iri": "Rigwe; Irigwe", "irk": "Iraqw", "irn": "Irántxe", "iro": "Iroquoian languages", "irr": "Ir", "iru": "Irula", "irx": "Kamberau", "iry": "Iraya", "is": "Icelandic", "isa": "Isabi", "isc": "Isconahua", "isd": "Isnag", "ise": "Italian Sign Language", "isg": "Irish Sign Language", "ish": "Esan", "isi": "Nkem-Nkum", "isk": "Ishkashimi", "ism": "Masimasi", "isn": "Isanzu", "iso": "Isoko", "isr": "Israeli Sign Language", "ist": "Istriot", "isu": "Isu (Menchum Division)", "it": "Italian", "itb": "Binongan Itneg", "itc": "Italic languages", "itd": "Southern Tidung", "ite": "Itene", "iti": "Inlaod Itneg", "itk": "Judeo-Italian", "itl": "Itelmen", "itm": "Itu Mbon Uzo", "ito": "Itonama", "itr": "Iteri", "its": "Isekiri", "itt": "Maeng Itneg", "itv": "Itawit", "itw": "Ito", "itx": "Itik", "ity": "Moyadan Itneg", "itz": "Itzá", "iu": "Inuktitut", "ium": "Iu Mien", "ivb": "Ibatan", "ivv": "Ivatan", "iwk": "I-Wak", "iwm": "Iwam", "iwo": "Iwur", "iws": "Sepik Iwam", "ixc": "Ixcatec", "ixl": "Ixil", "iya": "Iyayu", "iyo": "Mesaka", "iyx": "Yaka (Congo)", "izh": "Ingrian", "izr": "Izere", "izz": "Izii", "ja": "Japanese", "jaa": "Jamamadí", "jab": "Hyam", "jac": "Popti'; Jakalteko", "jad": "Jahanka", "jae": "Yabem", "jaf": "Jara", "jah": "Jah Hut", "jaj": "Zazao", "jak": "Jakun", "jal": "Yalahatan", "jam": "Jamaican Creole English", "jan": "Jandai", "jao": "Yanyuwa", "jaq": "Yaqay", "jas": "New Caledonian Javanese", "jat": "Jakati", "jau": "Yaur", "jax": "Jambi Malay", "jay": "Yan-nhangu; Nhangu", "jaz": "Jawe", "jbe": "Judeo-Berber", "jbi": "Badjiri", "jbj": "Arandai", "jbk": "Barikewa", "jbm": "Bijim", "jbn": "Nafusi", "jbo": "Lojban", "jbr": "Jofotek-Bromnya", "jbt": "Jabutí", "jbu": "Jukun Takum", "jbw": "Yawijibaya", "jcs": "Jamaican Country Sign Language", "jct": "Krymchak", "jda": "Jad", "jdg": "Jadgali", "jdt": "Judeo-Tat", "jeb": "Jebero", "jee": "Jerung", "jeh": "Jeh", "jei": "Yei", "jek": "Jeri Kuo", "jel": "Yelmek", "jen": "Dza", "jer": "Jere", "jet": "Manem", "jeu": "Jonkor Bourmataguil", "jgb": "Ngbee", "jge": "Judeo-Georgian", "jgk": "Gwak", "jgo": "Ngomba", "jhi": "Jehai", "jhs": "Jhankot Sign Language", "jia": "Jina", "jib": "Jibu", "jic": "Tol", "jid": "Bu (Kaduna State)", "jie": "Jilbe", "jig": "Jingulu; Djingili", "jih": "sTodsde; Shangzhai", "jii": "Jiiddu", "jil": "Jilim", "jim": "Jimi (Cameroon)", "jio": "Jiamao", "jiq": "Guanyinqiao; Lavrung", "jit": "Jita", "jiu": "Youle Jinuo", "jiv": "Shuar", "jiy": "Buyuan Jinuo", "jje": "Jejueo", "jjr": "Bankal", "jka": "Kaera", "jkm": "Mobwa Karen", "jko": "Kubo", "jkp": "Paku Karen", "jkr": "Koro (India)", "jks": "Amami Koniya Sign Language", "jku": "Labir", "jle": "Ngile", "jls": "Jamaican Sign Language", "jma": "Dima", "jmb": "Zumbun", "jmc": "Machame", "jmd": "Yamdena", "jmi": "Jimi (Nigeria)", "jml": "Jumli", "jmn": "Makuri Naga", "jmr": "Kamara", "jms": "Mashi (Nigeria)", "jmw": "Mouwase", "jmx": "Western Juxtlahuaca Mixtec", "jna": "Jangshung", "jnd": "Jandavra", "jng": "Yangman", "jni": "Janji", "jnj": "Yemsa", "jnl": "Rawat", "jns": "Jaunsari", "job": "Joba", "jod": "Wojenaka", "jog": "Jogi", "jor": "Jorá", "jos": "Jordanian Sign Language", "jow": "Jowulu", "jpa": "Jewish Palestinian Aramaic", "jpr": "Judeo-Persian", "jpx": "Japanese (family)", "jqr": "Jaqaru", "jra": "Jarai", "jrb": "Judeo-Arabic", "jrr": "Jiru", "jrt": "Jakattoe", "jru": "Japrería", "jsl": "Japanese Sign Language", "jua": "Júma", "jub": "Wannu", "juc": "Jurchen", "jud": "Worodougou", "juh": "Hõne", "jui": "Ngadjuri", "juk": "Wapan", "jul": "Jirel", "jum": "Jumjum", "jun": "Juang", "juo": "Jiba", "jup": "Hupdë", "jur": "Jurúna", "jus": "Jumla Sign Language", "jut": "Jutish", "juu": "Ju", "juw": "Wãpha", "juy": "Juray", "jv": "Javanese", "jvd": "Javindo", "jvn": "Caribbean Javanese", "jwi": "Jwira-Pepesa", "jya": "Jiarong", "jye": "Judeo-Yemeni Arabic", "jyy": "Jaya", "ka": "Georgian", "kaa": "Kara-Kalpak; Karakalpak", "kab": "Kabyle", "kac": "Kachin; Jingpho", "kad": "Adara", "kae": "Ketangalan", "kaf": "Katso", "kag": "Kajaman", "kah": "Kara (Central African Republic)", "kai": "Karekare", "kaj": "Jju", "kak": "Kalanguya; Kayapa Kallahan", "kam": "Kamba (Kenya)", "kao": "Xaasongaxango", "kap": "Bezhta", "kaq": "Capanahua", "kar": "Karen languages", "kav": "Katukína", "kaw": "Kawi", "kax": "Kao", "kay": "Kamayurá", "kba": "Kalarko", "kbb": "Kaxuiâna", "kbc": "Kadiwéu", "kbd": "Kabardian", "kbe": "Kanju", "kbg": "Khamba", "kbh": "Camsá", "kbi": "Kaptiau", "kbj": "Kari", "kbk": "Grass Koiari", "kbl": "Kanembu", "kbm": "Iwal", "kbn": "Kare (Central African Republic)", "kbo": "Keliko", "kbp": "Kabiyè", "kbq": "Kamano", "kbr": "Kafa", "kbs": "Kande", "kbt": "Abadi", "kbu": "Kabutra", "kbv": "Dera (Indonesia)", "kbw": "Kaiep", "kbx": "Ap Ma", "kby": "Manga Kanuri", "kbz": "Duhwa", "kca": "Khanty", "kcb": "Kawacha", "kcc": "Lubila", "kcd": "Ngkâlmpw Kanum", "kce": "Kaivi", "kcf": "Ukaan", "kcg": "Tyap", "kch": "Vono", "kci": "Kamantan", "kcj": "Kobiana", "kck": "Kalanga", "kcl": "Kela (Papua New Guinea); Kala", "kcm": "Gula (Central African Republic)", "kcn": "Nubi", "kco": "Kinalakna", "kcp": "Kanga", "kcq": "Kamo", "kcr": "Katla", "kcs": "Koenoem", "kct": "Kaian", "kcu": "Kami (Tanzania)", "kcv": "Kete", "kcw": "Kabwari", "kcx": "Kachama-Ganjule", "kcy": "Korandje", "kcz": "Konongo", "kda": "Worimi", "kdc": "Kutu", "kdd": "Yankunytjatjara", "kde": "Makonde", "kdf": "Mamusi", "kdg": "Seba", "kdh": "Tem", "kdi": "Kumam", "kdj": "Karamojong", "kdk": "Numèè; Kwényi", "kdl": "Tsikimba", "kdm": "Kagoma", "kdn": "Kunda", "kdo": "Kordofanian languages", "kdp": "Kaningdon-Nindem", "kdq": "Koch", "kdr": "Karaim", "kdt": "Kuy", "kdu": "Kadaru", "kdw": "Koneraw", "kdx": "Kam", "kdy": "Keder; Keijar", "kdz": "Kwaja", "kea": "Kabuverdianu", "keb": "Kélé", "kec": "Keiga", "ked": "Kerewe", "kee": "Eastern Keres", "kef": "Kpessi", "keg": "Tese", "keh": "Keak", "kei": "Kei", "kej": "Kadar", "kek": "Kekchí", "kel": "Kela (Democratic Republic of Congo)", "kem": "Kemak", "ken": "Kenyang", "keo": "Kakwa", "kep": "Kaikadi", "keq": "Kamar", "ker": "Kera", "kes": "Kugbo", "ket": "Ket", "keu": "Akebu", "kev": "Kanikkaran", "kew": "West Kewa", "kex": "Kukna", "key": "Kupia", "kez": "Kukele", "kfa": "Kodava", "kfb": "Northwestern Kolami", "kfc": "Konda-Dora", "kfd": "Korra Koraga", "kfe": "Kota (India)", "kff": "Koya", "kfg": "Kudiya", "kfh": "Kurichiya", "kfi": "Kannada Kurumba", "kfj": "Kemiehua", "kfk": "Kinnauri", "kfl": "Kung", "kfm": "Khunsari", "kfn": "Kuk", "kfo": "Koro (Côte d'Ivoire)", "kfp": "Korwa", "kfq": "Korku", "kfr": "Kachhi; Kutchi", "kfs": "Bilaspuri", "kft": "Kanjari", "kfu": "Katkari", "kfv": "Kurmukar", "kfw": "Kharam Naga", "kfx": "Kullu Pahari", "kfy": "Kumaoni", "kfz": "Koromfé", "kg": "Kongo", "kga": "Koyaga", "kgb": "Kawe", "kge": "Komering", "kgf": "Kube", "kgg": "Kusunda", "kgi": "Selangor Sign Language", "kgj": "Gamale Kham", "kgk": "Kaiwá", "kgl": "Kunggari", "kgm": "Karipúna", "kgn": "Karingani", "kgo": "Krongo", "kgp": "Kaingang", "kgq": "Kamoro", "kgr": "Abun", "kgs": "Kumbainggar", "kgt": "Somyev", "kgu": "Kobol", "kgv": "Karas", "kgw": "Karon Dori", "kgx": "Kamaru", "kgy": "Kyerung", "kha": "Khasi", "khb": "Lü", "khc": "Tukang Besi North", "khd": "Bädi Kanum", "khe": "Korowai", "khf": "Khuen", "khg": "Khams Tibetan", "khh": "Kehu", "khi": "Khoisan languages", "khj": "Kuturmi", "khk": "Halh Mongolian", "khl": "Lusi", "khn": "Khandesi", "kho": "Khotanese; Sakan", "khp": "Kapori; Kapauri", "khq": "Koyra Chiini Songhay", "khr": "Kharia", "khs": "Kasua", "kht": "Khamti", "khu": "Nkhumbi", "khv": "Khvarshi", "khw": "Khowar", "khx": "Kanu", "khy": "Kele (Democratic Republic of Congo)", "khz": "Keapara", "ki": "Kikuyu; Gikuyu", "kia": "Kim", "kib": "Koalib", "kic": "Kickapoo", "kid": "Koshin", "kie": "Kibet", "kif": "Eastern Parbate Kham", "kig": "Kimaama; Kimaghima", "kih": "Kilmeri", "kii": "Kitsai", "kij": "Kilivila", "kil": "Kariya", "kim": "Karagas", "kio": "Kiowa", "kip": "Sheshi Kham", "kiq": "Kosadle; Kosare", "kis": "Kis", "kit": "Agob", "kiu": "Kirmanjki (individual language)", "kiv": "Kimbu", "kiw": "Northeast Kiwai", "kix": "Khiamniungan Naga", "kiy": "Kirikiri", "kiz": "Kisi", "kj": "Kuanyama; Kwanyama", "kja": "Mlap", "kjb": "Q'anjob'al; Kanjobal", "kjc": "Coastal Konjo", "kjd": "Southern Kiwai", "kje": "Kisar", "kjg": "Khmu", "kjh": "Khakas", "kji": "Zabana", "kjj": "Khinalugh", "kjk": "Highland Konjo", "kjl": "Western Parbate Kham", "kjm": "Kháng", "kjn": "Kunjen", "kjo": "Harijan Kinnauri", "kjp": "Pwo Eastern Karen", "kjq": "Western Keres", "kjr": "Kurudu", "kjs": "East Kewa", "kjt": "Phrae Pwo Karen", "kju": "Kashaya", "kjv": "Kaikavian Literary Language", "kjx": "Ramopa", "kjy": "Erave", "kjz": "Bumthangkha", "kk": "Kazakh", "kka": "Kakanda", "kkb": "Kwerisa", "kkc": "Odoodee", "kkd": "Kinuku", "kke": "Kakabe", "kkf": "Kalaktang Monpa", "kkg": "Mabaka Valley Kalinga", "kkh": "Khün", "kki": "Kagulu", "kkj": "Kako", "kkk": "Kokota", "kkl": "Kosarek Yale", "kkm": "Kiong", "kkn": "Kon Keu", "kko": "Karko", "kkp": "Gugubera; Koko-Bera", "kkq": "Kaeku", "kkr": "Kir-Balar", "kks": "Giiwo", "kkt": "Koi", "kku": "Tumi", "kkv": "Kangean", "kkw": "Teke-Kukuya", "kkx": "Kohin", "kky": "Guugu Yimidhirr; Guguyimidjir", "kkz": "Kaska", "kl": "Kalaallisut; Greenlandic", "kla": "Klamath-Modoc", "klb": "Kiliwa", "klc": "Kolbila", "kld": "Gamilaraay", "kle": "Kulung (Nepal)", "klf": "Kendeje", "klg": "Tagakaulo", "klh": "Weliki", "kli": "Kalumpang", "klj": "Khalaj", "klk": "Kono (Nigeria)", "kll": "Kagan Kalagan", "klm": "Migum", "kln": "Kalenjin", "klo": "Kapya", "klp": "Kamasa", "klq": "Rumu", "klr": "Khaling", "kls": "Kalasha", "klt": "Nukna", "klu": "Klao", "klv": "Maskelynes", "klw": "Tado; Lindu", "klx": "Koluwawa", "kly": "Kalao", "klz": "Kabola", "km": "Khmer; Central Khmer", "kma": "Konni", "kmb": "Kimbundu", "kmc": "Southern Dong", "kmd": "Majukayang Kalinga", "kme": "Bakole", "kmf": "Kare (Papua New Guinea)", "kmg": "Kâte", "kmh": "Kalam", "kmi": "Kami (Nigeria)", "kmj": "Kumarbhag Paharia", "kmk": "Limos Kalinga", "kml": "Tanudan Kalinga", "kmm": "Kom (India)", "kmn": "Awtuw", "kmo": "Kwoma", "kmp": "Gimme", "kmq": "Kwama", "kmr": "Northern Kurdish", "kms": "Kamasau", "kmt": "Kemtuik", "kmu": "Kanite", "kmv": "Karipúna Creole French", "kmw": "Komo (Democratic Republic of Congo)", "kmx": "Waboda", "kmy": "Koma", "kmz": "Khorasani Turkish", "kn": "Kannada", "kna": "Dera (Nigeria)", "knb": "Lubuagan Kalinga", "knc": "Central Kanuri", "knd": "Konda", "kne": "Kankanaey", "knf": "Mankanya", "kng": "Koongo", "kni": "Kanufi", "knj": "Western Kanjobal", "knk": "Kuranko", "knl": "Keninjal", "knm": "Kanamarí", "knn": "Konkani (individual language)", "kno": "Kono (Sierra Leone)", "knp": "Kwanja", "knq": "Kintaq", "knr": "Kaningra", "kns": "Kensiu", "knt": "Panoan Katukína", "knu": "Kono (Guinea)", "knv": "Tabo", "knw": "Kung-Ekoka", "knx": "Kendayan; Salako", "kny": "Kanyok", "knz": "Kalamsé", "ko": "Korean", "koa": "Konomala", "koc": "Kpati", "kod": "Kodi", "koe": "Kacipo-Bale Suri", "kof": "Kubi", "kog": "Cogui; Kogi", "koh": "Koyo", "koi": "Komi-Permyak", "kok": "Konkani (macrolanguage)", "kol": "Kol (Papua New Guinea)", "koo": "Konzo", "kop": "Waube", "koq": "Kota (Gabon)", "kos": "Kosraean", "kot": "Lagwan", "kou": "Koke", "kov": "Kudu-Camo", "kow": "Kugama", "koy": "Koyukon", "koz": "Korak", "kpa": "Kutto", "kpb": "Mullu Kurumba", "kpc": "Curripaco", "kpd": "Koba", "kpe": "Kpelle", "kpf": "Komba", "kpg": "Kapingamarangi", "kph": "Kplang", "kpi": "Kofei", "kpj": "Karajá", "kpk": "Kpan", "kpl": "Kpala", "kpm": "Koho", "kpn": "Kepkiriwát", "kpo": "Ikposo", "kpq": "Korupun-Sela", "kpr": "Korafe-Yegha", "kps": "Tehit", "kpt": "Karata", "kpu": "Kafoa", "kpv": "Komi-Zyrian", "kpw": "Kobon", "kpx": "Mountain Koiali", "kpy": "Koryak", "kpz": "Kupsabiny", "kqa": "Mum", "kqb": "Kovai", "kqc": "Doromu-Koki", "kqd": "Koy Sanjaq Surat", "kqe": "Kalagan", "kqf": "Kakabai", "kqg": "Khe", "kqh": "Kisankasa", "kqi": "Koitabu", "kqj": "Koromira", "kqk": "Kotafon Gbe", "kql": "Kyenele", "kqm": "Khisa", "kqn": "Kaonde", "kqo": "Eastern Krahn", "kqp": "Kimré", "kqq": "Krenak", "kqr": "Kimaragang", "kqs": "Northern Kissi", "kqt": "Klias River Kadazan", "kqu": "Seroa", "kqv": "Okolod", "kqw": "Kandas", "kqx": "Mser", "kqy": "Koorete", "kqz": "Korana", "kr": "Kanuri", "kra": "Kumhali", "krb": "Karkin", "krc": "Karachay-Balkar", "krd": "Kairui-Midiki", "kre": "Panará", "krf": "Koro (Vanuatu)", "krh": "Kurama", "kri": "Krio", "krj": "Kinaray-A", "krk": "Kerek", "krl": "Karelian", "krn": "Sapo", "kro": "Kru languages", "krp": "Korop", "krr": "Krung", "krs": "Gbaya (Sudan)", "krt": "Tumari Kanuri", "kru": "Kurukh", "krv": "Kavet", "krw": "Western Krahn", "krx": "Karon", "kry": "Kryts", "krz": "Sota Kanum", "ks": "Kashmiri", "ksa": "Shuwa-Zamani", "ksb": "Shambala", "ksc": "Southern Kalinga", "ksd": "Kuanua", "kse": "Kuni", "ksf": "Bafia", "ksg": "Kusaghe", "ksh": "Kölsch", "ksi": "Krisa; I'saka", "ksj": "Uare", "ksk": "Kansa", "ksl": "Kumalu", "ksm": "Kumba", "ksn": "Kasiguranin", "kso": "Kofa", "ksp": "Kaba", "ksq": "Kwaami", "ksr": "Borong", "kss": "Southern Kisi", "kst": "Winyé", "ksu": "Khamyang", "ksv": "Kusu", "ksw": "S'gaw Karen", "ksx": "Kedang", "ksy": "Kharia Thar", "ksz": "Kodaku", "kta": "Katua", "ktb": "Kambaata", "ktc": "Kholok", "ktd": "Kokata; Kukatha", "kte": "Nubri", "ktf": "Kwami", "ktg": "Kalkutung", "kth": "Karanga", "kti": "North Muyu", "ktj": "Plapo Krumen", "ktk": "Kaniet", "ktl": "Koroshi", "ktm": "Kurti", "ktn": "Karitiâna", "kto": "Kuot", "ktp": "Kaduo", "ktq": "Katabaga", "kts": "South Muyu", "ktt": "Ketum", "ktu": "Kituba (Democratic Republic of Congo)", "ktv": "Eastern Katu", "ktw": "Kato", "ktx": "Kaxararí", "kty": "Kango (Bas-Uélé District)", "ktz": "Juǀʼhoan; Juǀʼhoansi", "ku": "Kurdish", "kub": "Kutep", "kuc": "Kwinsu", "kud": "'Auhelawa", "kue": "Kuman (Papua New Guinea)", "kuf": "Western Katu", "kug": "Kupa", "kuh": "Kushi", "kui": "Kuikúro-Kalapálo; Kalapalo", "kuj": "Kuria", "kuk": "Kepo'", "kul": "Kulere", "kum": "Kumyk", "kun": "Kunama", "kuo": "Kumukio", "kup": "Kunimaipa", "kuq": "Karipuna", "kus": "Kusaal", "kut": "Kutenai", "kuu": "Upper Kuskokwim", "kuv": "Kur", "kuw": "Kpagua", "kux": "Kukatja", "kuy": "Kuuku-Ya'u", "kuz": "Kunza", "kv": "Komi", "kva": "Bagvalal", "kvb": "Kubu", "kvc": "Kove", "kvd": "Kui (Indonesia)", "kve": "Kalabakan", "kvf": "Kabalai", "kvg": "Kuni-Boazi", "kvh": "Komodo", "kvi": "Kwang", "kvj": "Psikye", "kvk": "Korean Sign Language", "kvl": "Kayaw", "kvm": "Kendem", "kvn": "Border Kuna", "kvo": "Dobel", "kvp": "Kompane", "kvq": "Geba Karen", "kvr": "Kerinci", "kvt": "Lahta Karen; Lahta", "kvu": "Yinbaw Karen", "kvv": "Kola", "kvw": "Wersing", "kvx": "Parkari Koli", "kvy": "Yintale Karen; Yintale", "kvz": "Tsakwambo; Tsaukambo", "kw": "Cornish", "kwa": "Dâw", "kwb": "Kwa", "kwc": "Likwala", "kwd": "Kwaio", "kwe": "Kwerba", "kwf": "Kwara'ae", "kwg": "Sara Kaba Deme", "kwh": "Kowiai", "kwi": "Awa-Cuaiquer", "kwj": "Kwanga", "kwk": "Kwakiutl", "kwl": "Kofyar", "kwm": "Kwambi", "kwn": "Kwangali", "kwo": "Kwomtari", "kwp": "Kodia", "kwr": "Kwer", "kws": "Kwese", "kwt": "Kwesten", "kwu": "Kwakum", "kwv": "Sara Kaba Náà", "kww": "Kwinti", "kwx": "Khirwar", "kwy": "San Salvador Kongo", "kwz": "Kwadi", "kxa": "Kairiru", "kxb": "Krobu", "kxc": "Konso; Khonso", "kxd": "Brunei", "kxf": "Manumanaw Karen; Manumanaw", "kxh": "Karo (Ethiopia)", "kxi": "Keningau Murut", "kxj": "Kulfa", "kxk": "Zayein Karen", "kxm": "Northern Khmer", "kxn": "Kanowit-Tanjong Melanau", "kxo": "Kanoé", "kxp": "Wadiyara Koli", "kxq": "Smärky Kanum", "kxr": "Koro (Papua New Guinea)", "kxs": "Kangjia", "kxt": "Koiwat", "kxv": "Kuvi", "kxw": "Konai", "kxx": "Likuba", "kxy": "Kayong", "kxz": "Kerewo", "ky": "Kirghiz; Kyrgyz", "kya": "Kwaya", "kyb": "Butbut Kalinga", "kyc": "Kyaka", "kyd": "Karey", "kye": "Krache", "kyf": "Kouya", "kyg": "Keyagana", "kyh": "Karok", "kyi": "Kiput", "kyj": "Karao", "kyk": "Kamayo", "kyl": "Kalapuya", "kym": "Kpatili", "kyn": "Northern Binukidnon", "kyo": "Kelon", "kyp": "Kang", "kyq": "Kenga", "kyr": "Kuruáya", "kys": "Baram Kayan", "kyt": "Kayagar", "kyu": "Western Kayah", "kyv": "Kayort", "kyw": "Kudmali", "kyx": "Rapoisi", "kyy": "Kambaira", "kyz": "Kayabí", "kza": "Western Karaboro", "kzb": "Kaibobo", "kzc": "Bondoukou Kulango", "kzd": "Kadai", "kze": "Kosena", "kzf": "Da'a Kaili", "kzg": "Kikai", "kzi": "Kelabit", "kzk": "Kazukuru", "kzl": "Kayeli", "kzm": "Kais", "kzn": "Kokola", "kzo": "Kaningi", "kzp": "Kaidipang", "kzq": "Kaike", "kzr": "Karang", "kzs": "Sugut Dusun", "kzu": "Kayupulau", "kzv": "Komyandaret", "kzw": "Karirí-Xocó", "kzx": "Kamarian", "kzy": "Kango (Tshopo District)", "kzz": "Kalabra", "la": "Latin", "laa": "Southern Subanen", "lab": "Linear A", "lac": "Lacandon", "lad": "Ladino", "lae": "Pattani", "laf": "Lafofa", "lag": "Langi", "lah": "Lahnda", "lai": "Lambya", "laj": "Lango (Uganda)", "lal": "Lalia", "lam": "Lamba", "lan": "Laru", "lap": "Laka (Chad)", "laq": "Qabiao", "lar": "Larteh", "las": "Lama (Togo)", "lau": "Laba", "law": "Lauje", "lax": "Tiwa", "lay": "Lama Bai", "laz": "Aribwatsa", "lb": "Luxembourgish; Letzeburgesch", "lbb": "Label", "lbc": "Lakkia", "lbe": "Lak", "lbf": "Tinani", "lbg": "Laopang", "lbi": "La'bi", "lbj": "Ladakhi", "lbk": "Central Bontok", "lbl": "Libon Bikol", "lbm": "Lodhi", "lbn": "Rmeet", "lbo": "Laven", "lbq": "Wampar", "lbr": "Lohorung", "lbs": "Libyan Sign Language", "lbt": "Lachi", "lbu": "Labu", "lbv": "Lavatbura-Lamusong", "lbw": "Tolaki", "lbx": "Lawangan", "lby": "Lamalama; Lamu-Lamu", "lbz": "Lardil", "lcc": "Legenyem", "lcd": "Lola", "lce": "Loncong; Sekak", "lcf": "Lubu", "lch": "Luchazi", "lcl": "Lisela", "lcm": "Tungag", "lcp": "Western Lawa", "lcq": "Luhu", "lcs": "Lisabata-Nuniali", "lda": "Kla-Dan", "ldb": "Dũya", "ldd": "Luri", "ldg": "Lenyima", "ldh": "Lamja-Dengsa-Tola", "ldi": "Laari", "ldj": "Lemoro", "ldk": "Leelau", "ldl": "Kaan", "ldm": "Landoma", "ldn": "Láadan", "ldo": "Loo", "ldp": "Tso", "ldq": "Lufu", "lea": "Lega-Shabunda", "leb": "Lala-Bisa", "lec": "Leco", "led": "Lendu", "lee": "Lyélé", "lef": "Lelemi", "leh": "Lenje", "lei": "Lemio", "lej": "Lengola", "lek": "Leipon", "lel": "Lele (Democratic Republic of Congo)", "lem": "Nomaande", "len": "Lenca", "leo": "Leti (Cameroon)", "lep": "Lepcha", "leq": "Lembena", "ler": "Lenkau", "les": "Lese", "let": "Lesing-Gelimi; Amio-Gelimi", "leu": "Kara (Papua New Guinea)", "lev": "Lamma", "lew": "Ledo Kaili", "lex": "Luang", "ley": "Lemolang", "lez": "Lezghian", "lfa": "Lefa", "lfn": "Lingua Franca Nova", "lg": "Ganda; Luganda", "lga": "Lungga", "lgb": "Laghu", "lgg": "Lugbara", "lgh": "Laghuu", "lgi": "Lengilu", "lgk": "Lingarak; Neverver", "lgl": "Wala", "lgm": "Lega-Mwenga", "lgn": "T'apo; Opuuo", "lgo": "Lango (South Sudan)", "lgq": "Logba", "lgr": "Lengo", "lgt": "Pahi", "lgu": "Longgu", "lgz": "Ligenza", "lha": "Laha (Viet Nam)", "lhh": "Laha (Indonesia)", "lhi": "Lahu Shi", "lhl": "Lahul Lohar", "lhm": "Lhomi", "lhn": "Lahanan", "lhp": "Lhokpu", "lhs": "Mlahsö", "lht": "Lo-Toga", "lhu": "Lahu", "li": "Limburgan; Limburger; Limburgish", "lia": "West-Central Limba", "lib": "Likum", "lic": "Hlai", "lid": "Nyindrou", "lie": "Likila", "lif": "Limbu", "lig": "Ligbi", "lih": "Lihir", "lij": "Ligurian", "lik": "Lika", "lil": "Lillooet", "lio": "Liki", "lip": "Sekpele", "liq": "Libido", "lir": "Liberian English", "lis": "Lisu", "liu": "Logorik", "liv": "Liv", "liw": "Col", "lix": "Liabuku", "liy": "Banda-Bambari", "liz": "Libinza", "lja": "Golpa", "lje": "Rampi", "lji": "Laiyolo", "ljl": "Li'o", "ljp": "Lampung Api", "ljw": "Yirandali", "ljx": "Yuru", "lka": "Lakalei", "lkb": "Kabras; Lukabaras", "lkc": "Kucong", "lkd": "Lakondê", "lke": "Kenyi", "lkh": "Lakha", "lki": "Laki", "lkj": "Remun", "lkl": "Laeko-Libuat", "lkm": "Kalaamaya", "lkn": "Lakon; Vure", "lko": "Khayo; Olukhayo", "lkr": "Päri", "lks": "Kisa; Olushisa", "lkt": "Lakota", "lku": "Kungkari", "lky": "Lokoya", "lla": "Lala-Roba", "llb": "Lolo", "llc": "Lele (Guinea)", "lld": "Ladin", "lle": "Lele (Papua New Guinea)", "llf": "Hermit", "llg": "Lole", "llh": "Lamu", "lli": "Teke-Laali", "llj": "Ladji Ladji", "llk": "Lelak", "lll": "Lilau", "llm": "Lasalimu", "lln": "Lele (Chad)", "llp": "North Efate", "llq": "Lolak", "lls": "Lithuanian Sign Language", "llu": "Lau", "llx": "Lauan", "lma": "East Limba", "lmb": "Merei", "lmc": "Limilngan", "lmd": "Lumun", "lme": "Pévé", "lmf": "South Lembata", "lmg": "Lamogai", "lmh": "Lambichhong", "lmi": "Lombi", "lmj": "West Lembata", "lmk": "Lamkang", "lml": "Hano", "lmn": "Lambadi", "lmo": "Lombard", "lmp": "Limbum", "lmq": "Lamatuka", "lmr": "Lamalera", "lmu": "Lamenu", "lmv": "Lomaiviti", "lmw": "Lake Miwok", "lmx": "Laimbue", "lmy": "Lamboya", "ln": "Lingala", "lna": "Langbashe", "lnb": "Mbalanhu", "lnd": "Lundayeh; Lun Bawang", "lng": "Langobardic", "lnh": "Lanoh", "lni": "Daantanai'", "lnj": "Leningitij", "lnl": "South Central Banda", "lnm": "Langam", "lnn": "Lorediakarkar", "lns": "Lamnso'", "lnu": "Longuda", "lnw": "Lanima", "lnz": "Lonzo", "lo": "Lao", "loa": "Loloda", "lob": "Lobi", "loc": "Inonhan", "loe": "Saluan", "lof": "Logol", "log": "Logo", "loh": "Narim", "loi": "Loma (Côte d'Ivoire)", "loj": "Lou", "lok": "Loko", "lol": "Mongo", "lom": "Loma (Liberia)", "lon": "Malawi Lomwe", "loo": "Lombo", "lop": "Lopa", "loq": "Lobala", "lor": "Téén", "los": "Loniu", "lot": "Otuho", "lou": "Louisiana Creole", "lov": "Lopi", "low": "Tampias Lobu", "lox": "Loun", "loy": "Loke", "loz": "Lozi", "lpa": "Lelepa", "lpe": "Lepki", "lpn": "Long Phuri Naga", "lpo": "Lipo", "lpx": "Lopit", "lqr": "Logir", "lra": "Rara Bakati'", "lrc": "Northern Luri", "lre": "Laurentian", "lrg": "Laragia", "lri": "Marachi; Olumarachi", "lrk": "Loarki", "lrl": "Lari", "lrm": "Marama; Olumarama", "lrn": "Lorang", "lro": "Laro", "lrr": "Southern Yamphu", "lrt": "Larantuka Malay", "lrv": "Larevat", "lrz": "Lemerig", "lsa": "Lasgerdi", "lsb": "Burundian Sign Language; Langue des Signes Burundaise", "lsc": "Albarradas Sign Language; Lengua de señas Albarradas", "lsd": "Lishana Deni", "lse": "Lusengo", "lsh": "Lish", "lsi": "Lashi", "lsl": "Latvian Sign Language", "lsm": "Saamia; Olusamia", "lsn": "Tibetan Sign Language", "lso": "Laos Sign Language", "lsp": "Panamanian Sign Language; Lengua de Señas Panameñas", "lsr": "Aruop", "lss": "Lasi", "lst": "Trinidad and Tobago Sign Language", "lsv": "Sivia Sign Language", "lsw": "Seychelles Sign Language; Lalang Siny Seselwa; Langue des Signes Seychelloise", "lsy": "Mauritian Sign Language", "lt": "Lithuanian", "ltc": "Late Middle Chinese", "ltg": "Latgalian", "lth": "Thur", "lti": "Leti (Indonesia)", "ltn": "Latundê", "lto": "Tsotso; Olutsotso", "lts": "Tachoni; Lutachoni", "ltu": "Latu", "lu": "Luba-Katanga", "lua": "Luba-Lulua", "luc": "Aringa", "lud": "Ludian", "lue": "Luvale", "luf": "Laua", "lui": "Luiseno", "luj": "Luna", "luk": "Lunanakha", "lul": "Olu'bo", "lum": "Luimbi", "lun": "Lunda", "luo": "Luo (Kenya and Tanzania); Dholuo", "lup": "Lumbu", "luq": "Lucumi", "lur": "Laura", "lus": "Lushai", "lut": "Lushootseed", "luu": "Lumba-Yakkha", "luv": "Luwati", "luw": "Luo (Cameroon)", "luy": "Luyia; Oluluyia", "luz": "Southern Luri", "lv": "Latvian", "lva": "Maku'a", "lvi": "Lavi", "lvk": "Lavukaleve", "lvs": "Standard Latvian", "lvu": "Levuka", "lwa": "Lwalu", "lwe": "Lewo Eleng", "lwg": "Wanga; Oluwanga", "lwh": "White Lachi", "lwl": "Eastern Lawa", "lwm": "Laomian", "lwo": "Luwo", "lws": "Malawian Sign Language", "lwt": "Lewotobi", "lwu": "Lawu", "lww": "Lewo", "lxm": "Lakurumau", "lya": "Layakha", "lyg": "Lyngngam", "lyn": "Luyana", "lzh": "Literary Chinese", "lzl": "Litzlitz", "lzn": "Leinong Naga", "lzz": "Laz", "maa": "San Jerónimo Tecóatl Mazatec", "mab": "Yutanduchi Mixtec", "mad": "Madurese", "mae": "Bo-Rukul", "maf": "Mafa", "mag": "Magahi", "mai": "Maithili", "maj": "Jalapa De Díaz Mazatec", "mak": "Makasar", "mam": "Mam", "man": "Mandingo; Manding", "map": "Austronesian languages", "maq": "Chiquihuitlán Mazatec", "mas": "Masai", "mat": "San Francisco Matlatzinca", "mau": "Huautla Mazatec", "mav": "Sateré-Mawé", "maw": "Mampruli", "max": "North Moluccan Malay", "maz": "Central Mazahua", "mba": "Higaonon", "mbb": "Western Bukidnon Manobo", "mbc": "Macushi", "mbd": "Dibabawon Manobo", "mbe": "Molale", "mbf": "Baba Malay", "mbh": "Mangseng", "mbi": "Ilianen Manobo", "mbj": "Nadëb", "mbk": "Malol", "mbl": "Maxakalí", "mbm": "Ombamba", "mbn": "Macaguán", "mbo": "Mbo (Cameroon)", "mbp": "Malayo", "mbq": "Maisin", "mbr": "Nukak Makú", "mbs": "Sarangani Manobo", "mbt": "Matigsalug Manobo", "mbu": "Mbula-Bwazza", "mbv": "Mbulungish", "mbw": "Maring", "mbx": "Mari (East Sepik Province)", "mby": "Memoni", "mbz": "Amoltepec Mixtec", "mca": "Maca", "mcb": "Machiguenga", "mcc": "Bitur", "mcd": "Sharanahua", "mce": "Itundujia Mixtec", "mcf": "Matsés", "mcg": "Mapoyo", "mch": "Maquiritari", "mci": "Mese", "mcj": "Mvanip", "mck": "Mbunda", "mcl": "Macaguaje", "mcm": "Malaccan Creole Portuguese", "mcn": "Masana", "mco": "Coatlán Mixe", "mcp": "Makaa", "mcq": "Ese", "mcr": "Menya", "mcs": "Mambai", "mct": "Mengisa", "mcu": "Cameroon Mambila", "mcv": "Minanibai", "mcw": "Mawa (Chad)", "mcx": "Mpiemo", "mcy": "South Watut", "mcz": "Mawan", "mda": "Mada (Nigeria)", "mdb": "Morigi", "mdc": "Male (Papua New Guinea)", "mdd": "Mbum", "mde": "Maba (Chad)", "mdf": "Moksha", "mdg": "Massalat", "mdh": "Maguindanaon", "mdi": "Mamvu", "mdj": "Mangbetu", "mdk": "Mangbutu", "mdl": "Maltese Sign Language", "mdm": "Mayogo", "mdn": "Mbati", "mdp": "Mbala", "mdq": "Mbole", "mdr": "Mandar", "mds": "Maria (Papua New Guinea)", "mdt": "Mbere", "mdu": "Mboko", "mdv": "Santa Lucía Monteverde Mixtec", "mdw": "Mbosi", "mdx": "Dizin", "mdy": "Male (Ethiopia)", "mdz": "Suruí Do Pará", "mea": "Menka", "meb": "Ikobi", "mec": "Marra", "med": "Melpa", "mee": "Mengen", "mef": "Megam", "meh": "Southwestern Tlaxiaco Mixtec", "mei": "Midob", "mej": "Meyah", "mek": "Mekeo", "mel": "Central Melanau", "mem": "Mangala", "men": "Mende (Sierra Leone)", "meo": "Kedah Malay", "mep": "Miriwoong", "meq": "Merey", "mer": "Meru", "mes": "Masmaje", "met": "Mato", "meu": "Motu", "mev": "Mano", "mew": "Maaka", "mey": "Hassaniyya", "mez": "Menominee", "mfa": "Pattani Malay", "mfb": "Bangka", "mfc": "Mba", "mfd": "Mendankwe-Nkwen", "mfe": "Morisyen", "mff": "Naki", "mfg": "Mogofin", "mfh": "Matal", "mfi": "Wandala", "mfj": "Mefele", "mfk": "North Mofu", "mfl": "Putai", "mfm": "Marghi South", "mfn": "Cross River Mbembe", "mfo": "Mbe", "mfp": "Makassar Malay", "mfq": "Moba", "mfr": "Marrithiyel", "mfs": "Mexican Sign Language", "mft": "Mokerang", "mfu": "Mbwela", "mfv": "Mandjak", "mfw": "Mulaha", "mfx": "Melo", "mfy": "Mayo", "mfz": "Mabaan", "mg": "Malagasy", "mga": "Middle Irish (900-1200)", "mgb": "Mararit", "mgc": "Morokodo", "mgd": "Moru", "mge": "Mango", "mgf": "Maklew", "mgg": "Mpumpong", "mgh": "Makhuwa-Meetto", "mgi": "Lijili", "mgj": "Abureni", "mgk": "Mawes", "mgl": "Maleu-Kilenge", "mgm": "Mambae", "mgn": "Mbangi", "mgo": "Meta'", "mgp": "Eastern Magar", "mgq": "Malila", "mgr": "Mambwe-Lungu", "mgs": "Manda (Tanzania)", "mgt": "Mongol", "mgu": "Mailu", "mgv": "Matengo", "mgw": "Matumbi", "mgy": "Mbunga", "mgz": "Mbugwe", "mh": "Marshallese", "mha": "Manda (India)", "mhb": "Mahongwe", "mhc": "Mocho", "mhd": "Mbugu", "mhe": "Besisi; Mah Meri", "mhf": "Mamaa", "mhg": "Margu", "mhi": "Ma'di", "mhj": "Mogholi", "mhk": "Mungaka", "mhl": "Mauwake", "mhm": "Makhuwa-Moniga", "mhn": "Mócheno", "mho": "Mashi (Zambia)", "mhp": "Balinese Malay", "mhq": "Mandan", "mhr": "Eastern Mari", "mhs": "Buru (Indonesia)", "mht": "Mandahuaca", "mhu": "Digaro-Mishmi; Darang Deng", "mhw": "Mbukushu", "mhx": "Maru; Lhaovo", "mhy": "Ma'anyan", "mhz": "Mor (Mor Islands)", "mi": "Maori", "mia": "Miami", "mib": "Atatláhuca Mixtec", "mic": "Mi'kmaq; Micmac", "mid": "Mandaic", "mie": "Ocotepec Mixtec", "mif": "Mofu-Gudur", "mig": "San Miguel El Grande Mixtec", "mih": "Chayuco Mixtec", "mii": "Chigmecatitlán Mixtec", "mij": "Abar; Mungbam", "mik": "Mikasuki", "mil": "Peñoles Mixtec", "mim": "Alacatlatzala Mixtec", "min": "Minangkabau", "mio": "Pinotepa Nacional Mixtec", "mip": "Apasco-Apoala Mixtec", "miq": "Mískito", "mir": "Isthmus Mixe", "mit": "Southern Puebla Mixtec", "miu": "Cacaloxtepec Mixtec", "miw": "Akoye", "mix": "Mixtepec Mixtec", "miy": "Ayutla Mixtec", "miz": "Coatzospan Mixtec", "mjb": "Makalero", "mjc": "San Juan Colorado Mixtec", "mjd": "Northwest Maidu", "mje": "Muskum", "mjg": "Tu", "mjh": "Mwera (Nyasa)", "mji": "Kim Mun", "mjj": "Mawak", "mjk": "Matukar", "mjl": "Mandeali", "mjm": "Medebur", "mjn": "Ma (Papua New Guinea)", "mjo": "Malankuravan", "mjp": "Malapandaram", "mjq": "Malaryan", "mjr": "Malavedan", "mjs": "Miship", "mjt": "Sauria Paharia", "mju": "Manna-Dora", "mjv": "Mannan", "mjw": "Karbi", "mjx": "Mahali", "mjy": "Mahican", "mjz": "Majhi", "mk": "Macedonian", "mka": "Mbre", "mkb": "Mal Paharia", "mkc": "Siliput", "mke": "Mawchi", "mkf": "Miya", "mkg": "Mak (China)", "mkh": "Mon-Khmer languages", "mki": "Dhatki", "mkj": "Mokilese", "mkk": "Byep", "mkl": "Mokole", "mkm": "Moklen", "mkn": "Kupang Malay", "mko": "Mingang Doso", "mkp": "Moikodi", "mkq": "Bay Miwok", "mkr": "Malas", "mks": "Silacayoapan Mixtec", "mkt": "Vamale", "mku": "Konyanka Maninka", "mkv": "Mafea", "mkw": "Kituba (Congo)", "mkx": "Kinamiging Manobo", "mky": "East Makian", "mkz": "Makasae", "ml": "Malayalam", "mla": "Malo", "mlb": "Mbule", "mlc": "Cao Lan", "mle": "Manambu", "mlf": "Mal", "mlh": "Mape", "mli": "Malimpung", "mlj": "Miltu", "mlk": "Ilwana; Kiwilwana", "mll": "Malua Bay", "mlm": "Mulam", "mln": "Malango", "mlo": "Mlomp", "mlp": "Bargam", "mlq": "Western Maninkakan", "mlr": "Vame", "mls": "Masalit", "mlu": "To'abaita", "mlv": "Motlav; Mwotlap", "mlw": "Moloko", "mlx": "Malfaxal; Naha'ai", "mlz": "Malaynon", "mma": "Mama", "mmb": "Momina", "mmc": "Michoacán Mazahua", "mmd": "Maonan", "mme": "Mae", "mmf": "Mundat", "mmg": "North Ambrym", "mmh": "Mehináku", "mmi": "Musar", "mmj": "Majhwar", "mmk": "Mukha-Dora", "mml": "Man Met", "mmm": "Maii", "mmn": "Mamanwa", "mmo": "Mangga Buang", "mmp": "Siawi", "mmq": "Musak", "mmr": "Western Xiangxi Miao", "mmt": "Malalamai", "mmu": "Mmaala", "mmv": "Miriti", "mmw": "Emae", "mmx": "Madak", "mmy": "Migaama", "mmz": "Mabaale", "mn": "Mongolian", "mna": "Mbula", "mnb": "Muna", "mnc": "Manchu", "mnd": "Mondé", "mne": "Naba", "mnf": "Mundani", "mng": "Eastern Mnong", "mnh": "Mono (Democratic Republic of Congo)", "mni": "Manipuri", "mnj": "Munji", "mnk": "Mandinka", "mnl": "Tiale", "mnm": "Mapena", "mnn": "Southern Mnong", "mno": "Manobo languages", "mnp": "Min Bei Chinese", "mnq": "Minriq", "mnr": "Mono (USA)", "mns": "Mansi", "mnu": "Mer", "mnv": "Rennell-Bellona", "mnw": "Mon", "mnx": "Manikion", "mny": "Manyawa", "mnz": "Moni", "moa": "Mwan", "moc": "Mocoví", "mod": "Mobilian", "moe": "Innu; Montagnais", "mog": "Mongondow", "moh": "Mohawk", "moi": "Mboi", "moj": "Monzombo", "mok": "Morori", "mom": "Mangue", "moo": "Monom", "mop": "Mopán Maya", "moq": "Mor (Bomberai Peninsula)", "mor": "Moro", "mos": "Mossi", "mot": "Barí", "mou": "Mogum", "mov": "Mohave", "mow": "Moi (Congo)", "mox": "Molima", "moy": "Shekkacho", "moz": "Mukulu; Gergiko", "mpa": "Mpoto", "mpb": "Malak Malak; Mullukmulluk", "mpc": "Mangarrayi", "mpd": "Machinere", "mpe": "Majang", "mpg": "Marba", "mph": "Maung", "mpi": "Mpade", "mpj": "Martu Wangka; Wangkajunga", "mpk": "Mbara (Chad)", "mpl": "Middle Watut", "mpm": "Yosondúa Mixtec", "mpn": "Mindiri", "mpo": "Miu", "mpp": "Migabac", "mpq": "Matís", "mpr": "Vangunu", "mps": "Dadibi", "mpt": "Mian", "mpu": "Makuráp", "mpv": "Mungkip", "mpw": "Mapidian", "mpx": "Misima-Panaeati", "mpy": "Mapia", "mpz": "Mpi", "mqa": "Maba (Indonesia)", "mqb": "Mbuko", "mqc": "Mangole", "mqe": "Matepi", "mqf": "Momuna", "mqg": "Kota Bangun Kutai Malay", "mqh": "Tlazoyaltepec Mixtec", "mqi": "Mariri", "mqj": "Mamasa", "mqk": "Rajah Kabunsuwan Manobo", "mql": "Mbelime", "mqm": "South Marquesan", "mqn": "Moronene", "mqo": "Modole", "mqp": "Manipa", "mqq": "Minokok", "mqr": "Mander", "mqs": "West Makian", "mqt": "Mok", "mqu": "Mandari", "mqv": "Mosimo", "mqw": "Murupi", "mqx": "Mamuju", "mqy": "Manggarai", "mqz": "Pano", "mr": "Marathi", "mra": "Mlabri", "mrb": "Marino", "mrc": "Maricopa", "mrd": "Western Magar", "mre": "Martha's Vineyard Sign Language", "mrf": "Elseng", "mrg": "Mising", "mrh": "Mara Chin", "mrj": "Western Mari", "mrk": "Hmwaveke", "mrl": "Mortlockese", "mrm": "Merlav; Mwerlap", "mrn": "Cheke Holo", "mro": "Mru", "mrp": "Morouas", "mrq": "North Marquesan", "mrr": "Maria (India)", "mrs": "Maragus", "mrt": "Marghi Central", "mru": "Mono (Cameroon)", "mrv": "Mangareva", "mrw": "Maranao", "mrx": "Maremgi; Dineor", "mry": "Mandaya", "mrz": "Marind", "ms": "Malay (macrolanguage)", "msb": "Masbatenyo", "msc": "Sankaran Maninka", "msd": "Yucatec Maya Sign Language", "mse": "Musey", "msf": "Mekwei", "msg": "Moraid", "msh": "Masikoro Malagasy", "msi": "Sabah Malay", "msj": "Ma (Democratic Republic of Congo)", "msk": "Mansaka", "msl": "Molof; Poule", "msm": "Agusan Manobo", "msn": "Vurës", "mso": "Mombum", "msp": "Maritsauá", "msq": "Caac", "msr": "Mongolian Sign Language", "mss": "West Masela", "msu": "Musom", "msv": "Maslam", "msw": "Mansoanka", "msx": "Moresada", "msy": "Aruamu", "msz": "Momare", "mt": "Maltese", "mta": "Cotabato Manobo", "mtb": "Anyin Morofo", "mtc": "Munit", "mtd": "Mualang", "mte": "Mono (Solomon Islands)", "mtf": "Murik (Papua New Guinea)", "mtg": "Una", "mth": "Munggui", "mti": "Maiwa (Papua New Guinea)", "mtj": "Moskona", "mtk": "Mbe'", "mtl": "Montol", "mtm": "Mator", "mtn": "Matagalpa", "mto": "Totontepec Mixe", "mtp": "Wichí Lhamtés Nocten", "mtq": "Muong", "mtr": "Mewari", "mts": "Yora", "mtt": "Mota", "mtu": "Tututepec Mixtec", "mtv": "Asaro'o", "mtw": "Southern Binukidnon", "mtx": "Tidaá Mixtec", "mty": "Nabi", "mua": "Mundang", "mub": "Mubi", "muc": "Ajumbu", "mud": "Mednyj Aleut", "mue": "Media Lengua", "mug": "Musgu", "muh": "Mündü", "mui": "Musi", "muj": "Mabire", "muk": "Mugom", "mum": "Maiwala", "mun": "Munda languages", "muo": "Nyong", "mup": "Malvi", "muq": "Eastern Xiangxi Miao", "mur": "Murle", "mus": "Creek", "mut": "Western Muria", "muu": "Yaaku", "muv": "Muthuvan", "mux": "Bo-Ung", "muy": "Muyang", "muz": "Mursi", "mva": "Manam", "mvb": "Mattole", "mvd": "Mamboru", "mve": "Marwari (Pakistan)", "mvf": "Peripheral Mongolian", "mvg": "Yucuañe Mixtec", "mvh": "Mulgi", "mvi": "Miyako", "mvk": "Mekmek", "mvl": "Mbara (Australia)", "mvn": "Minaveha", "mvo": "Marovo", "mvp": "Duri", "mvq": "Moere", "mvr": "Marau", "mvs": "Massep", "mvt": "Mpotovoro", "mvu": "Marfa", "mvv": "Tagal Murut", "mvw": "Machinga", "mvx": "Meoswar", "mvy": "Indus Kohistani", "mvz": "Mesqan", "mwa": "Mwatebu", "mwb": "Juwal", "mwc": "Are", "mwe": "Mwera (Chimwera)", "mwf": "Murrinh-Patha", "mwg": "Aiklep", "mwh": "Mouk-Aria", "mwi": "Labo; Ninde", "mwk": "Kita Maninkakan", "mwl": "Mirandese", "mwm": "Sar", "mwn": "Nyamwanga", "mwo": "Central Maewo", "mwp": "Kala Lagaw Ya", "mwq": "Mün Chin", "mwr": "Marwari", "mws": "Mwimbi-Muthambi", "mwt": "Moken", "mwu": "Mittu", "mwv": "Mentawai", "mww": "Hmong Daw", "mwz": "Moingi", "mxa": "Northwest Oaxaca Mixtec", "mxb": "Tezoatlán Mixtec", "mxc": "Manyika", "mxd": "Modang", "mxe": "Mele-Fila", "mxf": "Malgbe", "mxg": "Mbangala", "mxh": "Mvuba", "mxi": "Mozarabic", "mxj": "Miju-Mishmi; Geman Deng", "mxk": "Monumbo", "mxl": "Maxi Gbe", "mxm": "Meramera", "mxn": "Moi (Indonesia)", "mxo": "Mbowe", "mxp": "Tlahuitoltepec Mixe", "mxq": "Juquila Mixe", "mxr": "Murik (Malaysia)", "mxs": "Huitepec Mixtec", "mxt": "Jamiltepec Mixtec", "mxu": "Mada (Cameroon)", "mxv": "Metlatónoc Mixtec", "mxw": "Namo", "mxx": "Mahou; Mawukakan", "mxy": "Southeastern Nochixtlán Mixtec", "mxz": "Central Masela", "my": "Burmese", "myb": "Mbay", "myc": "Mayeka", "mye": "Myene", "myf": "Bambassi", "myg": "Manta", "myh": "Makah", "myj": "Mangayat", "myk": "Mamara Senoufo", "myl": "Moma", "mym": "Me'en", "myn": "Mayan languages", "myo": "Anfillo", "myp": "Pirahã", "myr": "Muniche", "mys": "Mesmes", "myu": "Mundurukú", "myv": "Erzya", "myw": "Muyuw", "myx": "Masaaba", "myy": "Macuna", "myz": "Classical Mandaic", "mza": "Santa María Zacatepec Mixtec", "mzb": "Tumzabt", "mzc": "Madagascar Sign Language", "mzd": "Malimba", "mze": "Morawa", "mzg": "Monastic Sign Language", "mzh": "Wichí Lhamtés Güisnay", "mzi": "Ixcatlán Mazatec", "mzj": "Manya", "mzk": "Nigeria Mambila", "mzl": "Mazatlán Mixe", "mzm": "Mumuye", "mzn": "Mazanderani", "mzo": "Matipuhy", "mzp": "Movima", "mzq": "Mori Atas", "mzr": "Marúbo", "mzs": "Macanese", "mzt": "Mintil", "mzu": "Inapang", "mzv": "Manza", "mzw": "Deg", "mzx": "Mawayana", "mzy": "Mozambican Sign Language", "mzz": "Maiadomu", "na": "Nauru", "naa": "Namla", "nab": "Southern Nambikuára", "nac": "Narak", "nae": "Naka'ela", "naf": "Nabak", "nag": "Naga Pidgin", "nah": "Nahuatl languages", "nai": "North American Indian languages", "naj": "Nalu", "nak": "Nakanai", "nal": "Nalik", "nam": "Ngan'gityemerri", "nan": "Min Nan Chinese", "nao": "Naaba", "nap": "Neapolitan", "naq": "Khoekhoe; Nama (Namibia)", "nar": "Iguta", "nas": "Naasioi", "nat": "Ca̱hungwa̱rya̱; Hungworo", "naw": "Nawuri", "nax": "Nakwi", "nay": "Ngarrindjeri", "naz": "Coatepec Nahuatl", "nb": "Norwegian Bokmål", "nba": "Nyemba", "nbb": "Ndoe", "nbc": "Chang Naga", "nbd": "Ngbinda", "nbe": "Konyak Naga", "nbg": "Nagarchal", "nbh": "Ngamo", "nbi": "Mao Naga", "nbj": "Ngarinyman", "nbk": "Nake", "nbm": "Ngbaka Ma'bo", "nbn": "Kuri", "nbo": "Nkukoli", "nbp": "Nnam", "nbq": "Nggem", "nbr": "Numana", "nbs": "Namibian Sign Language", "nbt": "Na", "nbu": "Rongmei Naga", "nbv": "Ngamambo", "nbw": "Southern Ngbandi", "nby": "Ningera", "nca": "Iyo", "ncb": "Central Nicobarese", "ncc": "Ponam", "ncd": "Nachering", "nce": "Yale", "ncf": "Notsi", "ncg": "Nisga'a", "nch": "Central Huasteca Nahuatl", "nci": "Classical Nahuatl", "ncj": "Northern Puebla Nahuatl", "nck": "Na-kara", "ncl": "Michoacán Nahuatl", "ncm": "Nambo", "ncn": "Nauna", "nco": "Sibe", "ncq": "Northern Katang", "ncr": "Ncane", "ncs": "Nicaraguan Sign Language", "nct": "Chothe Naga", "ncu": "Chumburung", "ncx": "Central Puebla Nahuatl", "ncz": "Natchez", "nd": "North Ndebele", "nda": "Ndasa", "ndb": "Kenswei Nsei", "ndc": "Ndau", "ndd": "Nde-Nsele-Nta", "ndf": "Nadruvian", "ndg": "Ndengereko", "ndh": "Ndali", "ndi": "Samba Leko", "ndj": "Ndamba", "ndk": "Ndaka", "ndl": "Ndolo", "ndm": "Ndam", "ndn": "Ngundi", "ndp": "Ndo", "ndq": "Ndombe", "ndr": "Ndoola", "nds": "Low German; Low Saxon", "ndt": "Ndunga", "ndu": "Dugun", "ndv": "Ndut", "ndw": "Ndobo", "ndx": "Nduga", "ndy": "Lutos", "ndz": "Ndogo", "ne": "Nepali (macrolanguage)", "nea": "Eastern Ngad'a", "neb": "Toura (Côte d'Ivoire)", "nec": "Nedebang", "ned": "Nde-Gbite", "nee": "Nêlêmwa-Nixumwak", "nef": "Nefamese", "neg": "Negidal", "neh": "Nyenkha", "nei": "Neo-Hittite", "nej": "Neko", "nek": "Neku", "nem": "Nemi", "nen": "Nengone", "neo": "Ná-Meo", "neq": "North Central Mixe", "ner": "Yahadian", "nes": "Bhoti Kinnauri", "net": "Nete", "neu": "Neo", "nev": "Nyaheun", "new": "Newari; Nepal Bhasa", "nex": "Neme", "ney": "Neyo", "nez": "Nez Perce", "nfa": "Dhao", "nfd": "Ahwai", "nfl": "Ayiwo; Äiwoo", "nfr": "Nafaanra", "nfu": "Mfumte", "ng": "Ndonga", "nga": "Ngbaka", "ngb": "Northern Ngbandi", "ngc": "Ngombe (Democratic Republic of Congo)", "ngd": "Ngando (Central African Republic)", "nge": "Ngemba", "ngf": "Trans-New Guinea languages", "ngg": "Ngbaka Manza", "ngh": "Nǁng", "ngi": "Ngizim", "ngj": "Ngie", "ngk": "Dalabon", "ngl": "Lomwe", "ngm": "Ngatik Men's Creole", "ngn": "Ngwo", "ngp": "Ngulu", "ngq": "Ngurimi; Ngoreme", "ngr": "Engdewu", "ngs": "Gvoko", "ngt": "Kriang; Ngeq", "ngu": "Guerrero Nahuatl", "ngv": "Nagumi", "ngw": "Ngwaba", "ngx": "Nggwahyi", "ngy": "Tibea", "ngz": "Ngungwel", "nha": "Nhanda", "nhb": "Beng", "nhc": "Tabasco Nahuatl", "nhd": "Chiripá; Ava Guaraní", "nhe": "Eastern Huasteca Nahuatl", "nhf": "Nhuwala", "nhg": "Tetelcingo Nahuatl", "nhh": "Nahari", "nhi": "Zacatlán-Ahuacatlán-Tepetzintla Nahuatl", "nhk": "Isthmus-Cosoleacaque Nahuatl", "nhm": "Morelos Nahuatl", "nhn": "Central Nahuatl", "nho": "Takuu", "nhp": "Isthmus-Pajapan Nahuatl", "nhq": "Huaxcaleca Nahuatl", "nhr": "Naro", "nht": "Ometepec Nahuatl", "nhu": "Noone", "nhv": "Temascaltepec Nahuatl", "nhw": "Western Huasteca Nahuatl", "nhx": "Isthmus-Mecayapan Nahuatl", "nhy": "Northern Oaxaca Nahuatl", "nhz": "Santa María La Alta Nahuatl", "nia": "Nias", "nib": "Nakame", "nic": "Niger-Kordofanian languages", "nid": "Ngandi", "nie": "Niellim", "nif": "Nek", "nig": "Ngalakgan", "nih": "Nyiha (Tanzania)", "nii": "Nii", "nij": "Ngaju", "nik": "Southern Nicobarese", "nil": "Nila", "nim": "Nilamba", "nin": "Ninzo", "nio": "Nganasan", "niq": "Nandi", "nir": "Nimboran", "nis": "Nimi", "nit": "Southeastern Kolami", "niu": "Niuean", "niv": "Gilyak", "niw": "Nimo", "nix": "Hema", "niy": "Ngiti", "niz": "Ningil", "nja": "Nzanyi", "njb": "Nocte Naga", "njd": "Ndonde Hamba", "njh": "Lotha Naga", "nji": "Gudanji", "njj": "Njen", "njl": "Njalgulgule", "njm": "Angami Naga", "njn": "Liangmai Naga", "njo": "Ao Naga", "njr": "Njerep", "njs": "Nisa", "njt": "Ndyuka-Trio Pidgin", "nju": "Ngadjunmaya", "njx": "Kunyi", "njy": "Njyem", "njz": "Nyishi", "nka": "Nkoya", "nkb": "Khoibu Naga", "nkc": "Nkongho", "nkd": "Koireng", "nke": "Duke", "nkf": "Inpui Naga", "nkg": "Nekgini", "nkh": "Khezha Naga", "nki": "Thangal Naga", "nkj": "Nakai", "nkk": "Nokuku", "nkm": "Namat", "nkn": "Nkangala", "nko": "Nkonya", "nkp": "Niuatoputapu", "nkq": "Nkami", "nkr": "Nukuoro", "nks": "North Asmat", "nkt": "Nyika (Tanzania)", "nku": "Bouna Kulango", "nkv": "Nyika (Malawi and Zambia)", "nkw": "Nkutu", "nkx": "Nkoroo", "nkz": "Nkari", "nl": "Dutch; Flemish", "nla": "Ngombale", "nlc": "Nalca", "nle": "East Nyala", "nlg": "Gela", "nli": "Grangali", "nlj": "Nyali", "nlk": "Ninia Yali", "nll": "Nihali", "nlm": "Mankiyali", "nlo": "Ngul", "nlq": "Lao Naga", "nlu": "Nchumbulu", "nlv": "Orizaba Nahuatl", "nlw": "Walangama", "nlx": "Nahali", "nly": "Nyamal", "nlz": "Nalögo", "nma": "Maram Naga", "nmb": "Big Nambas; V'ënen Taut", "nmc": "Ngam", "nmd": "Ndumu", "nme": "Mzieme Naga", "nmf": "Tangkhul Naga (India)", "nmg": "Kwasio", "nmh": "Monsang Naga", "nmi": "Nyam", "nmj": "Ngombe (Central African Republic)", "nmk": "Namakura", "nml": "Ndemli", "nmm": "Manangba", "nmn": "ǃXóõ", "nmo": "Moyon Naga", "nmp": "Nimanbur", "nmq": "Nambya", "nmr": "Nimbari", "nms": "Letemboi", "nmt": "Namonuito", "nmu": "Northeast Maidu", "nmv": "Ngamini", "nmw": "Nimoa; Rifao", "nmx": "Nama (Papua New Guinea)", "nmy": "Namuyi", "nmz": "Nawdm", "nn": "Norwegian Nynorsk", "nna": "Nyangumarta", "nnb": "Nande", "nnc": "Nancere", "nnd": "West Ambae", "nne": "Ngandyera", "nnf": "Ngaing", "nng": "Maring Naga", "nnh": "Ngiemboon", "nni": "North Nuaulu", "nnj": "Nyangatom", "nnk": "Nankina", "nnl": "Northern Rengma Naga", "nnm": "Namia", "nnn": "Ngete", "nnp": "Wancho Naga", "nnq": "Ngindo", "nnr": "Narungga", "nnt": "Nanticoke", "nnu": "Dwang", "nnv": "Nugunu (Australia)", "nnw": "Southern Nuni", "nny": "Nyangga", "nnz": "Nda'nda'", "no": "Norwegian", "noa": "Woun Meu", "noc": "Nuk", "nod": "Northern Thai", "noe": "Nimadi", "nof": "Nomane", "nog": "Nogai", "noh": "Nomu", "noi": "Noiri", "noj": "Nonuya", "nok": "Nooksack", "nol": "Nomlaki", "nom": "Nocamán", "non": "Old Norse", "nop": "Numanggang", "noq": "Ngongo", "nos": "Eastern Nisu", "not": "Nomatsiguenga", "nou": "Ewage-Notu", "nov": "Novial", "now": "Nyambo", "noy": "Noy", "noz": "Nayi", "npa": "Nar Phu", "npb": "Nupbikha", "npg": "Ponyo-Gongwang Naga", "nph": "Phom Naga", "npi": "Nepali (individual language)", "npl": "Southeastern Puebla Nahuatl", "npn": "Mondropolon", "npo": "Pochuri Naga", "nps": "Nipsan", "npu": "Puimei Naga", "npx": "Noipx", "npy": "Napu", "nqg": "Southern Nago", "nqk": "Kura Ede Nago", "nql": "Ngendelengo", "nqm": "Ndom", "nqn": "Nen", "nqo": "N'Ko; N’Ko", "nqq": "Kyan-Karyaw Naga", "nqt": "Nteng", "nqy": "Akyaung Ari Naga", "nr": "South Ndebele", "nra": "Ngom", "nrb": "Nara", "nrc": "Noric", "nre": "Southern Rengma Naga", "nrf": "Jèrriais; Guernésiais", "nrg": "Narango", "nri": "Chokri Naga", "nrk": "Ngarla", "nrl": "Ngarluma", "nrm": "Narom", "nrn": "Norn", "nrp": "North Picene", "nrr": "Norra; Nora", "nrt": "Northern Kalapuya", "nru": "Narua", "nrx": "Ngurmbur", "nrz": "Lala", "nsa": "Sangtam Naga", "nsb": "Lower Nossob", "nsc": "Nshi", "nsd": "Southern Nisu", "nse": "Nsenga", "nsf": "Northwestern Nisu", "nsg": "Ngasa", "nsh": "Ngoshie", "nsi": "Nigerian Sign Language", "nsk": "Naskapi", "nsl": "Norwegian Sign Language", "nsm": "Sumi Naga", "nsn": "Nehan", "nso": "Pedi; Northern Sotho; Sepedi", "nsp": "Nepalese Sign Language", "nsq": "Northern Sierra Miwok", "nsr": "Maritime Sign Language", "nss": "Nali", "nst": "Tase Naga", "nsu": "Sierra Negra Nahuatl", "nsv": "Southwestern Nisu", "nsw": "Navut", "nsx": "Nsongo", "nsy": "Nasal", "nsz": "Nisenan", "ntd": "Northern Tidung", "nte": "Nathembo", "ntg": "Ngantangarra", "nti": "Natioro", "ntj": "Ngaanyatjarra", "ntk": "Ikoma-Nata-Isenye", "ntm": "Nateni", "nto": "Ntomba", "ntp": "Northern Tepehuan", "ntr": "Delo", "ntu": "Natügu", "ntw": "Nottoway", "ntx": "Tangkhul Naga (Myanmar)", "nty": "Mantsi", "ntz": "Natanzi", "nua": "Yuanga", "nub": "Nubian languages", "nuc": "Nukuini", "nud": "Ngala", "nue": "Ngundu", "nuf": "Nusu", "nug": "Nungali", "nuh": "Ndunda", "nui": "Ngumbi", "nuj": "Nyole", "nuk": "Nuu-chah-nulth; Nuuchahnulth", "nul": "Nusa Laut", "num": "Niuafo'ou", "nun": "Anong", "nuo": "Nguôn", "nup": "Nupe-Nupe-Tako", "nuq": "Nukumanu", "nur": "Nukuria", "nus": "Nuer", "nut": "Nung (Viet Nam)", "nuu": "Ngbundu", "nuv": "Northern Nuni", "nuw": "Nguluwan", "nux": "Mehek", "nuy": "Nunggubuyu", "nuz": "Tlamacazapa Nahuatl", "nv": "Navajo; Navaho", "nvh": "Nasarian", "nvm": "Namiae", "nvo": "Nyokon", "nwa": "Nawathinehena", "nwb": "Nyabwa", "nwc": "Classical Newari; Classical Nepal Bhasa; Old Newari", "nwe": "Ngwe", "nwg": "Ngayawung", "nwi": "Southwest Tanna", "nwm": "Nyamusa-Molo", "nwo": "Nauo", "nwr": "Nawaru", "nww": "Ndwewe", "nwx": "Middle Newar", "nwy": "Nottoway-Meherrin", "nxa": "Nauete", "nxd": "Ngando (Democratic Republic of Congo)", "nxe": "Nage", "nxg": "Ngad'a", "nxi": "Nindi", "nxk": "Koki Naga", "nxl": "South Nuaulu", "nxm": "Numidian", "nxn": "Ngawun", "nxo": "Ndambomo", "nxq": "Naxi", "nxr": "Ninggerum", "nxx": "Nafri", "ny": "Nyanja; Chewa; Chichewa", "nyb": "Nyangbo", "nyc": "Nyanga-li", "nyd": "Nyore; Olunyole", "nye": "Nyengo", "nyf": "Giryama; Kigiryama", "nyg": "Nyindu", "nyh": "Nyikina", "nyi": "Ama (Sudan)", "nyj": "Nyanga", "nyk": "Nyaneka", "nyl": "Nyeu", "nym": "Nyamwezi", "nyn": "Nyankole", "nyo": "Nyoro", "nyp": "Nyang'i", "nyq": "Nayini", "nyr": "Nyiha (Malawi)", "nys": "Nyungar", "nyt": "Nyawaygi", "nyu": "Nyungwe", "nyv": "Nyulnyul", "nyw": "Nyaw", "nyx": "Nganyaywana", "nyy": "Nyakyusa-Ngonde", "nza": "Tigon Mbembe", "nzb": "Njebi", "nzd": "Nzadi", "nzi": "Nzima", "nzk": "Nzakara", "nzm": "Zeme Naga", "nzs": "New Zealand Sign Language", "nzu": "Teke-Nzikou", "nzy": "Nzakambay", "nzz": "Nanga Dama Dogon", "oaa": "Orok", "oac": "Oroch", "oar": "Old Aramaic (up to 700 BCE); Ancient Aramaic (up to 700 BCE)", "oav": "Old Avar", "obi": "Obispeño", "obk": "Southern Bontok", "obl": "Oblo", "obm": "Moabite", "obo": "Obo Manobo", "obr": "Old Burmese", "obt": "Old Breton", "obu": "Obulom", "oc": "Occitan (post 1500)", "oca": "Ocaina", "och": "Old Chinese", "ocm": "Old Cham", "oco": "Old Cornish", "ocu": "Atzingo Matlatzinca", "oda": "Odut", "odk": "Od", "odt": "Old Dutch", "odu": "Odual", "ofo": "Ofo", "ofs": "Old Frisian", "ofu": "Efutop", "ogb": "Ogbia", "ogc": "Ogbah", "oge": "Old Georgian", "ogg": "Ogbogolo", "ogo": "Khana", "ogu": "Ogbronuagum", "oht": "Old Hittite", "ohu": "Old Hungarian", "oia": "Oirata", "oie": "Okolie", "oin": "Inebu One", "oj": "Ojibwa", "ojb": "Northwestern Ojibwa", "ojc": "Central Ojibwa", "ojg": "Eastern Ojibwa", "ojp": "Old Japanese", "ojs": "Severn Ojibwa", "ojv": "Ontong Java", "ojw": "Western Ojibwa", "oka": "Okanagan", "okb": "Okobo", "okc": "Kobo", "okd": "Okodia", "oke": "Okpe (Southwestern Edo)", "okg": "Koko Babangk", "okh": "Koresh-e Rostam", "oki": "Okiek", "okj": "Oko-Juwoi", "okk": "Kwamtim One", "okl": "Old Kentish Sign Language", "okm": "Middle Korean (10th-16th cent.)", "okn": "Oki-No-Erabu", "oko": "Old Korean (3rd-9th cent.)", "okr": "Kirike", "oks": "Oko-Eni-Osayen", "oku": "Oku", "okv": "Orokaiva", "okx": "Okpe (Northwestern Edo)", "okz": "Old Khmer", "ola": "Walungge", "old": "Mochi", "ole": "Olekha", "olk": "Olkol", "olm": "Oloma", "olo": "Livvi", "olr": "Olrat", "olt": "Old Lithuanian", "olu": "Kuvale", "om": "Oromo", "oma": "Omaha-Ponca", "omb": "East Ambae", "omc": "Mochica", "omg": "Omagua", "omi": "Omi", "omk": "Omok", "oml": "Ombo", "omn": "Minoan", "omo": "Utarmbung", "omp": "Old Manipuri", "omq": "Oto-Manguean languages", "omr": "Old Marathi", "omt": "Omotik", "omu": "Omurano", "omv": "Omotic languages", "omw": "South Tairora", "omx": "Old Mon", "omy": "Old Malay", "ona": "Ona", "onb": "Lingao", "one": "Oneida", "ong": "Olo", "oni": "Onin", "onj": "Onjob", "onk": "Kabore One", "onn": "Onobasulu", "ono": "Onondaga", "onp": "Sartang", "onr": "Northern One", "ons": "Ono", "ont": "Ontenu", "onu": "Unua", "onw": "Old Nubian", "onx": "Onin Based Pidgin", "ood": "Tohono O'odham", "oog": "Ong", "oon": "Önge", "oor": "Oorlams", "oos": "Old Ossetic", "opa": "Okpamheri", "opk": "Kopkaka", "opm": "Oksapmin", "opo": "Opao", "opt": "Opata", "opy": "Ofayé", "or": "Oriya (macrolanguage); Odia (macrolanguage)", "ora": "Oroha", "orc": "Orma", "ore": "Orejón", "org": "Oring", "orh": "Oroqen", "orn": "Orang Kanaq", "oro": "Orokolo", "orr": "Oruma", "ors": "Orang Seletar", "ort": "Adivasi Oriya", "oru": "Ormuri", "orv": "Old Russian", "orw": "Oro Win", "orx": "Oro", "ory": "Odia (individual language); Oriya (individual language)", "orz": "Ormu", "os": "Ossetian; Ossetic", "osa": "Osage", "osc": "Oscan", "osi": "Osing", "osn": "Old Sundanese", "oso": "Ososo", "osp": "Old Spanish", "ost": "Osatu", "osu": "Southern One", "osx": "Old Saxon", "ota": "Ottoman Turkish (1500-1928)", "otb": "Old Tibetan", "otd": "Ot Danum", "ote": "Mezquital Otomi", "oti": "Oti", "otk": "Old Turkish", "otl": "Tilapa Otomi", "otm": "Eastern Highland Otomi", "otn": "Tenango Otomi", "oto": "Otomian languages", "otq": "Querétaro Otomi", "otr": "Otoro", "ots": "Estado de México Otomi", "ott": "Temoaya Otomi", "otu": "Otuke", "otw": "Ottawa", "otx": "Texcatepec Otomi", "oty": "Old Tamil", "otz": "Ixtenco Otomi", "oua": "Tagargrent", "oub": "Glio-Oubi", "oue": "Oune", "oui": "Old Uighur", "oum": "Ouma", "ovd": "Elfdalian; Övdalian", "owi": "Owiniga", "owl": "Old Welsh", "oyb": "Oy", "oyd": "Oyda", "oym": "Wayampi", "oyy": "Oya'oya", "ozm": "Koonzime", "pa": "Panjabi; Punjabi", "paa": "Papuan languages", "pab": "Parecís", "pac": "Pacoh", "pad": "Paumarí", "pae": "Pagibete", "paf": "Paranawát", "pag": "Pangasinan", "pah": "Tenharim", "pai": "Pe", "pak": "Parakanã", "pal": "Pahlavi", "pam": "Pampanga; Kapampangan", "pao": "Northern Paiute", "pap": "Papiamento", "paq": "Parya", "par": "Panamint; Timbisha", "pas": "Papasena", "pau": "Palauan", "pav": "Pakaásnovos", "paw": "Pawnee", "pax": "Pankararé", "pay": "Pech", "paz": "Pankararú", "pbb": "Páez", "pbc": "Patamona", "pbe": "Mezontla Popoloca", "pbf": "Coyotepec Popoloca", "pbg": "Paraujano", "pbh": "E'ñapa Woromaipu", "pbi": "Parkwa", "pbl": "Mak (Nigeria)", "pbm": "Puebla Mazatec", "pbn": "Kpasam", "pbo": "Papel", "pbp": "Badyara", "pbr": "Pangwa", "pbs": "Central Pame", "pbt": "Southern Pashto", "pbu": "Northern Pashto", "pbv": "Pnar", "pby": "Pyu (Papua New Guinea)", "pca": "Santa Inés Ahuatempan Popoloca", "pcb": "Pear", "pcc": "Bouyei", "pcd": "Picard", "pce": "Ruching Palaung", "pcf": "Paliyan", "pcg": "Paniya", "pch": "Pardhan", "pci": "Duruwa", "pcj": "Parenga", "pck": "Paite Chin", "pcl": "Pardhi", "pcm": "Nigerian Pidgin", "pcn": "Piti", "pcp": "Pacahuara", "pcw": "Pyapun", "pda": "Anam", "pdc": "Pennsylvania German", "pdi": "Pa Di", "pdn": "Podena; Fedan", "pdo": "Padoe", "pdt": "Plautdietsch", "pdu": "Kayan", "pea": "Peranakan Indonesian", "peb": "Eastern Pomo", "ped": "Mala (Papua New Guinea)", "pee": "Taje", "pef": "Northeastern Pomo", "peg": "Pengo", "peh": "Bonan", "pei": "Chichimeca-Jonaz", "pej": "Northern Pomo", "pek": "Penchal", "pel": "Pekal", "pem": "Phende", "peo": "Old Persian (ca. 600-400 B.C.)", "pep": "Kunja", "peq": "Southern Pomo", "pes": "Iranian Persian", "pev": "Pémono", "pex": "Petats", "pey": "Petjo", "pez": "Eastern Penan", "pfa": "Pááfang", "pfe": "Pere", "pfl": "Pfaelzisch", "pga": "Sudanese Creole Arabic", "pgd": "Gāndhārī", "pgg": "Pangwali", "pgi": "Pagi", "pgk": "Rerep", "pgl": "Primitive Irish", "pgn": "Paelignian", "pgs": "Pangseng", "pgu": "Pagu", "pgz": "Papua New Guinean Sign Language", "pha": "Pa-Hng", "phd": "Phudagi", "phg": "Phuong", "phh": "Phukha", "phi": "Philippine languages", "phj": "Pahari", "phk": "Phake", "phl": "Phalura; Palula", "phm": "Phimbi", "phn": "Phoenician", "pho": "Phunoi", "phq": "Phana'", "phr": "Pahari-Potwari", "pht": "Phu Thai", "phu": "Phuan", "phv": "Pahlavani", "phw": "Phangduwali", "pi": "Pali", "pia": "Pima Bajo", "pib": "Yine", "pic": "Pinji", "pid": "Piaroa", "pie": "Piro", "pif": "Pingelapese", "pig": "Pisabo", "pih": "Pitcairn-Norfolk", "pij": "Pijao", "pil": "Yom", "pim": "Powhatan", "pin": "Piame", "pio": "Piapoco", "pip": "Pero", "pir": "Piratapuyo", "pis": "Pijin", "pit": "Pitta Pitta", "piu": "Pintupi-Luritja", "piv": "Pileni; Vaeakau-Taumako", "piw": "Pimbwe", "pix": "Piu", "piy": "Piya-Kwonci", "piz": "Pije", "pjt": "Pitjantjatjara", "pka": "Ardhamāgadhī Prākrit", "pkb": "Pokomo; Kipfokomo", "pkc": "Paekche", "pkg": "Pak-Tong", "pkh": "Pankhu", "pkn": "Pakanha", "pko": "Pökoot", "pkp": "Pukapuka", "pkr": "Attapady Kurumba", "pks": "Pakistan Sign Language", "pkt": "Maleng", "pku": "Paku", "pl": "Polish", "pla": "Miani", "plb": "Polonombauk", "plc": "Central Palawano", "pld": "Polari", "ple": "Palu'e", "plf": "Central Malayo-Polynesian languages", "plg": "Pilagá", "plh": "Paulohi", "plj": "Polci", "plk": "Kohistani Shina", "pll": "Shwe Palaung", "pln": "Palenquero", "plo": "Oluta Popoluca", "plq": "Palaic", "plr": "Palaka Senoufo", "pls": "San Marcos Tlacoyalco Popoloca; San Marcos Tlalcoyalco Popoloca", "plt": "Plateau Malagasy", "plu": "Palikúr", "plv": "Southwest Palawano", "plw": "Brooke's Point Palawano", "ply": "Bolyu", "plz": "Paluan", "pma": "Paama", "pmb": "Pambia", "pmd": "Pallanganmiddang", "pme": "Pwaamei", "pmf": "Pamona", "pmh": "Māhārāṣṭri Prākrit", "pmi": "Northern Pumi", "pmj": "Southern Pumi", "pmk": "Pamlico", "pml": "Lingua Franca", "pmm": "Pomo", "pmn": "Pam", "pmo": "Pom", "pmq": "Northern Pame", "pmr": "Paynamar", "pms": "Piemontese", "pmt": "Tuamotuan", "pmw": "Plains Miwok", "pmx": "Poumei Naga", "pmy": "Papuan Malay", "pmz": "Southern Pame", "pna": "Punan Bah-Biau", "pnb": "Western Panjabi", "pnc": "Pannei", "pnd": "Mpinda", "pne": "Western Penan", "png": "Pangu; Pongu", "pnh": "Penrhyn", "pni": "Aoheng", "pnj": "Pinjarup", "pnk": "Paunaka", "pnl": "Paleni", "pnm": "Punan Batu 1", "pnn": "Pinai-Hagahai", "pno": "Panobo", "pnp": "Pancana", "pnq": "Pana (Burkina Faso)", "pnr": "Panim", "pns": "Ponosakan", "pnt": "Pontic", "pnu": "Jiongnai Bunu", "pnv": "Pinigura", "pnw": "Banyjima; Panytyima", "pnx": "Phong-Kniang", "pny": "Pinyin", "pnz": "Pana (Central African Republic)", "poc": "Poqomam", "poe": "San Juan Atzingo Popoloca", "pof": "Poke", "pog": "Potiguára", "poh": "Poqomchi'", "poi": "Highland Popoluca", "pok": "Pokangá", "pom": "Southeastern Pomo", "pon": "Pohnpeian", "poo": "Central Pomo", "pop": "Pwapwâ", "poq": "Texistepec Popoluca", "pos": "Sayula Popoluca", "pot": "Potawatomi", "pov": "Upper Guinea Crioulo", "pow": "San Felipe Otlaltepec Popoloca", "pox": "Polabian", "poy": "Pogolo", "poz": "Malayo-Polynesian languages", "ppe": "Papi", "ppi": "Paipai", "ppk": "Uma", "ppl": "Pipil; Nicarao", "ppm": "Papuma", "ppn": "Papapana", "ppo": "Folopa", "ppp": "Pelende", "ppq": "Pei", "pps": "San Luís Temalacayuca Popoloca", "ppt": "Pare", "ppu": "Papora", "pqa": "Pa'a", "pqe": "Eastern Malayo-Polynesian languages", "pqm": "Malecite-Passamaquoddy", "pqw": "Western Malayo-Polynesian languages", "pra": "Prakrit languages", "prc": "Parachi", "prd": "Parsi-Dari", "pre": "Principense", "prf": "Paranan", "prg": "Prussian", "prh": "Porohanon", "pri": "Paicî", "prk": "Parauk", "prl": "Peruvian Sign Language", "prm": "Kibiri", "prn": "Prasuni", "pro": "Old Provençal (to 1500); Old Occitan (to 1500)", "prp": "Parsi", "prq": "Ashéninka Perené", "prr": "Puri", "prs": "Dari; Afghan Persian", "prt": "Phai", "pru": "Puragi", "prw": "Parawen", "prx": "Purik", "prz": "Providencia Sign Language", "ps": "Pushto; Pashto", "psa": "Asue Awyu", "psc": "Iranian Sign Language; Persian Sign Language", "psd": "Plains Indian Sign Language", "pse": "Central Malay", "psg": "Penang Sign Language", "psh": "Southwest Pashai; Southwest Pashayi", "psi": "Southeast Pashai; Southeast Pashayi", "psl": "Puerto Rican Sign Language", "psm": "Pauserna", "psn": "Panasuan", "pso": "Polish Sign Language", "psp": "Philippine Sign Language", "psq": "Pasi", "psr": "Portuguese Sign Language", "pss": "Kaulong", "pst": "Central Pashto", "psu": "Sauraseni Prākrit", "psw": "Port Sandwich", "psy": "Piscataway", "pt": "Portuguese", "pta": "Pai Tavytera", "pth": "Pataxó Hã-Ha-Hãe", "pti": "Pindiini; Wangkatha", "ptn": "Patani", "pto": "Zo'é", "ptp": "Patep", "ptq": "Pattapu", "ptr": "Piamatsina", "ptt": "Enrekang", "ptu": "Bambam", "ptv": "Port Vato", "ptw": "Pentlatch", "pty": "Pathiya", "pua": "Western Highland Purepecha", "pub": "Purum", "puc": "Punan Merap", "pud": "Punan Aput", "pue": "Puelche", "puf": "Punan Merah", "pug": "Phuie", "pui": "Puinave", "puj": "Punan Tubu", "pum": "Puma", "puo": "Puoc", "pup": "Pulabu", "puq": "Puquina", "pur": "Puruborá", "put": "Putoh", "puu": "Punu", "puw": "Puluwatese", "pux": "Puare", "puy": "Purisimeño", "pwa": "Pawaia", "pwb": "Panawa", "pwg": "Gapapaiwa", "pwi": "Patwin", "pwm": "Molbog", "pwn": "Paiwan", "pwo": "Pwo Western Karen", "pwr": "Powari", "pww": "Pwo Northern Karen", "pxm": "Quetzaltepec Mixe", "pye": "Pye Krumen", "pym": "Fyam", "pyn": "Poyanáwa", "pys": "Paraguayan Sign Language; Lengua de Señas del Paraguay", "pyu": "Puyuma", "pyx": "Pyu (Myanmar)", "pyy": "Pyen", "pzh": "Pazeh", "pzn": "Jejara Naga; Para Naga", "qu": "Quechua", "qua": "Quapaw", "qub": "Huallaga Huánuco Quechua", "quc": "K'iche'; Quiché", "qud": "Calderón Highland Quichua", "quf": "Lambayeque Quechua", "qug": "Chimborazo Highland Quichua", "quh": "South Bolivian Quechua", "qui": "Quileute", "quk": "Chachapoyas Quechua", "qul": "North Bolivian Quechua", "qum": "Sipacapense", "qun": "Quinault", "qup": "Southern Pastaza Quechua", "quq": "Quinqui", "qur": "Yanahuanca Pasco Quechua", "qus": "Santiago del Estero Quichua", "quv": "Sacapulteco", "quw": "Tena Lowland Quichua", "qux": "Yauyos Quechua", "quy": "Ayacucho Quechua", "quz": "Cusco Quechua", "qva": "Ambo-Pasco Quechua", "qvc": "Cajamarca Quechua", "qve": "Eastern Apurímac Quechua", "qvh": "Huamalíes-Dos de Mayo Huánuco Quechua", "qvi": "Imbabura Highland Quichua", "qvj": "Loja Highland Quichua", "qvl": "Cajatambo North Lima Quechua", "qvm": "Margos-Yarowilca-Lauricocha Quechua", "qvn": "North Junín Quechua", "qvo": "Napo Lowland Quechua", "qvp": "Pacaraos Quechua", "qvs": "San Martín Quechua", "qvw": "Huaylla Wanca Quechua", "qvy": "Queyu", "qvz": "Northern Pastaza Quichua", "qwa": "Corongo Ancash Quechua", "qwc": "Classical Quechua", "qwe": "Quechuan (family)", "qwh": "Huaylas Ancash Quechua", "qwm": "Kuman (Russia)", "qws": "Sihuas Ancash Quechua", "qwt": "Kwalhioqua-Tlatskanai", "qxa": "Chiquián Ancash Quechua", "qxc": "Chincha Quechua", "qxh": "Panao Huánuco Quechua", "qxl": "Salasaca Highland Quichua", "qxn": "Northern Conchucos Ancash Quechua", "qxo": "Southern Conchucos Ancash Quechua", "qxp": "Puno Quechua", "qxq": "Qashqa'i", "qxr": "Cañar Highland Quichua", "qxs": "Southern Qiang", "qxt": "Santa Ana de Tusi Pasco Quechua", "qxu": "Arequipa-La Unión Quechua", "qxw": "Jauja Wanca Quechua", "qya": "Quenya", "qyp": "Quiripi", "raa": "Dungmali", "rab": "Camling", "rac": "Rasawa", "rad": "Rade", "raf": "Western Meohang", "rag": "Logooli; Lulogooli", "rah": "Rabha", "rai": "Ramoaaina", "raj": "Rajasthani", "rak": "Tulu-Bohuai", "ral": "Ralte", "ram": "Canela", "ran": "Riantana", "rao": "Rao", "rap": "Rapanui", "raq": "Saam", "rar": "Rarotongan; Cook Islands Maori", "ras": "Tegali", "rat": "Razajerdi", "rau": "Raute", "rav": "Sampang", "raw": "Rawang", "rax": "Rang", "ray": "Rapa", "raz": "Rahambuu", "rbb": "Rumai Palaung", "rbk": "Northern Bontok", "rbl": "Miraya Bikol", "rbp": "Barababaraba", "rcf": "Réunion Creole French", "rdb": "Rudbari", "rea": "Rerau", "reb": "Rembong", "ree": "Rejang Kayan", "reg": "Kara (Tanzania)", "rei": "Reli", "rej": "Rejang", "rel": "Rendille", "rem": "Remo", "ren": "Rengao", "rer": "Rer Bare", "res": "Reshe", "ret": "Retta", "rey": "Reyesano", "rga": "Roria", "rge": "Romano-Greek", "rgk": "Rangkas", "rgn": "Romagnol", "rgr": "Resígaro", "rgs": "Southern Roglai", "rgu": "Ringgou", "rhg": "Rohingya", "rhp": "Yahang", "ria": "Riang (India)", "rib": "Bribri Sign Language", "rif": "Tarifit", "ril": "Riang Lang; Riang (Myanmar)", "rim": "Nyaturu", "rin": "Nungu", "rir": "Ribun", "rit": "Ritharrngu", "riu": "Riung", "rjg": "Rajong", "rji": "Raji", "rjs": "Rajbanshi", "rka": "Kraol", "rkb": "Rikbaktsa", "rkh": "Rakahanga-Manihiki", "rki": "Rakhine", "rkm": "Marka", "rkt": "Rangpuri; Kamta", "rkw": "Arakwal", "rm": "Romansh", "rma": "Rama", "rmb": "Rembarrnga", "rmc": "Carpathian Romani", "rmd": "Traveller Danish", "rme": "Angloromani", "rmf": "Kalo Finnish Romani", "rmg": "Traveller Norwegian", "rmh": "Murkim", "rmi": "Lomavren", "rmk": "Romkun", "rml": "Baltic Romani", "rmm": "Roma", "rmn": "Balkan Romani", "rmo": "Sinte Romani", "rmp": "Rempi", "rmq": "Caló", "rms": "Romanian Sign Language", "rmt": "Domari", "rmu": "Tavringer Romani", "rmv": "Romanova", "rmw": "Welsh Romani", "rmx": "Romam", "rmy": "Vlax Romani", "rmz": "Marma", "rn": "Rundi", "rnb": "Brunca Sign Language", "rnd": "Ruund", "rng": "Ronga", "rnl": "Ranglong", "rnn": "Roon", "rnp": "Rongpo", "rnr": "Nari Nari", "rnw": "Rungwa", "ro": "Romanian; Moldavian; Moldovan", "roa": "Romance languages", "rob": "Tae'", "roc": "Cacgia Roglai", "rod": "Rogo", "roe": "Ronji", "rof": "Rombo", "rog": "Northern Roglai", "rol": "Romblomanon", "rom": "Romany", "roo": "Rotokas", "rop": "Kriol", "ror": "Rongga", "rou": "Runga", "row": "Dela-Oenale", "rpn": "Repanbitip", "rpt": "Rapting", "rri": "Ririo", "rro": "Waima", "rrt": "Arritinngithigh", "rsb": "Romano-Serbian", "rsk": "Ruthenian; Rusyn", "rsl": "Russian Sign Language", "rsm": "Miriwoong Sign Language", "rsn": "Rwandan Sign Language", "rtc": "Rungtu Chin", "rth": "Ratahan", "rtm": "Rotuman", "rts": "Yurats", "rtw": "Rathawi", "ru": "Russian", "rub": "Gungu", "ruc": "Ruuli", "rue": "Rusyn", "ruf": "Luguru", "rug": "Roviana", "ruh": "Ruga", "rui": "Rufiji", "ruk": "Che", "ruo": "Istro Romanian", "rup": "Macedo-Romanian; Aromanian; Arumanian", "ruq": "Megleno Romanian", "rut": "Rutul", "ruu": "Lanas Lobu", "ruy": "Mala (Nigeria)", "ruz": "Ruma", "rw": "Kinyarwanda", "rwa": "Rawo", "rwk": "Rwa", "rwl": "Ruwila", "rwm": "Amba (Uganda)", "rwo": "Rawa", "rwr": "Marwari (India)", "rxd": "Ngardi", "rxw": "Karuwali; Garuwali", "ryn": "Northern Amami-Oshima", "rys": "Yaeyama", "ryu": "Central Okinawan", "rzh": "Rāziḥī", "sa": "Sanskrit", "saa": "Saba", "sab": "Buglere", "sac": "Meskwaki", "sad": "Sandawe", "sae": "Sabanê", "saf": "Safaliba", "sah": "Yakut", "sai": "South American Indian languages", "saj": "Sahu", "sak": "Sake", "sal": "Salishan languages", "sam": "Samaritan Aramaic", "sao": "Sause", "saq": "Samburu", "sar": "Saraveca", "sas": "Sasak", "sat": "Santali", "sau": "Saleman", "sav": "Saafi-Saafi", "saw": "Sawi", "sax": "Sa", "say": "Saya", "saz": "Saurashtra", "sba": "Ngambay", "sbb": "Simbo", "sbc": "Kele (Papua New Guinea)", "sbd": "Southern Samo", "sbe": "Saliba", "sbf": "Chabu; Shabo", "sbg": "Seget", "sbh": "Sori-Harengan", "sbi": "Seti", "sbj": "Surbakhal", "sbk": "Safwa", "sbl": "Botolan Sambal", "sbm": "Sagala", "sbn": "Sindhi Bhil", "sbo": "Sabüm", "sbp": "Sangu (Tanzania)", "sbq": "Sileibi", "sbr": "Sembakung Murut", "sbs": "Subiya", "sbt": "Kimki", "sbu": "Stod Bhoti", "sbv": "Sabine", "sbw": "Simba", "sbx": "Seberuang", "sby": "Soli", "sbz": "Sara Kaba", "sc": "Sardinian", "scb": "Chut", "sce": "Dongxiang", "scf": "San Miguel Creole French", "scg": "Sanggau", "sch": "Sakachep", "sci": "Sri Lankan Creole Malay", "sck": "Sadri", "scl": "Shina", "scn": "Sicilian", "sco": "Scots", "scp": "Hyolmo; Helambu Sherpa", "scq": "Sa'och", "scs": "North Slavey", "sct": "Southern Katang", "scu": "Shumcho", "scv": "Sheni", "scw": "Sha", "scx": "Sicel", "sd": "Sindhi", "sda": "Toraja-Sa'dan", "sdb": "Shabak", "sdc": "Sassarese Sardinian", "sde": "Surubu", "sdf": "Sarli", "sdg": "Savi", "sdh": "Southern Kurdish", "sdj": "Suundi", "sdk": "Sos Kundi", "sdl": "Saudi Arabian Sign Language", "sdn": "Gallurese Sardinian", "sdo": "Bukar-Sadung Bidayuh", "sdp": "Sherdukpen", "sdq": "Semandang", "sdr": "Oraon Sadri", "sds": "Sened", "sdt": "Shuadit", "sdu": "Sarudu", "sdv": "Eastern Sudanic languages", "sdx": "Sibu Melanau", "sdz": "Sallands", "se": "Northern Sami", "sea": "Semai", "seb": "Shempire Senoufo", "sec": "Sechelt", "sed": "Sedang", "see": "Seneca", "sef": "Cebaara Senoufo", "seg": "Segeju", "seh": "Sena", "sei": "Seri", "sej": "Sene", "sek": "Sekani", "sel": "Selkup", "sem": "Semitic languages", "sen": "Nanerigé Sénoufo", "seo": "Suarmin", "sep": "Sìcìté Sénoufo", "seq": "Senara Sénoufo", "ser": "Serrano", "ses": "Koyraboro Senni Songhai", "set": "Sentani", "seu": "Serui-Laut", "sev": "Nyarafolo Senoufo", "sew": "Sewa Bay", "sey": "Secoya", "sez": "Senthang Chin", "sfb": "Langue des signes de Belgique Francophone; French Belgian Sign Language", "sfe": "Eastern Subanen", "sfm": "Small Flowery Miao", "sfs": "South African Sign Language", "sfw": "Sehwi", "sg": "Sango", "sga": "Old Irish (to 900)", "sgb": "Mag-antsi Ayta", "sgc": "Kipsigis", "sgd": "Surigaonon", "sge": "Segai", "sgg": "Swiss-German Sign Language", "sgh": "Shughni", "sgi": "Suga", "sgj": "Surgujia", "sgk": "Sangkong", "sgm": "Singa", "sgn": "Sign languages", "sgp": "Singpho", "sgr": "Sangisari", "sgs": "Samogitian", "sgt": "Brokpake", "sgu": "Salas", "sgw": "Sebat Bet Gurage", "sgx": "Sierra Leone Sign Language", "sgy": "Sanglechi", "sgz": "Sursurunga", "sh": "Serbo-Croatian", "sha": "Shall-Zwall", "shb": "Ninam", "shc": "Sonde", "shd": "Kundal Shahi", "she": "Sheko", "shg": "Shua", "shh": "Shoshoni", "shi": "Tachelhit", "shj": "Shatt", "shk": "Shilluk", "shl": "Shendu", "shm": "Shahrudi", "shn": "Shan", "sho": "Shanga", "shp": "Shipibo-Conibo", "shq": "Sala", "shr": "Shi", "shs": "Shuswap", "sht": "Shasta", "shu": "Chadian Arabic", "shv": "Shehri", "shw": "Shwai", "shx": "She", "shy": "Tachawit", "shz": "Syenara Senoufo", "si": "Sinhala; Sinhalese", "sia": "Akkala Sami", "sib": "Sebop", "sid": "Sidamo", "sie": "Simaa", "sif": "Siamou", "sig": "Paasaal", "sih": "Zire; Sîshëë", "sii": "Shom Peng", "sij": "Numbami", "sik": "Sikiana", "sil": "Tumulung Sisaala", "sim": "Mende (Papua New Guinea)", "sio": "Siouan languages", "sip": "Sikkimese", "siq": "Sonia", "sir": "Siri", "sis": "Siuslaw", "sit": "Sino-Tibetan languages", "siu": "Sinagen", "siv": "Sumariup", "siw": "Siwai", "six": "Sumau", "siy": "Sivandi", "siz": "Siwi", "sja": "Epena", "sjb": "Sajau Basap", "sjd": "Kildin Sami", "sje": "Pite Sami", "sjg": "Assangori", "sjk": "Kemi Sami", "sjl": "Sajalong; Miji", "sjm": "Mapun", "sjn": "Sindarin", "sjo": "Xibe", "sjp": "Surjapuri", "sjr": "Siar-Lak", "sjs": "Senhaja De Srair", "sjt": "Ter Sami", "sju": "Ume Sami", "sjw": "Shawnee", "sk": "Slovak", "ska": "Skagit", "skb": "Saek", "skc": "Ma Manda", "skd": "Southern Sierra Miwok", "ske": "Seke (Vanuatu)", "skf": "Sakirabiá", "skg": "Sakalava Malagasy", "skh": "Sikule", "ski": "Sika", "skj": "Seke (Nepal)", "skm": "Kutong", "skn": "Kolibugan Subanon", "sko": "Seko Tengah", "skp": "Sekapan", "skq": "Sininkere", "skr": "Saraiki; Seraiki", "sks": "Maia", "skt": "Sakata", "sku": "Sakao", "skv": "Skou", "skw": "Skepi Creole Dutch", "skx": "Seko Padang", "sky": "Sikaiana", "skz": "Sekar", "sl": "Slovenian", "sla": "Slavic languages", "slc": "Sáliba", "sld": "Sissala", "sle": "Sholaga", "slf": "Swiss-Italian Sign Language", "slg": "Selungai Murut", "slh": "Southern Puget Sound Salish", "sli": "Lower Silesian", "slj": "Salumá", "sll": "Salt-Yui", "slm": "Pangutaran Sama", "sln": "Salinan", "slp": "Lamaholot", "slq": "Salchuq", "slr": "Salar", "sls": "Singapore Sign Language", "slt": "Sila", "slu": "Selaru", "slw": "Sialum", "slx": "Salampasu", "sly": "Selayar", "slz": "Ma'ya", "sm": "Samoan", "sma": "Southern Sami", "smb": "Simbari", "smc": "Som", "smf": "Auwe", "smg": "Simbali", "smh": "Samei", "smi": "Sami languages", "smj": "Lule Sami", "smk": "Bolinao", "sml": "Central Sama", "smm": "Musasa", "smn": "Inari Sami", "smp": "Samaritan", "smq": "Samo", "smr": "Simeulue", "sms": "Skolt Sami", "smt": "Simte", "smu": "Somray", "smv": "Samvedi", "smw": "Sumbawa", "smx": "Samba", "smy": "Semnani", "smz": "Simeku", "sn": "Shona", "snc": "Sinaugoro", "sne": "Bau Bidayuh", "snf": "Noon", "sng": "Sanga (Democratic Republic of Congo)", "sni": "Sensi", "snj": "Riverain Sango", "snk": "Soninke", "snl": "Sangil", "snm": "Southern Ma'di", "snn": "Siona", "sno": "Snohomish", "snp": "Siane", "snq": "Sangu (Gabon)", "snr": "Sihan", "sns": "South West Bay; Nahavaq", "snu": "Senggi; Viid", "snv": "Sa'ban", "snw": "Selee", "snx": "Sam", "sny": "Saniyo-Hiyewe", "snz": "Kou", "so": "Somali", "soa": "Thai Song", "sob": "Sobei", "soc": "So (Democratic Republic of Congo)", "sod": "Songoora", "soe": "Songomeno", "sog": "Sogdian", "soh": "Aka", "soi": "Sonha", "soj": "Soi", "sok": "Sokoro", "sol": "Solos", "son": "Songhai languages", "soo": "Songo", "sop": "Songe", "soq": "Kanasi", "sor": "Somrai", "sos": "Seeku", "sou": "Southern Thai", "sov": "Sonsorol", "sow": "Sowanda", "sox": "Swo", "soy": "Miyobe", "soz": "Temi", "spb": "Sepa (Indonesia)", "spc": "Sapé", "spd": "Saep", "spe": "Sepa (Papua New Guinea)", "spg": "Sian", "spi": "Saponi", "spk": "Sengo", "spl": "Selepet", "spm": "Akukem", "spn": "Sanapaná", "spo": "Spokane", "spp": "Supyire Senoufo", "spq": "Loreto-Ucayali Spanish", "spr": "Saparua", "sps": "Saposa", "spt": "Spiti Bhoti", "spu": "Sapuan", "spv": "Sambalpuri; Kosli", "spx": "South Picene", "spy": "Sabaot", "sq": "Albanian", "sqa": "Shama-Sambuga", "sqh": "Shau", "sqj": "Albanian languages", "sqk": "Albanian Sign Language", "sqm": "Suma", "sqn": "Susquehannock", "sqo": "Sorkhei", "sqq": "Sou", "sqr": "Siculo Arabic", "sqs": "Sri Lankan Sign Language", "sqt": "Soqotri", "squ": "Squamish", "sqx": "Kufr Qassem Sign Language (KQSL)", "sr": "Serbian", "sra": "Saruga", "srb": "Sora", "src": "Logudorese Sardinian", "sre": "Sara", "srf": "Nafi", "srg": "Sulod", "srh": "Sarikoli", "sri": "Siriano", "srk": "Serudung Murut", "srl": "Isirawa", "srm": "Saramaccan", "srn": "Sranan Tongo", "sro": "Campidanese Sardinian", "srq": "Sirionó", "srr": "Serer", "srs": "Sarsi", "srt": "Sauri", "sru": "Suruí", "srv": "Southern Sorsoganon", "srw": "Serua", "srx": "Sirmauri", "sry": "Sera", "srz": "Shahmirzadi", "ss": "Swati", "ssa": "Nilo-Saharan languages", "ssb": "Southern Sama", "ssc": "Suba-Simbiti", "ssd": "Siroi", "sse": "Balangingi; Bangingih Sama", "ssf": "Thao", "ssg": "Seimat", "ssh": "Shihhi Arabic", "ssi": "Sansi", "ssj": "Sausi", "ssk": "Sunam", "ssl": "Western Sisaala", "ssm": "Semnam", "ssn": "Waata", "sso": "Sissano", "ssp": "Spanish Sign Language", "ssq": "So'a", "ssr": "Swiss-French Sign Language", "sss": "Sô", "sst": "Sinasina", "ssu": "Susuami", "ssv": "Shark Bay", "ssx": "Samberigi", "ssy": "Saho", "ssz": "Sengseng", "st": "Southern Sotho", "sta": "Settla", "stb": "Northern Subanen", "std": "Sentinel", "ste": "Liana-Seti", "stf": "Seta", "stg": "Trieng", "sth": "Shelta", "sti": "Bulo Stieng", "stj": "Matya Samo", "stk": "Arammba", "stl": "Stellingwerfs", "stm": "Setaman", "stn": "Owa", "sto": "Stoney", "stp": "Southeastern Tepehuan", "stq": "Saterfriesisch", "str": "Straits Salish", "sts": "Shumashti", "stt": "Budeh Stieng", "stu": "Samtao", "stv": "Silt'e", "stw": "Satawalese", "sty": "Siberian Tatar", "su": "Sundanese", "sua": "Sulka", "sub": "Suku", "suc": "Western Subanon", "sue": "Suena", "sug": "Suganga", "sui": "Suki", "suj": "Shubi", "suk": "Sukuma", "suo": "Bouni", "suq": "Tirmaga-Chai Suri; Suri", "sur": "Mwaghavul", "sus": "Susu", "sut": "Subtiaba", "suv": "Puroik", "suw": "Sumbwa", "sux": "Sumerian", "suy": "Suyá", "suz": "Sunwar", "sv": "Swedish", "sva": "Svan", "svb": "Ulau-Suain", "svc": "Vincentian Creole English", "sve": "Serili", "svk": "Slovakian Sign Language", "svm": "Slavomolisano", "svs": "Savosavo", "svx": "Skalvian", "sw": "Swahili (macrolanguage)", "swb": "Maore Comorian", "swc": "Congo Swahili", "swf": "Sere", "swg": "Swabian", "swh": "Swahili (individual language); Kiswahili", "swi": "Sui", "swj": "Sira", "swk": "Malawi Sena", "swl": "Swedish Sign Language", "swm": "Samosa", "swn": "Sawknah", "swo": "Shanenawa", "swp": "Suau", "swq": "Sharwa", "swr": "Saweru", "sws": "Seluwasan", "swt": "Sawila", "swu": "Suwawa", "swv": "Shekhawati", "sww": "Sowa", "swx": "Suruahá", "swy": "Sarua", "sxb": "Suba", "sxc": "Sicanian", "sxe": "Sighu", "sxg": "Shuhi; Shixing", "sxk": "Southern Kalapuya", "sxl": "Selian", "sxm": "Samre", "sxn": "Sangir", "sxo": "Sorothaptic", "sxr": "Saaroa", "sxs": "Sasaru", "sxu": "Upper Saxon", "sxw": "Saxwe Gbe", "sya": "Siang", "syb": "Central Subanen", "syc": "Classical Syriac", "syd": "Samoyedic languages", "syi": "Seki", "syk": "Sukur", "syl": "Sylheti", "sym": "Maya Samo", "syn": "Senaya", "syo": "Suoy", "syr": "Syriac", "sys": "Sinyar", "syw": "Kagate", "syx": "Samay", "syy": "Al-Sayyid Bedouin Sign Language", "sza": "Semelai", "szb": "Ngalum", "szc": "Semaq Beri", "szd": "Seru", "sze": "Seze", "szg": "Sengele", "szl": "Silesian", "szn": "Sula", "szp": "Suabo", "szs": "Solomon Islands Sign Language", "szv": "Isu (Fako Division)", "szw": "Sawai", "szy": "Sakizaya", "ta": "Tamil", "taa": "Lower Tanana", "tab": "Tabassaran", "tac": "Lowland Tarahumara", "tad": "Tause", "tae": "Tariana", "taf": "Tapirapé", "tag": "Tagoi", "tai": "Tai languages", "taj": "Eastern Tamang", "tak": "Tala", "tal": "Tal", "tan": "Tangale", "tao": "Yami", "tap": "Taabwa", "taq": "Tamasheq", "tar": "Central Tarahumara", "tas": "Tay Boi", "tau": "Upper Tanana", "tav": "Tatuyo", "taw": "Tai", "tax": "Tamki", "tay": "Atayal", "taz": "Tocho", "tba": "Aikanã", "tbc": "Takia", "tbd": "Kaki Ae", "tbe": "Tanimbili", "tbf": "Mandara", "tbg": "North Tairora", "tbh": "Dharawal; Thurawal", "tbi": "Gaam", "tbj": "Tiang", "tbk": "Calamian Tagbanwa", "tbl": "Tboli", "tbm": "Tagbu", "tbn": "Barro Negro Tunebo", "tbo": "Tawala", "tbp": "Taworta; Diebroud", "tbq": "Tibeto-Burman languages", "tbr": "Tumtum", "tbs": "Tanguat", "tbt": "Tembo (Kitembo)", "tbu": "Tubar", "tbv": "Tobo", "tbw": "Tagbanwa", "tbx": "Kapin", "tby": "Tabaru", "tbz": "Ditammari", "tca": "Ticuna", "tcb": "Tanacross", "tcc": "Datooga", "tcd": "Tafi", "tce": "Southern Tutchone", "tcf": "Malinaltepec Me'phaa; Malinaltepec Tlapanec", "tcg": "Tamagario", "tch": "Turks And Caicos Creole English", "tci": "Wára", "tck": "Tchitchege", "tcl": "Taman (Myanmar)", "tcm": "Tanahmerah", "tcn": "Tichurong", "tco": "Taungyo", "tcp": "Tawr Chin", "tcq": "Kaiy", "tcs": "Torres Strait Creole; Yumplatok", "tct": "T'en", "tcu": "Southeastern Tarahumara", "tcw": "Tecpatlán Totonac", "tcx": "Toda", "tcy": "Tulu", "tcz": "Thado Chin", "tda": "Tagdal", "tdb": "Panchpargania", "tdc": "Emberá-Tadó", "tdd": "Tai Nüa", "tde": "Tiranige Diga Dogon", "tdf": "Talieng", "tdg": "Western Tamang", "tdh": "Thulung", "tdi": "Tomadino", "tdj": "Tajio", "tdk": "Tambas", "tdl": "Sur", "tdm": "Taruma", "tdn": "Tondano", "tdo": "Teme", "tdq": "Tita", "tdr": "Todrah", "tds": "Doutai", "tdt": "Tetun Dili", "tdv": "Toro", "tdx": "Tandroy-Mahafaly Malagasy", "tdy": "Tadyawan", "te": "Telugu", "tea": "Temiar", "teb": "Tetete", "tec": "Terik", "ted": "Tepo Krumen", "tee": "Huehuetla Tepehua", "tef": "Teressa", "teg": "Teke-Tege", "teh": "Tehuelche", "tei": "Torricelli", "tek": "Ibali Teke", "tem": "Timne", "ten": "Tama (Colombia)", "teo": "Teso", "tep": "Tepecano", "teq": "Temein", "ter": "Tereno", "tes": "Tengger", "tet": "Tetum", "teu": "Soo", "tev": "Teor", "tew": "Tewa (USA)", "tex": "Tennet", "tey": "Tulishi", "tez": "Tetserret", "tfi": "Tofin Gbe", "tfn": "Tanaina", "tfo": "Tefaro", "tfr": "Teribe", "tft": "Ternate", "tg": "Tajik", "tga": "Sagalla", "tgb": "Tobilung", "tgc": "Tigak", "tgd": "Ciwogai", "tge": "Eastern Gorkha Tamang", "tgf": "Chalikha", "tgh": "Tobagonian Creole English", "tgi": "Lawunuia", "tgj": "Tagin", "tgn": "Tandaganon", "tgo": "Sudest", "tgp": "Tangoa", "tgq": "Tring", "tgr": "Tareng", "tgs": "Nume", "tgt": "Central Tagbanwa", "tgu": "Tanggu", "tgv": "Tingui-Boto", "tgw": "Tagwana Senoufo", "tgx": "Tagish", "tgy": "Togoyo", "tgz": "Tagalaka", "th": "Thai", "thd": "Kuuk Thaayorre; Thayore", "the": "Chitwania Tharu", "thf": "Thangmi", "thh": "Northern Tarahumara", "thi": "Tai Long", "thk": "Tharaka; Kitharaka", "thl": "Dangaura Tharu", "thm": "Aheu", "thn": "Thachanadan", "thp": "Thompson", "thq": "Kochila Tharu", "thr": "Rana Tharu", "ths": "Thakali", "tht": "Tahltan", "thu": "Thuri", "thv": "Tahaggart Tamahaq", "thy": "Tha", "thz": "Tayart Tamajeq", "ti": "Tigrinya", "tia": "Tidikelt Tamazight", "tic": "Tira", "tif": "Tifal", "tig": "Tigre", "tih": "Timugon Murut", "tii": "Tiene", "tij": "Tilung", "tik": "Tikar", "til": "Tillamook", "tim": "Timbe", "tin": "Tindi", "tio": "Teop", "tip": "Trimuris", "tiq": "Tiéfo", "tis": "Masadiit Itneg", "tit": "Tinigua", "tiu": "Adasen", "tiv": "Tiv", "tiw": "Tiwi", "tix": "Southern Tiwa", "tiy": "Tiruray", "tiz": "Tai Hongjin", "tja": "Tajuasohn", "tjg": "Tunjung", "tji": "Northern Tujia", "tjj": "Tjungundji", "tjl": "Tai Laing", "tjm": "Timucua", "tjn": "Tonjon", "tjo": "Temacine Tamazight", "tjp": "Tjupany", "tjs": "Southern Tujia", "tju": "Tjurruru", "tjw": "Djabwurrung", "tk": "Turkmen", "tka": "Truká", "tkb": "Buksa", "tkd": "Tukudede", "tke": "Takwane", "tkf": "Tukumanféd", "tkg": "Tesaka Malagasy", "tkl": "Tokelau", "tkm": "Takelma", "tkn": "Toku-No-Shima", "tkp": "Tikopia", "tkq": "Tee", "tkr": "Tsakhur", "tks": "Takestani", "tkt": "Kathoriya Tharu", "tku": "Upper Necaxa Totonac", "tkv": "Mur Pano", "tkw": "Teanu", "tkx": "Tangko", "tkz": "Takua", "tl": "Tagalog", "tla": "Southwestern Tepehuan", "tlb": "Tobelo", "tlc": "Yecuatla Totonac", "tld": "Talaud", "tlf": "Telefol", "tlg": "Tofanma", "tlh": "Klingon; tlhIngan Hol", "tli": "Tlingit", "tlj": "Talinga-Bwisi", "tlk": "Taloki", "tll": "Tetela", "tlm": "Tolomako", "tln": "Talondo'", "tlo": "Talodi", "tlp": "Filomena Mata-Coahuitlán Totonac", "tlq": "Tai Loi", "tlr": "Talise", "tls": "Tambotalo", "tlt": "Sou Nama; Teluti", "tlu": "Tulehu", "tlv": "Taliabu", "tlx": "Khehek", "tly": "Talysh", "tma": "Tama (Chad)", "tmb": "Katbol; Avava", "tmc": "Tumak", "tmd": "Haruai", "tme": "Tremembé", "tmf": "Toba-Maskoy", "tmg": "Ternateño", "tmh": "Tamashek", "tmi": "Tutuba", "tmj": "Samarokena", "tmk": "Northwestern Tamang", "tml": "Tamnim Citak", "tmm": "Tai Thanh", "tmn": "Taman (Indonesia)", "tmo": "Temoq", "tmq": "Tumleo", "tmr": "Jewish Babylonian Aramaic (ca. 200-1200 CE)", "tms": "Tima", "tmt": "Tasmate", "tmu": "Iau", "tmv": "Tembo (Motembo)", "tmw": "Temuan", "tmy": "Tami", "tmz": "Tamanaku", "tn": "Tswana", "tna": "Tacana", "tnb": "Western Tunebo", "tnc": "Tanimuca-Retuarã", "tnd": "Angosturas Tunebo", "tng": "Tobanga", "tnh": "Maiani", "tni": "Tandia", "tnk": "Kwamera", "tnl": "Lenakel", "tnm": "Tabla", "tnn": "North Tanna", "tno": "Toromono", "tnp": "Whitesands", "tnq": "Taino", "tnr": "Ménik", "tns": "Tenis", "tnt": "Tontemboan", "tnu": "Tay Khang", "tnv": "Tangchangya", "tnw": "Tonsawang", "tnx": "Tanema", "tny": "Tongwe", "tnz": "Ten'edn", "to": "Tonga (Tonga Islands)", "tob": "Toba", "toc": "Coyutla Totonac", "tod": "Toma", "tof": "Gizrra", "tog": "Tonga (Nyasa)", "toh": "Gitonga", "toi": "Tonga (Zambia)", "toj": "Tojolabal", "tok": "Toki Pona", "tol": "Tolowa", "tom": "Tombulu", "too": "Xicotepec De Juárez Totonac", "top": "Papantla Totonac", "toq": "Toposa", "tor": "Togbo-Vara Banda", "tos": "Highland Totonac", "tou": "Tho", "tov": "Upper Taromi", "tow": "Jemez", "tox": "Tobian", "toy": "Topoiyo", "toz": "To", "tpa": "Taupota", "tpc": "Azoyú Me'phaa; Azoyú Tlapanec", "tpe": "Tippera", "tpf": "Tarpia", "tpg": "Kula", "tpi": "Tok Pisin", "tpj": "Tapieté", "tpk": "Tupinikin", "tpl": "Tlacoapa Me'phaa; Tlacoapa Tlapanec", "tpm": "Tampulma", "tpn": "Tupinambá", "tpo": "Tai Pao", "tpp": "Pisaflores Tepehua", "tpq": "Tukpa", "tpr": "Tuparí", "tpt": "Tlachichilco Tepehua", "tpu": "Tampuan", "tpv": "Tanapag", "tpw": "Tupí", "tpx": "Acatepec Me'phaa; Acatepec Tlapanec", "tpy": "Trumai", "tpz": "Tinputz", "tqb": "Tembé", "tql": "Lehali", "tqm": "Turumsa", "tqn": "Tenino", "tqo": "Toaripi", "tqp": "Tomoip", "tqq": "Tunni", "tqr": "Torona", "tqt": "Western Totonac", "tqu": "Touo", "tqw": "Tonkawa", "tr": "Turkish", "tra": "Tirahi", "trb": "Terebu", "trc": "Copala Triqui", "trd": "Turi", "tre": "East Tarangan", "trf": "Trinidadian Creole English", "trg": "Lishán Didán", "trh": "Turaka", "tri": "Trió", "trj": "Toram", "trk": "Turkic languages", "trl": "Traveller Scottish", "trm": "Tregami", "trn": "Trinitario", "tro": "Tarao Naga", "trp": "Kok Borok", "trq": "San Martín Itunyoso Triqui", "trr": "Taushiro", "trs": "Chicahuaxtla Triqui", "trt": "Tunggare", "tru": "Turoyo; Surayt", "trv": "Sediq; Seediq; Taroko", "trw": "Torwali", "trx": "Tringgus-Sembaan Bidayuh", "try": "Turung", "trz": "Torá", "ts": "Tsonga", "tsa": "Tsaangi", "tsb": "Tsamai", "tsc": "Tswa", "tsd": "Tsakonian", "tse": "Tunisian Sign Language", "tsg": "Tausug", "tsh": "Tsuvan", "tsi": "Tsimshian", "tsj": "Tshangla", "tsk": "Tseku", "tsl": "Ts'ün-Lao", "tsm": "Turkish Sign Language; Türk İşaret Dili", "tsp": "Northern Toussian", "tsq": "Thai Sign Language", "tsr": "Akei", "tss": "Taiwan Sign Language", "tst": "Tondi Songway Kiini", "tsu": "Tsou", "tsv": "Tsogo", "tsw": "Tsishingini", "tsx": "Mubami", "tsy": "Tebul Sign Language", "tsz": "Purepecha", "tt": "Tatar", "tta": "Tutelo", "ttb": "Gaa", "ttc": "Tektiteko", "ttd": "Tauade", "tte": "Bwanabwana", "ttf": "Tuotomb", "ttg": "Tutong", "tth": "Upper Ta'oih", "tti": "Tobati", "ttj": "Tooro", "ttk": "Totoro", "ttl": "Totela", "ttm": "Northern Tutchone", "ttn": "Towei", "tto": "Lower Ta'oih", "ttp": "Tombelala", "ttq": "Tawallammat Tamajaq", "ttr": "Tera", "tts": "Northeastern Thai", "ttt": "Muslim Tat", "ttu": "Torau", "ttv": "Titan", "ttw": "Long Wat", "tty": "Sikaritai", "ttz": "Tsum", "tua": "Wiarumus", "tub": "Tübatulabal", "tuc": "Mutu", "tud": "Tuxá", "tue": "Tuyuca", "tuf": "Central Tunebo", "tug": "Tunia", "tuh": "Taulil", "tui": "Tupuri", "tuj": "Tugutil", "tul": "Tula", "tum": "Tumbuka", "tun": "Tunica", "tuo": "Tucano", "tup": "Tupi languages", "tuq": "Tedaga", "tus": "Tuscarora", "tut": "Altaic languages", "tuu": "Tututni", "tuv": "Turkana", "tuw": "Tungus languages", "tux": "Tuxináwa", "tuy": "Tugen", "tuz": "Turka", "tva": "Vaghua", "tvd": "Tsuvadi", "tve": "Te'un", "tvk": "Southeast Ambrym", "tvl": "Tuvalu", "tvm": "Tela-Masbuar", "tvn": "Tavoyan", "tvo": "Tidore", "tvs": "Taveta", "tvt": "Tutsa Naga", "tvu": "Tunen", "tvw": "Sedoa", "tvx": "Taivoan", "tvy": "Timor Pidgin", "tw": "Twi", "twa": "Twana", "twb": "Western Tawbuid", "twc": "Teshenawa", "twd": "Twents", "twe": "Tewa (Indonesia)", "twf": "Northern Tiwa", "twg": "Tereweng", "twh": "Tai Dón", "twl": "Tawara", "twm": "Tawang Monpa", "twn": "Twendi", "two": "Tswapong", "twp": "Ere", "twq": "Tasawaq", "twr": "Southwestern Tarahumara", "twt": "Turiwára", "twu": "Termanu", "tww": "Tuwari", "twx": "Tewe", "twy": "Tawoyan", "txa": "Tombonuo", "txb": "Tokharian B", "txc": "Tsetsaut", "txe": "Totoli", "txg": "Tangut", "txh": "Thracian", "txi": "Ikpeng", "txj": "Tarjumo", "txm": "Tomini", "txn": "West Tarangan", "txo": "Toto", "txq": "Tii", "txr": "Tartessian", "txs": "Tonsea", "txt": "Citak", "txu": "Kayapó", "txx": "Tatana", "txy": "Tanosy Malagasy", "ty": "Tahitian", "tya": "Tauya", "tye": "Kyanga", "tyh": "O'du", "tyi": "Teke-Tsaayi", "tyj": "Tai Do; Tai Yo", "tyl": "Thu Lao", "tyn": "Kombai", "typ": "Thaypan", "tyr": "Tai Daeng", "tys": "Tày Sa Pa", "tyt": "Tày Tac", "tyu": "Kua", "tyv": "Tuvinian", "tyx": "Teke-Tyee", "tyy": "Tiyaa", "tyz": "Tày", "tza": "Tanzanian Sign Language", "tzh": "Tzeltal", "tzj": "Tz'utujil", "tzl": "Talossan", "tzm": "Central Atlas Tamazight", "tzn": "Tugun", "tzo": "Tzotzil", "tzx": "Tabriak", "uam": "Uamué", "uan": "Kuan", "uar": "Tairuma", "uba": "Ubang", "ubi": "Ubi", "ubl": "Buhi'non Bikol", "ubr": "Ubir", "ubu": "Umbu-Ungu", "uby": "Ubykh", "uda": "Uda", "ude": "Udihe", "udg": "Muduga", "udi": "Udi", "udj": "Ujir", "udl": "Wuzlam", "udm": "Udmurt", "udu": "Uduk", "ues": "Kioko", "ufi": "Ufim", "ug": "Uighur; Uyghur", "uga": "Ugaritic", "ugb": "Kuku-Ugbanh", "uge": "Ughele", "ugh": "Kubachi", "ugn": "Ugandan Sign Language", "ugo": "Ugong", "ugy": "Uruguayan Sign Language", "uha": "Uhami", "uhn": "Damal", "uis": "Uisai", "uiv": "Iyive", "uji": "Tanjijili", "uk": "Ukrainian", "uka": "Kaburi", "ukg": "Ukuriguma", "ukh": "Ukhwejo", "uki": "Kui (India)", "ukk": "Muak Sa-aak", "ukl": "Ukrainian Sign Language", "ukp": "Ukpe-Bayobiri", "ukq": "Ukwa", "uks": "Urubú-Kaapor Sign Language; Kaapor Sign Language", "uku": "Ukue", "ukv": "Kuku", "ukw": "Ukwuani-Aboh-Ndoni", "uky": "Kuuk-Yak", "ula": "Fungwa", "ulb": "Ulukwumi", "ulc": "Ulch", "ule": "Lule", "ulf": "Usku; Afra", "uli": "Ulithian", "ulk": "Meriam Mir", "ull": "Ullatan", "ulm": "Ulumanda'", "uln": "Unserdeutsch", "ulu": "Uma' Lung", "ulw": "Ulwa", "uma": "Umatilla", "umb": "Umbundu", "umc": "Marrucinian", "umd": "Umbindhamu", "umg": "Morrobalama; Umbuygamu", "umi": "Ukit", "umm": "Umon", "umn": "Makyan Naga", "umo": "Umotína", "ump": "Umpila", "umr": "Umbugarla", "ums": "Pendau", "umu": "Munsee", "una": "North Watut", "und": "Undetermined", "une": "Uneme", "ung": "Ngarinyin", "uni": "Uni", "unk": "Enawené-Nawé", "unm": "Unami", "unn": "Kurnai", "unr": "Mundari", "unu": "Unubahe", "unx": "Munda", "unz": "Unde Kaili", "uon": "Kulon", "upi": "Umeda", "upv": "Uripiv-Wala-Rano-Atchin", "ur": "Urdu", "ura": "Urarina", "urb": "Urubú-Kaapor; Kaapor", "urc": "Urningangg", "ure": "Uru", "urf": "Uradhi", "urg": "Urigina", "urh": "Urhobo", "uri": "Urim", "urj": "Uralic languages", "urk": "Urak Lawoi'", "url": "Urali", "urm": "Urapmin", "urn": "Uruangnirin", "uro": "Ura (Papua New Guinea)", "urp": "Uru-Pa-In", "urr": "Lehalurup; Löyöp", "urt": "Urat", "uru": "Urumi", "urv": "Uruava", "urw": "Sop", "urx": "Urimo", "ury": "Orya", "urz": "Uru-Eu-Wau-Wau", "usa": "Usarufa", "ush": "Ushojo", "usi": "Usui", "usk": "Usaghade", "usp": "Uspanteco", "uss": "us-Saare", "usu": "Uya", "uta": "Otank", "ute": "Ute-Southern Paiute", "uth": "ut-Hun", "utp": "Amba (Solomon Islands)", "utr": "Etulo", "utu": "Utu", "uum": "Urum", "uur": "Ura (Vanuatu)", "uuu": "U", "uve": "West Uvean; Fagauvea", "uvh": "Uri", "uvl": "Lote", "uwa": "Kuku-Uwanh", "uya": "Doko-Uyanga", "uz": "Uzbek", "uzn": "Northern Uzbek", "uzs": "Southern Uzbek", "vaa": "Vaagri Booli", "vae": "Vale", "vaf": "Vafsi", "vag": "Vagla", "vah": "Varhadi-Nagpuri", "vai": "Vai", "vaj": "Sekele; Northwestern ǃKung; Vasekele", "val": "Vehes", "vam": "Vanimo", "van": "Valman", "vao": "Vao", "vap": "Vaiphei", "var": "Huarijio", "vas": "Vasavi", "vau": "Vanuma", "vav": "Varli", "vay": "Wayu", "vbb": "Southeast Babar", "vbk": "Southwestern Bontok", "ve": "Venda", "vec": "Venetian", "ved": "Veddah", "vel": "Veluws", "vem": "Vemgo-Mabas", "veo": "Ventureño", "vep": "Veps", "ver": "Mom Jango", "vgr": "Vaghri", "vgt": "Vlaamse Gebarentaal; Flemish Sign Language", "vi": "Vietnamese", "vic": "Virgin Islands Creole English", "vid": "Vidunda", "vif": "Vili", "vig": "Viemo", "vil": "Vilela", "vin": "Vinza", "vis": "Vishavan", "vit": "Viti", "viv": "Iduna", "vka": "Kariyarra", "vkj": "Kujarge", "vkk": "Kaur", "vkl": "Kulisusu", "vkm": "Kamakan", "vkn": "Koro Nulu", "vko": "Kodeoha", "vkp": "Korlai Creole Portuguese", "vkt": "Tenggarong Kutai Malay", "vku": "Kurrama", "vkz": "Koro Zuba", "vlp": "Valpei", "vls": "Vlaams", "vma": "Martuyhunira", "vmb": "Barbaram", "vmc": "Juxtlahuaca Mixtec", "vmd": "Mudu Koraga", "vme": "East Masela", "vmf": "Mainfränkisch", "vmg": "Lungalunga", "vmh": "Maraghei", "vmi": "Miwa", "vmj": "Ixtayutla Mixtec", "vmk": "Makhuwa-Shirima", "vml": "Malgana", "vmm": "Mitlatongo Mixtec", "vmp": "Soyaltepec Mazatec", "vmq": "Soyaltepec Mixtec", "vmr": "Marenje", "vms": "Moksela", "vmu": "Muluridyi", "vmv": "Valley Maidu", "vmw": "Makhuwa", "vmx": "Tamazola Mixtec", "vmy": "Ayautla Mazatec", "vmz": "Mazatlán Mazatec", "vnk": "Vano; Lovono", "vnm": "Vinmavis; Neve'ei", "vnp": "Vunapu", "vo": "Volapük", "vor": "Voro", "vot": "Votic", "vra": "Vera'a", "vro": "Võro", "vrs": "Varisi", "vrt": "Burmbar; Banam Bay", "vsi": "Moldova Sign Language", "vsl": "Venezuelan Sign Language", "vsv": "Valencian Sign Language; Llengua de signes valenciana", "vto": "Vitou", "vum": "Vumbu", "vun": "Vunjo", "vut": "Vute", "vwa": "Awa (China)", "wa": "Walloon", "waa": "Walla Walla", "wab": "Wab", "wac": "Wasco-Wishram", "wad": "Wamesa; Wondama", "wae": "Walser", "waf": "Wakoná", "wag": "Wa'ema", "wah": "Watubela", "wai": "Wares", "waj": "Waffa", "wak": "Wakashan languages", "wal": "Wolaytta; Wolaitta", "wam": "Wampanoag", "wan": "Wan", "wao": "Wappo", "wap": "Wapishana", "waq": "Wagiman", "war": "Waray (Philippines)", "was": "Washo", "wat": "Kaninuwa", "wau": "Waurá", "wav": "Waka", "waw": "Waiwai", "wax": "Watam; Marangis", "way": "Wayana", "waz": "Wampur", "wba": "Warao", "wbb": "Wabo", "wbe": "Waritai", "wbf": "Wara", "wbh": "Wanda", "wbi": "Vwanji", "wbj": "Alagwa", "wbk": "Waigali", "wbl": "Wakhi", "wbm": "Wa", "wbp": "Warlpiri", "wbq": "Waddar", "wbr": "Wagdi", "wbs": "West Bengal Sign Language", "wbt": "Warnman", "wbv": "Wajarri", "wbw": "Woi", "wca": "Yanomámi", "wci": "Waci Gbe", "wdd": "Wandji", "wdg": "Wadaginam", "wdj": "Wadjiginy", "wdk": "Wadikali", "wdt": "Wendat", "wdu": "Wadjigu", "wdy": "Wadjabangayi", "wea": "Wewaw", "wec": "Wè Western", "wed": "Wedau", "weg": "Wergaia", "weh": "Weh", "wei": "Kiunum", "wem": "Weme Gbe", "wen": "Sorbian languages", "weo": "Wemale", "wep": "Westphalien", "wer": "Weri", "wes": "Cameroon Pidgin", "wet": "Perai", "weu": "Rawngtu Chin", "wew": "Wejewa", "wfg": "Yafi; Zorop", "wga": "Wagaya", "wgb": "Wagawaga", "wgg": "Wangkangurru; Wangganguru", "wgi": "Wahgi", "wgo": "Waigeo", "wgu": "Wirangu", "wgy": "Warrgamay", "wha": "Sou Upaa; Manusela", "whg": "North Wahgi", "whk": "Wahau Kenyah", "whu": "Wahau Kayan", "wib": "Southern Toussian", "wic": "Wichita", "wie": "Wik-Epa", "wif": "Wik-Keyangan", "wig": "Wik Ngathan", "wih": "Wik-Me'anha", "wii": "Minidien", "wij": "Wik-Iiyanh", "wik": "Wikalkan", "wil": "Wilawila", "wim": "Wik-Mungkan", "win": "Ho-Chunk", "wir": "Wiraféd", "wiu": "Wiru", "wiv": "Vitu", "wiy": "Wiyot", "wja": "Waja", "wji": "Warji", "wka": "Kw'adza", "wkb": "Kumbaran", "wkd": "Wakde; Mo", "wkl": "Kalanadi", "wkr": "Keerray-Woorroong", "wku": "Kunduvadi", "wkw": "Wakawaka", "wky": "Wangkayutyuru", "wla": "Walio", "wlc": "Mwali Comorian", "wle": "Wolane", "wlg": "Kunbarlang", "wlh": "Welaun", "wli": "Waioli", "wlk": "Wailaki", "wll": "Wali (Sudan)", "wlm": "Middle Welsh", "wlo": "Wolio", "wlr": "Wailapa", "wls": "Wallisian", "wlu": "Wuliwuli", "wlv": "Wichí Lhamtés Vejoz", "wlw": "Walak", "wlx": "Wali (Ghana)", "wly": "Waling", "wma": "Mawa (Nigeria)", "wmb": "Wambaya", "wmc": "Wamas", "wmd": "Mamaindé", "wme": "Wambule", "wmg": "Western Minyag", "wmh": "Waima'a", "wmi": "Wamin", "wmm": "Maiwa (Indonesia)", "wmn": "Waamwang", "wmo": "Wom (Papua New Guinea)", "wms": "Wambon", "wmt": "Walmajarri", "wmw": "Mwani", "wmx": "Womo", "wnb": "Wanambre", "wnc": "Wantoat", "wnd": "Wandarang", "wne": "Waneci", "wng": "Wanggom", "wni": "Ndzwani Comorian", "wnk": "Wanukaka", "wnm": "Wanggamala", "wnn": "Wunumara", "wno": "Wano", "wnp": "Wanap", "wnu": "Usan", "wnw": "Wintu", "wny": "Wanyi; Waanyi", "wo": "Wolof", "woa": "Kuwema; Tyaraity", "wob": "Wè Northern", "woc": "Wogeo", "wod": "Wolani", "woe": "Woleaian", "wof": "Gambian Wolof", "wog": "Wogamusin", "woi": "Kamang", "wok": "Longto", "wom": "Wom (Nigeria)", "won": "Wongo", "woo": "Manombai", "wor": "Woria", "wos": "Hanga Hundi", "wow": "Wawonii", "woy": "Weyto", "wpc": "Maco", "wrb": "Waluwarra; Warluwara", "wrg": "Warungu; Gudjal", "wrh": "Wiradjuri", "wri": "Wariyangga", "wrk": "Garrwa", "wrl": "Warlmanpa", "wrm": "Warumungu", "wrn": "Warnang", "wro": "Worrorra", "wrp": "Waropen", "wrr": "Wardaman", "wrs": "Waris", "wru": "Waru", "wrv": "Waruna", "wrw": "Gugu Warra", "wrx": "Wae Rana", "wry": "Merwari", "wrz": "Waray (Australia)", "wsa": "Warembori", "wsg": "Adilabad Gondi", "wsi": "Wusi", "wsk": "Waskia", "wsr": "Owenia", "wss": "Wasa", "wsu": "Wasu", "wsv": "Wotapuri-Katarqalai", "wtf": "Watiwa", "wth": "Wathawurrung", "wti": "Berta", "wtk": "Watakataui", "wtm": "Mewati", "wtw": "Wotu", "wua": "Wikngenchera", "wub": "Wunambal", "wud": "Wudu", "wuh": "Wutunhua", "wul": "Silimo", "wum": "Wumbvu", "wun": "Bungu", "wur": "Wurrugu", "wut": "Wutung", "wuu": "Wu Chinese", "wuv": "Wuvulu-Aua", "wux": "Wulna", "wuy": "Wauyai", "wwa": "Waama", "wwb": "Wakabunga", "wwo": "Wetamut; Dorig", "wwr": "Warrwa", "www": "Wawa", "wxa": "Waxianghua", "wxw": "Wardandi", "wyb": "Wangaaybuwan-Ngiyambaa", "wyi": "Woiwurrung", "wym": "Wymysorys", "wyn": "Wyandot", "wyr": "Wayoró", "wyy": "Western Fijian", "xaa": "Andalusian Arabic", "xab": "Sambe", "xac": "Kachari", "xad": "Adai", "xae": "Aequian", "xag": "Aghwan", "xai": "Kaimbé", "xaj": "Ararandewára", "xak": "Máku", "xal": "Kalmyk; Oirat", "xam": "ǀXam", "xan": "Xamtanga", "xao": "Khao", "xap": "Apalachee", "xaq": "Aquitanian", "xar": "Karami", "xas": "Kamas", "xat": "Katawixi", "xau": "Kauwera", "xav": "Xavánte", "xaw": "Kawaiisu", "xay": "Kayan Mahakam", "xbb": "Lower Burdekin", "xbc": "Bactrian", "xbd": "Bindal", "xbe": "Bigambal", "xbg": "Bunganditj", "xbi": "Kombio", "xbj": "Birrpayi", "xbm": "Middle Breton", "xbn": "Kenaboi", "xbo": "Bolgarian", "xbp": "Bibbulman", "xbr": "Kambera", "xbw": "Kambiwá", "xby": "Batjala; Batyala", "xcb": "Cumbric", "xcc": "Camunic", "xce": "Celtiberian", "xcg": "Cisalpine Gaulish", "xch": "Chemakum; Chimakum", "xcl": "Classical Armenian", "xcm": "Comecrudo", "xcn": "Cotoname", "xco": "Chorasmian", "xcr": "Carian", "xct": "Classical Tibetan", "xcu": "Curonian", "xcv": "Chuvantsy", "xcw": "Coahuilteco", "xcy": "Cayuse", "xda": "Darkinyung", "xdc": "Dacian", "xdk": "Dharuk", "xdm": "Edomite", "xdo": "Kwandu", "xdq": "Kaitag", "xdy": "Malayic Dayak", "xeb": "Eblan", "xed": "Hdi", "xeg": "ǁXegwi", "xel": "Kelo", "xem": "Kembayan", "xep": "Epi-Olmec", "xer": "Xerénte", "xes": "Kesawai", "xet": "Xetá", "xeu": "Keoru-Ahia", "xfa": "Faliscan", "xga": "Galatian", "xgb": "Gbin", "xgd": "Gudang", "xgf": "Gabrielino-Fernandeño", "xgg": "Goreng", "xgi": "Garingbal", "xgl": "Galindan", "xgm": "Dharumbal; Guwinmal", "xgn": "Mongolian languages", "xgr": "Garza", "xgu": "Unggumi", "xgw": "Guwa", "xh": "Xhosa", "xha": "Harami", "xhc": "Hunnic", "xhd": "Hadrami", "xhe": "Khetrani", "xhm": "Middle Khmer (1400 to 1850 CE)", "xhr": "Hernican", "xht": "Hattic", "xhu": "Hurrian", "xhv": "Khua", "xib": "Iberian", "xii": "Xiri", "xil": "Illyrian", "xin": "Xinca", "xir": "Xiriâna", "xis": "Kisan", "xiv": "Indus Valley Language", "xiy": "Xipaya", "xjb": "Minjungbal", "xjt": "Jaitmatang", "xka": "Kalkoti", "xkb": "Northern Nago", "xkc": "Kho'ini", "xkd": "Mendalam Kayan", "xke": "Kereho", "xkf": "Khengkha", "xkg": "Kagoro", "xki": "Kenyan Sign Language", "xkj": "Kajali", "xkk": "Kachok; Kaco'", "xkl": "Mainstream Kenyah", "xkn": "Kayan River Kayan", "xko": "Kiorr", "xkp": "Kabatei", "xkq": "Koroni", "xkr": "Xakriabá", "xks": "Kumbewaha", "xkt": "Kantosi", "xku": "Kaamba", "xkv": "Kgalagadi", "xkw": "Kembra", "xkx": "Karore", "xky": "Uma' Lasan", "xkz": "Kurtokha", "xla": "Kamula", "xlb": "Loup B", "xlc": "Lycian", "xld": "Lydian", "xle": "Lemnian", "xlg": "Ligurian (Ancient)", "xli": "Liburnian", "xln": "Alanic", "xlo": "Loup A", "xlp": "Lepontic", "xls": "Lusitanian", "xlu": "Cuneiform Luwian", "xly": "Elymian", "xma": "Mushungulu", "xmb": "Mbonga", "xmc": "Makhuwa-Marrevone", "xmd": "Mbudum", "xme": "Median", "xmf": "Mingrelian", "xmg": "Mengaka", "xmh": "Kugu-Muminh", "xmj": "Majera", "xmk": "Ancient Macedonian", "xml": "Malaysian Sign Language", "xmm": "Manado Malay", "xmn": "Manichaean Middle Persian", "xmo": "Morerebi", "xmp": "Kuku-Mu'inh", "xmq": "Kuku-Mangk", "xmr": "Meroitic", "xms": "Moroccan Sign Language", "xmt": "Matbat", "xmu": "Kamu", "xmv": "Antankarana Malagasy; Tankarana Malagasy", "xmw": "Tsimihety Malagasy", "xmx": "Salawati; Maden", "xmy": "Mayaguduna", "xmz": "Mori Bawah", "xna": "Ancient North Arabian", "xnb": "Kanakanabu", "xnd": "Na-Dene languages", "xng": "Middle Mongolian", "xnh": "Kuanhua", "xni": "Ngarigu", "xnj": "Ngoni (Tanzania)", "xnk": "Nganakarti", "xnm": "Ngumbarl", "xnn": "Northern Kankanay", "xno": "Anglo-Norman", "xnq": "Ngoni (Mozambique)", "xnr": "Kangri", "xns": "Kanashi", "xnt": "Narragansett", "xnu": "Nukunul", "xny": "Nyiyaparli", "xnz": "Kenzi; Mattoki", "xoc": "O'chi'chi'", "xod": "Kokoda", "xog": "Soga", "xoi": "Kominimung", "xok": "Xokleng", "xom": "Komo (Sudan)", "xon": "Konkomba", "xoo": "Xukurú", "xop": "Kopar", "xor": "Korubo", "xow": "Kowaki", "xpa": "Pirriya", "xpb": "Northeastern Tasmanian; Pyemmairrener", "xpc": "Pecheneg", "xpd": "Oyster Bay Tasmanian", "xpe": "Liberia Kpelle", "xpf": "Southeast Tasmanian; Nuenonne", "xpg": "Phrygian", "xph": "North Midlands Tasmanian; Tyerrenoterpanner", "xpi": "Pictish", "xpj": "Mpalitjanh", "xpk": "Kulina Pano", "xpl": "Port Sorell Tasmanian", "xpm": "Pumpokol", "xpn": "Kapinawá", "xpo": "Pochutec", "xpp": "Puyo-Paekche", "xpq": "Mohegan-Pequot", "xpr": "Parthian", "xps": "Pisidian", "xpt": "Punthamara", "xpu": "Punic", "xpv": "Northern Tasmanian; Tommeginne", "xpw": "Northwestern Tasmanian; Peerapper", "xpx": "Southwestern Tasmanian; Toogee", "xpy": "Puyo", "xpz": "Bruny Island Tasmanian", "xqa": "Karakhanid", "xqt": "Qatabanian", "xra": "Krahô", "xrb": "Eastern Karaboro", "xrd": "Gundungurra", "xre": "Kreye", "xrg": "Minang", "xri": "Krikati-Timbira", "xrm": "Armazic", "xrn": "Arin", "xrr": "Raetic", "xrt": "Aranama-Tamique", "xru": "Marriammu", "xrw": "Karawa", "xsa": "Sabaean", "xsb": "Sambal", "xsc": "Scythian", "xsd": "Sidetic", "xse": "Sempan", "xsh": "Shamang", "xsi": "Sio", "xsj": "Subi", "xsl": "South Slavey", "xsm": "Kasem", "xsn": "Sanga (Nigeria)", "xso": "Solano", "xsp": "Silopi", "xsq": "Makhuwa-Saka", "xsr": "Sherpa", "xss": "Assan", "xsu": "Sanumá", "xsv": "Sudovian", "xsy": "Saisiyat", "xta": "Alcozauca Mixtec", "xtb": "Chazumba Mixtec", "xtc": "Katcha-Kadugli-Miri", "xtd": "Diuxi-Tilantongo Mixtec", "xte": "Ketengban", "xtg": "Transalpine Gaulish", "xth": "Yitha Yitha", "xti": "Sinicahua Mixtec", "xtj": "San Juan Teita Mixtec", "xtl": "Tijaltepec Mixtec", "xtm": "Magdalena Peñasco Mixtec", "xtn": "Northern Tlaxiaco Mixtec", "xto": "Tokharian A", "xtp": "San Miguel Piedras Mixtec", "xtq": "Tumshuqese", "xtr": "Early Tripuri", "xts": "Sindihui Mixtec", "xtt": "Tacahua Mixtec", "xtu": "Cuyamecalco Mixtec", "xtv": "Thawa", "xtw": "Tawandê", "xty": "Yoloxochitl Mixtec", "xua": "Alu Kurumba", "xub": "Betta Kurumba", "xud": "Umiida", "xug": "Kunigami", "xuj": "Jennu Kurumba", "xul": "Ngunawal; Nunukul", "xum": "Umbrian", "xun": "Unggaranggu", "xuo": "Kuo", "xup": "Upper Umpqua", "xur": "Urartian", "xut": "Kuthant", "xuu": "Kxoe; Khwedam", "xve": "Venetic", "xvi": "Kamviri", "xvn": "Vandalic", "xvo": "Volscian", "xvs": "Vestinian", "xwa": "Kwaza", "xwc": "Woccon", "xwd": "Wadi Wadi", "xwe": "Xwela Gbe", "xwg": "Kwegu", "xwj": "Wajuk", "xwk": "Wangkumara", "xwl": "Western Xwla Gbe", "xwo": "Written Oirat", "xwr": "Kwerba Mamberamo", "xwt": "Wotjobaluk", "xww": "Wemba Wemba", "xxb": "Boro (Ghana)", "xxk": "Ke'o", "xxm": "Minkin", "xxr": "Koropó", "xxt": "Tambora", "xya": "Yaygir", "xyb": "Yandjibara", "xyj": "Mayi-Yapi", "xyk": "Mayi-Kulan", "xyl": "Yalakalore", "xyt": "Mayi-Thakurti", "xyy": "Yorta Yorta", "xzh": "Zhang-Zhung", "xzm": "Zemgalian", "xzp": "Ancient Zapotec", "yaa": "Yaminahua", "yab": "Yuhup", "yac": "Pass Valley Yali", "yad": "Yagua", "yae": "Pumé", "yaf": "Yaka (Democratic Republic of Congo)", "yag": "Yámana", "yah": "Yazgulyam", "yai": "Yagnobi", "yaj": "Banda-Yangere", "yak": "Yakama", "yal": "Yalunka", "yam": "Yamba", "yan": "Mayangna", "yao": "Yao", "yap": "Yapese", "yaq": "Yaqui", "yar": "Yabarana", "yas": "Nugunu (Cameroon)", "yat": "Yambeta", "yau": "Yuwana", "yav": "Yangben", "yaw": "Yawalapití", "yax": "Yauma", "yay": "Agwagwune", "yaz": "Lokaa", "yba": "Yala", "ybb": "Yemba", "ybe": "West Yugur", "ybh": "Yakha", "ybi": "Yamphu", "ybj": "Hasha", "ybk": "Bokha", "ybl": "Yukuben", "ybm": "Yaben", "ybn": "Yabaâna", "ybo": "Yabong", "ybx": "Yawiyo", "yby": "Yaweyuha", "ych": "Chesu", "ycl": "Lolopo", "ycn": "Yucuna", "ycp": "Chepya", "yda": "Yanda", "ydd": "Eastern Yiddish", "yde": "Yangum Dey", "ydg": "Yidgha", "ydk": "Yoidik", "yea": "Ravula", "yec": "Yeniche", "yee": "Yimas", "yei": "Yeni", "yej": "Yevanic", "yel": "Yela", "yer": "Tarok", "yes": "Nyankpa", "yet": "Yetfa", "yeu": "Yerukula", "yev": "Yapunda", "yey": "Yeyi", "yga": "Malyangapa", "ygi": "Yiningayi", "ygl": "Yangum Gel", "ygm": "Yagomi", "ygp": "Gepo", "ygr": "Yagaria", "ygs": "Yolŋu Sign Language", "ygu": "Yugul", "ygw": "Yagwoia", "yha": "Baha Buyang", "yhd": "Judeo-Iraqi Arabic", "yhl": "Hlepho Phowa", "yhs": "Yan-nhaŋu Sign Language", "yi": "Yiddish", "yia": "Yinggarda", "yif": "Ache", "yig": "Wusa Nasu", "yih": "Western Yiddish", "yii": "Yidiny", "yij": "Yindjibarndi", "yik": "Dongshanba Lalo", "yil": "Yindjilandji", "yim": "Yimchungru Naga", "yin": "Riang Lai; Yinchia", "yip": "Pholo", "yiq": "Miqie", "yir": "North Awyu", "yis": "Yis", "yit": "Eastern Lalu", "yiu": "Awu", "yiv": "Northern Nisu", "yix": "Axi Yi", "yiz": "Azhe", "yka": "Yakan", "ykg": "Northern Yukaghir", "yki": "Yoke", "ykk": "Yakaikeke", "ykl": "Khlula", "ykm": "Kap", "ykn": "Kua-nsi", "yko": "Yasa", "ykr": "Yekora", "ykt": "Kathu", "yku": "Kuamasi", "yky": "Yakoma", "yla": "Yaul", "ylb": "Yaleba", "yle": "Yele", "ylg": "Yelogu", "yli": "Angguruk Yali", "yll": "Yil", "ylm": "Limi", "yln": "Langnian Buyang", "ylo": "Naluo Yi", "ylr": "Yalarnnga", "ylu": "Aribwaung", "yly": "Nyâlayu; Nyelâyu", "ymb": "Yambes", "ymc": "Southern Muji", "ymd": "Muda", "yme": "Yameo", "ymg": "Yamongeri", "ymh": "Mili", "ymi": "Moji", "ymk": "Makwe", "yml": "Iamalele", "ymm": "Maay", "ymn": "Yamna; Sunum", "ymo": "Yangum Mon", "ymp": "Yamap", "ymq": "Qila Muji", "ymr": "Malasar", "yms": "Mysian", "ymx": "Northern Muji", "ymz": "Muzi", "yna": "Aluo", "ynd": "Yandruwandha", "yne": "Lang'e", "yng": "Yango", "ynk": "Naukan Yupik", "ynl": "Yangulam", "ynn": "Yana", "yno": "Yong", "ynq": "Yendang", "yns": "Yansi", "ynu": "Yahuna", "yo": "Yoruba", "yob": "Yoba", "yog": "Yogad", "yoi": "Yonaguni", "yok": "Yokuts", "yol": "Yola", "yom": "Yombe", "yon": "Yongkom", "yot": "Yotti", "yox": "Yoron", "yoy": "Yoy", "ypa": "Phala", "ypb": "Labo Phowa", "ypg": "Phola", "yph": "Phupha", "ypk": "Yupik languages", "ypm": "Phuma", "ypn": "Ani Phowa", "ypo": "Alo Phola", "ypp": "Phupa", "ypz": "Phuza", "yra": "Yerakai", "yrb": "Yareba", "yre": "Yaouré", "yrk": "Nenets", "yrl": "Nhengatu", "yrm": "Yirrk-Mel", "yrn": "Yerong", "yro": "Yaroamë", "yrs": "Yarsun", "yrw": "Yarawata", "yry": "Yarluyandi", "ysc": "Yassic", "ysd": "Samatao", "ysg": "Sonaga", "ysl": "Yugoslavian Sign Language", "ysm": "Myanmar Sign Language", "ysn": "Sani", "yso": "Nisi (China)", "ysp": "Southern Lolopo", "ysr": "Sirenik Yupik", "yss": "Yessan-Mayo", "ysy": "Sanie", "yta": "Talu", "ytl": "Tanglang", "ytp": "Thopho", "ytw": "Yout Wam", "yty": "Yatay", "yua": "Yucateco; Yucatec Maya", "yub": "Yugambal", "yuc": "Yuchi", "yud": "Judeo-Tripolitanian Arabic", "yue": "Yue Chinese; Cantonese", "yuf": "Havasupai-Walapai-Yavapai", "yug": "Yug", "yui": "Yurutí", "yuj": "Karkar-Yuri", "yuk": "Yuki", "yul": "Yulu", "yum": "Quechan", "yun": "Bena (Nigeria)", "yup": "Yukpa", "yuq": "Yuqui", "yur": "Yurok", "yut": "Yopno", "yuw": "Yau (Morobe Province)", "yux": "Southern Yukaghir", "yuy": "East Yugur", "yuz": "Yuracare", "yva": "Yawa", "yvt": "Yavitero", "ywa": "Kalou", "ywg": "Yinhawangka", "ywl": "Western Lalu", "ywn": "Yawanawa", "ywq": "Wuding-Luquan Yi", "ywr": "Yawuru", "ywt": "Xishanba Lalo; Central Lalo", "ywu": "Wumeng Nasu", "yww": "Yawarawarga", "yxa": "Mayawali", "yxg": "Yagara", "yxl": "Yardliyawarra", "yxm": "Yinwum", "yxu": "Yuyu", "yxy": "Yabula Yabula", "yyr": "Yir Yoront", "yyu": "Yau (Sandaun Province)", "yyz": "Ayizi", "yzg": "E'ma Buyang", "yzk": "Zokhuo", "za": "Zhuang; Chuang", "zaa": "Sierra de Juárez Zapotec", "zab": "Western Tlacolula Valley Zapotec; San Juan Guelavía Zapotec", "zac": "Ocotlán Zapotec", "zad": "Cajonos Zapotec", "zae": "Yareni Zapotec", "zaf": "Ayoquesco Zapotec", "zag": "Zaghawa", "zah": "Zangwal", "zai": "Isthmus Zapotec", "zaj": "Zaramo", "zak": "Zanaki", "zal": "Zauzou", "zam": "Miahuatlán Zapotec", "zao": "Ozolotepec Zapotec", "zap": "Zapotec", "zaq": "Aloápam Zapotec", "zar": "Rincón Zapotec", "zas": "Santo Domingo Albarradas Zapotec", "zat": "Tabaa Zapotec", "zau": "Zangskari", "zav": "Yatzachi Zapotec", "zaw": "Mitla Zapotec", "zax": "Xadani Zapotec", "zay": "Zayse-Zergulla; Zaysete", "zaz": "Zari", "zba": "Balaibalan", "zbc": "Central Berawan", "zbe": "East Berawan", "zbl": "Blissymbols; Bliss; Blissymbolics", "zbt": "Batui", "zbu": "Bu (Bauchi State)", "zbw": "West Berawan", "zca": "Coatecas Altas Zapotec", "zcd": "Las Delicias Zapotec", "zch": "Central Hongshuihe Zhuang", "zdj": "Ngazidja Comorian", "zea": "Zeeuws", "zeg": "Zenag", "zeh": "Eastern Hongshuihe Zhuang", "zen": "Zenaga", "zga": "Kinga", "zgb": "Guibei Zhuang", "zgh": "Standard Moroccan Tamazight", "zgm": "Minz Zhuang", "zgn": "Guibian Zhuang", "zgr": "Magori", "zh": "Chinese", "zhb": "Zhaba", "zhd": "Dai Zhuang", "zhi": "Zhire", "zhn": "Nong Zhuang", "zhw": "Zhoa", "zhx": "Chinese (family)", "zia": "Zia", "zib": "Zimbabwe Sign Language", "zik": "Zimakani", "zil": "Zialo", "zim": "Mesme", "zin": "Zinza", "ziw": "Zigula", "ziz": "Zizilivakan", "zka": "Kaimbulawa", "zkb": "Koibal", "zkd": "Kadu", "zkg": "Koguryo", "zkh": "Khorezmian", "zkk": "Karankawa", "zkn": "Kanan", "zko": "Kott", "zkp": "São Paulo Kaingáng", "zkr": "Zakhring", "zkt": "Kitan", "zku": "Kaurna", "zkv": "Krevinian", "zkz": "Khazar", "zla": "Zula", "zle": "East Slavic languages", "zlj": "Liujiang Zhuang", "zlm": "Malay (individual language)", "zln": "Lianshan Zhuang", "zlq": "Liuqian Zhuang", "zls": "South Slavic languages", "zlw": "West Slavic languages", "zma": "Manda (Australia)", "zmb": "Zimba", "zmc": "Margany", "zmd": "Maridan", "zme": "Mangerr", "zmf": "Mfinu", "zmg": "Marti Ke", "zmh": "Makolkol", "zmi": "Negeri Sembilan Malay", "zmj": "Maridjabin", "zmk": "Mandandanyi", "zml": "Matngala", "zmm": "Marimanindji; Marramaninyshi", "zmn": "Mbangwe", "zmo": "Molo", "zmp": "Mpuono", "zmq": "Mituku", "zmr": "Maranunggu", "zms": "Mbesa", "zmt": "Maringarr", "zmu": "Muruwari", "zmv": "Mbariman-Gudhinma", "zmw": "Mbo (Democratic Republic of Congo)", "zmx": "Bomitaba", "zmy": "Mariyedi", "zmz": "Mbandja", "zna": "Zan Gula", "znd": "Zande languages", "zne": "Zande (individual language)", "zng": "Mang", "znk": "Manangkari", "zns": "Mangas", "zoc": "Copainalá Zoque", "zoh": "Chimalapa Zoque", "zom": "Zou", "zoo": "Asunción Mixtepec Zapotec", "zoq": "Tabasco Zoque", "zor": "Rayón Zoque", "zos": "Francisco León Zoque", "zpa": "Lachiguiri Zapotec", "zpb": "Yautepec Zapotec", "zpc": "Choapan Zapotec", "zpd": "Southeastern Ixtlán Zapotec", "zpe": "Petapa Zapotec", "zpf": "San Pedro Quiatoni Zapotec", "zpg": "Guevea De Humboldt Zapotec", "zph": "Totomachapan Zapotec", "zpi": "Santa María Quiegolani Zapotec", "zpj": "Quiavicuzas Zapotec", "zpk": "Tlacolulita Zapotec", "zpl": "Lachixío Zapotec", "zpm": "Mixtepec Zapotec", "zpn": "Santa Inés Yatzechi Zapotec", "zpo": "Amatlán Zapotec", "zpp": "El Alto Zapotec", "zpq": "Zoogocho Zapotec", "zpr": "Santiago Xanica Zapotec", "zps": "Coatlán Zapotec", "zpt": "San Vicente Coatlán Zapotec", "zpu": "Yalálag Zapotec", "zpv": "Chichicapan Zapotec", "zpw": "Zaniza Zapotec", "zpx": "San Baltazar Loxicha Zapotec", "zpy": "Mazaltepec Zapotec", "zpz": "Texmelucan Zapotec", "zqe": "Qiubei Zhuang", "zra": "Kara (Korea)", "zrg": "Mirgan", "zrn": "Zerenkel", "zro": "Záparo", "zrp": "Zarphatic", "zrs": "Mairasi", "zsa": "Sarasira", "zsk": "Kaskean", "zsl": "Zambian Sign Language", "zsm": "Standard Malay", "zsr": "Southern Rincon Zapotec", "zsu": "Sukurum", "zte": "Elotepec Zapotec", "ztg": "Xanaguía Zapotec", "ztl": "Lapaguía-Guivini Zapotec", "ztm": "San Agustín Mixtepec Zapotec", "ztn": "Santa Catarina Albarradas Zapotec", "ztp": "Loxicha Zapotec", "ztq": "Quioquitani-Quierí Zapotec", "zts": "Tilquiapan Zapotec", "ztt": "Tejalapan Zapotec", "ztu": "Güilá Zapotec", "ztx": "Zaachila Zapotec", "zty": "Yatee Zapotec", "zu": "Zulu", "zua": "Zeem", "zuh": "Tokano", "zum": "Kumzari", "zun": "Zuni", "zuy": "Zumaya", "zwa": "Zay", "zyb": "Yongbei Zhuang", "zyg": "Yang Zhuang", "zyj": "Youjiang Zhuang", "zyn": "Yongnan Zhuang", "zyp": "Zyphe Chin", "zza": "Zaza; Dimili; Dimli (macrolanguage); Kirdki; Kirmanjki (macrolanguage); Zazaki", "zzj": "Zuojiang Zhuang" }
0
hf_public_repos/datasets/src/datasets/utils
hf_public_repos/datasets/src/datasets/utils/resources/multilingualities.json
{ "monolingual": "contains a single language", "multilingual": "contains multiple languages", "translation": "contains translated or aligned text", "other": "other type of language distribution" }
0
hf_public_repos/datasets/src/datasets/utils
hf_public_repos/datasets/src/datasets/utils/resources/readme_structure.yaml
name: "" # Filename comes here allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null # meaning it should not be checked. - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: true allow_empty_text: true subsections: null - name: "Dataset Structure" allow_empty: false allow_empty_text: true subsections: - name: "Data Instances" allow_empty: false allow_empty_text: true subsections: null - name: "Data Fields" allow_empty: false allow_empty_text: true subsections: null - name: "Data Splits" allow_empty: false allow_empty_text: true subsections: null - name: "Dataset Creation" allow_empty: false allow_empty_text: true subsections: - name: "Curation Rationale" allow_empty: true allow_empty_text: true subsections: null - name: "Source Data" allow_empty: false allow_empty_text: true subsections: - name: "Initial Data Collection and Normalization" allow_empty: true allow_empty_text: true subsections: null - name: "Who are the source language producers?" allow_empty: true allow_empty_text: true subsections: null - name: "Annotations" allow_empty: false allow_empty_text: true subsections: - name: "Annotation process" allow_empty: true allow_empty_text: true subsections: null - name: "Who are the annotators?" allow_empty: true allow_empty_text: true subsections: null - name: "Personal and Sensitive Information" allow_empty: true allow_empty_text: true subsections: null - name: "Considerations for Using the Data" allow_empty: true allow_empty_text: true subsections: - name: "Social Impact of Dataset" allow_empty: true allow_empty_text: true subsections: null - name: "Discussion of Biases" allow_empty: true allow_empty_text: true subsections: null - name: "Other Known Limitations" allow_empty: true allow_empty_text: true subsections: null - name: "Additional Information" allow_empty: true allow_empty_text: true subsections: - name: "Dataset Curators" allow_empty: true allow_empty_text: true subsections: null - name: "Licensing Information" allow_empty: true allow_empty_text: true subsections: null - name: "Citation Information" allow_empty: false allow_empty_text: true subsections: null - name: "Contributions" allow_empty: false allow_empty_text: false subsections: null
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/tf_formatter.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import tensorflow as tf class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]): def __init__(self, features=None, **tf_tensor_kwargs): super().__init__(features=features) self.tf_tensor_kwargs = tf_tensor_kwargs import tensorflow as tf # noqa: F401 - import tf at initialization def _consolidate(self, column): import tensorflow as tf if isinstance(column, list) and column: if all( isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return tf.stack(column) elif all( isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype for x in column ): # only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated return tf.ragged.stack(column) return column def _tensorize(self, value): import tensorflow as tf if value is None: return value default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": tf.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": tf.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import tensorflow as tf # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "tf.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/torch_formatter.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__(self, features=None, **torch_tensor_kwargs): super().__init__(features=features) self.torch_tensor_kwargs = torch_tensor_kwargs import torch # noqa import torch at initialization def _consolidate(self, column): import torch if isinstance(column, list) and column: if all( isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(column) return column def _tensorize(self, value): import torch if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": torch.int64} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": torch.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) def _recursive_tensorize(self, data_struct): import torch # support for torch, tf, jax etc. if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "torch.Tensor": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/jax_formatter.py
# Copyright 2021 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib logger = get_logger() DEVICE_MAPPING: Optional[dict] = None class JaxFormatter(TensorFormatter[Mapping, "jax.Array", Mapping]): def __init__(self, features=None, device=None, **jnp_array_kwargs): super().__init__(features=features) import jax from jaxlib.xla_client import Device if isinstance(device, Device): raise ValueError( f"Expected {device} to be a `str` not {type(device)}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) self.device = device if isinstance(device, str) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: DEVICE_MAPPING = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f"Device with string identifier {self.device} not listed among the available " f"devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default " f"device: {str(jax.devices()[0])}." ) self.device = str(jax.devices()[0]) self.jnp_array_kwargs = jnp_array_kwargs @staticmethod def _map_devices_to_str() -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(device): device for device in jax.devices()} def _consolidate(self, column): import jax import jax.numpy as jnp if isinstance(column, list) and column: if all( isinstance(x, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(column, axis=0) return column def _tensorize(self, value): import jax import jax.numpy as jnp if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_x64: default_dtype = {"dtype": jnp.int64} else: default_dtype = {"dtype": jnp.int32} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": jnp.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: DEVICE_MAPPING = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs}) def _recursive_tensorize(self, data_struct): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, jax.Array): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) elif isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "jax.Array": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/formatting.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Mapping, MutableMapping from functools import partial # Lint as: python3 from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union import numpy as np import pandas as pd import pyarrow as pa from packaging import version from .. import config from ..features import Features from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper from ..table import Table from ..utils.py_utils import no_op_if_value_is_null T = TypeVar("T") RowFormat = TypeVar("RowFormat") ColumnFormat = TypeVar("ColumnFormat") BatchFormat = TypeVar("BatchFormat") def _is_range_contiguous(key: range) -> bool: return key.step == 1 and key.stop >= key.start def _raise_bad_key_type(key: Any): raise TypeError( f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable." ) def _query_table_with_indices_mapping( table: Table, key: Union[int, slice, range, str, Iterable], indices: Table ) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into account a shuffling or an indices selection for example. The indices table must contain one column named "indices" of type uint64. """ if isinstance(key, int): key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py() return _query_table(table, key) if isinstance(key, slice): key = range(*key.indices(indices.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return _query_table( table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)] ) else: pass # treat as an iterable if isinstance(key, str): table = table.select([key]) return _query_table(table, indices.column(0).to_pylist()) if isinstance(key, Iterable): return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key]) _raise_bad_key_type(key) def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table: """ Query a pyarrow Table to extract the subtable that correspond to the given key. """ if isinstance(key, int): return table.fast_slice(key % table.num_rows, 1) if isinstance(key, slice): key = range(*key.indices(table.num_rows)) if isinstance(key, range): if _is_range_contiguous(key) and key.start >= 0: return table.fast_slice(key.start, key.stop - key.start) else: pass # treat as an iterable if isinstance(key, str): return table.table.drop([column for column in table.column_names if column != key]) if isinstance(key, Iterable): key = np.fromiter(key, np.int64) if len(key) == 0: return table.table.slice(0, 0) # don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773) return table.fast_gather(key % table.num_rows) _raise_bad_key_type(key) def _is_array_with_nulls(pa_array: pa.Array) -> bool: return pa_array.null_count > 0 class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]): """ Arrow extractor are used to extract data from pyarrow tables. It makes it possible to extract rows, columns and batches. These three extractions types have to be implemented. """ def extract_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def extract_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def extract_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError def _unnest(py_dict: Dict[str, List[T]]) -> Dict[str, T]: """Return the first element of a batch (dict) as a row (dict)""" return {key: array[0] for key, array in py_dict.items()} class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]): def extract_row(self, pa_table: pa.Table) -> pa.Table: return pa_table def extract_column(self, pa_table: pa.Table) -> pa.Array: return pa_table.column(0) def extract_batch(self, pa_table: pa.Table) -> pa.Table: return pa_table class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]): def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(pa_table.to_pydict()) def extract_column(self, pa_table: pa.Table) -> list: return pa_table.column(0).to_pylist() def extract_batch(self, pa_table: pa.Table) -> dict: return pa_table.to_pydict() class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]): def __init__(self, **np_array_kwargs): self.np_array_kwargs = np_array_kwargs def extract_row(self, pa_table: pa.Table) -> dict: return _unnest(self.extract_batch(pa_table)) def extract_column(self, pa_table: pa.Table) -> np.ndarray: return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]]) def extract_batch(self, pa_table: pa.Table) -> dict: return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray: if isinstance(pa_array, pa.ChunkedArray): if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: List = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: zero_copy_only = _is_zero_copy_only(pa_array.type) and all( not _is_array_with_nulls(chunk) for chunk in pa_array.chunks ) array: List = [ row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only) ] else: if isinstance(pa_array.type, _ArrayXDExtensionType): # don't call to_pylist() to preserve dtype of the fixed-size array zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True) array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only) else: zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array) array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() if len(array) > 0: if any( (isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape)) or (isinstance(x, float) and np.isnan(x)) for x in array ): return np.array(array, copy=False, dtype=object) return np.array(array, copy=False) class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]): def extract_row(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper) def extract_column(self, pa_table: pa.Table) -> pd.Series: return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]] def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame: return pa_table.to_pandas(types_mapper=pandas_types_mapper) class PythonFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features def decode_row(self, row: dict) -> dict: return self.features.decode_example(row) if self.features else row def decode_column(self, column: list, column_name: str) -> list: return self.features.decode_column(column, column_name) if self.features else column def decode_batch(self, batch: dict) -> dict: return self.features.decode_batch(batch) if self.features else batch class PandasFeaturesDecoder: def __init__(self, features: Optional[Features]): self.features = features def decode_row(self, row: pd.DataFrame) -> pd.DataFrame: decode = ( { column_name: no_op_if_value_is_null(partial(decode_nested_example, feature)) for column_name, feature in self.features.items() if self.features._column_requires_decoding[column_name] } if self.features else {} ) if decode: row[list(decode.keys())] = row.transform(decode) return row def decode_column(self, column: pd.Series, column_name: str) -> pd.Series: decode = ( no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name])) if self.features and column_name in self.features and self.features._column_requires_decoding[column_name] else None ) if decode: column = column.transform(decode) return column def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame: return self.decode_row(batch) class LazyDict(MutableMapping): """A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary.""" def __init__(self, pa_table: pa.Table, formatter: "Formatter"): self.pa_table = pa_table self.formatter = formatter self.data = {key: None for key in pa_table.column_names} self.keys_to_format = set(self.data.keys()) def __len__(self): return len(self.data) def __getitem__(self, key): value = self.data[key] if key in self.keys_to_format: value = self.format(key) self.data[key] = value self.keys_to_format.remove(key) return value def __setitem__(self, key, value): if key in self.keys_to_format: self.keys_to_format.remove(key) self.data[key] = value def __delitem__(self, key) -> None: if key in self.keys_to_format: self.keys_to_format.remove(key) del self.data[key] def __iter__(self): return iter(self.data) def __contains__(self, key): return key in self.data def __repr__(self): self._format_all() return repr(self.data) if config.PY_VERSION >= version.parse("3.9"): # merging with the union ("|") operator is supported in Python 3.9+ def __or__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = inst.data | other.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = inst.data | other return inst return NotImplemented def __ror__(self, other): if isinstance(other, LazyDict): inst = self.copy() other = other.copy() other._format_all() inst.keys_to_format -= other.data.keys() inst.data = other.data | inst.data return inst if isinstance(other, dict): inst = self.copy() inst.keys_to_format -= other.keys() inst.data = other | inst.data return inst return NotImplemented def __ior__(self, other): if isinstance(other, LazyDict): other = other.copy() other._format_all() self.keys_to_format -= other.data.keys() self.data |= other.data else: self.keys_to_format -= other.keys() self.data |= other return self def __copy__(self): # Identical to `UserDict.__copy__` inst = self.__class__.__new__(self.__class__) inst.__dict__.update(self.__dict__) # Create a copy and avoid triggering descriptors inst.__dict__["data"] = self.__dict__["data"].copy() inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy() return inst def copy(self): import copy return copy.copy(self) @classmethod def fromkeys(cls, iterable, value=None): raise NotImplementedError def format(self, key): raise NotImplementedError def _format_all(self): for key in self.keys_to_format: self.data[key] = self.format(key) self.keys_to_format.clear() class LazyRow(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key]))[0] class LazyBatch(LazyDict): def format(self, key): return self.formatter.format_column(self.pa_table.select([key])) class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]): """ A formatter is an object that extracts and formats data from pyarrow tables. It defines the formatting for rows, columns and batches. """ simple_arrow_extractor = SimpleArrowExtractor python_arrow_extractor = PythonArrowExtractor numpy_arrow_extractor = NumpyArrowExtractor pandas_arrow_extractor = PandasArrowExtractor def __init__(self, features: Optional[Features] = None): self.features = features self.python_features_decoder = PythonFeaturesDecoder(self.features) self.pandas_features_decoder = PandasFeaturesDecoder(self.features) def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: if query_type == "row": return self.format_row(pa_table) elif query_type == "column": return self.format_column(pa_table) elif query_type == "batch": return self.format_batch(pa_table) def format_row(self, pa_table: pa.Table) -> RowFormat: raise NotImplementedError def format_column(self, pa_table: pa.Table) -> ColumnFormat: raise NotImplementedError def format_batch(self, pa_table: pa.Table) -> BatchFormat: raise NotImplementedError class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]): def recursive_tensorize(self, data_struct: dict): raise NotImplementedError class ArrowFormatter(Formatter[pa.Table, pa.Array, pa.Table]): def format_row(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_row(pa_table) def format_column(self, pa_table: pa.Table) -> pa.Array: return self.simple_arrow_extractor().extract_column(pa_table) def format_batch(self, pa_table: pa.Table) -> pa.Table: return self.simple_arrow_extractor().extract_batch(pa_table) class PythonFormatter(Formatter[Mapping, list, Mapping]): def __init__(self, features=None, lazy=False): super().__init__(features) self.lazy = lazy def format_row(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyRow(pa_table, self) row = self.python_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> list: column = self.python_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> Mapping: if self.lazy: return LazyBatch(pa_table, self) batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return batch class PandasFormatter(Formatter[pd.DataFrame, pd.Series, pd.DataFrame]): def format_row(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_row(pa_table) row = self.pandas_features_decoder.decode_row(row) return row def format_column(self, pa_table: pa.Table) -> pd.Series: column = self.pandas_arrow_extractor().extract_column(pa_table) column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0]) return column def format_batch(self, pa_table: pa.Table) -> pd.DataFrame: row = self.pandas_arrow_extractor().extract_batch(pa_table) row = self.pandas_features_decoder.decode_batch(row) return row class CustomFormatter(Formatter[dict, ColumnFormat, dict]): """ A user-defined custom formatter function defined by a ``transform``. The transform must take as input a batch of data extracted for an arrow table using the python extractor, and return a batch. If the output batch is not a dict, then output_all_columns won't work. If the ouput batch has several fields, then querying a single column won't work since we don't know which field to return. """ def __init__(self, transform: Callable[[dict], dict], features=None, **kwargs): super().__init__(features=features) self.transform = transform def format_row(self, pa_table: pa.Table) -> dict: formatted_batch = self.format_batch(pa_table) try: return _unnest(formatted_batch) except Exception as exc: raise TypeError( f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}" ) from exc def format_column(self, pa_table: pa.Table) -> ColumnFormat: formatted_batch = self.format_batch(pa_table) if hasattr(formatted_batch, "keys"): if len(formatted_batch.keys()) > 1: raise TypeError( "Tried to query a column but the custom formatting function returns too many columns. " f"Only one column was expected but got columns {list(formatted_batch.keys())}." ) else: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) try: return formatted_batch[pa_table.column_names[0]] except Exception as exc: raise TypeError( f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}" ) from exc def format_batch(self, pa_table: pa.Table) -> dict: batch = self.python_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) return self.transform(batch) def _check_valid_column_key(key: str, columns: List[str]) -> None: if key not in columns: raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}") def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: if isinstance(key, int): if (key < 0 and key + size < 0) or (key >= size): raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") return elif isinstance(key, slice): pass elif isinstance(key, range): if len(key) > 0: _check_valid_index_key(max(key), size=size) _check_valid_index_key(min(key), size=size) elif isinstance(key, Iterable): if len(key) > 0: _check_valid_index_key(int(max(key)), size=size) _check_valid_index_key(int(min(key)), size=size) else: _raise_bad_key_type(key) def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) def query_table( table: Table, key: Union[int, slice, range, str, Iterable], indices: Optional[Table] = None, ) -> pa.Table: """ Query a Table to extract the subtable that correspond to the given key. Args: table (``datasets.table.Table``): The input Table to query from key (``Union[int, slice, range, str, Iterable]``): The key can be of different types: - an integer i: the subtable containing only the i-th row - a slice [i:j:k]: the subtable containing the rows that correspond to this slice - a range(i, j, k): the subtable containing the rows that correspond to this range - a string c: the subtable containing all the rows but only the column c - an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows. The indices table must contain one column named "indices" of type uint64. This is used in case of shuffling or rows selection. Returns: ``pyarrow.Table``: the result of the query on the input table """ # Check if key is valid if not isinstance(key, (int, slice, range, str, Iterable)): _raise_bad_key_type(key) if isinstance(key, str): _check_valid_column_key(key, table.column_names) else: size = indices.num_rows if indices is not None else table.num_rows _check_valid_index_key(key, size) # Query the main table if indices is None: pa_subtable = _query_table(table, key) else: pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices) return pa_subtable def format_table( table: Table, key: Union[int, slice, range, str, Iterable], formatter: Formatter, format_columns: Optional[list] = None, output_all_columns=False, ): """ Format a Table depending on the key that was used and a Formatter object. Args: table (``datasets.table.Table``): The input Table to format key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats the table as either a row, a column or a batch. formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as PythonFormatter, NumpyFormatter, etc. format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the given formatter. Other columns are discarded (unless ``output_all_columns`` is True) output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used. Returns: A row, column or batch formatted object defined by the Formatter: - the PythonFormatter returns a dictionary for a row or a batch, and a list for a column. - the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column. - the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column. - the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column. - the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column. """ if isinstance(table, Table): pa_table = table.table else: pa_table = table query_type = key_to_query_type(key) python_formatter = PythonFormatter(features=formatter.features) if format_columns is None: return formatter(pa_table, query_type=query_type) elif query_type == "column": if key in format_columns: return formatter(pa_table, query_type) else: return python_formatter(pa_table, query_type=query_type) else: pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns) formatted_output = formatter(pa_table_to_format, query_type=query_type) if output_all_columns: if isinstance(formatted_output, MutableMapping): pa_table_with_remaining_columns = pa_table.drop( col for col in pa_table.column_names if col in format_columns ) remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type) formatted_output.update(remaining_columns_dict) else: raise TypeError( f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}" ) return formatted_output
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/__init__.py
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter logger = logging.get_logger(__name__) _FORMAT_TYPES: Dict[Optional[str], Type[Formatter]] = {} _FORMAT_TYPES_ALIASES: Dict[Optional[str], str] = {} _FORMAT_TYPES_ALIASES_UNAVAILABLE: Dict[Optional[str], Exception] = {} def _register_formatter( formatter_cls: type, format_type: Optional[str], aliases: Optional[List[str]] = None, ): """ Register a Formatter object using a name and optional aliases. This function must be used on a Formatter class. """ aliases = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _FORMAT_TYPES[format_type] = formatter_cls for alias in set(aliases + [format_type]): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _FORMAT_TYPES_ALIASES[alias] = format_type def _register_unavailable_formatter( unavailable_error: Exception, format_type: Optional[str], aliases: Optional[List[str]] = None ): """ Register an unavailable Formatter object using a name and optional aliases. This function must be used on an Exception object that is raised when trying to get the unavailable formatter. """ aliases = aliases if aliases is not None else [] for alias in set(aliases + [format_type]): _FORMAT_TYPES_ALIASES_UNAVAILABLE[alias] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: _torch_error = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: _tf_error = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: _jax_error = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def get_format_type_from_alias(format_type: Optional[str]) -> Optional[str]: """If the given format type is a known alias, then return its main type name. Otherwise return the type with no change.""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def get_formatter(format_type: Optional[str], **format_kwargs) -> Formatter: """ Factory function to get a Formatter given its type name and keyword arguments. A formatter is an object that extracts and formats data from pyarrow table. It defines the formatting for rows, colums and batches. If the formatter for a given type name doesn't exist or is not available, an error is raised. """ format_type = get_format_type_from_alias(format_type) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**format_kwargs) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got '{format_type}'" )
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/formatting/np_formatter.py
# Copyright 2020 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from collections.abc import Mapping import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter class NumpyFormatter(TensorFormatter[Mapping, np.ndarray, Mapping]): def __init__(self, features=None, **np_array_kwargs): super().__init__(features=features) self.np_array_kwargs = np_array_kwargs def _consolidate(self, column): if isinstance(column, list): if column and all( isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return np.stack(column) else: # don't use np.array(column, dtype=object) # since it fails in certain cases # see https://stackoverflow.com/q/51005699 out = np.empty(len(column), dtype=object) out[:] = column return out return column def _tensorize(self, value): if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value elif isinstance(value, np.number): return value default_dtype = {} if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer): default_dtype = {"dtype": np.int64} elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": np.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): return np.asarray(value, **self.np_array_kwargs) return np.asarray(value, **{**default_dtype, **self.np_array_kwargs}) def _recursive_tensorize(self, data_struct): # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(data_struct, torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(data_struct, "__array__") and not isinstance(data_struct, (np.ndarray, np.character, np.number)): data_struct = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) if isinstance(data_struct, (list, tuple)): return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct, map_list=False) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> np.ndarray: column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/download/download_manager.py
# Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Download manager interface.""" import enum import io import os import posixpath import tarfile import warnings import zipfile from datetime import datetime from functools import partial from itertools import chain from typing import Callable, Dict, Generator, List, Optional, Tuple, Union from .. import config from ..utils import tqdm as hf_tqdm from ..utils.deprecation_utils import DeprecatedEnum, deprecated from ..utils.file_utils import ( cached_path, get_from_cache, hash_url_to_filename, is_relative_path, stack_multiprocessing_download_progress_bars, url_or_path_join, ) from ..utils.info_utils import get_size_checksum_dict from ..utils.logging import get_logger from ..utils.py_utils import NestedDataStructure, map_nested, size_str from ..utils.track import TrackedIterable, tracked_str from .download_config import DownloadConfig logger = get_logger(__name__) BASE_KNOWN_EXTENSIONS = [ "txt", "csv", "json", "jsonl", "tsv", "conll", "conllu", "orig", "parquet", "pkl", "pickle", "rel", "xml", ] MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL = { bytes.fromhex("504B0304"): "zip", bytes.fromhex("504B0506"): "zip", # empty archive bytes.fromhex("504B0708"): "zip", # spanned archive bytes.fromhex("425A68"): "bz2", bytes.fromhex("1F8B"): "gzip", bytes.fromhex("FD377A585A00"): "xz", bytes.fromhex("04224D18"): "lz4", bytes.fromhex("28B52FFD"): "zstd", } MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL = { b"Rar!": "rar", } MAGIC_NUMBER_MAX_LENGTH = max( len(magic_number) for magic_number in chain(MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL, MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL) ) class DownloadMode(enum.Enum): """`Enum` for how to treat pre-existing downloads and data. The default mode is `REUSE_DATASET_IF_EXISTS`, which will reuse both raw downloads and the prepared dataset if they exist. The generations modes: | | Downloads | Dataset | |-------------------------------------|-----------|---------| | `REUSE_DATASET_IF_EXISTS` (default) | Reuse | Reuse | | `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh | | `FORCE_REDOWNLOAD` | Fresh | Fresh | """ REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists" REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists" FORCE_REDOWNLOAD = "force_redownload" class GenerateMode(DeprecatedEnum): REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists" REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists" FORCE_REDOWNLOAD = "force_redownload" @property def help_message(self): return "Use 'DownloadMode' instead." def _get_path_extension(path: str) -> str: # Get extension: train.json.gz -> gz extension = path.split(".")[-1] # Remove query params ("dl=1", "raw=true"): gz?dl=1 -> gz # Remove shards infos (".txt_1", ".txt-00000-of-00100"): txt_1 -> txt for symb in "?-_": extension = extension.split(symb)[0] return extension def _get_extraction_protocol_with_magic_number(f) -> Optional[str]: """read the magic number from a file-like object and return the compression protocol""" # Check if the file object is seekable even before reading the magic number (to avoid https://bugs.python.org/issue26440) try: f.seek(0) except (AttributeError, io.UnsupportedOperation): return None magic_number = f.read(MAGIC_NUMBER_MAX_LENGTH) f.seek(0) for i in range(MAGIC_NUMBER_MAX_LENGTH): compression = MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: return compression compression = MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: raise NotImplementedError(f"Compression protocol '{compression}' not implemented.") def _get_extraction_protocol(path: str) -> Optional[str]: path = str(path) extension = _get_path_extension(path) # TODO(mariosasko): The below check will be useful once we can preserve the original extension in the new cache layout (use the `filename` parameter of `hf_hub_download`) if ( extension in BASE_KNOWN_EXTENSIONS or extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")) ): return None with open(path, "rb") as f: return _get_extraction_protocol_with_magic_number(f) class _IterableFromGenerator(TrackedIterable): """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" def __init__(self, generator: Callable, *args, **kwargs): super().__init__() self.generator = generator self.args = args self.kwargs = kwargs def __iter__(self): for x in self.generator(*self.args, **self.kwargs): self.last_item = x yield x self.last_item = None class ArchiveIterable(_IterableFromGenerator): """An iterable of (path, fileobj) from a TAR archive, used by `iter_archive`""" @staticmethod def _iter_tar(f): stream = tarfile.open(fileobj=f, mode="r|*") for tarinfo in stream: file_path = tarinfo.name if not tarinfo.isreg(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = stream.extractfile(tarinfo) yield file_path, file_obj stream.members = [] del stream @staticmethod def _iter_zip(f): zipf = zipfile.ZipFile(f) for member in zipf.infolist(): file_path = member.filename if member.is_dir(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = zipf.open(member) yield file_path, file_obj @classmethod def _iter_from_fileobj(cls, f) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol_with_magic_number(f) if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def _iter_from_path(cls, urlpath: str) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol(urlpath) with open(urlpath, "rb") as f: if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def from_buf(cls, fileobj) -> "ArchiveIterable": return cls(cls._iter_from_fileobj, fileobj) @classmethod def from_path(cls, urlpath_or_buf) -> "ArchiveIterable": return cls(cls._iter_from_path, urlpath_or_buf) class FilesIterable(_IterableFromGenerator): """An iterable of paths from a list of directories or files""" @classmethod def _iter_from_paths(cls, urlpaths: Union[str, List[str]]) -> Generator[str, None, None]: if not isinstance(urlpaths, list): urlpaths = [urlpaths] for urlpath in urlpaths: if os.path.isfile(urlpath): yield urlpath else: for dirpath, dirnames, filenames in os.walk(urlpath): # in-place modification to prune the search dirnames[:] = sorted([dirname for dirname in dirnames if not dirname.startswith((".", "__"))]) if os.path.basename(dirpath).startswith((".", "__")): # skipping hidden directories continue for filename in sorted(filenames): if filename.startswith((".", "__")): # skipping hidden files continue yield os.path.join(dirpath, filename) @classmethod def from_paths(cls, urlpaths) -> "FilesIterable": return cls(cls._iter_from_paths, urlpaths) class DownloadManager: is_streaming = False def __init__( self, dataset_name: Optional[str] = None, data_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, base_path: Optional[str] = None, record_checksums=True, ): """Download manager constructor. Args: data_dir: can be used to specify a manual directory to get the files from. dataset_name (`str`): name of dataset this instance will be used for. If provided, downloads will contain which datasets they were used for. download_config (`DownloadConfig`): to specify the cache directory and other download options base_path (`str`): base path that is used when relative paths are used to download files. This can be a remote url. record_checksums (`bool`, defaults to `True`): Whether to record the checksums of the downloaded files. If None, the value is inferred from the builder. """ self._dataset_name = dataset_name self._data_dir = data_dir self._base_path = base_path or os.path.abspath(".") # To record what is being used: {url: {num_bytes: int, checksum: str}} self._recorded_sizes_checksums: Dict[str, Dict[str, Optional[Union[int, str]]]] = {} self.record_checksums = record_checksums self.download_config = download_config or DownloadConfig() self.downloaded_paths = {} self.extracted_paths = {} @property def manual_dir(self): return self._data_dir @property def downloaded_size(self): """Returns the total size of downloaded files.""" return sum(checksums_dict["num_bytes"] for checksums_dict in self._recorded_sizes_checksums.values()) @staticmethod def ship_files_with_pipeline(downloaded_path_or_paths, pipeline): """Ship the files using Beam FileSystems to the pipeline temp dir. Args: downloaded_path_or_paths (`str` or `list[str]` or `dict[str, str]`): Nested structure containing the downloaded path(s). pipeline ([`utils.beam_utils.BeamPipeline`]): Apache Beam Pipeline. Returns: `str` or `list[str]` or `dict[str, str]` """ from ..utils.beam_utils import upload_local_to_remote remote_dir = pipeline._options.get_all_options().get("temp_location") if remote_dir is None: raise ValueError("You need to specify 'temp_location' in PipelineOptions to upload files") def upload(local_file_path): remote_file_path = posixpath.join( remote_dir, config.DOWNLOADED_DATASETS_DIR, os.path.basename(local_file_path) ) logger.info( f"Uploading {local_file_path} ({size_str(os.path.getsize(local_file_path))}) to {remote_file_path}." ) upload_local_to_remote(local_file_path, remote_file_path) return remote_file_path uploaded_path_or_paths = map_nested( lambda local_file_path: upload(local_file_path), downloaded_path_or_paths, ) return uploaded_path_or_paths def _record_sizes_checksums(self, url_or_urls: NestedDataStructure, downloaded_path_or_paths: NestedDataStructure): """Record size/checksum of downloaded files.""" delay = 5 for url, path in hf_tqdm( list(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())), delay=delay, desc="Computing checksums", ): # call str to support PathLike objects self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict( path, record_checksum=self.record_checksums ) @deprecated("Use `.download`/`.download_and_extract` with `fsspec` URLs instead.") def download_custom(self, url_or_urls, custom_download): """ Download given urls(s) by calling `custom_download`. Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`. custom_download (`Callable[src_url, dst_path]`): The source URL and destination path. For example `tf.io.gfile.copy`, that lets you download from Google storage. Returns: downloaded_path(s): `str`, The downloaded paths matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download_custom('s3://my-bucket/data.zip', custom_download_for_my_private_bucket) ``` """ cache_dir = self.download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH max_retries = self.download_config.max_retries def url_to_downloaded_path(url): return os.path.join(cache_dir, hash_url_to_filename(url)) downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls) url_or_urls = NestedDataStructure(url_or_urls) downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths) for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()): try: get_from_cache( url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries ) cached = True except FileNotFoundError: cached = False if not cached or self.download_config.force_download: custom_download(url, path) get_from_cache( url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries ) self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) return downloaded_path_or_paths.data def download(self, url_or_urls): """Download given URL(s). By default, only one process is used for download. Pass customized `download_config.num_proc` to change this behavior. Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download. Each URL is a `str`. Returns: `str` or `list` or `dict`: The downloaded paths matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ``` """ download_config = self.download_config.copy() download_config.extract_compressed_file = False if download_config.download_desc is None: download_config.download_desc = "Downloading data" download_func = partial(self._download, download_config=download_config) start_time = datetime.now() with stack_multiprocessing_download_progress_bars(): downloaded_path_or_paths = map_nested( download_func, url_or_urls, map_tuple=True, num_proc=download_config.num_proc, desc="Downloading data files", ) duration = datetime.now() - start_time logger.info(f"Downloading took {duration.total_seconds() // 60} min") url_or_urls = NestedDataStructure(url_or_urls) downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths) self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()))) start_time = datetime.now() self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths) duration = datetime.now() - start_time logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min") return downloaded_path_or_paths.data def _download(self, url_or_filename: str, download_config: DownloadConfig) -> str: url_or_filename = str(url_or_filename) if is_relative_path(url_or_filename): # append the relative path to the base_path url_or_filename = url_or_path_join(self._base_path, url_or_filename) out = cached_path(url_or_filename, download_config=download_config) out = tracked_str(out) out.set_origin(url_or_filename) return out def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]): """Iterate over files within an archive. Args: path_or_buf (`str` or `io.BufferedReader`): Archive path or archive binary file object. Yields: `tuple[str, io.BufferedReader]`: 2-tuple (path_within_archive, file_object). File object is opened in binary mode. Example: ```py >>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> files = dl_manager.iter_archive(archive) ``` """ if hasattr(path_or_buf, "read"): return ArchiveIterable.from_buf(path_or_buf) else: return ArchiveIterable.from_path(path_or_buf) def iter_files(self, paths: Union[str, List[str]]): """Iterate over file paths. Args: paths (`str` or `list` of `str`): Root paths. Yields: `str`: File path. Example: ```py >>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip') >>> files = dl_manager.iter_files(files) ``` """ return FilesIterable.from_paths(paths) def extract(self, path_or_paths, num_proc="deprecated"): """Extract given path(s). Args: path_or_paths (path or `list` or `dict`): Path of file to extract. Each path is a `str`. num_proc (`int`): Use multi-processing if `num_proc` > 1 and the length of `path_or_paths` is larger than `num_proc`. <Deprecated version="2.6.2"> Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead. </Deprecated> Returns: extracted_path(s): `str`, The extracted paths matching the given input path_or_paths. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> extracted_files = dl_manager.extract(downloaded_files) ``` """ if num_proc != "deprecated": warnings.warn( "'num_proc' was deprecated in version 2.6.2 and will be removed in 3.0.0. Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.", FutureWarning, ) download_config = self.download_config.copy() download_config.extract_compressed_file = True extract_func = partial(self._download, download_config=download_config) extracted_paths = map_nested( extract_func, path_or_paths, num_proc=download_config.num_proc, desc="Extracting data files", ) path_or_paths = NestedDataStructure(path_or_paths) extracted_paths = NestedDataStructure(extracted_paths) self.extracted_paths.update(dict(zip(path_or_paths.flatten(), extracted_paths.flatten()))) return extracted_paths.data def download_and_extract(self, url_or_urls): """Download and extract given `url_or_urls`. Is roughly equivalent to: ``` extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls)) ``` Args: url_or_urls (`str` or `list` or `dict`): URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`. Returns: extracted_path(s): `str`, extracted paths of given URL(s). """ return self.extract(self.download(url_or_urls)) def get_recorded_sizes_checksums(self): return self._recorded_sizes_checksums.copy() def delete_extracted_files(self): paths_to_delete = set(self.extracted_paths.values()) - set(self.downloaded_paths.values()) for key, path in list(self.extracted_paths.items()): if path in paths_to_delete and os.path.isfile(path): os.remove(path) del self.extracted_paths[key] def manage_extracted_files(self): if self.download_config.delete_extracted: self.delete_extracted_files()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/download/download_config.py
import copy import warnings from dataclasses import InitVar, dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Union from .. import config @dataclass class DownloadConfig: """Configuration for our cached path manager. Attributes: cache_dir (`str` or `Path`, *optional*): Specify a cache directory to save the file to (overwrite the default cache dir). force_download (`bool`, defaults to `False`): If `True`, re-dowload the file even if it's already cached in the cache dir. resume_download (`bool`, defaults to `False`): If `True`, resume the download if an incompletely received file is found. proxies (`dict`, *optional*): user_agent (`str`, *optional*): Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file (`bool`, defaults to `False`): If `True` and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract (`bool`, defaults to `False`): If `True` when `extract_compressed_file` is `True` and the archive was already extracted, re-extract the archive and override the folder where it was extracted. delete_extracted (`bool`, defaults to `False`): Whether to delete (or keep) the extracted files. use_etag (`bool`, defaults to `True`): Whether to use the ETag HTTP response header to validate the cached files. num_proc (`int`, *optional*): The number of processes to launch to download the files in parallel. max_retries (`int`, default to `1`): The number of times to retry an HTTP request if it fails. token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. use_auth_token (`str` or `bool`, *optional*): Optional string or boolean to use as Bearer token for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`. <Deprecated version="2.14.0"> `use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0. </Deprecated> ignore_url_params (`bool`, defaults to `False`): Whether to strip all query parameters and fragments from the download URL before using it for caching the file. storage_options (`dict`, *optional*): Key/value pairs to be passed on to the dataset file-system backend, if any. download_desc (`str`, *optional*): A description to be displayed alongside with the progress bar while downloading the files. """ cache_dir: Optional[Union[str, Path]] = None force_download: bool = False resume_download: bool = False local_files_only: bool = False proxies: Optional[Dict] = None user_agent: Optional[str] = None extract_compressed_file: bool = False force_extract: bool = False delete_extracted: bool = False use_etag: bool = True num_proc: Optional[int] = None max_retries: int = 1 token: Optional[Union[str, bool]] = None use_auth_token: InitVar[Optional[Union[str, bool]]] = "deprecated" ignore_url_params: bool = False storage_options: Dict[str, Any] = field(default_factory=dict) download_desc: Optional[str] = None def __post_init__(self, use_auth_token): if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) self.token = use_auth_token if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT} def copy(self) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) def __setattr__(self, name, value): if name == "token" and getattr(self, "storage_options", None) is not None: if "hf" not in self.storage_options: self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT} elif getattr(self.storage_options["hf"], "token", None) is None: self.storage_options["hf"]["token"] = value super().__setattr__(name, value)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/download/streaming_download_manager.py
import glob import io import os import posixpath import re import tarfile import time import xml.dom.minidom import zipfile from asyncio import TimeoutError from io import BytesIO from itertools import chain from pathlib import Path, PurePosixPath from typing import Any, Callable, Dict, Generator, Iterable, List, Optional, Tuple, Union from xml.etree import ElementTree as ET import fsspec from aiohttp.client_exceptions import ClientError from huggingface_hub.utils import EntryNotFoundError from .. import config from ..filesystems import COMPRESSION_FILESYSTEMS from ..utils.file_utils import ( get_authentication_headers_for_url, get_datasets_user_agent, http_head, is_local_path, is_relative_path, url_or_path_join, ) from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .download_config import DownloadConfig logger = get_logger(__name__) BASE_KNOWN_EXTENSIONS = [ "txt", "csv", "json", "jsonl", "tsv", "conll", "conllu", "orig", "parquet", "pkl", "pickle", "rel", "xml", ] COMPRESSION_EXTENSION_TO_PROTOCOL = { # single file compression **{fs_class.extension.lstrip("."): fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS}, # archive compression "zip": "zip", } SINGLE_FILE_COMPRESSION_PROTOCOLS = {fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS} SINGLE_SLASH_AFTER_PROTOCOL_PATTERN = re.compile(r"(?<!:):/") MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL = { bytes.fromhex("504B0304"): "zip", bytes.fromhex("504B0506"): "zip", # empty archive bytes.fromhex("504B0708"): "zip", # spanned archive bytes.fromhex("425A68"): "bz2", bytes.fromhex("1F8B"): "gzip", bytes.fromhex("FD377A585A00"): "xz", bytes.fromhex("04224D18"): "lz4", bytes.fromhex("28B52FFD"): "zstd", } MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL = { b"Rar!": "rar", } MAGIC_NUMBER_MAX_LENGTH = max( len(magic_number) for magic_number in chain(MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL, MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL) ) class NonStreamableDatasetError(Exception): pass def xjoin(a, *p): """ This function extends os.path.join to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xjoin function allows you to apply the join on the first path of the chain. Example:: >>> xjoin("zip://folder1::https://host.com/archive.zip", "file.txt") zip://folder1/file.txt::https://host.com/archive.zip """ a, *b = str(a).split("::") if is_local_path(a): return os.path.join(a, *p) else: a = posixpath.join(a, *p) return "::".join([a] + b) def xdirname(a): """ This function extends os.path.dirname to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xdirname function allows you to apply the dirname on the first path of the chain. Example:: >>> xdirname("zip://folder1/file.txt::https://host.com/archive.zip") zip://folder1::https://host.com/archive.zip """ a, *b = str(a).split("::") if is_local_path(a): a = os.path.dirname(Path(a).as_posix()) else: a = posixpath.dirname(a) # if we end up at the root of the protocol, we get for example a = 'http:' # so we have to fix it by adding the '//' that was removed: if a.endswith(":"): a += "//" return "::".join([a] + b) def xexists(urlpath: str, download_config: Optional[DownloadConfig] = None): """Extend `os.path.exists` function to support both local and remote files. Args: urlpath (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): return os.path.exists(main_hop) else: urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) main_hop, *rest_hops = urlpath.split("::") fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) return fs.exists(main_hop) def xbasename(a): """ This function extends os.path.basename to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xbasename function allows you to apply the basename on the first path of the chain. Example:: >>> xbasename("zip://folder1/file.txt::https://host.com/archive.zip") file.txt """ a, *b = str(a).split("::") if is_local_path(a): return os.path.basename(Path(a).as_posix()) else: return posixpath.basename(a) def xsplit(a): """ This function extends os.path.split to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xsplit function allows you to apply the xsplit on the first path of the chain. Example:: >>> xsplit("zip://folder1/file.txt::https://host.com/archive.zip") ('zip://folder1::https://host.com/archive.zip', 'file.txt') """ a, *b = str(a).split("::") if is_local_path(a): return os.path.split(Path(a).as_posix()) else: a, tail = posixpath.split(a) return "::".join([a + "//" if a.endswith(":") else a] + b), tail def xsplitext(a): """ This function extends os.path.splitext to support the "::" hop separator. It supports both paths and urls. A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". This is used to access files inside a zip file over http for example. Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. Then you can just chain the url this way: zip://folder1/file.txt::https://host.com/archive.zip The xsplitext function allows you to apply the splitext on the first path of the chain. Example:: >>> xsplitext("zip://folder1/file.txt::https://host.com/archive.zip") ('zip://folder1/file::https://host.com/archive.zip', '.txt') """ a, *b = str(a).split("::") if is_local_path(a): return os.path.splitext(Path(a).as_posix()) else: a, ext = posixpath.splitext(a) return "::".join([a] + b), ext def xisfile(path, download_config: Optional[DownloadConfig] = None) -> bool: """Extend `os.path.isfile` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.isfile(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) main_hop, *rest_hops = path.split("::") fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) return fs.isfile(main_hop) def xgetsize(path, download_config: Optional[DownloadConfig] = None) -> int: """Extend `os.path.getsize` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `int`: optional """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.getsize(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) main_hop, *rest_hops = path.split("::") fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) try: size = fs.size(main_hop) except EntryNotFoundError: raise FileNotFoundError(f"No such file: {path}") if size is None: # use xopen instead of fs.open to make data fetching more robust with xopen(path, download_config=download_config) as f: size = len(f.read()) return size def xisdir(path, download_config: Optional[DownloadConfig] = None) -> bool: """Extend `os.path.isdir` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.isdir(path) else: path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) main_hop, *rest_hops = path.split("::") fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) inner_path = main_hop.split("://")[-1] if not inner_path.strip("/"): return True return fs.isdir(inner_path) def xrelpath(path, start=None): """Extend `os.path.relpath` function to support remote files. Args: path (`str`): URL path. start (`str`): Start URL directory path. Returns: `str` """ main_hop, *rest_hops = str(path).split("::") if is_local_path(main_hop): return os.path.relpath(main_hop, start=start) if start else os.path.relpath(main_hop) else: return posixpath.relpath(main_hop, start=str(start).split("::")[0]) if start else os.path.relpath(main_hop) def _add_retries_to_file_obj_read_method(file_obj): read = file_obj.read max_retries = config.STREAMING_READ_MAX_RETRIES def read_with_retries(*args, **kwargs): disconnect_err = None for retry in range(1, max_retries + 1): try: out = read(*args, **kwargs) break except (ClientError, TimeoutError) as err: disconnect_err = err logger.warning( f"Got disconnected from remote data host. Retrying in {config.STREAMING_READ_RETRY_INTERVAL}sec [{retry}/{max_retries}]" ) time.sleep(config.STREAMING_READ_RETRY_INTERVAL) else: raise ConnectionError("Server Disconnected") from disconnect_err return out file_obj.read = read_with_retries def _get_path_extension(path: str) -> str: # Get extension: https://foo.bar/train.json.gz -> gz extension = path.split(".")[-1] # Remove query params ("dl=1", "raw=true"): gz?dl=1 -> gz # Remove shards infos (".txt_1", ".txt-00000-of-00100"): txt_1 -> txt for symb in "?-_": extension = extension.split(symb)[0] return extension def _get_extraction_protocol_with_magic_number(f) -> Optional[str]: """read the magic number from a file-like object and return the compression protocol""" # Check if the file object is seekable even before reading the magic number (to avoid https://bugs.python.org/issue26440) try: f.seek(0) except (AttributeError, io.UnsupportedOperation): return None magic_number = f.read(MAGIC_NUMBER_MAX_LENGTH) f.seek(0) for i in range(MAGIC_NUMBER_MAX_LENGTH): compression = MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: return compression compression = MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) if compression is not None: raise NotImplementedError(f"Compression protocol '{compression}' not implemented.") def _get_extraction_protocol(urlpath: str, download_config: Optional[DownloadConfig] = None) -> Optional[str]: # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz urlpath = str(urlpath) path = urlpath.split("::")[0] extension = _get_path_extension(path) if ( extension in BASE_KNOWN_EXTENSIONS or extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")) ): return None elif extension in COMPRESSION_EXTENSION_TO_PROTOCOL: return COMPRESSION_EXTENSION_TO_PROTOCOL[extension] urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) try: with fsspec.open(urlpath, **(storage_options or {})) as f: return _get_extraction_protocol_with_magic_number(f) except FileNotFoundError: if urlpath.startswith(config.HF_ENDPOINT): raise FileNotFoundError( urlpath + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." ) from None else: raise def _prepare_path_and_storage_options( urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Tuple[str, Dict[str, Dict[str, Any]]]: prepared_urlpath = [] prepared_storage_options = {} for hop in urlpath.split("::"): hop, storage_options = _prepare_single_hop_path_and_storage_options(hop, download_config=download_config) prepared_urlpath.append(hop) prepared_storage_options.update(storage_options) return "::".join(prepared_urlpath), storage_options def _prepare_single_hop_path_and_storage_options( urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Tuple[str, Dict[str, Dict[str, Any]]]: """ Prepare the URL and the kwargs that must be passed to the HttpFileSystem or to requests.get/head In particular it resolves google drive URLs It also adds the authentication headers for the Hugging Face Hub, for both https:// and hf:// paths. Storage options are formatted in the form {protocol: storage_options_for_protocol} """ token = None if download_config is None else download_config.token if urlpath.startswith(config.HF_ENDPOINT) and "/resolve/" in urlpath: urlpath = "hf://" + urlpath[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1) protocol = urlpath.split("://")[0] if "://" in urlpath else "file" if download_config is not None and protocol in download_config.storage_options: storage_options = download_config.storage_options[protocol] elif download_config is not None and protocol not in download_config.storage_options: storage_options = { option_name: option_value for option_name, option_value in download_config.storage_options.items() if option_name not in fsspec.available_protocols() } else: storage_options = {} if storage_options: storage_options = {protocol: storage_options} if protocol in ["http", "https"]: storage_options[protocol] = { "headers": { **get_authentication_headers_for_url(urlpath, token=token), "user-agent": get_datasets_user_agent(), }, "client_kwargs": {"trust_env": True}, # Enable reading proxy env variables. **(storage_options.get(protocol, {})), } if "drive.google.com" in urlpath: response = http_head(urlpath) cookies = None for k, v in response.cookies.items(): if k.startswith("download_warning"): urlpath += "&confirm=" + v cookies = response.cookies storage_options[protocol] = {"cookies": cookies, **storage_options.get(protocol, {})} # Fix Google Drive URL to avoid Virus scan warning if "drive.google.com" in urlpath and "confirm=" not in urlpath: urlpath += "&confirm=t" if urlpath.startswith("https://raw.githubusercontent.com/"): # Workaround for served data with gzip content-encoding: https://github.com/fsspec/filesystem_spec/issues/389 storage_options[protocol]["headers"]["Accept-Encoding"] = "identity" elif protocol == "hf": storage_options[protocol] = { "token": token, "endpoint": config.HF_ENDPOINT, **storage_options.get(protocol, {}), } return urlpath, storage_options def xopen(file: str, mode="r", *args, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `open` function to support remote files using `fsspec`. It also has a retry mechanism in case connection fails. The `args` and `kwargs` are passed to `fsspec.open`, except `token` which is used for queries to private repos on huggingface.co Args: file (`str`): Path name of the file to be opened. mode (`str`, *optional*, default "r"): Mode in which the file is opened. *args: Arguments to be passed to `fsspec.open`. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs: Keyword arguments to be passed to `fsspec.open`. Returns: file object """ # This works as well for `xopen(str(Path(...)))` file_str = _as_str(file) main_hop, *rest_hops = file_str.split("::") if is_local_path(main_hop): return open(main_hop, mode, *args, **kwargs) # add headers and cookies for authentication on the HF Hub and for Google Drive file, storage_options = _prepare_path_and_storage_options(file_str, download_config=download_config) kwargs = {**kwargs, **(storage_options or {})} try: file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() except ValueError as e: if str(e) == "Cannot seek streaming HTTP file": raise NonStreamableDatasetError( "Streaming is not possible for this dataset because data host server doesn't support HTTP range " "requests. You can still load this dataset in non-streaming mode by passing `streaming=False` (default)" ) from e else: raise except FileNotFoundError: if file.startswith(config.HF_ENDPOINT): raise FileNotFoundError( file + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." ) from None else: raise _add_retries_to_file_obj_read_method(file_obj) return file_obj def xlistdir(path: str, download_config: Optional[DownloadConfig] = None) -> List[str]: """Extend `os.listdir` function to support remote files. Args: path (`str`): URL path. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `list` of `str` """ main_hop, *rest_hops = _as_str(path).split("::") if is_local_path(main_hop): return os.listdir(path) else: # globbing inside a zip in a private repo requires authentication path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) main_hop, *rest_hops = path.split("::") fs, *_ = fsspec.get_fs_token_paths(path, storage_options=storage_options) inner_path = main_hop.split("://")[-1] if inner_path.strip("/") and not fs.isdir(inner_path): raise FileNotFoundError(f"Directory doesn't exist: {path}") objects = fs.listdir(inner_path) return [os.path.basename(obj["name"]) for obj in objects] def xglob(urlpath, *, recursive=False, download_config: Optional[DownloadConfig] = None): """Extend `glob.glob` function to support remote files. Args: urlpath (`str`): URL path with shell-style wildcard patterns. recursive (`bool`, default `False`): Whether to match the "**" pattern recursively to zero or more directories or subdirectories. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `list` of `str` """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): return glob.glob(main_hop, recursive=recursive) else: # globbing inside a zip in a private repo requires authentication urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) main_hop, *rest_hops = urlpath.split("::") fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) # - If there's no "*" in the pattern, get_fs_token_paths() doesn't do any pattern matching # so to be able to glob patterns like "[0-9]", we have to call `fs.glob`. # - Also "*" in get_fs_token_paths() only matches files: we have to call `fs.glob` to match directories. # - If there is "**" in the pattern, `fs.glob` must be called anyway. inner_path = main_hop.split("://")[1] globbed_paths = fs.glob(inner_path) protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] return ["::".join([f"{protocol}://{globbed_path}"] + rest_hops) for globbed_path in globbed_paths] def xwalk(urlpath, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `os.walk` function to support remote files. Args: urlpath (`str`): URL root path. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs: Additional keyword arguments forwarded to the underlying filesystem. Yields: `tuple`: 3-tuple (dirpath, dirnames, filenames). """ main_hop, *rest_hops = _as_str(urlpath).split("::") if is_local_path(main_hop): yield from os.walk(main_hop, **kwargs) else: # walking inside a zip in a private repo requires authentication urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) main_hop, *rest_hops = urlpath.split("::") fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) inner_path = main_hop.split("://")[-1] if inner_path.strip("/") and not fs.isdir(inner_path): return [] protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] for dirpath, dirnames, filenames in fs.walk(inner_path, **kwargs): yield "::".join([f"{protocol}://{dirpath}"] + rest_hops), dirnames, filenames class xPath(type(Path())): """Extension of `pathlib.Path` to support both local paths and remote URLs.""" def __str__(self): path_str = super().__str__() main_hop, *rest_hops = path_str.split("::") if is_local_path(main_hop): return main_hop path_as_posix = path_str.replace("\\", "/") path_as_posix = SINGLE_SLASH_AFTER_PROTOCOL_PATTERN.sub("://", path_as_posix) path_as_posix += "//" if path_as_posix.endswith(":") else "" # Add slashes to root of the protocol return path_as_posix def exists(self, download_config: Optional[DownloadConfig] = None): """Extend `pathlib.Path.exists` method to support both local and remote files. Args: download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `bool` """ return xexists(str(self), download_config=download_config) def glob(self, pattern, download_config: Optional[DownloadConfig] = None): """Glob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: pattern (`str`): Pattern that resulting paths must match. download_config : mainly use token or storage_options to support different platforms and auth types. Yields: [`xPath`] """ posix_path = self.as_posix() main_hop, *rest_hops = posix_path.split("::") if is_local_path(main_hop): yield from Path(main_hop).glob(pattern) else: # globbing inside a zip in a private repo requires authentication if rest_hops: urlpath = rest_hops[0] urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) storage_options = {urlpath.split("://")[0]: storage_options} posix_path = "::".join([main_hop, urlpath, *rest_hops[1:]]) else: storage_options = None fs, *_ = fsspec.get_fs_token_paths(xjoin(posix_path, pattern), storage_options=storage_options) # - If there's no "*" in the pattern, get_fs_token_paths() doesn't do any pattern matching # so to be able to glob patterns like "[0-9]", we have to call `fs.glob`. # - Also "*" in get_fs_token_paths() only matches files: we have to call `fs.glob` to match directories. # - If there is "**" in the pattern, `fs.glob` must be called anyway. globbed_paths = fs.glob(xjoin(main_hop, pattern)) for globbed_path in globbed_paths: yield type(self)("::".join([f"{fs.protocol}://{globbed_path}"] + rest_hops)) def rglob(self, pattern, **kwargs): """Rglob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Args: pattern (`str`): Pattern that resulting paths must match. Yields: [`xPath`] """ return self.glob("**/" + pattern, **kwargs) @property def parent(self) -> "xPath": """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: [`xPath`] """ return type(self)(xdirname(self.as_posix())) @property def name(self) -> str: """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).name @property def stem(self) -> str: """Stem function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).stem @property def suffix(self) -> str: """Suffix function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. Returns: `str` """ return PurePosixPath(self.as_posix().split("::")[0]).suffix def open(self, *args, **kwargs): """Extend :func:`xopen` to support argument of type :obj:`~pathlib.Path`. Args: **args: Arguments passed to :func:`fsspec.open`. **kwargs: Keyword arguments passed to :func:`fsspec.open`. Returns: `io.FileIO`: File-like object. """ return xopen(str(self), *args, **kwargs) def joinpath(self, *p: Tuple[str, ...]) -> "xPath": """Extend :func:`xjoin` to support argument of type :obj:`~pathlib.Path`. Args: *p (`tuple` of `str`): Other path components. Returns: [`xPath`] """ return type(self)(xjoin(self.as_posix(), *p)) def __truediv__(self, p: str) -> "xPath": return self.joinpath(p) def with_suffix(self, suffix): main_hop, *rest_hops = str(self).split("::") if is_local_path(main_hop): return type(self)(str(super().with_suffix(suffix))) return type(self)("::".join([type(self)(PurePosixPath(main_hop).with_suffix(suffix)).as_posix()] + rest_hops)) def _as_str(path: Union[str, Path, xPath]): return str(path) if isinstance(path, xPath) else str(xPath(str(path))) def xgzip_open(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import gzip if hasattr(filepath_or_buffer, "read"): return gzip.open(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return gzip.open(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) def xnumpy_load(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): import numpy as np if hasattr(filepath_or_buffer, "read"): return np.load(filepath_or_buffer, *args, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return np.load(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) def xpandas_read_csv(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import pandas as pd if hasattr(filepath_or_buffer, "read"): return pd.read_csv(filepath_or_buffer, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) if kwargs.get("compression", "infer") == "infer": kwargs["compression"] = _get_extraction_protocol(filepath_or_buffer, download_config=download_config) return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) def xpandas_read_excel(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import pandas as pd if hasattr(filepath_or_buffer, "read"): try: return pd.read_excel(filepath_or_buffer, **kwargs) except ValueError: # Cannot seek streaming HTTP file return pd.read_excel(BytesIO(filepath_or_buffer.read()), **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) try: return pd.read_excel(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) except ValueError: # Cannot seek streaming HTTP file return pd.read_excel( BytesIO(xopen(filepath_or_buffer, "rb", download_config=download_config).read()), **kwargs ) def xpyarrow_parquet_read_table(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import pyarrow.parquet as pq if hasattr(filepath_or_buffer, "read"): return pq.read_table(filepath_or_buffer, **kwargs) else: filepath_or_buffer = str(filepath_or_buffer) return pq.read_table(xopen(filepath_or_buffer, mode="rb", download_config=download_config), **kwargs) def xsio_loadmat(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): import scipy.io as sio if hasattr(filepath_or_buffer, "read"): return sio.loadmat(filepath_or_buffer, **kwargs) else: return sio.loadmat(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) def xet_parse(source, parser=None, download_config: Optional[DownloadConfig] = None): """Extend `xml.etree.ElementTree.parse` function to support remote files. Args: source: File path or file object. parser (`XMLParser`, *optional*, default `XMLParser`): Parser instance. download_config : mainly use token or storage_options to support different platforms and auth types. Returns: `xml.etree.ElementTree.Element`: Root element of the given source document. """ if hasattr(source, "read"): return ET.parse(source, parser=parser) else: with xopen(source, "rb", download_config=download_config) as f: return ET.parse(f, parser=parser) def xxml_dom_minidom_parse(filename_or_file, download_config: Optional[DownloadConfig] = None, **kwargs): """Extend `xml.dom.minidom.parse` function to support remote files. Args: filename_or_file (`str` or file): File path or file object. download_config : mainly use token or storage_options to support different platforms and auth types. **kwargs (optional): Additional keyword arguments passed to `xml.dom.minidom.parse`. Returns: :obj:`xml.dom.minidom.Document`: Parsed document. """ if hasattr(filename_or_file, "read"): return xml.dom.minidom.parse(filename_or_file, **kwargs) else: with xopen(filename_or_file, "rb", download_config=download_config) as f: return xml.dom.minidom.parse(f, **kwargs) class _IterableFromGenerator(Iterable): """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" def __init__(self, generator: Callable, *args, **kwargs): self.generator = generator self.args = args self.kwargs = kwargs def __iter__(self): yield from self.generator(*self.args, **self.kwargs) class ArchiveIterable(_IterableFromGenerator): """An iterable of (path, fileobj) from a TAR archive, used by `iter_archive`""" @staticmethod def _iter_tar(f): stream = tarfile.open(fileobj=f, mode="r|*") for tarinfo in stream: file_path = tarinfo.name if not tarinfo.isreg(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = stream.extractfile(tarinfo) yield file_path, file_obj stream.members = [] del stream @staticmethod def _iter_zip(f): zipf = zipfile.ZipFile(f) for member in zipf.infolist(): file_path = member.filename if member.is_dir(): continue if file_path is None: continue if os.path.basename(file_path).startswith((".", "__")): # skipping hidden files continue file_obj = zipf.open(member) yield file_path, file_obj @classmethod def _iter_from_fileobj(cls, f) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol_with_magic_number(f) if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def _iter_from_urlpath( cls, urlpath: str, download_config: Optional[DownloadConfig] = None ) -> Generator[Tuple, None, None]: compression = _get_extraction_protocol(urlpath, download_config=download_config) with xopen(urlpath, "rb", download_config=download_config) as f: if compression == "zip": yield from cls._iter_zip(f) else: yield from cls._iter_tar(f) @classmethod def from_buf(cls, fileobj) -> "ArchiveIterable": return cls(cls._iter_from_fileobj, fileobj) @classmethod def from_urlpath(cls, urlpath_or_buf, download_config: Optional[DownloadConfig] = None) -> "ArchiveIterable": return cls(cls._iter_from_urlpath, urlpath_or_buf, download_config) class FilesIterable(_IterableFromGenerator): """An iterable of paths from a list of directories or files""" @classmethod def _iter_from_urlpaths( cls, urlpaths: Union[str, List[str]], download_config: Optional[DownloadConfig] = None ) -> Generator[str, None, None]: if not isinstance(urlpaths, list): urlpaths = [urlpaths] for urlpath in urlpaths: if xisfile(urlpath, download_config=download_config): yield urlpath elif xisdir(urlpath, download_config=download_config): for dirpath, dirnames, filenames in xwalk(urlpath, download_config=download_config): # in-place modification to prune the search dirnames[:] = sorted([dirname for dirname in dirnames if not dirname.startswith((".", "__"))]) if xbasename(dirpath).startswith((".", "__")): # skipping hidden directories continue for filename in sorted(filenames): if filename.startswith((".", "__")): # skipping hidden files continue yield xjoin(dirpath, filename) else: raise FileNotFoundError(urlpath) @classmethod def from_urlpaths(cls, urlpaths, download_config: Optional[DownloadConfig] = None) -> "FilesIterable": return cls(cls._iter_from_urlpaths, urlpaths, download_config) class StreamingDownloadManager: """ Download manager that uses the "::" separator to navigate through (possibly remote) compressed archives. Contrary to the regular `DownloadManager`, the `download` and `extract` methods don't actually download nor extract data, but they rather return the path or url that could be opened using the `xopen` function which extends the built-in `open` function to stream data from remote files. """ is_streaming = True def __init__( self, dataset_name: Optional[str] = None, data_dir: Optional[str] = None, download_config: Optional[DownloadConfig] = None, base_path: Optional[str] = None, ): self._dataset_name = dataset_name self._data_dir = data_dir self._base_path = base_path or os.path.abspath(".") self.download_config = download_config or DownloadConfig() @property def manual_dir(self): return self._data_dir def download(self, url_or_urls): """Normalize URL(s) of files to stream data from. This is the lazy version of `DownloadManager.download` for streaming. Args: url_or_urls (`str` or `list` or `dict`): URL(s) of files to stream data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input url_or_urls. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') ``` """ url_or_urls = map_nested(self._download, url_or_urls, map_tuple=True) return url_or_urls def _download(self, urlpath: str) -> str: urlpath = str(urlpath) if is_relative_path(urlpath): # append the relative path to the base_path urlpath = url_or_path_join(self._base_path, urlpath) return urlpath def extract(self, url_or_urls): """Add extraction protocol for given url(s) for streaming. This is the lazy version of `DownloadManager.extract` for streaming. Args: url_or_urls (`str` or `list` or `dict`): URL(s) of files to stream data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`. Example: ```py >>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> extracted_files = dl_manager.extract(downloaded_files) ``` """ urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True) return urlpaths def _extract(self, urlpath: str) -> str: urlpath = str(urlpath) protocol = _get_extraction_protocol(urlpath, download_config=self.download_config) # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz path = urlpath.split("::")[0] extension = _get_path_extension(path) if extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")): raise NotImplementedError( f"Extraction protocol for TAR archives like '{urlpath}' is not implemented in streaming mode. " f"Please use `dl_manager.iter_archive` instead.\n\n" f"Example usage:\n\n" f"\turl = dl_manager.download(url)\n" f"\ttar_archive_iterator = dl_manager.iter_archive(url)\n\n" f"\tfor filename, file in tar_archive_iterator:\n" f"\t\t..." ) if protocol is None: # no extraction return urlpath elif protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS: # there is one single file which is the uncompressed file inner_file = os.path.basename(urlpath.split("::")[0]) inner_file = inner_file[: inner_file.rindex(".")] if "." in inner_file else inner_file return f"{protocol}://{inner_file}::{urlpath}" else: return f"{protocol}://::{urlpath}" def download_and_extract(self, url_or_urls): """Prepare given `url_or_urls` for streaming (add extraction protocol). This is the lazy version of `DownloadManager.download_and_extract` for streaming. Is equivalent to: ``` urls = dl_manager.extract(dl_manager.download(url_or_urls)) ``` Args: url_or_urls (`str` or `list` or `dict`): URL(s) to stream from data from. Each url is a `str`. Returns: url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`. """ return self.extract(self.download(url_or_urls)) def iter_archive(self, urlpath_or_buf: Union[str, io.BufferedReader]) -> Iterable[Tuple]: """Iterate over files within an archive. Args: urlpath_or_buf (`str` or `io.BufferedReader`): Archive path or archive binary file object. Yields: `tuple[str, io.BufferedReader]`: 2-tuple (path_within_archive, file_object). File object is opened in binary mode. Example: ```py >>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz') >>> files = dl_manager.iter_archive(archive) ``` """ if hasattr(urlpath_or_buf, "read"): return ArchiveIterable.from_buf(urlpath_or_buf) else: return ArchiveIterable.from_urlpath(urlpath_or_buf, download_config=self.download_config) def iter_files(self, urlpaths: Union[str, List[str]]) -> Iterable[str]: """Iterate over files. Args: urlpaths (`str` or `list` of `str`): Root paths. Yields: str: File URL path. Example: ```py >>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip') >>> files = dl_manager.iter_files(files) ``` """ return FilesIterable.from_urlpaths(urlpaths, download_config=self.download_config)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/download/__init__.py
__all__ = [ "DownloadConfig", "DownloadManager", "DownloadMode", "StreamingDownloadManager", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/download/mock_download_manager.py
# Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Mock download manager interface.""" import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version logger = get_logger(__name__) class MockDownloadManager: dummy_file_name = "dummy_data" datasets_scripts_dir = "datasets" is_streaming = False def __init__( self, dataset_name: str, config: str, version: Union[Version, str], cache_dir: Optional[str] = None, use_local_dummy_data: bool = False, load_existing_dummy_data: bool = True, download_callbacks: Optional[List[Callable]] = None, ): self.downloaded_size = 0 self.dataset_name = dataset_name self.cache_dir = cache_dir self.use_local_dummy_data = use_local_dummy_data self.config = config # download_callbacks take a single url as input self.download_callbacks: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root self.load_existing_dummy_data = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general self.version_name = str(version) # to be downloaded self._dummy_file = None self._bucket_url = None @property def dummy_file(self): if self._dummy_file is None: self._dummy_file = self.download_dummy_data() return self._dummy_file @property def dummy_data_folder(self): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy", self.config.name, self.version_name) # structure is dummy / version_name return os.path.join("dummy", self.version_name) @property def dummy_zip_file(self): return os.path.join(self.dummy_data_folder, "dummy_data.zip") def download_dummy_data(self): path_to_dummy_data_dir = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) local_path = cached_path( path_to_dummy_data_dir, cache_dir=self.cache_dir, extract_compressed_file=True, force_extract=True ) return os.path.join(local_path, self.dummy_file_name) @property def local_path_to_dummy_data(self): return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file) @property def github_path_to_dummy_data(self): if self._bucket_url is None: self._bucket_url = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, "/")) return self._bucket_url @property def manual_dir(self): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep, "/").split("/")[:-1]) # this function has to be in the manager under this name so that testing works def download_and_extract(self, data_url, *args): if self.load_existing_dummy_data: # dummy data is downloaded and tested dummy_file = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned dummy_file = self.dummy_file_name # special case when data_url is a dict if isinstance(data_url, dict): return self.create_dummy_data_dict(dummy_file, data_url) elif isinstance(data_url, (list, tuple)): return self.create_dummy_data_list(dummy_file, data_url) else: return self.create_dummy_data_single(dummy_file, data_url) # this function has to be in the manager under this name so that testing works def download(self, data_url, *args): return self.download_and_extract(data_url) # this function has to be in the manager under this name so that testing works def download_custom(self, data_url, custom_download): return self.download_and_extract(data_url) # this function has to be in the manager under this name so that testing works def extract(self, path, *args, **kwargs): return path # this function has to be in the manager under this name so that testing works def get_recorded_sizes_checksums(self): return {} def create_dummy_data_dict(self, path_to_dummy_data, data_url): dummy_data_dict = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(single_urls, list): for single_url in single_urls: download_callback(single_url) else: single_url = single_urls download_callback(single_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(single_urls, list): value = [os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(x).name)) for x in single_urls] else: single_url = single_urls value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(single_url).name)) dummy_data_dict[key] = value # make sure that values are unique if all(isinstance(i, str) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values() ): # append key to value to make its name unique dummy_data_dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def create_dummy_data_list(self, path_to_dummy_data, data_url): dummy_data_list = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one is_tf_records = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}", url)) for url in data_url) is_pubmed_records = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): data_url = [data_url[0]] * len(data_url) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(single_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(value) return dummy_data_list def create_dummy_data_single(self, path_to_dummy_data, data_url): for download_callback in self.download_callbacks: download_callback(data_url) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(value) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def delete_extracted_files(self): pass def manage_extracted_files(self): pass def iter_archive(self, path): def _iter_archive_members(path): # this preserves the order of the members inside the ZIP archive dummy_parent_path = Path(self.dummy_file).parent relative_path = path.relative_to(dummy_parent_path) with ZipFile(self.local_path_to_dummy_data) as zip_file: members = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(member) path = Path(path) file_paths = _iter_archive_members(path) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(path).as_posix(), file_path.open("rb") def iter_files(self, paths): if not isinstance(paths, list): paths = [paths] for path in paths: if os.path.isfile(path): yield path else: for dirpath, dirnames, filenames in os.walk(path): if os.path.basename(dirpath).startswith((".", "__")): continue dirnames.sort() for filename in sorted(filenames): if filename.startswith((".", "__")): continue yield os.path.join(dirpath, filename)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/test.py
import logging import os from argparse import ArgumentParser from pathlib import Path from shutil import copyfile, rmtree from typing import Generator import datasets.config from datasets.builder import DatasetBuilder from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_manager import DownloadMode from datasets.load import dataset_module_factory, import_main_class from datasets.utils.info_utils import VerificationMode from datasets.utils.logging import ERROR, get_logger logger = get_logger(__name__) def _test_command_factory(args): return TestCommand( args.dataset, args.name, args.cache_dir, args.data_dir, args.all_configs, args.save_info or args.save_infos, args.ignore_verifications, args.force_redownload, args.clear_cache, ) class TestCommand(BaseDatasetsCLICommand): __test__ = False # to tell pytest it's not a test class @staticmethod def register_subcommand(parser: ArgumentParser): test_parser = parser.add_parser("test", help="Test dataset implementation.") test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name") test_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory where the datasets are stored.", ) test_parser.add_argument( "--data_dir", type=str, default=None, help="Can be used to specify a manual directory to get the files from.", ) test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations") test_parser.add_argument( "--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)" ) test_parser.add_argument( "--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks.", ) test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload") test_parser.add_argument( "--clear_cache", action="store_true", help="Remove downloaded files and cached datasets after each config test", ) # aliases test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info") test_parser.add_argument("dataset", type=str, help="Name of the dataset to download") test_parser.set_defaults(func=_test_command_factory) def __init__( self, dataset: str, name: str, cache_dir: str, data_dir: str, all_configs: bool, save_infos: bool, ignore_verifications: bool, force_redownload: bool, clear_cache: bool, ): self._dataset = dataset self._name = name self._cache_dir = cache_dir self._data_dir = data_dir self._all_configs = all_configs self._save_infos = save_infos self._ignore_verifications = ignore_verifications self._force_redownload = force_redownload self._clear_cache = clear_cache if clear_cache and not cache_dir: print( "When --clear_cache is used, specifying a cache directory is mandatory.\n" "The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n" "Please provide a --cache_dir that will be used to test the dataset script." ) exit(1) if save_infos: self._ignore_verifications = True def run(self): logging.getLogger("filelock").setLevel(ERROR) if self._name is not None and self._all_configs: print("Both parameters `config` and `all_configs` can't be used at once.") exit(1) path, config_name = self._dataset, self._name module = dataset_module_factory(path) builder_cls = import_main_class(module.module_path) n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1 def get_builders() -> Generator[DatasetBuilder, None, None]: if self._all_configs and builder_cls.BUILDER_CONFIGS: for i, config in enumerate(builder_cls.BUILDER_CONFIGS): if "config_name" in module.builder_kwargs: yield builder_cls( cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: yield builder_cls( config_name=config.name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: if "config_name" in module.builder_kwargs: yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs) else: yield builder_cls( config_name=config_name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) for j, builder in enumerate(get_builders()): print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})") builder._record_infos = os.path.exists( os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME) ) # record checksums only if we need to update a (deprecated) dataset_infos.json builder.download_and_prepare( download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS if not self._force_redownload else DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.NO_CHECKS if self._ignore_verifications else VerificationMode.ALL_CHECKS, try_from_hf_gcs=False, ) builder.as_dataset() if self._save_infos: builder._save_infos() # If save_infos=True, the dataset card (README.md) is created next to the loaded module file. # The dataset_infos are saved in the YAML part of the README.md # Let's move it to the original directory of the dataset script, to allow the user to # upload them on S3 at the same time afterwards. if self._save_infos: dataset_readme_path = os.path.join( builder_cls.get_imported_module_dir(), datasets.config.REPOCARD_FILENAME ) name = Path(path).name + ".py" combined_path = os.path.join(path, name) if os.path.isfile(path): dataset_dir = os.path.dirname(path) elif os.path.isfile(combined_path): dataset_dir = path elif os.path.isdir(path): # for local directories containing only data files dataset_dir = path else: # in case of a remote dataset dataset_dir = None print(f"Dataset card saved at {dataset_readme_path}") # Move dataset_info back to the user if dataset_dir is not None: user_dataset_readme_path = os.path.join(dataset_dir, datasets.config.REPOCARD_FILENAME) copyfile(dataset_readme_path, user_dataset_readme_path) print(f"Dataset card saved at {user_dataset_readme_path}") # If clear_cache=True, the download folder and the dataset builder cache directory are deleted if self._clear_cache: if os.path.isdir(builder._cache_dir): logger.warning(f"Clearing cache at {builder._cache_dir}") rmtree(builder._cache_dir) download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR) if os.path.isdir(download_dir): logger.warning(f"Clearing cache at {download_dir}") rmtree(download_dir) print("Test successful.")
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/dummy_data.py
import fnmatch import json import os import shutil import tempfile import xml.etree.ElementTree as ET from argparse import ArgumentParser from pathlib import Path from typing import Optional from datasets import config from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.download.mock_download_manager import MockDownloadManager from datasets.load import dataset_module_factory, import_main_class from datasets.utils.deprecation_utils import deprecated from datasets.utils.logging import get_logger, set_verbosity_warning from datasets.utils.py_utils import map_nested logger = get_logger(__name__) DEFAULT_ENCODING = "utf-8" def dummy_data_command_factory(args): return DummyDataCommand( args.path_to_dataset, args.auto_generate, args.n_lines, args.json_field, args.xml_tag, args.match_text_files, args.keep_uncompressed, args.cache_dir, args.encoding, ) class DummyDataGeneratorDownloadManager(DownloadManager): def __init__(self, mock_download_manager, *args, **kwargs): super().__init__(*args, **kwargs) self.mock_download_manager = mock_download_manager self.downloaded_dummy_paths = [] self.expected_dummy_paths = [] def download(self, url_or_urls): output = super().download(url_or_urls) dummy_output = self.mock_download_manager.download(url_or_urls) map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True) map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True) return output def download_and_extract(self, url_or_urls): output = super().extract(super().download(url_or_urls)) dummy_output = self.mock_download_manager.download(url_or_urls) map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True) map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True) return output def auto_generate_dummy_data_folder( self, n_lines: int = 5, json_field: Optional[str] = None, xml_tag: Optional[str] = None, match_text_files: Optional[str] = None, encoding: Optional[str] = None, ) -> bool: os.makedirs( os.path.join( self.mock_download_manager.datasets_scripts_dir, self.mock_download_manager.dataset_name, self.mock_download_manager.dummy_data_folder, "dummy_data", ), exist_ok=True, ) total = 0 self.mock_download_manager.load_existing_dummy_data = False for src_path, relative_dst_path in zip(self.downloaded_dummy_paths, self.expected_dummy_paths): dst_path = os.path.join( self.mock_download_manager.datasets_scripts_dir, self.mock_download_manager.dataset_name, self.mock_download_manager.dummy_data_folder, relative_dst_path, ) total += self._create_dummy_data( src_path, dst_path, n_lines=n_lines, json_field=json_field, xml_tag=xml_tag, match_text_files=match_text_files, encoding=encoding, ) if total == 0: logger.error( "Dummy data generation failed: no dummy files were created. " "Make sure the data files format is supported by the auto-generation." ) return total > 0 def _create_dummy_data( self, src_path: str, dst_path: str, n_lines: int, json_field: Optional[str] = None, xml_tag: Optional[str] = None, match_text_files: Optional[str] = None, encoding: Optional[str] = None, ) -> int: encoding = encoding or DEFAULT_ENCODING if os.path.isfile(src_path): logger.debug(f"Trying to generate dummy data file {dst_path}") dst_path_extensions = Path(dst_path).suffixes line_by_line_extensions = [".txt", ".csv", ".jsonl", ".tsv"] is_line_by_line_text_file = any(extension in dst_path_extensions for extension in line_by_line_extensions) if match_text_files is not None: file_name = os.path.basename(dst_path) for pattern in match_text_files.split(","): is_line_by_line_text_file |= fnmatch.fnmatch(file_name, pattern) # Line by line text file (txt, csv etc.) if is_line_by_line_text_file: Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(src_path, encoding=encoding) as src_file: with open(dst_path, "w", encoding=encoding) as dst_file: first_lines = [] for i, line in enumerate(src_file): if i >= n_lines: break first_lines.append(line) dst_file.write("".join(first_lines).strip()) return 1 # json file elif ".json" in dst_path_extensions: with open(src_path, encoding=encoding) as src_file: json_data = json.load(src_file) if json_field is not None: json_data = json_data[json_field] if isinstance(json_data, dict): if not all(isinstance(v, list) for v in json_data.values()): raise ValueError( f"Couldn't parse columns {list(json_data.keys())}. " "Maybe specify which json field must be used " "to read the data with --json_field <my_field>." ) first_json_data = {k: v[:n_lines] for k, v in json_data.items()} else: first_json_data = json_data[:n_lines] if json_field is not None: first_json_data = {json_field: first_json_data} Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(dst_path, "w", encoding=encoding) as dst_file: json.dump(first_json_data, dst_file) return 1 # xml file elif any(extension in dst_path_extensions for extension in [".xml", ".txm"]): if xml_tag is None: logger.warning("Found xml file but 'xml_tag' is set to None. Please provide --xml_tag") else: self._create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=n_lines, encoding=encoding) return 1 logger.warning( f"Couldn't generate dummy file '{dst_path}'. " "Ignore that if this file is not useful for dummy data." ) return 0 # directory, iterate through all files elif os.path.isdir(src_path): total = 0 for path, _, files in os.walk(src_path): for name in files: if not name.startswith("."): # ignore files like .DS_Store etc. src_file_path = os.path.join(path, name) dst_file_path = os.path.join(dst_path, Path(src_file_path).relative_to(src_path)) total += self._create_dummy_data( src_file_path, dst_file_path, n_lines=n_lines, json_field=json_field, xml_tag=xml_tag, match_text_files=match_text_files, encoding=encoding, ) return total @staticmethod def _create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=5, encoding=DEFAULT_ENCODING): Path(dst_path).parent.mkdir(exist_ok=True, parents=True) with open(src_path, encoding=encoding) as src_file: n_line = 0 parents = [] for event, elem in ET.iterparse(src_file, events=("start", "end")): if event == "start": parents.append(elem) else: _ = parents.pop() if elem.tag == xml_tag: if n_line < n_lines: n_line += 1 else: if parents: parents[-1].remove(elem) ET.ElementTree(element=elem).write(dst_path, encoding=encoding) def compress_autogenerated_dummy_data(self, path_to_dataset): root_dir = os.path.join(path_to_dataset, self.mock_download_manager.dummy_data_folder) base_name = os.path.join(root_dir, "dummy_data") base_dir = "dummy_data" logger.info(f"Compressing dummy data folder to '{base_name}.zip'") shutil.make_archive(base_name, "zip", root_dir, base_dir) shutil.rmtree(base_name) @deprecated( "The `datasets` repository does not host the dataset scripts anymore. Therefore, dummy data is no longer needed to test their loading with CI." ) class DummyDataCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): test_parser = parser.add_parser("dummy_data", help="Generate dummy data.") test_parser.add_argument("--auto_generate", action="store_true", help="Automatically generate dummy data") test_parser.add_argument( "--n_lines", type=int, default=5, help="Number of lines or samples to keep when auto-generating dummy data" ) test_parser.add_argument( "--json_field", type=str, default=None, help="Optional, json field to read the data from when auto-generating dummy data. In the json data files, this field must point to a list of samples as json objects (ex: the 'data' field for squad-like files)", ) test_parser.add_argument( "--xml_tag", type=str, default=None, help="Optional, xml tag name of the samples inside the xml files when auto-generating dummy data.", ) test_parser.add_argument( "--match_text_files", type=str, default=None, help="Optional, a comma separated list of file patterns that looks for line-by-line text files other than *.txt or *.csv. Example: --match_text_files *.label", ) test_parser.add_argument( "--keep_uncompressed", action="store_true", help="Whether to leave the dummy data folders uncompressed when auto-generating dummy data. Useful for debugging for to do manual adjustements before compressing.", ) test_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory to download and cache files when auto-generating dummy data", ) test_parser.add_argument( "--encoding", type=str, default=None, help=f"Encoding to use when auto-generating dummy data. Defaults to {DEFAULT_ENCODING}", ) test_parser.add_argument("path_to_dataset", type=str, help="Path to the dataset (example: ./datasets/squad)") test_parser.set_defaults(func=dummy_data_command_factory) def __init__( self, path_to_dataset: str, auto_generate: bool, n_lines: int, json_field: Optional[str], xml_tag: Optional[str], match_text_files: Optional[str], keep_uncompressed: bool, cache_dir: Optional[str], encoding: Optional[str], ): self._path_to_dataset = path_to_dataset if os.path.isdir(path_to_dataset): self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-1] else: self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-2] cache_dir = os.path.expanduser(cache_dir or config.HF_DATASETS_CACHE) self._auto_generate = auto_generate self._n_lines = n_lines self._json_field = json_field self._xml_tag = xml_tag self._match_text_files = match_text_files self._keep_uncompressed = keep_uncompressed self._cache_dir = cache_dir self._encoding = encoding def run(self): set_verbosity_warning() dataset_module = dataset_module_factory(self._path_to_dataset) builder_cls = import_main_class(dataset_module.module_path) # use `None` as config if no configs builder_configs = builder_cls.BUILDER_CONFIGS or [None] auto_generate_results = [] with tempfile.TemporaryDirectory() as tmp_dir: for builder_config in builder_configs: config_name = builder_config.name if builder_config else None dataset_builder = builder_cls(config_name=config_name, hash=dataset_module.hash, cache_dir=tmp_dir) version = builder_config.version if builder_config else dataset_builder.config.version mock_dl_manager = MockDownloadManager( dataset_name=self._dataset_name, config=builder_config, version=version, use_local_dummy_data=True, load_existing_dummy_data=False, ) if self._auto_generate: auto_generate_results.append( self._autogenerate_dummy_data( dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager, keep_uncompressed=self._keep_uncompressed, ) ) else: self._print_dummy_data_instructions( dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager ) if self._auto_generate and not self._keep_uncompressed: if all(auto_generate_results): print(f"Automatic dummy data generation succeeded for all configs of '{self._path_to_dataset}'") else: print(f"Automatic dummy data generation failed for some configs of '{self._path_to_dataset}'") def _autogenerate_dummy_data(self, dataset_builder, mock_dl_manager, keep_uncompressed) -> Optional[bool]: dl_cache_dir = ( os.path.join(self._cache_dir, config.DOWNLOADED_DATASETS_DIR) if self._cache_dir else config.DOWNLOADED_DATASETS_PATH ) download_config = DownloadConfig(cache_dir=dl_cache_dir) dl_manager = DummyDataGeneratorDownloadManager( dataset_name=self._dataset_name, mock_download_manager=mock_dl_manager, download_config=download_config ) dataset_builder._split_generators(dl_manager) mock_dl_manager.load_existing_dummy_data = False # don't use real dummy data dl_manager.auto_generate_dummy_data_folder( n_lines=self._n_lines, json_field=self._json_field, xml_tag=self._xml_tag, match_text_files=self._match_text_files, encoding=self._encoding, ) if not keep_uncompressed: path_do_dataset = os.path.join(mock_dl_manager.datasets_scripts_dir, mock_dl_manager.dataset_name) dl_manager.compress_autogenerated_dummy_data(path_do_dataset) # now test that the dummy_data.zip file actually works mock_dl_manager.load_existing_dummy_data = True # use real dummy data n_examples_per_split = {} os.makedirs(dataset_builder._cache_dir, exist_ok=True) try: split_generators = dataset_builder._split_generators(mock_dl_manager) for split_generator in split_generators: dataset_builder._prepare_split(split_generator, check_duplicate_keys=False) n_examples_per_split[split_generator.name] = split_generator.split_info.num_examples except OSError as e: logger.error( f"Failed to load dummy data for config '{dataset_builder.config.name}''.\nOriginal error:\n" + str(e) ) return False else: if all(n_examples > 0 for n_examples in n_examples_per_split.values()): logger.warning( f"Dummy data generation done and dummy data test succeeded for config '{dataset_builder.config.name}''." ) return True else: empty_splits = [ split_name for split_name in n_examples_per_split if n_examples_per_split[split_name] == 0 ] logger.warning( f"Dummy data generation done but dummy data test failed since splits {empty_splits} have 0 examples for config '{dataset_builder.config.name}''." ) return False else: generated_dummy_data_dir = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder) logger.info( f"Dummy data generated in directory '{generated_dummy_data_dir}' but kept uncompressed. " "Please compress this directory into a zip file to use it for dummy data tests." ) def _print_dummy_data_instructions(self, dataset_builder, mock_dl_manager): dummy_data_folder = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder) logger.info(f"Creating dummy folder structure for {dummy_data_folder}... ") os.makedirs(dummy_data_folder, exist_ok=True) try: generator_splits = dataset_builder._split_generators(mock_dl_manager) except FileNotFoundError as e: print( f"Dataset {self._dataset_name} with config {mock_dl_manager.config} seems to already open files in the method `_split_generators(...)`. You might consider to instead only open files in the method `_generate_examples(...)` instead. If this is not possible the dummy data has to be created with less guidance. Make sure you create the file {e.filename}." ) files_to_create = set() split_names = [] dummy_file_name = mock_dl_manager.dummy_file_name for split in generator_splits: logger.info(f"Collecting dummy data file paths to create for {split.name}") split_names.append(split.name) gen_kwargs = split.gen_kwargs generator = dataset_builder._generate_examples(**gen_kwargs) try: dummy_data_guidance_print = "\n" + 30 * "=" + "DUMMY DATA INSTRUCTIONS" + 30 * "=" + "\n" config_string = ( f"config {mock_dl_manager.config.name} of " if mock_dl_manager.config is not None else "" ) dummy_data_guidance_print += ( "- In order to create the dummy data for " + config_string + f"{self._dataset_name}, please go into the folder '{dummy_data_folder}' with `cd {dummy_data_folder}` . \n\n" ) # trigger generate function for key, record in generator: pass dummy_data_guidance_print += f"- It appears that the function `_generate_examples(...)` expects one or more files in the folder {dummy_file_name} using the function `glob.glob(...)`. In this case, please refer to the `_generate_examples(...)` method to see under which filename the dummy data files should be created. \n\n" except FileNotFoundError as e: files_to_create.add(e.filename) split_names = ", ".join(split_names) if len(files_to_create) > 0: # no glob.glob(...) in `_generate_examples(...)` if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name: dummy_data_guidance_print += f"- Please create a single dummy data file called '{next(iter(files_to_create))}' from the folder '{dummy_data_folder}'. Make sure that the dummy data file provides at least one example for the split(s) '{split_names}' \n\n" files_string = dummy_file_name else: files_string = ", ".join(files_to_create) dummy_data_guidance_print += f"- Please create the following dummy data files '{files_string}' from the folder '{dummy_data_folder}'\n\n" dummy_data_guidance_print += f"- For each of the splits '{split_names}', make sure that one or more of the dummy data files provide at least one example \n\n" dummy_data_guidance_print += f"- If the method `_generate_examples(...)` includes multiple `open()` statements, you might have to create other files in addition to '{files_string}'. In this case please refer to the `_generate_examples(...)` method \n\n" if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name: dummy_data_guidance_print += f"- After the dummy data file is created, it should be zipped to '{dummy_file_name}.zip' with the command `zip {dummy_file_name}.zip {dummy_file_name}` \n\n" dummy_data_guidance_print += ( f"- You can now delete the file '{dummy_file_name}' with the command `rm {dummy_file_name}` \n\n" ) dummy_data_guidance_print += f"- To get the file '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n" else: dummy_data_guidance_print += f"- After all dummy data files are created, they should be zipped recursively to '{dummy_file_name}.zip' with the command `zip -r {dummy_file_name}.zip {dummy_file_name}/` \n\n" dummy_data_guidance_print += ( f"- You can now delete the folder '{dummy_file_name}' with the command `rm -r {dummy_file_name}` \n\n" ) dummy_data_guidance_print += f"- To get the folder '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n" dummy_data_guidance_print += ( f"- Make sure you have created the file '{dummy_file_name}.zip' in '{dummy_data_folder}' \n" ) dummy_data_guidance_print += 83 * "=" + "\n" print(dummy_data_guidance_print)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/__init__.py
from abc import ABC, abstractmethod from argparse import ArgumentParser class BaseDatasetsCLICommand(ABC): @staticmethod @abstractmethod def register_subcommand(parser: ArgumentParser): raise NotImplementedError() @abstractmethod def run(self): raise NotImplementedError()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/env.py
import platform from argparse import ArgumentParser import fsspec import huggingface_hub import pandas import pyarrow from datasets import __version__ as version from datasets.commands import BaseDatasetsCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env", help="Print relevant system environment info.") download_parser.set_defaults(func=info_command_factory) def run(self): info = { "`datasets` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "`huggingface_hub` version": huggingface_hub.__version__, "PyArrow version": pyarrow.__version__, "Pandas version": pandas.__version__, "`fsspec` version": fsspec.__version__, } print("\nCopy-and-paste the text below in your GitHub issue.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/run_beam.py
import os from argparse import ArgumentParser from pathlib import Path from shutil import copyfile from typing import List from datasets import config from datasets.builder import DatasetBuilder from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadMode from datasets.load import dataset_module_factory, import_main_class from datasets.utils.info_utils import VerificationMode def run_beam_command_factory(args, **kwargs): return RunBeamCommand( args.dataset, args.name, args.cache_dir, args.beam_pipeline_options, args.data_dir, args.all_configs, args.save_info or args.save_infos, args.ignore_verifications, args.force_redownload, **kwargs, ) class RunBeamCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_beam_parser = parser.add_parser("run_beam", help="Run a Beam dataset processing pipeline") run_beam_parser.add_argument("dataset", type=str, help="Name of the dataset to download") run_beam_parser.add_argument("--name", type=str, default=None, help="Dataset config name") run_beam_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory where the datasets are stored", ) run_beam_parser.add_argument( "--beam_pipeline_options", type=str, default="", help="Beam pipeline options, separated by commas. Example:: `--beam_pipeline_options=job_name=my-job,project=my-project`", ) run_beam_parser.add_argument( "--data_dir", type=str, default=None, help="Can be used to specify a manual directory to get the files from", ) run_beam_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations") run_beam_parser.add_argument("--save_info", action="store_true", help="Save the dataset infos file") run_beam_parser.add_argument( "--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks" ) run_beam_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload") # aliases run_beam_parser.add_argument("--save_infos", action="store_true", help="alias for save_info") run_beam_parser.set_defaults(func=run_beam_command_factory) def __init__( self, dataset: str, name: str, cache_dir: str, beam_pipeline_options: str, data_dir: str, all_configs: bool, save_infos: bool, ignore_verifications: bool, force_redownload: bool, **config_kwargs, ): self._dataset = dataset self._name = name self._cache_dir = cache_dir self._beam_pipeline_options = beam_pipeline_options self._data_dir = data_dir self._all_configs = all_configs self._save_infos = save_infos self._ignore_verifications = ignore_verifications self._force_redownload = force_redownload self._config_kwargs = config_kwargs def run(self): import apache_beam as beam if self._name is not None and self._all_configs: print("Both parameters `name` and `all_configs` can't be used at once.") exit(1) path, config_name = self._dataset, self._name dataset_module = dataset_module_factory(path) builder_cls = import_main_class(dataset_module.module_path) builders: List[DatasetBuilder] = [] if self._beam_pipeline_options: beam_options = beam.options.pipeline_options.PipelineOptions( flags=[f"--{opt.strip()}" for opt in self._beam_pipeline_options.split(",") if opt] ) else: beam_options = None if self._all_configs and len(builder_cls.BUILDER_CONFIGS) > 0: for builder_config in builder_cls.BUILDER_CONFIGS: builders.append( builder_cls( config_name=builder_config.name, data_dir=self._data_dir, hash=dataset_module.hash, beam_options=beam_options, cache_dir=self._cache_dir, base_path=dataset_module.builder_kwargs.get("base_path"), ) ) else: builders.append( builder_cls( config_name=config_name, data_dir=self._data_dir, beam_options=beam_options, cache_dir=self._cache_dir, base_path=dataset_module.builder_kwargs.get("base_path"), **self._config_kwargs, ) ) for builder in builders: builder.download_and_prepare( download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS if not self._force_redownload else DownloadMode.FORCE_REDOWNLOAD, download_config=DownloadConfig(cache_dir=config.DOWNLOADED_DATASETS_PATH), verification_mode=VerificationMode.NO_CHECKS if self._ignore_verifications else VerificationMode.ALL_CHECKS, try_from_hf_gcs=False, ) if self._save_infos: builder._save_infos() print("Apache beam run successful.") # If save_infos=True, the dataset infos file is created next to the loaded module file. # Let's move it to the original directory of the dataset script, to allow the user to # upload them on S3 at the same time afterwards. if self._save_infos: dataset_infos_path = os.path.join(builder_cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME) name = Path(path).name + ".py" combined_path = os.path.join(path, name) if os.path.isfile(path): dataset_dir = os.path.dirname(path) elif os.path.isfile(combined_path): dataset_dir = path else: # in case of a remote dataset print(f"Dataset Infos file saved at {dataset_infos_path}") exit(1) # Move datasetinfo back to the user user_dataset_infos_path = os.path.join(dataset_dir, config.DATASETDICT_INFOS_FILENAME) copyfile(dataset_infos_path, user_dataset_infos_path) print(f"Dataset Infos file saved at {user_dataset_infos_path}")
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/datasets_cli.py
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/commands/convert.py
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger HIGHLIGHT_MESSAGE_PRE = """<<<<<<< This should probably be modified because it mentions: """ HIGHLIGHT_MESSAGE_POST = """======= >>>>>>> """ TO_HIGHLIGHT = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] TO_CONVERT = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def convert_command_factory(args: Namespace): """ Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint. Returns: ConvertCommand """ return ConvertCommand(args.tfds_path, args.datasets_directory) class ConvertCommand(BaseDatasetsCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the datasets-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=str, required=True, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=str, required=True, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=convert_command_factory) def __init__(self, tfds_path: str, datasets_directory: str, *args): self._logger = get_logger("datasets-cli/converting") self._tfds_path = tfds_path self._datasets_directory = datasets_directory def run(self): if os.path.isdir(self._tfds_path): abs_tfds_path = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): abs_tfds_path = os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") abs_datasets_path = os.path.abspath(self._datasets_directory) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}") utils_files = [] with_manual_update = [] imports_to_builder_map = {} if os.path.isdir(self._tfds_path): file_names = os.listdir(abs_tfds_path) else: file_names = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"Looking at file {f_name}") input_file = os.path.join(abs_tfds_path, f_name) output_file = os.path.join(abs_datasets_path, f_name) if not os.path.isfile(input_file) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(input_file, encoding="utf-8") as f: lines = f.readlines() out_lines = [] is_builder = False needs_manual_update = False tfds_imports = [] for line in lines: out_line = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: out_line = "import datasets\n" elif "import tensorflow" in out_line: # order is important here out_line = "" continue elif "from absl import logging" in out_line: out_line = "from datasets import logging\n" elif "getLogger" in out_line: out_line = out_line.replace("getLogger", "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): needs_manual_update = True to_remove = list(filter(lambda e: e in out_line, TO_HIGHLIGHT)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(to_remove) + "\n") out_lines.append(out_line) out_lines.append(HIGHLIGHT_MESSAGE_POST) continue else: for pattern, replacement in TO_CONVERT: out_line = re.sub(pattern, replacement, out_line) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: match = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)", out_line) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) out_line = "from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: is_builder = True out_lines.append(out_line) if is_builder or "wmt" in f_name: # We create a new directory for each dataset dir_name = f_name.replace(".py", "") output_dir = os.path.join(abs_datasets_path, dir_name) output_file = os.path.join(output_dir, f_name) os.makedirs(output_dir, exist_ok=True) self._logger.info(f"Adding directory {output_dir}") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(output_file) if needs_manual_update: with_manual_update.append(output_file) with open(output_file, "w", encoding="utf-8") as f: f.writelines(out_lines) self._logger.info(f"Converted in {output_file}") for utils_file in utils_files: try: f_name = os.path.basename(utils_file) dest_folder = imports_to_builder_map[f_name.replace(".py", "")] self._logger.info(f"Moving {dest_folder} to {utils_file}") shutil.copy(utils_file, dest_folder) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/filesystems/compression.py
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class BaseCompressedFileFileSystem(AbstractArchiveFileSystem): """Read contents of compressed file as a filesystem with one file inside.""" root_marker = "" protocol: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) compression: str = None # compression type in fsspec. ex: "gzip" extension: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, fo: str = "", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, **kwargs ): """ The compressed file system can be instantiated from any compressed file. It reads the contents of compressed file as a filesystem with one file inside, as if it was an archive. The single file inside the filesystem is named after the compresssed file, without the compression extension at the end of the filename. Args: fo (:obj:``str``): Path to compressed file. Will fetch file using ``fsspec.open()`` mode (:obj:``str``): Currently, only 'rb' accepted target_protocol(:obj:``str``, optional): To override the FS protocol inferred from a URL. target_options (:obj:``dict``, optional): Kwargs passed when instantiating the target FS. """ super().__init__(self, **kwargs) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode self.file = fsspec.open( fo, mode="rb", protocol=target_protocol, compression=self.compression, client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs", {}), # To avoid issues if it was already passed. }, **(target_options or {}), ) self.compressed_name = os.path.basename(self.file.path.split("::")[0]) self.uncompressed_name = ( self.compressed_name[: self.compressed_name.rindex(".")] if "." in self.compressed_name else self.compressed_name ) self.dir_cache = None @classmethod def _strip_protocol(cls, path): # compressed file paths are always relative to the archive root return super()._strip_protocol(path).lstrip("/") def _get_dirs(self): if self.dir_cache is None: f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} self.dir_cache = {f["name"]: f} def cat(self, path: str): return self.file.open().read() def _open( self, path: str, mode: str = "rb", block_size=None, autocommit=True, cache_options=None, **kwargs, ): path = self._strip_protocol(path) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'") return self.file.open() class Bz2FileSystem(BaseCompressedFileFileSystem): """Read contents of BZ2 file as a filesystem with one file inside.""" protocol = "bz2" compression = "bz2" extension = ".bz2" class GzipFileSystem(BaseCompressedFileFileSystem): """Read contents of GZIP file as a filesystem with one file inside.""" protocol = "gzip" compression = "gzip" extension = ".gz" class Lz4FileSystem(BaseCompressedFileFileSystem): """Read contents of LZ4 file as a filesystem with one file inside.""" protocol = "lz4" compression = "lz4" extension = ".lz4" class XzFileSystem(BaseCompressedFileFileSystem): """Read contents of .xz (LZMA) file as a filesystem with one file inside.""" protocol = "xz" compression = "xz" extension = ".xz" class ZstdFileSystem(BaseCompressedFileFileSystem): """ Read contents of zstd file as a filesystem with one file inside. Note that reading in binary mode with fsspec isn't supported yet: https://github.com/indygreg/python-zstandard/issues/136 """ protocol = "zstd" compression = "zstd" extension = ".zst" def __init__( self, fo: str, mode: str = "rb", target_protocol: Optional[str] = None, target_options: Optional[dict] = None, block_size: int = DEFAULT_BLOCK_SIZE, **kwargs, ): super().__init__( fo=fo, mode=mode, target_protocol=target_protocol, target_options=target_options, block_size=block_size, **kwargs, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _enter = self.file.__enter__ class WrappedFile: def __init__(self, file_): self._file = file_ def __enter__(self): self._file.__enter__() return self def __exit__(self, *args, **kwargs): self._file.__exit__(*args, **kwargs) def __iter__(self): return iter(self._file) def __next__(self): return next(self._file) def __getattr__(self, attr): return getattr(self._file, attr) def fixed_enter(*args, **kwargs): return WrappedFile(_enter(*args, **kwargs)) self.file.__enter__ = fixed_enter
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/filesystems/__init__.py
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from fsspec.implementations.local import LocalFileSystem from ..utils.deprecation_utils import deprecated from . import compression _has_s3fs = importlib.util.find_spec("s3fs") is not None if _has_s3fs: from .s3filesystem import S3FileSystem # noqa: F401 COMPRESSION_FILESYSTEMS: List[compression.BaseCompressedFileFileSystem] = [ compression.Bz2FileSystem, compression.GzipFileSystem, compression.Lz4FileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) @deprecated( "This function is deprecated and will be removed in a future version. Please use `fsspec.core.strip_protocol` instead." ) def extract_path_from_uri(dataset_path: str) -> str: """ Preprocesses `dataset_path` and removes remote filesystem (e.g. removing `s3://`). Args: dataset_path (`str`): Path (e.g. `dataset/train`) or remote uri (e.g. `s3://my-bucket/dataset/train`) of the dataset directory. """ if "://" in dataset_path: dataset_path = dataset_path.split("://")[1] return dataset_path def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool: """ Checks if `fs` is a remote filesystem. Args: fs (`fsspec.spec.AbstractFileSystem`): An abstract super-class for pythonic file-systems, e.g. `fsspec.filesystem(\'file\')` or [`datasets.filesystems.S3FileSystem`]. """ return not isinstance(fs, LocalFileSystem) def rename(fs: fsspec.AbstractFileSystem, src: str, dst: str): """ Renames the file `src` in `fs` to `dst`. """ if not is_remote_filesystem(fs): # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(src), fs._strip_protocol(dst)) else: fs.mv(src, dst, recursive=True) def _reset_fsspec_lock() -> None: """ Clear reference to the loop and thread. This is necessary otherwise HTTPFileSystem hangs in the ML training loop. Only required for fsspec >= 0.9.0 See https://github.com/fsspec/gcsfs/issues/379 """ if hasattr(fsspec.asyn, "reset_lock"): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: fsspec.asyn.iothread[0] = None fsspec.asyn.loop[0] = None fsspec.asyn.lock = threading.Lock()
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/filesystems/s3filesystem.py
import s3fs from ..utils.deprecation_utils import deprecated @deprecated("Use s3fs.S3FileSystem instead.") class S3FileSystem(s3fs.S3FileSystem): """ `datasets.filesystems.S3FileSystem` is a subclass of [`s3fs.S3FileSystem`](https://s3fs.readthedocs.io/en/latest/api.html). Users can use this class to access S3 as if it were a file system. It exposes a filesystem-like API (ls, cp, open, etc.) on top of S3 storage. Provide credentials either explicitly (`key=`, `secret=`) or with boto's credential methods. See botocore documentation for more information. If no credentials are available, use `anon=True`. Args: anon (`bool`, default to `False`): Whether to use anonymous connection (public buckets only). If `False`, uses the key/secret given, or boto's credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). key (`str`): If not anonymous, use this access key ID, if specified. secret (`str`): If not anonymous, use this secret access key, if specified. token (`str`): If not anonymous, use this security token, if specified. use_ssl (`bool`, defaults to `True`): Whether to use SSL in connections to S3; may be faster without, but insecure. If `use_ssl` is also set in `client_kwargs`, the value set in `client_kwargs` will take priority. s3_additional_kwargs (`dict`): Parameters that are used when calling S3 API methods. Typically used for things like ServerSideEncryption. client_kwargs (`dict`): Parameters for the botocore client. requester_pays (`bool`, defaults to `False`): Whether `RequesterPays` buckets are supported. default_block_size (`int`): If given, the default block size value used for `open()`, if no specific value is given at all time. The built-in default is 5MB. default_fill_cache (`bool`, defaults to `True`): Whether to use cache filling with open by default. Refer to `S3File.open`. default_cache_type (`str`, defaults to `bytes`): If given, the default `cache_type` value used for `open()`. Set to `none` if no caching is desired. See fsspec's documentation for other available `cache_type` values. version_aware (`bool`, defaults to `False`): Whether to support bucket versioning. If enable this will require the user to have the necessary IAM permissions for dealing with versioned objects. cache_regions (`bool`, defaults to `False`): Whether to cache bucket regions. Whenever a new bucket is used, it will first find out which region it belongs to and then use the client for that region. asynchronous (`bool`, defaults to `False`): Whether this instance is to be used from inside coroutines. config_kwargs (`dict`): Parameters passed to `botocore.client.Config`. **kwargs: Other parameters for core session. session (`aiobotocore.session.AioSession`): Session to be used for all connections. This session will be used inplace of creating a new session inside S3FileSystem. For example: `aiobotocore.session.AioSession(profile='test_user')`. skip_instance_cache (`bool`): Control reuse of instances. Passed on to `fsspec`. use_listings_cache (`bool`): Control reuse of directory listings. Passed on to `fsspec`. listings_expiry_time (`int` or `float`): Control reuse of directory listings. Passed on to `fsspec`. max_paths (`int`): Control reuse of directory listings. Passed on to `fsspec`. Examples: Listing files from public S3 bucket. ```py >>> import datasets >>> s3 = datasets.filesystems.S3FileSystem(anon=True) # doctest: +SKIP >>> s3.ls('public-datasets/imdb/train') # doctest: +SKIP ['dataset_info.json.json','dataset.arrow','state.json'] ``` Listing files from private S3 bucket using `aws_access_key_id` and `aws_secret_access_key`. ```py >>> import datasets >>> s3 = datasets.filesystems.S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> s3.ls('my-private-datasets/imdb/train') # doctest: +SKIP ['dataset_info.json.json','dataset.arrow','state.json'] ``` Using `S3Filesystem` with `botocore.session.Session` and custom `aws_profile`. ```py >>> import botocore >>> from datasets.filesystems import S3Filesystem >>> s3_session = botocore.session.Session(profile_name='my_profile_name') >>> s3 = S3FileSystem(session=s3_session) # doctest: +SKIP ``` Loading dataset from S3 using `S3Filesystem` and [`load_from_disk`]. ```py >>> from datasets import load_from_disk >>> from datasets.filesystems import S3Filesystem >>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> dataset = load_from_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP >>> print(len(dataset)) 25000 ``` Saving dataset to S3 using `S3Filesystem` and [`Dataset.save_to_disk`]. ```py >>> from datasets import load_dataset >>> from datasets.filesystems import S3Filesystem >>> dataset = load_dataset("imdb") >>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> dataset.save_to_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP ``` """
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/image_classification.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=True) class ImageClassification(TaskTemplate): task: str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"image": Image()}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) image_column: str = "image" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/language_modeling.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class LanguageModeling(TaskTemplate): task: str = field(default="language-modeling", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({}) text_column: str = "text" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text"}
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/automatic_speech_recognition.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class AutomaticSpeechRecognition(TaskTemplate): task: str = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"transcription": Value("string")}) audio_column: str = "audio" transcription_column: str = "transcription" def align_with_features(self, features): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column], Audio): raise ValueError(f"Column {self.audio_column} is not an Audio type.") task_template = copy.deepcopy(self) input_schema = self.input_schema.copy() input_schema["audio"] = features[self.audio_column] task_template.__dict__["input_schema"] = input_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/audio_classification.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=True) class AudioClassification(TaskTemplate): task: str = field(default="audio-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"audio": Audio()}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) audio_column: str = "audio" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/__init__.py
from typing import Optional from ..utils.logging import get_logger from .audio_classification import AudioClassification from .automatic_speech_recognition import AutomaticSpeechRecognition from .base import TaskTemplate from .image_classification import ImageClassification from .language_modeling import LanguageModeling from .question_answering import QuestionAnsweringExtractive from .summarization import Summarization from .text_classification import TextClassification __all__ = [ "AutomaticSpeechRecognition", "AudioClassification", "ImageClassification", "LanguageModeling", "QuestionAnsweringExtractive", "Summarization", "TaskTemplate", "TextClassification", ] logger = get_logger(__name__) NAME2TEMPLATE = { AutomaticSpeechRecognition.task: AutomaticSpeechRecognition, AudioClassification.task: AudioClassification, ImageClassification.task: ImageClassification, LanguageModeling.task: LanguageModeling, QuestionAnsweringExtractive.task: QuestionAnsweringExtractive, Summarization.task: Summarization, TextClassification.task: TextClassification, } def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]: """Create one of the supported task templates in :py:mod:`datasets.tasks` from a dictionary.""" task_name = task_template_dict.get("task") if task_name is None: logger.warning(f"Couldn't find template for task '{task_name}'. Available templates: {list(NAME2TEMPLATE)}") return None template = NAME2TEMPLATE.get(task_name) return template.from_dict(task_template_dict)
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/question_answering.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=True) class QuestionAnsweringExtractive(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"question": Value("string"), "context": Value("string")}) label_schema: ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), } ) } ) question_column: str = "question" context_column: str = "context" answers_column: str = "answers" @property def column_mapping(self) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/text_classification.py
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=True) class TextClassification(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="text-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) text_column: str = "text" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/base.py
import abc import copy import dataclasses from dataclasses import dataclass from typing import ClassVar, Dict, Type, TypeVar from ..features import Features T = TypeVar("T", bound="TaskTemplate") @dataclass(frozen=True) class TaskTemplate(abc.ABC): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str input_schema: ClassVar[Features] label_schema: ClassVar[Features] def align_with_features(self: T, features: Features) -> T: """ Align features with the task template. """ # No-op return copy.deepcopy(self) @property def features(self) -> Features: return Features(**self.input_schema, **self.label_schema) @property @abc.abstractmethod def column_mapping(self) -> Dict[str, str]: raise NotImplementedError @classmethod def from_dict(cls: Type[T], template_dict: dict) -> T: field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in template_dict.items() if k in field_names})
0
hf_public_repos/datasets/src/datasets
hf_public_repos/datasets/src/datasets/tasks/summarization.py
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=True) class Summarization(TaskTemplate): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str = field(default="summarization", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"text": Value("string")}) label_schema: ClassVar[Features] = Features({"summary": Value("string")}) text_column: str = "text" summary_column: str = "summary" @property def column_mapping(self) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
0
hf_public_repos/datasets/.dvc
hf_public_repos/datasets/.dvc/plots/smooth.json
{ "$schema": "https://vega.github.io/schema/vega-lite/v4.json", "data": { "values": "<DVC_METRIC_DATA>" }, "title": "<DVC_METRIC_TITLE>", "mark": { "type": "line" }, "encoding": { "x": { "field": "<DVC_METRIC_X>", "type": "quantitative", "title": "<DVC_METRIC_X_LABEL>" }, "y": { "field": "<DVC_METRIC_Y>", "type": "quantitative", "title": "<DVC_METRIC_Y_LABEL>", "scale": { "zero": false } }, "color": { "field": "rev", "type": "nominal" } }, "transform": [ { "loess": "<DVC_METRIC_Y>", "on": "<DVC_METRIC_X>", "groupby": [ "rev" ], "bandwidth": 0.3 } ] }
0
hf_public_repos/datasets/.dvc
hf_public_repos/datasets/.dvc/plots/confusion.json
{ "$schema": "https://vega.github.io/schema/vega-lite/v4.json", "data": { "values": "<DVC_METRIC_DATA>" }, "title": "<DVC_METRIC_TITLE>", "mark": "rect", "encoding": { "x": { "field": "<DVC_METRIC_X>", "type": "nominal", "sort": "ascending", "title": "<DVC_METRIC_X_LABEL>" }, "y": { "field": "<DVC_METRIC_Y>", "type": "nominal", "sort": "ascending", "title": "<DVC_METRIC_Y_LABEL>" }, "color": { "aggregate": "count", "type": "quantitative" }, "facet": { "field": "rev", "type": "nominal" } } }
0
hf_public_repos/datasets/.dvc
hf_public_repos/datasets/.dvc/plots/scatter.json
{ "$schema": "https://vega.github.io/schema/vega-lite/v4.json", "data": { "values": "<DVC_METRIC_DATA>" }, "title": "<DVC_METRIC_TITLE>", "mark": "point", "encoding": { "x": { "field": "<DVC_METRIC_X>", "type": "quantitative", "title": "<DVC_METRIC_X_LABEL>" }, "y": { "field": "<DVC_METRIC_Y>", "type": "quantitative", "title": "<DVC_METRIC_Y_LABEL>", "scale": { "zero": false } }, "color": { "field": "rev", "type": "nominal" } } }
0
hf_public_repos/datasets/.dvc
hf_public_repos/datasets/.dvc/plots/default.json
{ "$schema": "https://vega.github.io/schema/vega-lite/v4.json", "data": { "values": "<DVC_METRIC_DATA>" }, "title": "<DVC_METRIC_TITLE>", "mark": { "type": "line" }, "encoding": { "x": { "field": "<DVC_METRIC_X>", "type": "quantitative", "title": "<DVC_METRIC_X_LABEL>" }, "y": { "field": "<DVC_METRIC_Y>", "type": "quantitative", "title": "<DVC_METRIC_Y_LABEL>", "scale": { "zero": false } }, "color": { "field": "rev", "type": "nominal" } } }
0
hf_public_repos
hf_public_repos/pytorch-image-models/setup.cfg
[dist_conda] conda_name_differences = 'torch:pytorch' channels = pytorch noarch = True
0
hf_public_repos
hf_public_repos/pytorch-image-models/benchmark.py
#!/usr/bin/env python3 """ Model Benchmark Script An inference and train step benchmark script for timm models. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import json import logging import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import resolve_data_config from timm.layers import set_fast_norm from timm.models import create_model, is_model, list_models from timm.optim import create_optimizer_v2 from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs,\ reparameterize_model has_apex = False try: from apex import amp has_apex = True except ImportError: pass has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from deepspeed.profiling.flops_profiler import get_model_profile has_deepspeed_profiling = True except ImportError as e: has_deepspeed_profiling = False try: from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis has_fvcore_profiling = True except ImportError as e: FlopCountAnalysis = None has_fvcore_profiling = False try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch Benchmark') # benchmark specific args parser.add_argument('--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument('--bench', default='both', type=str, help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") parser.add_argument('--detail', action='store_true', default=False, help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') parser.add_argument('--no-retry', action='store_true', default=False, help='Do not decay batch size and retry on error.') parser.add_argument('--results-file', default='', type=str, help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--num-warm-iter', default=10, type=int, help='Number of warmup iterations (default: 10)') parser.add_argument('--num-bench-iter', default=40, type=int, help='Number of benchmark iterations (default: 40)') parser.add_argument('--device', default='cuda', type=str, help="device to run benchmark on") # common inference / train args parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', help='model architecture (default: resnet50)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='Run inference at train size, not test-input-size if it exists.') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') parser.add_argument('--amp', action='store_true', default=False, help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') parser.add_argument('--precision', default='float32', type=str, help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) # codegen (model compilation) options scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd optimization.") # train optimizer parameters parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.0001, help='weight decay (default: 0.0001)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') # model regularization / loss params that impact model or loss fn parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') def timestamp(sync=False): return time.perf_counter() def cuda_timestamp(sync=False, device=None): if sync: torch.cuda.synchronize(device=device) return time.perf_counter() def count_params(model: nn.Module): return sum([m.numel() for m in model.parameters()]) def resolve_precision(precision: str): assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') amp_dtype = None # amp disabled model_dtype = torch.float32 data_dtype = torch.float32 if precision == 'amp': amp_dtype = torch.float16 elif precision == 'amp_bfloat16': amp_dtype = torch.bfloat16 elif precision == 'float16': model_dtype = torch.float16 data_dtype = torch.float16 elif precision == 'bfloat16': model_dtype = torch.bfloat16 data_dtype = torch.bfloat16 return amp_dtype, model_dtype, data_dtype def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): _, macs, _ = get_model_profile( model=model, input_shape=(batch_size,) + input_size, # input shape/resolution print_profile=detailed, # prints the model graph with the measured profile attached to each module detailed=detailed, # print the detailed profile warm_up=10, # the number of warm-ups before measuring the time of each module as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) output_file=None, # path to the output file. If None, the profiler prints to stdout. ignore_modules=None) # the list of modules to ignore in the profiling return macs, 0 # no activation count in DS def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): if force_cpu: model = model.to('cpu') device, dtype = next(model.parameters()).device, next(model.parameters()).dtype example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) fca = FlopCountAnalysis(model, example_input) aca = ActivationCountAnalysis(model, example_input) if detailed: fcs = flop_count_str(fca) print(fcs) return fca.total(), aca.total() class BenchmarkRunner: def __init__( self, model_name, detail=False, device='cuda', torchscript=False, torchcompile=None, aot_autograd=False, reparam=False, precision='float32', fuser='', num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs ): self.model_name = model_name self.detail = detail self.device = device self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision) self.channels_last = kwargs.pop('channels_last', False) if self.amp_dtype is not None: self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=self.amp_dtype) else: self.amp_autocast = suppress if fuser: set_jit_fuser(fuser) self.model = create_model( model_name, num_classes=kwargs.pop('num_classes', None), in_chans=3, global_pool=kwargs.pop('gp', 'fast'), scriptable=torchscript, drop_rate=kwargs.pop('drop', 0.), drop_path_rate=kwargs.pop('drop_path', None), drop_block_rate=kwargs.pop('drop_block', None), **kwargs.pop('model_kwargs', {}), ) if reparam: self.model = reparameterize_model(self.model) self.model.to( device=self.device, dtype=self.model_dtype, memory_format=torch.channels_last if self.channels_last else None, ) self.num_classes = self.model.num_classes self.param_count = count_params(self.model) _logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) self.input_size = data_config['input_size'] self.batch_size = kwargs.pop('batch_size', 256) self.compiled = False if torchscript: self.model = torch.jit.script(self.model) self.compiled = True elif torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' torch._dynamo.reset() self.model = torch.compile(self.model, backend=torchcompile) self.compiled = True elif aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" self.model = memory_efficient_fusion(self.model) self.compiled = True self.example_inputs = None self.num_warm_iter = num_warm_iter self.num_bench_iter = num_bench_iter self.log_freq = num_bench_iter // 5 if 'cuda' in self.device: self.time_fn = partial(cuda_timestamp, device=self.device) else: self.time_fn = timestamp def _init_input(self): self.example_inputs = torch.randn( (self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) if self.channels_last: self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) class InferenceBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.eval() def run(self): def _step(): t_step_start = self.time_fn() with self.amp_autocast(): output = self.model(self.example_inputs) t_step_end = self.time_fn(True) return t_step_end - t_step_start _logger.info( f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') with torch.no_grad(): self._init_input() for _ in range(self.num_warm_iter): _step() total_step = 0. num_samples = 0 t_run_start = self.time_fn() for i in range(self.num_bench_iter): delta_fwd = _step() total_step += delta_fwd num_samples += self.batch_size num_steps = i + 1 if num_steps % self.log_freq == 0: _logger.info( f"Infer [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_end = self.time_fn(True) t_run_elapsed = t_run_end - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) retries = 0 if self.compiled else 2 # skip profiling if model is scripted while retries: retries -= 1 try: if has_deepspeed_profiling: macs, _ = profile_deepspeed(self.model, self.input_size) results['gmacs'] = round(macs / 1e9, 2) elif has_fvcore_profiling: macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries) results['gmacs'] = round(macs / 1e9, 2) results['macts'] = round(activations / 1e6, 2) except RuntimeError as e: pass _logger.info( f"Inference benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") return results class TrainBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.train() self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.optimizer = create_optimizer_v2( self.model, opt=kwargs.pop('opt', 'sgd'), lr=kwargs.pop('lr', 1e-4)) if kwargs.pop('grad_checkpointing', False): self.model.set_grad_checkpointing() def _gen_target(self, batch_size): return torch.empty( (batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) def run(self): def _step(detail=False): self.optimizer.zero_grad() # can this be ignored? t_start = self.time_fn() t_fwd_end = t_start t_bwd_end = t_start with self.amp_autocast(): output = self.model(self.example_inputs) if isinstance(output, tuple): output = output[0] if detail: t_fwd_end = self.time_fn(True) target = self._gen_target(output.shape[0]) self.loss(output, target).backward() if detail: t_bwd_end = self.time_fn(True) self.optimizer.step() t_end = self.time_fn(True) if detail: delta_fwd = t_fwd_end - t_start delta_bwd = t_bwd_end - t_fwd_end delta_opt = t_end - t_bwd_end return delta_fwd, delta_bwd, delta_opt else: delta_step = t_end - t_start return delta_step _logger.info( f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') self._init_input() for _ in range(self.num_warm_iter): _step() t_run_start = self.time_fn() if self.detail: total_fwd = 0. total_bwd = 0. total_opt = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_fwd, delta_bwd, delta_opt = _step(True) num_samples += self.batch_size total_fwd += delta_fwd total_bwd += delta_bwd total_opt += delta_opt num_steps = (i + 1) if num_steps % self.log_freq == 0: total_step = total_fwd + total_bwd + total_opt _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd," f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd," f" {1000 * total_opt / num_steps:0.3f} ms/step opt." ) total_step = total_fwd + total_bwd + total_opt t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), opt_time=round(1000 * total_opt / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) else: total_step = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_step = _step(False) num_samples += self.batch_size total_step += delta_step num_steps = (i + 1) if num_steps % self.log_freq == 0: _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Train benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") return results class ProfileRunner(BenchmarkRunner): def __init__(self, model_name, device='cuda', profiler='', **kwargs): super().__init__(model_name=model_name, device=device, **kwargs) if not profiler: if has_deepspeed_profiling: profiler = 'deepspeed' elif has_fvcore_profiling: profiler = 'fvcore' assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work." self.profiler = profiler self.model.eval() def run(self): _logger.info( f'Running profiler on {self.model_name} w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') macs = 0 activations = 0 if self.profiler == 'deepspeed': macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) elif self.profiler == 'fvcore': macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) results = dict( gmacs=round(macs / 1e9, 2), macts=round(activations / 1e6, 2), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Profile of {self.model_name} done. " f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") return results def _try_run( model_name, bench_fn, bench_kwargs, initial_batch_size, no_batch_size_retry=False ): batch_size = initial_batch_size results = dict() error_str = 'Unknown' while batch_size: try: torch.cuda.empty_cache() bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) results = bench.run() return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running benchmark.') if not check_batch_size_retry(error_str): _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') break if no_batch_size_retry: break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str return results def benchmark(args): if args.amp: _logger.warning("Overriding precision to 'amp' since --amp flag set.") args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) _logger.info(f'Benchmarking in {args.precision} precision. ' f'{"NHWC" if args.channels_last else "NCHW"} layout. ' f'torchscript {"enabled" if args.torchscript else "disabled"}') bench_kwargs = vars(args).copy() bench_kwargs.pop('amp') model = bench_kwargs.pop('model') batch_size = bench_kwargs.pop('batch_size') bench_fns = (InferenceBenchmarkRunner,) prefixes = ('infer',) if args.bench == 'both': bench_fns = ( InferenceBenchmarkRunner, TrainBenchmarkRunner ) prefixes = ('infer', 'train') elif args.bench == 'train': bench_fns = TrainBenchmarkRunner, prefixes = 'train', elif args.bench.startswith('profile'): # specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore if 'deepspeed' in args.bench: assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter" bench_kwargs['profiler'] = 'deepspeed' elif 'fvcore' in args.bench: assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter" bench_kwargs['profiler'] = 'fvcore' bench_fns = ProfileRunner, batch_size = 1 model_results = OrderedDict(model=model) for prefix, bench_fn in zip(prefixes, bench_fns): run_results = _try_run( model, bench_fn, bench_kwargs=bench_kwargs, initial_batch_size=batch_size, no_batch_size_retry=args.no_retry, ) if prefix and 'error' not in run_results: run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} model_results.update(run_results) if 'error' in run_results: break if 'error' not in model_results: param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) model_results.setdefault('param_count', param_count) model_results.pop('train_param_count', 0) return model_results def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if args.fast_norm: set_fast_norm() if args.model_list: args.model = '' with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names] elif args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models(pretrained=True, exclude_filters=['*in21k']) model_cfgs = [(n, None) for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model) model_cfgs = [(n, None) for n in model_names] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: for m, _ in model_cfgs: if not m: continue args.model = m r = benchmark(args) if r: results.append(r) time.sleep(10) except KeyboardInterrupt as e: pass sort_key = 'infer_samples_per_sec' if 'train' in args.bench: sort_key = 'train_samples_per_sec' elif 'profile' in args.bench: sort_key = 'infer_gmacs' results = filter(lambda x: sort_key in x, results) results = sorted(results, key=lambda x: x[sort_key], reverse=True) else: results = benchmark(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/inference.py
#!/usr/bin/env python3 """PyTorch Inference Script An example inference script that outputs top-k class ids for images in a folder into a csv. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import argparse import json import logging import os import time from contextlib import suppress from functools import partial import numpy as np import pandas as pd import torch from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset from timm.layers import apply_test_time_pool from timm.models import create_model from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs try: from apex import amp has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _FMT_EXT = { 'json': '.json', 'json-record': '.json', 'json-split': '.json', 'parquet': '.parquet', 'csv': '.csv', } torch.backends.cudnn.benchmark = True _logger = logging.getLogger('inference') parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference') parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50', help='model architecture (default: resnet50)') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--device', default='cuda', type=str, help="Device (accelerator) to use.") parser.add_argument('--amp', action='store_true', default=False, help='use Native AMP for mixed precision training') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd support.") parser.add_argument('--results-dir', type=str, default=None, help='folder for output results') parser.add_argument('--results-file', type=str, default=None, help='results filename (relative to results-dir)') parser.add_argument('--results-format', type=str, nargs='+', default=['csv'], help='results format (one of "csv", "json", "json-split", "parquet")') parser.add_argument('--results-separate-col', action='store_true', default=False, help='separate output columns per result index.') parser.add_argument('--topk', default=1, type=int, metavar='N', help='Top-k to output to CSV') parser.add_argument('--fullname', action='store_true', default=False, help='use full sample name in output (not just basename).') parser.add_argument('--filename-col', type=str, default='filename', help='name for filename / sample name column') parser.add_argument('--index-col', type=str, default='index', help='name for output indices column(s)') parser.add_argument('--label-col', type=str, default='label', help='name for output indices column(s)') parser.add_argument('--output-col', type=str, default=None, help='name for logit/probs output column(s)') parser.add_argument('--output-type', type=str, default='prob', help='output type colum ("prob" for probabilities, "logit" for raw logits)') parser.add_argument('--label-type', type=str, default='description', help='type of label to output, one of "none", "name", "description", "detailed"') parser.add_argument('--include-index', action='store_true', default=False, help='include the class index in results') parser.add_argument('--exclude-output', action='store_true', default=False, help='exclude logits/probs from results, just indices. topk must be set !=0.') def main(): setup_default_logging() args = parser.parse_args() # might as well try to do something useful... args.pretrained = args.pretrained or not args.checkpoint if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True device = torch.device(args.device) # resolve AMP arguments based on PyTorch / Apex availability amp_autocast = suppress if args.amp: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' assert args.amp_dtype in ('float16', 'bfloat16') amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) _logger.info('Running inference in mixed precision with native PyTorch AMP.') else: _logger.info('Running inference in float32. AMP not enabled.') if args.fuser: set_jit_fuser(args.fuser) # create model in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, num_classes=args.num_classes, in_chans=in_chans, pretrained=args.pretrained, checkpoint_path=args.checkpoint, **args.model_kwargs, ) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes _logger.info( f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}') data_config = resolve_data_config(vars(args), model=model) test_time_pool = False if args.test_pool: model, test_time_pool = apply_test_time_pool(model, data_config) model = model.to(device) model.eval() if args.channels_last: model = model.to(memory_format=torch.channels_last) if args.torchscript: model = torch.jit.script(model) elif args.torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' torch._dynamo.reset() model = torch.compile(model, backend=args.torchcompile) elif args.aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" model = memory_efficient_fusion(model) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) root_dir = args.data or args.data_dir dataset = create_dataset( root=root_dir, name=args.dataset, split=args.split, class_map=args.class_map, ) if test_time_pool: data_config['crop_pct'] = 1.0 workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers loader = create_loader( dataset, batch_size=args.batch_size, use_prefetcher=True, num_workers=workers, **data_config, ) to_label = None if args.label_type in ('name', 'description', 'detail'): imagenet_subset = infer_imagenet_subset(model) if imagenet_subset is not None: dataset_info = ImageNetInfo(imagenet_subset) if args.label_type == 'name': to_label = lambda x: dataset_info.index_to_label_name(x) elif args.label_type == 'detail': to_label = lambda x: dataset_info.index_to_description(x, detailed=True) else: to_label = lambda x: dataset_info.index_to_description(x) to_label = np.vectorize(to_label) else: _logger.error("Cannot deduce ImageNet subset from model, no labelling will be performed.") top_k = min(args.topk, args.num_classes) batch_time = AverageMeter() end = time.time() all_indices = [] all_labels = [] all_outputs = [] use_probs = args.output_type == 'prob' with torch.no_grad(): for batch_idx, (input, _) in enumerate(loader): with amp_autocast(): output = model(input) if use_probs: output = output.softmax(-1) if top_k: output, indices = output.topk(top_k) np_indices = indices.cpu().numpy() if args.include_index: all_indices.append(np_indices) if to_label is not None: np_labels = to_label(np_indices) all_labels.append(np_labels) all_outputs.append(output.cpu().numpy()) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( batch_idx, len(loader), batch_time=batch_time)) all_indices = np.concatenate(all_indices, axis=0) if all_indices else None all_labels = np.concatenate(all_labels, axis=0) if all_labels else None all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32) filenames = loader.dataset.filenames(basename=not args.fullname) output_col = args.output_col or ('prob' if use_probs else 'logit') data_dict = {args.filename_col: filenames} if args.results_separate_col and all_outputs.shape[-1] > 1: if all_indices is not None: for i in range(all_indices.shape[-1]): data_dict[f'{args.index_col}_{i}'] = all_indices[:, i] if all_labels is not None: for i in range(all_labels.shape[-1]): data_dict[f'{args.label_col}_{i}'] = all_labels[:, i] for i in range(all_outputs.shape[-1]): data_dict[f'{output_col}_{i}'] = all_outputs[:, i] else: if all_indices is not None: if all_indices.shape[-1] == 1: all_indices = all_indices.squeeze(-1) data_dict[args.index_col] = list(all_indices) if all_labels is not None: if all_labels.shape[-1] == 1: all_labels = all_labels.squeeze(-1) data_dict[args.label_col] = list(all_labels) if all_outputs.shape[-1] == 1: all_outputs = all_outputs.squeeze(-1) data_dict[output_col] = list(all_outputs) df = pd.DataFrame(data=data_dict) results_filename = args.results_file if results_filename: filename_no_ext, ext = os.path.splitext(results_filename) if ext and ext in _FMT_EXT.values(): # if filename provided with one of expected ext, # remove it as it will be added back results_filename = filename_no_ext else: # base default filename on model name + img-size img_size = data_config["input_size"][1] results_filename = f'{args.model}-{img_size}' if args.results_dir: results_filename = os.path.join(args.results_dir, results_filename) for fmt in args.results_format: save_results(df, results_filename, fmt) print(f'--result') print(df.set_index(args.filename_col).to_json(orient='index', indent=4)) def save_results(df, results_filename, results_format='csv', filename_col='filename'): results_filename += _FMT_EXT[results_format] if results_format == 'parquet': df.set_index(filename_col).to_parquet(results_filename) elif results_format == 'json': df.set_index(filename_col).to_json(results_filename, indent=4, orient='index') elif results_format == 'json-records': df.to_json(results_filename, lines=True, orient='records') elif results_format == 'json-split': df.to_json(results_filename, indent=4, orient='split', index=False) else: df.to_csv(results_filename, index=False) if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/bulk_runner.py
#!/usr/bin/env python3 """ Bulk Model Script Runner Run validation or benchmark script in separate process for each model Benchmark all 'vit*' models: python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512 Validate all models: python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py /imagenet/validation/ --amp -b 512 --retry Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import os import sys import csv import json import subprocess import time from typing import Callable, List, Tuple, Union from timm.models import is_model, list_models, get_pretrained_cfg parser = argparse.ArgumentParser(description='Per-model process launcher') # model and results args parser.add_argument( '--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument( '--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument( '--sort-key', default='', type=str, metavar='COL', help='Specify sort key for results csv') parser.add_argument( "--pretrained", action='store_true', help="only run models with pretrained weights") parser.add_argument( "--delay", type=float, default=0, help="Interval, in seconds, to delay between model invocations.", ) parser.add_argument( "--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"], help="Multiprocessing start method to use when creating workers.", ) parser.add_argument( "--no_python", help="Skip prepending the script with 'python' - just execute it directly. Useful " "when the script is not a Python script.", ) parser.add_argument( "-m", "--module", help="Change each process to interpret the launch script as a Python module, executing " "with the same behavior as 'python -m'.", ) # positional parser.add_argument( "script", type=str, help="Full path to the program/script to be launched for each model config.", ) parser.add_argument("script_args", nargs=argparse.REMAINDER) def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: # If ``args`` not passed, defaults to ``sys.argv[:1]`` with_python = not args.no_python cmd: Union[Callable, str] cmd_args = [] if with_python: cmd = os.getenv("PYTHON_EXEC", sys.executable) cmd_args.append("-u") if args.module: cmd_args.append("-m") cmd_args.append(args.script) else: if args.module: raise ValueError( "Don't use both the '--no_python' flag" " and the '--module' flag at the same time." ) cmd = args.script cmd_args.extend(args.script_args) return cmd, cmd_args def main(): args = parser.parse_args() cmd, cmd_args = cmd_from_args(args) model_cfgs = [] if args.model_list == 'all': model_names = list_models( pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set ) model_cfgs = [(n, None) for n in model_names] elif args.model_list == 'all_in1k': model_names = list_models(pretrained=True) model_cfgs = [] for n in model_names: pt_cfg = get_pretrained_cfg(n) if getattr(pt_cfg, 'num_classes', 0) == 1000: print(n, pt_cfg.num_classes) model_cfgs.append((n, None)) elif args.model_list == 'all_res': model_names = list_models() model_names += list_models(pretrained=True) model_cfgs = set() for n in model_names: pt_cfg = get_pretrained_cfg(n) if pt_cfg is None: print(f'Model {n} is missing pretrained cfg, skipping.') continue n = n.split('.')[0] model_cfgs.add((n, pt_cfg.input_size[-1])) if pt_cfg.test_input_size is not None: model_cfgs.add((n, pt_cfg.test_input_size[-1])) model_cfgs = [(n, {'img-size': r}) for n, r in sorted(model_cfgs)] elif not is_model(args.model_list): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model_list) model_cfgs = [(n, None) for n in model_names] if not model_cfgs and os.path.exists(args.model_list): with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names] if len(model_cfgs): results_file = args.results_file or './results.csv' results = [] errors = [] model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs]) print(f"Running script on these models:\n {model_strings}") if not args.sort_key: if 'benchmark' in args.script: if any(['train' in a for a in args.script_args]): sort_key = 'train_samples_per_sec' else: sort_key = 'infer_samples_per_sec' else: sort_key = 'top1' else: sort_key = args.sort_key print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') try: for m, ax in model_cfgs: if not m: continue args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) if ax is not None: extra_args = [(f'--{k}', str(v)) for k, v in ax.items()] extra_args = [i for t in extra_args for i in t] args_str += tuple(extra_args) try: o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] r = json.loads(o) results.append(r) except Exception as e: # FIXME batch_size retry loop is currently done in either validation.py or benchmark.py # for further robustness (but more overhead), we may want to manage that by looping here... errors.append(dict(model=m, error=str(e))) if args.delay: time.sleep(args.delay) except KeyboardInterrupt as e: pass errors.extend(list(filter(lambda x: 'error' in x, results))) if errors: print(f'{len(errors)} models had errors during run.') for e in errors: if 'model' in e: print(f"\t {e['model']} ({e.get('error', 'Unknown')})") else: print(e) results = list(filter(lambda x: 'error' not in x, results)) no_sortkey = list(filter(lambda x: sort_key not in x, results)) if no_sortkey: print(f'{len(no_sortkey)} results missing sort key, skipping sort.') else: results = sorted(results, key=lambda x: x[sort_key], reverse=True) if len(results): print(f'{len(results)} models run successfully. Saving results to {results_file}.') write_results(results_file, results) def write_results(results_file, results): with open(results_file, mode='w') as cf: dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/onnx_export.py
""" ONNX export script Export PyTorch models as ONNX graphs. This export script originally started as an adaptation of code snippets found at https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html The default parameters work with PyTorch 1.6 and ONNX 1.7 and produce an optimal ONNX graph for hosting in the ONNX runtime (see onnx_validate.py). To export an ONNX model compatible with caffe2 (see caffe2_benchmark.py and caffe2_validate.py), the --keep-init and --aten-fallback flags are currently required. Older versions of PyTorch/ONNX (tested PyTorch 1.4, ONNX 1.5) do not need extra flags for caffe2 compatibility, but they produce a model that isn't as fast running on ONNX runtime. Most new release of PyTorch and ONNX cause some sort of breakage in the export / usage of ONNX models. Please do your research and search ONNX and PyTorch issue tracker before asking me. Thanks. Copyright 2020 Ross Wightman """ import argparse import timm from timm.utils.model import reparameterize_model from timm.utils.onnx import onnx_export parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('output', metavar='ONNX_FILE', help='output model filename') parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100', help='model architecture (default: mobilenetv3_large_100)') parser.add_argument('--opset', type=int, default=None, help='ONNX opset to use (default: 10)') parser.add_argument('--keep-init', action='store_true', default=False, help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.') parser.add_argument('--aten-fallback', action='store_true', default=False, help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.') parser.add_argument('--dynamic-size', action='store_true', default=False, help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.') parser.add_argument('--check-forward', action='store_true', default=False, help='Do a full check of torch vs onnx forward after export.') parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 1)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--num-classes', type=int, default=1000, help='Number classes in dataset') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to checkpoint (default: none)') parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') parser.add_argument('--training', default=False, action='store_true', help='Export in training mode (default is eval)') parser.add_argument('--verbose', default=False, action='store_true', help='Extra stdout output') def main(): args = parser.parse_args() args.pretrained = True if args.checkpoint: args.pretrained = False print("==> Creating PyTorch {} model".format(args.model)) # NOTE exportable=True flag disables autofn/jit scripted activations and uses Conv2dSameExport layers # for models using SAME padding model = timm.create_model( args.model, num_classes=args.num_classes, in_chans=3, pretrained=args.pretrained, checkpoint_path=args.checkpoint, exportable=True, ) if args.reparam: model = reparameterize_model(model) onnx_export( model, args.output, opset=args.opset, dynamic_size=args.dynamic_size, aten_fallback=args.aten_fallback, keep_initializers=args.keep_init, check_forward=args.check_forward, training=args.training, verbose=args.verbose, input_size=(3, args.img_size, args.img_size), batch_size=args.batch_size, ) if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/mkdocs.yml
site_name: 'Pytorch Image Models' site_description: 'Pretained Image Recognition Models' repo_name: 'rwightman/pytorch-image-models' repo_url: 'https://github.com/rwightman/pytorch-image-models' nav: - index.md - models.md - ... | models/*.md - results.md - scripts.md - training_hparam_examples.md - feature_extraction.md - changes.md - archived_changes.md theme: name: 'material' feature: tabs: false extra_javascript: - 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML' - https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js - javascripts/tables.js markdown_extensions: - codehilite: linenums: true - admonition - pymdownx.arithmatex - pymdownx.betterem: smart_enable: all - pymdownx.caret - pymdownx.critic - pymdownx.details - pymdownx.emoji: emoji_generator: !!python/name:pymdownx.emoji.to_svg - pymdownx.inlinehilite - pymdownx.magiclink - pymdownx.mark - pymdownx.smartsymbols - pymdownx.superfences - pymdownx.tasklist: custom_checkbox: true - pymdownx.tilde - mdx_truly_sane_lists plugins: - search - awesome-pages - redirects: redirect_maps: 'index.md': 'https://huggingface.co/docs/timm/index' 'models.md': 'https://huggingface.co/docs/timm/models' 'results.md': 'https://huggingface.co/docs/timm/results' 'scripts.md': 'https://huggingface.co/docs/timm/training_script' 'training_hparam_examples.md': 'https://huggingface.co/docs/timm/training_script#training-examples' 'feature_extraction.md': 'https://huggingface.co/docs/timm/feature_extraction'
0
hf_public_repos
hf_public_repos/pytorch-image-models/README.md
# PyTorch Image Models - [What's New](#whats-new) - [Introduction](#introduction) - [Models](#models) - [Features](#features) - [Results](#results) - [Getting Started (Documentation)](#getting-started-documentation) - [Train, Validation, Inference Scripts](#train-validation-inference-scripts) - [Awesome PyTorch Resources](#awesome-pytorch-resources) - [Licenses](#licenses) - [Citing](#citing) ## What's New ❗Updates after Oct 10, 2022 are available in version >= 0.9❗ * Many changes since the last 0.6.x stable releases. They were previewed in 0.8.x dev releases but not everyone transitioned. * `timm.models.layers` moved to `timm.layers`: * `from timm.models.layers import name` will still work via deprecation mapping (but please transition to `timm.layers`). * `import timm.models.layers.module` or `from timm.models.layers.module import name` needs to be changed now. * Builder, helper, non-model modules in `timm.models` have a `_` prefix added, ie `timm.models.helpers` -> `timm.models._helpers`, there are temporary deprecation mapping files but those will be removed. * All models now support `architecture.pretrained_tag` naming (ex `resnet50.rsb_a1`). * The pretrained_tag is the specific weight variant (different head) for the architecture. * Using only `architecture` defaults to the first weights in the default_cfgs for that model architecture. * In adding pretrained tags, many model names that existed to differentiate were renamed to use the tag (ex: `vit_base_patch16_224_in21k` -> `vit_base_patch16_224.augreg_in21k`). There are deprecation mappings for these. * A number of models had their checkpoints remaped to match architecture changes needed to better support `features_only=True`, there are `checkpoint_filter_fn` methods in any model module that was remapped. These can be passed to `timm.models.load_checkpoint(..., filter_fn=timm.models.swin_transformer_v2.checkpoint_filter_fn)` to remap your existing checkpoint. * The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license. * Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version. ### Jan 8, 2024 Datasets & transform refactoring * HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`) * Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset * Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm * Make input & target column/field keys consistent across datasets and pass via args * Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset * Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project * Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args * Allow train without validation set (`--val-split ''`) in train script * Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding ### Nov 23, 2023 * Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun) * Fix Python 3.7 compat, will be dropping support for it soon * Other misc fixes * Release 0.9.12 ### Nov 20, 2023 * Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation. * See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json * Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035 * Updated imagenet eval and test set csv files with latest models * `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916) * 0.9.11 release ### Nov 3, 2023 * [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added * DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193) * Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient) * Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w) * ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge` * 0.9.9 release ### Oct 20, 2023 * [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`. * Great potential for fine-tune and downstream feature use. * Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588) * Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm) * Add patch resizing support (on pretrained weight load) to Swin models * 0.9.8 release pending ### Sep 1, 2023 * TinyViT added by [SeeFun](https://github.com/seefun) * Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10 * 0.9.7 release ### Aug 28, 2023 * Add dynamic img size support to models in `vision_transformer.py`, `vision_transformer_hybrid.py`, `deit.py`, and `eva.py` w/o breaking backward compat. * Add `dynamic_img_size=True` to args at model creation time to allow changing the grid size (interpolate abs and/or ROPE pos embed each forward pass). * Add `dynamic_img_pad=True` to allow image sizes that aren't divisible by patch size (pad bottom right to patch size each forward pass). * Enabling either dynamic mode will break FX tracing unless PatchEmbed module added as leaf. * Existing method of resizing position embedding by passing different `img_size` (interpolate pretrained embed weights once) on creation still works. * Existing method of changing `patch_size` (resize pretrained patch_embed weights once) on creation still works. * Example validation cmd `python validate.py /imagenet --model vit_base_patch16_224 --amp --amp-dtype bfloat16 --img-size 255 --crop-pct 1.0 --model-kwargs dynamic_img_size=True dyamic_img_pad=True` ### Aug 25, 2023 * Many new models since last release * FastViT - https://arxiv.org/abs/2303.14189 * MobileOne - https://arxiv.org/abs/2206.04040 * InceptionNeXt - https://arxiv.org/abs/2303.16900 * RepGhostNet - https://arxiv.org/abs/2211.06088 (thanks https://github.com/ChengpengChen) * GhostNetV2 - https://arxiv.org/abs/2211.12905 (thanks https://github.com/yehuitang) * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 (thanks https://github.com/seefun) * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 (thanks https://github.com/seefun) * Add `--reparam` arg to `benchmark.py`, `onnx_export.py`, and `validate.py` to trigger layer reparameterization / fusion for models with any one of `reparameterize()`, `switch_to_deploy()` or `fuse()` * Including FastViT, MobileOne, RepGhostNet, EfficientViT (MSRA), RepViT, RepVGG, and LeViT * Preparing 0.9.6 'back to school' release ### Aug 11, 2023 * Swin, MaxViT, CoAtNet, and BEiT models support resizing of image/window size on creation with adaptation of pretrained weights * Example validation cmd to test w/ non-square resize `python validate.py /imagenet --model swin_base_patch4_window7_224.ms_in22k_ft_in1k --amp --amp-dtype bfloat16 --input-size 3 256 320 --model-kwargs window_size=8,10 img_size=256,320` ### Aug 3, 2023 * Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun) * Fix `selecsls*` model naming regression * Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize) * v0.9.5 release prep ### July 27, 2023 * Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of. * RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm) * I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * Add support for alternative feat extraction methods and -ve indices to EfficientNet * Add NAdamW optimizer * Misc fixes ### May 11, 2023 * `timm` 0.9 released, transition from 0.8.xdev releases ### May 10, 2023 * Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm` * DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue) * FB MAE vit feature backbone weights added * OpenCLIP DataComp-XL L/14 feat backbone weights added * MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54) * Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. * Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization) * Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers * bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit` * Misc cleanup and fixes * Final testing before switching to a 0.9 and bringing `timm` out of pre-release state ### April 27, 2023 * 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs * Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes. ### April 21, 2023 * Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag) * More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned) * Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune * Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). ### April 12, 2023 * Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch. * Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models. * fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable * Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed. ### April 5, 2023 * ALL ResNet models pushed to Hugging Face Hub with multi-weight support * All past `timm` trained weights added with recipe based tags to differentiate * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available * Add torchvision v2 recipe weights to existing torchvision originals * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison * New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288 * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320 ### March 31, 2023 * Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models. | model |top1 |top5 |img_size|param_count|gmacs |macts | |----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------| | [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 |88.312|98.578|384 |200.13 |101.11|126.74| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 |87.968|98.47 |320 |200.13 |70.21 |88.02 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 |87.138|98.212|384 |88.59 |45.21 |84.49 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k |86.344|97.97 |256 |88.59 |20.09 |37.55 | * Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks. | model |top1 |top5 |param_count|img_size| |----------------------------------------------------|------|------|-----------|--------| | [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08 |448 | | eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |89.946|99.01 |305.08 |448 | | eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 | | eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 | | eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 | | eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 | | eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 | | eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 | | eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 | | eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 | | eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 | | eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 | | eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 | | eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 | | eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 | | eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 | * Multi-weight and HF hub for DeiT and MLP-Mixer based models ### March 22, 2023 * More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py` * Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs. * FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint * RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful. * More ImageNet-12k pretrained and 1k fine-tuned `timm` weights: * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288 * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288 * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288 * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away) * Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added... * Minor bug fixes and improvements. ### Feb 26, 2023 * Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup) * Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) * 0.8.15dev0 ### Feb 20, 2023 * Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_lage_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune * 0.8.13dev0 pypi release for latest changes w/ move to huggingface org ### Feb 16, 2023 * `safetensor` checkpoint support added * Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block * Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start) * Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675) * gradient checkpointing works with `features_only=True` ### Feb 7, 2023 * New inference benchmark numbers added in [results](results/) folder. * Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256 * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384 * Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54). * Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT * Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`. * Minor updates to EfficientFormer. * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required. * Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/). * Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm` * Update `inference.py` to use, try: `python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5` * Ready for 0.8.10 pypi pre-release (final testing). ### Jan 20, 2023 * Add two convnext 12k -> 1k fine-tunes at 384x384 * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384 * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384 * Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### Jan 11, 2023 * Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags) * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288 (previously released) * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288 * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288 ### Jan 6, 2023 * Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line * `train.py /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu` * `train.py /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12` * Cleanup some popular models to better support arg passthrough / merge with model configs, more to go. ### Jan 5, 2023 * ConvNeXt-V2 models and weights added to existing `convnext.py` * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) ### Dec 23, 2022 🎄☃ * Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP * Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) * More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) * More ImageNet-12k (subset of 22k) pretrain models popping up: * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 ### Dec 8, 2022 * Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) * original source: https://github.com/baaivision/EVA | model | top1 | param_count | gmac | macts | hub | |:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| | eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 6, 2022 * Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. * original source: https://github.com/baaivision/EVA * paper: https://arxiv.org/abs/2211.07636 | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| | eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 5, 2022 * Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` * vision_transformer, maxvit, convnext are the first three model impl w/ support * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling * bugs are likely, but I need feedback so please try it out * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) * Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument * Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output * Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models | model | top1 | param_count | gmac | macts | hub | |:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| | vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | | vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | | vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | | vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | * Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| | maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | | maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | | maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | | maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | | maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | | maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | | maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | | maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | | maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | | maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | | maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | | maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | | maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | | maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | | maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | | maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | ### Oct 15, 2022 * Train and validation script enhancements * Non-GPU (ie CPU) device support * SLURM compatibility for train script * HF datasets support (via ReaderHfds) * TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) * in_chans !=3 support for scripts / loader * Adan optimizer * Can enable per-step LR scheduling via args * Dataset 'parsers' renamed to 'readers', more descriptive of purpose * AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` * main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds * master -> main branch rename ### Oct 10, 2022 * More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. ### Sept 23, 2022 * LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) * vit_base_patch32_224_clip_laion2b * vit_large_patch14_224_clip_laion2b * vit_huge_patch14_224_clip_laion2b * vit_giant_patch14_224_clip_laion2b ### Sept 7, 2022 * Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future * Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 * Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) ## Introduction Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results. The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything. ## Models All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. * Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 * BEiT - https://arxiv.org/abs/2106.08254 * Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 * CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 * CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803 * ConvNeXt - https://arxiv.org/abs/2201.03545 * ConvNeXt-V2 - http://arxiv.org/abs/2301.00808 * ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 * CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 * DeiT - https://arxiv.org/abs/2012.12877 * DeiT-III - https://arxiv.org/pdf/2204.07118.pdf * DenseNet - https://arxiv.org/abs/1608.06993 * DLA - https://arxiv.org/abs/1707.06484 * DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 * EdgeNeXt - https://arxiv.org/abs/2206.10589 * EfficientFormer - https://arxiv.org/abs/2206.01191 * EfficientNet (MBConvNet Family) * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * EfficientNet V2 - https://arxiv.org/abs/2104.00298 * FBNet-C - https://arxiv.org/abs/1812.03443 * MixNet - https://arxiv.org/abs/1907.09595 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * Single-Path NAS - https://arxiv.org/abs/1904.02877 * TinyNet - https://arxiv.org/abs/2010.14819 * EfficientViT (MIT) - https://arxiv.org/abs/2205.14756 * EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027 * EVA - https://arxiv.org/abs/2211.07636 * EVA-02 - https://arxiv.org/abs/2303.11331 * FastViT - https://arxiv.org/abs/2303.14189 * FlexiViT - https://arxiv.org/abs/2212.08013 * FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926 * GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 * GhostNet - https://arxiv.org/abs/1911.11907 * GhostNet-V2 - https://arxiv.org/abs/2211.12905 * gMLP - https://arxiv.org/abs/2105.08050 * GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 * Halo Nets - https://arxiv.org/abs/2103.12731 * HRNet - https://arxiv.org/abs/1908.07919 * InceptionNeXt - https://arxiv.org/abs/2303.16900 * Inception-V3 - https://arxiv.org/abs/1512.00567 * Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 * Lambda Networks - https://arxiv.org/abs/2102.08602 * LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 * MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697 * MetaFormer (PoolFormer-v2, ConvFormer, CAFormer) - https://arxiv.org/abs/2210.13452 * MLP-Mixer - https://arxiv.org/abs/2105.01601 * MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 * FBNet-V3 - https://arxiv.org/abs/2006.02049 * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 * LCNet - https://arxiv.org/abs/2109.15099 * MobileOne - https://arxiv.org/abs/2206.04040 * MobileViT - https://arxiv.org/abs/2110.02178 * MobileViT-V2 - https://arxiv.org/abs/2206.02680 * MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526 * NASNet-A - https://arxiv.org/abs/1707.07012 * NesT - https://arxiv.org/abs/2105.12723 * NFNet-F - https://arxiv.org/abs/2102.06171 * NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 * PNasNet - https://arxiv.org/abs/1712.00559 * PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418 * Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302 * PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797 * RegNet - https://arxiv.org/abs/2003.13678 * RegNetZ - https://arxiv.org/abs/2103.06877 * RepVGG - https://arxiv.org/abs/2101.03697 * RepGhostNet - https://arxiv.org/abs/2211.06088 * RepViT - https://arxiv.org/abs/2307.09283 * ResMLP - https://arxiv.org/abs/2105.03404 * ResNet/ResNeXt * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 * ResNeXt - https://arxiv.org/abs/1611.05431 * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 * ResNet-RS - https://arxiv.org/abs/2103.07579 * Res2Net - https://arxiv.org/abs/1904.01169 * ResNeSt - https://arxiv.org/abs/2004.08955 * ReXNet - https://arxiv.org/abs/2007.00992 * SelecSLS - https://arxiv.org/abs/1907.00837 * Selective Kernel Networks - https://arxiv.org/abs/1903.06586 * Sequencer2D - https://arxiv.org/abs/2205.01972 * Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 * Swin Transformer - https://arxiv.org/abs/2103.14030 * Swin Transformer V2 - https://arxiv.org/abs/2111.09883 * Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 * TResNet - https://arxiv.org/abs/2003.13630 * Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf * Visformer - https://arxiv.org/abs/2104.12533 * Vision Transformer - https://arxiv.org/abs/2010.11929 * VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112 * VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 * Xception - https://arxiv.org/abs/1610.02357 * Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 * Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 * XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681 ## Features Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP: * All models have a common default configuration interface and API for * accessing/changing the classifier - `get_classifier` and `reset_classifier` * doing a forward pass on just the features - `forward_features` (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) * these makes it easy to write consistent network wrappers that work with any of the models * All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) * `create_model(name, features_only=True, out_indices=..., output_stride=...)` * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level. * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this. * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member * All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired * High performance [reference training, validation, and inference scripts](https://huggingface.co/docs/timm/training_script) that work in several process/GPU modes: * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional) * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled) * PyTorch w/ single GPU single process (AMP optional) * A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights. * A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs) * Learning rate schedulers * Ideas adopted from * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers) * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler) * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983) * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau` * Optimizers: * `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour. * `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) (https://arxiv.org/abs/1908.03265) * `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) (https://arxiv.org/abs/1905.11286) * `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) (https://arxiv.org/abs/1907.08610) * `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed * `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) (https://arxiv.org/abs/2006.08217) * `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) (https://arxiv.org/abs/1804.04235) * `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) (https://arxiv.org/abs/2006.00719) * Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py) (https://arxiv.org/abs/1708.04896) * Mixup (https://arxiv.org/abs/1710.09412) * CutMix (https://arxiv.org/abs/1905.04899) * AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py) * AugMix w/ JSD loss (https://arxiv.org/abs/1912.02781), JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well * SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data * DropPath aka "Stochastic Depth" (https://arxiv.org/abs/1603.09382) * DropBlock (https://arxiv.org/abs/1810.12890) * Blur Pooling (https://arxiv.org/abs/1904.11486) * Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper? * Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets) * An extensive selection of channel and/or spatial attention modules: * Bottleneck Transformer - https://arxiv.org/abs/2101.11605 * CBAM - https://arxiv.org/abs/1807.06521 * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667 * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151 * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348 * Global Context (GC) - https://arxiv.org/abs/1904.11492 * Halo - https://arxiv.org/abs/2103.12731 * Involution - https://arxiv.org/abs/2103.06255 * Lambda Layer - https://arxiv.org/abs/2102.08602 * Non-Local (NL) - https://arxiv.org/abs/1711.07971 * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507 * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586 * Split (SPLAT) - https://arxiv.org/abs/2004.08955 * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030 ## Results Model validation results can be found in the [results tables](results/README.md) ## Getting Started (Documentation) The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail. [timmdocs](http://timm.fast.ai/) is an alternate set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs. [paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`. ## Train, Validation, Inference Scripts The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://huggingface.co/docs/timm/training_script). ## Awesome PyTorch Resources One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below. ### Object Detection, Instance and Semantic Segmentation * Detectron2 - https://github.com/facebookresearch/detectron2 * Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch * EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch ### Computer Vision / Image Augmentation * Albumentations - https://github.com/albumentations-team/albumentations * Kornia - https://github.com/kornia/kornia ### Knowledge Distillation * RepDistiller - https://github.com/HobbitLong/RepDistiller * torchdistill - https://github.com/yoshitomo-matsubara/torchdistill ### Metric Learning * PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning ### Training / Frameworks * fastai - https://github.com/fastai/fastai ## Licenses ### Code The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue. ### Pretrained Weights So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product. #### Pretrained on more than ImageNet Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions. ## Citing ### BibTeX ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ### Latest DOI [![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)
0
hf_public_repos
hf_public_repos/pytorch-image-models/pyproject.toml
[tool.pytest.ini_options] markers = [ "base: marker for model tests using the basic setup", "cfg: marker for model tests checking the config", "torchscript: marker for model tests using torchscript", "features: marker for model tests checking feature extraction", "fxforward: marker for model tests using torch fx (only forward)", "fxbackward: marker for model tests using torch fx (only backward)", ] [tool.black] line-length = 120 target-version = ['py37', 'py38', 'py39', 'py310', 'py311'] skip-string-normalization = true
0
hf_public_repos
hf_public_repos/pytorch-image-models/clean_checkpoint.py
#!/usr/bin/env python3 """ Checkpoint Cleaning Script Takes training checkpoints with GPU tensors, optimizer state, extra dict keys, etc. and outputs a CPU tensor checkpoint with only the `state_dict` along with SHA256 calculation for model zoo compatibility. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch import argparse import os import hashlib import shutil import tempfile from timm.models import load_state_dict try: import safetensors.torch _has_safetensors = True except ImportError: _has_safetensors = False parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--output', default='', type=str, metavar='PATH', help='output path') parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--no-hash', dest='no_hash', action='store_true', help='no hash in output filename') parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true', help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint') parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') def main(): args = parser.parse_args() if os.path.exists(args.output): print("Error: Output filename ({}) already exists.".format(args.output)) exit(1) clean_checkpoint( args.checkpoint, args.output, not args.no_use_ema, args.no_hash, args.clean_aux_bn, safe_serialization=args.safetensors, ) def clean_checkpoint( checkpoint, output, use_ema=True, no_hash=False, clean_aux_bn=False, safe_serialization: bool=False, ): # Load an existing checkpoint to CPU, strip everything but the state_dict and re-save if checkpoint and os.path.isfile(checkpoint): print("=> Loading checkpoint '{}'".format(checkpoint)) state_dict = load_state_dict(checkpoint, use_ema=use_ema) new_state_dict = {} for k, v in state_dict.items(): if clean_aux_bn and 'aux_bn' in k: # If all aux_bn keys are removed, the SplitBN layers will end up as normal and # load with the unmodified model using BatchNorm2d. continue name = k[7:] if k.startswith('module.') else k new_state_dict[name] = v print("=> Loaded state_dict from '{}'".format(checkpoint)) ext = '' if output: checkpoint_root, checkpoint_base = os.path.split(output) checkpoint_base, ext = os.path.splitext(checkpoint_base) else: checkpoint_root = '' checkpoint_base = os.path.split(checkpoint)[1] checkpoint_base = os.path.splitext(checkpoint_base)[0] temp_filename = '__' + checkpoint_base if safe_serialization: assert _has_safetensors, "`pip install safetensors` to use .safetensors" safetensors.torch.save_file(new_state_dict, temp_filename) else: torch.save(new_state_dict, temp_filename) with open(temp_filename, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() if ext: final_ext = ext else: final_ext = ('.safetensors' if safe_serialization else '.pth') if no_hash: final_filename = checkpoint_base + final_ext else: final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + final_ext shutil.move(temp_filename, os.path.join(checkpoint_root, final_filename)) print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash)) return final_filename else: print("Error: Checkpoint ({}) doesn't exist".format(checkpoint)) return '' if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements-dev.txt
pytest pytest-timeout pytest-xdist pytest-forked expecttest
0
hf_public_repos
hf_public_repos/pytorch-image-models/CONTRIBUTING.md
*This guideline is very much a work-in-progress.* Contributions to `timm` for code, documentation, tests are more than welcome! There haven't been any formal guidelines to date so please bear with me, and feel free to add to this guide. # Coding style Code linting and auto-format (black) are not currently in place but open to consideration. In the meantime, the style to follow is (mostly) aligned with Google's guide: https://google.github.io/styleguide/pyguide.html. A few specific differences from Google style (or black) 1. Line length is 120 char. Going over is okay in some cases (e.g. I prefer not to break URL across lines). 2. Hanging indents are always prefered, please avoid aligning arguments with closing brackets or braces. Example, from Google guide, but this is a NO here: ``` # Aligned with opening delimiter. foo = long_function_name(var_one, var_two, var_three, var_four) meal = (spam, beans) # Aligned with opening delimiter in a dictionary. foo = { 'long_dictionary_key': value1 + value2, ... } ``` This is YES: ``` # 4-space hanging indent; nothing on first line, # closing parenthesis on a new line. foo = long_function_name( var_one, var_two, var_three, var_four ) meal = ( spam, beans, ) # 4-space hanging indent in a dictionary. foo = { 'long_dictionary_key': long_dictionary_value, ... } ``` When there is discrepancy in a given source file (there are many origins for various bits of code and not all have been updated to what I consider current goal), please follow the style in a given file. In general, if you add new code, formatting it with black using the following options should result in a style that is compatible with the rest of the code base: ``` black --skip-string-normalization --line-length 120 <path-to-file> ``` Avoid formatting code that is unrelated to your PR though. PR with pure formatting / style fixes will be accepted but only in isolation from functional changes, best to ask before starting such a change. # Documentation As with code style, docstrings style based on the Google guide: guide: https://google.github.io/styleguide/pyguide.html The goal for the code is to eventually move to have all major functions and `__init__` methods use PEP484 type annotations. When type annotations are used for a function, as per the Google pyguide, they should **NOT** be duplicated in the docstrings, please leave annotations as the one source of truth re typing. There are a LOT of gaps in current documentation relative to the functionality in timm, please, document away! # Installation Create a Python virtual environment using Python 3.10. Inside the environment, install torch` and `torchvision` using the instructions matching your system as listed on the [PyTorch website](https://pytorch.org/). Then install the remaining dependencies: ``` python -m pip install -r requirements.txt python -m pip install -r requirements-dev.txt # for testing python -m pip install -e . ``` ## Unit tests Run the tests using: ``` pytest tests/ ``` Since the whole test suite takes a lot of time to run locally (a few hours), you may want to select a subset of tests relating to the changes you made by using the `-k` option of [`pytest`](https://docs.pytest.org/en/7.1.x/example/markers.html#using-k-expr-to-select-tests-based-on-their-name). Moreover, running tests in parallel (in this example 4 processes) with the `-n` option may help: ``` pytest -k "substring-to-match" -n 4 tests/ ``` ## Building documentation Please refer to [this document](https://github.com/huggingface/pytorch-image-models/tree/main/hfdocs). # Questions If you have any questions about contribution, where / how to contribute, please ask in the [Discussions](https://github.com/huggingface/pytorch-image-models/discussions/categories/contributing) (there is a `Contributing` topic).
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements.txt
torch>=1.7 torchvision pyyaml huggingface_hub safetensors>=0.2
0
hf_public_repos
hf_public_repos/pytorch-image-models/distributed_train.sh
#!/bin/bash NUM_PROC=$1 shift torchrun --nproc_per_node=$NUM_PROC train.py "$@"
0
hf_public_repos
hf_public_repos/pytorch-image-models/setup.py
""" Setup """ from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() exec(open('timm/version.py').read()) setup( name='timm', version=__version__, description='PyTorch Image Models', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/huggingface/pytorch-image-models', author='Ross Wightman', author_email='ross@huggingface.co', classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], # Note that this is a string of words separated by whitespace, not a list. keywords='pytorch pretrained models efficientnet mobilenetv3 mnasnet resnet vision transformer vit', packages=find_packages(exclude=['convert', 'tests', 'results']), include_package_data=True, install_requires=['torch >= 1.7', 'torchvision', 'pyyaml', 'huggingface_hub', 'safetensors'], python_requires='>=3.7', )
0
hf_public_repos
hf_public_repos/pytorch-image-models/train.py
#!/usr/bin/env python3 """ ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import argparse import json import logging import os import time from collections import OrderedDict from contextlib import suppress from datetime import datetime from functools import partial import torch import torch.nn as nn import torchvision.utils import yaml from torch.nn.parallel import DistributedDataParallel as NativeDDP from timm import utils from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters from timm.optim import create_optimizer_v2, optimizer_kwargs from timm.scheduler import create_scheduler_v2, scheduler_kwargs from timm.utils import ApexScaler, NativeScaler try: from apex import amp from apex.parallel import DistributedDataParallel as ApexDDP from apex.parallel import convert_syncbn_model has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: import wandb has_wandb = True except ImportError: has_wandb = False try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _logger = logging.getLogger('train') # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset parameters group = parser.add_argument_group('Dataset parameters') # Keep this argument outside the dataset group because it is positional. parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (positional is *deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') group.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') group.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') parser.add_argument('--train-num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in train split, for IterableDatasets.') parser.add_argument('--val-num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in validation split, for IterableDatasets.') group.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') group.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') group.add_argument('--input-img-mode', default=None, type=str, help='Dataset image conversion mode for input images.') group.add_argument('--input-key', default=None, type=str, help='Dataset key for input images.') group.add_argument('--target-key', default=None, type=str, help='Dataset key for target labels.') # Model parameters group = parser.add_argument_group('Model parameters') group.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train (default: "resnet50")') group.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') group.add_argument('--pretrained-path', default=None, type=str, help='Load this checkpoint as if they were the pretrained weights (with adaptation).') group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Load this checkpoint into model after initialization (default: none)') group.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') group.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') group.add_argument('--num-classes', type=int, default=None, metavar='N', help='number of label classes (Model default if None)') group.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') group.add_argument('--img-size', type=int, default=None, metavar='N', help='Image size (default: None => model default)') group.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') group.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') group.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of dataset') group.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N', help='Input batch size for training (default: 128)') group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N', help='Validation batch size override (default: None)') group.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') group.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") group.add_argument('--grad-accum-steps', type=int, default=1, metavar='N', help='The number of steps to accumulate gradients (default: 1)') group.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') group.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') group.add_argument('--model-kwargs', nargs='*', default={}, action=utils.ParseKwargs) group.add_argument('--head-init-scale', default=None, type=float, help='Head initialization scale') group.add_argument('--head-init-bias', default=None, type=float, help='Head initialization bias value') # scripting / codegen scripting_group = group.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") # Optimizer parameters group = parser.add_argument_group('Optimizer parameters') group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd")') group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') group.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') group.add_argument('--weight-decay', type=float, default=2e-5, help='weight decay (default: 2e-5)') group.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') group.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') group.add_argument('--layer-decay', type=float, default=None, help='layer-wise learning rate decay (default: None)') group.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs) # Learning rate schedule parameters group = parser.add_argument_group('Learning rate schedule parameters') group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER', help='LR scheduler (default: "step"') group.add_argument('--sched-on-updates', action='store_true', default=False, help='Apply LR scheduler step on update instead of epoch end.') group.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate, overrides lr-base if set (default: None)') group.add_argument('--lr-base', type=float, default=0.1, metavar='LR', help='base learning rate: lr = lr_base * global_batch_size / base_size') group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV', help='base learning rate batch size (divisor, default: 256).') group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE', help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)') group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT', help='amount to decay each learning rate cycle (default: 0.5)') group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit, cycles enabled if > 1') group.add_argument('--lr-k-decay', type=float, default=1.0, help='learning rate k-decay for cosine/poly (default: 1.0)') group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR', help='warmup learning rate (default: 1e-5)') group.add_argument('--min-lr', type=float, default=0, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (default: 0)') group.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 300)') group.add_argument('--epoch-repeats', type=float, default=0., metavar='N', help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') group.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES", help='list of decay epoch indices for multistep lr. must be increasing') group.add_argument('--decay-epochs', type=float, default=90, metavar='N', help='epoch interval to decay LR') group.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') group.add_argument('--warmup-prefix', action='store_true', default=False, help='Exclude warmup period from decay schedule.'), group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') group.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10)') group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation & regularization parameters group = parser.add_argument_group('Augmentation and regularization parameters') group.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') group.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') group.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') group.add_argument('--vflip', type=float, default=0., help='Vertical flip training aug probability') group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') group.add_argument('--color-jitter-prob', type=float, default=None, metavar='PCT', help='Probability of applying any color jitter.') group.add_argument('--grayscale-prob', type=float, default=None, metavar='PCT', help='Probability of applying random grayscale conversion.') group.add_argument('--gaussian-blur-prob', type=float, default=None, metavar='PCT', help='Probability of applying gaussian blur.') group.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), group.add_argument('--aug-repeats', type=float, default=0, help='Number of augmentation repetitions (distributed training only) (default: 0)') group.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') group.add_argument('--jsd-loss', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') group.add_argument('--bce-loss', action='store_true', default=False, help='Enable BCE loss w/ Mixup/CutMix use.') group.add_argument('--bce-sum', action='store_true', default=False, help='Sum over classes when using BCE loss.') group.add_argument('--bce-target-thresh', type=float, default=None, help='Threshold for binarizing softened BCE targets (default: None, disabled).') group.add_argument('--bce-pos-weight', type=float, default=None, help='Positive weighting for BCE loss.') group.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') group.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') group.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') group.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') group.add_argument('--mixup', type=float, default=0.0, help='mixup alpha, mixup enabled if > 0. (default: 0.)') group.add_argument('--cutmix', type=float, default=0.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') group.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') group.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') group.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') group.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') group.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') group.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') group.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') group.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') group.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') # Batch norm parameters (only works with gen_efficientnet based models currently) group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.') group.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') group.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') group.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') group.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') group.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') # Model Exponential Moving Average group = parser.add_argument_group('Model exponential moving average parameters') group.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') group.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') group.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc group = parser.add_argument_group('Miscellaneous parameters') group.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') group.add_argument('--worker-seeding', type=str, default='all', help='worker seed mode (default: all)') group.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') group.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', help='number of checkpoints to keep (default: 10)') group.add_argument('-j', '--workers', type=int, default=4, metavar='N', help='how many training processes to use (default: 4)') group.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') group.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') group.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') group.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') group.add_argument('--no-ddp-bb', action='store_true', default=False, help='Force broadcast buffers for native DDP to off.') group.add_argument('--synchronize-step', action='store_true', default=False, help='torch.cuda.synchronize() end of each step') group.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') group.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') group.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') group.add_argument('--experiment', default='', type=str, metavar='NAME', help='name of train experiment, name of sub-folder for output') group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') group.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') group.add_argument("--local_rank", default=0, type=int) group.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') group.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') def _parse_args(): # Do we have a config file to parse? args_config, remaining = config_parser.parse_known_args() if args_config.config: with open(args_config.config, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args = parser.parse_args(remaining) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text def main(): utils.setup_default_logging() args, args_text = _parse_args() if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True args.prefetcher = not args.no_prefetcher args.grad_accum_steps = max(1, args.grad_accum_steps) device = utils.init_distributed_device(args) if args.distributed: _logger.info( 'Training in distributed mode with multiple processes, 1 device per process.' f'Process {args.rank}, total {args.world_size}, device {args.device}.') else: _logger.info(f'Training with a single process on 1 device ({args.device}).') assert args.rank >= 0 # resolve AMP arguments based on PyTorch / Apex availability use_amp = None amp_dtype = torch.float16 if args.amp: if args.amp_impl == 'apex': assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' use_amp = 'apex' assert args.amp_dtype == 'float16' else: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' use_amp = 'native' assert args.amp_dtype in ('float16', 'bfloat16') if args.amp_dtype == 'bfloat16': amp_dtype = torch.bfloat16 utils.random_seed(args.seed, args.rank) if args.fuser: utils.set_jit_fuser(args.fuser) if args.fast_norm: set_fast_norm() in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] factory_kwargs = {} if args.pretrained_path: # merge with pretrained_cfg of model, 'file' has priority over 'url' and 'hf_hub'. factory_kwargs['pretrained_cfg_overlay'] = dict( file=args.pretrained_path, num_classes=-1, # force head adaptation ) model = create_model( args.model, pretrained=args.pretrained, in_chans=in_chans, num_classes=args.num_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint, **factory_kwargs, **args.model_kwargs, ) if args.head_init_scale is not None: with torch.no_grad(): model.get_classifier().weight.mul_(args.head_init_scale) model.get_classifier().bias.mul_(args.head_init_scale) if args.head_init_bias is not None: nn.init.constant_(model.get_classifier().bias, args.head_init_bias) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly if args.grad_checkpointing: model.set_grad_checkpointing(enable=True) if utils.is_primary(args): _logger.info( f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}') data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args)) # setup augmentation batch splits for contrastive loss or split bn num_aug_splits = 0 if args.aug_splits > 0: assert args.aug_splits > 1, 'A split of 1 makes no sense' num_aug_splits = args.aug_splits # enable split bn (separate bn stats per batch-portion) if args.split_bn: assert num_aug_splits > 1 or args.resplit model = convert_splitbn_model(model, max(num_aug_splits, 2)) # move model to GPU, enable channels last layout if set model.to(device=device) if args.channels_last: model.to(memory_format=torch.channels_last) # setup synchronized BatchNorm for distributed training if args.distributed and args.sync_bn: args.dist_bn = '' # disable dist_bn when sync BN active assert not args.split_bn if has_apex and use_amp == 'apex': # Apex SyncBN used with Apex AMP # WARNING this won't currently work with models using BatchNormAct2d model = convert_syncbn_model(model) else: model = convert_sync_batchnorm(model) if utils.is_primary(args): _logger.info( 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') if args.torchscript: assert not args.torchcompile assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model' model = torch.jit.script(model) if not args.lr: global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps batch_ratio = global_batch_size / args.lr_base_size if not args.lr_base_scale: on = args.opt.lower() args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear' if args.lr_base_scale == 'sqrt': batch_ratio = batch_ratio ** 0.5 args.lr = args.lr_base * batch_ratio if utils.is_primary(args): _logger.info( f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) ' f'and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.') optimizer = create_optimizer_v2( model, **optimizer_kwargs(cfg=args), **args.opt_kwargs, ) # setup automatic mixed-precision (AMP) loss scaling and op casting amp_autocast = suppress # do nothing loss_scaler = None if use_amp == 'apex': assert device.type == 'cuda' model, optimizer = amp.initialize(model, optimizer, opt_level='O1') loss_scaler = ApexScaler() if utils.is_primary(args): _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') elif use_amp == 'native': try: amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) except (AttributeError, TypeError): # fallback to CUDA only AMP for PyTorch < 1.10 assert device.type == 'cuda' amp_autocast = torch.cuda.amp.autocast if device.type == 'cuda' and amp_dtype == torch.float16: # loss scaler only used for float16 (half) dtype, bfloat16 does not need it loss_scaler = NativeScaler() if utils.is_primary(args): _logger.info('Using native Torch AMP. Training in mixed precision.') else: if utils.is_primary(args): _logger.info('AMP not enabled. Training in float32.') # optionally resume from a checkpoint resume_epoch = None if args.resume: resume_epoch = resume_checkpoint( model, args.resume, optimizer=None if args.no_resume_opt else optimizer, loss_scaler=None if args.no_resume_opt else loss_scaler, log_info=utils.is_primary(args), ) # setup exponential moving average of model weights, SWA could be used here too model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper model_ema = utils.ModelEmaV2( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None) if args.resume: load_checkpoint(model_ema.module, args.resume, use_ema=True) # setup distributed training if args.distributed: if has_apex and use_amp == 'apex': # Apex DDP preferred unless native amp is activated if utils.is_primary(args): _logger.info("Using NVIDIA APEX DistributedDataParallel.") model = ApexDDP(model, delay_allreduce=True) else: if utils.is_primary(args): _logger.info("Using native Torch DistributedDataParallel.") model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb) # NOTE: EMA model does not need to be wrapped by DDP if args.torchcompile: # torch compile should be done after DDP assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' model = torch.compile(model, backend=args.torchcompile) # create the train and eval datasets if args.data and not args.data_dir: args.data_dir = args.data if args.input_img_mode is None: input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' else: input_img_mode = args.input_img_mode dataset_train = create_dataset( args.dataset, root=args.data_dir, split=args.train_split, is_training=True, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, seed=args.seed, repeats=args.epoch_repeats, input_img_mode=input_img_mode, input_key=args.input_key, target_key=args.target_key, num_samples=args.train_num_samples, ) if args.val_split: dataset_eval = create_dataset( args.dataset, root=args.data_dir, split=args.val_split, is_training=False, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, input_img_mode=input_img_mode, input_key=args.input_key, target_key=args.target_key, num_samples=args.val_num_samples, ) # setup mixup / cutmix collate_fn = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_args = dict( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes ) if args.prefetcher: assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup) collate_fn = FastCollateMixup(**mixup_args) else: mixup_fn = Mixup(**mixup_args) # wrap dataset in AugMix helper if num_aug_splits > 1: dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) # create data loaders w/ augmentation pipeiine train_interpolation = args.train_interpolation if args.no_aug or not train_interpolation: train_interpolation = data_config['interpolation'] loader_train = create_loader( dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, color_jitter_prob=args.color_jitter_prob, grayscale_prob=args.grayscale_prob, gaussian_blur_prob=args.gaussian_blur_prob, auto_augment=args.aa, num_aug_repeats=args.aug_repeats, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, device=device, use_prefetcher=args.prefetcher, use_multi_epochs_loader=args.use_multi_epochs_loader, worker_seeding=args.worker_seeding, ) loader_eval = None if args.val_split: eval_workers = args.workers if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset): # FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training eval_workers = min(2, args.workers) loader_eval = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size or args.batch_size, is_training=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=eval_workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, device=device, use_prefetcher=args.prefetcher, ) # setup loss function if args.jsd_loss: assert num_aug_splits > 1 # JSD only valid with aug splits set train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing) elif mixup_active: # smoothing is handled with mixup target transform which outputs sparse, soft targets if args.bce_loss: train_loss_fn = BinaryCrossEntropy( target_threshold=args.bce_target_thresh, sum_classes=args.bce_sum, pos_weight=args.bce_pos_weight, ) else: train_loss_fn = SoftTargetCrossEntropy() elif args.smoothing: if args.bce_loss: train_loss_fn = BinaryCrossEntropy( smoothing=args.smoothing, target_threshold=args.bce_target_thresh, sum_classes=args.bce_sum, pos_weight=args.bce_pos_weight, ) else: train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: train_loss_fn = nn.CrossEntropyLoss() train_loss_fn = train_loss_fn.to(device=device) validate_loss_fn = nn.CrossEntropyLoss().to(device=device) # setup checkpoint saver and eval metric tracking eval_metric = args.eval_metric if loader_eval is not None else 'loss' decreasing_metric = eval_metric == 'loss' best_metric = None best_epoch = None saver = None output_dir = None if utils.is_primary(args): if args.experiment: exp_name = args.experiment else: exp_name = '-'.join([ datetime.now().strftime("%Y%m%d-%H%M%S"), safe_model_name(args.model), str(data_config['input_size'][-1]) ]) output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name) saver = utils.CheckpointSaver( model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler, checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing_metric, max_history=args.checkpoint_hist ) with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: f.write(args_text) if utils.is_primary(args) and args.log_wandb: if has_wandb: wandb.init(project=args.experiment, config=args) else: _logger.warning( "You've requested to log metrics to wandb but package not found. " "Metrics not being logged to wandb, try `pip install wandb`") # setup learning rate schedule and starting epoch updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps lr_scheduler, num_epochs = create_scheduler_v2( optimizer, **scheduler_kwargs(args, decreasing_metric=decreasing_metric), updates_per_epoch=updates_per_epoch, ) start_epoch = 0 if args.start_epoch is not None: # a specified start_epoch will always override the resume epoch start_epoch = args.start_epoch elif resume_epoch is not None: start_epoch = resume_epoch if lr_scheduler is not None and start_epoch > 0: if args.sched_on_updates: lr_scheduler.step_update(start_epoch * updates_per_epoch) else: lr_scheduler.step(start_epoch) if utils.is_primary(args): _logger.info( f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.') results = [] try: for epoch in range(start_epoch, num_epochs): if hasattr(dataset_train, 'set_epoch'): dataset_train.set_epoch(epoch) elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'): loader_train.sampler.set_epoch(epoch) train_metrics = train_one_epoch( epoch, model, loader_train, optimizer, train_loss_fn, args, lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir, amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn, ) if args.distributed and args.dist_bn in ('broadcast', 'reduce'): if utils.is_primary(args): _logger.info("Distributing BatchNorm running means and vars") utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce') if loader_eval is not None: eval_metrics = validate( model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, ) if model_ema is not None and not args.model_ema_force_cpu: if args.distributed and args.dist_bn in ('broadcast', 'reduce'): utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') ema_eval_metrics = validate( model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)', ) eval_metrics = ema_eval_metrics else: eval_metrics = None if output_dir is not None: lrs = [param_group['lr'] for param_group in optimizer.param_groups] utils.update_summary( epoch, train_metrics, eval_metrics, filename=os.path.join(output_dir, 'summary.csv'), lr=sum(lrs) / len(lrs), write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb, ) if eval_metrics is not None: latest_metric = eval_metrics[eval_metric] else: latest_metric = train_metrics[eval_metric] if saver is not None: # save proper checkpoint with eval metric best_metric, best_epoch = saver.save_checkpoint(epoch, metric=latest_metric) if lr_scheduler is not None: # step LR for next epoch lr_scheduler.step(epoch + 1, latest_metric) results.append({ 'epoch': epoch, 'train': train_metrics, 'validation': eval_metrics, }) except KeyboardInterrupt: pass results = {'all': results} if best_metric is not None: results['best'] = results['all'][best_epoch - start_epoch] _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) print(f'--result\n{json.dumps(results, indent=4)}') def train_one_epoch( epoch, model, loader, optimizer, loss_fn, args, device=torch.device('cuda'), lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None, ): if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: if args.prefetcher and loader.mixup_enabled: loader.mixup_enabled = False elif mixup_fn is not None: mixup_fn.mixup_enabled = False second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order has_no_sync = hasattr(model, "no_sync") update_time_m = utils.AverageMeter() data_time_m = utils.AverageMeter() losses_m = utils.AverageMeter() model.train() accum_steps = args.grad_accum_steps last_accum_steps = len(loader) % accum_steps updates_per_epoch = (len(loader) + accum_steps - 1) // accum_steps num_updates = epoch * updates_per_epoch last_batch_idx = len(loader) - 1 last_batch_idx_to_accum = len(loader) - last_accum_steps data_start_time = update_start_time = time.time() optimizer.zero_grad() update_sample_count = 0 for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_batch_idx need_update = last_batch or (batch_idx + 1) % accum_steps == 0 update_idx = batch_idx // accum_steps if batch_idx >= last_batch_idx_to_accum: accum_steps = last_accum_steps if not args.prefetcher: input, target = input.to(device), target.to(device) if mixup_fn is not None: input, target = mixup_fn(input, target) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) # multiply by accum steps to get equivalent for full update data_time_m.update(accum_steps * (time.time() - data_start_time)) def _forward(): with amp_autocast(): output = model(input) loss = loss_fn(output, target) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if loss_scaler is not None: loss_scaler( _loss, optimizer, clip_grad=args.clip_grad, clip_mode=args.clip_mode, parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), create_graph=second_order, need_update=need_update, ) else: _loss.backward(create_graph=second_order) if need_update: if args.clip_grad is not None: utils.dispatch_clip_grad( model_parameters(model, exclude_head='agc' in args.clip_mode), value=args.clip_grad, mode=args.clip_mode, ) optimizer.step() if has_no_sync and not need_update: with model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) if not args.distributed: losses_m.update(loss.item() * accum_steps, input.size(0)) update_sample_count += input.size(0) if not need_update: data_start_time = time.time() continue num_updates += 1 optimizer.zero_grad() if model_ema is not None: model_ema.update(model) if args.synchronize_step and device.type == 'cuda': torch.cuda.synchronize() time_now = time.time() update_time_m.update(time.time() - update_start_time) update_start_time = time_now if update_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) if args.distributed: reduced_loss = utils.reduce_tensor(loss.data, args.world_size) losses_m.update(reduced_loss.item() * accum_steps, input.size(0)) update_sample_count *= args.world_size if utils.is_primary(args): _logger.info( f'Train: {epoch} [{update_idx:>4d}/{updates_per_epoch} ' f'({100. * update_idx / (updates_per_epoch - 1):>3.0f}%)] ' f'Loss: {losses_m.val:#.3g} ({losses_m.avg:#.3g}) ' f'Time: {update_time_m.val:.3f}s, {update_sample_count / update_time_m.val:>7.2f}/s ' f'({update_time_m.avg:.3f}s, {update_sample_count / update_time_m.avg:>7.2f}/s) ' f'LR: {lr:.3e} ' f'Data: {data_time_m.val:.3f} ({data_time_m.avg:.3f})' ) if args.save_images and output_dir: torchvision.utils.save_image( input, os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), padding=0, normalize=True ) if saver is not None and args.recovery_interval and ( (update_idx + 1) % args.recovery_interval == 0): saver.save_recovery(epoch, batch_idx=update_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) update_sample_count = 0 data_start_time = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() return OrderedDict([('loss', losses_m.avg)]) def validate( model, loader, loss_fn, args, device=torch.device('cuda'), amp_autocast=suppress, log_suffix='' ): batch_time_m = utils.AverageMeter() losses_m = utils.AverageMeter() top1_m = utils.AverageMeter() top5_m = utils.AverageMeter() model.eval() end = time.time() last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx if not args.prefetcher: input = input.to(device) target = target.to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) if isinstance(output, (tuple, list)): output = output[0] # augmentation reduction reduce_factor = args.tta if reduce_factor > 1: output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) target = target[0:target.size(0):reduce_factor] loss = loss_fn(output, target) acc1, acc5 = utils.accuracy(output, target, topk=(1, 5)) if args.distributed: reduced_loss = utils.reduce_tensor(loss.data, args.world_size) acc1 = utils.reduce_tensor(acc1, args.world_size) acc5 = utils.reduce_tensor(acc5, args.world_size) else: reduced_loss = loss.data if device.type == 'cuda': torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) top1_m.update(acc1.item(), output.size(0)) top5_m.update(acc5.item(), output.size(0)) batch_time_m.update(time.time() - end) end = time.time() if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0): log_name = 'Test' + log_suffix _logger.info( f'{log_name}: [{batch_idx:>4d}/{last_idx}] ' f'Time: {batch_time_m.val:.3f} ({batch_time_m.avg:.3f}) ' f'Loss: {losses_m.val:>7.3f} ({losses_m.avg:>6.3f}) ' f'Acc@1: {top1_m.val:>7.3f} ({top1_m.avg:>7.3f}) ' f'Acc@5: {top5_m.val:>7.3f} ({top5_m.avg:>7.3f})' ) metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) return metrics if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/MANIFEST.in
include timm/models/_pruned/*.txt include timm/data/_info/*.txt include timm/data/_info/*.json
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements-docs.txt
mkdocs mkdocs-material mkdocs-redirects mdx_truly_sane_lists mkdocs-awesome-pages-plugin
0
hf_public_repos
hf_public_repos/pytorch-image-models/avg_checkpoints.py
#!/usr/bin/env python3 """ Checkpoint Averaging Script This script averages all model weights for checkpoints in specified path that match the specified filter wildcard. All checkpoints must be from the exact same model. For any hope of decent results, the checkpoints should be from the same or child (via resumes) training session. This can be viewed as similar to maintaining running EMA (exponential moving average) of the model weights or performing SWA (stochastic weight averaging), but post-training. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch import argparse import os import glob import hashlib from timm.models import load_state_dict try: import safetensors.torch _has_safetensors = True except ImportError: _has_safetensors = False DEFAULT_OUTPUT = "./averaged.pth" DEFAULT_SAFE_OUTPUT = "./averaged.safetensors" parser = argparse.ArgumentParser(description='PyTorch Checkpoint Averager') parser.add_argument('--input', default='', type=str, metavar='PATH', help='path to base input folder containing checkpoints') parser.add_argument('--filter', default='*.pth.tar', type=str, metavar='WILDCARD', help='checkpoint filter (path wildcard)') parser.add_argument('--output', default=DEFAULT_OUTPUT, type=str, metavar='PATH', help=f'Output filename. Defaults to {DEFAULT_SAFE_OUTPUT} when passing --safetensors.') parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='Force not using ema version of weights (if present)') parser.add_argument('--no-sort', dest='no_sort', action='store_true', help='Do not sort and select by checkpoint metric, also makes "n" argument irrelevant') parser.add_argument('-n', type=int, default=10, metavar='N', help='Number of checkpoints to average') parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') def checkpoint_metric(checkpoint_path): if not checkpoint_path or not os.path.isfile(checkpoint_path): return {} print("=> Extracting metric from checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location='cpu') metric = None if 'metric' in checkpoint: metric = checkpoint['metric'] elif 'metrics' in checkpoint and 'metric_name' in checkpoint: metrics = checkpoint['metrics'] print(metrics) metric = metrics[checkpoint['metric_name']] return metric def main(): args = parser.parse_args() # by default use the EMA weights (if present) args.use_ema = not args.no_use_ema # by default sort by checkpoint metric (if present) and avg top n checkpoints args.sort = not args.no_sort if args.safetensors and args.output == DEFAULT_OUTPUT: # Default path changes if using safetensors args.output = DEFAULT_SAFE_OUTPUT output, output_ext = os.path.splitext(args.output) if not output_ext: output_ext = ('.safetensors' if args.safetensors else '.pth') output = output + output_ext if args.safetensors and not output_ext == ".safetensors": print( "Warning: saving weights as safetensors but output file extension is not " f"set to '.safetensors': {args.output}" ) if os.path.exists(output): print("Error: Output filename ({}) already exists.".format(output)) exit(1) pattern = args.input if not args.input.endswith(os.path.sep) and not args.filter.startswith(os.path.sep): pattern += os.path.sep pattern += args.filter checkpoints = glob.glob(pattern, recursive=True) if args.sort: checkpoint_metrics = [] for c in checkpoints: metric = checkpoint_metric(c) if metric is not None: checkpoint_metrics.append((metric, c)) checkpoint_metrics = list(sorted(checkpoint_metrics)) checkpoint_metrics = checkpoint_metrics[-args.n:] if checkpoint_metrics: print("Selected checkpoints:") [print(m, c) for m, c in checkpoint_metrics] avg_checkpoints = [c for m, c in checkpoint_metrics] else: avg_checkpoints = checkpoints if avg_checkpoints: print("Selected checkpoints:") [print(c) for c in checkpoints] if not avg_checkpoints: print('Error: No checkpoints found to average.') exit(1) avg_state_dict = {} avg_counts = {} for c in avg_checkpoints: new_state_dict = load_state_dict(c, args.use_ema) if not new_state_dict: print(f"Error: Checkpoint ({c}) doesn't exist") continue for k, v in new_state_dict.items(): if k not in avg_state_dict: avg_state_dict[k] = v.clone().to(dtype=torch.float64) avg_counts[k] = 1 else: avg_state_dict[k] += v.to(dtype=torch.float64) avg_counts[k] += 1 for k, v in avg_state_dict.items(): v.div_(avg_counts[k]) # float32 overflow seems unlikely based on weights seen to date, but who knows float32_info = torch.finfo(torch.float32) final_state_dict = {} for k, v in avg_state_dict.items(): v = v.clamp(float32_info.min, float32_info.max) final_state_dict[k] = v.to(dtype=torch.float32) if args.safetensors: assert _has_safetensors, "`pip install safetensors` to use .safetensors" safetensors.torch.save_file(final_state_dict, output) else: torch.save(final_state_dict, output) with open(output, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() print(f"=> Saved state_dict to '{output}, SHA256: {sha_hash}'") if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/hubconf.py
dependencies = ['torch'] import timm globals().update(timm.models._registry._model_entrypoints)
0
hf_public_repos
hf_public_repos/pytorch-image-models/validate.py
#!/usr/bin/env python3 """ ImageNet Validation Script This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import glob import json import logging import os import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet from timm.layers import apply_test_time_pool, set_fast_norm from timm.models import create_model, load_checkpoint, is_model, list_models from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \ decay_batch_step, check_batch_size_retry, ParseKwargs, reparameterize_model try: from apex import amp has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') parser.add_argument('--num-samples', default=None, type=int, metavar='N', help='Manually specify num samples in dataset split, for IterableDatasets.') parser.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--input-key', default=None, type=str, help='Dataset key for input images.') parser.add_argument('--input-img-mode', default=None, type=str, help='Dataset image conversion mode for input images.') parser.add_argument('--target-key', default=None, type=str, help='Dataset key for target labels.') parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', help='model architecture (default: dpn92)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') parser.add_argument('--crop-border-pixels', type=int, default=None, help='Crop pixels from image border.') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--device', default='cuda', type=str, help="Device (accelerator) to use.") parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') parser.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--reparam', default=False, action='store_true', help='Reparameterize model') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd support.") parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', help='Real labels JSON file for imagenet evaluation') parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', help='Valid label indices txt file for validation of partial label space') parser.add_argument('--retry', default=False, action='store_true', help='Enable batch size decay & retry for single model validation') def validate(args): # might as well try to validate something args.pretrained = args.pretrained or not args.checkpoint args.prefetcher = not args.no_prefetcher if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True device = torch.device(args.device) # resolve AMP arguments based on PyTorch / Apex availability use_amp = None amp_autocast = suppress if args.amp: if args.amp_impl == 'apex': assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' assert args.amp_dtype == 'float16' use_amp = 'apex' _logger.info('Validating in mixed precision with NVIDIA APEX AMP.') else: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' assert args.amp_dtype in ('float16', 'bfloat16') use_amp = 'native' amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) _logger.info('Validating in mixed precision with native PyTorch AMP.') else: _logger.info('Validating in float32. AMP not enabled.') if args.fuser: set_jit_fuser(args.fuser) if args.fast_norm: set_fast_norm() # create model in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, pretrained=args.pretrained, num_classes=args.num_classes, in_chans=in_chans, global_pool=args.gp, scriptable=args.torchscript, **args.model_kwargs, ) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes if args.checkpoint: load_checkpoint(model, args.checkpoint, args.use_ema) if args.reparam: model = reparameterize_model(model) param_count = sum([m.numel() for m in model.parameters()]) _logger.info('Model %s created, param count: %d' % (args.model, param_count)) data_config = resolve_data_config( vars(args), model=model, use_test_size=not args.use_train_size, verbose=True, ) test_time_pool = False if args.test_pool: model, test_time_pool = apply_test_time_pool(model, data_config) model = model.to(device) if args.channels_last: model = model.to(memory_format=torch.channels_last) if args.torchscript: assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' model = torch.jit.script(model) elif args.torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' torch._dynamo.reset() model = torch.compile(model, backend=args.torchcompile) elif args.aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" model = memory_efficient_fusion(model) if use_amp == 'apex': model = amp.initialize(model, opt_level='O1') if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) criterion = nn.CrossEntropyLoss().to(device) root_dir = args.data or args.data_dir if args.input_img_mode is None: input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L' else: input_img_mode = args.input_img_mode dataset = create_dataset( root=root_dir, name=args.dataset, split=args.split, download=args.dataset_download, load_bytes=args.tf_preprocessing, class_map=args.class_map, num_samples=args.num_samples, input_key=args.input_key, input_img_mode=input_img_mode, target_key=args.target_key, ) if args.valid_labels: with open(args.valid_labels, 'r') as f: valid_labels = [int(line.rstrip()) for line in f] else: valid_labels = None if args.real_labels: real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) else: real_labels = None crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] loader = create_loader( dataset, input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, crop_mode=data_config['crop_mode'], crop_border_pixels=args.crop_border_pixels, pin_memory=args.pin_mem, device=device, tf_preprocessing=args.tf_preprocessing, ) batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.eval() with torch.no_grad(): # warmup, reduce variability of first batch time, especially for comparing torchscript vs non input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): model(input) end = time.time() for batch_idx, (input, target) in enumerate(loader): if args.no_prefetcher: target = target.to(device) input = input.to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) # compute output with amp_autocast(): output = model(input) if valid_labels is not None: output = output[:, valid_labels] loss = criterion(output, target) if real_labels is not None: real_labels.add_result(output) # measure accuracy and record loss acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1.item(), input.size(0)) top5.update(acc5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info( 'Test: [{0:>4d}/{1}] ' 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( batch_idx, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5 ) ) if real_labels is not None: # real labels mode replaces topk values at the end top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) else: top1a, top5a = top1.avg, top5.avg results = OrderedDict( model=args.model, top1=round(top1a, 4), top1_err=round(100 - top1a, 4), top5=round(top5a, 4), top5_err=round(100 - top5a, 4), param_count=round(param_count / 1e6, 2), img_size=data_config['input_size'][-1], crop_pct=crop_pct, interpolation=data_config['interpolation'], ) _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( results['top1'], results['top1_err'], results['top5'], results['top5_err'])) return results def _try_run(args, initial_batch_size): batch_size = initial_batch_size results = OrderedDict() error_str = 'Unknown' while batch_size: args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case try: if torch.cuda.is_available() and 'cuda' in args.device: torch.cuda.empty_cache() results = validate(args) return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running validation.') if not check_batch_size_retry(error_str): break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str _logger.error(f'{args.model} failed to validate ({error_str}).') return results _NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if os.path.isdir(args.checkpoint): # validate all checkpoints in a path with same model checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') checkpoints += glob.glob(args.checkpoint + '/*.pth') model_names = list_models(args.model) model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] else: if args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models( pretrained=True, exclude_filters=_NON_IN1K_FILTERS, ) model_cfgs = [(n, '') for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models( args.model, pretrained=True, ) model_cfgs = [(n, '') for n in model_names] if not model_cfgs and os.path.isfile(args.model): with open(args.model) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names if n] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: initial_batch_size = args.batch_size for m, c in model_cfgs: args.model = m args.checkpoint = c r = _try_run(args, initial_batch_size) if 'error' in r: continue if args.checkpoint: r['checkpoint'] = args.checkpoint results.append(r) except KeyboardInterrupt as e: pass results = sorted(results, key=lambda x: x['top1'], reverse=True) else: if args.retry: results = _try_run(args, args.batch_size) else: results = validate(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/onnx_validate.py
""" ONNX-runtime validation script This script was created to verify accuracy and performance of exported ONNX models running with the onnxruntime. It utilizes the PyTorch dataloader/processing pipeline for a fair comparison against the originals. Copyright 2020 Ross Wightman """ import argparse import numpy as np import onnxruntime from timm.data import create_loader, resolve_data_config, create_dataset from timm.utils import AverageMeter import time parser = argparse.ArgumentParser(description='ONNX Validation') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', help='path to onnx model/weights file') parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', help='path to output optimized onnx graph') parser.add_argument('--profile', action='store_true', default=False, help='Enable profiler output.') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', help='Override default crop pct of 0.875') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') def main(): args = parser.parse_args() args.gpu_id = 0 # Set graph optimization level sess_options = onnxruntime.SessionOptions() sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL if args.profile: sess_options.enable_profiling = True if args.onnx_output_opt: sess_options.optimized_model_filepath = args.onnx_output_opt session = onnxruntime.InferenceSession(args.onnx_input, sess_options) data_config = resolve_data_config(vars(args)) loader = create_loader( create_dataset('', args.data), input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=data_config['crop_pct'] ) input_name = session.get_inputs()[0].name batch_time = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() for i, (input, target) in enumerate(loader): # run the net and return prediction output = session.run([], {input_name: input.data.numpy()}) output = output[0] # measure accuracy and record loss prec1, prec5 = accuracy_np(output, target.numpy()) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print( f'Test: [{i}/{len(loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, ' f'{100 * batch_time.avg / input.size(0):.3f} ms/sample) \t' f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' ) print(f' * Prec@1 {top1.avg:.3f} ({100-top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.-top5.avg:.3f})') def accuracy_np(output, target): max_indices = np.argsort(output, axis=1)[:, ::-1] top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() top1 = 100 * np.equal(max_indices[:, 0], target).mean() return top1, top5 if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/LICENSE
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2019 Ross Wightman Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
0
hf_public_repos
hf_public_repos/pytorch-image-models/model-index.yml
Import: - ./docs/models/*.md Library: Name: PyTorch Image Models Headline: PyTorch image models, scripts, pretrained weights Website: https://rwightman.github.io/pytorch-image-models/ Repository: https://github.com/rwightman/pytorch-image-models Docs: https://rwightman.github.io/pytorch-image-models/ README: "# PyTorch Image Models\r\n\r\nPyTorch Image Models (TIMM) is a library\ \ for state-of-the-art image classification. With this library you can:\r\n\r\n\ - Choose from 300+ pre-trained state-of-the-art image classification models.\r\ \n- Train models afresh on research datasets such as ImageNet using provided scripts.\r\ \n- Finetune pre-trained models on your own datasets, including the latest cutting\ \ edge models."
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet-a.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation,top1_diff,top5_diff,rank_diff eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,88.227,11.773,97.093,2.907,305.08,448,1.000,bicubic,-10.623,-2.787,+1 eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,87.893,12.107,96.920,3.080,305.08,448,1.000,bicubic,-11.037,-2.990,-1 eva_giant_patch14_560.m30m_ft_in22k_in1k,87.573,12.427,96.893,3.107,"1,014.45",560,1.000,bicubic,-11.257,-3.007,+1 eva02_large_patch14_448.mim_m38m_ft_in1k,87.107,12.893,96.280,3.720,305.08,448,1.000,bicubic,-11.623,-3.590,+5 eva02_large_patch14_448.mim_in22k_ft_in1k,86.227,13.773,95.787,4.213,305.08,448,1.000,bicubic,-12.613,-4.043,-2 eva_giant_patch14_336.clip_ft_in1k,85.307,14.693,95.720,4.280,"1,013.01",336,1.000,bicubic,-13.513,-4.090,-1 eva_giant_patch14_336.m30m_ft_in22k_in1k,85.147,14.853,96.360,3.640,"1,013.01",336,1.000,bicubic,-13.663,-3.540,-1 tf_efficientnet_l2.ns_jft_in1k,84.747,15.253,96.147,3.853,480.31,800,0.960,bicubic,-13.803,-3.673,+9 regnety_1280.swag_ft_in1k,83.907,16.093,96.200,3.800,644.81,384,1.000,bicubic,-14.543,-3.670,+18 eva_large_patch14_336.in22k_ft_in22k_in1k,83.853,16.147,95.347,4.653,304.53,336,1.000,bicubic,-14.887,-4.453,-3 convnextv2_huge.fcmae_ft_in22k_in1k_512,83.827,16.173,96.173,3.827,660.29,512,1.000,bicubic,-14.773,-3.697,+4 maxvit_xlarge_tf_512.in21k_ft_in1k,83.400,16.600,95.520,4.480,475.77,512,1.000,bicubic,-15.220,-4.270,+1 tf_efficientnet_l2.ns_jft_in1k_475,83.400,16.600,95.453,4.547,480.31,475,0.936,bicubic,-15.100,-4.327,+8 eva_large_patch14_336.in22k_ft_in1k,82.760,17.240,95.507,4.493,304.53,336,1.000,bicubic,-15.970,-4.283,-6 maxvit_large_tf_512.in21k_ft_in1k,81.733,18.267,95.027,4.973,212.33,512,1.000,bicubic,-16.887,-4.773,-1 beit_large_patch16_512.in22k_ft_in22k_in1k,81.600,18.400,94.880,5.120,305.67,512,1.000,bicubic,-16.960,-4.960,0 maxvit_base_tf_512.in21k_ft_in1k,81.360,18.640,94.467,5.533,119.88,512,1.000,bicubic,-17.260,-5.333,-5 eva_giant_patch14_224.clip_ft_in1k,81.213,18.787,94.333,5.667,"1,012.56",224,0.900,bicubic,-17.247,-5.417,+8 maxvit_xlarge_tf_384.in21k_ft_in1k,81.067,18.933,94.640,5.360,475.32,384,1.000,bicubic,-17.433,-5.190,+3 convnextv2_huge.fcmae_ft_in22k_in1k_384,79.893,20.107,94.640,5.360,660.29,384,1.000,bicubic,-18.777,-5.220,-10 deit3_large_patch16_384.fb_in22k_ft_in1k,79.187,20.813,93.613,6.387,304.76,384,1.000,bicubic,-19.273,-6.147,+4 beit_large_patch16_384.in22k_ft_in22k_in1k,79.107,20.893,94.267,5.733,305.00,384,1.000,bicubic,-19.413,-5.553,-3 caformer_b36.sail_in22k_ft_in1k_384,78.360,21.640,93.467,6.533,98.75,384,1.000,bicubic,-20.080,-6.333,+6 maxvit_large_tf_384.in21k_ft_in1k,78.013,21.987,93.267,6.733,212.03,384,1.000,bicubic,-20.477,-6.483,-1 eva02_base_patch14_448.mim_in22k_ft_in1k,77.547,22.453,93.120,6.880,87.12,448,1.000,bicubic,-20.893,-6.680,+3 vit_large_patch14_clip_336.openai_ft_in12k_in1k,77.333,22.667,93.627,6.373,304.53,336,1.000,bicubic,-20.927,-6.143,+16 convnext_xxlarge.clip_laion2b_soup_ft_in1k,77.120,22.880,94.320,5.680,846.47,256,1.000,bicubic,-21.320,-5.500,+3 eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,76.893,23.107,92.693,7.307,87.12,448,1.000,bicubic,-21.747,-7.107,-17 maxvit_base_tf_384.in21k_ft_in1k,76.853,23.147,92.600,7.400,119.65,384,1.000,bicubic,-21.667,-7.150,-9 beitv2_large_patch16_224.in1k_ft_in22k_in1k,76.773,23.227,93.173,6.827,304.43,224,0.950,bicubic,-21.767,-6.587,-12 eva_large_patch14_196.in22k_ft_in22k_in1k,75.507,24.493,91.760,8.240,304.14,196,1.000,bicubic,-22.913,-8.050,+2 regnety_1280.swag_lc_in1k,74.587,25.413,91.680,8.320,644.81,224,0.965,bicubic,-23.063,-7.890,+79 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,74.253,25.747,90.827,9.173,116.14,384,1.000,bicubic,-23.917,-8.933,+19 vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,74.240,25.760,92.253,7.747,632.46,336,1.000,bicubic,-24.180,-7.517,-2 regnety_320.swag_ft_in1k,74.200,25.800,92.960,7.040,145.05,384,1.000,bicubic,-23.860,-6.800,+30 swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,73.933,26.067,91.733,8.267,196.74,384,1.000,bicubic,-24.197,-7.977,+21 eva_large_patch14_196.in22k_ft_in1k,73.160,26.840,91.413,8.587,304.14,196,1.000,bicubic,-25.200,-8.407,-2 caformer_m36.sail_in22k_ft_in1k_384,72.987,27.013,90.600,9.400,56.20,384,1.000,bicubic,-25.163,-9.150,+18 vit_large_patch14_clip_224.openai_ft_in12k_in1k,72.293,27.707,90.880,9.120,304.20,224,1.000,bicubic,-25.927,-8.840,+7 convnextv2_large.fcmae_ft_in22k_in1k_384,72.067,27.933,91.013,8.987,197.96,384,1.000,bicubic,-26.333,-8.747,-6 vit_large_patch14_clip_224.openai_ft_in1k,71.813,28.187,91.453,8.547,304.20,224,1.000,bicubic,-26.347,-8.207,+14 vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,71.800,28.200,90.227,9.773,304.53,336,1.000,bicubic,-26.540,-9.533,-5 convformer_b36.sail_in22k_ft_in1k_384,71.547,28.453,90.240,9.760,99.88,384,1.000,bicubic,-26.713,-9.590,-3 vit_large_patch16_384.augreg_in21k_ft_in1k,71.227,28.773,89.773,10.227,304.72,384,1.000,bicubic,-26.993,-9.947,+1 swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,71.200,28.800,91.320,8.680,87.92,384,1.000,bicubic,-26.920,-8.420,+12 deit3_base_patch16_384.fb_in22k_ft_in1k,71.200,28.800,89.933,10.067,86.88,384,1.000,bicubic,-26.640,-9.737,+43 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,70.720,29.280,90.547,9.453,200.13,384,1.000,bicubic,-27.760,-9.233,-23 vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,70.680,29.320,90.400,9.600,632.05,224,1.000,bicubic,-27.620,-9.360,-10 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,70.600,29.400,89.227,10.773,73.88,384,1.000,bicubic,-27.470,-10.493,+15 caformer_s36.sail_in22k_ft_in1k_384,70.347,29.653,90.067,9.933,39.30,384,1.000,bicubic,-27.623,-9.653,+22 deit3_huge_patch14_224.fb_in22k_ft_in1k,70.253,29.747,90.707,9.293,632.13,224,1.000,bicubic,-27.917,-9.053,+2 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,69.880,30.120,90.493,9.507,200.13,320,1.000,bicubic,-28.400,-9.277,-13 swin_large_patch4_window12_384.ms_in22k_ft_in1k,69.640,30.360,89.547,10.453,196.74,384,1.000,bicubic,-28.410,-10.143,+14 volo_d5_512.sail_in1k,69.587,30.413,90.427,9.573,296.09,512,1.150,bicubic,-28.183,-9.243,+46 convnext_xlarge.fb_in22k_ft_in1k_384,69.320,30.680,89.307,10.693,350.20,384,1.000,bicubic,-29.100,-10.503,-24 caformer_b36.sail_in22k_ft_in1k,69.133,30.867,89.600,10.400,98.75,224,1.000,bicubic,-29.027,-10.180,-2 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,69.067,30.933,89.880,10.120,116.09,384,1.000,bicubic,-29.193,-9.900,-16 deit3_large_patch16_224.fb_in22k_ft_in1k,68.693,31.307,89.973,10.027,304.37,224,1.000,bicubic,-29.477,-9.757,-7 seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,68.560,31.440,88.613,11.387,149.39,384,1.000,bicubic,-29.650,-11.167,-11 beit_large_patch16_224.in22k_ft_in22k_in1k,68.467,31.533,89.573,10.427,304.43,224,0.900,bicubic,-29.713,-10.187,-10 regnety_160.swag_ft_in1k,68.093,31.907,90.707,9.293,83.59,384,1.000,bicubic,-29.687,-8.893,+35 convnextv2_large.fcmae_ft_in22k_in1k,68.093,31.907,89.720,10.280,197.96,288,1.000,bicubic,-29.997,-10.050,0 volo_d5_448.sail_in1k,68.080,31.920,89.720,10.280,295.91,448,1.150,bicubic,-29.670,-9.830,+39 maxvit_base_tf_512.in1k,67.933,32.067,88.493,11.507,119.88,512,1.000,bicubic,-29.797,-11.117,+40 maxvit_large_tf_512.in1k,67.880,32.120,87.653,12.347,212.33,512,1.000,bicubic,-29.950,-11.907,+26 tf_efficientnetv2_xl.in21k_ft_in1k,67.787,32.213,87.347,12.653,208.12,512,1.000,bicubic,-30.113,-12.223,+15 beitv2_large_patch16_224.in1k_ft_in1k,67.640,32.360,88.667,11.333,304.43,224,0.950,bicubic,-30.270,-10.993,+10 swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,67.320,32.680,88.000,12.000,196.74,256,0.900,bicubic,-30.530,-11.640,+18 vit_large_patch14_clip_336.laion2b_ft_in1k,67.080,32.920,89.493,10.507,304.53,336,1.000,bicubic,-31.140,-10.307,-22 tf_efficientnet_b7.ns_jft_in1k,67.027,32.973,88.667,11.333,66.35,600,0.949,bicubic,-30.893,-11.053,+6 vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,67.000,33.000,87.960,12.040,304.20,224,1.000,bicubic,-31.080,-11.690,-9 convnext_xlarge.fb_in22k_ft_in1k,66.960,33.040,88.947,11.053,350.20,288,1.000,bicubic,-31.150,-10.833,-12 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,66.880,33.120,89.280,10.720,200.13,384,1.000,bicubic,-31.370,-10.480,-30 convformer_m36.sail_in22k_ft_in1k_384,66.853,33.147,87.800,12.200,57.05,384,1.000,bicubic,-31.187,-11.950,-5 convnextv2_base.fcmae_ft_in22k_in1k_384,66.787,33.213,88.893,11.107,88.72,384,1.000,bicubic,-31.563,-10.877,-39 volo_d4_448.sail_in1k,66.667,33.333,88.987,11.013,193.41,448,1.150,bicubic,-31.003,-10.623,+32 seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,65.987,34.013,87.880,12.120,93.59,320,1.000,bicubic,-31.983,-11.820,-4 beit_base_patch16_384.in22k_ft_in22k_in1k,65.920,34.080,88.507,11.493,86.74,384,1.000,bicubic,-31.900,-11.193,+14 regnety_320.swag_lc_in1k,65.573,34.427,88.080,11.920,145.05,224,0.965,bicubic,-31.587,-11.590,+109 convnext_large.fb_in22k_ft_in1k_384,65.533,34.467,87.467,12.533,197.77,384,1.000,bicubic,-32.707,-12.283,-36 vit_huge_patch14_clip_224.laion2b_ft_in1k,65.493,34.507,87.720,12.280,632.05,224,1.000,bicubic,-32.527,-12.000,-11 volo_d3_448.sail_in1k,65.400,34.600,87.573,12.427,86.63,448,1.000,bicubic,-32.150,-11.987,+45 convnext_large.fb_in22k_ft_in1k,65.000,35.000,87.947,12.053,197.77,288,1.000,bicubic,-33.120,-11.833,-24 tf_efficientnetv2_l.in21k_ft_in1k,64.947,35.053,87.840,12.160,118.52,480,1.000,bicubic,-32.853,-11.820,+11 swin_base_patch4_window12_384.ms_in22k_ft_in1k,64.467,35.533,87.520,12.480,87.90,384,1.000,bicubic,-33.433,-12.150,-6 convnextv2_huge.fcmae_ft_in1k,64.440,35.560,87.080,12.920,660.29,288,1.000,bicubic,-33.460,-12.630,-6 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,64.187,35.813,85.520,14.480,116.14,224,0.950,bicubic,-33.623,-14.130,+7 vit_base_patch16_384.augreg_in21k_ft_in1k,63.693,36.307,86.693,13.307,86.86,384,1.000,bicubic,-34.147,-12.977,+2 maxvit_large_tf_384.in1k,63.507,36.493,85.093,14.907,212.03,384,1.000,bicubic,-34.063,-14.577,+37 swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,63.307,36.693,87.507,12.493,87.92,256,0.900,bicubic,-34.353,-12.103,+19 convnextv2_base.fcmae_ft_in22k_in1k,62.893,37.107,87.667,12.333,88.72,288,1.000,bicubic,-35.167,-12.193,-25 maxvit_small_tf_512.in1k,62.867,37.133,86.307,13.693,69.13,512,1.000,bicubic,-34.883,-13.313,+11 maxvit_base_tf_384.in1k,62.613,37.387,85.187,14.813,119.65,384,1.000,bicubic,-34.957,-14.343,+32 convformer_b36.sail_in22k_ft_in1k,62.600,37.400,85.467,14.533,99.88,224,1.000,bicubic,-35.340,-14.293,-19 cait_m48_448.fb_dist_in1k,62.373,37.627,86.453,13.547,356.46,448,1.000,bicubic,-35.107,-13.147,+43 convnext_base.fb_in22k_ft_in1k_384,62.360,37.640,86.240,13.760,88.59,384,1.000,bicubic,-35.720,-13.520,-33 tf_efficientnet_b6.ns_jft_in1k,62.227,37.773,85.160,14.840,43.04,528,0.942,bicubic,-35.393,-14.390,+19 caformer_b36.sail_in1k_384,62.160,37.840,84.493,15.507,98.75,384,1.000,bicubic,-35.340,-15.147,+37 vit_base_patch8_224.augreg2_in21k_ft_in1k,62.027,37.973,85.840,14.160,86.58,224,0.900,bicubic,-35.663,-13.810,+8 convformer_s36.sail_in22k_ft_in1k_384,61.920,38.080,85.960,14.040,40.01,384,1.000,bicubic,-35.930,-13.690,-13 beitv2_base_patch16_224.in1k_ft_in22k_in1k,61.667,38.333,85.480,14.520,86.53,224,0.900,bicubic,-36.023,-14.200,+5 vit_large_r50_s32_384.augreg_in21k_ft_in1k,61.493,38.507,84.027,15.973,329.09,384,1.000,bicubic,-36.367,-15.643,-17 seresnextaa101d_32x8d.sw_in12k_ft_in1k,61.080,38.920,85.920,14.080,93.59,288,1.000,bicubic,-36.830,-13.740,-25 caformer_m36.sail_in22k_ft_in1k,61.067,38.933,84.893,15.107,56.20,224,1.000,bicubic,-36.773,-14.787,-15 swin_large_patch4_window7_224.ms_in22k_ft_in1k,61.000,39.000,85.867,14.133,196.53,224,0.900,bicubic,-36.650,-13.703,+8 convnext_base.fb_in22k_ft_in1k,60.893,39.107,86.147,13.853,88.59,288,1.000,bicubic,-36.967,-13.533,-22 resnetv2_152x4_bit.goog_in21k_ft_in1k,60.773,39.227,83.560,16.440,936.53,480,1.000,bilinear,-36.717,-16.050,+29 convnext_small.in12k_ft_in1k_384,60.733,39.267,84.960,15.040,50.22,384,1.000,bicubic,-37.067,-14.810,-12 convnext_large_mlp.clip_laion2b_augreg_ft_in1k,60.547,39.453,86.293,13.707,200.13,256,1.000,bicubic,-37.403,-13.417,-35 deit3_large_patch16_384.fb_in1k,60.533,39.467,85.733,14.267,304.76,384,1.000,bicubic,-36.887,-13.837,+36 caformer_m36.sail_in1k_384,60.533,39.467,84.760,15.240,56.20,384,1.000,bicubic,-36.907,-14.880,+35 tf_efficientnet_b5.ns_jft_in1k,60.293,39.707,84.453,15.547,30.39,456,0.934,bicubic,-37.207,-15.127,+22 vit_base_patch16_clip_384.openai_ft_in12k_in1k,60.227,39.773,84.613,15.387,86.86,384,0.950,bicubic,-37.963,-15.047,-64 regnety_160.swag_lc_in1k,60.147,39.853,85.760,14.240,83.59,224,0.965,bicubic,-36.673,-13.890,+131 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,59.973,40.027,83.760,16.240,73.88,224,0.950,bicubic,-37.677,-15.880,-3 vit_large_patch14_clip_224.laion2b_ft_in1k,59.947,40.053,85.667,14.333,304.20,224,1.000,bicubic,-37.943,-13.983,-34 xcit_large_24_p8_384.fb_dist_in1k,59.947,40.053,85.467,14.533,188.93,384,1.000,bicubic,-37.573,-14.073,+15 coatnet_2_rw_224.sw_in12k_ft_in1k,59.533,40.467,84.213,15.787,73.87,224,0.950,bicubic,-37.987,-15.387,+13 tf_efficientnetv2_m.in21k_ft_in1k,59.413,40.587,84.573,15.427,54.14,480,1.000,bicubic,-38.407,-15.027,-26 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,59.160,40.840,84.480,15.520,116.09,224,0.950,bicubic,-38.600,-15.220,-19 vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,59.147,40.853,83.280,16.720,86.86,384,1.000,bicubic,-38.843,-16.380,-50 vit_base_patch8_224.augreg_in21k_ft_in1k,58.960,41.040,82.733,17.267,86.58,224,0.900,bicubic,-38.610,-16.857,+2 maxvit_tiny_tf_512.in1k,58.800,41.200,84.573,15.427,31.05,512,1.000,bicubic,-38.780,-14.987,0 tiny_vit_21m_512.dist_in22k_ft_in1k,58.733,41.267,83.693,16.307,21.27,512,1.000,bicubic,-39.137,-15.937,-41 caformer_s18.sail_in22k_ft_in1k_384,58.640,41.360,85.347,14.653,26.34,384,1.000,bicubic,-38.780,-14.273,+23 volo_d2_384.sail_in1k,58.600,41.400,84.280,15.720,58.87,384,1.000,bicubic,-38.720,-15.320,+35 tiny_vit_21m_384.dist_in22k_ft_in1k,58.320,41.680,83.653,16.347,21.23,384,1.000,bicubic,-39.290,-15.937,-8 convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,58.253,41.747,85.480,14.520,88.59,384,1.000,bicubic,-39.787,-14.210,-60 resnext101_32x32d.fb_wsl_ig1b_ft_in1k,58.040,41.960,80.640,19.360,468.53,224,0.875,bilinear,-39.330,-19.040,+26 cait_m36_384.fb_dist_in1k,57.840,42.160,84.840,15.160,271.22,384,1.000,bicubic,-39.560,-14.670,+22 dm_nfnet_f5.dm_in1k,57.640,42.360,82.267,17.733,377.21,544,0.954,bicubic,-40.140,-17.493,-32 dm_nfnet_f6.dm_in1k,57.560,42.440,82.360,17.640,438.36,576,0.956,bicubic,-40.220,-17.290,-34 caformer_s36.sail_in1k_384,57.347,42.653,82.787,17.213,39.30,384,1.000,bicubic,-40.043,-16.753,+20 deit3_base_patch16_224.fb_in22k_ft_in1k,57.267,42.733,83.520,16.480,86.59,224,1.000,bicubic,-40.213,-16.030,+3 volo_d5_224.sail_in1k,57.107,42.893,82.733,17.267,295.46,224,0.960,bicubic,-40.273,-16.837,+19 convnext_base.clip_laiona_augreg_ft_in1k_384,57.080,42.920,84.773,15.227,88.59,384,1.000,bicubic,-40.540,-14.807,-19 deit3_small_patch16_384.fb_in22k_ft_in1k,57.080,42.920,83.067,16.933,22.21,384,1.000,bicubic,-40.050,-16.443,+55 convnextv2_large.fcmae_ft_in1k,56.880,43.120,83.467,16.533,197.96,288,1.000,bicubic,-40.780,-16.253,-28 regnety_160.lion_in12k_ft_in1k,56.747,43.253,83.453,16.547,83.59,288,1.000,bicubic,-40.703,-16.147,+2 dm_nfnet_f4.dm_in1k,56.707,43.293,81.760,18.240,316.07,512,0.951,bicubic,-40.933,-17.780,-26 xcit_medium_24_p8_384.fb_dist_in1k,56.693,43.307,83.453,16.547,84.32,384,1.000,bicubic,-40.587,-16.067,+27 maxvit_small_tf_384.in1k,56.600,43.400,82.293,17.707,69.02,384,1.000,bicubic,-40.830,-17.217,+4 regnety_160.sw_in12k_ft_in1k,56.253,43.747,82.840,17.160,83.59,288,1.000,bicubic,-41.197,-16.750,-1 convformer_m36.sail_in22k_ft_in1k,55.880,44.120,81.813,18.187,57.05,224,1.000,bicubic,-41.720,-17.807,-23 caformer_s36.sail_in22k_ft_in1k,55.813,44.187,82.133,17.867,39.30,224,1.000,bicubic,-41.787,-17.587,-23 vit_large_patch16_224.augreg_in21k_ft_in1k,55.573,44.427,80.107,19.893,304.33,224,0.900,bicubic,-42.057,-19.483,-31 convformer_b36.sail_in1k_384,55.453,44.547,81.293,18.707,99.88,384,1.000,bicubic,-42.077,-18.227,-18 vit_base_patch16_clip_384.openai_ft_in1k,55.000,45.000,82.613,17.387,86.86,384,1.000,bicubic,-42.540,-17.047,-20 vit_base_r50_s16_384.orig_in21k_ft_in1k,54.627,45.373,81.213,18.787,98.95,384,1.000,bicubic,-42.563,-18.347,+37 cait_s36_384.fb_dist_in1k,54.360,45.640,81.373,18.627,68.37,384,1.000,bicubic,-42.970,-18.167,+10 volo_d1_384.sail_in1k,54.333,45.667,81.000,19.000,26.78,384,1.000,bicubic,-42.577,-18.460,+81 deit3_huge_patch14_224.fb_in1k,54.320,45.680,82.093,17.907,632.13,224,0.900,bicubic,-42.580,-17.127,+82 vit_base_patch16_clip_384.laion2b_ft_in1k,54.267,45.733,80.880,19.120,86.86,384,1.000,bicubic,-43.453,-18.750,-48 xcit_small_24_p8_384.fb_dist_in1k,54.253,45.747,81.547,18.453,47.63,384,1.000,bicubic,-42.987,-18.003,+20 vit_medium_patch16_gap_384.sw_in12k_ft_in1k,54.173,45.827,81.640,18.360,39.03,384,0.950,bicubic,-43.267,-17.960,-11 resnetv2_101x3_bit.goog_in21k_ft_in1k,54.027,45.973,81.027,18.973,387.93,448,1.000,bilinear,-42.953,-18.503,+63 resnetv2_152x2_bit.goog_in21k_ft_in1k,54.013,45.987,82.000,18.000,236.34,448,1.000,bilinear,-42.987,-17.590,+58 beitv2_base_patch16_224.in1k_ft_in1k,53.813,46.187,81.853,18.147,86.53,224,0.900,bicubic,-43.357,-17.617,+29 dm_nfnet_f3.dm_in1k,53.773,46.227,79.813,20.187,254.92,416,0.940,bicubic,-43.697,-19.747,-20 convformer_m36.sail_in1k_384,53.547,46.453,80.733,19.267,57.05,384,1.000,bicubic,-43.863,-18.867,-9 deit3_base_patch16_384.fb_in1k,53.427,46.573,80.547,19.453,86.88,384,1.000,bicubic,-43.613,-18.833,+50 convnext_small.in12k_ft_in1k,53.240,46.760,81.400,18.600,50.22,288,1.000,bicubic,-44.110,-18.180,-4 resnext101_32x16d.fb_wsl_ig1b_ft_in1k,53.067,46.933,76.907,23.093,194.03,224,0.875,bilinear,-43.743,-22.693,+83 volo_d4_224.sail_in1k,52.987,47.013,80.427,19.573,192.96,224,0.960,bicubic,-44.293,-19.113,+3 xcit_large_24_p16_384.fb_dist_in1k,52.853,47.147,81.827,18.173,189.10,384,1.000,bicubic,-44.667,-17.653,-32 convnext_small.fb_in22k_ft_in1k_384,52.427,47.573,80.813,19.187,50.22,384,1.000,bicubic,-45.183,-18.787,-48 convnext_base.clip_laion2b_augreg_ft_in12k_in1k,52.320,47.680,82.480,17.520,88.59,256,1.000,bicubic,-45.280,-17.130,-47 vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,52.320,47.680,79.747,20.253,88.34,448,1.000,bicubic,-44.990,-19.733,-5 maxvit_tiny_tf_384.in1k,52.080,47.920,79.813,20.187,30.98,384,1.000,bicubic,-45.230,-19.687,-7 regnety_120.sw_in12k_ft_in1k,51.813,48.187,80.787,19.213,51.82,288,1.000,bicubic,-45.467,-18.743,-4 swin_base_patch4_window7_224.ms_in22k_ft_in1k,51.440,48.560,80.080,19.920,87.77,224,0.900,bicubic,-45.840,-19.510,-6 tf_efficientnet_b4.ns_jft_in1k,51.253,48.747,79.173,20.827,19.34,380,0.922,bicubic,-45.697,-20.087,+53 efficientnet_b5.sw_in12k_ft_in1k,51.213,48.787,78.840,21.160,30.39,448,1.000,bicubic,-46.197,-20.710,-23 resnext101_32x8d.fb_swsl_ig1b_ft_in1k,51.213,48.787,78.240,21.760,88.79,224,0.875,bilinear,-45.997,-21.330,+6 flexivit_large.1200ep_in1k,51.200,48.800,80.667,19.333,304.36,240,0.950,bicubic,-46.210,-18.803,-27 eva02_small_patch14_336.mim_in22k_ft_in1k,51.200,48.800,79.120,20.880,22.13,336,1.000,bicubic,-45.940,-20.350,+16 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,51.120,48.880,78.533,21.467,236.34,384,1.000,bicubic,-45.710,-20.877,+66 convnext_small.fb_in22k_ft_in1k,51.067,48.933,80.920,19.080,50.22,288,1.000,bicubic,-46.293,-18.610,-22 mvitv2_large.fb_in1k,50.867,49.133,78.493,21.507,217.99,224,0.900,bicubic,-46.063,-20.907,+50 beit_base_patch16_224.in22k_ft_in22k_in1k,50.720,49.280,79.733,20.267,86.53,224,0.900,bicubic,-46.360,-19.877,+21 tf_efficientnetv2_l.in1k,50.693,49.307,77.613,22.387,118.52,480,1.000,bicubic,-46.777,-21.917,-41 vit_base_patch16_384.orig_in21k_ft_in1k,50.653,49.347,78.200,21.800,86.86,384,1.000,bicubic,-46.067,-21.280,+78 xcit_small_12_p8_384.fb_dist_in1k,50.587,49.413,79.573,20.427,26.21,384,1.000,bicubic,-46.643,-19.907,-6 convformer_s36.sail_in1k_384,50.333,49.667,78.893,21.107,40.01,384,1.000,bicubic,-46.947,-20.577,-14 convnext_tiny.in12k_ft_in1k_384,50.320,49.680,79.800,20.200,28.59,384,1.000,bicubic,-47.020,-19.800,-26 volo_d3_224.sail_in1k,50.320,49.680,78.213,21.787,86.33,224,0.960,bicubic,-46.770,-21.257,+14 flexivit_large.600ep_in1k,50.253,49.747,80.013,19.987,304.36,240,0.950,bicubic,-47.027,-19.417,-23 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,50.120,49.880,78.040,21.960,86.57,224,0.950,bicubic,-47.330,-21.500,-45 convformer_s18.sail_in22k_ft_in1k_384,50.067,49.933,80.973,19.027,26.77,384,1.000,bicubic,-47.203,-18.577,-18 vit_base_patch16_224.augreg2_in21k_ft_in1k,49.827,50.173,78.960,21.040,86.57,224,0.900,bicubic,-47.323,-20.490,-1 vit_base_patch16_clip_224.openai_ft_in12k_in1k,49.800,50.200,77.120,22.880,86.57,224,0.950,bicubic,-47.730,-22.380,-61 cait_s24_384.fb_dist_in1k,49.733,50.267,78.760,21.240,47.06,384,1.000,bicubic,-47.337,-20.670,+16 inception_next_base.sail_in1k_384,49.693,50.307,79.133,20.867,86.67,384,1.000,bicubic,-47.567,-20.357,-21 xcit_medium_24_p16_384.fb_dist_in1k,49.333,50.667,79.867,20.133,84.40,384,1.000,bicubic,-47.947,-19.643,-26 deit_base_distilled_patch16_384.fb_in1k,49.333,50.667,79.227,20.773,87.63,384,1.000,bicubic,-47.627,-20.253,+28 caformer_s18.sail_in1k_384,49.147,50.853,78.693,21.307,26.34,384,1.000,bicubic,-47.933,-20.797,+11 coat_lite_medium_384.in1k,49.093,50.907,78.600,21.400,44.57,384,1.000,bicubic,-48.057,-20.940,-7 tf_efficientnet_b8.ra_in1k,48.933,51.067,77.227,22.773,87.41,672,0.954,bicubic,-48.267,-22.273,-14 convnextv2_base.fcmae_ft_in1k,48.693,51.307,78.827,21.173,88.72,288,1.000,bicubic,-48.527,-20.713,-21 deit3_large_patch16_224.fb_in1k,48.627,51.373,78.107,21.893,304.37,224,0.900,bicubic,-48.313,-21.153,+27 caformer_b36.sail_in1k,48.533,51.467,75.667,24.333,98.75,224,1.000,bicubic,-48.447,-23.823,+19 flexivit_large.300ep_in1k,48.520,51.480,78.653,21.347,304.36,240,0.950,bicubic,-48.730,-20.837,-29 convnext_base.clip_laion2b_augreg_ft_in1k,48.453,51.547,79.827,20.173,88.59,256,1.000,bicubic,-48.787,-19.693,-28 tf_efficientnetv2_s.in21k_ft_in1k,48.453,51.547,77.867,22.133,21.46,384,1.000,bicubic,-48.277,-21.463,+54 resnest269e.in1k,48.213,51.787,74.333,25.667,110.93,416,0.928,bicubic,-48.297,-25.017,+106 xcit_large_24_p8_224.fb_dist_in1k,48.160,51.840,79.093,20.907,188.93,224,1.000,bicubic,-48.910,-20.327,+2 deit3_medium_patch16_224.fb_in22k_ft_in1k,48.160,51.840,77.027,22.973,38.85,224,1.000,bicubic,-48.810,-22.403,+15 vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,47.960,52.040,76.853,23.147,88.30,384,1.000,bicubic,-49.400,-22.667,-51 regnety_2560.seer_ft_in1k,47.907,52.093,76.800,23.200,"1,282.60",384,1.000,bicubic,-49.313,-22.720,-30 regnetz_e8.ra3_in1k,47.800,52.200,76.200,23.800,57.70,320,1.000,bicubic,-49.400,-23.340,-27 convnext_tiny.in12k_ft_in1k,47.507,52.493,78.747,21.253,28.59,288,1.000,bicubic,-49.553,-20.803,-1 convformer_s36.sail_in22k_ft_in1k,47.440,52.560,77.107,22.893,40.01,224,1.000,bicubic,-49.640,-22.453,-9 resnetv2_50x3_bit.goog_in21k_ft_in1k,47.307,52.693,77.333,22.667,217.32,448,1.000,bilinear,-49.403,-22.157,+49 vit_base_patch16_clip_224.openai_ft_in1k,47.200,52.800,77.533,22.467,86.57,224,0.900,bicubic,-49.880,-22.077,-8 xcit_large_24_p8_224.fb_in1k,47.160,52.840,74.480,25.520,188.93,224,1.000,bicubic,-49.240,-24.510,+112 xcit_small_24_p16_384.fb_dist_in1k,46.987,53.013,77.160,22.840,47.67,384,1.000,bicubic,-50.133,-22.290,-22 tf_efficientnet_b8.ap_in1k,46.893,53.107,76.533,23.467,87.41,672,0.954,bicubic,-50.217,-22.977,-22 convnext_large.fb_in1k,46.813,53.187,76.627,23.373,197.77,288,1.000,bicubic,-50.287,-22.823,-20 dm_nfnet_f2.dm_in1k,46.640,53.360,74.813,25.187,193.78,352,0.920,bicubic,-50.470,-24.847,-23 efficientnetv2_rw_m.agc_in1k,46.293,53.707,75.720,24.280,53.24,416,1.000,bicubic,-50.687,-23.620,-2 swinv2_base_window16_256.ms_in1k,46.213,53.787,75.173,24.827,87.92,256,0.900,bicubic,-50.537,-24.177,+34 resnext101_32x16d.fb_swsl_ig1b_ft_in1k,46.120,53.880,72.240,27.760,194.03,224,0.875,bilinear,-50.480,-27.030,+68 caformer_m36.sail_in1k,46.080,53.920,74.533,25.467,56.20,224,1.000,bicubic,-50.810,-24.897,+13 volo_d2_224.sail_in1k,46.067,53.933,75.253,24.747,58.68,224,0.960,bicubic,-50.933,-24.137,-7 vit_small_patch16_384.augreg_in21k_ft_in1k,45.893,54.107,76.720,23.280,22.20,384,1.000,bicubic,-50.807,-22.710,+40 ecaresnet269d.ra2_in1k,45.853,54.147,75.067,24.933,102.09,352,1.000,bicubic,-51.237,-24.403,-27 convnextv2_tiny.fcmae_ft_in22k_in1k_384,45.760,54.240,76.973,23.027,28.64,384,1.000,bicubic,-51.480,-22.637,-51 vit_small_r26_s32_384.augreg_in21k_ft_in1k,45.720,54.280,76.040,23.960,36.47,384,1.000,bicubic,-50.960,-23.040,+48 tf_efficientnet_b7.ap_in1k,45.373,54.627,74.200,25.800,66.35,600,0.949,bicubic,-51.827,-25.300,-47 swin_base_patch4_window12_384.ms_in1k,45.333,54.667,74.360,25.640,87.90,384,1.000,bicubic,-51.247,-24.810,+64 resnext101_32x8d.fb_wsl_ig1b_ft_in1k,45.320,54.680,70.907,29.093,88.79,224,0.875,bilinear,-51.010,-28.493,+111 xcit_medium_24_p8_224.fb_dist_in1k,45.227,54.773,76.760,23.240,84.32,224,1.000,bicubic,-51.693,-22.640,-1 tiny_vit_21m_224.dist_in22k_ft_in1k,45.027,54.973,75.547,24.453,21.20,224,0.950,bicubic,-52.173,-23.943,-48 eca_nfnet_l2.ra3_in1k,44.987,55.013,75.880,24.120,56.72,384,1.000,bicubic,-52.093,-23.630,-29 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,44.787,55.213,73.747,26.253,41.72,224,0.950,bicubic,-51.843,-25.473,+51 maxxvit_rmlp_small_rw_256.sw_in1k,44.600,55.400,75.040,24.960,66.01,256,0.950,bicubic,-52.200,-24.340,+11 crossvit_18_dagger_408.in1k,44.253,55.747,73.840,26.160,44.61,408,1.000,bicubic,-52.287,-25.520,+68 resnest200e.in1k,44.133,55.867,73.493,26.507,70.20,320,0.909,bicubic,-52.477,-25.857,+51 seresnextaa101d_32x8d.ah_in1k,43.973,56.027,73.347,26.653,93.59,288,1.000,bicubic,-52.987,-25.903,-16 cait_xs24_384.fb_dist_in1k,43.947,56.053,75.160,24.840,26.67,384,1.000,bicubic,-52.593,-24.260,+62 mvitv2_base.fb_in1k,43.747,56.253,74.507,25.493,51.47,224,0.900,bicubic,-53.013,-24.753,+12 resnetrs200.tf_in1k,43.733,56.267,72.827,27.173,93.21,320,1.000,bicubic,-52.967,-26.543,+26 rexnetr_300.sw_in12k_ft_in1k,43.653,56.347,76.507,23.493,34.81,288,1.000,bicubic,-53.187,-23.003,-1 tresnet_xl.miil_in1k_448,43.493,56.507,72.427,27.573,78.44,448,0.875,bilinear,-52.487,-26.623,+177 caformer_s18.sail_in22k_ft_in1k,43.333,56.667,74.960,25.040,26.34,224,1.000,bicubic,-53.377,-24.590,+18 xcit_small_12_p16_384.fb_dist_in1k,43.307,56.693,73.933,26.067,26.25,384,1.000,bicubic,-53.613,-25.457,-16 vit_base_patch16_224.augreg_in21k_ft_in1k,43.267,56.733,72.907,27.093,86.57,224,0.900,bicubic,-53.613,-26.623,-10 swin_small_patch4_window7_224.ms_in22k_ft_in1k,43.227,56.773,76.187,23.813,49.61,224,0.900,bicubic,-53.253,-23.203,+65 resnetrs420.tf_in1k,43.147,56.853,70.440,29.560,191.89,416,1.000,bicubic,-53.763,-29.080,-16 vit_base_patch32_clip_384.openai_ft_in12k_in1k,43.107,56.893,73.253,26.747,88.30,384,0.950,bicubic,-54.003,-26.247,-53 edgenext_base.in21k_ft_in1k,43.040,56.960,75.440,24.560,18.51,320,1.000,bicubic,-53.690,-23.980,+5 coatnet_rmlp_2_rw_224.sw_in1k,43.040,56.960,71.693,28.307,73.88,224,0.950,bicubic,-53.500,-27.607,+55 xcit_medium_24_p8_224.fb_in1k,43.040,56.960,70.320,29.680,84.32,224,1.000,bicubic,-53.050,-28.570,+142 tf_efficientnet_b7.ra_in1k,42.973,57.027,73.147,26.853,66.35,600,0.949,bicubic,-54.027,-26.373,-38 tf_efficientnetv2_m.in1k,42.813,57.187,72.600,27.400,54.14,480,1.000,bicubic,-54.397,-26.930,-74 vit_medium_patch16_gap_256.sw_in12k_ft_in1k,42.707,57.293,74.307,25.693,38.86,256,0.950,bicubic,-53.963,-25.063,+23 hrnet_w48_ssld.paddle_in1k,42.600,57.400,72.147,27.853,77.47,288,1.000,bilinear,-54.430,-27.243,-44 dm_nfnet_f1.dm_in1k,42.547,57.453,71.560,28.440,132.63,320,0.910,bicubic,-54.483,-28.080,-44 xcit_tiny_24_p8_384.fb_dist_in1k,42.453,57.547,72.853,27.147,12.11,384,1.000,bicubic,-54.077,-26.417,+49 gcvit_base.in1k,42.440,57.560,73.773,26.227,90.32,224,0.875,bicubic,-54.120,-25.377,+39 swinv2_small_window16_256.ms_in1k,42.360,57.640,72.867,27.133,49.73,256,0.900,bicubic,-54.110,-26.333,+55 maxvit_rmlp_small_rw_224.sw_in1k,42.227,57.773,72.387,27.613,64.90,224,0.900,bicubic,-54.353,-26.863,+35 convformer_s18.sail_in1k_384,42.120,57.880,74.453,25.547,26.77,384,1.000,bicubic,-54.920,-24.937,-51 convnextv2_tiny.fcmae_ft_in22k_in1k,42.093,57.907,75.747,24.253,28.64,288,1.000,bicubic,-54.757,-23.713,-24 maxvit_base_tf_224.in1k,41.987,58.013,70.080,29.920,119.47,224,0.950,bicubic,-54.963,-29.500,-39 convnext_base.fb_in1k,41.947,58.053,73.987,26.013,88.59,288,1.000,bicubic,-54.883,-25.463,-22 xcit_small_24_p8_224.fb_dist_in1k,41.907,58.093,73.653,26.347,47.63,224,1.000,bicubic,-54.963,-25.827,-30 crossvit_15_dagger_408.in1k,41.907,58.093,72.040,27.960,28.50,408,1.000,bicubic,-54.483,-27.310,+63 resnetaa101d.sw_in12k_ft_in1k,41.893,58.107,72.387,27.613,44.57,288,1.000,bicubic,-54.807,-26.973,0 maxvit_large_tf_224.in1k,41.880,58.120,68.653,31.347,211.79,224,0.950,bicubic,-55.080,-30.737,-46 xcit_small_24_p8_224.fb_in1k,41.800,58.200,71.080,28.920,47.63,224,1.000,bicubic,-54.610,-28.070,+55 vit_large_r50_s32_224.augreg_in21k_ft_in1k,41.640,58.360,70.227,29.773,328.99,224,0.900,bicubic,-55.150,-29.113,-23 vit_base_patch16_clip_224.laion2b_ft_in1k,41.613,58.387,73.627,26.373,86.57,224,1.000,bicubic,-55.517,-25.833,-80 swinv2_base_window8_256.ms_in1k,41.547,58.453,72.427,27.573,87.92,256,0.900,bicubic,-54.983,-26.893,+34 resnext101_32x4d.fb_swsl_ig1b_ft_in1k,41.547,58.453,71.720,28.280,44.18,224,0.875,bilinear,-54.873,-27.430,+48 deit3_small_patch16_224.fb_in22k_ft_in1k,41.200,58.800,71.893,28.107,22.06,224,1.000,bicubic,-55.460,-27.437,+5 maxvit_rmlp_tiny_rw_256.sw_in1k,41.173,58.827,71.187,28.813,29.15,256,0.950,bicubic,-55.247,-28.193,+46 regnety_1280.seer_ft_in1k,41.147,58.853,71.200,28.800,644.81,384,1.000,bicubic,-55.713,-28.190,-39 seresnext101d_32x8d.ah_in1k,41.147,58.853,70.920,29.080,93.59,288,1.000,bicubic,-55.553,-28.560,-9 convnext_tiny.fb_in22k_ft_in1k_384,41.053,58.947,72.533,27.467,28.59,384,1.000,bicubic,-56.027,-26.977,-76 caformer_s36.sail_in1k,41.040,58.960,70.893,29.107,39.30,224,1.000,bicubic,-55.650,-28.467,-8 davit_base.msft_in1k,40.880,59.120,72.747,27.253,87.95,224,0.950,bicubic,-56.060,-26.593,-54 tf_efficientnet_b6.ap_in1k,40.827,59.173,71.627,28.373,43.04,528,0.942,bicubic,-56.253,-27.793,-81 flexivit_base.1200ep_in1k,40.640,59.360,72.307,27.693,86.59,240,0.950,bicubic,-56.100,-27.053,-28 convformer_b36.sail_in1k,40.453,59.547,69.440,30.560,99.88,224,1.000,bicubic,-56.447,-30.040,-50 resmlp_big_24_224.fb_in22k_ft_in1k,40.373,59.627,74.800,25.200,129.14,224,0.875,bicubic,-56.247,-24.650,+1 deit3_small_patch16_384.fb_in1k,40.333,59.667,70.333,29.667,22.21,384,1.000,bicubic,-55.867,-28.957,+77 tresnet_l.miil_in1k_448,40.213,59.787,69.920,30.080,55.99,448,0.875,bilinear,-55.647,-29.280,+158 deit_base_patch16_384.fb_in1k,40.187,59.813,70.813,29.187,86.86,384,1.000,bicubic,-55.973,-28.427,+86 regnetz_040_h.ra3_in1k,40.000,60.000,71.320,28.680,28.94,320,1.000,bicubic,-56.700,-27.970,-26 resnetrs350.tf_in1k,39.960,60.040,68.907,31.093,163.96,384,1.000,bicubic,-56.790,-30.463,-37 flexivit_base.600ep_in1k,39.920,60.080,71.893,28.107,86.59,240,0.950,bicubic,-56.730,-27.437,-10 regnetz_d8.ra3_in1k,39.907,60.093,71.707,28.293,23.37,320,1.000,bicubic,-56.713,-27.803,-5 swin_s3_base_224.ms_in1k,39.853,60.147,70.467,29.533,71.13,224,0.900,bicubic,-56.387,-28.683,+62 flexivit_base.300ep_in1k,39.533,60.467,71.000,29.000,86.59,240,0.950,bicubic,-57.067,-28.530,-4 seresnext101_32x8d.ah_in1k,39.520,60.480,69.480,30.520,93.57,288,1.000,bicubic,-57.250,-29.870,-44 gcvit_small.in1k,39.400,60.600,70.480,29.520,51.09,224,0.875,bicubic,-56.880,-28.660,+53 regnetz_d8_evos.ch_in1k,39.360,60.640,71.427,28.573,23.46,320,1.000,bicubic,-57.210,-28.033,0 deit3_base_patch16_224.fb_in1k,39.173,60.827,70.933,29.067,86.59,224,0.900,bicubic,-57.127,-28.247,+47 volo_d1_224.sail_in1k,39.013,60.987,70.267,29.733,26.63,224,0.960,bicubic,-57.307,-29.043,+44 vit_large_patch32_384.orig_in21k_ft_in1k,38.920,61.080,68.933,31.067,306.63,384,1.000,bicubic,-56.910,-30.237,+151 resnetv2_101x1_bit.goog_in21k_ft_in1k,38.907,61.093,71.027,28.973,44.54,448,1.000,bilinear,-57.193,-28.243,+90 mvitv2_small.fb_in1k,38.773,61.227,70.413,29.587,34.87,224,0.900,bicubic,-57.597,-28.787,+29 regnetz_040.ra3_in1k,38.747,61.253,70.440,29.560,27.12,320,1.000,bicubic,-57.973,-29.060,-43 coat_lite_medium.in1k,38.600,61.400,71.093,28.907,44.57,224,0.900,bicubic,-57.870,-28.147,+12 xcit_small_12_p8_224.fb_dist_in1k,38.280,61.720,71.373,28.627,26.21,224,1.000,bicubic,-58.420,-27.987,-39 resnet200d.ra2_in1k,38.133,61.867,68.573,31.427,64.69,320,1.000,bicubic,-58.597,-30.847,-48 davit_small.msft_in1k,38.120,61.880,70.747,29.253,49.75,224,0.950,bicubic,-58.510,-28.413,-25 tf_efficientnet_b7.aa_in1k,38.120,61.880,69.320,30.680,66.35,600,0.949,bicubic,-58.420,-29.940,-5 focalnet_base_srf.ms_in1k,37.827,62.173,69.747,30.253,88.15,224,0.900,bicubic,-58.733,-29.483,-10 focalnet_base_lrf.ms_in1k,37.787,62.213,68.573,31.427,88.75,224,0.900,bicubic,-58.663,-30.727,+10 convformer_m36.sail_in1k,37.760,62.240,67.280,32.720,57.05,224,1.000,bicubic,-58.920,-32.300,-34 swinv2_small_window8_256.ms_in1k,37.733,62.267,69.853,30.147,49.73,256,0.900,bicubic,-58.537,-29.357,+38 xcit_large_24_p16_224.fb_dist_in1k,37.653,62.347,71.613,28.387,189.10,224,1.000,bicubic,-59.147,-27.737,-67 seresnet152d.ra2_in1k,37.653,62.347,69.493,30.507,66.84,320,1.000,bicubic,-59.117,-29.947,-63 maxvit_small_tf_224.in1k,37.560,62.440,67.947,32.053,68.93,224,0.950,bicubic,-59.130,-31.423,-42 xcit_small_12_p8_224.fb_in1k,37.547,62.453,68.160,31.840,26.21,224,1.000,bicubic,-58.563,-31.000,+74 eca_nfnet_l1.ra2_in1k,37.533,62.467,70.933,29.067,41.41,320,1.000,bicubic,-59.167,-28.447,-47 fastvit_ma36.apple_dist_in1k,37.493,62.507,71.053,28.947,44.07,256,0.950,bicubic,-59.287,-28.277,-69 efficientvit_b3.r288_in1k,37.427,62.573,69.893,30.107,48.65,288,1.000,bicubic,-59.203,-29.457,-35 twins_svt_large.in1k,37.213,62.787,69.187,30.813,99.27,224,0.900,bicubic,-59.027,-30.013,+34 regnetz_d32.ra3_in1k,37.160,62.840,70.480,29.520,27.58,320,0.950,bicubic,-59.430,-28.900,-29 vit_base_patch32_384.augreg_in21k_ft_in1k,37.107,62.893,69.787,30.213,88.30,384,1.000,bicubic,-59.383,-29.623,-11 regnety_064.ra3_in1k,37.013,62.987,68.107,31.893,30.58,288,1.000,bicubic,-59.347,-31.123,+11 swin_s3_small_224.ms_in1k,36.933,63.067,68.253,31.747,49.74,224,0.900,bicubic,-59.297,-30.827,+34 resnext101_64x4d.c1_in1k,36.840,63.160,66.627,33.373,83.46,288,1.000,bicubic,-59.240,-32.573,+70 regnety_160.deit_in1k,36.827,63.173,69.120,30.880,83.59,288,1.000,bicubic,-59.523,-30.060,+9 efficientnetv2_rw_s.ra2_in1k,36.827,63.173,68.320,31.680,23.94,384,1.000,bicubic,-59.713,-30.780,-24 convnext_small.fb_in1k,36.707,63.293,71.067,28.933,50.22,288,1.000,bicubic,-59.813,-28.273,-19 pit_b_distilled_224.in1k,36.707,63.293,68.093,31.907,74.79,224,0.900,bicubic,-59.523,-31.017,+28 pvt_v2_b4.in1k,36.627,63.373,68.653,31.347,62.56,224,0.900,bicubic,-59.723,-30.677,+7 pvt_v2_b5.in1k,36.293,63.707,68.427,31.573,81.96,224,0.900,bicubic,-60.067,-30.813,+4 cait_xxs36_384.fb_dist_in1k,36.267,63.733,67.733,32.267,17.37,384,1.000,bicubic,-59.563,-31.417,+120 fastvit_sa36.apple_dist_in1k,36.187,63.813,69.267,30.733,31.53,256,0.900,bicubic,-60.173,-29.903,0 regnety_640.seer_ft_in1k,36.120,63.880,68.307,31.693,281.38,384,1.000,bicubic,-60.730,-31.113,-94 nest_base_jx.goog_in1k,36.053,63.947,66.747,33.253,67.72,224,0.875,bicubic,-60.187,-32.473,+17 coatnet_1_rw_224.sw_in1k,35.973,64.027,67.133,32.867,41.72,224,0.950,bicubic,-60.057,-32.027,+74 maxvit_tiny_rw_224.sw_in1k,35.960,64.040,65.573,34.427,29.06,224,0.950,bicubic,-60.280,-33.597,+19 repvgg_d2se.rvgg_in1k,35.827,64.173,66.720,33.280,133.33,320,1.000,bilinear,-60.863,-32.640,-67 cs3se_edgenet_x.c2ns_in1k,35.667,64.333,67.827,32.173,50.72,320,1.000,bicubic,-60.783,-31.573,-22 sequencer2d_l.in1k,35.600,64.400,67.360,32.640,54.30,224,0.875,bicubic,-60.550,-31.800,+38 swin_base_patch4_window7_224.ms_in1k,35.560,64.440,68.160,31.840,87.77,224,0.900,bicubic,-60.560,-30.900,+45 regnety_080.ra3_in1k,35.560,64.440,67.213,32.787,39.18,288,1.000,bicubic,-60.970,-32.107,-35 tf_efficientnet_b3.ns_jft_in1k,35.520,64.480,67.773,32.227,12.23,300,0.904,bicubic,-60.870,-31.617,-15 inception_next_base.sail_in1k,35.187,64.813,66.533,33.467,86.67,224,0.950,bicubic,-61.373,-32.547,-44 tf_efficientnet_b6.aa_in1k,35.147,64.853,67.733,32.267,43.04,528,0.942,bicubic,-61.523,-31.757,-66 resnetrs270.tf_in1k,34.973,65.027,65.453,34.547,129.86,352,1.000,bicubic,-61.717,-33.897,-72 gcvit_tiny.in1k,34.947,65.053,66.893,33.107,28.22,224,0.875,bicubic,-61.233,-32.297,+21 tf_efficientnet_b5.ap_in1k,34.813,65.187,67.467,32.533,30.39,456,0.934,bicubic,-61.867,-31.993,-72 xcit_tiny_12_p8_384.fb_dist_in1k,34.653,65.347,66.293,33.707,6.71,384,1.000,bicubic,-61.427,-32.567,+49 fastvit_ma36.apple_in1k,34.627,65.373,66.987,33.013,44.07,256,0.950,bicubic,-61.843,-32.163,-37 vit_base_patch16_224_miil.in21k_ft_in1k,34.533,65.467,64.973,35.027,86.54,224,0.875,bilinear,-61.917,-34.337,-32 xcit_medium_24_p16_224.fb_dist_in1k,34.333,65.667,67.880,32.120,84.40,224,1.000,bicubic,-62.267,-31.390,-61 resnet152d.ra2_in1k,34.280,65.720,65.947,34.053,60.21,320,1.000,bicubic,-62.110,-33.213,-26 deit3_medium_patch16_224.fb_in1k,34.253,65.747,66.013,33.987,38.85,224,0.900,bicubic,-61.827,-33.227,+43 coat_small.in1k,34.187,65.813,66.133,33.867,21.69,224,0.900,bicubic,-61.723,-33.017,+82 tresnet_m.miil_in1k_448,34.107,65.893,64.533,35.467,31.39,448,0.875,bilinear,-60.883,-33.927,+253 resmlp_big_24_224.fb_distilled_in1k,34.053,65.947,69.573,30.427,129.14,224,0.875,bicubic,-62.397,-29.547,-39 regnetv_064.ra3_in1k,34.000,66.000,67.880,32.120,30.58,288,1.000,bicubic,-62.410,-31.480,-34 tiny_vit_11m_224.dist_in22k_ft_in1k,33.867,66.133,65.827,34.173,11.00,224,0.950,bicubic,-62.423,-33.403,-12 xcit_tiny_24_p16_384.fb_dist_in1k,33.827,66.173,65.400,34.600,12.12,384,1.000,bicubic,-62.113,-33.810,+70 inception_next_small.sail_in1k,33.800,66.200,65.773,34.227,49.37,224,0.875,bicubic,-62.440,-33.417,-10 caformer_s18.sail_in1k,33.707,66.293,65.400,34.600,26.34,224,1.000,bicubic,-62.433,-33.770,+19 pvt_v2_b3.in1k,33.640,66.360,67.680,32.320,45.24,224,0.900,bicubic,-62.350,-31.510,+55 focalnet_small_srf.ms_in1k,33.520,66.480,65.907,34.093,49.89,224,0.900,bicubic,-62.550,-33.383,+38 coatnet_rmlp_1_rw_224.sw_in1k,33.507,66.493,65.573,34.427,41.69,224,0.950,bicubic,-62.453,-33.617,+62 convformer_s18.sail_in22k_ft_in1k,33.453,66.547,68.280,31.720,26.77,224,1.000,bicubic,-63.177,-31.060,-83 resnet152.a1h_in1k,33.427,66.573,63.453,36.547,60.19,288,1.000,bicubic,-62.773,-35.807,-2 twins_pcpvt_large.in1k,33.387,66.613,67.907,32.093,60.99,224,0.900,bicubic,-62.753,-31.453,+12 convformer_s36.sail_in1k,33.320,66.680,63.827,36.173,40.01,224,1.000,bicubic,-63.260,-35.413,-74 focalnet_small_lrf.ms_in1k,33.227,66.773,67.067,32.933,50.34,224,0.900,bicubic,-62.953,-32.163,-1 fastvit_sa36.apple_in1k,33.200,66.800,66.000,34.000,31.53,256,0.900,bicubic,-63.040,-33.130,-18 twins_svt_base.in1k,33.200,66.800,65.720,34.280,56.07,224,0.900,bicubic,-62.960,-33.330,+3 pit_b_224.in1k,33.160,66.840,62.347,37.653,73.76,224,0.900,bicubic,-62.470,-36.893,+110 tiny_vit_21m_224.in1k,33.133,66.867,67.453,32.547,21.20,224,0.950,bicubic,-62.997,-31.767,+9 resnext50_32x4d.fb_swsl_ig1b_ft_in1k,33.040,66.960,65.120,34.880,25.03,224,0.875,bilinear,-62.820,-33.950,+68 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,33.027,66.973,64.240,35.760,236.34,224,0.875,bicubic,-63.093,-35.100,+9 mobilevitv2_200.cvnets_in22k_ft_in1k_384,32.987,67.013,65.493,34.507,18.45,384,1.000,bicubic,-63.073,-33.587,+27 convnextv2_nano.fcmae_ft_in22k_in1k_384,32.947,67.053,67.173,32.827,15.62,384,1.000,bicubic,-63.423,-32.227,-48 regnety_320.seer_ft_in1k,32.933,67.067,66.333,33.667,145.05,384,1.000,bicubic,-63.407,-33.017,-41 swinv2_cr_small_ns_224.sw_in1k,32.893,67.107,65.947,34.053,49.70,224,0.900,bicubic,-63.287,-33.173,-10 xception65.ra3_in1k,32.747,67.253,62.973,37.027,39.92,299,0.940,bicubic,-63.613,-36.257,-49 xcit_large_24_p16_224.fb_in1k,32.733,67.267,62.067,37.933,189.10,224,1.000,bicubic,-62.697,-36.773,+150 ecaresnet101d.miil_in1k,32.707,67.293,65.973,34.027,44.57,288,0.950,bicubic,-63.513,-33.337,-24 resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,32.640,67.360,63.987,36.013,194.03,224,0.875,bilinear,-63.150,-35.173,+73 swin_small_patch4_window7_224.ms_in1k,32.573,67.427,65.347,34.653,49.61,224,0.900,bicubic,-63.357,-33.803,+49 mobilevitv2_175.cvnets_in22k_ft_in1k_384,32.480,67.520,64.747,35.253,14.25,384,1.000,bicubic,-63.700,-34.393,-15 efficientvit_b3.r256_in1k,32.440,67.560,65.960,34.040,48.65,256,1.000,bicubic,-63.850,-33.230,-39 tf_efficientnetv2_b3.in21k_ft_in1k,32.333,67.667,66.133,33.867,14.36,300,0.900,bicubic,-63.887,-33.097,-28 nest_small_jx.goog_in1k,32.280,67.720,63.747,36.253,38.35,224,0.875,bicubic,-63.690,-35.283,+34 convnext_tiny_hnf.a2h_in1k,32.227,67.773,62.893,37.107,28.59,288,1.000,bicubic,-63.793,-36.247,+25 resnext101_64x4d.tv_in1k,32.160,67.840,64.227,35.773,83.46,224,0.875,bilinear,-63.870,-34.833,+17 efficientvit_b3.r224_in1k,32.080,67.920,64.867,35.133,48.65,224,0.950,bicubic,-63.950,-34.263,+19 vit_base_patch16_224.orig_in21k_ft_in1k,32.053,67.947,61.613,38.387,86.57,224,0.900,bicubic,-63.287,-37.387,+153 convnextv2_tiny.fcmae_ft_in1k,32.027,67.973,67.067,32.933,28.64,288,1.000,bicubic,-64.163,-32.263,-27 maxvit_nano_rw_256.sw_in1k,31.933,68.067,64.187,35.813,15.45,256,0.950,bicubic,-63.987,-34.823,+41 tf_efficientnet_b5.ra_in1k,31.787,68.213,65.280,34.720,30.39,456,0.934,bicubic,-64.553,-34.030,-57 rexnetr_200.sw_in12k_ft_in1k,31.733,68.267,67.653,32.347,16.52,288,1.000,bicubic,-64.467,-31.567,-33 swinv2_cr_small_224.sw_in1k,31.733,68.267,62.547,37.453,49.70,224,0.900,bicubic,-64.347,-36.593,+1 swinv2_tiny_window16_256.ms_in1k,31.707,68.293,65.667,34.333,28.35,256,0.900,bicubic,-64.223,-33.353,+34 regnetz_c16_evos.ch_in1k,31.493,68.507,66.347,33.653,13.49,320,0.950,bicubic,-64.647,-32.653,-21 fastvit_sa24.apple_dist_in1k,31.427,68.573,64.760,35.240,21.55,256,0.900,bicubic,-64.723,-34.430,-25 resnest101e.in1k,31.413,68.587,64.320,35.680,48.28,256,0.875,bilinear,-64.447,-34.780,+42 maxvit_rmlp_nano_rw_256.sw_in1k,31.400,68.600,63.413,36.587,15.50,256,0.950,bicubic,-64.570,-35.737,+21 regnety_320.tv2_in1k,31.360,68.640,64.840,35.160,145.05,224,0.965,bicubic,-64.720,-34.390,-8 maxxvit_rmlp_nano_rw_256.sw_in1k,31.333,68.667,64.360,35.640,16.78,256,0.950,bicubic,-64.707,-34.900,+2 regnetv_040.ra3_in1k,31.307,68.693,64.680,35.320,20.64,288,1.000,bicubic,-64.883,-34.570,-40 crossvit_base_240.in1k,31.267,68.733,61.307,38.693,105.03,240,0.875,bicubic,-64.253,-37.563,+95 cait_s24_224.fb_dist_in1k,31.187,68.813,64.573,35.427,46.92,224,1.000,bicubic,-65.233,-34.897,-85 convnext_nano.in12k_ft_in1k,31.107,68.893,67.333,32.667,15.59,288,1.000,bicubic,-64.883,-31.987,+8 efficientnet_b4.ra2_in1k,30.880,69.120,64.667,35.333,19.34,384,1.000,bicubic,-65.270,-34.543,-33 repvit_m2_3.dist_450e_in1k,30.787,69.213,63.840,36.160,23.69,224,0.950,bicubic,-65.543,-35.590,-69 regnety_040.ra3_in1k,30.613,69.387,63.827,36.173,20.65,288,1.000,bicubic,-65.407,-35.243,0 maxvit_tiny_tf_224.in1k,30.587,69.413,62.773,37.227,30.92,224,0.950,bicubic,-65.513,-36.507,-22 crossvit_18_240.in1k,30.587,69.413,61.920,38.080,43.27,240,0.875,bicubic,-64.853,-37.200,+113 sequencer2d_m.in1k,30.560,69.440,62.987,37.013,38.31,224,0.875,bicubic,-65.250,-36.223,+40 vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,30.560,69.440,62.053,37.947,88.22,224,0.900,bicubic,-65.570,-37.107,-34 xcit_small_24_p16_224.fb_dist_in1k,30.547,69.453,64.733,35.267,47.67,224,1.000,bicubic,-65.673,-34.477,-56 crossvit_18_dagger_240.in1k,30.520,69.480,61.787,38.213,44.27,240,0.875,bicubic,-65.050,-37.273,+69 maxxvitv2_nano_rw_256.sw_in1k,30.440,69.560,63.707,36.293,23.70,256,0.950,bicubic,-65.460,-35.463,+21 mvitv2_tiny.fb_in1k,30.173,69.827,64.320,35.680,24.17,224,0.900,bicubic,-65.687,-34.800,+27 xcit_medium_24_p16_224.fb_in1k,30.173,69.827,59.307,40.693,84.40,224,1.000,bicubic,-65.367,-39.473,+74 rexnet_300.nav_in1k,30.027,69.973,63.920,36.080,34.71,224,0.875,bicubic,-65.813,-35.210,+27 cait_xxs24_384.fb_dist_in1k,30.013,69.987,63.907,36.093,12.03,384,1.000,bicubic,-65.267,-35.003,+133 tf_efficientnet_b5.aa_in1k,29.973,70.027,63.080,36.920,30.39,456,0.934,bicubic,-66.497,-36.200,-110 convnext_tiny.fb_in1k,29.960,70.040,65.120,34.880,28.59,288,1.000,bicubic,-65.830,-34.060,+33 twins_pcpvt_base.in1k,29.947,70.053,64.627,35.373,43.83,224,0.900,bicubic,-65.843,-34.503,+33 cs3sedarknet_x.c2ns_in1k,29.933,70.067,62.000,38.000,35.40,288,1.000,bicubic,-66.087,-37.190,-13 resnet50.fb_swsl_ig1b_ft_in1k,29.813,70.187,63.827,36.173,25.56,224,0.875,bilinear,-65.587,-35.273,+107 mobilevitv2_150.cvnets_in22k_ft_in1k_384,29.813,70.187,62.133,37.867,10.59,384,1.000,bicubic,-65.877,-37.007,+43 vit_relpos_base_patch16_clsgap_224.sw_in1k,29.733,70.267,62.880,37.120,86.43,224,0.900,bicubic,-66.037,-36.240,+32 resnet152.a1_in1k,29.720,70.280,57.280,42.720,60.19,288,1.000,bicubic,-65.780,-41.800,+78 convnextv2_nano.fcmae_ft_in22k_in1k,29.693,70.307,65.920,34.080,15.62,288,1.000,bicubic,-66.367,-33.300,-29 deit_base_distilled_patch16_224.fb_in1k,29.587,70.413,64.387,35.613,87.34,224,0.900,bicubic,-66.503,-34.803,-40 convit_base.fb_in1k,29.520,70.480,61.747,38.253,86.54,224,0.875,bicubic,-66.030,-37.363,+57 vit_relpos_medium_patch16_cls_224.sw_in1k,29.307,70.693,60.587,39.413,38.76,224,0.900,bicubic,-66.163,-38.363,+82 swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,29.293,70.707,66.107,33.893,28.29,224,0.900,bicubic,-66.217,-33.013,+67 resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,29.120,70.880,61.000,39.000,88.79,224,0.875,bilinear,-66.390,-38.200,+67 davit_tiny.msft_in1k,29.107,70.893,63.573,36.427,28.36,224,0.950,bicubic,-66.553,-35.477,+38 tf_efficientnetv2_s.in1k,29.040,70.960,61.227,38.773,21.46,384,1.000,bicubic,-67.300,-37.973,-99 edgenext_base.usi_in1k,29.027,70.973,64.907,35.093,18.51,320,1.000,bicubic,-67.673,-34.593,-175 xception65p.ra3_in1k,28.987,71.013,59.907,40.093,39.82,299,0.940,bicubic,-67.223,-39.273,-80 convnext_tiny.fb_in22k_ft_in1k,28.987,71.013,55.600,44.400,28.59,288,1.000,bicubic,-65.853,-43.110,+195 resnet101d.ra2_in1k,28.973,71.027,62.080,37.920,44.57,320,1.000,bicubic,-67.317,-37.040,-97 fastvit_sa24.apple_in1k,28.960,71.040,62.413,37.587,21.55,256,0.900,bicubic,-66.960,-36.747,-9 resnetv2_101.a1h_in1k,28.933,71.067,59.867,40.133,44.54,288,1.000,bicubic,-67.117,-39.273,-40 resnetrs152.tf_in1k,28.893,71.107,60.507,39.493,86.62,320,1.000,bicubic,-67.687,-38.613,-152 regnety_160.tv2_in1k,28.867,71.133,61.627,38.373,83.59,224,0.965,bicubic,-67.103,-37.343,-25 vit_relpos_medium_patch16_224.sw_in1k,28.853,71.147,61.973,38.027,38.75,224,0.900,bicubic,-66.607,-37.037,+71 xcit_tiny_24_p8_224.fb_dist_in1k,28.707,71.293,61.373,38.627,12.11,224,1.000,bicubic,-67.103,-37.737,+5 xcit_tiny_24_p8_224.fb_in1k,28.653,71.347,60.440,39.560,12.11,224,1.000,bicubic,-67.007,-38.590,+25 efficientvit_b2.r288_in1k,28.627,71.373,64.227,35.773,24.33,288,1.000,bicubic,-67.333,-34.933,-26 repvit_m2_3.dist_300e_in1k,28.627,71.373,61.907,38.093,23.69,224,0.950,bicubic,-67.493,-37.333,-68 crossvit_15_dagger_240.in1k,28.547,71.453,60.293,39.707,28.21,240,0.875,bicubic,-67.133,-38.537,+20 cs3edgenet_x.c2_in1k,28.507,71.493,61.133,38.867,47.82,288,1.000,bicubic,-67.543,-38.037,-48 pvt_v2_b2_li.in1k,28.480,71.520,62.000,38.000,22.55,224,0.900,bicubic,-67.080,-37.030,+34 xcit_small_24_p16_224.fb_in1k,28.320,71.680,58.707,41.293,47.67,224,1.000,bicubic,-67.220,-40.013,+38 efficientformerv2_l.snap_dist_in1k,28.253,71.747,61.920,38.080,26.32,224,0.950,bicubic,-67.817,-37.200,-56 resnet101.a1h_in1k,28.160,71.840,59.387,40.613,44.55,288,1.000,bicubic,-67.860,-39.723,-45 efficientformer_l7.snap_dist_in1k,28.000,72.000,63.013,36.987,82.23,224,0.950,bicubic,-68.110,-36.267,-70 flexivit_small.1200ep_in1k,27.853,72.147,58.653,41.347,22.06,240,0.950,bicubic,-67.697,-40.227,+30 resnetaa50d.sw_in12k_ft_in1k,27.813,72.187,62.253,37.747,25.58,288,1.000,bicubic,-68.017,-36.837,-11 pvt_v2_b2.in1k,27.600,72.400,60.733,39.267,25.36,224,0.900,bicubic,-67.880,-38.267,+52 regnetz_c16.ra3_in1k,27.587,72.413,62.720,37.280,13.46,320,1.000,bicubic,-68.353,-36.500,-31 resnext101_32x8d.tv2_in1k,27.573,72.427,59.827,40.173,88.79,224,0.965,bilinear,-68.377,-39.073,-36 vit_base_patch16_384.augreg_in1k,27.547,72.453,57.253,42.747,86.86,384,1.000,bicubic,-67.393,-41.637,+150 coat_lite_small.in1k,27.507,72.493,58.533,41.467,19.84,224,0.900,bicubic,-68.033,-40.547,+27 deit_base_patch16_224.fb_in1k,27.413,72.587,58.880,41.120,86.57,224,0.900,bicubic,-68.037,-40.210,+55 vit_relpos_base_patch16_224.sw_in1k,27.320,72.680,61.147,38.853,86.43,224,0.900,bicubic,-68.240,-37.843,+20 resnetv2_50x1_bit.goog_in21k_ft_in1k,27.307,72.693,62.867,37.133,25.55,448,1.000,bilinear,-67.703,-36.113,+136 regnety_080_tv.tv2_in1k,27.280,72.720,61.520,38.480,39.38,224,0.965,bicubic,-68.580,-37.730,-24 coatnet_bn_0_rw_224.sw_in1k,27.213,72.787,61.253,38.747,27.44,224,0.950,bicubic,-68.487,-37.797,-1 xcit_small_12_p16_224.fb_dist_in1k,27.147,72.853,59.800,40.200,26.25,224,1.000,bicubic,-68.883,-39.190,-63 dm_nfnet_f0.dm_in1k,27.067,72.933,58.320,41.680,71.49,256,0.900,bicubic,-69.243,-41.000,-129 vit_small_patch16_224.augreg_in21k_ft_in1k,27.040,72.960,59.253,40.747,22.05,224,0.900,bicubic,-68.330,-39.687,+67 coatnet_0_rw_224.sw_in1k,27.027,72.973,59.387,40.613,27.44,224,0.950,bicubic,-68.413,-39.663,+52 sequencer2d_s.in1k,26.867,73.133,60.640,39.360,27.65,224,0.875,bicubic,-69.113,-38.490,-55 flexivit_small.600ep_in1k,26.853,73.147,57.253,42.747,22.06,240,0.950,bicubic,-68.817,-41.807,-3 tresnet_v2_l.miil_in21k_ft_in1k,26.707,73.293,59.827,40.173,46.17,224,0.875,bilinear,-69.453,-39.443,-105 gcvit_xtiny.in1k,26.693,73.307,60.907,39.093,19.98,224,0.875,bicubic,-68.897,-38.133,+7 mobilevitv2_200.cvnets_in22k_ft_in1k,26.653,73.347,59.400,40.600,18.45,256,0.888,bicubic,-68.507,-39.700,+94 swin_s3_tiny_224.ms_in1k,26.520,73.480,60.347,39.653,28.33,224,0.900,bicubic,-68.660,-38.603,+90 coatnet_rmlp_nano_rw_224.sw_in1k,26.467,73.533,60.547,39.453,15.15,224,0.900,bicubic,-68.963,-38.493,+48 swinv2_tiny_window8_256.ms_in1k,26.387,73.613,60.480,39.520,28.35,256,0.900,bicubic,-69.103,-38.480,+27 tf_efficientnet_b4.aa_in1k,26.293,73.707,60.080,39.920,19.34,380,0.922,bicubic,-69.607,-38.970,-46 regnetx_320.tv2_in1k,26.267,73.733,58.133,41.867,107.81,224,0.965,bicubic,-69.723,-40.967,-66 tf_efficientnet_b4.ap_in1k,26.227,73.773,60.240,39.760,19.34,380,0.922,bicubic,-69.933,-38.900,-116 coatnext_nano_rw_224.sw_in1k,26.227,73.773,59.613,40.387,14.70,224,0.900,bicubic,-69.203,-39.397,+43 deit3_small_patch16_224.fb_in1k,26.227,73.773,54.480,45.520,22.06,224,0.900,bicubic,-68.763,-44.500,+123 nfnet_l0.ra2_in1k,26.213,73.787,61.747,38.253,35.07,288,1.000,bicubic,-69.907,-37.523,-103 regnety_032.ra_in1k,26.200,73.800,61.013,38.987,19.44,288,1.000,bicubic,-69.760,-38.177,-64 ecaresnet50t.ra2_in1k,26.120,73.880,60.013,39.987,25.57,320,0.950,bicubic,-69.400,-38.797,+7 fbnetv3_g.ra2_in1k,26.107,73.893,61.080,38.920,16.62,288,0.950,bilinear,-69.413,-38.030,+7 mobilevitv2_175.cvnets_in22k_ft_in1k,26.013,73.987,58.520,41.480,14.25,256,0.888,bicubic,-69.207,-40.280,+71 flexivit_small.300ep_in1k,25.907,74.093,57.080,42.920,22.06,240,0.950,bicubic,-69.583,-42.020,+18 visformer_small.in1k,25.853,74.147,58.933,41.067,40.22,224,0.900,bicubic,-69.627,-39.967,+21 inception_next_tiny.sail_in1k,25.800,74.200,59.813,40.187,28.06,224,0.875,bicubic,-69.660,-39.097,+22 vit_small_patch16_384.augreg_in1k,25.773,74.227,57.587,42.413,22.20,384,1.000,bicubic,-69.517,-41.413,+57 convformer_s18.sail_in1k,25.680,74.320,57.960,42.040,26.77,224,1.000,bicubic,-70.270,-41.120,-69 halo2botnet50ts_256.a1h_in1k,25.573,74.427,56.827,43.173,22.64,256,0.950,bicubic,-69.847,-42.193,+34 vit_relpos_medium_patch16_rpn_224.sw_in1k,25.520,74.480,58.667,41.333,38.73,224,0.900,bicubic,-69.980,-40.113,+7 coat_mini.in1k,25.507,74.493,57.707,42.293,10.34,224,0.900,bicubic,-69.463,-41.373,+112 crossvit_15_240.in1k,25.453,74.547,57.587,42.413,27.53,240,0.875,bicubic,-69.697,-41.223,+76 vit_srelpos_medium_patch16_224.sw_in1k,25.373,74.627,58.427,41.573,38.74,224,0.900,bicubic,-69.867,-40.443,+56 resnet101.a1_in1k,25.253,74.747,55.120,44.880,44.55,288,1.000,bicubic,-70.267,-43.730,-3 resnetv2_50x1_bit.goog_distilled_in1k,25.200,74.800,59.667,40.333,25.55,224,0.875,bicubic,-70.910,-39.603,-117 convit_small.fb_in1k,25.147,74.853,57.293,42.707,27.78,224,0.875,bicubic,-70.063,-41.607,+59 xcit_small_12_p16_224.fb_in1k,25.107,74.893,56.067,43.933,26.25,224,1.000,bicubic,-70.323,-42.563,+24 vit_base_patch16_rpn_224.sw_in1k,25.080,74.920,58.680,41.320,86.54,224,0.900,bicubic,-70.310,-40.180,+31 gc_efficientnetv2_rw_t.agc_in1k,25.067,74.933,57.707,42.293,13.68,288,1.000,bicubic,-70.673,-41.473,-43 resnet152.a2_in1k,25.053,74.947,54.320,45.680,60.19,288,1.000,bicubic,-70.437,-44.670,+3 eca_nfnet_l0.ra2_in1k,24.800,75.200,60.040,39.960,24.14,288,1.000,bicubic,-71.140,-39.070,-80 xception41p.ra3_in1k,24.787,75.213,55.253,44.747,26.91,299,0.940,bicubic,-70.723,-43.657,-7 efficientvit_b2.r256_in1k,24.773,75.227,59.720,40.280,24.33,256,1.000,bicubic,-70.877,-39.340,-36 tnt_s_patch16_224,24.707,75.293,58.173,41.827,23.76,224,0.900,bicubic,-70.333,-40.657,+85 convnext_nano_ols.d1h_in1k,24.547,75.453,57.027,42.973,15.65,288,1.000,bicubic,-70.593,-41.823,+70 xcit_tiny_12_p16_384.fb_dist_in1k,24.453,75.547,57.080,42.920,6.72,384,1.000,bicubic,-70.677,-41.940,+70 cs3darknet_x.c2ns_in1k,24.387,75.613,57.760,42.240,35.05,288,1.000,bicubic,-71.463,-41.410,-69 efficientnetv2_rw_t.ra2_in1k,24.280,75.720,57.400,42.600,13.65,288,1.000,bicubic,-71.310,-41.670,-33 swinv2_cr_tiny_ns_224.sw_in1k,24.147,75.853,58.187,41.813,28.33,224,0.900,bicubic,-71.223,-40.953,+23 eva02_tiny_patch14_336.mim_in22k_ft_in1k,24.133,75.867,55.400,44.600,5.76,336,1.000,bicubic,-70.777,-43.480,+100 resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,24.120,75.880,57.373,42.627,44.18,224,0.875,bilinear,-71.320,-41.347,+3 twins_svt_small.in1k,24.107,75.893,57.160,42.840,24.06,224,0.900,bicubic,-71.083,-41.720,+48 coatnet_nano_rw_224.sw_in1k,24.093,75.907,57.147,42.853,15.14,224,0.900,bicubic,-71.147,-41.843,+39 vit_small_r26_s32_224.augreg_in21k_ft_in1k,24.093,75.907,56.213,43.787,36.43,224,0.900,bicubic,-71.537,-42.727,-44 tf_efficientnet_b5.in1k,24.080,75.920,58.347,41.653,30.39,456,0.934,bicubic,-71.990,-40.843,-125 tf_efficientnet_b2.ns_jft_in1k,24.040,75.960,57.320,42.680,9.11,260,0.890,bicubic,-71.730,-41.660,-65 mobilevitv2_150.cvnets_in22k_ft_in1k,24.013,75.987,55.920,44.080,10.59,256,0.888,bicubic,-71.127,-42.860,+55 vit_relpos_small_patch16_224.sw_in1k,24.000,76.000,58.160,41.840,21.98,224,0.900,bicubic,-71.150,-40.800,+48 convnext_nano.d1h_in1k,24.000,76.000,56.200,43.800,15.59,288,1.000,bicubic,-71.350,-42.720,+17 cs3sedarknet_l.c2ns_in1k,23.960,76.040,58.760,41.240,21.91,288,0.950,bicubic,-71.350,-40.370,+19 ecaresnet50d.miil_in1k,23.933,76.067,58.760,41.240,25.58,288,0.950,bicubic,-71.517,-40.080,-10 poolformer_m48.sail_in1k,23.867,76.133,57.160,42.840,73.47,224,0.950,bicubic,-71.763,-42.030,-50 vit_small_patch32_384.augreg_in21k_ft_in1k,23.760,76.240,57.280,42.720,22.92,384,1.000,bicubic,-71.260,-41.600,+68 tiny_vit_11m_224.in1k,23.627,76.373,58.973,41.027,11.00,224,0.950,bicubic,-71.863,-39.817,-23 lamhalobotnet50ts_256.a1h_in1k,23.613,76.387,55.320,44.680,22.57,256,0.950,bicubic,-71.537,-43.560,+44 nasnetalarge.tf_in1k,23.493,76.507,55.000,45.000,88.75,331,0.911,bicubic,-72.197,-43.930,-64 crossvit_small_240.in1k,23.427,76.573,56.840,43.160,26.86,240,0.875,bicubic,-71.423,-42.180,+95 levit_384.fb_dist_in1k,23.400,76.600,56.400,43.600,39.13,224,0.900,bicubic,-72.130,-42.660,-42 levit_conv_384.fb_dist_in1k,23.387,76.613,56.413,43.587,39.13,224,0.900,bicubic,-72.143,-42.637,-42 seresnext50_32x4d.racm_in1k,23.360,76.640,57.453,42.547,27.56,288,0.950,bicubic,-72.380,-41.567,-75 pnasnet5large.tf_in1k,23.333,76.667,53.627,46.373,86.06,331,0.911,bicubic,-72.377,-45.403,-72 focalnet_tiny_srf.ms_in1k,23.267,76.733,58.333,41.667,28.43,224,0.900,bicubic,-72.233,-40.797,-36 efficientnet_b3.ra2_in1k,23.200,76.800,55.947,44.053,12.23,320,1.000,bicubic,-72.520,-43.093,-76 wide_resnet50_2.racm_in1k,23.187,76.813,56.000,44.000,68.88,288,0.950,bicubic,-72.443,-42.660,-65 pit_s_distilled_224.in1k,23.160,76.840,57.093,42.907,24.04,224,0.900,bicubic,-71.980,-41.637,+36 hrnet_w18_ssld.paddle_in1k,23.147,76.853,55.160,44.840,21.30,288,1.000,bilinear,-72.843,-44.150,-130 efficientformer_l3.snap_dist_in1k,23.120,76.880,57.147,42.853,31.41,224,0.950,bicubic,-72.470,-42.013,-63 nest_tiny_jx.goog_in1k,23.107,76.893,56.200,43.800,17.06,224,0.875,bicubic,-72.133,-42.710,+12 focalnet_tiny_lrf.ms_in1k,23.080,76.920,58.560,41.440,28.65,224,0.900,bicubic,-72.380,-40.400,-29 tiny_vit_5m_224.dist_in22k_ft_in1k,23.067,76.933,56.480,43.520,5.39,224,0.950,bicubic,-71.983,-42.490,+47 resnet61q.ra2_in1k,23.013,76.987,55.760,44.240,36.85,288,1.000,bicubic,-72.767,-43.230,-91 regnetx_160.tv2_in1k,22.987,77.013,56.333,43.667,54.28,224,0.965,bicubic,-72.893,-42.757,-111 resmlp_big_24_224.fb_in1k,22.893,77.107,54.280,45.720,129.14,224,0.875,bicubic,-71.787,-44.220,+106 vit_srelpos_small_patch16_224.sw_in1k,22.880,77.120,55.747,44.253,21.97,224,0.900,bicubic,-72.150,-43.203,+46 resnetv2_50d_evos.ah_in1k,22.867,77.133,55.173,44.827,25.59,288,1.000,bicubic,-72.763,-43.937,-75 halonet50ts.a1h_in1k,22.867,77.133,54.013,45.987,22.73,256,0.940,bicubic,-72.273,-44.877,+29 vit_base_patch32_clip_224.laion2b_ft_in1k,22.853,77.147,55.013,44.987,88.22,224,0.900,bicubic,-72.667,-43.977,-57 tf_efficientnet_b4.in1k,22.773,77.227,57.093,42.907,19.34,380,0.922,bicubic,-73.047,-41.957,-105 poolformerv2_m48.sail_in1k,22.760,77.240,55.747,44.253,73.35,224,1.000,bicubic,-73.010,-43.293,-96 twins_pcpvt_small.in1k,22.693,77.307,56.813,43.187,24.11,224,0.900,bicubic,-72.517,-42.067,+6 repvit_m1_5.dist_450e_in1k,22.680,77.320,56.107,43.893,14.64,224,0.950,bicubic,-73.220,-43.013,-122 convnextv2_nano.fcmae_ft_in1k,22.653,77.347,58.307,41.693,15.62,288,1.000,bicubic,-73.147,-40.783,-106 poolformer_m36.sail_in1k,22.587,77.413,55.373,44.627,56.17,224,0.950,bicubic,-72.803,-43.567,-23 vit_base_patch32_clip_224.openai_ft_in1k,22.560,77.440,55.333,44.667,88.22,224,0.900,bicubic,-72.550,-43.597,+25 vit_base_patch32_224.augreg_in21k_ft_in1k,22.427,77.573,54.027,45.973,88.22,224,0.900,bicubic,-72.583,-45.033,+41 resnetv2_50d_gn.ah_in1k,22.307,77.693,55.000,45.000,25.57,288,1.000,bicubic,-73.173,-43.950,-51 ecaresnet101d_pruned.miil_in1k,22.267,77.733,56.227,43.773,24.88,288,0.950,bicubic,-73.493,-42.953,-103 wide_resnet101_2.tv2_in1k,22.160,77.840,54.973,45.027,126.89,224,0.965,bilinear,-73.380,-43.887,-76 ecaresnet50t.a1_in1k,22.093,77.907,53.680,46.320,25.57,288,1.000,bicubic,-73.317,-45.330,-35 xcit_tiny_12_p8_224.fb_dist_in1k,22.067,77.933,54.267,45.733,6.71,224,1.000,bicubic,-73.023,-44.643,+23 resnext50_32x4d.a1h_in1k,22.013,77.987,54.080,45.920,25.03,288,1.000,bicubic,-73.437,-44.760,-48 efficientvit_b2.r224_in1k,22.000,78.000,55.533,44.467,24.33,224,0.950,bicubic,-73.200,-43.387,-3 res2net101d.in1k,21.853,78.147,51.680,48.320,45.23,224,0.875,bilinear,-72.967,-47.090,+67 tresnet_m.miil_in21k_ft_in1k,21.680,78.320,53.853,46.147,31.39,224,0.875,bilinear,-74.030,-45.067,-106 repvit_m1_5.dist_300e_in1k,21.613,78.387,54.707,45.293,14.64,224,0.950,bicubic,-74.027,-44.283,-97 efficientformerv2_s2.snap_dist_in1k,21.547,78.453,54.240,45.760,12.71,224,0.950,bicubic,-73.813,-44.690,-33 fastvit_sa12.apple_dist_in1k,21.493,78.507,54.613,45.387,11.58,256,0.900,bicubic,-73.657,-44.347,+3 resnet50_gn.a1h_in1k,21.387,78.613,54.067,45.933,25.56,288,0.950,bicubic,-73.863,-44.933,-20 maxvit_rmlp_pico_rw_256.sw_in1k,21.240,78.760,51.920,48.080,7.52,256,0.950,bicubic,-73.400,-46.890,+88 convmixer_1536_20.in1k,21.213,78.787,55.507,44.493,51.63,224,0.960,bicubic,-73.867,-43.523,+14 swin_tiny_patch4_window7_224.ms_in1k,21.173,78.827,55.933,44.067,28.29,224,0.900,bicubic,-73.967,-42.927,+1 resnet101.a2_in1k,21.173,78.827,51.920,48.080,44.55,288,1.000,bicubic,-74.237,-47.020,-46 pit_s_224.in1k,21.080,78.920,53.613,46.387,23.46,224,0.900,bicubic,-73.490,-45.087,+100 xcit_tiny_12_p8_224.fb_in1k,20.960,79.040,52.467,47.533,6.71,224,1.000,bicubic,-73.730,-46.193,+73 resnet51q.ra2_in1k,20.920,79.080,55.680,44.320,35.70,288,1.000,bilinear,-74.950,-43.450,-144 poolformerv2_m36.sail_in1k,20.920,79.080,53.120,46.880,56.08,224,1.000,bicubic,-74.480,-46.180,-47 resnetrs101.tf_in1k,20.867,79.133,52.827,47.173,63.62,288,0.940,bicubic,-74.563,-46.163,-59 deit_small_distilled_patch16_224.fb_in1k,20.720,79.280,55.133,44.867,22.44,224,0.900,bicubic,-73.990,-43.897,+67 sebotnet33ts_256.a1h_in1k,20.720,79.280,48.760,51.240,13.70,256,0.940,bicubic,-73.890,-49.750,+89 regnety_032.tv2_in1k,20.547,79.453,54.347,45.653,19.44,224,0.965,bicubic,-74.763,-44.563,-39 resnet152.tv2_in1k,20.493,79.507,52.347,47.653,60.19,224,0.965,bilinear,-75.007,-46.613,-83 ecaresnetlight.miil_in1k,20.480,79.520,53.413,46.587,30.16,288,0.950,bicubic,-74.810,-45.617,-39 resnest50d_4s2x40d.in1k,20.387,79.613,52.773,47.227,30.42,224,0.875,bicubic,-74.583,-46.007,+19 resnetaa50.a1h_in1k,20.067,79.933,51.947,48.053,25.56,288,1.000,bicubic,-75.133,-47.143,-26 resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,20.040,79.960,53.560,46.440,25.03,224,0.875,bilinear,-74.850,-45.300,+27 haloregnetz_b.ra3_in1k,20.013,79.987,49.987,50.013,11.68,224,0.940,bicubic,-74.677,-48.843,+62 regnetz_b16.ra3_in1k,19.813,80.187,52.853,47.147,9.72,288,1.000,bicubic,-75.357,-46.227,-25 xcit_nano_12_p8_384.fb_dist_in1k,19.787,80.213,50.587,49.413,3.05,384,1.000,bicubic,-73.733,-47.943,+221 resnext50_32x4d.a1_in1k,19.733,80.267,50.173,49.827,25.03,288,1.000,bicubic,-75.097,-48.417,+40 tresnet_xl.miil_in1k,19.640,80.360,53.160,46.840,78.44,224,0.875,bilinear,-75.800,-45.630,-75 senet154.gluon_in1k,19.320,80.680,47.600,52.400,115.09,224,0.875,bicubic,-75.600,-51.160,+18 rexnet_200.nav_in1k,19.227,80.773,52.640,47.360,16.37,224,0.875,bicubic,-75.713,-46.370,+12 levit_conv_256.fb_dist_in1k,19.187,80.813,50.067,49.933,18.89,224,0.900,bicubic,-75.833,-48.923,+1 levit_256.fb_dist_in1k,19.173,80.827,50.107,49.893,18.89,224,0.900,bicubic,-75.847,-48.823,-1 lambda_resnet50ts.a1h_in1k,19.147,80.853,49.240,50.760,21.54,256,0.950,bicubic,-75.623,-49.450,+37 repvgg_b3.rvgg_in1k,19.067,80.933,50.293,49.707,123.09,224,0.875,bilinear,-75.483,-48.417,+79 mixer_b16_224.miil_in21k_ft_in1k,19.040,80.960,51.213,48.787,59.88,224,0.875,bilinear,-76.260,-47.667,-56 legacy_senet154.in1k,19.040,80.960,47.947,52.053,115.09,224,0.875,bilinear,-76.030,-50.883,-11 resnet50d.a1_in1k,18.960,81.040,48.813,51.187,25.58,288,1.000,bicubic,-75.770,-49.937,+44 seresnext101_64x4d.gluon_in1k,18.933,81.067,49.213,50.787,88.23,224,0.875,bicubic,-75.997,-49.617,+6 deit_small_patch16_224.fb_in1k,18.893,81.107,51.400,48.600,22.05,224,0.900,bicubic,-75.457,-47.290,+105 mobilevitv2_200.cvnets_in1k,18.893,81.107,50.520,49.480,18.45,256,0.888,bicubic,-75.947,-48.010,+23 gcvit_xxtiny.in1k,18.773,81.227,53.347,46.653,12.00,224,0.875,bicubic,-75.647,-45.543,+95 edgenext_small.usi_in1k,18.680,81.320,53.600,46.400,5.59,320,1.000,bicubic,-76.720,-45.270,-77 tf_efficientnet_b1.ns_jft_in1k,18.653,81.347,51.733,48.267,7.79,240,0.882,bicubic,-76.507,-47.217,-42 regnetx_080.tv2_in1k,18.573,81.427,50.333,49.667,39.57,224,0.965,bicubic,-76.527,-48.497,-24 ecaresnet50t.a2_in1k,18.533,81.467,48.773,51.227,25.57,288,1.000,bicubic,-76.817,-50.087,-73 poolformer_s36.sail_in1k,18.493,81.507,52.187,47.813,30.86,224,0.900,bicubic,-76.587,-46.723,-23 repvit_m3.dist_in1k,18.480,81.520,51.867,48.133,10.68,224,0.950,bicubic,-76.720,-46.953,-52 wide_resnet50_2.tv2_in1k,18.467,81.533,52.467,47.533,68.88,224,0.965,bilinear,-76.403,-46.443,+8 cait_xxs36_224.fb_dist_in1k,18.307,81.693,49.480,50.520,17.30,224,1.000,bicubic,-75.963,-49.230,+106 cs3darknet_l.c2ns_in1k,18.293,81.707,51.840,48.160,21.16,288,0.950,bicubic,-76.827,-47.140,-35 seresnet50.ra2_in1k,18.293,81.707,51.253,48.747,28.09,288,0.950,bicubic,-77.037,-47.757,-76 sehalonet33ts.ra2_in1k,18.227,81.773,47.733,52.267,13.69,256,0.940,bicubic,-76.533,-50.837,+21 ese_vovnet39b.ra_in1k,18.200,81.800,49.880,50.120,24.57,288,0.950,bicubic,-76.670,-49.060,+4 tf_efficientnet_lite4.in1k,18.120,81.880,50.707,49.293,13.01,380,0.920,bilinear,-76.760,-48.183,0 vit_tiny_patch16_384.augreg_in21k_ft_in1k,18.027,81.973,50.307,49.693,5.79,384,1.000,bicubic,-75.623,-48.283,+177 tiny_vit_5m_224.in1k,18.000,82.000,50.173,49.827,5.39,224,0.950,bicubic,-76.240,-48.287,+100 gcresnet50t.ra2_in1k,17.880,82.120,49.413,50.587,25.90,288,1.000,bicubic,-77.360,-49.567,-68 resnet50d.ra2_in1k,17.853,82.147,50.240,49.760,25.58,288,0.950,bicubic,-77.157,-48.670,-23 mobilevitv2_175.cvnets_in1k,17.787,82.213,49.747,50.253,14.25,256,0.888,bicubic,-77.103,-49.113,-8 resnest50d_1s4x24d.in1k,17.640,82.360,49.760,50.240,25.68,224,0.875,bicubic,-77.090,-49.220,+16 resnetv2_50.a1h_in1k,17.587,82.413,49.813,50.187,25.55,288,1.000,bicubic,-77.263,-49.057,+1 resnet50.c2_in1k,17.533,82.467,49.760,50.240,25.56,288,1.000,bicubic,-77.387,-49.050,-16 resnest50d.in1k,17.360,82.640,50.733,49.267,27.48,224,0.875,bilinear,-77.490,-48.147,-2 convnext_pico.d1_in1k,17.347,82.653,50.213,49.787,9.05,288,0.950,bicubic,-77.413,-48.717,+8 seresnext101_32x4d.gluon_in1k,17.333,82.667,46.373,53.627,48.96,224,0.875,bicubic,-77.557,-52.447,-12 efficientnet_el.ra_in1k,17.320,82.680,50.027,49.973,10.59,300,0.904,bicubic,-77.800,-48.943,-50 inception_v4.tf_in1k,17.293,82.707,45.867,54.133,42.68,299,0.875,bicubic,-77.077,-52.763,+75 tf_efficientnet_b3.ap_in1k,17.227,82.773,49.680,50.320,12.23,300,0.904,bicubic,-78.093,-49.220,-92 gcresnext50ts.ch_in1k,17.173,82.827,48.107,51.893,15.67,288,1.000,bicubic,-77.687,-50.753,-11 xcit_tiny_24_p16_224.fb_dist_in1k,17.160,82.840,47.507,52.493,12.12,224,1.000,bicubic,-77.380,-51.293,+49 fastvit_s12.apple_dist_in1k,17.120,82.880,49.400,50.600,9.47,256,0.900,bicubic,-77.710,-49.370,-6 regnetx_032.tv2_in1k,17.067,82.933,48.107,51.893,15.30,224,0.965,bicubic,-77.593,-50.693,+18 xception71.tf_in1k,17.027,82.973,45.547,54.453,42.34,299,0.903,bicubic,-77.273,-53.103,+80 regnety_016.tv2_in1k,16.973,83.027,49.853,50.147,11.20,224,0.965,bicubic,-77.547,-48.967,+48 tf_efficientnet_b3.aa_in1k,16.973,83.027,49.280,50.720,12.23,300,0.904,bicubic,-78.037,-49.750,-39 cs3darknet_focus_l.c2ns_in1k,16.960,83.040,50.493,49.507,21.15,288,0.950,bicubic,-78.190,-48.437,-72 convnextv2_pico.fcmae_ft_in1k,16.907,83.093,50.307,49.693,9.07,288,0.950,bicubic,-78.323,-48.613,-86 resmlp_36_224.fb_distilled_in1k,16.880,83.120,51.493,48.507,44.69,224,0.875,bicubic,-78.010,-47.377,-26 resnext101_64x4d.gluon_in1k,16.867,83.133,44.147,55.853,83.46,224,0.875,bicubic,-77.803,-54.513,+10 poolformerv2_s36.sail_in1k,16.680,83.320,49.600,50.400,30.79,224,1.000,bicubic,-78.630,-49.320,-102 resnet152d.gluon_in1k,16.627,83.373,44.213,55.787,60.21,224,0.875,bicubic,-78.103,-54.277,-2 tf_efficientnetv2_b3.in1k,16.600,83.400,48.680,51.320,14.36,300,0.904,bicubic,-78.560,-50.140,-79 gmlp_s16_224.ra3_in1k,16.547,83.453,45.080,54.920,19.42,224,0.875,bicubic,-77.603,-53.590,+90 resnet152s.gluon_in1k,16.547,83.453,44.507,55.493,60.32,224,0.875,bicubic,-78.473,-54.373,-54 tresnet_l.miil_in1k,16.533,83.467,49.893,50.107,55.99,224,0.875,bilinear,-78.747,-49.067,-102 inception_resnet_v2.tf_in1k,16.520,83.480,44.973,55.027,55.84,299,0.897,bicubic,-78.060,-53.817,+22 convnext_pico_ols.d1_in1k,16.507,83.493,49.707,50.293,9.06,288,1.000,bicubic,-78.113,-49.153,+16 seresnet50.a1_in1k,16.493,83.507,46.760,53.240,28.09,288,1.000,bicubic,-78.167,-52.020,+5 resmlp_24_224.fb_distilled_in1k,16.453,83.547,50.347,49.653,30.02,224,0.875,bicubic,-77.997,-48.423,+44 mobilevitv2_150.cvnets_in1k,16.453,83.547,48.453,51.547,10.59,256,0.888,bicubic,-78.097,-50.327,+25 resnet101.tv2_in1k,16.400,83.600,48.707,51.293,44.55,224,0.965,bilinear,-78.880,-50.303,-106 gernet_l.idstcv_in1k,16.320,83.680,47.227,52.773,31.08,256,0.875,bilinear,-78.790,-51.753,-73 repvit_m1_1.dist_450e_in1k,16.280,83.720,49.680,50.320,8.80,224,0.950,bicubic,-78.620,-49.280,-46 fastvit_sa12.apple_in1k,16.280,83.720,49.653,50.347,11.58,256,0.900,bicubic,-78.600,-49.367,-38 inception_resnet_v2.tf_ens_adv_in1k,16.280,83.720,43.640,56.360,55.84,299,0.897,bicubic,-77.890,-54.900,+73 repvgg_b3g4.rvgg_in1k,16.227,83.773,47.653,52.347,83.83,224,0.875,bilinear,-78.283,-51.317,+28 xcit_tiny_24_p16_224.fb_in1k,16.227,83.773,46.000,54.000,12.12,224,1.000,bicubic,-77.853,-52.540,+86 resnet50.a1_in1k,16.040,83.960,45.773,54.227,25.56,288,1.000,bicubic,-78.700,-52.907,-24 xception65.tf_in1k,16.040,83.960,43.760,56.240,39.92,299,0.903,bicubic,-77.740,-54.610,+119 resnet50.c1_in1k,16.000,84.000,47.387,52.613,25.56,288,1.000,bicubic,-78.730,-51.433,-23 ecaresnet50d_pruned.miil_in1k,15.987,84.013,49.707,50.293,19.94,288,0.950,bicubic,-79.123,-49.193,-83 edgenext_small_rw.sw_in1k,15.987,84.013,49.667,50.333,7.83,320,1.000,bicubic,-78.683,-49.113,-14 resnet50.fb_ssl_yfcc100m_ft_in1k,15.920,84.080,49.413,50.587,25.56,224,0.875,bilinear,-78.530,-49.327,+30 resnext50_32x4d.ra_in1k,15.867,84.133,47.227,52.773,25.03,288,0.950,bicubic,-78.833,-51.533,-20 fastvit_t12.apple_dist_in1k,15.640,84.360,47.680,52.320,7.55,256,0.900,bicubic,-78.950,-51.110,+2 resnet50.d_in1k,15.640,84.360,45.160,54.840,25.56,288,1.000,bicubic,-79.340,-53.680,-67 regnety_320.pycls_in1k,15.627,84.373,44.760,55.240,145.05,224,0.875,bicubic,-78.913,-54.030,+9 vit_base_patch32_384.augreg_in1k,15.600,84.400,44.147,55.853,88.30,384,1.000,bicubic,-78.040,-54.093,+127 convmixer_768_32.in1k,15.507,84.493,47.907,52.093,21.11,224,0.960,bicubic,-78.993,-50.953,+17 ecaresnet26t.ra2_in1k,15.453,84.547,47.960,52.040,16.01,320,0.950,bicubic,-78.867,-50.760,+38 resnext50d_32x4d.bt_in1k,15.400,84.600,46.187,53.813,25.05,288,0.950,bicubic,-79.150,-52.503,+3 coat_tiny.in1k,15.400,84.600,45.587,54.413,5.50,224,0.900,bicubic,-78.180,-52.833,+129 resnet50d.a2_in1k,15.387,84.613,44.813,55.187,25.58,288,1.000,bicubic,-79.193,-53.877,-4 skresnext50_32x4d.ra_in1k,15.373,84.627,44.547,55.453,27.48,224,0.875,bicubic,-78.867,-54.143,+43 resnext50_32x4d.a2_in1k,15.293,84.707,45.253,54.747,25.03,288,1.000,bicubic,-79.287,-53.397,-5 efficientvit_b1.r288_in1k,15.280,84.720,46.600,53.400,9.10,288,1.000,bicubic,-79.210,-51.920,+11 seresnet33ts.ra2_in1k,15.267,84.733,47.373,52.627,19.78,288,1.000,bicubic,-79.773,-51.527,-91 vit_relpos_base_patch32_plus_rpn_256.sw_in1k,15.240,84.760,42.640,57.360,119.42,256,0.900,bicubic,-78.500,-55.900,+107 cait_xxs24_224.fb_dist_in1k,15.160,84.840,44.893,55.107,11.96,224,1.000,bicubic,-78.450,-53.567,+119 eca_resnet33ts.ra2_in1k,15.053,84.947,49.013,50.987,19.68,288,1.000,bicubic,-79.567,-49.747,-21 vit_base_patch16_224.augreg_in1k,15.013,84.987,42.027,57.973,86.57,224,0.900,bicubic,-78.627,-56.373,+115 fastvit_s12.apple_in1k,14.920,85.080,45.320,54.680,9.47,256,0.900,bicubic,-79.210,-53.430,+56 repvit_m1_0.dist_450e_in1k,14.907,85.093,46.827,53.173,7.30,224,0.950,bicubic,-79.623,-52.053,-3 levit_conv_192.fb_dist_in1k,14.907,85.093,44.933,55.067,10.95,224,0.900,bicubic,-79.263,-53.747,+46 levit_192.fb_dist_in1k,14.880,85.120,44.933,55.067,10.95,224,0.900,bicubic,-79.290,-53.607,+43 seresnet50.a2_in1k,14.840,85.160,44.400,55.600,28.09,288,1.000,bicubic,-79.820,-54.320,-34 poolformerv2_s24.sail_in1k,14.800,85.200,45.920,54.080,21.34,224,1.000,bicubic,-79.850,-52.920,-33 repvit_m1_1.dist_300e_in1k,14.760,85.240,47.227,52.773,8.80,224,0.950,bicubic,-80.000,-51.483,-57 rexnet_150.nav_in1k,14.733,85.267,46.880,53.120,9.73,224,0.875,bicubic,-79.747,-51.920,0 darknet53.c2ns_in1k,14.680,85.320,47.107,52.893,41.61,288,1.000,bicubic,-79.940,-51.793,-30 gcresnet33ts.ra2_in1k,14.667,85.333,46.320,53.680,19.88,288,1.000,bicubic,-80.253,-52.490,-86 resnet50.tv2_in1k,14.640,85.360,46.973,53.027,25.56,224,0.965,bilinear,-80.000,-51.827,-36 res2net50d.in1k,14.627,85.373,44.480,55.520,25.72,224,0.875,bilinear,-79.693,-54.160,+18 darknetaa53.c2ns_in1k,14.560,85.440,45.427,54.573,36.02,288,1.000,bilinear,-79.910,-53.393,-4 coat_lite_mini.in1k,14.560,85.440,44.493,55.507,11.01,224,0.900,bicubic,-79.480,-54.057,+52 efficientnet_el_pruned.in1k,14.480,85.520,46.107,53.893,10.59,300,0.904,bicubic,-79.910,-52.633,+3 efficientnet_b2.ra_in1k,14.440,85.560,46.053,53.947,9.11,288,1.000,bicubic,-80.180,-52.727,-33 poolformer_s24.sail_in1k,14.267,85.733,47.360,52.640,21.39,224,0.900,bicubic,-80.293,-51.540,-26 legacy_seresnext101_32x4d.in1k,14.173,85.827,43.000,57.000,48.96,224,0.875,bilinear,-80.197,-55.580,+2 fbnetv3_d.ra2_in1k,14.093,85.907,46.467,53.533,10.31,256,0.950,bilinear,-79.827,-52.153,+59 gernet_m.idstcv_in1k,14.080,85.920,46.080,53.920,21.14,224,0.875,bilinear,-80.540,-52.830,-40 pvt_v2_b1.in1k,14.027,85.973,47.733,52.267,14.01,224,0.900,bicubic,-79.773,-50.927,+73 repvit_m2.dist_in1k,14.013,85.987,46.373,53.627,8.80,224,0.950,bicubic,-80.727,-52.337,-69 mobilevitv2_125.cvnets_in1k,14.013,85.987,45.027,54.973,7.48,256,0.888,bicubic,-79.947,-53.523,+53 dpn68b.ra_in1k,13.893,86.107,40.307,59.693,12.61,288,1.000,bicubic,-80.107,-58.193,+47 resnext101_32x4d.gluon_in1k,13.853,86.147,41.640,58.360,44.18,224,0.875,bicubic,-80.687,-57.140,-26 seresnext50_32x4d.gluon_in1k,13.627,86.373,43.773,56.227,27.56,224,0.875,bicubic,-80.703,-54.837,0 fastvit_t12.apple_in1k,13.613,86.387,43.307,56.693,7.55,256,0.900,bicubic,-80.307,-55.303,+54 pit_xs_distilled_224.in1k,13.573,86.427,45.173,54.827,11.00,224,0.900,bicubic,-80.207,-53.327,+67 resnet152.a3_in1k,13.547,86.453,43.387,56.613,60.19,224,0.950,bicubic,-81.183,-55.293,-70 resmlp_36_224.fb_in1k,13.467,86.533,46.667,53.333,44.69,224,0.875,bicubic,-80.723,-51.943,+11 repvgg_b2g4.rvgg_in1k,13.467,86.533,43.853,56.147,61.76,224,0.875,bilinear,-80.413,-54.807,+57 efficientformerv2_s1.snap_dist_in1k,13.453,86.547,42.933,57.067,6.19,224,0.950,bicubic,-80.747,-55.707,+9 vit_small_patch16_224.augreg_in1k,13.387,86.613,41.427,58.573,22.05,224,0.900,bicubic,-80.503,-57.013,+52 eca_botnext26ts_256.c1_in1k,13.320,86.680,42.133,57.867,10.59,256,0.950,bicubic,-80.460,-56.487,+62 visformer_tiny.in1k,13.307,86.693,43.933,56.067,10.32,224,0.900,bicubic,-80.253,-54.457,+86 regnetx_320.pycls_in1k,13.293,86.707,40.747,59.253,107.81,224,0.875,bicubic,-81.157,-58.173,-22 resnet101d.gluon_in1k,13.200,86.800,41.547,58.453,44.57,224,0.875,bicubic,-81.030,-56.993,+1 efficientnet_b3_pruned.in1k,13.160,86.840,45.200,54.800,9.86,300,0.904,bicubic,-81.470,-53.560,-62 resnet50.b1k_in1k,13.093,86.907,43.947,56.053,25.56,288,1.000,bicubic,-81.767,-54.863,-101 mixnet_xl.ra_in1k,13.080,86.920,43.213,56.787,11.90,224,0.875,bicubic,-81.100,-55.107,+4 cspresnext50.ra_in1k,13.053,86.947,44.973,55.027,20.57,256,0.887,bilinear,-81.777,-53.837,-96 efficientformer_l1.snap_dist_in1k,13.013,86.987,45.600,54.400,12.29,224,0.950,bicubic,-81.467,-53.230,-35 regnetx_016.tv2_in1k,13.000,87.000,45.427,54.573,9.19,224,0.965,bicubic,-81.130,-53.193,+13 repvit_m1_0.dist_300e_in1k,13.000,87.000,44.413,55.587,7.30,224,0.950,bicubic,-81.300,-54.437,-13 nf_regnet_b1.ra2_in1k,12.947,87.053,44.373,55.627,10.22,288,0.900,bicubic,-81.163,-54.247,+12 eca_halonext26ts.c1_in1k,12.947,87.053,42.813,57.187,10.76,256,0.940,bicubic,-81.093,-55.677,+21 mobilevit_s.cvnets_in1k,12.907,87.093,40.760,59.240,5.58,256,0.900,bicubic,-80.253,-57.560,+120 pit_xs_224.in1k,12.827,87.173,42.813,57.187,10.62,224,0.900,bicubic,-80.273,-55.517,+126 tf_efficientnet_b3.in1k,12.787,87.213,43.627,56.373,12.23,300,0.904,bicubic,-81.753,-55.223,-53 resnet50.b2k_in1k,12.760,87.240,44.133,55.867,25.56,288,1.000,bicubic,-81.970,-54.797,-93 resnext50_32x4d.tv2_in1k,12.693,87.307,43.093,56.907,25.03,224,0.965,bilinear,-81.927,-55.617,-70 inception_v3.gluon_in1k,12.640,87.360,40.427,59.573,23.83,299,0.875,bicubic,-80.830,-58.143,+83 tresnet_m.miil_in1k,12.613,87.387,41.907,58.093,31.39,224,0.875,bilinear,-82.007,-56.643,-69 resnet50.a1h_in1k,12.587,87.413,44.240,55.760,25.56,224,1.000,bicubic,-82.183,-54.230,-106 crossvit_9_dagger_240.in1k,12.560,87.440,41.720,58.280,8.78,240,0.875,bicubic,-80.330,-56.520,+140 efficientvit_b1.r256_in1k,12.547,87.453,42.120,57.880,9.10,256,1.000,bicubic,-81.543,-56.240,+5 resnetblur50.bt_in1k,12.493,87.507,44.160,55.840,25.56,288,0.950,bicubic,-81.967,-54.680,-47 resmlp_24_224.fb_in1k,12.493,87.507,43.413,56.587,30.02,224,0.875,bicubic,-81.537,-55.247,+12 convnext_femto_ols.d1_in1k,12.480,87.520,43.933,56.067,5.23,288,0.950,bicubic,-81.440,-54.667,+20 coat_lite_tiny.in1k,12.467,87.533,41.053,58.947,5.72,224,0.900,bicubic,-80.773,-57.207,+101 efficientnet_em.ra2_in1k,12.400,87.600,43.933,56.067,6.90,240,0.882,bicubic,-81.430,-54.887,+28 regnety_120.pycls_in1k,12.400,87.600,42.173,57.827,51.82,224,0.875,bicubic,-82.070,-56.597,-53 regnety_160.pycls_in1k,12.227,87.773,41.387,58.613,83.59,224,0.875,bicubic,-82.133,-57.473,-41 resnet50.a2_in1k,12.173,87.827,40.453,59.547,25.56,288,1.000,bicubic,-82.457,-58.207,-87 ecaresnet50t.a3_in1k,12.147,87.853,41.573,58.427,25.57,224,0.950,bicubic,-82.203,-57.097,-41 hrnet_w64.ms_in1k,12.013,87.987,40.827,59.173,128.06,224,0.875,bilinear,-82.017,-57.503,+2 cspdarknet53.ra_in1k,11.960,88.040,43.267,56.733,27.64,256,0.887,bilinear,-82.700,-55.583,-97 xcit_tiny_12_p16_224.fb_dist_in1k,11.933,88.067,40.133,59.867,6.72,224,1.000,bicubic,-81.477,-58.377,+74 resnet101s.gluon_in1k,11.893,88.107,40.947,59.053,44.67,224,0.875,bicubic,-82.827,-57.873,-108 resnet101.a3_in1k,11.867,88.133,40.840,59.160,44.55,224,0.950,bicubic,-82.163,-57.750,-4 gmixer_24_224.ra3_in1k,11.867,88.133,37.800,62.200,24.72,224,0.875,bicubic,-80.963,-60.080,+128 nf_resnet50.ra2_in1k,11.773,88.227,45.907,54.093,25.56,288,0.940,bicubic,-82.767,-52.723,-75 fbnetv3_b.ra2_in1k,11.760,88.240,44.400,55.600,8.60,256,0.950,bilinear,-82.210,-54.090,-1 dpn92.mx_in1k,11.640,88.360,40.160,59.840,37.67,224,0.875,bicubic,-82.650,-58.590,-41 botnet26t_256.c1_in1k,11.613,88.387,40.107,59.893,12.49,256,0.950,bicubic,-81.897,-58.213,+53 convnextv2_femto.fcmae_ft_in1k,11.600,88.400,40.800,59.200,5.23,288,0.950,bicubic,-82.590,-57.860,-33 dla102x2.in1k,11.560,88.440,41.293,58.707,41.28,224,0.875,bilinear,-82.410,-57.227,-3 xception41.tf_in1k,11.560,88.440,39.067,60.933,26.97,299,0.903,bicubic,-81.870,-59.153,+61 vit_small_patch32_224.augreg_in21k_ft_in1k,11.507,88.493,39.547,60.453,22.88,224,0.900,bicubic,-80.533,-58.743,+176 efficientvit_b1.r224_in1k,11.493,88.507,40.200,59.800,9.10,224,0.950,bicubic,-82.017,-58.100,+47 levit_128.fb_dist_in1k,11.440,88.560,40.187,59.813,9.21,224,0.900,bicubic,-81.890,-58.333,+69 levit_conv_128.fb_dist_in1k,11.440,88.560,40.173,59.827,9.21,224,0.900,bicubic,-81.910,-58.197,+66 lambda_resnet26t.c1_in1k,11.387,88.613,40.187,59.813,10.96,256,0.940,bicubic,-82.443,-58.463,+8 seresnext26t_32x4d.bt_in1k,11.373,88.627,41.107,58.893,16.81,288,0.950,bicubic,-82.187,-57.383,+37 regnety_080.pycls_in1k,11.373,88.627,40.613,59.387,39.18,224,0.875,bicubic,-82.797,-57.987,-39 efficientnet_b2_pruned.in1k,11.333,88.667,42.040,57.960,8.31,260,0.890,bicubic,-82.807,-56.670,-31 resnet50.ra_in1k,11.333,88.667,41.013,58.987,25.56,288,0.950,bicubic,-82.877,-57.607,-48 tf_efficientnet_el.in1k,11.320,88.680,42.053,57.947,10.59,300,0.904,bicubic,-83.080,-56.657,-71 xcit_nano_12_p16_384.fb_dist_in1k,11.227,88.773,39.853,60.147,3.05,384,1.000,bicubic,-80.603,-58.167,+180 convnext_femto.d1_in1k,11.213,88.787,42.773,57.227,5.22,288,0.950,bicubic,-82.717,-55.747,-13 resnet152c.gluon_in1k,11.107,88.893,37.133,62.867,60.21,224,0.875,bicubic,-83.053,-61.457,-42 hrnet_w48.ms_in1k,11.093,88.907,40.307,59.693,77.47,224,0.875,bilinear,-82.827,-58.433,-13 vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,11.093,88.907,39.933,60.067,6.36,384,1.000,bicubic,-80.947,-58.297,+160 halonet26t.a1h_in1k,11.093,88.907,38.800,61.200,12.48,256,0.950,bicubic,-82.907,-59.540,-22 mobilevitv2_100.cvnets_in1k,11.067,88.933,40.613,59.387,4.90,256,0.888,bicubic,-82.233,-57.667,+63 tf_efficientnet_b0.ns_jft_in1k,11.000,89.000,40.080,59.920,5.29,224,0.875,bicubic,-82.620,-58.560,+19 tf_efficientnetv2_b2.in1k,11.000,89.000,39.747,60.253,10.10,260,0.890,bicubic,-83.420,-58.833,-82 inception_v3.tf_adv_in1k,11.000,89.000,36.720,63.280,23.83,299,0.875,bicubic,-81.900,-61.420,+98 seresnext26d_32x4d.bt_in1k,10.987,89.013,41.347,58.653,16.81,288,0.950,bicubic,-82.453,-56.983,+39 xcit_tiny_12_p16_224.fb_in1k,10.987,89.013,37.067,62.933,6.72,224,1.000,bicubic,-81.523,-61.173,+126 regnety_008_tv.tv2_in1k,10.840,89.160,40.533,59.467,6.43,224,0.965,bicubic,-82.850,-57.957,+6 resnet34d.ra2_in1k,10.827,89.173,38.653,61.347,21.82,288,0.950,bicubic,-82.813,-59.887,+8 dpn107.mx_in1k,10.827,89.173,38.307,61.693,86.92,224,0.875,bicubic,-83.513,-60.193,-77 inception_v3.tf_in1k,10.827,89.173,36.853,63.147,23.83,299,0.875,bicubic,-82.493,-61.527,+51 mobileone_s4.apple_in1k,10.787,89.213,38.480,61.520,14.95,224,0.900,bilinear,-82.953,-59.590,-2 xcit_nano_12_p8_224.fb_dist_in1k,10.773,89.227,38.120,61.880,3.05,224,1.000,bicubic,-81.307,-59.790,+144 densenetblur121d.ra_in1k,10.547,89.453,39.707,60.293,8.00,288,0.950,bicubic,-82.073,-58.553,+109 tf_efficientnet_b2.ap_in1k,10.533,89.467,40.133,59.867,9.11,260,0.890,bicubic,-83.977,-58.487,-105 dpn131.mx_in1k,10.533,89.467,36.787,63.213,79.25,224,0.875,bicubic,-83.517,-61.923,-44 rexnet_130.nav_in1k,10.413,89.587,41.547,58.453,7.56,224,0.875,bicubic,-83.487,-56.853,-26 repvit_m0_9.dist_450e_in1k,10.400,89.600,40.120,59.880,5.49,224,0.950,bicubic,-83.200,-58.380,+7 hrnet_w44.ms_in1k,10.307,89.693,39.493,60.507,67.06,224,0.875,bilinear,-83.243,-59.107,+11 xcit_nano_12_p8_224.fb_in1k,10.307,89.693,36.973,63.027,3.05,224,1.000,bicubic,-80.703,-60.797,+180 resnext50_32x4d.a3_in1k,10.267,89.733,38.200,61.800,25.03,224,0.950,bicubic,-83.393,-60.320,-4 lambda_resnet26rpt_256.c1_in1k,10.227,89.773,38.133,61.867,10.99,256,0.940,bicubic,-83.483,-60.387,-9 resnext101_32x8d.tv_in1k,10.173,89.827,37.747,62.253,88.79,224,0.875,bilinear,-83.647,-60.833,-24 regnetx_160.pycls_in1k,10.133,89.867,38.053,61.947,54.28,224,0.875,bicubic,-84.007,-60.467,-64 legacy_seresnext50_32x4d.in1k,10.093,89.907,39.213,60.787,27.56,224,0.875,bilinear,-83.657,-59.367,-20 resnetrs50.tf_in1k,10.053,89.947,37.573,62.427,35.69,224,0.910,bicubic,-84.267,-61.067,-90 dpn98.mx_in1k,10.013,89.987,36.173,63.827,61.57,224,0.875,bicubic,-84.147,-62.467,-70 inception_v3.tv_in1k,10.013,89.987,35.227,64.773,23.83,299,0.875,bicubic,-82.717,-62.743,+88 efficientnet_b1.ft_in1k,10.000,90.000,37.600,62.400,7.79,256,1.000,bicubic,-83.250,-60.690,+38 legacy_xception.tf_in1k,9.987,90.013,37.987,62.013,22.86,299,0.897,bicubic,-83.473,-60.543,+13 resnet33ts.ra2_in1k,9.947,90.053,39.840,60.160,19.68,288,1.000,bicubic,-84.153,-58.810,-64 regnety_064.pycls_in1k,9.933,90.067,39.093,60.907,30.58,224,0.875,bicubic,-84.207,-59.657,-71 resnet152.gluon_in1k,9.733,90.267,36.093,63.907,60.19,224,0.875,bicubic,-84.337,-62.367,-63 tf_efficientnet_lite3.in1k,9.680,90.320,39.013,60.987,8.20,300,0.904,bilinear,-84.520,-59.617,-87 tf_efficientnet_b2.aa_in1k,9.667,90.333,38.893,61.107,9.11,260,0.890,bicubic,-84.713,-59.717,-109 tf_efficientnet_cc_b1_8e.in1k,9.573,90.427,36.840,63.160,39.72,240,0.882,bicubic,-84.347,-61.420,-47 res2net101_26w_4s.in1k,9.507,90.493,35.093,64.907,45.21,224,0.875,bilinear,-84.213,-63.217,-25 resnet50.ram_in1k,9.480,90.520,35.507,64.493,25.56,288,0.950,bicubic,-85.040,-63.143,-129 legacy_seresnet152.in1k,9.333,90.667,37.373,62.627,66.82,224,0.875,bilinear,-84.047,-60.967,+13 cspresnet50.ra_in1k,9.293,90.707,39.613,60.387,21.62,256,0.887,bilinear,-84.447,-59.027,-32 repvit_m0_9.dist_300e_in1k,9.293,90.707,38.840,61.160,5.49,224,0.950,bicubic,-84.147,-59.870,+3 resnet34.a1_in1k,9.267,90.733,34.947,65.053,21.80,288,1.000,bicubic,-83.833,-63.363,+38 hrnet_w40.ms_in1k,9.240,90.760,36.920,63.080,57.56,224,0.875,bilinear,-84.260,-61.620,-6 resnet32ts.ra2_in1k,9.213,90.787,38.600,61.400,17.96,288,1.000,bicubic,-84.617,-60.040,-48 regnetx_120.pycls_in1k,9.213,90.787,37.200,62.800,46.11,224,0.875,bicubic,-85.017,-61.470,-100 crossvit_tiny_240.in1k,9.133,90.867,34.600,65.400,7.01,240,0.875,bicubic,-81.097,-62.990,+179 resnest26d.gluon_in1k,9.053,90.947,37.840,62.160,17.07,224,0.875,bilinear,-84.267,-60.520,+11 vit_tiny_patch16_224.augreg_in21k_ft_in1k,9.053,90.947,34.627,65.373,5.72,224,0.900,bicubic,-82.717,-63.413,+130 resnet50d.a3_in1k,9.040,90.960,37.307,62.693,25.58,224,0.950,bicubic,-84.440,-61.143,-8 gcresnext26ts.ch_in1k,8.987,91.013,36.920,63.080,10.48,288,1.000,bicubic,-84.173,-61.450,+26 vit_base_patch16_224.sam_in1k,8.987,91.013,36.133,63.867,86.57,224,0.900,bicubic,-85.163,-62.367,-93 regnety_040.pycls_in1k,8.933,91.067,37.067,62.933,20.65,224,0.875,bicubic,-84.947,-61.453,-59 resnext50_32x4d.gluon_in1k,8.933,91.067,36.293,63.707,25.03,224,0.875,bicubic,-84.877,-62.127,-53 rexnet_100.nav_in1k,8.893,91.107,36.413,63.587,4.80,224,0.875,bicubic,-84.127,-61.777,+33 mixnet_l.ft_in1k,8.893,91.107,36.240,63.760,7.33,224,0.875,bicubic,-84.537,-62.190,-8 efficientvit_m5.r224_in1k,8.893,91.107,34.587,65.413,12.47,224,0.875,bicubic,-83.567,-63.403,+82 bat_resnext26ts.ch_in1k,8.880,91.120,36.453,63.547,10.73,256,0.900,bicubic,-84.440,-62.167,+3 convit_tiny.fb_in1k,8.867,91.133,34.307,65.693,5.71,224,0.875,bicubic,-81.793,-63.423,+156 mobilenetv3_large_100.miil_in21k_ft_in1k,8.853,91.147,33.080,66.920,5.48,224,0.875,bilinear,-83.407,-64.540,+90 hrnet_w18.ms_aug_in1k,8.747,91.253,38.787,61.213,21.30,224,0.950,bilinear,-84.803,-59.913,-29 resnet50.bt_in1k,8.653,91.347,38.720,61.280,25.56,288,0.950,bicubic,-85.667,-59.810,-127 levit_conv_128s.fb_dist_in1k,8.653,91.347,33.093,66.907,7.78,224,0.900,bicubic,-83.307,-64.967,+107 dla169.in1k,8.640,91.360,36.000,64.000,53.39,224,0.875,bilinear,-84.710,-62.600,-10 levit_128s.fb_dist_in1k,8.640,91.360,33.067,66.933,7.78,224,0.900,bicubic,-83.320,-64.823,+103 mixer_b16_224.goog_in21k_ft_in1k,8.627,91.373,29.413,70.587,59.88,224,0.875,bicubic,-83.253,-68.627,+109 repvit_m1.dist_in1k,8.613,91.387,37.293,62.707,5.49,224,0.950,bicubic,-84.677,-61.147,0 hrnet_w30.ms_in1k,8.587,91.413,37.067,62.933,37.71,224,0.875,bilinear,-84.613,-61.423,+3 eca_resnext26ts.ch_in1k,8.560,91.440,36.827,63.173,10.30,288,1.000,bicubic,-84.500,-61.573,+17 ghostnetv2_160.in1k,8.560,91.440,36.627,63.373,12.39,224,0.875,bicubic,-84.430,-61.603,+23 legacy_seresnet101.in1k,8.533,91.467,35.960,64.040,49.33,224,0.875,bilinear,-84.777,-62.560,-8 convnext_atto_ols.a2_in1k,8.533,91.467,35.000,65.000,3.70,288,0.950,bicubic,-84.557,-63.470,+13 tf_efficientnet_b2.in1k,8.520,91.480,36.520,63.480,9.11,260,0.890,bicubic,-85.590,-61.930,-106 tf_efficientnet_b1.ap_in1k,8.453,91.547,35.240,64.760,7.79,240,0.882,bicubic,-85.227,-63.120,-58 repvgg_b2.rvgg_in1k,8.440,91.560,36.480,63.520,89.02,224,0.875,bilinear,-85.060,-62.090,-38 ese_vovnet19b_dw.ra_in1k,8.307,91.693,36.973,63.027,6.54,288,0.950,bicubic,-84.843,-61.277,+2 resmlp_12_224.fb_distilled_in1k,8.307,91.693,36.853,63.147,15.35,224,0.875,bicubic,-84.513,-61.287,+31 crossvit_9_240.in1k,8.280,91.720,34.107,65.893,8.55,240,0.875,bicubic,-82.350,-63.623,+139 dla102x.in1k,8.187,91.813,37.067,62.933,26.31,224,0.875,bilinear,-85.303,-61.433,-39 seresnext26ts.ch_in1k,8.147,91.853,36.093,63.907,10.39,288,1.000,bicubic,-84.813,-62.087,+17 hrnet_w32.ms_in1k,8.053,91.947,37.560,62.440,41.23,224,0.875,bilinear,-85.477,-60.890,-48 resnet101c.gluon_in1k,8.027,91.973,33.320,66.680,44.57,224,0.875,bicubic,-85.643,-65.100,-65 vit_base_patch32_224.augreg_in1k,7.987,92.013,30.453,69.547,88.22,224,0.900,bicubic,-83.203,-66.937,+113 cs3darknet_m.c2ns_in1k,7.960,92.040,36.507,63.493,9.31,288,0.950,bicubic,-85.390,-62.103,-29 poolformerv2_s12.sail_in1k,7.960,92.040,34.560,65.440,11.89,224,1.000,bicubic,-85.000,-63.800,+13 resnet50d.gluon_in1k,7.947,92.053,34.987,65.013,25.58,224,0.875,bicubic,-85.803,-63.403,-79 resnet26t.ra2_in1k,7.893,92.107,36.720,63.280,16.01,320,1.000,bicubic,-85.307,-61.690,-17 fastvit_t8.apple_dist_in1k,7.853,92.147,34.667,65.333,4.03,256,0.900,bicubic,-84.687,-63.503,+43 res2net50_26w_8s.in1k,7.853,92.147,33.707,66.293,48.40,224,0.875,bilinear,-85.537,-64.463,-37 dla60_res2next.in1k,7.840,92.160,34.960,65.040,17.03,224,0.875,bilinear,-85.350,-63.440,-18 repghostnet_200.in1k,7.800,92.200,37.200,62.800,9.80,224,0.875,bicubic,-85.700,-61.530,-52 mobilevitv2_075.cvnets_in1k,7.773,92.227,33.720,66.280,2.87,256,0.888,bicubic,-83.987,-64.060,+87 convnextv2_atto.fcmae_ft_in1k,7.773,92.227,32.907,67.093,3.71,288,0.950,bicubic,-85.197,-65.253,+4 mobilevit_xs.cvnets_in1k,7.733,92.267,32.520,67.480,2.32,256,0.900,bicubic,-83.087,-65.410,+114 tf_efficientnetv2_b1.in1k,7.720,92.280,34.613,65.387,8.14,240,0.882,bicubic,-86.230,-64.007,-111 deit_tiny_distilled_patch16_224.fb_in1k,7.693,92.307,33.507,66.493,5.91,224,0.900,bicubic,-83.017,-64.053,+116 regnety_032.pycls_in1k,7.680,92.320,34.280,65.720,19.44,224,0.875,bicubic,-85.730,-64.360,-48 efficientformerv2_s0.snap_dist_in1k,7.667,92.333,32.653,67.347,3.60,224,0.950,bicubic,-84.293,-65.407,+72 convnext_atto.d2_in1k,7.613,92.387,35.053,64.947,3.70,288,0.950,bicubic,-85.177,-63.097,+12 dla60_res2net.in1k,7.600,92.400,34.613,65.387,20.85,224,0.875,bilinear,-85.570,-63.817,-27 efficientnet_b1_pruned.in1k,7.480,92.520,34.480,65.520,6.33,240,0.882,bicubic,-85.300,-63.560,+11 regnetx_064.pycls_in1k,7.373,92.627,34.360,65.640,26.21,224,0.875,bicubic,-86.527,-64.280,-111 wide_resnet101_2.tv_in1k,7.360,92.640,34.147,65.853,126.89,224,0.875,bilinear,-86.380,-64.083,-93 densenet121.ra_in1k,7.333,92.667,35.480,64.520,7.98,288,0.950,bicubic,-85.187,-62.740,+28 deit_tiny_patch16_224.fb_in1k,7.293,92.707,30.680,69.320,5.72,224,0.900,bicubic,-82.367,-66.770,+134 regnetx_008.tv2_in1k,7.280,92.720,34.133,65.867,7.26,224,0.965,bicubic,-85.270,-64.047,+22 resnet50s.gluon_in1k,7.280,92.720,33.453,66.547,25.68,224,0.875,bicubic,-86.360,-65.007,-86 resnet101.gluon_in1k,7.267,92.733,32.773,67.227,44.55,224,0.875,bicubic,-86.483,-65.607,-102 resnet34.a2_in1k,7.267,92.733,31.813,68.187,21.80,288,1.000,bicubic,-85.453,-66.357,+10 edgenext_x_small.in1k,7.267,92.733,30.920,69.080,2.34,288,1.000,bicubic,-84.443,-66.680,+76 hardcorenas_e.miil_green_in1k,7.240,92.760,33.307,66.693,8.07,224,0.875,bilinear,-85.330,-64.793,+16 efficientnet_b0.ra_in1k,7.213,92.787,33.987,66.013,5.29,224,0.875,bicubic,-85.477,-64.083,+8 tf_mixnet_l.in1k,7.173,92.827,31.667,68.333,7.33,224,0.875,bicubic,-86.147,-66.363,-50 tf_efficientnet_b1.aa_in1k,7.160,92.840,33.027,66.973,7.79,240,0.882,bicubic,-86.330,-65.333,-73 tf_efficientnet_cc_b0_8e.in1k,7.133,92.867,31.787,68.213,24.01,224,0.875,bicubic,-85.707,-66.393,-10 convmixer_1024_20_ks9_p14.in1k,7.093,92.907,33.053,66.947,24.38,224,0.960,bicubic,-85.307,-65.217,+25 resmlp_12_224.fb_in1k,7.013,92.987,33.933,66.067,15.35,224,0.875,bicubic,-85.207,-64.217,+35 cs3darknet_focus_m.c2ns_in1k,6.933,93.067,34.587,65.413,9.30,288,0.950,bicubic,-86.037,-63.473,-24 fastvit_t8.apple_in1k,6.893,93.107,33.400,66.600,4.03,256,0.900,bicubic,-85.167,-64.530,+42 hardcorenas_f.miil_green_in1k,6.880,93.120,34.067,65.933,8.20,224,0.875,bilinear,-86.090,-64.323,-25 pit_ti_distilled_224.in1k,6.840,93.160,30.947,69.053,5.10,224,0.900,bicubic,-83.930,-66.663,+88 ghostnetv2_130.in1k,6.707,93.293,32.960,67.040,8.96,224,0.875,bicubic,-85.613,-65.300,+25 efficientnet_es.ra_in1k,6.693,93.307,33.973,66.027,5.44,224,0.875,bicubic,-86.477,-64.437,-49 selecsls60b.in1k,6.693,93.307,33.293,66.707,32.77,224,0.875,bicubic,-86.617,-64.997,-60 res2net50_26w_6s.in1k,6.693,93.307,31.653,68.347,37.05,224,0.875,bilinear,-86.707,-66.627,-73 poolformer_s12.sail_in1k,6.653,93.347,34.520,65.480,11.92,224,0.900,bicubic,-85.957,-63.660,-2 mixnet_m.ft_in1k,6.653,93.347,32.053,67.947,5.01,224,0.875,bicubic,-85.757,-66.097,+14 dpn68b.mx_in1k,6.640,93.360,32.907,67.093,12.61,224,0.875,bicubic,-86.150,-65.173,-18 tinynet_a.in1k,6.640,93.360,32.227,67.773,6.19,192,0.875,bicubic,-85.800,-65.853,+9 legacy_seresnext26_32x4d.in1k,6.627,93.373,33.240,66.760,16.79,224,0.875,bicubic,-86.013,-64.880,-8 tf_efficientnet_b1.in1k,6.627,93.373,32.640,67.360,7.79,240,0.882,bicubic,-86.473,-65.660,-49 mobileone_s3.apple_in1k,6.627,93.373,32.147,67.853,10.17,224,0.900,bilinear,-86.313,-66.043,-30 resnet50.a3_in1k,6.587,93.413,32.053,67.947,25.56,224,0.950,bicubic,-86.133,-65.957,-15 regnety_004.tv2_in1k,6.533,93.467,30.480,69.520,4.34,224,0.965,bicubic,-85.047,-67.410,+51 dla60x.in1k,6.493,93.507,34.080,65.920,17.35,224,0.875,bilinear,-86.587,-64.420,-50 repvgg_b1.rvgg_in1k,6.467,93.533,33.800,66.200,57.42,224,0.875,bilinear,-86.863,-64.570,-79 skresnet34.ra_in1k,6.467,93.533,31.573,68.427,22.28,224,0.875,bicubic,-85.913,-66.577,+7 repghostnet_150.in1k,6.453,93.547,32.307,67.693,6.58,224,0.875,bicubic,-85.917,-65.743,+6 hardcorenas_d.miil_green_in1k,6.453,93.547,32.187,67.813,7.50,224,0.875,bilinear,-85.947,-65.893,+4 resnet26d.bt_in1k,6.307,93.693,32.747,67.253,16.01,288,0.950,bicubic,-86.213,-65.463,-7 regnetx_080.pycls_in1k,6.293,93.707,32.373,67.627,39.57,224,0.875,bicubic,-87.587,-66.217,-145 resnet18.fb_swsl_ig1b_ft_in1k,6.253,93.747,31.600,68.400,11.69,224,0.875,bilinear,-84.447,-66.100,+72 legacy_seresnet50.in1k,6.200,93.800,32.680,67.320,28.09,224,0.875,bilinear,-86.760,-65.730,-44 pit_ti_224.in1k,6.120,93.880,30.240,69.760,4.85,224,0.900,bicubic,-83.820,-67.210,+89 resnet152.tv_in1k,6.067,93.933,32.080,67.920,60.19,224,0.875,bilinear,-87.253,-65.960,-85 wide_resnet50_2.tv_in1k,6.013,93.987,32.160,67.840,68.88,224,0.875,bilinear,-87.147,-66.280,-70 tf_efficientnet_cc_b0_4e.in1k,5.987,94.013,29.587,70.413,13.31,224,0.875,bicubic,-86.613,-68.493,-21 regnetx_040.pycls_in1k,5.947,94.053,31.493,68.507,22.12,224,0.875,bicubic,-87.613,-67.037,-120 seresnet50.a3_in1k,5.947,94.053,30.827,69.173,28.09,224,0.950,bicubic,-86.123,-67.213,+11 mixer_l16_224.goog_in21k_ft_in1k,5.880,94.120,18.547,81.453,208.20,224,0.875,bicubic,-81.270,-74.973,+120 tf_efficientnetv2_b0.in1k,5.867,94.133,30.787,69.213,7.14,224,0.875,bicubic,-87.243,-67.603,-71 dla102.in1k,5.827,94.173,32.760,67.240,33.27,224,0.875,bilinear,-87.223,-65.790,-65 selecsls60.in1k,5.680,94.320,32.520,67.480,30.67,224,0.875,bicubic,-87.330,-65.780,-62 regnety_016.pycls_in1k,5.667,94.333,30.480,69.520,11.20,224,0.875,bicubic,-87.373,-67.890,-66 res2next50.in1k,5.653,94.347,30.893,69.107,24.67,224,0.875,bilinear,-87.187,-67.287,-52 hardcorenas_c.miil_green_in1k,5.653,94.347,30.427,69.573,5.52,224,0.875,bilinear,-86.367,-67.413,+9 hrnet_w18_small_v2.gluon_in1k,5.520,94.480,31.853,68.147,15.60,224,0.875,bicubic,-87.250,-66.557,-44 hrnet_w18.ms_in1k,5.493,94.507,30.907,69.093,21.30,224,0.875,bilinear,-86.827,-67.163,-12 resnest14d.gluon_in1k,5.453,94.547,28.547,71.453,10.61,224,0.875,bilinear,-86.267,-69.323,+24 ghostnetv2_100.in1k,5.387,94.613,28.560,71.440,6.16,224,0.875,bicubic,-85.513,-69.140,+45 tf_efficientnet_em.in1k,5.360,94.640,31.080,68.920,6.90,240,0.882,bicubic,-87.580,-67.100,-61 tf_efficientnet_lite2.in1k,5.333,94.667,30.880,69.120,6.09,260,0.890,bicubic,-87.317,-67.350,-41 gernet_s.idstcv_in1k,5.320,94.680,30.147,69.853,8.17,224,0.875,bilinear,-86.810,-68.043,-7 resnext26ts.ra2_in1k,5.307,94.693,29.680,70.320,10.30,288,1.000,bicubic,-86.823,-68.350,-8 tf_efficientnet_b0.ap_in1k,5.307,94.693,28.840,71.160,5.29,224,0.875,bicubic,-86.893,-69.180,-12 efficientvit_m4.r224_in1k,5.307,94.693,28.013,71.987,8.80,224,0.875,bicubic,-85.273,-69.517,+55 repvgg_b1g4.rvgg_in1k,5.240,94.760,30.760,69.240,39.97,224,0.875,bilinear,-87.760,-67.670,-75 resnet34.bt_in1k,5.213,94.787,29.440,70.560,21.80,288,0.950,bicubic,-87.197,-68.430,-29 xcit_nano_12_p16_224.fb_dist_in1k,5.200,94.800,26.493,73.507,3.05,224,1.000,bicubic,-84.500,-70.607,+68 res2net50_26w_4s.in1k,5.173,94.827,29.360,70.640,25.70,224,0.875,bilinear,-87.317,-68.670,-35 efficientvit_m3.r224_in1k,5.160,94.840,27.400,72.600,6.90,224,0.875,bicubic,-84.700,-70.140,+64 vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,5.080,94.920,27.027,72.973,6.34,224,0.900,bicubic,-84.100,-70.193,+74 mobilenetv3_large_100.ra_in1k,5.067,94.933,28.200,71.800,5.48,224,0.875,bicubic,-86.283,-69.510,+17 tf_efficientnet_b0.aa_in1k,5.053,94.947,28.760,71.240,5.29,224,0.875,bicubic,-87.187,-69.240,-23 tf_mixnet_m.in1k,5.053,94.947,28.187,71.813,5.01,224,0.875,bicubic,-87.247,-69.703,-27 res2net50_14w_8s.in1k,5.040,94.960,28.733,71.267,25.06,224,0.875,bilinear,-87.730,-69.427,-62 regnetx_004_tv.tv2_in1k,5.000,95.000,27.560,72.440,5.50,224,0.965,bicubic,-85.640,-70.040,+39 repghostnet_130.in1k,4.987,95.013,29.653,70.347,5.48,224,0.875,bicubic,-86.903,-68.277,-5 mixnet_s.ft_in1k,4.947,95.053,28.573,71.427,4.13,224,0.875,bicubic,-86.873,-69.127,-2 hardcorenas_b.miil_green_in1k,4.947,95.053,28.040,71.960,5.18,224,0.875,bilinear,-86.813,-69.820,+2 mobilenetv3_rw.rmsp_in1k,4.933,95.067,29.853,70.147,5.48,224,0.875,bicubic,-86.277,-67.807,+13 hardcorenas_a.miil_green_in1k,4.893,95.107,28.093,71.907,5.26,224,0.875,bilinear,-86.457,-69.757,+7 regnetx_032.pycls_in1k,4.880,95.120,30.227,69.773,15.30,224,0.875,bicubic,-88.230,-68.163,-104 resnet50c.gluon_in1k,4.880,95.120,28.080,71.920,25.58,224,0.875,bicubic,-88.150,-70.320,-95 xcit_nano_12_p16_224.fb_in1k,4.853,95.147,25.467,74.533,3.05,224,1.000,bicubic,-83.767,-71.323,+73 resnext50_32x4d.tv_in1k,4.827,95.173,30.267,69.733,25.03,224,0.875,bilinear,-87.923,-68.003,-71 densenet161.tv_in1k,4.733,95.267,29.560,70.440,28.68,224,0.875,bicubic,-87.747,-68.740,-51 resnet101.tv_in1k,4.693,95.307,29.347,70.653,44.55,224,0.875,bilinear,-88.117,-68.903,-79 selecsls42b.in1k,4.680,95.320,28.573,71.427,32.46,224,0.875,bicubic,-87.610,-69.537,-40 tf_efficientnet_lite1.in1k,4.600,95.400,28.347,71.653,5.42,240,0.882,bicubic,-88.030,-69.713,-67 mobilenetv2_120d.ra_in1k,4.547,95.453,29.320,70.680,5.83,224,0.875,bicubic,-87.853,-68.740,-48 mobileone_s2.apple_in1k,4.520,95.480,29.133,70.867,7.88,224,0.900,bilinear,-88.300,-69.137,-85 tf_efficientnet_b0.in1k,4.427,95.573,26.680,73.320,5.29,224,0.875,bicubic,-87.653,-71.480,-34 pvt_v2_b0.in1k,4.347,95.653,25.960,74.040,3.67,224,0.900,bicubic,-84.433,-70.900,+61 vit_base_patch32_224.sam_in1k,4.333,95.667,24.387,75.613,88.22,224,0.900,bicubic,-85.407,-72.613,+41 resnet50.am_in1k,4.267,95.733,28.627,71.373,25.56,224,0.875,bicubic,-89.703,-70.003,-216 edgenext_xx_small.in1k,4.267,95.733,24.093,75.907,1.33,288,1.000,bicubic,-84.623,-72.887,+57 tinynet_b.in1k,4.200,95.800,26.787,73.213,3.73,188,0.875,bicubic,-86.720,-70.873,+5 efficientnet_es_pruned.in1k,4.200,95.800,26.453,73.547,5.44,224,0.875,bicubic,-86.970,-71.287,-1 repghostnet_111.in1k,4.147,95.853,26.187,73.813,4.54,224,0.875,bicubic,-86.563,-71.283,+13 densenet201.tv_in1k,4.133,95.867,27.547,72.453,20.01,224,0.875,bicubic,-88.607,-70.683,-85 resnet50.gluon_in1k,4.120,95.880,26.960,73.040,25.56,224,0.875,bicubic,-88.420,-71.080,-72 fbnetc_100.rmsp_in1k,4.107,95.893,25.907,74.093,5.57,224,0.875,bilinear,-86.623,-71.303,+8 semnasnet_100.rmsp_in1k,3.947,96.053,26.933,73.067,3.89,224,0.875,bicubic,-87.363,-70.627,-14 mobilevitv2_050.cvnets_in1k,3.947,96.053,23.947,76.053,1.37,256,0.888,bicubic,-84.233,-73.043,+59 resnet26.bt_in1k,3.933,96.067,28.213,71.787,16.00,288,0.950,bicubic,-88.057,-69.807,-42 repvgg_a2.rvgg_in1k,3.933,96.067,27.227,72.773,28.21,224,0.875,bilinear,-88.007,-70.873,-35 dpn68.mx_in1k,3.893,96.107,25.693,74.307,12.61,224,0.875,bicubic,-88.097,-72.527,-42 tf_mixnet_s.in1k,3.880,96.120,25.267,74.733,4.13,224,0.875,bicubic,-87.640,-72.353,-23 semnasnet_075.rmsp_in1k,3.867,96.133,27.080,72.920,2.91,224,0.875,bicubic,-86.203,-70.360,+21 tf_efficientnet_es.in1k,3.827,96.173,26.133,73.867,5.44,224,0.875,bicubic,-88.143,-71.747,-45 mobilevit_xxs.cvnets_in1k,3.827,96.173,21.733,78.267,1.27,256,0.900,bicubic,-83.333,-74.367,+58 resnet18d.ra2_in1k,3.813,96.187,26.013,73.987,11.71,288,0.950,bicubic,-86.467,-71.547,+12 regnety_008.pycls_in1k,3.787,96.213,27.160,72.840,6.26,224,0.875,bicubic,-87.943,-71.020,-32 dla60.in1k,3.747,96.253,27.947,72.053,22.04,224,0.875,bilinear,-88.453,-70.153,-62 resnet18.fb_ssl_yfcc100m_ft_in1k,3.747,96.253,25.373,74.627,11.69,224,0.875,bilinear,-86.463,-72.177,+11 mobilenetv2_140.ra_in1k,3.720,96.280,26.720,73.280,6.11,224,0.875,bicubic,-88.120,-71.140,-41 densenet169.tv_in1k,3.707,96.293,25.587,74.413,14.15,224,0.875,bicubic,-88.233,-72.553,-46 resnet18.a1_in1k,3.707,96.293,22.960,77.040,11.69,288,1.000,bicubic,-85.973,-74.140,+19 regnetx_016.pycls_in1k,3.613,96.387,26.320,73.680,9.19,224,0.875,bicubic,-88.567,-71.880,-66 efficientvit_m2.r224_in1k,3.613,96.387,21.853,78.147,4.19,224,0.875,bicubic,-84.857,-75.047,+40 spnasnet_100.rmsp_in1k,3.573,96.427,24.253,75.747,4.42,224,0.875,bilinear,-86.757,-72.937,+1 res2net50_48w_2s.in1k,3.560,96.440,26.613,73.387,25.29,224,0.875,bilinear,-88.990,-71.467,-94 tf_mobilenetv3_large_100.in1k,3.560,96.440,25.120,74.880,5.48,224,0.875,bilinear,-87.670,-72.540,-31 repghostnet_100.in1k,3.520,96.480,24.520,75.480,4.07,224,0.875,bicubic,-86.770,-72.960,-1 regnety_006.pycls_in1k,3.453,96.547,24.920,75.080,6.06,224,0.875,bicubic,-87.937,-73.080,-38 ghostnet_100.in1k,3.427,96.573,25.120,74.880,5.18,224,0.875,bicubic,-86.753,-72.170,+1 resnet34.a3_in1k,3.373,96.627,23.387,76.613,21.80,224,0.950,bicubic,-86.567,-73.793,+6 legacy_seresnet34.in1k,3.347,96.653,23.813,76.187,21.96,224,0.875,bilinear,-87.553,-73.767,-23 resnet18.a2_in1k,3.267,96.733,22.373,77.627,11.69,288,1.000,bicubic,-86.303,-74.587,+13 efficientnet_lite0.ra_in1k,3.240,96.760,25.947,74.053,4.65,224,0.875,bicubic,-87.880,-71.693,-34 dla34.in1k,3.240,96.760,23.547,76.453,15.74,224,0.875,bilinear,-87.520,-74.103,-21 efficientvit_b0.r224_in1k,3.200,96.800,19.533,80.467,3.41,224,0.950,bicubic,-84.740,-76.597,+31 mobilenetv2_110d.ra_in1k,3.187,96.813,24.573,75.427,4.52,224,0.875,bicubic,-87.773,-72.967,-31 regnety_004.pycls_in1k,3.187,96.813,22.680,77.320,4.34,224,0.875,bicubic,-87.303,-74.850,-14 tinynet_c.in1k,3.120,96.880,21.520,78.480,2.46,184,0.875,bicubic,-84.660,-74.850,+29 mnasnet_100.rmsp_in1k,3.107,96.893,24.227,75.773,4.38,224,0.875,bicubic,-87.393,-73.243,-17 repghostnet_080.in1k,3.080,96.920,21.973,78.027,3.28,224,0.875,bicubic,-85.760,-74.727,+16 tf_efficientnet_lite0.in1k,3.040,96.960,22.893,77.107,4.65,224,0.875,bicubic,-88.010,-74.687,-39 skresnet18.ra_in1k,3.027,96.973,22.813,77.187,11.96,224,0.875,bicubic,-86.633,-74.417,0 mobileone_s1.apple_in1k,2.947,97.053,24.947,75.053,4.83,224,0.900,bilinear,-88.333,-72.873,-49 vgg19_bn.tv_in1k,2.947,97.053,23.440,76.560,143.68,224,0.875,bilinear,-87.133,-74.140,-12 tinynet_d.in1k,2.853,97.147,17.787,82.213,2.34,152,0.875,bicubic,-81.867,-77.383,+40 tf_mobilenetv3_large_075.in1k,2.840,97.160,21.560,78.440,3.99,224,0.875,bilinear,-86.800,-75.630,-3 efficientvit_m1.r224_in1k,2.827,97.173,19.600,80.400,2.98,224,0.875,bicubic,-83.963,-76.430,+27 resnet14t.c3_in1k,2.760,97.240,20.213,79.787,10.08,224,0.950,bicubic,-86.230,-76.517,+3 hrnet_w18_small_v2.ms_in1k,2.720,97.280,23.720,76.280,15.60,224,0.875,bilinear,-88.480,-74.180,-52 regnetx_008.pycls_in1k,2.667,97.333,22.453,77.547,7.26,224,0.875,bicubic,-88.383,-75.267,-49 vgg16_bn.tv_in1k,2.653,97.347,23.800,76.200,138.37,224,0.875,bilinear,-87.437,-73.570,-21 resnet34.gluon_in1k,2.653,97.347,21.680,78.320,21.80,224,0.875,bicubic,-88.327,-75.950,-47 lcnet_100.ra2_in1k,2.627,97.373,20.760,79.240,2.95,224,0.875,bicubic,-86.123,-76.220,+6 vgg16.tv_in1k,2.627,97.373,20.360,79.640,138.36,224,0.875,bilinear,-85.933,-76.440,+7 repvgg_b0.rvgg_in1k,2.560,97.440,24.000,76.000,15.82,224,0.875,bilinear,-88.830,-73.700,-66 densenet121.tv_in1k,2.547,97.453,22.653,77.347,7.98,224,0.875,bicubic,-88.343,-75.057,-47 regnetx_006.pycls_in1k,2.533,97.467,20.627,79.373,6.20,224,0.875,bicubic,-87.817,-76.803,-33 hrnet_w18_small.gluon_in1k,2.507,97.493,20.653,79.347,13.19,224,0.875,bicubic,-86.963,-76.407,-12 legacy_seresnet18.in1k,2.480,97.520,20.067,79.933,11.78,224,0.875,bicubic,-86.410,-76.633,-5 lcnet_075.ra2_in1k,2.320,97.680,17.173,82.827,2.36,224,0.875,bicubic,-83.650,-78.507,+21 mobilenetv3_small_075.lamb_in1k,2.307,97.693,15.893,84.107,2.04,224,0.875,bicubic,-80.723,-78.207,+30 efficientvit_m0.r224_in1k,2.293,97.707,16.493,83.507,2.35,224,0.875,bicubic,-80.057,-77.937,+30 repghostnet_058.in1k,2.253,97.747,18.320,81.680,2.55,224,0.875,bicubic,-84.287,-77.580,+13 repvgg_a1.rvgg_in1k,2.240,97.760,21.333,78.667,14.09,224,0.875,bilinear,-88.360,-76.317,-45 mobileone_s0.apple_in1k,2.240,97.760,17.467,82.533,5.29,224,0.875,bilinear,-85.990,-78.933,0 resnet18.a3_in1k,2.227,97.773,17.773,82.227,11.69,224,0.950,bicubic,-84.223,-78.107,+11 mobilenetv2_100.ra_in1k,2.147,97.853,19.933,80.067,3.50,224,0.875,bicubic,-87.453,-77.217,-23 regnety_002.pycls_in1k,2.120,97.880,18.920,81.080,3.16,224,0.875,bicubic,-85.250,-77.690,+2 vgg19.tv_in1k,2.107,97.893,20.760,79.240,143.67,224,0.875,bilinear,-86.943,-76.110,-19 vgg13_bn.tv_in1k,2.093,97.907,20.333,79.667,133.05,224,0.875,bilinear,-86.657,-76.387,-12 tf_mobilenetv3_small_100.in1k,2.027,97.973,15.827,84.173,2.54,224,0.875,bilinear,-83.163,-79.943,+12 mobilenetv3_small_100.lamb_in1k,1.987,98.013,17.093,82.907,2.54,224,0.875,bicubic,-83.233,-78.557,+10 repghostnet_050.in1k,1.987,98.013,16.507,83.493,2.31,224,0.875,bicubic,-83.073,-78.693,+11 tf_mobilenetv3_small_075.in1k,1.987,98.013,14.840,85.160,2.04,224,0.875,bilinear,-81.513,-80.000,+16 regnetx_004.pycls_in1k,1.920,98.080,19.147,80.853,5.16,224,0.875,bicubic,-87.010,-77.973,-22 resnet34.tv_in1k,1.853,98.147,20.053,79.947,21.80,224,0.875,bilinear,-88.097,-77.287,-42 tinynet_e.in1k,1.853,98.147,14.013,85.987,2.04,106,0.875,bicubic,-77.067,-78.527,+18 vgg13.tv_in1k,1.840,98.160,18.027,81.973,133.05,224,0.875,bilinear,-85.200,-78.303,-5 mobilenetv3_small_050.lamb_in1k,1.813,98.187,12.533,87.467,1.59,224,0.875,bicubic,-75.207,-78.767,+17 lcnet_050.ra2_in1k,1.787,98.213,13.867,86.133,1.88,224,0.875,bicubic,-80.013,-79.843,+13 mnasnet_small.lamb_in1k,1.773,98.227,15.080,84.920,2.03,224,0.875,bicubic,-82.647,-80.110,+5 dla46x_c.in1k,1.747,98.253,16.387,83.613,1.07,224,0.875,bilinear,-82.483,-78.883,+5 vgg11_bn.tv_in1k,1.720,98.280,18.093,81.907,132.87,224,0.875,bilinear,-85.780,-78.727,-15 dla60x_c.in1k,1.613,98.387,18.013,81.987,1.32,224,0.875,bilinear,-84.677,-78.147,-6 tf_mobilenetv3_large_minimal_100.in1k,1.613,98.387,17.120,82.880,3.92,224,0.875,bilinear,-87.337,-79.740,-34 mobilenetv2_050.lamb_in1k,1.613,98.387,14.200,85.800,1.97,224,0.875,bicubic,-82.297,-80.520,+3 resnet10t.c3_in1k,1.600,98.400,16.053,83.947,5.44,224,0.950,bicubic,-84.620,-79.687,-8 vgg11.tv_in1k,1.560,98.440,16.187,83.813,132.86,224,0.875,bilinear,-85.020,-80.093,-13 resnet18.gluon_in1k,1.547,98.453,16.640,83.360,11.69,224,0.875,bicubic,-86.823,-80.030,-26 hrnet_w18_small.ms_in1k,1.533,98.467,18.093,81.907,13.19,224,0.875,bilinear,-87.517,-79.027,-41 dla46_c.in1k,1.493,98.507,15.227,84.773,1.30,224,0.875,bilinear,-82.117,-79.723,-2 repvgg_a0.rvgg_in1k,1.467,98.533,17.587,82.413,9.11,224,0.875,bilinear,-87.813,-79.303,-45 regnetx_002.pycls_in1k,1.373,98.627,15.053,84.947,2.68,224,0.875,bicubic,-84.767,-80.917,-13 resnet18.tv_in1k,1.160,98.840,16.227,83.773,11.69,224,0.875,bilinear,-86.220,-80.063,-25 tf_mobilenetv3_small_minimal_100.in1k,1.040,98.960,11.493,88.507,2.04,224,0.875,bilinear,-80.360,-82.187,-1 resnet50.tv_in1k,0.000,100.000,14.453,85.547,25.56,224,0.875,bilinear,-91.880,-82.807,-120
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/generate_csv_results.py
import numpy as np import pandas as pd results = { 'results-imagenet.csv': [ 'results-imagenet-real.csv', 'results-imagenetv2-matched-frequency.csv', 'results-sketch.csv' ], 'results-imagenet-a-clean.csv': [ 'results-imagenet-a.csv', ], 'results-imagenet-r-clean.csv': [ 'results-imagenet-r.csv', ], } def diff(base_df, test_csv): base_models = base_df['model'].values test_df = pd.read_csv(test_csv) test_models = test_df['model'].values rank_diff = np.zeros_like(test_models, dtype='object') top1_diff = np.zeros_like(test_models, dtype='object') top5_diff = np.zeros_like(test_models, dtype='object') for rank, model in enumerate(test_models): if model in base_models: base_rank = int(np.where(base_models == model)[0]) top1_d = test_df['top1'][rank] - base_df['top1'][base_rank] top5_d = test_df['top5'][rank] - base_df['top5'][base_rank] # rank_diff if rank == base_rank: rank_diff[rank] = f'0' elif rank > base_rank: rank_diff[rank] = f'-{rank - base_rank}' else: rank_diff[rank] = f'+{base_rank - rank}' # top1_diff if top1_d >= .0: top1_diff[rank] = f'+{top1_d:.3f}' else: top1_diff[rank] = f'-{abs(top1_d):.3f}' # top5_diff if top5_d >= .0: top5_diff[rank] = f'+{top5_d:.3f}' else: top5_diff[rank] = f'-{abs(top5_d):.3f}' else: rank_diff[rank] = '' top1_diff[rank] = '' top5_diff[rank] = '' test_df['top1_diff'] = top1_diff test_df['top5_diff'] = top5_diff test_df['rank_diff'] = rank_diff test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format) test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) test_df.to_csv(test_csv, index=False, float_format='%.3f') for base_results, test_results in results.items(): base_df = pd.read_csv(base_results) base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) for test_csv in test_results: diff(base_df, test_csv) base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format) base_df.to_csv(base_results, index=False, float_format='%.3f')
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet-a-clean.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,98.930,1.070,99.910,0.090,305.08,448,1.000,bicubic eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,98.850,1.150,99.880,0.120,305.08,448,1.000,bicubic eva02_large_patch14_448.mim_in22k_ft_in1k,98.840,1.160,99.830,0.170,305.08,448,1.000,bicubic eva_giant_patch14_560.m30m_ft_in22k_in1k,98.830,1.170,99.900,0.100,"1,014.45",560,1.000,bicubic eva_giant_patch14_336.clip_ft_in1k,98.820,1.180,99.810,0.190,"1,013.01",336,1.000,bicubic eva_giant_patch14_336.m30m_ft_in22k_in1k,98.810,1.190,99.900,0.100,"1,013.01",336,1.000,bicubic eva_large_patch14_336.in22k_ft_in22k_in1k,98.740,1.260,99.800,0.200,304.53,336,1.000,bicubic eva_large_patch14_336.in22k_ft_in1k,98.730,1.270,99.870,0.130,304.53,336,1.000,bicubic eva02_large_patch14_448.mim_m38m_ft_in1k,98.730,1.270,99.790,0.210,305.08,448,1.000,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_384,98.670,1.330,99.860,0.140,660.29,384,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,98.640,1.360,99.800,0.200,87.12,448,1.000,bicubic maxvit_base_tf_512.in21k_ft_in1k,98.620,1.380,99.800,0.200,119.88,512,1.000,bicubic maxvit_xlarge_tf_512.in21k_ft_in1k,98.620,1.380,99.800,0.200,475.77,512,1.000,bicubic maxvit_large_tf_512.in21k_ft_in1k,98.620,1.380,99.790,0.210,212.33,512,1.000,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_512,98.600,1.400,99.870,0.130,660.29,512,1.000,bicubic beit_large_patch16_512.in22k_ft_in22k_in1k,98.560,1.440,99.840,0.160,305.67,512,1.000,bicubic tf_efficientnet_l2.ns_jft_in1k,98.550,1.450,99.820,0.180,480.31,800,0.960,bicubic beitv2_large_patch16_224.in1k_ft_in22k_in1k,98.540,1.460,99.760,0.240,304.43,224,0.950,bicubic beit_large_patch16_384.in22k_ft_in22k_in1k,98.520,1.480,99.820,0.180,305.00,384,1.000,bicubic maxvit_base_tf_384.in21k_ft_in1k,98.520,1.480,99.750,0.250,119.65,384,1.000,bicubic tf_efficientnet_l2.ns_jft_in1k_475,98.500,1.500,99.830,0.170,480.31,475,0.936,bicubic maxvit_xlarge_tf_384.in21k_ft_in1k,98.500,1.500,99.780,0.220,475.32,384,1.000,bicubic maxvit_large_tf_384.in21k_ft_in1k,98.490,1.510,99.750,0.250,212.03,384,1.000,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,98.480,1.520,99.780,0.220,200.13,384,1.000,bicubic deit3_large_patch16_384.fb_in22k_ft_in1k,98.460,1.540,99.760,0.240,304.76,384,1.000,bicubic eva_giant_patch14_224.clip_ft_in1k,98.460,1.540,99.750,0.250,"1,012.56",224,0.900,bicubic regnety_1280.swag_ft_in1k,98.450,1.550,99.870,0.130,644.81,384,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in1k,98.440,1.560,99.820,0.180,87.12,448,1.000,bicubic caformer_b36.sail_in22k_ft_in1k_384,98.440,1.560,99.800,0.200,98.75,384,1.000,bicubic convnext_xxlarge.clip_laion2b_soup_ft_in1k,98.440,1.560,99.800,0.200,846.47,256,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k_384,98.420,1.580,99.810,0.190,350.20,384,1.000,bicubic vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,98.420,1.580,99.810,0.190,632.46,336,1.000,bicubic eva_large_patch14_196.in22k_ft_in22k_in1k,98.420,1.580,99.770,0.230,304.14,196,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k_384,98.400,1.600,99.760,0.240,197.96,384,1.000,bicubic eva_large_patch14_196.in22k_ft_in1k,98.360,1.640,99.820,0.180,304.14,196,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k_384,98.350,1.650,99.770,0.230,88.72,384,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,98.340,1.660,99.760,0.240,304.53,336,1.000,bicubic vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,98.300,1.700,99.760,0.240,632.05,224,1.000,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,98.280,1.720,99.770,0.230,200.13,320,1.000,bicubic convformer_b36.sail_in22k_ft_in1k_384,98.260,1.740,99.830,0.170,99.88,384,1.000,bicubic maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,98.260,1.740,99.780,0.220,116.09,384,1.000,bicubic vit_large_patch14_clip_336.openai_ft_in12k_in1k,98.260,1.740,99.770,0.230,304.53,336,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,98.250,1.750,99.760,0.240,200.13,384,1.000,bicubic convnext_large.fb_in22k_ft_in1k_384,98.240,1.760,99.750,0.250,197.77,384,1.000,bicubic vit_large_patch16_384.augreg_in21k_ft_in1k,98.220,1.780,99.800,0.200,304.72,384,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in12k_in1k,98.220,1.780,99.720,0.280,304.20,224,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in1k,98.220,1.780,99.720,0.280,304.53,336,1.000,bicubic seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,98.210,1.790,99.780,0.220,149.39,384,1.000,bicubic vit_base_patch16_clip_384.openai_ft_in12k_in1k,98.190,1.810,99.660,0.340,86.86,384,0.950,bicubic beit_large_patch16_224.in22k_ft_in22k_in1k,98.180,1.820,99.760,0.240,304.43,224,0.900,bicubic deit3_large_patch16_224.fb_in22k_ft_in1k,98.170,1.830,99.760,0.240,304.37,224,1.000,bicubic maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,98.170,1.830,99.760,0.240,116.14,384,1.000,bicubic deit3_huge_patch14_224.fb_in22k_ft_in1k,98.170,1.830,99.730,0.270,632.13,224,1.000,bicubic caformer_b36.sail_in22k_ft_in1k,98.160,1.840,99.780,0.220,98.75,224,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in1k,98.160,1.840,99.660,0.340,304.20,224,1.000,bicubic caformer_m36.sail_in22k_ft_in1k_384,98.150,1.850,99.750,0.250,56.20,384,1.000,bicubic swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,98.130,1.870,99.710,0.290,196.74,384,1.000,bicubic swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,98.120,1.880,99.780,0.220,87.92,384,1.000,bicubic convnext_large.fb_in22k_ft_in1k,98.120,1.880,99.740,0.260,197.77,288,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k,98.110,1.890,99.780,0.220,350.20,288,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k,98.090,1.910,99.770,0.230,197.96,288,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,98.080,1.920,99.760,0.240,304.20,224,1.000,bicubic convnext_base.fb_in22k_ft_in1k_384,98.080,1.920,99.650,0.350,88.59,384,1.000,bicubic coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,98.070,1.930,99.720,0.280,73.88,384,1.000,bicubic regnety_320.swag_ft_in1k,98.060,1.940,99.860,0.140,145.05,384,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k,98.060,1.940,99.760,0.240,88.72,288,1.000,bicubic swin_large_patch4_window12_384.ms_in22k_ft_in1k,98.050,1.950,99.690,0.310,196.74,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,98.040,1.960,99.750,0.250,88.59,384,1.000,bicubic convformer_m36.sail_in22k_ft_in1k_384,98.040,1.960,99.690,0.310,57.05,384,1.000,bicubic vit_huge_patch14_clip_224.laion2b_ft_in1k,98.020,1.980,99.720,0.280,632.05,224,1.000,bicubic vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,97.990,2.010,99.660,0.340,86.86,384,1.000,bicubic caformer_s36.sail_in22k_ft_in1k_384,97.970,2.030,99.720,0.280,39.30,384,1.000,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,97.970,2.030,99.700,0.300,93.59,320,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k,97.950,2.050,99.710,0.290,200.13,256,1.000,bicubic convformer_b36.sail_in22k_ft_in1k,97.940,2.060,99.760,0.240,99.88,224,1.000,bicubic tf_efficientnet_b7.ns_jft_in1k,97.920,2.080,99.720,0.280,66.35,600,0.949,bicubic beitv2_large_patch16_224.in1k_ft_in1k,97.910,2.090,99.660,0.340,304.43,224,0.950,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k,97.910,2.090,99.660,0.340,93.59,288,1.000,bicubic swin_base_patch4_window12_384.ms_in22k_ft_in1k,97.900,2.100,99.710,0.290,87.90,384,1.000,bicubic convnextv2_huge.fcmae_ft_in1k,97.900,2.100,99.670,0.330,660.29,288,1.000,bicubic tf_efficientnetv2_xl.in21k_ft_in1k,97.900,2.100,99.570,0.430,208.12,512,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in1k,97.890,2.110,99.650,0.350,304.20,224,1.000,bicubic tiny_vit_21m_512.dist_in22k_ft_in1k,97.870,2.130,99.630,0.370,21.27,512,1.000,bicubic convnext_base.fb_in22k_ft_in1k,97.860,2.140,99.680,0.320,88.59,288,1.000,bicubic vit_large_r50_s32_384.augreg_in21k_ft_in1k,97.860,2.140,99.670,0.330,329.09,384,1.000,bicubic swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,97.850,2.150,99.650,0.350,196.74,256,0.900,bicubic convformer_s36.sail_in22k_ft_in1k_384,97.850,2.150,99.640,0.360,40.01,384,1.000,bicubic deit3_base_patch16_384.fb_in22k_ft_in1k,97.840,2.160,99.680,0.320,86.88,384,1.000,bicubic caformer_m36.sail_in22k_ft_in1k,97.840,2.160,99.670,0.330,56.20,224,1.000,bicubic vit_base_patch16_384.augreg_in21k_ft_in1k,97.840,2.160,99.670,0.330,86.86,384,1.000,bicubic maxvit_large_tf_512.in1k,97.830,2.170,99.560,0.440,212.33,512,1.000,bicubic beit_base_patch16_384.in22k_ft_in22k_in1k,97.820,2.180,99.700,0.300,86.74,384,1.000,bicubic tf_efficientnetv2_m.in21k_ft_in1k,97.820,2.180,99.600,0.400,54.14,480,1.000,bicubic maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,97.810,2.190,99.650,0.350,116.14,224,0.950,bicubic tf_efficientnetv2_l.in21k_ft_in1k,97.800,2.200,99.770,0.230,118.52,480,1.000,bicubic convnext_small.in12k_ft_in1k_384,97.800,2.200,99.660,0.340,50.22,384,1.000,bicubic regnety_160.swag_ft_in1k,97.780,2.220,99.760,0.240,83.59,384,1.000,bicubic dm_nfnet_f6.dm_in1k,97.780,2.220,99.650,0.350,438.36,576,0.956,bicubic dm_nfnet_f5.dm_in1k,97.780,2.220,99.600,0.400,377.21,544,0.954,bicubic volo_d5_512.sail_in1k,97.770,2.230,99.670,0.330,296.09,512,1.150,bicubic maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,97.760,2.240,99.700,0.300,116.09,224,0.950,bicubic volo_d5_448.sail_in1k,97.750,2.250,99.620,0.380,295.91,448,1.150,bicubic maxvit_small_tf_512.in1k,97.750,2.250,99.550,0.450,69.13,512,1.000,bicubic maxvit_base_tf_512.in1k,97.730,2.270,99.610,0.390,119.88,512,1.000,bicubic vit_base_patch16_clip_384.laion2b_ft_in1k,97.720,2.280,99.630,0.370,86.86,384,1.000,bicubic beitv2_base_patch16_224.in1k_ft_in22k_in1k,97.690,2.310,99.680,0.320,86.53,224,0.900,bicubic vit_base_patch8_224.augreg2_in21k_ft_in1k,97.690,2.310,99.650,0.350,86.58,224,0.900,bicubic volo_d4_448.sail_in1k,97.670,2.330,99.610,0.390,193.41,448,1.150,bicubic swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,97.660,2.340,99.720,0.280,87.92,256,0.900,bicubic convnextv2_large.fcmae_ft_in1k,97.660,2.340,99.610,0.390,197.96,288,1.000,bicubic regnety_1280.swag_lc_in1k,97.650,2.350,99.640,0.360,644.81,224,0.965,bicubic coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,97.650,2.350,99.570,0.430,73.88,224,0.950,bicubic swin_large_patch4_window7_224.ms_in22k_ft_in1k,97.650,2.350,99.570,0.430,196.53,224,0.900,bicubic dm_nfnet_f4.dm_in1k,97.640,2.360,99.540,0.460,316.07,512,0.951,bicubic vit_large_patch16_224.augreg_in21k_ft_in1k,97.630,2.370,99.590,0.410,304.33,224,0.900,bicubic tf_efficientnet_b6.ns_jft_in1k,97.620,2.380,99.580,0.420,43.04,528,0.942,bicubic convnext_base.clip_laiona_augreg_ft_in1k_384,97.620,2.380,99.550,0.450,88.59,384,1.000,bicubic convnext_small.fb_in22k_ft_in1k_384,97.610,2.390,99.600,0.400,50.22,384,1.000,bicubic tiny_vit_21m_384.dist_in22k_ft_in1k,97.610,2.390,99.590,0.410,21.23,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k,97.600,2.400,99.720,0.280,88.59,256,1.000,bicubic convformer_m36.sail_in22k_ft_in1k,97.600,2.400,99.620,0.380,57.05,224,1.000,bicubic caformer_s36.sail_in22k_ft_in1k,97.600,2.400,99.610,0.390,39.30,224,1.000,bicubic maxvit_tiny_tf_512.in1k,97.580,2.420,99.560,0.440,31.05,512,1.000,bicubic vit_base_patch8_224.augreg_in21k_ft_in1k,97.570,2.430,99.670,0.330,86.58,224,0.900,bicubic maxvit_base_tf_384.in1k,97.570,2.430,99.590,0.410,119.65,384,1.000,bicubic maxvit_large_tf_384.in1k,97.570,2.430,99.530,0.470,212.03,384,1.000,bicubic volo_d3_448.sail_in1k,97.550,2.450,99.560,0.440,86.63,448,1.000,bicubic vit_base_patch16_clip_384.openai_ft_in1k,97.540,2.460,99.660,0.340,86.86,384,1.000,bicubic convformer_b36.sail_in1k_384,97.530,2.470,99.520,0.480,99.88,384,1.000,bicubic vit_base_patch16_clip_224.openai_ft_in12k_in1k,97.530,2.470,99.500,0.500,86.57,224,0.950,bicubic coatnet_2_rw_224.sw_in12k_ft_in1k,97.520,2.480,99.600,0.400,73.87,224,0.950,bicubic xcit_large_24_p8_384.fb_dist_in1k,97.520,2.480,99.540,0.460,188.93,384,1.000,bicubic xcit_large_24_p16_384.fb_dist_in1k,97.520,2.480,99.480,0.520,189.10,384,1.000,bicubic tf_efficientnet_b5.ns_jft_in1k,97.500,2.500,99.640,0.360,30.39,456,0.934,bicubic caformer_b36.sail_in1k_384,97.500,2.500,99.580,0.420,98.75,384,1.000,bicubic resnetv2_152x4_bit.goog_in21k_ft_in1k,97.490,2.510,99.610,0.390,936.53,480,1.000,bilinear deit3_base_patch16_224.fb_in22k_ft_in1k,97.480,2.520,99.600,0.400,86.59,224,1.000,bicubic cait_m48_448.fb_dist_in1k,97.480,2.520,99.550,0.450,356.46,448,1.000,bicubic dm_nfnet_f3.dm_in1k,97.470,2.530,99.560,0.440,254.92,416,0.940,bicubic tf_efficientnetv2_l.in1k,97.470,2.530,99.530,0.470,118.52,480,1.000,bicubic regnety_160.lion_in12k_ft_in1k,97.450,2.550,99.600,0.400,83.59,288,1.000,bicubic regnety_160.sw_in12k_ft_in1k,97.450,2.550,99.590,0.410,83.59,288,1.000,bicubic vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,97.450,2.550,99.540,0.460,86.57,224,0.950,bicubic vit_medium_patch16_gap_384.sw_in12k_ft_in1k,97.440,2.560,99.640,0.360,39.03,384,0.950,bicubic caformer_m36.sail_in1k_384,97.440,2.560,99.600,0.400,56.20,384,1.000,bicubic maxvit_small_tf_384.in1k,97.430,2.570,99.510,0.490,69.02,384,1.000,bicubic deit3_large_patch16_384.fb_in1k,97.420,2.580,99.620,0.380,304.76,384,1.000,bicubic caformer_s18.sail_in22k_ft_in1k_384,97.420,2.580,99.570,0.430,26.34,384,1.000,bicubic flexivit_large.1200ep_in1k,97.410,2.590,99.600,0.400,304.36,240,0.950,bicubic efficientnet_b5.sw_in12k_ft_in1k,97.410,2.590,99.550,0.450,30.39,448,1.000,bicubic convformer_m36.sail_in1k_384,97.410,2.590,99.470,0.530,57.05,384,1.000,bicubic cait_m36_384.fb_dist_in1k,97.400,2.600,99.510,0.490,271.22,384,1.000,bicubic caformer_s36.sail_in1k_384,97.390,2.610,99.540,0.460,39.30,384,1.000,bicubic volo_d5_224.sail_in1k,97.380,2.620,99.570,0.430,295.46,224,0.960,bicubic resnext101_32x32d.fb_wsl_ig1b_ft_in1k,97.370,2.630,99.680,0.320,468.53,224,0.875,bilinear convnext_small.fb_in22k_ft_in1k,97.360,2.640,99.530,0.470,50.22,288,1.000,bicubic vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,97.360,2.640,99.520,0.480,88.30,384,1.000,bicubic convnext_small.in12k_ft_in1k,97.350,2.650,99.580,0.420,50.22,288,1.000,bicubic convnext_tiny.in12k_ft_in1k_384,97.340,2.660,99.600,0.400,28.59,384,1.000,bicubic cait_s36_384.fb_dist_in1k,97.330,2.670,99.540,0.460,68.37,384,1.000,bicubic volo_d2_384.sail_in1k,97.320,2.680,99.600,0.400,58.87,384,1.000,bicubic maxvit_tiny_tf_384.in1k,97.310,2.690,99.500,0.500,30.98,384,1.000,bicubic vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,97.310,2.690,99.480,0.520,88.34,448,1.000,bicubic flexivit_large.600ep_in1k,97.280,2.720,99.590,0.410,304.36,240,0.950,bicubic swin_base_patch4_window7_224.ms_in22k_ft_in1k,97.280,2.720,99.540,0.460,87.77,224,0.900,bicubic regnety_120.sw_in12k_ft_in1k,97.280,2.720,99.530,0.470,51.82,288,1.000,bicubic volo_d4_224.sail_in1k,97.280,2.720,99.520,0.480,192.96,224,0.960,bicubic xcit_medium_24_p8_384.fb_dist_in1k,97.280,2.720,99.510,0.490,84.32,384,1.000,bicubic xcit_medium_24_p16_384.fb_dist_in1k,97.280,2.720,99.470,0.530,84.40,384,1.000,bicubic convformer_s36.sail_in1k_384,97.280,2.720,99.430,0.570,40.01,384,1.000,bicubic convformer_s18.sail_in22k_ft_in1k_384,97.270,2.730,99.550,0.450,26.77,384,1.000,bicubic inception_next_base.sail_in1k_384,97.260,2.740,99.490,0.510,86.67,384,1.000,bicubic flexivit_large.300ep_in1k,97.250,2.750,99.490,0.510,304.36,240,0.950,bicubic xcit_small_24_p8_384.fb_dist_in1k,97.240,2.760,99.610,0.390,47.63,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in1k,97.240,2.760,99.550,0.450,88.59,256,1.000,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k_384,97.240,2.760,99.520,0.480,28.64,384,1.000,bicubic xcit_small_12_p8_384.fb_dist_in1k,97.230,2.770,99.480,0.520,26.21,384,1.000,bicubic convnextv2_base.fcmae_ft_in1k,97.220,2.780,99.540,0.460,88.72,288,1.000,bicubic regnety_2560.seer_ft_in1k,97.220,2.780,99.520,0.480,"1,282.60",384,1.000,bicubic resnext101_32x8d.fb_swsl_ig1b_ft_in1k,97.210,2.790,99.570,0.430,88.79,224,0.875,bilinear tf_efficientnetv2_m.in1k,97.210,2.790,99.530,0.470,54.14,480,1.000,bicubic tf_efficientnet_b7.ap_in1k,97.200,2.800,99.540,0.460,66.35,600,0.949,bicubic regnetz_e8.ra3_in1k,97.200,2.800,99.500,0.500,57.70,320,1.000,bicubic tf_efficientnet_b8.ra_in1k,97.200,2.800,99.500,0.500,87.41,672,0.954,bicubic tiny_vit_21m_224.dist_in22k_ft_in1k,97.200,2.800,99.490,0.510,21.20,224,0.950,bicubic vit_base_r50_s16_384.orig_in21k_ft_in1k,97.190,2.810,99.560,0.440,98.95,384,1.000,bicubic beitv2_base_patch16_224.in1k_ft_in1k,97.170,2.830,99.470,0.530,86.53,224,0.900,bicubic regnety_320.swag_lc_in1k,97.160,2.840,99.670,0.330,145.05,224,0.965,bicubic vit_base_patch16_224.augreg2_in21k_ft_in1k,97.150,2.850,99.540,0.460,86.57,224,0.900,bicubic coat_lite_medium_384.in1k,97.150,2.850,99.450,0.550,44.57,384,1.000,bicubic eva02_small_patch14_336.mim_in22k_ft_in1k,97.140,2.860,99.470,0.530,22.13,336,1.000,bicubic deit3_small_patch16_384.fb_in22k_ft_in1k,97.130,2.870,99.510,0.490,22.21,384,1.000,bicubic vit_base_patch16_clip_224.laion2b_ft_in1k,97.130,2.870,99.460,0.540,86.57,224,1.000,bicubic xcit_small_24_p16_384.fb_dist_in1k,97.120,2.880,99.450,0.550,47.67,384,1.000,bicubic tf_efficientnet_b8.ap_in1k,97.110,2.890,99.660,0.340,87.41,672,0.954,bicubic dm_nfnet_f2.dm_in1k,97.110,2.890,99.510,0.490,193.78,352,0.920,bicubic vit_base_patch32_clip_384.openai_ft_in12k_in1k,97.110,2.890,99.500,0.500,88.30,384,0.950,bicubic convnext_large.fb_in1k,97.100,2.900,99.450,0.550,197.77,288,1.000,bicubic ecaresnet269d.ra2_in1k,97.090,2.910,99.470,0.530,102.09,352,1.000,bicubic volo_d3_224.sail_in1k,97.090,2.910,99.470,0.530,86.33,224,0.960,bicubic beit_base_patch16_224.in22k_ft_in22k_in1k,97.080,2.920,99.610,0.390,86.53,224,0.900,bicubic tf_efficientnet_b6.ap_in1k,97.080,2.920,99.610,0.390,43.04,528,0.942,bicubic convformer_s36.sail_in22k_ft_in1k,97.080,2.920,99.560,0.440,40.01,224,1.000,bicubic convnext_tiny.fb_in22k_ft_in1k_384,97.080,2.920,99.510,0.490,28.59,384,1.000,bicubic eca_nfnet_l2.ra3_in1k,97.080,2.920,99.510,0.490,56.72,384,1.000,bicubic vit_base_patch16_clip_224.openai_ft_in1k,97.080,2.920,99.490,0.510,86.57,224,0.900,bicubic caformer_s18.sail_in1k_384,97.080,2.920,99.420,0.580,26.34,384,1.000,bicubic cait_s24_384.fb_dist_in1k,97.070,2.930,99.430,0.570,47.06,384,1.000,bicubic xcit_large_24_p8_224.fb_dist_in1k,97.070,2.930,99.420,0.580,188.93,224,1.000,bicubic convnext_tiny.in12k_ft_in1k,97.060,2.940,99.550,0.450,28.59,288,1.000,bicubic deit3_base_patch16_384.fb_in1k,97.040,2.960,99.390,0.610,86.88,384,1.000,bicubic convformer_s18.sail_in1k_384,97.040,2.960,99.380,0.620,26.77,384,1.000,bicubic hrnet_w48_ssld.paddle_in1k,97.030,2.970,99.640,0.360,77.47,288,1.000,bilinear dm_nfnet_f1.dm_in1k,97.030,2.970,99.390,0.610,132.63,320,0.910,bicubic resnetv2_152x2_bit.goog_in21k_ft_in1k,97.000,3.000,99.590,0.410,236.34,448,1.000,bilinear tf_efficientnet_b7.ra_in1k,97.000,3.000,99.520,0.480,66.35,600,0.949,bicubic volo_d2_224.sail_in1k,97.000,3.000,99.390,0.610,58.68,224,0.960,bicubic efficientnetv2_rw_m.agc_in1k,96.980,3.020,99.530,0.470,53.24,416,1.000,bicubic resnetv2_101x3_bit.goog_in21k_ft_in1k,96.980,3.020,99.490,0.510,387.93,448,1.000,bilinear caformer_b36.sail_in1k,96.980,3.020,99.340,0.660,98.75,224,1.000,bicubic deit3_medium_patch16_224.fb_in22k_ft_in1k,96.970,3.030,99.430,0.570,38.85,224,1.000,bicubic deit_base_distilled_patch16_384.fb_in1k,96.960,3.040,99.480,0.520,87.63,384,1.000,bicubic seresnextaa101d_32x8d.ah_in1k,96.960,3.040,99.390,0.610,93.59,288,1.000,bicubic maxvit_large_tf_224.in1k,96.960,3.040,99.250,0.750,211.79,224,0.950,bicubic tf_efficientnet_b4.ns_jft_in1k,96.950,3.050,99.580,0.420,19.34,380,0.922,bicubic maxvit_base_tf_224.in1k,96.950,3.050,99.260,0.740,119.47,224,0.950,bicubic deit3_large_patch16_224.fb_in1k,96.940,3.060,99.340,0.660,304.37,224,0.900,bicubic davit_base.msft_in1k,96.940,3.060,99.260,0.740,87.95,224,0.950,bicubic mvitv2_large.fb_in1k,96.930,3.070,99.400,0.600,217.99,224,0.900,bicubic xcit_small_12_p16_384.fb_dist_in1k,96.920,3.080,99.400,0.600,26.25,384,1.000,bicubic xcit_medium_24_p8_224.fb_dist_in1k,96.920,3.080,99.390,0.610,84.32,224,1.000,bicubic volo_d1_384.sail_in1k,96.910,3.090,99.520,0.480,26.78,384,1.000,bicubic resnetrs420.tf_in1k,96.910,3.090,99.460,0.540,191.89,416,1.000,bicubic deit3_huge_patch14_224.fb_in1k,96.900,3.100,99.480,0.520,632.13,224,0.900,bicubic convformer_b36.sail_in1k,96.900,3.100,99.220,0.780,99.88,224,1.000,bicubic caformer_m36.sail_in1k,96.890,3.110,99.430,0.570,56.20,224,1.000,bicubic vit_base_patch16_224.augreg_in21k_ft_in1k,96.880,3.120,99.530,0.470,86.57,224,0.900,bicubic xcit_small_24_p8_224.fb_dist_in1k,96.870,3.130,99.480,0.520,47.63,224,1.000,bicubic regnety_1280.seer_ft_in1k,96.860,3.140,99.390,0.610,644.81,384,1.000,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k,96.850,3.150,99.460,0.540,28.64,288,1.000,bicubic regnety_640.seer_ft_in1k,96.850,3.150,99.420,0.580,281.38,384,1.000,bicubic rexnetr_300.sw_in12k_ft_in1k,96.840,3.160,99.510,0.490,34.81,288,1.000,bicubic resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,96.830,3.170,99.450,0.550,236.34,384,1.000,bicubic convnext_base.fb_in1k,96.830,3.170,99.410,0.590,88.59,288,1.000,bicubic regnety_160.swag_lc_in1k,96.820,3.180,99.650,0.350,83.59,224,0.965,bicubic resnext101_32x16d.fb_wsl_ig1b_ft_in1k,96.810,3.190,99.600,0.400,194.03,224,0.875,bilinear maxxvit_rmlp_small_rw_256.sw_in1k,96.800,3.200,99.380,0.620,66.01,256,0.950,bicubic xcit_large_24_p16_224.fb_dist_in1k,96.800,3.200,99.350,0.650,189.10,224,1.000,bicubic vit_large_r50_s32_224.augreg_in21k_ft_in1k,96.790,3.210,99.340,0.660,328.99,224,0.900,bicubic fastvit_ma36.apple_dist_in1k,96.780,3.220,99.330,0.670,44.07,256,0.950,bicubic seresnet152d.ra2_in1k,96.770,3.230,99.440,0.560,66.84,320,1.000,bicubic seresnext101_32x8d.ah_in1k,96.770,3.230,99.350,0.650,93.57,288,1.000,bicubic mvitv2_base.fb_in1k,96.760,3.240,99.260,0.740,51.47,224,0.900,bicubic resnetrs350.tf_in1k,96.750,3.250,99.370,0.630,163.96,384,1.000,bicubic swinv2_base_window16_256.ms_in1k,96.750,3.250,99.350,0.650,87.92,256,0.900,bicubic flexivit_base.1200ep_in1k,96.740,3.260,99.360,0.640,86.59,240,0.950,bicubic edgenext_base.in21k_ft_in1k,96.730,3.270,99.420,0.580,18.51,320,1.000,bicubic tf_efficientnetv2_s.in21k_ft_in1k,96.730,3.270,99.420,0.580,21.46,384,1.000,bicubic resnet200d.ra2_in1k,96.730,3.270,99.330,0.670,64.69,320,1.000,bicubic vit_base_patch16_384.orig_in21k_ft_in1k,96.720,3.280,99.500,0.500,86.86,384,1.000,bicubic regnetz_040.ra3_in1k,96.720,3.280,99.480,0.520,27.12,320,1.000,bicubic resnetv2_50x3_bit.goog_in21k_ft_in1k,96.710,3.290,99.550,0.450,217.32,448,1.000,bilinear caformer_s18.sail_in22k_ft_in1k,96.710,3.290,99.490,0.510,26.34,224,1.000,bicubic regnetz_040_h.ra3_in1k,96.700,3.300,99.500,0.500,28.94,320,1.000,bicubic vit_small_patch16_384.augreg_in21k_ft_in1k,96.700,3.300,99.480,0.520,22.20,384,1.000,bicubic edgenext_base.usi_in1k,96.700,3.300,99.430,0.570,18.51,320,1.000,bicubic xcit_small_12_p8_224.fb_dist_in1k,96.700,3.300,99.380,0.620,26.21,224,1.000,bicubic resnetrs200.tf_in1k,96.700,3.300,99.370,0.630,93.21,320,1.000,bicubic resnetaa101d.sw_in12k_ft_in1k,96.700,3.300,99.360,0.640,44.57,288,1.000,bicubic seresnext101d_32x8d.ah_in1k,96.700,3.300,99.360,0.640,93.59,288,1.000,bicubic eca_nfnet_l1.ra2_in1k,96.700,3.300,99.290,0.710,41.41,320,1.000,bicubic repvgg_d2se.rvgg_in1k,96.690,3.310,99.370,0.630,133.33,320,1.000,bilinear caformer_s36.sail_in1k,96.690,3.310,99.360,0.640,39.30,224,1.000,bicubic maxvit_small_tf_224.in1k,96.690,3.310,99.360,0.640,68.93,224,0.950,bicubic resnetrs270.tf_in1k,96.690,3.310,99.350,0.650,129.86,352,1.000,bicubic vit_small_r26_s32_384.augreg_in21k_ft_in1k,96.680,3.320,99.580,0.420,36.47,384,1.000,bicubic tf_efficientnet_b5.ap_in1k,96.680,3.320,99.460,0.540,30.39,456,0.934,bicubic convformer_m36.sail_in1k,96.680,3.320,99.080,0.920,57.05,224,1.000,bicubic vit_medium_patch16_gap_256.sw_in12k_ft_in1k,96.670,3.330,99.490,0.510,38.86,256,0.950,bicubic tf_efficientnet_b6.aa_in1k,96.670,3.330,99.370,0.630,43.04,528,0.942,bicubic deit3_small_patch16_224.fb_in22k_ft_in1k,96.660,3.340,99.330,0.670,22.06,224,1.000,bicubic flexivit_base.600ep_in1k,96.650,3.350,99.330,0.670,86.59,240,0.950,bicubic davit_small.msft_in1k,96.630,3.370,99.350,0.650,49.75,224,0.950,bicubic convformer_s18.sail_in22k_ft_in1k,96.630,3.370,99.340,0.660,26.77,224,1.000,bicubic efficientvit_b3.r288_in1k,96.630,3.370,99.220,0.780,48.65,288,1.000,bicubic coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,96.630,3.370,99.160,0.840,41.72,224,0.950,bicubic resmlp_big_24_224.fb_in22k_ft_in1k,96.620,3.380,99.510,0.490,129.14,224,0.875,bicubic regnetz_d8.ra3_in1k,96.620,3.380,99.450,0.550,23.37,320,1.000,bicubic resnest200e.in1k,96.610,3.390,99.350,0.650,70.20,320,0.909,bicubic resnext101_32x16d.fb_swsl_ig1b_ft_in1k,96.600,3.400,99.530,0.470,194.03,224,0.875,bilinear flexivit_base.300ep_in1k,96.600,3.400,99.270,0.730,86.59,240,0.950,bicubic xcit_medium_24_p16_224.fb_dist_in1k,96.600,3.400,99.270,0.730,84.40,224,1.000,bicubic regnetz_d32.ra3_in1k,96.590,3.410,99.380,0.620,27.58,320,0.950,bicubic swin_base_patch4_window12_384.ms_in1k,96.580,3.420,99.250,0.750,87.90,384,1.000,bicubic resnetrs152.tf_in1k,96.580,3.420,99.240,0.760,86.62,320,1.000,bicubic convformer_s36.sail_in1k,96.580,3.420,99.170,0.830,40.01,224,1.000,bicubic maxvit_rmlp_small_rw_224.sw_in1k,96.580,3.420,99.120,0.880,64.90,224,0.900,bicubic regnetz_d8_evos.ch_in1k,96.570,3.430,99.460,0.540,23.46,320,1.000,bicubic gcvit_base.in1k,96.560,3.440,99.230,0.770,90.32,224,0.875,bicubic focalnet_base_srf.ms_in1k,96.560,3.440,99.150,0.850,88.15,224,0.900,bicubic inception_next_base.sail_in1k,96.560,3.440,99.080,0.920,86.67,224,0.950,bicubic cait_xs24_384.fb_dist_in1k,96.540,3.460,99.420,0.580,26.67,384,1.000,bicubic efficientnetv2_rw_s.ra2_in1k,96.540,3.460,99.360,0.640,23.94,384,1.000,bicubic tf_efficientnet_b7.aa_in1k,96.540,3.460,99.300,0.700,66.35,600,0.949,bicubic crossvit_18_dagger_408.in1k,96.540,3.460,99.260,0.740,44.61,408,1.000,bicubic coatnet_rmlp_2_rw_224.sw_in1k,96.540,3.460,99.100,0.900,73.88,224,0.950,bicubic regnety_080.ra3_in1k,96.530,3.470,99.320,0.680,39.18,288,1.000,bicubic xcit_tiny_24_p8_384.fb_dist_in1k,96.530,3.470,99.320,0.680,12.11,384,1.000,bicubic swinv2_base_window8_256.ms_in1k,96.530,3.470,99.270,0.730,87.92,256,0.900,bicubic convnext_small.fb_in1k,96.520,3.480,99.340,0.660,50.22,288,1.000,bicubic resnest269e.in1k,96.510,3.490,99.350,0.650,110.93,416,0.928,bicubic vit_base_patch32_384.augreg_in21k_ft_in1k,96.490,3.510,99.410,0.590,88.30,384,1.000,bicubic swin_small_patch4_window7_224.ms_in22k_ft_in1k,96.480,3.520,99.390,0.610,49.61,224,0.900,bicubic fastvit_ma36.apple_in1k,96.470,3.530,99.280,0.720,44.07,256,0.950,bicubic tf_efficientnet_b5.aa_in1k,96.470,3.530,99.240,0.760,30.39,456,0.934,bicubic swinv2_small_window16_256.ms_in1k,96.470,3.530,99.200,0.800,49.73,256,0.900,bicubic coat_lite_medium.in1k,96.470,3.530,99.150,0.850,44.57,224,0.900,bicubic cs3se_edgenet_x.c2ns_in1k,96.450,3.550,99.400,0.600,50.72,320,1.000,bicubic resmlp_big_24_224.fb_distilled_in1k,96.450,3.550,99.310,0.690,129.14,224,0.875,bicubic vit_base_patch16_224_miil.in21k_ft_in1k,96.450,3.550,99.300,0.700,86.54,224,0.875,bilinear focalnet_base_lrf.ms_in1k,96.450,3.550,99.120,0.880,88.75,224,0.900,bicubic resnext101_32x4d.fb_swsl_ig1b_ft_in1k,96.420,3.580,99.470,0.530,44.18,224,0.875,bilinear maxvit_rmlp_tiny_rw_256.sw_in1k,96.420,3.580,99.380,0.620,29.15,256,0.950,bicubic cait_s24_224.fb_dist_in1k,96.420,3.580,99.150,0.850,46.92,224,1.000,bicubic regnetv_064.ra3_in1k,96.410,3.590,99.360,0.640,30.58,288,1.000,bicubic xcit_small_24_p8_224.fb_in1k,96.410,3.590,99.150,0.850,47.63,224,1.000,bicubic xcit_large_24_p8_224.fb_in1k,96.400,3.600,98.990,1.010,188.93,224,1.000,bicubic resnet152d.ra2_in1k,96.390,3.610,99.390,0.610,60.21,320,1.000,bicubic tf_efficientnet_b3.ns_jft_in1k,96.390,3.610,99.350,0.650,12.23,300,0.904,bicubic crossvit_15_dagger_408.in1k,96.390,3.610,99.160,0.840,28.50,408,1.000,bicubic convnextv2_nano.fcmae_ft_in22k_in1k_384,96.370,3.630,99.400,0.600,15.62,384,1.000,bicubic mvitv2_small.fb_in1k,96.370,3.630,99.200,0.800,34.87,224,0.900,bicubic xception65.ra3_in1k,96.360,3.640,99.240,0.760,39.92,299,0.940,bicubic fastvit_sa36.apple_dist_in1k,96.360,3.640,99.230,0.770,31.53,256,0.900,bicubic regnety_064.ra3_in1k,96.360,3.640,99.230,0.770,30.58,288,1.000,bicubic pvt_v2_b5.in1k,96.360,3.640,99.170,0.830,81.96,224,0.900,bicubic regnety_160.deit_in1k,96.350,3.650,99.330,0.670,83.59,288,1.000,bicubic pvt_v2_b4.in1k,96.350,3.650,99.180,0.820,62.56,224,0.900,bicubic regnety_320.seer_ft_in1k,96.340,3.660,99.350,0.650,145.05,384,1.000,bicubic tf_efficientnet_b5.ra_in1k,96.340,3.660,99.310,0.690,30.39,456,0.934,bicubic tf_efficientnetv2_s.in1k,96.340,3.660,99.200,0.800,21.46,384,1.000,bicubic resnext101_32x8d.fb_wsl_ig1b_ft_in1k,96.330,3.670,99.430,0.570,88.79,224,0.875,bilinear repvit_m2_3.dist_450e_in1k,96.330,3.670,99.400,0.600,23.69,224,0.950,bicubic volo_d1_224.sail_in1k,96.320,3.680,99.310,0.690,26.63,224,0.960,bicubic dm_nfnet_f0.dm_in1k,96.310,3.690,99.320,0.680,71.49,256,0.900,bicubic deit3_base_patch16_224.fb_in1k,96.300,3.700,99.180,0.820,86.59,224,0.900,bicubic resnet101d.ra2_in1k,96.290,3.710,99.230,0.770,44.57,320,1.000,bicubic tiny_vit_11m_224.dist_in22k_ft_in1k,96.290,3.710,99.190,0.810,11.00,224,0.950,bicubic efficientvit_b3.r256_in1k,96.290,3.710,99.120,0.880,48.65,256,1.000,bicubic gcvit_small.in1k,96.280,3.720,99.140,0.860,51.09,224,0.875,bicubic swinv2_small_window8_256.ms_in1k,96.270,3.730,99.210,0.790,49.73,256,0.900,bicubic inception_next_small.sail_in1k,96.240,3.760,99.220,0.780,49.37,224,0.875,bicubic nest_base_jx.goog_in1k,96.240,3.760,99.200,0.800,67.72,224,0.875,bicubic fastvit_sa36.apple_in1k,96.240,3.760,99.190,0.810,31.53,256,0.900,bicubic twins_svt_large.in1k,96.240,3.760,99.170,0.830,99.27,224,0.900,bicubic swin_s3_base_224.ms_in1k,96.240,3.760,99.150,0.850,71.13,224,0.900,bicubic maxvit_tiny_rw_224.sw_in1k,96.240,3.760,99.130,0.870,29.06,224,0.950,bicubic pit_b_distilled_224.in1k,96.230,3.770,99.110,0.890,74.79,224,0.900,bicubic swin_s3_small_224.ms_in1k,96.230,3.770,99.080,0.920,49.74,224,0.900,bicubic ecaresnet101d.miil_in1k,96.220,3.780,99.310,0.690,44.57,288,0.950,bicubic tf_efficientnetv2_b3.in21k_ft_in1k,96.220,3.780,99.230,0.770,14.36,300,0.900,bicubic xcit_small_24_p16_224.fb_dist_in1k,96.220,3.780,99.210,0.790,47.67,224,1.000,bicubic xception65p.ra3_in1k,96.210,3.790,99.180,0.820,39.82,299,0.940,bicubic deit3_small_patch16_384.fb_in1k,96.200,3.800,99.290,0.710,22.21,384,1.000,bicubic rexnetr_200.sw_in12k_ft_in1k,96.200,3.800,99.260,0.740,16.52,288,1.000,bicubic resnet152.a1h_in1k,96.200,3.800,99.220,0.780,60.19,288,1.000,bicubic regnetv_040.ra3_in1k,96.190,3.810,99.330,0.670,20.64,288,1.000,bicubic convnextv2_tiny.fcmae_ft_in1k,96.190,3.810,99.250,0.750,28.64,288,1.000,bicubic gcvit_tiny.in1k,96.180,3.820,99.230,0.770,28.22,224,0.875,bicubic focalnet_small_lrf.ms_in1k,96.180,3.820,99.190,0.810,50.34,224,0.900,bicubic swinv2_cr_small_ns_224.sw_in1k,96.180,3.820,99.140,0.860,49.70,224,0.900,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k_384,96.180,3.820,99.120,0.880,14.25,384,1.000,bicubic tf_efficientnet_b4.ap_in1k,96.160,3.840,99.270,0.730,19.34,380,0.922,bicubic tresnet_v2_l.miil_in21k_ft_in1k,96.160,3.840,99.240,0.760,46.17,224,0.875,bilinear deit_base_patch16_384.fb_in1k,96.160,3.840,99.140,0.860,86.86,384,1.000,bicubic twins_svt_base.in1k,96.160,3.840,99.050,0.950,56.07,224,0.900,bicubic fastvit_sa24.apple_dist_in1k,96.150,3.850,99.210,0.790,21.55,256,0.900,bicubic efficientnet_b4.ra2_in1k,96.150,3.850,99.190,0.810,19.34,384,1.000,bicubic sequencer2d_l.in1k,96.150,3.850,99.160,0.840,54.30,224,0.875,bicubic regnetz_c16_evos.ch_in1k,96.140,3.860,99.360,0.640,13.49,320,0.950,bicubic twins_pcpvt_large.in1k,96.140,3.860,99.170,0.830,60.99,224,0.900,bicubic caformer_s18.sail_in1k,96.140,3.860,99.000,1.000,26.34,224,1.000,bicubic vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,96.130,3.870,99.220,0.780,88.22,224,0.900,bicubic tiny_vit_21m_224.in1k,96.130,3.870,99.160,0.840,21.20,224,0.950,bicubic repvit_m2_3.dist_300e_in1k,96.120,3.880,99.340,0.660,23.69,224,0.950,bicubic resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,96.120,3.880,99.270,0.730,236.34,224,0.875,bicubic nfnet_l0.ra2_in1k,96.120,3.880,99.240,0.760,35.07,288,1.000,bicubic swin_base_patch4_window7_224.ms_in1k,96.120,3.880,99.060,0.940,87.77,224,0.900,bicubic resnetv2_50x1_bit.goog_distilled_in1k,96.110,3.890,99.280,0.720,25.55,224,0.875,bicubic efficientformer_l7.snap_dist_in1k,96.110,3.890,99.270,0.730,82.23,224,0.950,bicubic xcit_small_12_p8_224.fb_in1k,96.110,3.890,99.160,0.840,26.21,224,1.000,bicubic resnetv2_101x1_bit.goog_in21k_ft_in1k,96.100,3.900,99.280,0.720,44.54,448,1.000,bilinear maxvit_tiny_tf_224.in1k,96.100,3.900,99.270,0.730,30.92,224,0.950,bicubic deit_base_distilled_patch16_224.fb_in1k,96.090,3.910,99.190,0.810,87.34,224,0.900,bicubic xcit_medium_24_p8_224.fb_in1k,96.090,3.910,98.890,1.110,84.32,224,1.000,bicubic resnext101_64x4d.c1_in1k,96.080,3.920,99.240,0.760,83.46,288,1.000,bicubic regnety_320.tv2_in1k,96.080,3.920,99.230,0.770,145.05,224,0.965,bicubic deit3_medium_patch16_224.fb_in1k,96.080,3.920,99.200,0.800,38.85,224,0.900,bicubic xcit_tiny_12_p8_384.fb_dist_in1k,96.080,3.920,99.140,0.860,6.71,384,1.000,bicubic swinv2_cr_small_224.sw_in1k,96.080,3.920,98.860,1.140,49.70,224,0.900,bicubic tf_efficientnet_b5.in1k,96.070,3.930,99.290,0.710,30.39,456,0.934,bicubic efficientformerv2_l.snap_dist_in1k,96.070,3.930,99.190,0.810,26.32,224,0.950,bicubic focalnet_small_srf.ms_in1k,96.070,3.930,99.120,0.880,49.89,224,0.900,bicubic convnextv2_nano.fcmae_ft_in22k_in1k,96.060,3.940,99.220,0.780,15.62,288,1.000,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k_384,96.060,3.940,99.080,0.920,18.45,384,1.000,bicubic resnetv2_101.a1h_in1k,96.050,3.950,99.170,0.830,44.54,288,1.000,bicubic cs3edgenet_x.c2_in1k,96.050,3.950,99.140,0.860,47.82,288,1.000,bicubic maxxvit_rmlp_nano_rw_256.sw_in1k,96.040,3.960,99.260,0.740,16.78,256,0.950,bicubic resnext101_64x4d.tv_in1k,96.030,3.970,99.160,0.840,83.46,224,0.875,bilinear xcit_small_12_p16_224.fb_dist_in1k,96.030,3.970,99.130,0.870,26.25,224,1.000,bicubic coatnet_1_rw_224.sw_in1k,96.030,3.970,99.060,0.940,41.72,224,0.950,bicubic efficientvit_b3.r224_in1k,96.030,3.970,98.990,1.010,48.65,224,0.950,bicubic regnety_040.ra3_in1k,96.020,3.980,99.190,0.810,20.65,288,1.000,bicubic resnet101.a1h_in1k,96.020,3.980,99.140,0.860,44.55,288,1.000,bicubic cs3sedarknet_x.c2ns_in1k,96.020,3.980,99.110,0.890,35.40,288,1.000,bicubic convnext_tiny_hnf.a2h_in1k,96.020,3.980,99.070,0.930,28.59,288,1.000,bicubic hrnet_w18_ssld.paddle_in1k,95.990,4.010,99.320,0.680,21.30,288,1.000,bilinear convnext_nano.in12k_ft_in1k,95.990,4.010,99.310,0.690,15.59,288,1.000,bicubic pvt_v2_b3.in1k,95.990,4.010,99.190,0.810,45.24,224,0.900,bicubic regnetx_320.tv2_in1k,95.990,4.010,99.100,0.900,107.81,224,0.965,bicubic tresnet_xl.miil_in1k_448,95.980,4.020,99.130,0.870,78.44,448,0.875,bilinear sequencer2d_s.in1k,95.980,4.020,99.050,0.950,27.65,224,0.875,bicubic regnety_160.tv2_in1k,95.970,4.030,99.150,0.850,83.59,224,0.965,bicubic nest_small_jx.goog_in1k,95.970,4.030,99.030,0.970,38.35,224,0.875,bicubic maxvit_rmlp_nano_rw_256.sw_in1k,95.970,4.030,98.970,1.030,15.50,256,0.950,bicubic efficientvit_b2.r288_in1k,95.960,4.040,99.190,0.810,24.33,288,1.000,bicubic regnety_032.ra_in1k,95.960,4.040,99.190,0.810,19.44,288,1.000,bicubic coatnet_rmlp_1_rw_224.sw_in1k,95.960,4.040,99.160,0.840,41.69,224,0.950,bicubic resnext101_32x8d.tv2_in1k,95.950,4.050,99.080,0.920,88.79,224,0.965,bilinear convformer_s18.sail_in1k,95.950,4.050,98.900,1.100,26.77,224,1.000,bicubic xcit_tiny_24_p16_384.fb_dist_in1k,95.940,4.060,99.220,0.780,12.12,384,1.000,bicubic eca_nfnet_l0.ra2_in1k,95.940,4.060,99.210,0.790,24.14,288,1.000,bicubic regnetz_c16.ra3_in1k,95.940,4.060,99.110,0.890,13.46,320,1.000,bicubic swinv2_tiny_window16_256.ms_in1k,95.930,4.070,99.150,0.850,28.35,256,0.900,bicubic swin_small_patch4_window7_224.ms_in1k,95.930,4.070,99.020,0.980,49.61,224,0.900,bicubic fastvit_sa24.apple_in1k,95.920,4.080,99.160,0.840,21.55,256,0.900,bicubic maxvit_nano_rw_256.sw_in1k,95.920,4.080,99.010,0.990,15.45,256,0.950,bicubic coat_small.in1k,95.910,4.090,99.150,0.850,21.69,224,0.900,bicubic tf_efficientnet_b4.aa_in1k,95.900,4.100,99.170,0.830,19.34,380,0.922,bicubic repvit_m1_5.dist_450e_in1k,95.900,4.100,99.120,0.880,14.64,224,0.950,bicubic maxxvitv2_nano_rw_256.sw_in1k,95.900,4.100,99.050,0.950,23.70,256,0.950,bicubic regnetx_160.tv2_in1k,95.880,4.120,99.090,0.910,54.28,224,0.965,bicubic resnet51q.ra2_in1k,95.870,4.130,99.130,0.870,35.70,288,1.000,bilinear resnext50_32x4d.fb_swsl_ig1b_ft_in1k,95.860,4.140,99.250,0.750,25.03,224,0.875,bilinear resnest101e.in1k,95.860,4.140,99.200,0.800,48.28,256,0.875,bilinear tresnet_l.miil_in1k_448,95.860,4.140,99.120,0.880,55.99,448,0.875,bilinear regnety_080_tv.tv2_in1k,95.860,4.140,99.100,0.900,39.38,224,0.965,bicubic mvitv2_tiny.fb_in1k,95.860,4.140,99.070,0.930,24.17,224,0.900,bicubic cs3darknet_x.c2ns_in1k,95.850,4.150,99.170,0.830,35.05,288,1.000,bicubic rexnet_300.nav_in1k,95.840,4.160,99.130,0.870,34.71,224,0.875,bicubic resnetaa50d.sw_in12k_ft_in1k,95.830,4.170,99.170,0.830,25.58,288,1.000,bicubic vit_large_patch32_384.orig_in21k_ft_in1k,95.830,4.170,99.150,0.850,306.63,384,1.000,bicubic cait_xxs36_384.fb_dist_in1k,95.830,4.170,99.090,0.910,17.37,384,1.000,bicubic tf_efficientnet_b4.in1k,95.820,4.180,99.050,0.950,19.34,380,0.922,bicubic xcit_tiny_24_p8_224.fb_dist_in1k,95.810,4.190,99.210,0.790,12.11,224,1.000,bicubic sequencer2d_m.in1k,95.810,4.190,99.110,0.890,38.31,224,0.875,bicubic convnextv2_nano.fcmae_ft_in1k,95.800,4.200,99.090,0.910,15.62,288,1.000,bicubic resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,95.790,4.210,99.180,0.820,194.03,224,0.875,bilinear convnext_tiny.fb_in1k,95.790,4.210,99.160,0.840,28.59,288,1.000,bicubic twins_pcpvt_base.in1k,95.790,4.210,99.130,0.870,43.83,224,0.900,bicubic resnet61q.ra2_in1k,95.780,4.220,98.990,1.010,36.85,288,1.000,bicubic tf_efficientnet_b2.ns_jft_in1k,95.770,4.230,99.120,0.880,9.11,260,0.890,bicubic vit_relpos_base_patch16_clsgap_224.sw_in1k,95.770,4.230,99.040,0.960,86.43,224,0.900,bicubic poolformerv2_m48.sail_in1k,95.770,4.230,98.980,1.020,73.35,224,1.000,bicubic ecaresnet101d_pruned.miil_in1k,95.760,4.240,99.180,0.820,24.88,288,0.950,bicubic seresnext50_32x4d.racm_in1k,95.740,4.260,99.180,0.820,27.56,288,0.950,bicubic gc_efficientnetv2_rw_t.agc_in1k,95.740,4.260,99.020,0.980,13.68,288,1.000,bicubic efficientnet_b3.ra2_in1k,95.720,4.280,99.040,0.960,12.23,320,1.000,bicubic tresnet_m.miil_in21k_ft_in1k,95.710,4.290,99.030,0.970,31.39,224,0.875,bilinear pnasnet5large.tf_in1k,95.710,4.290,98.920,1.080,86.06,331,0.911,bicubic coatnet_bn_0_rw_224.sw_in1k,95.700,4.300,99.050,0.950,27.44,224,0.950,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k_384,95.690,4.310,99.140,0.860,10.59,384,1.000,bicubic nasnetalarge.tf_in1k,95.690,4.310,98.930,1.070,88.75,331,0.911,bicubic crossvit_15_dagger_240.in1k,95.680,4.320,98.830,1.170,28.21,240,0.875,bicubic flexivit_small.600ep_in1k,95.670,4.330,99.060,0.940,22.06,240,0.950,bicubic xcit_tiny_24_p8_224.fb_in1k,95.660,4.340,99.050,0.950,12.11,224,1.000,bicubic davit_tiny.msft_in1k,95.660,4.340,99.030,0.970,28.36,224,0.950,bicubic efficientvit_b2.r256_in1k,95.650,4.350,99.060,0.940,24.33,256,1.000,bicubic repvit_m1_5.dist_300e_in1k,95.640,4.360,98.990,1.010,14.64,224,0.950,bicubic wide_resnet50_2.racm_in1k,95.630,4.370,99.240,0.760,68.88,288,0.950,bicubic vit_small_r26_s32_224.augreg_in21k_ft_in1k,95.630,4.370,99.190,0.810,36.43,224,0.900,bicubic resnetv2_50d_evos.ah_in1k,95.630,4.370,99.110,0.890,25.59,288,1.000,bicubic poolformer_m48.sail_in1k,95.630,4.370,98.940,1.060,73.47,224,0.950,bicubic pit_b_224.in1k,95.630,4.370,98.660,1.340,73.76,224,0.900,bicubic efficientformer_l3.snap_dist_in1k,95.590,4.410,99.160,0.840,31.41,224,0.950,bicubic efficientnetv2_rw_t.ra2_in1k,95.590,4.410,99.070,0.930,13.65,288,1.000,bicubic gcvit_xtiny.in1k,95.590,4.410,99.040,0.960,19.98,224,0.875,bicubic crossvit_18_dagger_240.in1k,95.570,4.430,99.060,0.940,44.27,240,0.875,bicubic vit_relpos_base_patch16_224.sw_in1k,95.560,4.440,99.030,0.970,86.43,224,0.900,bicubic pvt_v2_b2_li.in1k,95.560,4.440,98.990,1.010,22.55,224,0.900,bicubic flexivit_small.1200ep_in1k,95.550,4.450,99.110,0.890,22.06,240,0.950,bicubic convit_base.fb_in1k,95.550,4.450,98.880,1.120,86.54,224,0.875,bicubic wide_resnet101_2.tv2_in1k,95.540,4.460,99.080,0.920,126.89,224,0.965,bilinear coat_lite_small.in1k,95.540,4.460,98.860,1.140,19.84,224,0.900,bicubic xcit_small_24_p16_224.fb_in1k,95.540,4.460,98.780,1.220,47.67,224,1.000,bicubic xcit_medium_24_p16_224.fb_in1k,95.540,4.460,98.720,1.280,84.40,224,1.000,bicubic levit_384.fb_dist_in1k,95.530,4.470,99.060,0.940,39.13,224,0.900,bicubic levit_conv_384.fb_dist_in1k,95.530,4.470,99.050,0.950,39.13,224,0.900,bicubic ecaresnet50t.ra2_in1k,95.520,4.480,99.110,0.890,25.57,320,0.950,bicubic fbnetv3_g.ra2_in1k,95.520,4.480,98.990,1.010,16.62,288,0.950,bilinear vit_base_patch32_clip_224.laion2b_ft_in1k,95.520,4.480,98.870,1.130,88.22,224,0.900,bicubic resnet101.a1_in1k,95.520,4.480,98.850,1.150,44.55,288,1.000,bicubic crossvit_base_240.in1k,95.520,4.480,98.810,1.190,105.03,240,0.875,bicubic swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,95.510,4.490,99.200,0.800,28.29,224,0.900,bicubic resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,95.510,4.490,99.120,0.880,88.79,224,0.875,bilinear xception41p.ra3_in1k,95.510,4.490,98.910,1.090,26.91,299,0.940,bicubic focalnet_tiny_srf.ms_in1k,95.500,4.500,99.130,0.870,28.43,224,0.900,bicubic vit_relpos_medium_patch16_rpn_224.sw_in1k,95.500,4.500,99.080,0.920,38.73,224,0.900,bicubic resnet152.tv2_in1k,95.500,4.500,98.960,1.040,60.19,224,0.965,bilinear resnet152.a1_in1k,95.500,4.500,98.780,1.220,60.19,288,1.000,bicubic swinv2_tiny_window8_256.ms_in1k,95.490,4.510,99.100,0.900,28.35,256,0.900,bicubic tiny_vit_11m_224.in1k,95.490,4.510,98.990,1.010,11.00,224,0.950,bicubic flexivit_small.300ep_in1k,95.490,4.510,98.960,1.040,22.06,240,0.950,bicubic resnet152.a2_in1k,95.490,4.510,98.790,1.210,60.19,288,1.000,bicubic pvt_v2_b2.in1k,95.480,4.520,99.000,1.000,25.36,224,0.900,bicubic resnetv2_50d_gn.ah_in1k,95.480,4.520,98.950,1.050,25.57,288,1.000,bicubic visformer_small.in1k,95.480,4.520,98.900,1.100,40.22,224,0.900,bicubic vit_relpos_medium_patch16_cls_224.sw_in1k,95.470,4.530,98.950,1.050,38.76,224,0.900,bicubic inception_next_tiny.sail_in1k,95.460,4.540,99.010,0.990,28.06,224,0.875,bicubic vit_relpos_medium_patch16_224.sw_in1k,95.460,4.540,98.960,1.040,38.75,224,0.900,bicubic focalnet_tiny_lrf.ms_in1k,95.460,4.540,98.910,1.090,28.65,224,0.900,bicubic ecaresnet50d.miil_in1k,95.450,4.550,99.090,0.910,25.58,288,0.950,bicubic deit_base_patch16_224.fb_in1k,95.450,4.550,98.840,1.160,86.57,224,0.900,bicubic resnext50_32x4d.a1h_in1k,95.450,4.550,98.840,1.160,25.03,288,1.000,bicubic resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,95.440,4.560,99.120,0.880,44.18,224,0.875,bilinear tresnet_xl.miil_in1k,95.440,4.560,99.050,0.950,78.44,224,0.875,bilinear crossvit_18_240.in1k,95.440,4.560,98.790,1.210,43.27,240,0.875,bicubic coatnet_0_rw_224.sw_in1k,95.440,4.560,98.720,1.280,27.44,224,0.950,bicubic resnetrs101.tf_in1k,95.430,4.570,99.040,0.960,63.62,288,0.940,bicubic coatnext_nano_rw_224.sw_in1k,95.430,4.570,99.010,0.990,14.70,224,0.900,bicubic coatnet_rmlp_nano_rw_224.sw_in1k,95.430,4.570,98.990,1.010,15.15,224,0.900,bicubic xcit_small_12_p16_224.fb_in1k,95.430,4.570,98.840,1.160,26.25,224,1.000,bicubic xcit_large_24_p16_224.fb_in1k,95.430,4.570,98.630,1.370,189.10,224,1.000,bicubic halo2botnet50ts_256.a1h_in1k,95.420,4.580,99.020,0.980,22.64,256,0.950,bicubic ecaresnet50t.a1_in1k,95.410,4.590,99.010,0.990,25.57,288,1.000,bicubic resnet101.a2_in1k,95.410,4.590,98.940,1.060,44.55,288,1.000,bicubic resnet50.fb_swsl_ig1b_ft_in1k,95.400,4.600,99.300,0.700,25.56,224,0.875,bilinear edgenext_small.usi_in1k,95.400,4.600,99.100,0.900,5.59,320,1.000,bicubic poolformerv2_m36.sail_in1k,95.400,4.600,98.870,1.130,56.08,224,1.000,bicubic vit_base_patch16_rpn_224.sw_in1k,95.390,4.610,98.940,1.060,86.54,224,0.900,bicubic poolformer_m36.sail_in1k,95.390,4.610,98.860,1.140,56.17,224,0.950,bicubic vit_small_patch16_224.augreg_in21k_ft_in1k,95.370,4.630,99.140,0.860,22.05,224,0.900,bicubic swinv2_cr_tiny_ns_224.sw_in1k,95.370,4.630,98.940,1.060,28.33,224,0.900,bicubic efficientformerv2_s2.snap_dist_in1k,95.360,4.640,98.930,1.070,12.71,224,0.950,bicubic ecaresnet50t.a2_in1k,95.350,4.650,98.920,1.080,25.57,288,1.000,bicubic convnext_nano.d1h_in1k,95.350,4.650,98.860,1.140,15.59,288,1.000,bicubic vit_base_patch16_224.orig_in21k_ft_in1k,95.340,4.660,99.000,1.000,86.57,224,0.900,bicubic seresnet50.ra2_in1k,95.330,4.670,99.010,0.990,28.09,288,0.950,bicubic tf_efficientnet_b3.ap_in1k,95.320,4.680,98.900,1.100,12.23,300,0.904,bicubic cs3sedarknet_l.c2ns_in1k,95.310,4.690,99.130,0.870,21.91,288,0.950,bicubic poolformerv2_s36.sail_in1k,95.310,4.690,98.920,1.080,30.79,224,1.000,bicubic regnety_032.tv2_in1k,95.310,4.690,98.910,1.090,19.44,224,0.965,bicubic mixer_b16_224.miil_in21k_ft_in1k,95.300,4.700,98.880,1.120,59.88,224,0.875,bilinear ecaresnetlight.miil_in1k,95.290,4.710,99.030,0.970,30.16,288,0.950,bicubic vit_small_patch16_384.augreg_in1k,95.290,4.710,99.000,1.000,22.20,384,1.000,bicubic tresnet_l.miil_in1k,95.280,4.720,99.010,0.990,55.99,224,0.875,bilinear cait_xxs24_384.fb_dist_in1k,95.280,4.720,98.960,1.040,12.03,384,1.000,bicubic resnet101.tv2_in1k,95.280,4.720,98.910,1.090,44.55,224,0.965,bilinear resnet50_gn.a1h_in1k,95.250,4.750,99.000,1.000,25.56,288,0.950,bicubic vit_srelpos_medium_patch16_224.sw_in1k,95.240,4.760,98.990,1.010,38.74,224,0.900,bicubic nest_tiny_jx.goog_in1k,95.240,4.760,98.980,1.020,17.06,224,0.875,bicubic gcresnet50t.ra2_in1k,95.240,4.760,98.910,1.090,25.90,288,1.000,bicubic coatnet_nano_rw_224.sw_in1k,95.240,4.760,98.870,1.130,15.14,224,0.900,bicubic convnextv2_pico.fcmae_ft_in1k,95.230,4.770,98.920,1.080,9.07,288,0.950,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k,95.220,4.780,98.800,1.200,14.25,256,0.888,bicubic convit_small.fb_in1k,95.210,4.790,98.900,1.100,27.78,224,0.875,bicubic twins_pcpvt_small.in1k,95.210,4.790,98.880,1.120,24.11,224,0.900,bicubic repvit_m3.dist_in1k,95.200,4.800,99.090,0.910,10.68,224,0.950,bicubic resnetaa50.a1h_in1k,95.200,4.800,98.920,1.080,25.56,288,1.000,bicubic efficientvit_b2.r224_in1k,95.200,4.800,98.820,1.180,24.33,224,0.950,bicubic twins_svt_small.in1k,95.190,4.810,98.880,1.120,24.06,224,0.900,bicubic swin_s3_tiny_224.ms_in1k,95.180,4.820,98.950,1.050,28.33,224,0.900,bicubic regnetz_b16.ra3_in1k,95.170,4.830,99.080,0.920,9.72,288,1.000,bicubic tf_efficientnet_b1.ns_jft_in1k,95.160,4.840,99.100,0.900,7.79,240,0.882,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k,95.160,4.840,98.950,1.050,18.45,256,0.888,bicubic tf_efficientnetv2_b3.in1k,95.160,4.840,98.820,1.180,14.36,300,0.904,bicubic cs3darknet_focus_l.c2ns_in1k,95.150,4.850,98.960,1.040,21.15,288,0.950,bicubic vit_relpos_small_patch16_224.sw_in1k,95.150,4.850,98.960,1.040,21.98,224,0.900,bicubic crossvit_15_240.in1k,95.150,4.850,98.930,1.070,27.53,240,0.875,bicubic lamhalobotnet50ts_256.a1h_in1k,95.150,4.850,98.880,1.120,22.57,256,0.950,bicubic fastvit_sa12.apple_dist_in1k,95.150,4.850,98.810,1.190,11.58,256,0.900,bicubic pit_s_distilled_224.in1k,95.140,4.860,98.890,1.110,24.04,224,0.900,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k,95.140,4.860,98.860,1.140,10.59,256,0.888,bicubic swin_tiny_patch4_window7_224.ms_in1k,95.140,4.860,98.850,1.150,28.29,224,0.900,bicubic halonet50ts.a1h_in1k,95.140,4.860,98.780,1.220,22.73,256,0.940,bicubic convnext_nano_ols.d1h_in1k,95.140,4.860,98.730,1.270,15.65,288,1.000,bicubic xcit_tiny_12_p16_384.fb_dist_in1k,95.130,4.870,99.020,0.980,6.72,384,1.000,bicubic cs3darknet_l.c2ns_in1k,95.120,4.880,98.980,1.020,21.16,288,0.950,bicubic efficientnet_el.ra_in1k,95.120,4.880,98.970,1.030,10.59,300,0.904,bicubic vit_base_patch32_clip_224.openai_ft_in1k,95.110,4.890,98.980,1.020,88.22,224,0.900,bicubic ecaresnet50d_pruned.miil_in1k,95.110,4.890,98.930,1.070,19.94,288,0.950,bicubic gernet_l.idstcv_in1k,95.110,4.890,98.900,1.100,31.08,256,0.875,bilinear regnetx_080.tv2_in1k,95.100,4.900,98.830,1.170,39.57,224,0.965,bicubic xcit_tiny_12_p8_224.fb_dist_in1k,95.090,4.910,98.910,1.090,6.71,224,1.000,bicubic convmixer_1536_20.in1k,95.080,4.920,99.030,0.970,51.63,224,0.960,bicubic poolformer_s36.sail_in1k,95.080,4.920,98.910,1.090,30.86,224,0.900,bicubic legacy_senet154.in1k,95.070,4.930,98.830,1.170,115.09,224,0.875,bilinear tiny_vit_5m_224.dist_in22k_ft_in1k,95.050,4.950,98.970,1.030,5.39,224,0.950,bicubic seresnet33ts.ra2_in1k,95.040,4.960,98.900,1.100,19.78,288,1.000,bicubic tnt_s_patch16_224,95.040,4.960,98.830,1.170,23.76,224,0.900,bicubic vit_srelpos_small_patch16_224.sw_in1k,95.030,4.970,98.950,1.050,21.97,224,0.900,bicubic vit_small_patch32_384.augreg_in21k_ft_in1k,95.020,4.980,98.990,1.010,22.92,384,1.000,bicubic resnet152s.gluon_in1k,95.020,4.980,98.930,1.070,60.32,224,0.875,bicubic levit_256.fb_dist_in1k,95.020,4.980,98.880,1.120,18.89,224,0.900,bicubic levit_conv_256.fb_dist_in1k,95.020,4.980,98.880,1.120,18.89,224,0.900,bicubic resnetv2_50x1_bit.goog_in21k_ft_in1k,95.010,4.990,99.060,0.940,25.55,448,1.000,bilinear vit_base_patch32_224.augreg_in21k_ft_in1k,95.010,4.990,99.030,0.970,88.22,224,0.900,bicubic resnet50d.ra2_in1k,95.010,4.990,98.980,1.020,25.58,288,0.950,bicubic tf_efficientnet_b3.aa_in1k,95.010,4.990,98.910,1.090,12.23,300,0.904,bicubic tresnet_m.miil_in1k_448,94.990,5.010,98.980,1.020,31.39,448,0.875,bilinear deit3_small_patch16_224.fb_in1k,94.990,5.010,98.460,1.540,22.06,224,0.900,bicubic resnet50.d_in1k,94.980,5.020,98.840,1.160,25.56,288,1.000,bicubic resnest50d_4s2x40d.in1k,94.970,5.030,99.080,0.920,30.42,224,0.875,bicubic coat_mini.in1k,94.970,5.030,98.780,1.220,10.34,224,0.900,bicubic rexnet_200.nav_in1k,94.940,5.060,99.010,0.990,16.37,224,0.875,bicubic vit_base_patch16_384.augreg_in1k,94.940,5.060,98.890,1.110,86.86,384,1.000,bicubic seresnext101_64x4d.gluon_in1k,94.930,5.070,98.830,1.170,88.23,224,0.875,bicubic gcresnet33ts.ra2_in1k,94.920,5.080,98.810,1.190,19.88,288,1.000,bicubic resnet50.c2_in1k,94.920,5.080,98.810,1.190,25.56,288,1.000,bicubic senet154.gluon_in1k,94.920,5.080,98.760,1.240,115.09,224,0.875,bicubic eva02_tiny_patch14_336.mim_in22k_ft_in1k,94.910,5.090,98.880,1.120,5.76,336,1.000,bicubic repvit_m1_1.dist_450e_in1k,94.900,5.100,98.960,1.040,8.80,224,0.950,bicubic resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,94.890,5.110,98.870,1.130,25.03,224,0.875,bilinear mobilevitv2_175.cvnets_in1k,94.890,5.110,98.860,1.140,14.25,256,0.888,bicubic resmlp_36_224.fb_distilled_in1k,94.890,5.110,98.860,1.140,44.69,224,0.875,bicubic seresnext101_32x4d.gluon_in1k,94.890,5.110,98.820,1.180,48.96,224,0.875,bicubic tf_efficientnet_lite4.in1k,94.880,5.120,99.020,0.980,13.01,380,0.920,bilinear fastvit_sa12.apple_in1k,94.880,5.120,98.890,1.110,11.58,256,0.900,bicubic wide_resnet50_2.tv2_in1k,94.870,5.130,98.940,1.060,68.88,224,0.965,bilinear ese_vovnet39b.ra_in1k,94.870,5.130,98.910,1.090,24.57,288,0.950,bicubic gcresnext50ts.ch_in1k,94.860,5.140,98.860,1.140,15.67,288,1.000,bicubic resnet50.b1k_in1k,94.860,5.140,98.810,1.190,25.56,288,1.000,bicubic crossvit_small_240.in1k,94.850,5.150,99.020,0.980,26.86,240,0.875,bicubic resnest50d.in1k,94.850,5.150,98.880,1.120,27.48,224,0.875,bilinear resnetv2_50.a1h_in1k,94.850,5.150,98.870,1.130,25.55,288,1.000,bicubic mobilevitv2_200.cvnets_in1k,94.840,5.160,98.710,1.290,18.45,256,0.888,bicubic convnext_tiny.fb_in22k_ft_in1k,94.840,5.160,98.530,1.470,28.59,288,1.000,bicubic fastvit_s12.apple_dist_in1k,94.830,5.170,98.810,1.190,9.47,256,0.900,bicubic cspresnext50.ra_in1k,94.830,5.170,98.770,1.230,20.57,256,0.887,bilinear resnext50_32x4d.a1_in1k,94.830,5.170,98.590,1.410,25.03,288,1.000,bicubic res2net101d.in1k,94.820,5.180,98.770,1.230,45.23,224,0.875,bilinear resnet50.a1h_in1k,94.770,5.230,98.690,1.310,25.56,224,1.000,bicubic lambda_resnet50ts.a1h_in1k,94.770,5.230,98.470,1.530,21.54,256,0.950,bicubic repvit_m1_1.dist_300e_in1k,94.760,5.240,98.930,1.070,8.80,224,0.950,bicubic convnext_pico.d1_in1k,94.760,5.240,98.710,1.290,9.05,288,0.950,bicubic sehalonet33ts.ra2_in1k,94.760,5.240,98.570,1.430,13.69,256,0.940,bicubic resnet50.a1_in1k,94.740,5.260,98.710,1.290,25.56,288,1.000,bicubic repvit_m2.dist_in1k,94.740,5.260,98.680,1.320,8.80,224,0.950,bicubic resnest50d_1s4x24d.in1k,94.730,5.270,98.980,1.020,25.68,224,0.875,bicubic resnet50.c1_in1k,94.730,5.270,98.930,1.070,25.56,288,1.000,bicubic resnet50.b2k_in1k,94.730,5.270,98.820,1.180,25.56,288,1.000,bicubic resnet152d.gluon_in1k,94.730,5.270,98.750,1.250,60.21,224,0.875,bicubic resnet152.a3_in1k,94.730,5.270,98.680,1.320,60.19,224,0.950,bicubic resnet50d.a1_in1k,94.730,5.270,98.490,1.510,25.58,288,1.000,bicubic resnet101s.gluon_in1k,94.720,5.280,98.820,1.180,44.67,224,0.875,bicubic deit_small_distilled_patch16_224.fb_in1k,94.710,5.290,99.030,0.970,22.44,224,0.900,bicubic resnext50_32x4d.ra_in1k,94.700,5.300,98.760,1.240,25.03,288,0.950,bicubic xcit_tiny_12_p8_224.fb_in1k,94.690,5.310,98.830,1.170,6.71,224,1.000,bicubic haloregnetz_b.ra3_in1k,94.690,5.310,98.660,1.340,11.68,224,0.940,bicubic resmlp_big_24_224.fb_in1k,94.680,5.320,98.500,1.500,129.14,224,0.875,bicubic edgenext_small_rw.sw_in1k,94.670,5.330,98.780,1.220,7.83,320,1.000,bicubic resnext101_64x4d.gluon_in1k,94.670,5.330,98.660,1.340,83.46,224,0.875,bicubic regnetx_032.tv2_in1k,94.660,5.340,98.850,1.150,15.30,224,0.965,bicubic cspdarknet53.ra_in1k,94.660,5.340,98.800,1.200,27.64,256,0.887,bilinear seresnet50.a2_in1k,94.660,5.340,98.780,1.220,28.09,288,1.000,bicubic seresnet50.a1_in1k,94.660,5.340,98.720,1.280,28.09,288,1.000,bicubic poolformerv2_s24.sail_in1k,94.650,5.350,98.840,1.160,21.34,224,1.000,bicubic maxvit_rmlp_pico_rw_256.sw_in1k,94.640,5.360,98.810,1.190,7.52,256,0.950,bicubic resnet50.tv2_in1k,94.640,5.360,98.800,1.200,25.56,224,0.965,bilinear efficientnet_b3_pruned.in1k,94.630,5.370,98.760,1.240,9.86,300,0.904,bicubic resnet50.a2_in1k,94.630,5.370,98.660,1.340,25.56,288,1.000,bicubic eca_resnet33ts.ra2_in1k,94.620,5.380,98.910,1.090,19.68,288,1.000,bicubic darknet53.c2ns_in1k,94.620,5.380,98.900,1.100,41.61,288,1.000,bicubic gernet_m.idstcv_in1k,94.620,5.380,98.860,1.140,21.14,224,0.875,bilinear resnext50_32x4d.tv2_in1k,94.620,5.380,98.780,1.220,25.03,224,0.965,bilinear convnext_pico_ols.d1_in1k,94.620,5.380,98.760,1.240,9.06,288,1.000,bicubic efficientnet_b2.ra_in1k,94.620,5.380,98.710,1.290,9.11,288,1.000,bicubic tresnet_m.miil_in1k,94.620,5.380,98.550,1.450,31.39,224,0.875,bilinear sebotnet33ts_256.a1h_in1k,94.610,5.390,98.510,1.490,13.70,256,0.940,bicubic fastvit_t12.apple_dist_in1k,94.590,5.410,98.790,1.210,7.55,256,0.900,bicubic inception_resnet_v2.tf_in1k,94.580,5.420,98.790,1.210,55.84,299,0.897,bicubic resnet50d.a2_in1k,94.580,5.420,98.690,1.310,25.58,288,1.000,bicubic resnext50_32x4d.a2_in1k,94.580,5.420,98.650,1.350,25.03,288,1.000,bicubic pit_s_224.in1k,94.570,5.430,98.700,1.300,23.46,224,0.900,bicubic poolformer_s24.sail_in1k,94.560,5.440,98.900,1.100,21.39,224,0.900,bicubic repvgg_b3.rvgg_in1k,94.550,5.450,98.780,1.220,123.09,224,0.875,bilinear mobilevitv2_150.cvnets_in1k,94.550,5.450,98.710,1.290,10.59,256,0.888,bicubic resnext50d_32x4d.bt_in1k,94.550,5.450,98.690,1.310,25.05,288,0.950,bicubic regnety_320.pycls_in1k,94.540,5.460,98.850,1.150,145.05,224,0.875,bicubic tf_efficientnet_b3.in1k,94.540,5.460,98.800,1.200,12.23,300,0.904,bicubic nf_resnet50.ra2_in1k,94.540,5.460,98.790,1.210,25.56,288,0.940,bicubic xcit_tiny_24_p16_224.fb_dist_in1k,94.540,5.460,98.780,1.220,12.12,224,1.000,bicubic resnext101_32x4d.gluon_in1k,94.540,5.460,98.630,1.370,44.18,224,0.875,bicubic repvit_m1_0.dist_450e_in1k,94.530,5.470,98.880,1.120,7.30,224,0.950,bicubic regnety_016.tv2_in1k,94.520,5.480,98.820,1.180,11.20,224,0.965,bicubic resnet50.ram_in1k,94.520,5.480,98.650,1.350,25.56,288,0.950,bicubic repvgg_b3g4.rvgg_in1k,94.510,5.490,98.970,1.030,83.83,224,0.875,bilinear tf_efficientnet_b2.ap_in1k,94.510,5.490,98.620,1.380,9.11,260,0.890,bicubic convmixer_768_32.in1k,94.500,5.500,98.860,1.140,21.11,224,0.960,bicubic efficientvit_b1.r288_in1k,94.490,5.510,98.520,1.480,9.10,288,1.000,bicubic efficientformer_l1.snap_dist_in1k,94.480,5.520,98.830,1.170,12.29,224,0.950,bicubic rexnet_150.nav_in1k,94.480,5.520,98.800,1.200,9.73,224,0.875,bicubic regnety_120.pycls_in1k,94.470,5.530,98.820,1.180,51.82,224,0.875,bicubic darknetaa53.c2ns_in1k,94.470,5.530,98.770,1.230,36.02,288,1.000,bilinear resnetblur50.bt_in1k,94.460,5.540,98.840,1.160,25.56,288,0.950,bicubic resnet50.fb_ssl_yfcc100m_ft_in1k,94.450,5.550,98.920,1.080,25.56,224,0.875,bilinear resmlp_24_224.fb_distilled_in1k,94.450,5.550,98.770,1.230,30.02,224,0.875,bicubic regnetx_320.pycls_in1k,94.450,5.550,98.740,1.260,107.81,224,0.875,bicubic gcvit_xxtiny.in1k,94.420,5.580,98.890,1.110,12.00,224,0.875,bicubic tf_efficientnetv2_b2.in1k,94.420,5.580,98.580,1.420,10.10,260,0.890,bicubic tf_efficientnet_el.in1k,94.400,5.600,98.710,1.290,10.59,300,0.904,bicubic efficientnet_el_pruned.in1k,94.390,5.610,98.740,1.260,10.59,300,0.904,bicubic tf_efficientnet_b2.aa_in1k,94.380,5.620,98.610,1.390,9.11,260,0.890,bicubic legacy_seresnext101_32x4d.in1k,94.370,5.630,98.630,1.370,48.96,224,0.875,bilinear inception_v4.tf_in1k,94.370,5.630,98.580,1.420,42.68,299,0.875,bicubic regnety_160.pycls_in1k,94.360,5.640,98.860,1.140,83.59,224,0.875,bicubic deit_small_patch16_224.fb_in1k,94.350,5.650,98.690,1.310,22.05,224,0.900,bicubic ecaresnet50t.a3_in1k,94.350,5.650,98.670,1.330,25.57,224,0.950,bicubic dpn107.mx_in1k,94.340,5.660,98.500,1.500,86.92,224,0.875,bicubic seresnext50_32x4d.gluon_in1k,94.330,5.670,98.610,1.390,27.56,224,0.875,bicubic ecaresnet26t.ra2_in1k,94.320,5.680,98.720,1.280,16.01,320,0.950,bicubic resnet50.bt_in1k,94.320,5.680,98.640,1.360,25.56,288,0.950,bicubic resnetrs50.tf_in1k,94.320,5.680,98.640,1.360,35.69,224,0.910,bicubic res2net50d.in1k,94.320,5.680,98.530,1.470,25.72,224,0.875,bilinear repvit_m1_0.dist_300e_in1k,94.300,5.700,98.850,1.150,7.30,224,0.950,bicubic xception71.tf_in1k,94.300,5.700,98.650,1.350,42.34,299,0.903,bicubic dpn92.mx_in1k,94.290,5.710,98.750,1.250,37.67,224,0.875,bicubic cait_xxs36_224.fb_dist_in1k,94.270,5.730,98.710,1.290,17.30,224,1.000,bicubic tiny_vit_5m_224.in1k,94.240,5.760,98.690,1.310,5.39,224,0.950,bicubic skresnext50_32x4d.ra_in1k,94.240,5.760,98.460,1.540,27.48,224,0.875,bicubic regnetx_120.pycls_in1k,94.230,5.770,98.670,1.330,46.11,224,0.875,bicubic resnet101d.gluon_in1k,94.230,5.770,98.540,1.460,44.57,224,0.875,bicubic resnet50.ra_in1k,94.210,5.790,98.620,1.380,25.56,288,0.950,bicubic tf_efficientnet_lite3.in1k,94.200,5.800,98.640,1.360,8.20,300,0.904,bilinear efficientformerv2_s1.snap_dist_in1k,94.200,5.800,98.630,1.370,6.19,224,0.950,bicubic resmlp_36_224.fb_in1k,94.190,5.810,98.660,1.340,44.69,224,0.875,bicubic convnextv2_femto.fcmae_ft_in1k,94.190,5.810,98.610,1.390,5.23,288,0.950,bicubic mixnet_xl.ra_in1k,94.180,5.820,98.320,1.680,11.90,224,0.875,bicubic regnety_080.pycls_in1k,94.170,5.830,98.680,1.320,39.18,224,0.875,bicubic inception_resnet_v2.tf_ens_adv_in1k,94.170,5.830,98.600,1.400,55.84,299,0.897,bicubic levit_192.fb_dist_in1k,94.170,5.830,98.540,1.460,10.95,224,0.900,bicubic levit_conv_192.fb_dist_in1k,94.170,5.830,98.540,1.460,10.95,224,0.900,bicubic resnet152c.gluon_in1k,94.160,5.840,98.640,1.360,60.21,224,0.875,bicubic dpn98.mx_in1k,94.160,5.840,98.590,1.410,61.57,224,0.875,bicubic vit_base_patch16_224.sam_in1k,94.150,5.850,98.670,1.330,86.57,224,0.900,bicubic gmlp_s16_224.ra3_in1k,94.150,5.850,98.500,1.500,19.42,224,0.875,bicubic regnetx_160.pycls_in1k,94.140,5.860,98.750,1.250,54.28,224,0.875,bicubic regnety_064.pycls_in1k,94.140,5.860,98.710,1.290,30.58,224,0.875,bicubic efficientnet_b2_pruned.in1k,94.140,5.860,98.520,1.480,8.31,260,0.890,bicubic regnetx_016.tv2_in1k,94.130,5.870,98.750,1.250,9.19,224,0.965,bicubic fastvit_s12.apple_in1k,94.130,5.870,98.620,1.380,9.47,256,0.900,bicubic nf_regnet_b1.ra2_in1k,94.110,5.890,98.620,1.380,10.22,288,0.900,bicubic tf_efficientnet_b2.in1k,94.110,5.890,98.450,1.550,9.11,260,0.890,bicubic resnet33ts.ra2_in1k,94.100,5.900,98.650,1.350,19.68,288,1.000,bicubic efficientvit_b1.r256_in1k,94.090,5.910,98.360,1.640,9.10,256,1.000,bicubic xcit_tiny_24_p16_224.fb_in1k,94.080,5.920,98.540,1.460,12.12,224,1.000,bicubic resnet152.gluon_in1k,94.070,5.930,98.460,1.540,60.19,224,0.875,bicubic dpn131.mx_in1k,94.050,5.950,98.710,1.290,79.25,224,0.875,bicubic coat_lite_mini.in1k,94.040,5.960,98.550,1.450,11.01,224,0.900,bicubic eca_halonext26ts.c1_in1k,94.040,5.960,98.490,1.510,10.76,256,0.940,bicubic resnet101.a3_in1k,94.030,5.970,98.660,1.340,44.55,224,0.950,bicubic hrnet_w64.ms_in1k,94.030,5.970,98.590,1.410,128.06,224,0.875,bilinear resmlp_24_224.fb_in1k,94.030,5.970,98.330,1.670,30.02,224,0.875,bicubic halonet26t.a1h_in1k,94.000,6.000,98.500,1.500,12.48,256,0.950,bicubic dpn68b.ra_in1k,94.000,6.000,98.340,1.660,12.61,288,1.000,bicubic fbnetv3_b.ra2_in1k,93.970,6.030,98.630,1.370,8.60,256,0.950,bilinear resnet50.am_in1k,93.970,6.030,98.520,1.480,25.56,224,0.875,bicubic dla102x2.in1k,93.970,6.030,98.490,1.510,41.28,224,0.875,bilinear mobilevitv2_125.cvnets_in1k,93.960,6.040,98.550,1.450,7.48,256,0.888,bicubic tf_efficientnetv2_b1.in1k,93.950,6.050,98.620,1.380,8.14,240,0.882,bicubic convnext_femto.d1_in1k,93.930,6.070,98.520,1.480,5.22,288,0.950,bicubic fbnetv3_d.ra2_in1k,93.920,6.080,98.740,1.260,10.31,256,0.950,bilinear convnext_femto_ols.d1_in1k,93.920,6.080,98.620,1.380,5.23,288,0.950,bicubic hrnet_w48.ms_in1k,93.920,6.080,98.610,1.390,77.47,224,0.875,bilinear fastvit_t12.apple_in1k,93.920,6.080,98.600,1.400,7.55,256,0.900,bicubic tf_efficientnet_cc_b1_8e.in1k,93.920,6.080,98.260,1.740,39.72,240,0.882,bicubic regnetx_064.pycls_in1k,93.900,6.100,98.640,1.360,26.21,224,0.875,bicubic rexnet_130.nav_in1k,93.900,6.100,98.400,1.600,7.56,224,0.875,bicubic vit_small_patch16_224.augreg_in1k,93.890,6.110,98.440,1.560,22.05,224,0.900,bicubic regnety_040.pycls_in1k,93.880,6.120,98.660,1.340,20.65,224,0.875,bicubic repvgg_b2g4.rvgg_in1k,93.880,6.120,98.590,1.410,61.76,224,0.875,bilinear regnetx_080.pycls_in1k,93.880,6.120,98.520,1.480,39.57,224,0.875,bicubic efficientnet_em.ra2_in1k,93.830,6.170,98.820,1.180,6.90,240,0.882,bicubic resnet32ts.ra2_in1k,93.830,6.170,98.650,1.350,17.96,288,1.000,bicubic lambda_resnet26t.c1_in1k,93.830,6.170,98.640,1.360,10.96,256,0.940,bicubic resnext101_32x8d.tv_in1k,93.820,6.180,98.580,1.420,88.79,224,0.875,bilinear resnext50_32x4d.gluon_in1k,93.810,6.190,98.420,1.580,25.03,224,0.875,bicubic pvt_v2_b1.in1k,93.800,6.200,98.660,1.340,14.01,224,0.900,bicubic pit_xs_distilled_224.in1k,93.780,6.220,98.620,1.380,11.00,224,0.900,bicubic eca_botnext26ts_256.c1_in1k,93.780,6.220,98.500,1.500,10.59,256,0.950,bicubic xception65.tf_in1k,93.780,6.220,98.370,1.630,39.92,299,0.903,bicubic legacy_seresnext50_32x4d.in1k,93.750,6.250,98.580,1.420,27.56,224,0.875,bilinear resnet50d.gluon_in1k,93.750,6.250,98.390,1.610,25.58,224,0.875,bicubic resnet101.gluon_in1k,93.750,6.250,98.380,1.620,44.55,224,0.875,bicubic cspresnet50.ra_in1k,93.740,6.260,98.640,1.360,21.62,256,0.887,bilinear wide_resnet101_2.tv_in1k,93.740,6.260,98.540,1.460,126.89,224,0.875,bilinear mobileone_s4.apple_in1k,93.740,6.260,98.230,1.770,14.95,224,0.900,bilinear vit_relpos_base_patch32_plus_rpn_256.sw_in1k,93.740,6.260,98.070,1.930,119.42,256,0.900,bicubic res2net101_26w_4s.in1k,93.720,6.280,98.310,1.690,45.21,224,0.875,bilinear lambda_resnet26rpt_256.c1_in1k,93.710,6.290,98.520,1.480,10.99,256,0.940,bicubic regnety_008_tv.tv2_in1k,93.690,6.310,98.490,1.510,6.43,224,0.965,bicubic tf_efficientnet_b1.ap_in1k,93.680,6.320,98.360,1.640,7.79,240,0.882,bicubic resnet101c.gluon_in1k,93.670,6.330,98.420,1.580,44.57,224,0.875,bicubic resnext50_32x4d.a3_in1k,93.660,6.340,98.520,1.480,25.03,224,0.950,bicubic vit_tiny_patch16_384.augreg_in21k_ft_in1k,93.650,6.350,98.590,1.410,5.79,384,1.000,bicubic resnet34d.ra2_in1k,93.640,6.360,98.540,1.460,21.82,288,0.950,bicubic resnet50s.gluon_in1k,93.640,6.360,98.460,1.540,25.68,224,0.875,bicubic vit_base_patch32_384.augreg_in1k,93.640,6.360,98.400,1.600,88.30,384,1.000,bicubic vit_base_patch16_224.augreg_in1k,93.640,6.360,98.240,1.760,86.57,224,0.900,bicubic tf_efficientnet_b0.ns_jft_in1k,93.620,6.380,98.640,1.360,5.29,224,0.875,bicubic cait_xxs24_224.fb_dist_in1k,93.610,6.390,98.460,1.540,11.96,224,1.000,bicubic repvit_m0_9.dist_450e_in1k,93.600,6.400,98.500,1.500,5.49,224,0.950,bicubic coat_tiny.in1k,93.580,6.420,98.420,1.580,5.50,224,0.900,bicubic regnetx_040.pycls_in1k,93.560,6.440,98.530,1.470,22.12,224,0.875,bicubic visformer_tiny.in1k,93.560,6.440,98.490,1.510,10.32,224,0.900,bicubic seresnext26t_32x4d.bt_in1k,93.560,6.440,98.390,1.610,16.81,288,0.950,bicubic hrnet_w44.ms_in1k,93.550,6.450,98.700,1.300,67.06,224,0.875,bilinear hrnet_w18.ms_aug_in1k,93.550,6.450,98.600,1.400,21.30,224,0.950,bilinear hrnet_w32.ms_in1k,93.530,6.470,98.450,1.550,41.23,224,0.875,bilinear xcit_nano_12_p8_384.fb_dist_in1k,93.520,6.480,98.530,1.470,3.05,384,1.000,bicubic efficientvit_b1.r224_in1k,93.510,6.490,98.320,1.680,9.10,224,0.950,bicubic botnet26t_256.c1_in1k,93.510,6.490,98.300,1.700,12.49,256,0.950,bicubic repvgg_b2.rvgg_in1k,93.500,6.500,98.730,1.270,89.02,224,0.875,bilinear hrnet_w40.ms_in1k,93.500,6.500,98.570,1.430,57.56,224,0.875,bilinear repghostnet_200.in1k,93.500,6.500,98.540,1.460,9.80,224,0.875,bicubic dla102x.in1k,93.490,6.510,98.500,1.500,26.31,224,0.875,bilinear tf_efficientnet_b1.aa_in1k,93.490,6.510,98.360,1.640,7.79,240,0.882,bicubic resnet50d.a3_in1k,93.480,6.520,98.450,1.550,25.58,224,0.950,bicubic inception_v3.gluon_in1k,93.470,6.530,98.570,1.430,23.83,299,0.875,bicubic legacy_xception.tf_in1k,93.460,6.540,98.530,1.470,22.86,299,0.897,bicubic repvit_m0_9.dist_300e_in1k,93.440,6.560,98.710,1.290,5.49,224,0.950,bicubic seresnext26d_32x4d.bt_in1k,93.440,6.560,98.330,1.670,16.81,288,0.950,bicubic xception41.tf_in1k,93.430,6.570,98.430,1.570,26.97,299,0.903,bicubic mixnet_l.ft_in1k,93.430,6.570,98.220,1.780,7.33,224,0.875,bicubic regnety_032.pycls_in1k,93.410,6.590,98.640,1.360,19.44,224,0.875,bicubic xcit_tiny_12_p16_224.fb_dist_in1k,93.410,6.590,98.510,1.490,6.72,224,1.000,bicubic res2net50_26w_6s.in1k,93.400,6.600,98.280,1.720,37.05,224,0.875,bilinear res2net50_26w_8s.in1k,93.390,6.610,98.170,1.830,48.40,224,0.875,bilinear legacy_seresnet152.in1k,93.380,6.620,98.340,1.660,66.82,224,0.875,bilinear dla169.in1k,93.350,6.650,98.610,1.390,53.39,224,0.875,bilinear cs3darknet_m.c2ns_in1k,93.350,6.650,98.600,1.400,9.31,288,0.950,bicubic levit_conv_128.fb_dist_in1k,93.350,6.650,98.370,1.630,9.21,224,0.900,bicubic repvgg_b1.rvgg_in1k,93.330,6.670,98.520,1.480,57.42,224,0.875,bilinear levit_128.fb_dist_in1k,93.330,6.670,98.370,1.630,9.21,224,0.900,bicubic resnest26d.gluon_in1k,93.320,6.680,98.620,1.380,17.07,224,0.875,bilinear resnet152.tv_in1k,93.320,6.680,98.380,1.620,60.19,224,0.875,bilinear bat_resnext26ts.ch_in1k,93.320,6.680,98.360,1.640,10.73,256,0.900,bicubic inception_v3.tf_in1k,93.320,6.680,98.040,1.960,23.83,299,0.875,bicubic tf_mixnet_l.in1k,93.320,6.680,98.030,1.970,7.33,224,0.875,bicubic legacy_seresnet101.in1k,93.310,6.690,98.520,1.480,49.33,224,0.875,bilinear selecsls60b.in1k,93.310,6.690,98.290,1.710,32.77,224,0.875,bicubic mobilevitv2_100.cvnets_in1k,93.300,6.700,98.280,1.720,4.90,256,0.888,bicubic repvit_m1.dist_in1k,93.290,6.710,98.440,1.560,5.49,224,0.950,bicubic efficientnet_b1.ft_in1k,93.250,6.750,98.290,1.710,7.79,256,1.000,bicubic coat_lite_tiny.in1k,93.240,6.760,98.260,1.740,5.72,224,0.900,bicubic resnet26t.ra2_in1k,93.200,6.800,98.490,1.510,16.01,320,1.000,bicubic hrnet_w30.ms_in1k,93.200,6.800,98.410,1.590,37.71,224,0.875,bilinear dla60_res2next.in1k,93.190,6.810,98.400,1.600,17.03,224,0.875,bilinear dla60_res2net.in1k,93.170,6.830,98.430,1.570,20.85,224,0.875,bilinear efficientnet_es.ra_in1k,93.170,6.830,98.410,1.590,5.44,224,0.875,bicubic mobilevit_s.cvnets_in1k,93.160,6.840,98.440,1.560,5.58,256,0.900,bicubic wide_resnet50_2.tv_in1k,93.160,6.840,98.370,1.630,68.88,224,0.875,bilinear gcresnext26ts.ch_in1k,93.160,6.840,98.320,1.680,10.48,288,1.000,bicubic ese_vovnet19b_dw.ra_in1k,93.150,6.850,98.250,1.750,6.54,288,0.950,bicubic regnetx_032.pycls_in1k,93.110,6.890,98.390,1.610,15.30,224,0.875,bicubic tf_efficientnetv2_b0.in1k,93.110,6.890,98.390,1.610,7.14,224,0.875,bicubic resnet34.a1_in1k,93.100,6.900,98.330,1.670,21.80,288,1.000,bicubic pit_xs_224.in1k,93.100,6.900,98.310,1.690,10.62,224,0.900,bicubic tf_efficientnet_b1.in1k,93.100,6.900,98.300,1.700,7.79,240,0.882,bicubic convnext_atto_ols.a2_in1k,93.090,6.910,98.470,1.530,3.70,288,0.950,bicubic dla60x.in1k,93.080,6.920,98.500,1.500,17.35,224,0.875,bilinear eca_resnext26ts.ch_in1k,93.060,6.940,98.400,1.600,10.30,288,1.000,bicubic dla102.in1k,93.050,6.950,98.550,1.450,33.27,224,0.875,bilinear regnety_016.pycls_in1k,93.040,6.960,98.370,1.630,11.20,224,0.875,bicubic resnet50c.gluon_in1k,93.030,6.970,98.400,1.600,25.58,224,0.875,bicubic rexnet_100.nav_in1k,93.020,6.980,98.190,1.810,4.80,224,0.875,bicubic selecsls60.in1k,93.010,6.990,98.300,1.700,30.67,224,0.875,bicubic repvgg_b1g4.rvgg_in1k,93.000,7.000,98.430,1.570,39.97,224,0.875,bilinear ghostnetv2_160.in1k,92.990,7.010,98.230,1.770,12.39,224,0.875,bicubic cs3darknet_focus_m.c2ns_in1k,92.970,7.030,98.390,1.610,9.30,288,0.950,bicubic hardcorenas_f.miil_green_in1k,92.970,7.030,98.160,1.840,8.20,224,0.875,bilinear convnextv2_atto.fcmae_ft_in1k,92.970,7.030,98.060,1.940,3.71,288,0.950,bicubic seresnext26ts.ch_in1k,92.960,7.040,98.410,1.590,10.39,288,1.000,bicubic poolformerv2_s12.sail_in1k,92.960,7.040,98.360,1.640,11.89,224,1.000,bicubic legacy_seresnet50.in1k,92.960,7.040,98.180,1.820,28.09,224,0.875,bilinear tf_efficientnet_em.in1k,92.940,7.060,98.190,1.810,6.90,240,0.882,bicubic mobileone_s3.apple_in1k,92.940,7.060,98.180,1.820,10.17,224,0.900,bilinear inception_v3.tf_adv_in1k,92.900,7.100,98.140,1.860,23.83,299,0.875,bicubic crossvit_9_dagger_240.in1k,92.890,7.110,98.240,1.760,8.78,240,0.875,bicubic res2next50.in1k,92.840,7.160,98.180,1.820,24.67,224,0.875,bilinear tf_efficientnet_cc_b0_8e.in1k,92.840,7.160,98.180,1.820,24.01,224,0.875,bicubic gmixer_24_224.ra3_in1k,92.830,7.170,97.880,2.120,24.72,224,0.875,bicubic mobileone_s2.apple_in1k,92.820,7.180,98.270,1.730,7.88,224,0.900,bilinear resmlp_12_224.fb_distilled_in1k,92.820,7.180,98.140,1.860,15.35,224,0.875,bicubic resnet101.tv_in1k,92.810,7.190,98.250,1.750,44.55,224,0.875,bilinear dpn68b.mx_in1k,92.790,7.210,98.150,1.850,12.61,224,0.875,bicubic convnext_atto.d2_in1k,92.790,7.210,98.080,1.920,3.70,288,0.950,bicubic efficientnet_b1_pruned.in1k,92.780,7.220,98.040,1.960,6.33,240,0.882,bicubic hrnet_w18_small_v2.gluon_in1k,92.770,7.230,98.410,1.590,15.60,224,0.875,bicubic res2net50_14w_8s.in1k,92.770,7.230,98.160,1.840,25.06,224,0.875,bilinear resnext50_32x4d.tv_in1k,92.750,7.250,98.270,1.730,25.03,224,0.875,bilinear densenet201.tv_in1k,92.740,7.260,98.230,1.770,20.01,224,0.875,bicubic inception_v3.tv_in1k,92.730,7.270,97.970,2.030,23.83,299,0.875,bicubic resnet50.a3_in1k,92.720,7.280,98.170,1.830,25.56,224,0.950,bicubic resnet34.a2_in1k,92.720,7.280,98.010,1.990,21.80,288,1.000,bicubic efficientnet_b0.ra_in1k,92.690,7.310,98.070,1.930,5.29,224,0.875,bicubic tf_efficientnet_lite2.in1k,92.650,7.350,98.230,1.770,6.09,260,0.890,bicubic legacy_seresnext26_32x4d.in1k,92.640,7.360,98.120,1.880,16.79,224,0.875,bicubic tf_efficientnet_lite1.in1k,92.630,7.370,98.060,1.940,5.42,240,0.882,bicubic densenetblur121d.ra_in1k,92.620,7.380,98.260,1.740,8.00,288,0.950,bicubic poolformer_s12.sail_in1k,92.610,7.390,98.180,1.820,11.92,224,0.900,bicubic tf_efficientnet_cc_b0_4e.in1k,92.600,7.400,98.080,1.920,13.31,224,0.875,bicubic hardcorenas_e.miil_green_in1k,92.570,7.430,98.100,1.900,8.07,224,0.875,bilinear regnetx_008.tv2_in1k,92.550,7.450,98.180,1.820,7.26,224,0.965,bicubic res2net50_48w_2s.in1k,92.550,7.450,98.080,1.920,25.29,224,0.875,bilinear resnet50.gluon_in1k,92.540,7.460,98.170,1.830,25.56,224,0.875,bicubic fastvit_t8.apple_dist_in1k,92.540,7.460,98.040,1.960,4.03,256,0.900,bicubic densenet121.ra_in1k,92.520,7.480,98.220,1.780,7.98,288,0.950,bicubic resnet26d.bt_in1k,92.520,7.480,98.210,1.790,16.01,288,0.950,bicubic xcit_tiny_12_p16_224.fb_in1k,92.510,7.490,98.240,1.760,6.72,224,1.000,bicubic res2net50_26w_4s.in1k,92.490,7.510,98.030,1.970,25.70,224,0.875,bilinear densenet161.tv_in1k,92.480,7.520,98.300,1.700,28.68,224,0.875,bicubic efficientvit_m5.r224_in1k,92.460,7.540,97.990,2.010,12.47,224,0.875,bicubic tinynet_a.in1k,92.440,7.560,98.080,1.920,6.19,192,0.875,bicubic resnet34.bt_in1k,92.410,7.590,98.150,1.850,21.80,288,0.950,bicubic mixnet_m.ft_in1k,92.410,7.590,97.870,2.130,5.01,224,0.875,bicubic convmixer_1024_20_ks9_p14.in1k,92.400,7.600,98.270,1.730,24.38,224,0.960,bicubic hardcorenas_d.miil_green_in1k,92.400,7.600,98.080,1.920,7.50,224,0.875,bilinear mobilenetv2_120d.ra_in1k,92.400,7.600,98.060,1.940,5.83,224,0.875,bicubic skresnet34.ra_in1k,92.380,7.620,98.150,1.850,22.28,224,0.875,bicubic repghostnet_150.in1k,92.370,7.630,98.050,1.950,6.58,224,0.875,bicubic hrnet_w18.ms_in1k,92.320,7.680,98.260,1.740,21.30,224,0.875,bilinear ghostnetv2_130.in1k,92.320,7.680,98.070,1.930,8.96,224,0.875,bicubic tf_mixnet_m.in1k,92.300,7.700,97.890,2.110,5.01,224,0.875,bicubic selecsls42b.in1k,92.290,7.710,98.110,1.890,32.46,224,0.875,bicubic mobilenetv3_large_100.miil_in21k_ft_in1k,92.260,7.740,97.620,2.380,5.48,224,0.875,bilinear tf_efficientnet_b0.aa_in1k,92.240,7.760,98.000,2.000,5.29,224,0.875,bicubic resmlp_12_224.fb_in1k,92.220,7.780,98.150,1.850,15.35,224,0.875,bicubic dla60.in1k,92.200,7.800,98.100,1.900,22.04,224,0.875,bilinear tf_efficientnet_b0.ap_in1k,92.200,7.800,98.020,1.980,5.29,224,0.875,bicubic regnetx_016.pycls_in1k,92.180,7.820,98.200,1.800,9.19,224,0.875,bicubic gernet_s.idstcv_in1k,92.130,7.870,98.190,1.810,8.17,224,0.875,bilinear resnext26ts.ra2_in1k,92.130,7.870,98.030,1.970,10.30,288,1.000,bicubic xcit_nano_12_p8_224.fb_dist_in1k,92.080,7.920,98.160,1.840,3.05,224,1.000,bicubic tf_efficientnet_b0.in1k,92.080,7.920,97.910,2.090,5.29,224,0.875,bicubic seresnet50.a3_in1k,92.070,7.930,98.040,1.960,28.09,224,0.950,bicubic fastvit_t8.apple_in1k,92.060,7.940,97.930,2.070,4.03,256,0.900,bicubic vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,92.040,7.960,98.290,1.710,6.36,384,1.000,bicubic vit_small_patch32_224.augreg_in21k_ft_in1k,92.040,7.960,98.230,1.770,22.88,224,0.900,bicubic hardcorenas_c.miil_green_in1k,92.020,7.980,97.840,2.160,5.52,224,0.875,bilinear resnet26.bt_in1k,91.990,8.010,98.220,1.780,16.00,288,0.950,bicubic dpn68.mx_in1k,91.990,8.010,98.020,1.980,12.61,224,0.875,bicubic tf_efficientnet_es.in1k,91.970,8.030,97.880,2.120,5.44,224,0.875,bicubic levit_128s.fb_dist_in1k,91.960,8.040,98.060,1.940,7.78,224,0.900,bicubic levit_conv_128s.fb_dist_in1k,91.960,8.040,98.060,1.940,7.78,224,0.900,bicubic efficientformerv2_s0.snap_dist_in1k,91.960,8.040,97.890,2.110,3.60,224,0.950,bicubic repvgg_a2.rvgg_in1k,91.940,8.060,98.140,1.860,28.21,224,0.875,bilinear densenet169.tv_in1k,91.940,8.060,98.100,1.900,14.15,224,0.875,bicubic repghostnet_130.in1k,91.890,8.110,97.930,2.070,5.48,224,0.875,bicubic resnet50.tv_in1k,91.880,8.120,98.040,1.960,25.56,224,0.875,bilinear mixer_b16_224.goog_in21k_ft_in1k,91.880,8.120,97.260,2.740,59.88,224,0.875,bicubic mobilenetv2_140.ra_in1k,91.840,8.160,97.860,2.140,6.11,224,0.875,bicubic xcit_nano_12_p16_384.fb_dist_in1k,91.830,8.170,98.020,1.980,3.05,384,1.000,bicubic mixnet_s.ft_in1k,91.820,8.180,97.700,2.300,4.13,224,0.875,bicubic vit_tiny_patch16_224.augreg_in21k_ft_in1k,91.770,8.230,98.040,1.960,5.72,224,0.900,bicubic mobilevitv2_075.cvnets_in1k,91.760,8.240,97.860,2.140,2.87,256,0.888,bicubic hardcorenas_b.miil_green_in1k,91.760,8.240,97.780,2.220,5.18,224,0.875,bilinear regnety_008.pycls_in1k,91.730,8.270,98.180,1.820,6.26,224,0.875,bicubic resnest14d.gluon_in1k,91.720,8.280,97.870,2.130,10.61,224,0.875,bilinear edgenext_x_small.in1k,91.710,8.290,97.600,2.400,2.34,288,1.000,bicubic regnety_004.tv2_in1k,91.580,8.420,97.890,2.110,4.34,224,0.965,bicubic tf_mixnet_s.in1k,91.520,8.480,97.620,2.380,4.13,224,0.875,bicubic repvgg_b0.rvgg_in1k,91.390,8.610,98.000,2.000,15.82,224,0.875,bilinear regnety_006.pycls_in1k,91.390,8.610,97.700,2.300,6.06,224,0.875,bicubic hardcorenas_a.miil_green_in1k,91.350,8.650,97.850,2.150,5.26,224,0.875,bilinear mobilenetv3_large_100.ra_in1k,91.350,8.650,97.710,2.290,5.48,224,0.875,bicubic semnasnet_100.rmsp_in1k,91.310,8.690,97.560,2.440,3.89,224,0.875,bicubic mobileone_s1.apple_in1k,91.280,8.720,97.820,2.180,4.83,224,0.900,bilinear tf_mobilenetv3_large_100.in1k,91.230,8.770,97.660,2.340,5.48,224,0.875,bilinear mobilenetv3_rw.rmsp_in1k,91.210,8.790,97.660,2.340,5.48,224,0.875,bicubic hrnet_w18_small_v2.ms_in1k,91.200,8.800,97.900,2.100,15.60,224,0.875,bilinear vit_base_patch32_224.augreg_in1k,91.190,8.810,97.390,2.610,88.22,224,0.900,bicubic efficientnet_es_pruned.in1k,91.170,8.830,97.740,2.260,5.44,224,0.875,bicubic efficientnet_lite0.ra_in1k,91.120,8.880,97.640,2.360,4.65,224,0.875,bicubic regnetx_008.pycls_in1k,91.050,8.950,97.720,2.280,7.26,224,0.875,bicubic tf_efficientnet_lite0.in1k,91.050,8.950,97.580,2.420,4.65,224,0.875,bicubic xcit_nano_12_p8_224.fb_in1k,91.010,8.990,97.770,2.230,3.05,224,1.000,bicubic resnet34.gluon_in1k,90.980,9.020,97.630,2.370,21.80,224,0.875,bicubic mobilenetv2_110d.ra_in1k,90.960,9.040,97.540,2.460,4.52,224,0.875,bicubic tinynet_b.in1k,90.920,9.080,97.660,2.340,3.73,188,0.875,bicubic ghostnetv2_100.in1k,90.900,9.100,97.700,2.300,6.16,224,0.875,bicubic legacy_seresnet34.in1k,90.900,9.100,97.580,2.420,21.96,224,0.875,bilinear densenet121.tv_in1k,90.890,9.110,97.710,2.290,7.98,224,0.875,bicubic mobilevit_xs.cvnets_in1k,90.820,9.180,97.930,2.070,2.32,256,0.900,bicubic pit_ti_distilled_224.in1k,90.770,9.230,97.610,2.390,5.10,224,0.900,bicubic dla34.in1k,90.760,9.240,97.650,2.350,15.74,224,0.875,bilinear fbnetc_100.rmsp_in1k,90.730,9.270,97.210,2.790,5.57,224,0.875,bilinear deit_tiny_distilled_patch16_224.fb_in1k,90.710,9.290,97.560,2.440,5.91,224,0.900,bicubic repghostnet_111.in1k,90.710,9.290,97.470,2.530,4.54,224,0.875,bicubic resnet18.fb_swsl_ig1b_ft_in1k,90.700,9.300,97.700,2.300,11.69,224,0.875,bilinear convit_tiny.fb_in1k,90.660,9.340,97.730,2.270,5.71,224,0.875,bicubic regnetx_004_tv.tv2_in1k,90.640,9.360,97.600,2.400,5.50,224,0.965,bicubic crossvit_9_240.in1k,90.630,9.370,97.730,2.270,8.55,240,0.875,bicubic repvgg_a1.rvgg_in1k,90.600,9.400,97.650,2.350,14.09,224,0.875,bilinear efficientvit_m4.r224_in1k,90.580,9.420,97.530,2.470,8.80,224,0.875,bicubic mnasnet_100.rmsp_in1k,90.500,9.500,97.470,2.530,4.38,224,0.875,bicubic regnety_004.pycls_in1k,90.490,9.510,97.530,2.470,4.34,224,0.875,bicubic regnetx_006.pycls_in1k,90.350,9.650,97.430,2.570,6.20,224,0.875,bicubic spnasnet_100.rmsp_in1k,90.330,9.670,97.190,2.810,4.42,224,0.875,bilinear repghostnet_100.in1k,90.290,9.710,97.480,2.520,4.07,224,0.875,bicubic resnet18d.ra2_in1k,90.280,9.720,97.560,2.440,11.71,288,0.950,bicubic crossvit_tiny_240.in1k,90.230,9.770,97.590,2.410,7.01,240,0.875,bicubic resnet18.fb_ssl_yfcc100m_ft_in1k,90.210,9.790,97.550,2.450,11.69,224,0.875,bilinear ghostnet_100.in1k,90.180,9.820,97.290,2.710,5.18,224,0.875,bicubic vgg16_bn.tv_in1k,90.090,9.910,97.370,2.630,138.37,224,0.875,bilinear vgg19_bn.tv_in1k,90.080,9.920,97.580,2.420,143.68,224,0.875,bilinear semnasnet_075.rmsp_in1k,90.070,9.930,97.440,2.560,2.91,224,0.875,bicubic resnet34.tv_in1k,89.950,10.050,97.340,2.660,21.80,224,0.875,bilinear pit_ti_224.in1k,89.940,10.060,97.450,2.550,4.85,224,0.900,bicubic resnet34.a3_in1k,89.940,10.060,97.180,2.820,21.80,224,0.950,bicubic efficientvit_m3.r224_in1k,89.860,10.140,97.540,2.460,6.90,224,0.875,bicubic vit_base_patch32_224.sam_in1k,89.740,10.260,97.000,3.000,88.22,224,0.900,bicubic xcit_nano_12_p16_224.fb_dist_in1k,89.700,10.300,97.100,2.900,3.05,224,1.000,bicubic resnet18.a1_in1k,89.680,10.320,97.100,2.900,11.69,288,1.000,bicubic deit_tiny_patch16_224.fb_in1k,89.660,10.340,97.450,2.550,5.72,224,0.900,bicubic skresnet18.ra_in1k,89.660,10.340,97.230,2.770,11.96,224,0.875,bicubic tf_mobilenetv3_large_075.in1k,89.640,10.360,97.190,2.810,3.99,224,0.875,bilinear mobilenetv2_100.ra_in1k,89.600,10.400,97.150,2.850,3.50,224,0.875,bicubic resnet18.a2_in1k,89.570,10.430,96.960,3.040,11.69,288,1.000,bicubic hrnet_w18_small.gluon_in1k,89.470,10.530,97.060,2.940,13.19,224,0.875,bicubic repvgg_a0.rvgg_in1k,89.280,10.720,96.890,3.110,9.11,224,0.875,bilinear vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,89.180,10.820,97.220,2.780,6.34,224,0.900,bicubic hrnet_w18_small.ms_in1k,89.050,10.950,97.120,2.880,13.19,224,0.875,bilinear vgg19.tv_in1k,89.050,10.950,96.870,3.130,143.67,224,0.875,bilinear resnet14t.c3_in1k,88.990,11.010,96.730,3.270,10.08,224,0.950,bicubic tf_mobilenetv3_large_minimal_100.in1k,88.950,11.050,96.860,3.140,3.92,224,0.875,bilinear regnetx_004.pycls_in1k,88.930,11.070,97.120,2.880,5.16,224,0.875,bicubic legacy_seresnet18.in1k,88.890,11.110,96.980,3.020,11.78,224,0.875,bicubic edgenext_xx_small.in1k,88.890,11.110,96.700,3.300,1.33,288,1.000,bicubic repghostnet_080.in1k,88.840,11.160,96.700,3.300,3.28,224,0.875,bicubic pvt_v2_b0.in1k,88.780,11.220,96.860,3.140,3.67,224,0.900,bicubic vgg13_bn.tv_in1k,88.750,11.250,96.980,3.020,133.05,224,0.875,bilinear lcnet_100.ra2_in1k,88.750,11.250,96.720,3.280,2.95,224,0.875,bicubic xcit_nano_12_p16_224.fb_in1k,88.620,11.380,96.790,3.210,3.05,224,1.000,bicubic vgg16.tv_in1k,88.560,11.440,96.800,3.200,138.36,224,0.875,bilinear efficientvit_m2.r224_in1k,88.470,11.530,96.900,3.100,4.19,224,0.875,bicubic resnet18.gluon_in1k,88.370,11.630,96.670,3.330,11.69,224,0.875,bicubic mobileone_s0.apple_in1k,88.230,11.770,96.400,3.600,5.29,224,0.875,bilinear mobilevitv2_050.cvnets_in1k,88.180,11.820,96.990,3.010,1.37,256,0.888,bicubic efficientvit_b0.r224_in1k,87.940,12.060,96.130,3.870,3.41,224,0.950,bicubic tinynet_c.in1k,87.780,12.220,96.370,3.630,2.46,184,0.875,bicubic vgg11_bn.tv_in1k,87.500,12.500,96.820,3.180,132.87,224,0.875,bilinear resnet18.tv_in1k,87.380,12.620,96.290,3.710,11.69,224,0.875,bilinear regnety_002.pycls_in1k,87.370,12.630,96.610,3.390,3.16,224,0.875,bicubic mobilevit_xxs.cvnets_in1k,87.160,12.840,96.100,3.900,1.27,256,0.900,bicubic mixer_l16_224.goog_in21k_ft_in1k,87.150,12.850,93.520,6.480,208.20,224,0.875,bicubic vgg13.tv_in1k,87.040,12.960,96.330,3.670,133.05,224,0.875,bilinear efficientvit_m1.r224_in1k,86.790,13.210,96.030,3.970,2.98,224,0.875,bicubic vgg11.tv_in1k,86.580,13.420,96.280,3.720,132.86,224,0.875,bilinear repghostnet_058.in1k,86.540,13.460,95.900,4.100,2.55,224,0.875,bicubic resnet18.a3_in1k,86.450,13.550,95.880,4.120,11.69,224,0.950,bicubic dla60x_c.in1k,86.290,13.710,96.160,3.840,1.32,224,0.875,bilinear resnet10t.c3_in1k,86.220,13.780,95.740,4.260,5.44,224,0.950,bicubic regnetx_002.pycls_in1k,86.140,13.860,95.970,4.030,2.68,224,0.875,bicubic lcnet_075.ra2_in1k,85.970,14.030,95.680,4.320,2.36,224,0.875,bicubic mobilenetv3_small_100.lamb_in1k,85.220,14.780,95.650,4.350,2.54,224,0.875,bicubic tf_mobilenetv3_small_100.in1k,85.190,14.810,95.770,4.230,2.54,224,0.875,bilinear repghostnet_050.in1k,85.060,14.940,95.200,4.800,2.31,224,0.875,bicubic tinynet_d.in1k,84.720,15.280,95.170,4.830,2.34,152,0.875,bicubic mnasnet_small.lamb_in1k,84.420,15.580,95.190,4.810,2.03,224,0.875,bicubic dla46x_c.in1k,84.230,15.770,95.270,4.730,1.07,224,0.875,bilinear mobilenetv2_050.lamb_in1k,83.910,16.090,94.720,5.280,1.97,224,0.875,bicubic dla46_c.in1k,83.610,16.390,94.950,5.050,1.30,224,0.875,bilinear tf_mobilenetv3_small_075.in1k,83.500,16.500,94.840,5.160,2.04,224,0.875,bilinear mobilenetv3_small_075.lamb_in1k,83.030,16.970,94.100,5.900,2.04,224,0.875,bicubic efficientvit_m0.r224_in1k,82.350,17.650,94.430,5.570,2.35,224,0.875,bicubic lcnet_050.ra2_in1k,81.800,18.200,93.710,6.290,1.88,224,0.875,bicubic tf_mobilenetv3_small_minimal_100.in1k,81.400,18.600,93.680,6.320,2.04,224,0.875,bilinear tinynet_e.in1k,78.920,21.080,92.540,7.460,2.04,106,0.875,bicubic mobilenetv3_small_050.lamb_in1k,77.020,22.980,91.300,8.700,1.59,224,0.875,bicubic
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt113-cu117-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count tinynet_e,72737.62,14.068,1024,106,0.03,0.69,2.04 mobilenetv3_small_050,54822.3,18.668,1024,224,0.03,0.92,1.59 lcnet_035,53629.35,19.084,1024,224,0.03,1.04,1.64 lcnet_050,45492.41,22.499,1024,224,0.05,1.26,1.88 mobilenetv3_small_075,39215.51,26.102,1024,224,0.05,1.3,2.04 tinynet_d,37346.61,27.409,1024,152,0.05,1.42,2.34 mobilenetv3_small_100,36280.34,28.214,1024,224,0.06,1.42,2.54 tf_mobilenetv3_small_minimal_100,31726.33,32.265,1024,224,0.06,1.41,2.04 tf_mobilenetv3_small_075,31503.43,32.494,1024,224,0.05,1.3,2.04 lcnet_075,29817.69,34.332,1024,224,0.1,1.99,2.36 tf_mobilenetv3_small_100,29444.91,34.767,1024,224,0.06,1.42,2.54 mnasnet_small,25354.86,40.376,1024,224,0.07,2.16,2.03 lcnet_100,24134.76,42.417,1024,224,0.16,2.52,2.95 regnetx_002,23983.4,42.686,1024,224,0.2,2.16,2.68 levit_128s,22675.73,45.148,1024,224,0.31,1.88,7.78 regnety_002,21709.37,47.158,1024,224,0.2,2.17,3.16 mobilenetv2_035,21673.44,47.236,1024,224,0.07,2.86,1.68 mnasnet_050,20010.27,51.163,1024,224,0.11,3.07,2.22 ghostnet_050,18932.82,54.075,1024,224,0.05,1.77,2.59 tinynet_c,18428.42,55.556,1024,184,0.11,2.87,2.46 semnasnet_050,17215.18,59.471,1024,224,0.11,3.44,2.08 mobilenetv2_050,17194.94,59.542,1024,224,0.1,3.64,1.97 cs3darknet_focus_s,16189.76,63.24,1024,256,0.69,2.7,3.27 lcnet_150,15557.15,65.811,1024,224,0.34,3.79,4.5 cs3darknet_s,15369.47,66.615,1024,256,0.72,2.97,3.28 levit_128,15337.67,66.754,1024,224,0.41,2.71,9.21 gernet_s,15288.68,66.966,1024,224,0.75,2.65,8.17 mobilenetv3_large_075,14216.3,72.019,1024,224,0.16,4.0,3.99 mixer_s32_224,14182.92,72.188,1024,224,1.0,2.28,19.1 vit_tiny_r_s16_p8_224,14125.39,72.482,1024,224,0.44,2.06,6.34 resnet10t,14112.07,72.551,1024,224,1.1,2.43,5.44 vit_small_patch32_224,13799.47,74.195,1024,224,1.15,2.5,22.88 regnetx_004,13610.2,75.225,1024,224,0.4,3.14,5.16 levit_192,13524.14,75.706,1024,224,0.66,3.2,10.95 mobilenetv3_rw,12956.58,79.021,1024,224,0.23,4.41,5.48 hardcorenas_a,12803.61,79.966,1024,224,0.23,4.38,5.26 mobilenetv3_large_100,12749.93,80.304,1024,224,0.23,4.41,5.48 mnasnet_075,12532.36,81.697,1024,224,0.23,4.77,3.17 tf_mobilenetv3_large_075,12186.51,84.017,1024,224,0.16,4.0,3.99 tinynet_b,12083.18,84.735,1024,188,0.21,4.44,3.73 regnety_004,11918.36,85.906,1024,224,0.41,3.89,4.34 tf_mobilenetv3_large_minimal_100,11715.94,87.392,1024,224,0.22,4.4,3.92 hardcorenas_c,11548.05,88.662,1024,224,0.28,5.01,5.52 hardcorenas_b,11510.71,88.949,1024,224,0.26,5.09,5.18 ese_vovnet19b_slim_dw,11501.95,89.018,1024,224,0.4,5.28,1.9 ghostnet_100,11332.61,90.348,1024,224,0.15,3.55,5.18 mnasnet_100,11138.43,91.923,1024,224,0.33,5.46,4.38 gluon_resnet18_v1b,11098.78,92.252,1024,224,1.82,2.48,11.69 resnet18,11083.1,92.383,1024,224,1.82,2.48,11.69 swsl_resnet18,11062.48,92.555,1024,224,1.82,2.48,11.69 ssl_resnet18,11061.11,92.565,1024,224,1.82,2.48,11.69 tf_mobilenetv3_large_100,11018.56,92.922,1024,224,0.23,4.41,5.48 mnasnet_b1,10993.58,93.135,1024,224,0.33,5.46,4.38 hardcorenas_d,10910.47,93.843,1024,224,0.3,4.93,7.5 semnasnet_075,10898.09,93.951,1024,224,0.23,5.54,2.91 mobilenetv2_075,10893.76,93.988,1024,224,0.22,5.86,2.64 seresnet18,10385.56,98.588,1024,224,1.82,2.49,11.78 legacy_seresnet18,10064.41,101.734,1024,224,1.82,2.49,11.78 spnasnet_100,10009.21,102.296,1024,224,0.35,6.03,4.42 tf_efficientnetv2_b0,9930.95,103.1,1024,224,0.73,4.77,7.14 levit_256,9858.1,103.863,1024,224,1.13,4.23,18.89 tinynet_a,9720.11,105.337,1024,192,0.35,5.41,6.19 hardcorenas_f,9714.91,105.393,1024,224,0.35,5.57,8.2 semnasnet_100,9623.78,106.393,1024,224,0.32,6.23,3.89 mnasnet_a1,9623.77,106.393,1024,224,0.32,6.23,3.89 mobilenetv2_100,9598.91,106.667,1024,224,0.31,6.68,3.5 hardcorenas_e,9571.87,106.966,1024,224,0.35,5.65,8.07 dla46_c,9568.4,107.007,1024,224,0.58,4.5,1.3 efficientnet_lite0,9361.14,109.377,1024,224,0.4,6.74,4.65 fbnetc_100,9352.03,109.484,1024,224,0.4,6.51,5.57 resnet18d,9334.83,109.687,1024,224,2.06,3.29,11.71 ese_vovnet19b_slim,9109.47,112.4,1024,224,1.69,3.52,3.17 regnety_006,9097.63,112.542,1024,224,0.61,4.33,6.06 regnetz_005,8607.49,118.955,1024,224,0.52,5.86,7.12 xcit_nano_12_p16_224_dist,8577.2,119.375,1024,224,0.56,4.17,3.05 xcit_nano_12_p16_224,8554.61,119.689,1024,224,0.56,4.17,3.05 levit_256d,8382.88,122.143,1024,224,1.4,4.93,26.21 regnetx_006,8379.52,122.192,1024,224,0.61,3.98,6.2 ghostnet_130,8278.59,123.681,1024,224,0.24,4.6,7.36 tf_efficientnet_lite0,8080.51,126.714,1024,224,0.4,6.74,4.65 efficientnet_b0,7965.17,128.548,1024,224,0.4,6.75,5.29 mnasnet_140,7779.42,131.618,1024,224,0.6,7.71,7.12 deit_tiny_distilled_patch16_224,7467.68,137.113,1024,224,1.27,6.01,5.91 rexnetr_100,7464.12,137.179,1024,224,0.43,7.72,4.88 deit_tiny_patch16_224,7430.15,137.806,1024,224,1.26,5.97,5.72 resnet14t,7429.68,137.815,1024,224,1.69,5.8,10.08 vit_tiny_patch16_224,7424.93,137.902,1024,224,1.26,5.97,5.72 regnetx_008,7394.88,138.463,1024,224,0.81,5.15,7.26 mobilenetv2_110d,7247.12,141.287,1024,224,0.45,8.71,4.52 hrnet_w18_small,7232.93,141.561,1024,224,1.61,5.72,13.19 tf_efficientnet_b0,7016.18,145.938,1024,224,0.4,6.75,5.29 regnety_008,6938.46,147.571,1024,224,0.81,5.25,6.26 mobilevitv2_050,6848.87,149.503,1024,256,0.48,8.04,1.37 pit_ti_distilled_224,6811.68,150.317,1024,224,0.71,6.23,5.1 pit_ti_224,6784.24,150.927,1024,224,0.7,6.19,4.85 gernet_m,6679.85,153.286,1024,224,3.02,5.24,21.14 efficientnet_b1_pruned,6642.37,154.15,1024,240,0.4,6.21,6.33 resnet34,6496.42,157.614,1024,224,3.67,3.74,21.8 gluon_resnet34_v1b,6494.61,157.658,1024,224,3.67,3.74,21.8 tv_resnet34,6481.01,157.989,1024,224,3.67,3.74,21.8 tf_efficientnetv2_b1,6476.52,158.098,1024,240,1.21,7.34,8.14 semnasnet_140,6454.5,158.637,1024,224,0.6,8.87,6.11 nf_regnet_b0,6452.24,158.693,1024,256,0.64,5.58,8.76 ese_vovnet19b_dw,6335.13,161.627,1024,224,1.34,8.25,6.54 mobilenetv2_140,6271.56,163.266,1024,224,0.6,9.57,6.11 rexnet_100,6226.48,164.447,1024,224,0.41,7.44,4.8 efficientnet_lite1,6187.91,165.472,1024,240,0.62,10.14,5.42 efficientnet_es_pruned,6115.4,167.434,1024,224,1.81,8.73,5.44 efficientnet_es,6115.12,167.443,1024,224,1.81,8.73,5.44 visformer_tiny,6103.09,167.772,1024,224,1.27,5.72,10.32 seresnet34,6058.13,169.019,1024,224,3.67,3.74,21.96 fbnetv3_b,6018.76,170.124,1024,256,0.55,9.1,8.6 selecsls42,5953.76,171.98,1024,224,2.94,4.62,30.35 selecsls42b,5921.2,172.924,1024,224,2.98,4.62,32.46 resnet26,5895.21,173.69,1024,224,2.36,7.35,16.0 edgenext_xx_small,5893.72,173.732,1024,288,0.33,4.21,1.33 levit_384,5880.4,174.126,1024,224,2.36,6.26,39.13 resnet34d,5865.98,174.555,1024,224,3.91,4.54,21.82 legacy_seresnet34,5850.24,175.025,1024,224,3.67,3.74,21.96 dla34,5827.3,175.712,1024,224,3.07,5.02,15.74 tf_efficientnet_es,5781.29,177.112,1024,224,1.81,8.73,5.44 cs3darknet_focus_m,5721.39,178.967,1024,288,2.51,6.19,9.3 resnetblur18,5636.65,181.657,1024,224,2.34,3.39,11.69 rexnetr_130,5590.0,183.173,1024,224,0.68,9.81,7.61 mobilevit_xxs,5524.87,185.333,1024,256,0.42,8.34,1.27 tf_efficientnet_lite1,5524.68,185.339,1024,240,0.62,10.14,5.42 cs3darknet_m,5478.07,186.916,1024,288,2.63,6.69,9.31 convnext_atto,5460.54,187.516,1024,288,0.91,6.3,3.7 xcit_tiny_12_p16_224_dist,5457.72,187.611,1024,224,1.24,6.29,6.72 xcit_tiny_12_p16_224,5456.63,187.649,1024,224,1.24,6.29,6.72 skresnet18,5413.1,189.159,1024,224,1.82,3.24,11.96 darknet17,5401.37,189.571,1024,256,3.26,7.18,14.3 mixnet_s,5392.58,189.878,1024,224,0.25,6.25,4.13 resmlp_12_224,5366.15,190.814,1024,224,3.01,5.5,15.35 resmlp_12_distilled_224,5364.91,190.857,1024,224,3.01,5.5,15.35 convnext_atto_ols,5288.94,193.6,1024,288,0.96,6.8,3.7 vit_base_patch32_clip_224,5280.68,193.903,1024,224,4.41,5.01,88.22 vit_base_patch32_224,5280.52,193.908,1024,224,4.41,5.01,88.22 pit_xs_distilled_224,5272.13,194.218,1024,224,1.41,7.76,11.0 pit_xs_224,5271.0,194.259,1024,224,1.4,7.71,10.62 repvgg_b0,5252.66,194.939,1024,224,3.41,6.15,15.82 mixer_b32_224,5221.71,196.094,1024,224,3.24,6.29,60.29 pvt_v2_b0,5210.31,196.521,1024,224,0.57,7.99,3.67 resnetaa34d,5171.78,197.986,1024,224,4.43,5.07,21.82 selecsls60,5160.83,198.407,1024,224,3.59,5.52,30.67 selecsls60b,5119.51,200.008,1024,224,3.63,5.52,32.77 mobilenetv2_120d,5111.95,200.304,1024,224,0.69,11.97,5.83 resnet26d,5108.26,200.449,1024,224,2.6,8.15,16.01 gmixer_12_224,5064.97,202.162,1024,224,2.67,7.26,12.7 gmlp_ti16_224,5007.93,204.464,1024,224,1.34,7.55,5.87 mixer_s16_224,4998.69,204.842,1024,224,3.79,5.97,18.53 tf_mixnet_s,4989.18,205.231,1024,224,0.25,6.25,4.13 efficientnet_b0_g16_evos,4930.67,207.667,1024,224,1.01,7.42,8.11 rexnetr_150,4900.22,208.959,1024,224,0.89,11.13,9.78 fbnetv3_d,4881.14,209.776,1024,256,0.68,11.1,10.31 darknet21,4850.41,211.105,1024,256,3.93,7.47,20.86 nf_resnet26,4816.48,212.591,1024,224,2.41,7.35,16.0 efficientnet_lite2,4781.65,214.14,1024,260,0.89,12.9,6.09 convnext_femto,4749.12,215.607,1024,288,1.3,7.56,5.22 tf_efficientnetv2_b2,4718.26,217.018,1024,260,1.72,9.84,10.1 sedarknet21,4656.51,219.895,1024,256,3.93,7.47,20.95 dla46x_c,4636.77,220.831,1024,224,0.54,5.66,1.07 convnext_femto_ols,4618.33,221.714,1024,288,1.35,8.06,5.23 resnext26ts,4603.25,222.441,1024,256,2.43,10.52,10.3 efficientformer_l1,4566.14,224.248,1024,224,1.3,5.53,12.29 dpn48b,4506.78,227.201,1024,224,1.69,8.92,9.13 crossvit_tiny_240,4481.69,228.473,1024,240,1.57,9.08,7.01 dla60x_c,4459.27,229.622,1024,224,0.59,6.01,1.32 eca_resnext26ts,4456.63,229.759,1024,256,2.43,10.52,10.3 seresnext26ts,4453.99,229.896,1024,256,2.43,10.52,10.39 legacy_seresnext26_32x4d,4441.15,230.558,1024,224,2.49,9.39,16.79 gernet_l,4396.56,232.898,1024,256,4.57,8.0,31.08 mobilevitv2_075,4393.87,233.041,1024,256,1.05,12.06,2.87 gcresnext26ts,4384.92,233.516,1024,256,2.43,10.53,10.48 tf_efficientnet_b1,4370.6,234.282,1024,240,0.71,10.88,7.79 tf_efficientnet_lite2,4293.9,238.467,1024,260,0.89,12.9,6.09 rexnet_130,4262.16,240.243,1024,224,0.68,9.71,7.56 efficientnet_b1,4239.44,241.53,1024,256,0.77,12.22,7.79 vit_small_patch32_384,4239.1,241.55,1024,384,3.45,8.25,22.92 crossvit_9_240,4212.37,243.082,1024,240,1.85,9.52,8.55 crossvit_9_dagger_240,4095.03,250.049,1024,240,1.99,9.97,8.78 nf_ecaresnet26,4091.86,250.24,1024,224,2.41,7.36,16.0 nf_seresnet26,4088.47,250.449,1024,224,2.41,7.36,17.4 efficientnet_cc_b0_8e,4076.51,251.183,1024,224,0.42,9.42,24.01 efficientnet_cc_b0_4e,4073.3,251.382,1024,224,0.41,9.42,13.31 ecaresnet50d_pruned,4055.39,252.492,1024,224,2.53,6.43,19.94 efficientnet_b2_pruned,4030.92,254.025,1024,260,0.73,9.13,8.31 ecaresnext50t_32x4d,4018.73,254.796,1024,224,2.7,10.09,15.41 ecaresnext26t_32x4d,4017.09,254.9,1024,224,2.7,10.09,15.41 seresnext26t_32x4d,4014.43,255.069,1024,224,2.7,10.09,16.81 seresnext26tn_32x4d,4014.36,255.074,1024,224,2.7,10.09,16.81 repvgg_a2,3987.84,256.77,1024,224,5.7,6.26,28.21 poolformer_s12,3982.67,257.103,1024,224,1.82,5.53,11.92 seresnext26d_32x4d,3979.57,257.303,1024,224,2.73,10.19,16.81 vit_tiny_r_s16_p8_384,3963.05,258.374,1024,384,1.34,6.49,6.36 resnet26t,3939.46,259.923,1024,256,3.35,10.52,16.01 nf_regnet_b1,3911.64,261.772,1024,288,1.02,9.2,10.22 rexnet_150,3881.93,263.775,1024,224,0.9,11.21,9.73 nf_regnet_b2,3879.78,263.921,1024,272,1.22,9.27,14.31 resnetv2_50,3865.49,264.896,1024,224,4.11,11.11,25.55 regnetx_016,3852.41,265.794,1024,224,1.62,7.93,9.19 tf_efficientnet_cc_b0_4e,3812.08,268.608,1024,224,0.41,9.42,13.31 tf_efficientnet_cc_b0_8e,3803.67,269.202,1024,224,0.42,9.42,24.01 convnext_pico,3747.49,273.239,1024,288,2.27,10.08,9.05 ecaresnetlight,3744.45,273.459,1024,224,4.11,8.42,30.16 dpn68,3724.59,274.917,1024,224,2.35,10.47,12.61 edgenext_x_small,3714.71,275.646,1024,288,0.68,7.5,2.34 gluon_resnet50_v1b,3672.76,278.798,1024,224,4.11,11.11,25.56 ssl_resnet50,3671.85,278.866,1024,224,4.11,11.11,25.56 efficientnet_em,3671.25,278.913,1024,240,3.04,14.34,6.9 resnet50,3668.58,279.116,1024,224,4.11,11.11,25.56 swsl_resnet50,3668.32,279.136,1024,224,4.11,11.11,25.56 tv_resnet50,3667.14,279.225,1024,224,4.11,11.11,25.56 dpn68b,3667.07,279.229,1024,224,2.35,10.47,12.61 rexnetr_200,3659.45,279.811,1024,224,1.59,15.11,16.52 convnext_pico_ols,3651.34,280.434,1024,288,2.37,10.74,9.06 botnet26t_256,3594.28,284.883,1024,256,3.32,11.98,12.49 bat_resnext26ts,3569.91,286.828,1024,256,2.53,12.51,10.73 resnetv2_50t,3547.32,288.657,1024,224,4.32,11.82,25.57 mixnet_m,3537.26,289.477,1024,224,0.36,8.19,5.01 regnety_016,3531.88,289.919,1024,224,1.63,8.04,11.2 tf_efficientnet_em,3529.62,290.106,1024,240,3.04,14.34,6.9 resnetv2_50d,3525.02,290.482,1024,224,4.35,11.92,25.57 halonet26t,3515.15,291.299,1024,256,3.19,11.69,12.48 resnet32ts,3492.62,293.179,1024,256,4.63,11.58,17.96 hrnet_w18_small_v2,3482.81,294.001,1024,224,2.62,9.65,15.6 gluon_resnet50_v1c,3481.59,294.107,1024,224,4.35,11.92,25.58 dla60,3466.91,295.351,1024,224,4.26,10.16,22.04 resnet33ts,3460.78,295.875,1024,256,4.76,11.66,19.68 tf_efficientnet_b2,3402.3,300.962,1024,260,1.02,13.83,9.11 convit_tiny,3399.61,301.199,1024,224,1.26,7.94,5.71 resnet50t,3373.72,303.51,1024,224,4.32,11.82,25.57 tf_mixnet_m,3366.38,304.167,1024,224,0.36,8.19,5.01 efficientnet_b3_pruned,3360.1,304.74,1024,300,1.04,11.86,9.86 seresnet33ts,3354.27,305.27,1024,256,4.76,11.66,19.78 resnet50d,3351.47,305.527,1024,224,4.35,11.92,25.58 eca_resnet33ts,3350.95,305.574,1024,256,4.76,11.66,19.68 vit_small_resnet26d_224,3346.77,305.954,1024,224,5.07,11.12,63.61 cs3darknet_focus_l,3335.18,307.018,1024,288,5.9,10.16,21.15 gluon_resnet50_v1d,3334.65,307.068,1024,224,4.35,11.92,25.58 mobilevitv2_100,3324.63,307.994,1024,256,1.84,16.08,4.9 vovnet39a,3320.12,308.408,1024,224,7.09,6.73,22.6 legacy_seresnet50,3312.33,309.135,1024,224,3.88,10.6,28.09 efficientnet_b0_gn,3307.86,309.554,1024,224,0.42,6.75,5.29 gcresnet33ts,3307.01,309.633,1024,256,4.76,11.68,19.88 pit_s_distilled_224,3301.25,310.173,1024,224,2.9,11.64,24.04 pit_s_224,3299.97,310.295,1024,224,2.88,11.56,23.46 mobilevit_xs,3252.28,314.844,1024,256,1.05,16.33,2.32 deit_small_distilled_patch16_224,3233.6,316.663,1024,224,4.63,12.02,22.44 efficientnet_b2a,3223.97,317.608,1024,288,1.12,16.2,9.11 efficientnet_b2,3223.9,317.615,1024,288,1.12,16.2,9.11 deit_small_patch16_224,3218.99,318.1,1024,224,4.61,11.95,22.05 vit_small_patch16_224,3218.38,318.16,1024,224,4.61,11.95,22.05 cs3darknet_l,3210.26,318.965,1024,288,6.16,10.83,21.16 ese_vovnet39b,3206.21,319.369,1024,224,7.09,6.74,24.57 eca_vovnet39b,3203.77,319.612,1024,224,7.09,6.74,22.6 convnextv2_atto,3196.73,320.315,1024,288,0.91,6.3,3.71 coatnet_pico_rw_224,3189.82,321.008,1024,224,2.05,14.62,10.85 seresnet50,3181.57,321.841,1024,224,4.11,11.13,28.09 pvt_v2_b1,3147.37,325.339,1024,224,2.12,15.39,14.01 coat_lite_tiny,3146.41,325.439,1024,224,1.6,11.65,5.72 res2net50_48w_2s,3127.52,327.404,1024,224,4.18,11.72,25.29 eca_botnext26ts_256,3112.32,329.003,1024,256,2.46,11.6,10.59 ecaresnet101d_pruned,3103.16,329.973,1024,224,3.48,7.69,24.88 efficientnet_b0_g8_gn,3073.2,333.192,1024,224,0.66,6.75,6.56 ssl_resnext50_32x4d,3071.68,333.356,1024,224,4.26,14.4,25.03 dla60x,3071.64,333.359,1024,224,3.54,13.8,17.35 swsl_resnext50_32x4d,3070.7,333.464,1024,224,4.26,14.4,25.03 tv_resnext50_32x4d,3069.81,333.56,1024,224,4.26,14.4,25.03 resnext50_32x4d,3069.72,333.57,1024,224,4.26,14.4,25.03 gluon_resnext50_32x4d,3068.47,333.704,1024,224,4.26,14.4,25.03 vit_small_r26_s32_224,3061.92,334.417,1024,224,3.56,9.85,36.43 skresnet34,3055.95,335.073,1024,224,3.67,5.13,22.28 deit3_small_patch16_224_in21ft1k,3048.82,335.855,1024,224,4.61,11.95,22.06 deit3_small_patch16_224,3047.23,336.031,1024,224,4.61,11.95,22.06 eca_halonext26ts,3035.71,337.305,1024,256,2.44,11.46,10.76 haloregnetz_b,3032.47,337.665,1024,224,1.97,11.94,11.68 vit_relpos_base_patch32_plus_rpn_256,3026.45,338.338,1024,256,7.68,8.01,119.42 vit_relpos_small_patch16_rpn_224,3019.95,339.067,1024,224,4.59,13.05,21.97 vit_relpos_small_patch16_224,3008.26,340.383,1024,224,4.59,13.05,21.98 vit_srelpos_small_patch16_224,3000.96,341.213,1024,224,4.59,12.16,21.97 xcit_nano_12_p16_384_dist,3000.48,341.266,1024,384,1.64,12.15,3.05 cs3sedarknet_l,2995.41,341.845,1024,288,6.16,10.83,21.91 resnetaa50d,2993.03,342.116,1024,224,5.39,12.44,25.58 vgg11,2983.47,85.796,256,224,7.61,7.44,132.86 selecsls84,2973.16,344.402,1024,224,5.9,7.57,50.95 resnetrs50,2963.42,345.535,1024,224,4.48,12.14,35.69 seresnet50t,2957.12,346.271,1024,224,4.32,11.83,28.1 resnest14d,2954.69,346.556,1024,224,2.76,7.33,10.61 gluon_resnet50_v1s,2953.65,346.677,1024,224,5.47,13.52,25.68 coat_lite_mini,2952.61,346.799,1024,224,2.0,12.25,11.01 ecaresnet50d,2945.96,347.583,1024,224,4.35,11.93,25.58 densenet121,2933.45,349.064,1024,224,2.87,6.9,7.98 tv_densenet121,2929.69,349.514,1024,224,2.87,6.9,7.98 vit_base_patch32_plus_256,2929.65,349.519,1024,256,7.79,7.76,119.48 rexnet_200,2927.94,349.723,1024,224,1.56,14.91,16.37 xcit_tiny_24_p16_224_dist,2927.0,349.834,1024,224,2.34,11.82,12.12 xcit_tiny_24_p16_224,2921.97,350.436,1024,224,2.34,11.82,12.12 coatnet_nano_cc_224,2867.38,357.108,1024,224,2.24,15.02,13.76 gcresnext50ts,2857.34,358.363,1024,256,3.75,15.46,15.67 lambda_resnet26rpt_256,2853.55,358.839,1024,256,3.16,11.87,10.99 resnext50d_32x4d,2845.08,359.908,1024,224,4.5,15.2,25.05 mixnet_l,2828.6,361.996,1024,224,0.58,10.84,7.33 densenet121d,2824.08,362.584,1024,224,3.11,7.7,8.0 efficientnet_lite3,2821.84,362.87,1024,300,1.65,21.85,8.2 cspresnet50,2793.65,366.534,1024,256,4.54,11.5,21.62 coatnet_nano_rw_224,2781.93,368.077,1024,224,2.41,15.41,15.14 vgg11_bn,2760.38,370.949,1024,224,7.62,7.44,132.87 vovnet57a,2755.77,371.572,1024,224,8.95,7.52,36.64 resmlp_24_224,2750.33,372.306,1024,224,5.96,10.91,30.02 resmlp_24_distilled_224,2740.33,373.665,1024,224,5.96,10.91,30.02 convnextv2_femto,2735.91,374.269,1024,288,1.3,7.56,5.23 flexivit_small,2735.78,374.287,1024,240,5.35,14.18,22.06 gcresnet50t,2732.04,374.8,1024,256,5.42,14.67,25.9 legacy_seresnext50_32x4d,2722.84,376.065,1024,224,4.26,14.42,27.56 seresnext50_32x4d,2721.47,376.256,1024,224,4.26,14.42,27.56 gluon_seresnext50_32x4d,2720.58,376.379,1024,224,4.26,14.42,27.56 visformer_small,2719.93,376.468,1024,224,4.88,11.43,40.22 twins_svt_small,2713.39,377.374,1024,224,2.94,13.75,24.06 resnetv2_50x1_bit_distilled,2708.81,378.014,1024,224,4.23,11.11,25.55 res2net50_14w_8s,2692.9,380.248,1024,224,4.21,13.28,25.06 resnetblur50,2685.97,381.228,1024,224,5.16,12.02,25.56 vit_base_resnet26d_224,2684.6,381.421,1024,224,6.97,13.16,101.4 tf_mixnet_l,2680.8,381.958,1024,224,0.58,10.84,7.33 seresnetaa50d,2658.93,385.106,1024,224,5.4,12.46,28.11 dla60_res2net,2656.16,385.506,1024,224,4.15,12.34,20.85 cspresnet50d,2655.05,385.668,1024,256,4.86,12.55,21.64 coatnext_nano_rw_224,2655.0,385.674,1024,224,2.47,12.8,14.7 ese_vovnet57b,2654.33,385.773,1024,224,8.95,7.52,38.61 tf_efficientnetv2_b3,2654.14,385.8,1024,300,3.04,15.74,14.36 cspresnet50w,2641.68,387.621,1024,256,5.04,12.19,28.12 res2net50_26w_4s,2629.64,389.395,1024,224,4.28,12.61,25.7 regnetz_b16,2626.71,389.828,1024,288,2.39,16.43,9.72 convnext_nano,2611.78,392.059,1024,288,4.06,13.84,15.59 efficientnetv2_rw_t,2601.49,393.609,1024,288,3.19,16.42,13.65 fbnetv3_g,2595.29,394.549,1024,288,1.77,21.09,16.62 gmixer_24_224,2595.15,394.571,1024,224,5.28,14.45,24.72 mobilevit_s,2586.09,395.952,1024,256,2.03,19.94,5.58 coatnet_rmlp_nano_rw_224,2569.7,398.478,1024,224,2.62,20.34,15.15 gcvit_xxtiny,2561.41,399.768,1024,224,2.14,15.36,12.0 tf_efficientnet_lite3,2530.94,404.582,1024,300,1.65,21.85,8.2 efficientnet_cc_b1_8e,2530.65,404.628,1024,240,0.75,15.44,39.72 densenetblur121d,2522.66,405.908,1024,224,3.11,7.9,8.0 resnetblur50d,2509.45,408.045,1024,224,5.4,12.82,25.58 nf_ecaresnet50,2490.39,411.168,1024,224,4.21,11.13,25.56 inception_v3,2485.21,412.025,1024,299,5.73,8.97,23.83 nf_seresnet50,2482.66,412.449,1024,224,4.21,11.13,28.09 tf_inception_v3,2481.38,412.658,1024,299,5.73,8.97,23.83 gc_efficientnetv2_rw_t,2480.59,412.793,1024,288,3.2,16.45,13.68 adv_inception_v3,2479.41,412.983,1024,299,5.73,8.97,23.83 repvgg_b1g4,2473.34,414.003,1024,224,8.15,10.64,39.97 mobilevitv2_125,2472.28,414.18,1024,256,2.86,20.1,7.48 gluon_inception_v3,2468.42,414.827,1024,299,5.73,8.97,23.83 nf_regnet_b3,2461.52,415.991,1024,320,2.05,14.61,18.59 xcit_small_12_p16_224_dist,2446.89,418.478,1024,224,4.82,12.58,26.25 xcit_small_12_p16_224,2446.42,418.558,1024,224,4.82,12.58,26.25 cspresnext50,2438.96,419.836,1024,256,4.05,15.86,20.57 convnext_nano_ols,2435.0,420.521,1024,288,4.38,15.5,15.65 regnetx_032,2429.42,421.489,1024,224,3.2,11.37,15.3 densenet169,2426.29,422.031,1024,224,3.4,7.3,14.15 sehalonet33ts,2419.4,423.234,1024,256,3.55,14.7,13.69 tf_efficientnet_cc_b1_8e,2406.19,425.557,1024,240,0.75,15.44,39.72 semobilevit_s,2402.02,426.294,1024,256,2.03,19.95,5.74 resnetv2_101,2330.6,439.36,1024,224,7.83,16.23,44.54 twins_pcpvt_small,2312.72,442.754,1024,224,3.83,18.08,24.11 xcit_nano_12_p8_224_dist,2295.5,446.077,1024,224,2.16,15.71,3.05 xcit_nano_12_p8_224,2292.87,446.587,1024,224,2.16,15.71,3.05 gmlp_s16_224,2290.73,447.007,1024,224,4.42,15.1,19.42 cs3darknet_focus_x,2287.2,447.697,1024,256,8.03,10.69,35.02 vit_base_r26_s32_224,2275.25,450.047,1024,224,6.81,12.36,101.38 gluon_resnet101_v1b,2260.37,453.01,1024,224,7.83,16.23,44.55 tv_resnet101,2258.59,453.368,1024,224,7.83,16.23,44.55 resnet101,2258.28,453.43,1024,224,7.83,16.23,44.55 skresnet50,2234.62,458.23,1024,224,4.11,12.5,25.8 ecaresnet26t,2232.29,458.709,1024,320,5.24,16.44,16.01 edgenext_small,2226.69,459.86,1024,320,1.97,14.16,5.59 dla102,2219.96,461.255,1024,224,7.19,14.18,33.27 res2next50,2214.71,462.347,1024,224,4.2,13.71,24.67 dla60_res2next,2210.67,463.194,1024,224,3.49,13.17,17.03 resnetv2_101d,2203.82,464.633,1024,224,8.07,17.04,44.56 gluon_resnet101_v1c,2194.65,466.578,1024,224,8.08,17.04,44.57 resnest26d,2170.04,471.869,1024,224,3.64,9.97,17.07 vgg13,2149.71,476.331,1024,224,11.31,12.25,133.05 gluon_resnet101_v1d,2137.49,479.053,1024,224,8.08,17.04,44.57 skresnet50d,2115.22,484.098,1024,224,4.36,13.31,25.82 convnextv2_pico,2108.5,485.64,1024,288,2.27,10.08,9.07 vit_base_resnet50d_224,2101.17,487.333,1024,224,8.73,16.92,110.97 coatnet_0_rw_224,2082.49,491.706,1024,224,4.43,18.73,27.44 crossvit_small_240,2081.5,491.94,1024,240,5.63,18.17,26.86 deit3_medium_patch16_224_in21ft1k,2076.53,493.118,1024,224,8.0,15.93,38.85 deit3_medium_patch16_224,2072.34,494.116,1024,224,8.0,15.93,38.85 mobilevitv2_150,2071.36,494.349,1024,256,4.09,24.11,10.59 mobilevitv2_150_in22ft1k,2070.3,494.603,1024,256,4.09,24.11,10.59 sebotnet33ts_256,2067.91,247.581,512,256,3.89,17.46,13.7 wide_resnet50_2,2057.08,497.78,1024,224,11.43,14.4,68.88 vit_relpos_medium_patch16_rpn_224,2044.85,500.757,1024,224,7.97,17.02,38.73 efficientformer_l3,2041.79,501.507,1024,224,3.93,12.01,31.41 poolformer_s24,2040.35,501.863,1024,224,3.41,10.68,21.39 vit_relpos_medium_patch16_224,2037.47,502.572,1024,224,7.97,17.02,38.75 cspdarknet53,2035.94,502.949,1024,256,6.57,16.81,27.64 resnet51q,2034.41,503.329,1024,288,8.07,20.94,35.7 vit_srelpos_medium_patch16_224,2033.15,503.638,1024,224,7.96,16.21,38.74 maxvit_rmlp_pico_rw_256,2008.78,509.748,1024,256,1.85,24.86,7.52 vit_relpos_medium_patch16_cls_224,2007.24,510.141,1024,224,8.03,18.24,38.76 dla102x,2006.55,510.315,1024,224,5.89,19.42,26.31 legacy_seresnet101,2003.12,511.188,1024,224,7.61,15.74,49.33 swin_tiny_patch4_window7_224,1995.14,513.235,1024,224,4.51,17.06,28.29 repvgg_b1,1985.42,515.747,1024,224,13.16,10.64,57.42 resnetaa101d,1982.98,516.381,1024,224,9.12,17.56,44.57 coatnet_rmlp_0_rw_224,1981.75,516.703,1024,224,4.72,24.89,27.45 tf_efficientnet_b3,1975.92,518.226,1024,300,1.87,23.83,12.23 gcvit_xtiny,1969.68,519.869,1024,224,2.93,20.26,19.98 hrnet_w18,1967.17,520.531,1024,224,4.32,16.31,21.3 gluon_resnet101_v1s,1965.68,520.926,1024,224,9.19,18.64,44.67 maxvit_pico_rw_256,1965.38,521.006,1024,256,1.83,22.3,7.46 resnetaa50,1958.15,522.93,1024,288,8.52,19.24,25.56 seresnet101,1954.63,523.871,1024,224,7.84,16.27,49.33 efficientnet_b3,1949.54,525.239,1024,320,2.01,26.52,12.23 efficientnet_b3a,1949.11,525.356,1024,320,2.01,26.52,12.23 edgenext_small_rw,1932.68,529.816,1024,320,2.46,14.85,7.83 regnetx_040,1932.62,529.839,1024,224,3.99,12.2,22.12 cs3sedarknet_xdw,1925.4,531.825,1024,256,5.97,17.18,21.6 coatnet_bn_0_rw_224,1920.71,533.123,1024,224,4.67,22.04,27.44 xcit_tiny_12_p16_384_dist,1911.65,535.652,1024,384,3.64,18.26,6.72 ssl_resnext101_32x4d,1910.73,535.909,1024,224,8.01,21.23,44.18 swsl_resnext101_32x4d,1910.43,535.993,1024,224,8.01,21.23,44.18 resnext101_32x4d,1909.99,536.115,1024,224,8.01,21.23,44.18 gluon_resnext101_32x4d,1909.34,536.298,1024,224,8.01,21.23,44.18 darknet53,1903.77,537.866,1024,288,11.78,15.68,41.61 darknetaa53,1898.12,539.468,1024,288,10.08,15.68,36.02 crossvit_15_240,1892.46,541.083,1024,240,5.81,19.77,27.53 halonet50ts,1881.53,544.226,1024,256,5.3,19.2,22.73 vgg13_bn,1879.72,544.749,1024,224,11.33,12.25,133.05 mixnet_xl,1872.46,546.86,1024,224,0.93,14.57,11.9 res2net50_26w_6s,1870.88,547.321,1024,224,6.33,15.28,37.05 ecaresnet101d,1869.88,547.616,1024,224,8.08,17.07,44.57 densenet201,1869.57,547.706,1024,224,4.34,7.85,20.01 nf_resnet101,1858.48,550.976,1024,224,8.01,16.23,44.55 coatnet_0_224,1857.28,275.661,512,224,4.58,24.01,25.04 pvt_v2_b2,1854.85,552.053,1024,224,4.05,27.53,25.36 crossvit_15_dagger_240,1850.69,553.295,1024,240,6.13,20.43,28.21 resmlp_36_224,1846.41,554.574,1024,224,8.91,16.33,44.69 resmlp_36_distilled_224,1845.04,554.99,1024,224,8.91,16.33,44.69 resnet61q,1841.84,555.954,1024,288,9.87,21.52,36.85 swin_s3_tiny_224,1817.5,563.398,1024,224,4.64,19.13,28.33 cait_xxs24_224,1796.55,569.968,1024,224,2.53,20.29,11.96 cs3darknet_x,1789.33,572.268,1024,288,10.6,14.36,35.05 vit_medium_patch16_gap_240,1785.54,573.481,1024,240,9.22,18.81,44.4 nf_resnet50,1784.84,573.708,1024,288,6.88,18.37,25.56 resnet50_gn,1764.31,580.385,1024,224,4.14,11.11,25.56 mixer_b16_224_miil,1761.45,581.327,1024,224,12.62,14.53,59.88 mixer_b16_224,1759.76,581.885,1024,224,12.62,14.53,59.88 resnetblur101d,1757.96,582.482,1024,224,9.12,17.94,44.57 eca_nfnet_l0,1726.58,593.068,1024,288,7.12,17.29,24.14 nfnet_l0,1721.83,594.705,1024,288,7.13,17.29,35.07 vit_large_patch32_224,1717.59,596.169,1024,224,15.41,13.32,327.9 vgg16,1717.44,596.224,1024,224,15.47,13.56,138.36 regnetz_c16,1710.89,598.505,1024,320,3.92,25.88,13.46 pvt_v2_b2_li,1709.89,598.855,1024,224,3.91,27.6,22.55 resnest50d_1s4x24d,1705.52,600.391,1024,224,4.43,13.57,25.68 coat_lite_small,1704.55,600.733,1024,224,3.96,22.09,19.84 resnetv2_50d_frn,1697.1,603.368,1024,224,4.33,11.92,25.59 cs3sedarknet_x,1689.8,605.975,1024,288,10.6,14.37,35.4 seresnext101_32x4d,1687.65,606.747,1024,224,8.02,21.26,48.96 gluon_seresnext101_32x4d,1687.1,606.945,1024,224,8.02,21.26,48.96 legacy_seresnext101_32x4d,1684.69,607.813,1024,224,8.02,21.26,48.96 regnetv_040,1682.92,608.454,1024,288,6.6,20.3,20.64 mobilevitv2_175,1677.66,457.769,768,256,5.54,28.13,14.25 regnety_040,1677.03,610.59,1024,288,6.61,20.3,20.65 mobilevitv2_175_in22ft1k,1677.0,457.949,768,256,5.54,28.13,14.25 convnext_tiny_hnf,1676.16,610.908,1024,288,7.39,22.21,28.59 res2net101_26w_4s,1675.37,611.195,1024,224,8.1,18.45,45.21 vit_tiny_patch16_384,1665.76,614.72,1024,384,4.7,25.39,5.79 sequencer2d_s,1661.32,616.362,1024,224,4.96,11.31,27.65 ese_vovnet39b_evos,1661.21,616.404,1024,224,7.07,6.74,24.58 vit_base_patch32_384,1649.27,620.868,1024,384,13.06,16.5,88.3 vit_base_patch32_clip_384,1648.64,621.105,1024,384,13.06,16.5,88.3 mixer_l32_224,1645.23,622.393,1024,224,11.27,19.86,206.94 convnext_tiny,1642.14,623.562,1024,288,7.39,22.21,28.59 botnet50ts_256,1639.64,312.25,512,256,5.54,22.23,22.74 swinv2_cr_tiny_224,1630.02,628.199,1024,224,4.66,28.45,28.33 resnetv2_50d_evob,1627.44,629.196,1024,224,4.33,11.92,25.59 twins_pcpvt_base,1615.12,633.996,1024,224,6.68,25.25,43.83 resnetv2_152,1614.43,634.268,1024,224,11.55,22.56,60.19 hrnet_w32,1605.06,637.96,1024,224,8.97,22.02,41.23 swinv2_cr_tiny_ns_224,1600.43,639.811,1024,224,4.66,28.45,28.33 xception41p,1598.79,480.351,768,299,9.25,39.86,26.91 tv_resnet152,1582.54,647.049,1024,224,11.56,22.56,60.19 gluon_resnet152_v1b,1581.57,647.444,1024,224,11.56,22.56,60.19 resnet152,1581.02,647.671,1024,224,11.56,22.56,60.19 xception,1579.88,648.138,1024,299,8.4,35.83,22.86 halo2botnet50ts_256,1572.75,651.076,1024,256,5.02,21.78,22.64 res2net50_26w_8s,1568.85,652.695,1024,224,8.37,17.95,48.4 vit_medium_patch16_gap_256,1564.22,654.626,1024,256,10.59,22.15,38.86 resnetv2_152d,1557.03,657.648,1024,224,11.8,23.36,60.2 efficientnet_el_pruned,1555.14,658.449,1024,300,8.0,30.7,10.59 maxvit_rmlp_nano_rw_256,1551.85,659.845,1024,256,4.47,31.92,15.5 regnetx_064,1550.52,660.413,1024,224,6.49,16.37,26.21 efficientnet_el,1549.97,660.646,1024,300,8.0,30.7,10.59 gluon_resnet152_v1c,1548.96,661.078,1024,224,11.8,23.36,60.21 nf_ecaresnet101,1546.58,662.091,1024,224,8.01,16.27,44.55 nf_seresnet101,1539.38,665.191,1024,224,8.02,16.27,49.33 mvitv2_tiny,1537.54,665.985,1024,224,4.7,21.16,24.17 nfnet_f0,1525.01,671.456,1024,256,12.62,18.05,71.49 vgg16_bn,1523.86,671.963,1024,224,15.5,13.56,138.37 cs3edgenet_x,1521.21,673.136,1024,288,14.59,16.36,47.82 gluon_resnet152_v1d,1520.11,673.621,1024,224,11.8,23.36,60.21 maxvit_nano_rw_256,1517.43,674.812,1024,256,4.46,30.28,15.45 tf_efficientnet_el,1506.16,679.862,1024,300,8.0,30.7,10.59 convnextv2_nano,1500.71,511.746,768,288,4.06,13.84,15.62 resnest50d,1492.63,686.022,1024,224,5.4,14.36,27.48 ese_vovnet99b,1489.17,687.617,1024,224,16.51,11.27,63.2 dla169,1471.11,696.059,1024,224,11.6,20.2,53.39 regnety_032,1467.85,697.604,1024,288,5.29,18.61,19.44 skresnext50_32x4d,1463.28,699.785,1024,224,4.5,17.18,27.48 xcit_tiny_12_p8_224_dist,1458.7,701.981,1024,224,4.81,23.6,6.71 xcit_tiny_12_p8_224,1458.23,702.211,1024,224,4.81,23.6,6.71 convit_small,1457.54,702.541,1024,224,5.76,17.87,27.78 mobilevitv2_200_in22ft1k,1456.59,527.247,768,256,7.22,32.15,18.45 mobilevitv2_200,1456.02,527.451,768,256,7.22,32.15,18.45 ecaresnet50t,1438.32,711.929,1024,320,8.82,24.13,25.57 gluon_resnet152_v1s,1432.22,714.961,1024,224,12.92,24.96,60.32 nest_tiny,1415.33,542.618,768,224,5.83,25.48,17.06 regnety_040s_gn,1412.65,724.867,1024,224,4.03,12.29,20.65 vgg19,1393.71,183.67,256,224,19.63,14.86,143.67 jx_nest_tiny,1389.62,552.657,768,224,5.83,25.48,17.06 legacy_seresnet152,1383.83,739.96,1024,224,11.33,22.08,66.82 densenet161,1376.52,743.891,1024,224,7.79,11.06,28.68 poolformer_s36,1370.67,747.069,1024,224,5.0,15.82,30.86 vit_small_resnet50d_s16_224,1367.59,748.748,1024,224,13.48,24.82,57.53 twins_svt_base,1362.65,751.463,1024,224,8.59,26.33,56.07 seresnet152,1361.7,751.99,1024,224,11.57,22.61,66.82 xception41,1356.44,566.173,768,299,9.28,39.86,26.97 maxvit_tiny_rw_224,1350.45,758.254,1024,224,5.11,33.11,29.06 crossvit_18_240,1348.85,759.154,1024,240,9.05,26.26,43.27 maxxvit_rmlp_nano_rw_256,1347.73,759.767,1024,256,4.37,26.05,16.78 efficientnet_lite4,1343.74,571.528,768,380,4.04,45.66,13.01 gcvit_tiny,1339.65,764.364,1024,224,4.79,29.82,28.22 pvt_v2_b3,1325.92,772.282,1024,224,6.92,37.7,45.24 crossvit_18_dagger_240,1313.78,779.419,1024,240,9.5,27.03,44.27 volo_d1_224,1312.37,780.255,1024,224,6.94,24.43,26.63 xcit_small_24_p16_224_dist,1307.3,783.278,1024,224,9.1,23.64,47.67 tresnet_m,1305.71,784.234,1024,224,5.74,7.31,31.39 inception_v4,1305.41,784.412,1024,299,12.28,15.09,42.68 repvgg_b2,1305.22,784.529,1024,224,20.45,12.9,89.02 xcit_small_24_p16_224,1303.71,785.433,1024,224,9.1,23.64,47.67 sequencer2d_m,1295.72,790.281,1024,224,6.55,14.26,38.31 edgenext_base,1283.77,797.633,1024,320,6.01,24.32,18.51 hrnet_w30,1280.53,799.653,1024,224,8.15,21.21,37.71 dm_nfnet_f0,1275.46,802.834,1024,256,12.62,18.05,71.49 coatnet_rmlp_1_rw_224,1268.37,807.322,1024,224,7.85,35.47,41.69 maxxvitv2_nano_rw_256,1259.7,812.877,1024,256,6.26,23.05,23.7 efficientnetv2_s,1254.49,816.255,1024,384,8.44,35.77,21.46 vgg19_bn,1246.52,205.36,256,224,19.66,14.86,143.68 nf_regnet_b4,1235.79,828.604,1024,384,4.7,28.61,30.21 swin_small_patch4_window7_224,1235.74,828.641,1024,224,8.77,27.47,49.61 tf_efficientnet_lite4,1232.22,623.25,768,380,4.04,45.66,13.01 regnetz_d32,1223.51,836.919,1024,320,9.33,37.08,27.58 mixnet_xxl,1219.27,629.871,768,224,2.04,23.43,23.96 tf_efficientnetv2_s,1219.16,839.906,1024,384,8.44,35.77,21.46 deit_base_patch16_224,1213.08,844.121,1024,224,17.58,23.9,86.57 deit_base_distilled_patch16_224,1212.98,844.19,1024,224,17.68,24.05,87.34 vit_base_patch16_clip_224,1211.82,844.996,1024,224,17.58,23.9,86.57 vit_base_patch16_224_miil,1211.26,845.389,1024,224,17.59,23.91,94.4 dpn92,1210.45,845.948,1024,224,6.54,18.21,37.67 vit_base_patch16_224,1210.28,846.074,1024,224,17.58,23.9,86.57 coatnet_rmlp_1_rw2_224,1208.65,847.215,1024,224,8.11,40.13,41.72 cait_xxs36_224,1205.51,849.419,1024,224,3.77,30.34,17.3 maxvit_tiny_tf_224,1200.3,639.828,768,224,5.6,35.78,30.92 swinv2_tiny_window8_256,1200.06,853.274,1024,256,5.96,24.57,28.35 efficientnetv2_rw_s,1199.87,853.413,1024,384,8.72,38.03,23.94 dla102x2,1198.52,854.374,1024,224,9.34,29.91,41.28 regnetx_160,1195.08,856.833,1024,224,15.99,25.52,54.28 dpn98,1183.92,864.908,1024,224,11.73,25.2,61.57 vit_base_patch16_rpn_224,1180.39,867.498,1024,224,17.49,23.75,86.54 twins_pcpvt_large,1168.64,876.22,1024,224,9.84,35.82,60.99 deit3_base_patch16_224,1164.77,879.134,1024,224,17.58,23.9,86.59 deit3_base_patch16_224_in21ft1k,1164.5,879.334,1024,224,17.58,23.9,86.59 regnetz_d8,1163.64,879.982,1024,320,6.19,37.08,23.37 swsl_resnext101_32x8d,1158.15,884.156,1024,224,16.48,31.21,88.79 resnext101_32x8d,1158.05,884.232,1024,224,16.48,31.21,88.79 ssl_resnext101_32x8d,1158.02,884.255,1024,224,16.48,31.21,88.79 wide_resnet101_2,1157.66,884.531,1024,224,22.8,21.23,126.89 ig_resnext101_32x8d,1157.3,884.8,1024,224,16.48,31.21,88.79 coatnet_1_rw_224,1155.72,886.014,1024,224,8.04,34.6,41.72 vit_base_patch16_gap_224,1154.73,886.777,1024,224,17.49,25.59,86.57 vit_base_patch32_clip_448,1154.21,887.173,1024,448,17.93,23.9,88.34 resnet200,1149.71,890.646,1024,224,15.07,32.19,64.67 mvitv2_small,1146.92,892.812,1024,224,7.0,28.08,34.87 xception65p,1145.07,670.686,768,299,13.91,52.48,39.82 cs3se_edgenet_x,1143.17,895.738,1024,320,18.01,20.21,50.72 vit_relpos_base_patch16_rpn_224,1143.15,895.76,1024,224,17.51,24.97,86.41 vit_relpos_base_patch16_224,1141.31,897.204,1024,224,17.51,24.97,86.43 tnt_s_patch16_224,1135.32,901.935,1024,224,5.24,24.37,23.76 resnetrs101,1134.67,902.454,1024,288,13.56,28.53,63.62 vit_relpos_base_patch16_clsgap_224,1128.94,907.03,1024,224,17.6,25.12,86.43 vit_relpos_base_patch16_cls_224,1126.78,908.771,1024,224,17.6,25.12,86.43 inception_resnet_v2,1126.73,908.809,1024,299,13.18,25.06,55.84 ens_adv_inception_resnet_v2,1125.41,909.877,1024,299,13.18,25.06,55.84 beit_base_patch16_224,1112.26,920.631,1024,224,17.58,23.9,86.53 coat_tiny,1108.72,923.572,1024,224,4.35,27.2,5.5 beitv2_base_patch16_224,1108.55,923.711,1024,224,17.58,23.9,86.53 mvitv2_small_cls,1101.66,929.491,1024,224,7.04,28.17,34.87 resnetv2_50d_gn,1092.35,937.413,1024,288,7.24,19.7,25.57 pit_b_distilled_224,1078.48,474.731,512,224,12.5,33.07,74.79 pit_b_224,1075.34,476.117,512,224,12.42,32.94,73.76 hrnet_w40,1059.78,966.217,1024,224,12.75,25.29,57.56 coatnet_1_224,1045.17,489.859,512,224,8.7,39.0,42.23 resnet101d,1039.88,984.712,1024,320,16.48,34.77,44.57 flexivit_base,1037.21,987.248,1024,240,20.29,28.36,86.59 gluon_resnext101_64x4d,1034.86,989.491,1024,224,15.52,31.21,83.46 vit_small_patch16_36x1_224,1033.13,991.146,1024,224,13.71,35.69,64.67 vit_large_r50_s32_224,1030.67,993.517,1024,224,19.58,24.41,328.99 maxvit_rmlp_tiny_rw_256,1029.25,746.162,768,256,6.77,46.92,29.15 xcit_tiny_24_p16_384_dist,1027.64,996.444,1024,384,6.87,34.29,12.12 efficientnet_b4,1014.08,504.879,512,384,4.51,50.04,19.34 maxvit_tiny_rw_256,1008.0,1015.861,1024,256,6.74,44.35,29.07 vit_small_patch16_18x2_224,1006.7,1017.169,1024,224,13.71,35.69,64.67 swinv2_cr_small_224,1005.28,1018.603,1024,224,9.07,50.27,49.7 regnetx_080,1004.51,1019.384,1024,224,8.02,14.06,39.57 repvgg_b3,994.23,1029.925,1024,224,29.16,15.1,123.09 swinv2_cr_small_ns_224,993.75,1030.424,1024,224,9.08,50.27,49.7 repvgg_b2g4,988.97,1035.405,1024,224,12.63,12.9,61.76 convnext_small,988.3,1036.113,1024,288,14.39,35.65,50.22 gluon_xception65,987.82,777.458,768,299,13.96,52.48,39.92 vit_small_r26_s32_384,982.68,1042.031,1024,384,10.43,29.85,36.47 xception65,978.83,784.597,768,299,13.96,52.48,39.92 regnetz_040,975.77,787.056,768,320,6.35,37.78,27.12 regnetz_040h,971.51,790.512,768,320,6.43,37.94,28.94 gluon_seresnext101_64x4d,965.3,1060.794,1024,224,15.53,31.25,88.23 maxvit_tiny_pm_256,964.03,1062.189,1024,256,6.61,47.9,30.09 efficientformer_l7,962.55,1063.825,1024,224,10.17,24.45,82.23 twins_svt_large,962.19,1064.229,1024,224,15.15,35.1,99.27 tf_efficientnet_b4,957.62,534.646,512,380,4.49,49.49,19.34 pvt_v2_b4,957.38,1069.569,1024,224,10.14,53.74,62.56 poolformer_m36,954.91,1072.334,1024,224,8.8,22.02,56.17 cait_s24_224,954.44,1072.866,1024,224,9.35,40.58,46.92 regnetz_b16_evos,950.47,808.013,768,288,2.36,16.43,9.74 resnest50d_4s2x40d,938.07,1091.586,1024,224,4.4,17.94,30.42 hrnet_w48,936.07,1093.917,1024,224,17.34,28.56,77.47 gmlp_b16_224,930.95,1099.935,1024,224,15.78,30.21,73.08 convnextv2_tiny,930.82,550.041,512,288,7.39,22.21,28.64 convnextv2_small,928.68,1102.629,1024,224,8.71,21.56,50.32 maxxvit_rmlp_tiny_rw_256,918.72,1114.583,1024,256,6.66,39.76,29.64 mobilevitv2_150_384_in22ft1k,915.49,419.435,384,384,9.2,54.25,10.59 pvt_v2_b5,909.79,1125.516,1024,224,11.76,50.92,81.96 nest_small,903.21,850.284,768,224,10.35,40.04,38.35 swin_s3_small_224,899.98,853.339,768,224,9.43,37.84,49.74 xcit_medium_24_p16_224_dist,898.61,1139.525,1024,224,16.13,31.71,84.4 xcit_medium_24_p16_224,898.6,1139.542,1024,224,16.13,31.71,84.4 jx_nest_small,892.03,860.939,768,224,10.35,40.04,38.35 coat_mini,880.8,1162.569,1024,224,6.82,33.68,10.34 swin_base_patch4_window7_224,875.38,1169.764,1024,224,15.47,36.63,87.77 dpn131,865.2,1183.527,1024,224,16.09,32.97,79.25 resnetv2_50d_evos,854.82,1197.895,1024,288,7.15,19.7,25.59 xcit_small_12_p16_384_dist,853.54,1199.694,1024,384,14.14,36.51,26.25 sequencer2d_l,839.78,1219.347,1024,224,9.74,22.12,54.3 crossvit_base_240,839.43,914.892,768,240,21.22,36.33,105.03 hrnet_w44,821.37,1246.671,1024,224,14.94,26.92,67.06 eca_nfnet_l1,818.87,1250.489,1024,320,14.92,34.42,41.41 vit_base_r50_s16_224,817.55,1252.502,1024,224,21.67,35.31,114.69 maxvit_rmlp_small_rw_224,816.34,1254.368,1024,224,10.75,49.3,64.9 gcvit_small,815.24,1256.055,1024,224,8.57,41.61,51.09 regnety_080,811.28,1262.191,1024,288,13.22,29.69,39.18 densenet264,804.85,1272.268,1024,224,12.95,12.8,72.69 mvitv2_base,804.14,1273.395,1024,224,10.16,40.5,51.47 repvgg_b3g4,802.85,1275.443,1024,224,17.89,15.1,83.83 vit_base_patch16_plus_240,782.25,1309.022,1024,240,27.41,33.08,117.56 swinv2_tiny_window16_256,781.61,655.045,512,256,6.68,39.02,28.35 maxvit_small_tf_224,777.04,658.899,512,224,11.66,53.17,68.93 xcit_tiny_24_p8_224,771.1,1327.958,1024,224,9.21,45.39,12.11 xcit_tiny_24_p8_224_dist,770.21,1329.496,1024,224,9.21,45.39,12.11 coatnet_2_rw_224,763.52,670.562,512,224,15.09,49.22,73.87 vit_relpos_base_patch16_plus_240,763.4,1341.361,1024,240,27.3,34.33,117.38 efficientnet_b3_gn,763.0,671.023,512,320,2.14,28.83,11.73 coatnet_rmlp_2_rw_224,759.73,673.906,512,224,15.18,54.78,73.88 vit_small_patch16_384,753.82,1018.79,768,384,15.52,50.78,22.2 hrnet_w64,750.36,1364.663,1024,224,28.97,35.09,128.06 xception71,749.7,1024.396,768,299,18.09,69.92,42.34 resnet152d,742.37,1379.356,1024,320,24.08,47.67,60.21 swinv2_small_window8_256,741.95,1380.134,1024,256,11.58,40.14,49.73 mobilevitv2_175_384_in22ft1k,739.09,519.544,384,384,12.47,63.29,14.25 ecaresnet200d,736.17,1390.959,1024,256,20.0,43.15,64.69 seresnet200d,733.28,1396.444,1024,256,20.01,43.15,71.86 swin_s3_base_224,733.27,1396.459,1024,224,13.69,48.26,71.13 convit_base,731.09,1400.636,1024,224,17.52,31.77,86.54 resnest101e,726.65,1409.184,1024,256,13.38,28.66,48.28 deit3_small_patch16_384,726.49,1057.125,768,384,15.52,50.78,22.21 deit3_small_patch16_384_in21ft1k,726.32,1057.368,768,384,15.52,50.78,22.21 volo_d2_224,722.61,1417.079,1024,224,14.34,41.34,58.68 tnt_b_patch16_224,721.24,1419.762,1024,224,14.09,39.01,65.41 xcit_nano_12_p8_384_dist,720.41,1421.4,1024,384,6.34,46.08,3.05 swinv2_cr_base_224,719.23,1423.721,1024,224,15.86,59.66,87.88 poolformer_m48,719.07,1424.046,1024,224,11.59,29.17,73.47 coatnet_2_224,715.36,715.711,512,224,16.5,52.67,74.68 swinv2_cr_base_ns_224,712.96,1436.239,1024,224,15.86,59.66,87.88 dpn107,691.0,1481.897,1024,224,18.38,33.46,86.92 convnext_base,687.14,1490.219,1024,288,25.43,47.53,88.59 resnetv2_50x1_bitm,684.31,374.087,256,448,16.62,44.46,25.55 efficientnet_b3_g8_gn,664.63,770.341,512,320,3.2,28.83,14.25 regnety_064,657.71,1556.911,1024,288,10.56,27.11,30.58 regnetv_064,652.6,1569.096,1024,288,10.55,27.11,30.58 xcit_small_12_p8_224,651.3,1572.214,1024,224,18.69,47.21,26.21 xcit_small_12_p8_224_dist,651.08,1572.755,1024,224,18.69,47.21,26.21 resnetrs152,649.95,1575.501,1024,320,24.34,48.14,86.62 mobilevitv2_200_384_in22ft1k,647.42,395.4,256,384,16.24,72.34,18.45 seresnet152d,645.69,1585.88,1024,320,24.09,47.72,66.84 tresnet_l,644.38,1589.105,1024,224,10.88,11.9,55.99 tresnet_v2_l,642.3,1594.246,1024,224,8.81,16.34,46.17 nest_base,640.98,798.76,512,224,17.96,53.39,67.72 regnetx_120,640.37,1599.07,1024,224,12.13,21.37,46.11 seresnext101_32x8d,639.53,1601.159,1024,288,27.24,51.63,93.57 regnetz_e8,639.43,1601.423,1024,320,15.46,63.94,57.7 ese_vovnet99b_iabn,636.1,1609.798,1024,224,16.49,11.27,63.2 jx_nest_base,634.61,806.787,512,224,17.96,53.39,67.72 regnety_120,625.75,1636.422,1024,224,12.14,21.38,51.82 efficientnetv2_m,624.53,1639.618,1024,416,18.6,67.5,54.14 seresnext101d_32x8d,621.55,1647.466,1024,288,27.64,52.95,93.59 resnext101_64x4d,619.77,1652.21,1024,288,25.66,51.59,83.46 swsl_resnext101_32x16d,612.21,1672.624,1024,224,36.27,51.18,194.03 ig_resnext101_32x16d,611.98,1673.243,1024,224,36.27,51.18,194.03 maxvit_rmlp_small_rw_256,611.67,1255.571,768,256,14.15,66.09,64.9 ssl_resnext101_32x16d,611.31,1675.063,1024,224,36.27,51.18,194.03 regnety_320,605.31,1691.684,1024,224,32.34,30.26,145.05 gcvit_base,602.42,1699.782,1024,224,14.87,55.48,90.32 regnetz_c16_evos,596.93,857.706,512,320,3.86,25.88,13.49 maxxvit_rmlp_small_rw_256,590.18,1735.046,1024,256,14.67,58.38,66.01 legacy_senet154,585.86,1747.854,1024,224,20.77,38.69,115.09 senet154,585.53,1748.836,1024,224,20.77,38.69,115.09 seresnextaa101d_32x8d,585.08,1750.175,1024,288,28.51,56.44,93.59 gluon_senet154,584.86,1750.843,1024,224,20.77,38.69,115.09 convmixer_768_32,581.95,1759.577,1024,224,19.55,25.95,21.11 seresnet269d,574.5,1782.4,1024,256,26.59,53.6,113.67 nf_regnet_b5,565.36,905.602,512,456,11.7,61.95,49.74 mixer_l16_224,553.66,1849.49,1024,224,44.6,41.69,208.2 resnet200d,545.14,1878.401,1024,320,31.25,67.33,64.69 nfnet_f1,544.28,1881.353,1024,320,35.97,46.77,132.63 vit_large_patch32_384,543.45,1884.237,1024,384,45.31,43.86,306.63 efficientnetv2_rw_m,543.37,1884.512,1024,416,21.49,79.62,53.24 vit_medium_patch16_gap_384,539.24,949.475,512,384,26.08,67.54,39.03 efficientnet_b5,533.21,960.212,512,448,9.59,93.56,30.39 swinv2_base_window8_256,531.81,1925.495,1024,256,20.37,52.59,87.92 maxxvitv2_rmlp_base_rw_224,525.72,1947.791,1024,224,24.2,62.77,116.09 xcit_large_24_p16_224_dist,509.19,2011.039,1024,224,35.86,47.27,189.1 xcit_large_24_p16_224,509.15,2011.169,1024,224,35.86,47.27,189.1 swin_large_patch4_window7_224,504.4,1522.593,768,224,34.53,54.94,196.53 halonet_h1,503.39,508.543,256,256,3.0,51.17,8.1 volo_d3_224,502.58,2037.467,1024,224,20.78,60.09,86.33 swinv2_small_window16_256,488.97,1047.084,512,256,12.82,66.29,49.73 tresnet_xl,481.58,2126.301,1024,224,15.17,15.34,78.44 vit_small_patch8_224,479.11,1068.641,512,224,22.44,80.84,21.67 tf_efficientnet_b5,476.47,805.919,384,456,10.46,98.86,30.39 maxvit_rmlp_base_rw_224,472.06,2169.196,1024,224,23.15,92.64,116.14 resnetrs200,471.68,2170.964,1024,320,31.51,67.81,93.21 xcit_tiny_12_p8_384_dist,471.45,2172.002,1024,384,14.13,69.14,6.71 dm_nfnet_f1,461.24,2220.087,1024,320,35.97,46.77,132.63 tf_efficientnetv2_m,458.93,1673.426,768,480,24.76,89.84,54.14 xcit_small_24_p16_384_dist,457.16,2239.891,1024,384,26.72,68.58,47.67 coatnet_rmlp_3_rw_224,439.5,582.463,256,224,33.56,79.47,165.15 maxvit_base_tf_224,430.05,1190.542,512,224,24.04,95.01,119.47 swinv2_cr_large_224,423.86,1811.887,768,224,35.1,78.42,196.68 resnetv2_152x2_bit_teacher,423.36,2418.743,1024,224,46.95,45.11,236.34 swinv2_cr_tiny_384,423.1,907.565,384,384,15.34,161.01,28.33 coatnet_3_rw_224,421.95,606.701,256,224,33.44,73.83,181.81 resnetv2_101x1_bitm,419.35,610.453,256,448,31.65,64.93,44.54 coatnet_3_224,405.07,631.982,256,224,36.56,79.01,166.97 convnextv2_base,403.59,1268.593,512,288,25.43,47.53,88.72 eca_nfnet_l2,401.73,2548.946,1024,384,30.05,68.28,56.72 regnetz_d8_evos,394.39,1947.294,768,320,7.03,38.92,23.46 convmixer_1024_20_ks9_p14,393.5,2602.254,1024,224,5.55,5.51,24.38 eva_large_patch14_196,392.3,2610.234,1024,196,61.57,63.52,304.14 crossvit_15_dagger_408,390.72,655.182,256,408,21.45,95.05,28.5 vit_large_patch16_224,390.66,2621.182,1024,224,61.6,63.52,304.33 vit_base_patch16_18x2_224,384.38,2663.987,1024,224,52.51,71.38,256.73 deit3_large_patch16_224_in21ft1k,377.58,2711.976,1024,224,61.6,63.52,304.37 deit3_large_patch16_224,377.53,2712.348,1024,224,61.6,63.52,304.37 convnext_large,373.02,2058.836,768,288,56.87,71.29,197.77 beit_large_patch16_224,360.62,2839.572,1024,224,61.6,63.52,304.43 beitv2_large_patch16_224,360.58,2839.86,1024,224,61.6,63.52,304.43 swinv2_base_window12to16_192to256_22kft1k,360.56,1065.006,384,256,22.02,84.71,87.92 swinv2_base_window16_256,360.23,1065.959,384,256,22.02,84.71,87.92 regnety_160,353.5,2172.566,768,288,26.37,38.07,83.59 nasnetalarge,345.63,1111.004,384,331,23.89,90.56,88.75 maxvit_tiny_tf_384,344.01,744.157,256,384,17.53,123.42,30.98 xcit_small_24_p8_224,342.37,2990.915,1024,224,35.81,90.78,47.63 xcit_small_24_p8_224_dist,342.26,2991.817,1024,224,35.81,90.78,47.63 flexivit_large,335.35,3053.52,1024,240,70.99,75.39,304.36 maxxvitv2_rmlp_large_rw_224,332.33,3081.271,1024,224,44.14,87.15,215.42 vit_large_r50_s32_384,329.8,3104.921,1024,384,57.43,76.52,329.09 pnasnet5large,328.89,1167.534,384,331,25.04,92.89,86.06 tresnet_m_448,325.8,3143.01,1024,448,22.94,29.21,31.39 volo_d1_384,323.04,1584.906,512,384,22.75,108.55,26.78 volo_d4_224,318.96,3210.439,1024,224,44.34,80.22,192.96 xcit_medium_24_p16_384_dist,312.74,3274.268,1024,384,47.39,91.64,84.4 nfnet_f2,310.6,3296.869,1024,352,63.22,79.06,193.78 vit_base_patch16_384,307.09,1250.42,384,384,55.54,101.56,86.86 deit_base_patch16_384,306.8,1251.599,384,384,55.54,101.56,86.86 vit_base_patch16_clip_384,306.29,1253.685,384,384,55.54,101.56,86.86 deit_base_distilled_patch16_384,305.48,1257.017,384,384,55.65,101.82,87.63 ecaresnet269d,305.06,3356.684,1024,352,50.25,101.25,102.09 maxvit_large_tf_224,301.43,1273.908,384,224,43.68,127.35,211.79 deit3_base_patch16_384_in21ft1k,298.01,1288.526,384,384,55.54,101.56,86.88 deit3_base_patch16_384,297.88,1289.093,384,384,55.54,101.56,86.88 resnetrs270,296.97,3448.186,1024,352,51.13,105.48,129.86 regnetx_320,289.44,2653.413,768,224,31.81,36.3,107.81 efficientnet_b6,287.31,890.997,256,528,19.4,167.39,43.04 vit_large_patch14_224,286.23,3577.501,1024,224,81.08,88.79,304.2 vit_large_patch14_clip_224,285.99,3580.5,1024,224,81.08,88.79,304.2 crossvit_18_dagger_408,285.18,673.248,192,408,32.47,124.87,44.61 cait_xxs24_384,281.48,3637.936,1024,384,9.63,122.66,12.03 ig_resnext101_32x32d,275.12,1860.956,512,224,87.29,91.12,468.53 tf_efficientnet_b6,274.07,700.545,192,528,19.4,167.39,43.04 dm_nfnet_f2,264.79,2900.408,768,352,63.22,79.06,193.78 beit_base_patch16_384,261.27,1469.733,384,384,55.54,101.56,86.74 efficientnetv2_l,260.33,1966.694,512,480,56.4,157.99,118.52 swinv2_cr_small_384,259.75,985.56,256,384,29.7,298.03,49.7 tf_efficientnetv2_l,257.29,1989.923,512,480,56.4,157.99,118.52 resnest200e,254.36,1006.453,256,320,35.69,82.78,70.2 mvitv2_large,249.99,2048.061,512,224,43.87,112.02,217.99 xcit_tiny_24_p8_384_dist,248.25,4124.916,1024,384,27.05,132.95,12.11 convnext_xlarge,242.63,2110.182,512,288,100.8,95.05,350.2 resmlp_big_24_224_in22ft1k,241.9,4233.056,1024,224,100.23,87.31,129.14 resmlp_big_24_224,241.74,4235.988,1024,224,100.23,87.31,129.14 resmlp_big_24_distilled_224,241.44,4241.249,1024,224,100.23,87.31,129.14 convnextv2_large,239.52,1068.782,256,288,56.87,71.29,197.96 coatnet_4_224,238.62,1072.827,256,224,62.48,129.26,275.43 swin_base_patch4_window12_384,236.12,813.144,192,384,47.19,134.78,87.9 xcit_medium_24_p8_224_dist,233.5,3289.007,768,224,63.53,121.23,84.32 xcit_medium_24_p8_224,233.5,3289.104,768,224,63.53,121.23,84.32 eca_nfnet_l3,229.87,2227.284,512,448,52.55,118.4,72.04 vit_base_r50_s16_384,226.32,1696.687,384,384,67.43,135.03,98.95 maxvit_small_tf_384,224.01,857.105,192,384,35.87,183.65,69.02 xcit_small_12_p8_384_dist,221.54,1733.28,384,384,54.92,138.29,26.21 swinv2_large_window12to16_192to256_22kft1k,220.1,1163.101,256,256,47.81,121.53,196.74 volo_d5_224,210.88,4855.76,1024,224,72.4,118.11,295.46 vit_base_patch8_224,199.67,1282.079,256,224,78.22,161.69,86.58 cait_xs24_384,197.64,3885.811,768,384,19.28,183.98,26.67 resnetrs350,196.19,5219.377,1024,384,77.59,154.74,163.96 cait_xxs36_384,188.27,5439.03,1024,384,14.35,183.7,17.37 swinv2_cr_base_384,185.68,1378.725,256,384,50.57,333.68,87.88 coatnet_rmlp_2_rw_384,184.84,1038.746,192,384,47.69,209.43,73.88 swinv2_cr_huge_224,184.09,2085.934,384,224,115.97,121.08,657.83 convnext_xxlarge,183.68,2787.486,512,224,151.66,95.29,846.47 volo_d2_384,180.56,2126.753,384,384,46.17,184.51,58.87 xcit_large_24_p16_384_dist,176.39,5805.281,1024,384,105.35,137.17,189.1 regnety_640,174.81,4393.396,768,224,64.16,42.5,281.38 maxvit_xlarge_tf_224,171.63,1491.6,256,224,97.49,191.02,474.95 nfnet_f3,170.11,4514.791,768,416,115.58,141.78,254.92 densenet264d_iabn,167.13,6126.84,1024,224,13.47,14.0,72.74 efficientnet_b7,166.38,1153.975,192,600,38.33,289.94,66.35 maxvit_tiny_tf_512,163.72,781.809,128,512,33.49,257.59,31.05 efficientnetv2_xl,162.7,3146.865,512,512,93.85,247.32,208.12 tf_efficientnetv2_xl,161.32,3173.821,512,512,93.85,247.32,208.12 tf_efficientnet_b7,160.43,1196.798,192,600,38.33,289.94,66.35 resnetv2_152x2_bit_teacher_384,159.54,1604.579,256,384,136.16,132.56,236.34 tresnet_l_448,154.66,6620.743,1024,448,43.5,47.56,55.99 vit_huge_patch14_224,154.27,6637.58,1024,224,167.43,139.43,658.75 vit_huge_patch14_clip_224,154.17,6642.017,1024,224,167.4,139.41,632.05 maxxvitv2_rmlp_base_rw_384,153.9,1663.429,256,384,72.98,213.74,116.09 cait_s24_384,152.41,3359.254,512,384,32.17,245.31,47.06 deit3_huge_patch14_224_in21ft1k,150.05,6824.53,1024,224,167.4,139.41,632.13 deit3_huge_patch14_224,149.59,6845.356,1024,224,167.4,139.41,632.13 dm_nfnet_f3,145.48,3519.403,512,416,115.58,141.78,254.92 resnetrs420,142.37,5394.528,768,416,108.45,213.79,191.89 swin_large_patch4_window12_384,138.37,925.016,128,384,104.08,202.16,196.74 resnetv2_50x3_bitm,133.5,1438.189,192,448,145.7,133.37,217.32 maxvit_rmlp_base_rw_384,131.6,1945.285,256,384,70.97,318.95,116.14 xcit_large_24_p8_224_dist,131.32,3898.808,512,224,141.23,181.56,188.93 xcit_large_24_p8_224,131.27,3900.391,512,224,141.23,181.56,188.93 coatnet_5_224,130.48,1471.508,192,224,145.49,194.24,687.47 maxvit_base_tf_384,122.48,1567.652,192,384,73.8,332.9,119.65 resnest269e,119.17,2148.198,256,416,77.69,171.98,110.93 resnetv2_152x2_bitm,117.29,2182.534,256,448,184.99,180.43,236.34 xcit_small_24_p8_384_dist,116.59,3293.649,384,384,105.24,265.91,47.63 tresnet_xl_448,115.63,8855.938,1024,448,60.65,61.31,78.44 swinv2_cr_large_384,113.43,1128.479,128,384,108.95,404.96,196.68 maxvit_small_tf_512,106.82,1198.298,128,512,67.26,383.77,69.13 efficientnet_b8,106.21,1205.18,128,672,63.48,442.89,87.41 tf_efficientnet_b8,102.86,1244.358,128,672,63.48,442.89,87.41 eva_large_patch14_336,102.71,2492.371,256,336,191.1,270.24,304.53 vit_large_patch14_clip_336,102.52,2496.99,256,336,191.11,270.24,304.53 vit_large_patch16_384,102.5,2497.593,256,384,191.21,270.24,304.72 cait_s36_384,101.88,5025.316,512,384,47.99,367.4,68.37 eva_giant_patch14_224,101.84,10055.112,1024,224,267.18,192.64,1012.56 vit_giant_patch14_224,100.71,7625.752,768,224,267.18,192.64,1012.61 vit_giant_patch14_clip_224,100.43,7646.856,768,224,267.18,192.64,1012.65 deit3_large_patch16_384_in21ft1k,99.81,2564.809,256,384,191.21,270.24,304.76 deit3_large_patch16_384,99.8,2564.994,256,384,191.21,270.24,304.76 swinv2_base_window12to24_192to384_22kft1k,96.12,665.832,64,384,55.25,280.36,87.92 nfnet_f4,89.33,5731.574,512,512,216.26,262.26,316.07 beit_large_patch16_384,88.56,2890.58,256,384,191.21,270.24,305.0 maxvit_large_tf_384,86.44,1480.84,128,384,132.55,445.84,212.03 regnety_1280,82.49,4654.845,384,224,127.66,71.58,644.81 xcit_medium_24_p8_384_dist,79.96,3201.705,256,384,186.67,354.73,84.32 resnetv2_101x3_bitm,79.41,2417.67,192,448,280.33,194.78,387.93 volo_d3_448,77.64,2473.021,192,448,96.33,446.83,86.63 dm_nfnet_f4,77.54,4952.036,384,512,216.26,262.26,316.07 nfnet_f5,67.46,5691.915,384,544,290.97,349.71,377.21 tf_efficientnet_l2,63.66,1507.989,96,475,172.11,609.89,480.31 swinv2_large_window12to24_192to384_22kft1k,60.94,787.651,48,384,116.15,407.83,196.74 vit_gigantic_patch14_224,60.18,8507.121,512,224,483.95,275.37,1844.44 vit_gigantic_patch14_clip_224,60.11,8517.85,512,224,483.96,275.37,1844.91 volo_d4_448,57.87,3317.675,192,448,197.13,527.35,193.41 maxvit_base_tf_512,57.86,2212.256,128,512,138.02,703.99,119.88 dm_nfnet_f5,57.78,6645.368,384,544,290.97,349.71,377.21 vit_huge_patch14_clip_336,57.4,4460.085,256,336,390.97,407.54,632.46 ig_resnext101_32x48d,56.43,6804.709,384,224,153.57,131.06,828.41 convnextv2_huge,56.31,1704.92,96,384,337.96,232.35,660.29 convmixer_1536_20,55.47,18461.426,1024,224,48.68,33.03,51.63 swinv2_cr_giant_224,52.39,3665.046,192,224,483.85,309.15,2598.76 nfnet_f6,51.81,7411.574,384,576,378.69,452.2,438.36 maxvit_xlarge_tf_384,50.76,1891.335,96,384,292.78,668.76,475.32 swinv2_cr_huge_384,49.01,1305.73,64,384,352.04,583.18,657.94 regnety_2560,47.69,8051.463,384,224,257.07,87.48,826.14 xcit_large_24_p8_384_dist,44.91,4275.004,192,384,415.0,531.82,188.93 dm_nfnet_f6,44.62,5737.462,256,576,378.69,452.2,438.36 nfnet_f7,41.13,6224.782,256,608,480.39,570.85,499.5 maxvit_large_tf_512,41.04,1559.597,64,512,244.75,942.15,212.33 eva_giant_patch14_336,39.89,6418.269,256,336,620.64,550.67,1013.01 volo_d5_448,39.88,3209.812,128,448,315.06,737.92,295.91 beit_large_patch16_512,35.33,2716.953,96,512,362.24,656.39,305.67 cait_m36_384,32.89,7783.487,256,384,173.11,734.81,271.22 resnetv2_152x4_bitm,30.46,3151.929,96,480,844.84,414.26,936.53 volo_d5_512,27.89,4590.0,128,512,425.09,1105.37,296.09 maxvit_xlarge_tf_512,24.38,1968.424,48,512,534.14,1413.22,475.77 efficientnet_l2,23.13,1383.428,32,800,479.12,1707.39,480.31 swinv2_cr_giant_384,15.06,2124.735,32,384,1450.71,1394.86,2598.76 cait_m48_448,13.86,9235.876,128,448,329.41,1708.23,356.46 eva_giant_patch14_560,10.52,3043.009,32,560,1906.76,2577.17,1014.45
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/README.md
# Validation and Benchmark Results This folder contains validation and benchmark results for the models in this collection. Validation scores are currently only run for models with pretrained weights and ImageNet-1k heads, benchmark numbers are run for all. ## Datasets There are currently results for the ImageNet validation set and 5 additional test / label sets. The test set results include rank and top-1/top-5 differences from clean validation. For the "Real Labels", ImageNetV2, and Sketch test sets, the differences were calculated against the full 1000 class ImageNet-1k validation set. For both the Adversarial and Rendition sets, the differences were calculated against 'clean' runs on the ImageNet-1k validation set with the same 200 classes used in each test set respectively. ### ImageNet Validation - [`results-imagenet.csv`](results-imagenet.csv) The standard 50,000 image ImageNet-1k validation set. Model selection during training utilizes this validation set, so it is not a true test set. Question: Does anyone have the official ImageNet-1k test set classification labels now that challenges are done? * Source: http://image-net.org/challenges/LSVRC/2012/index * Paper: "ImageNet Large Scale Visual Recognition Challenge" - https://arxiv.org/abs/1409.0575 ### ImageNet-"Real Labels" - [`results-imagenet-real.csv`](results-imagenet-real.csv) The usual ImageNet-1k validation set with a fresh new set of labels intended to improve on mistakes in the original annotation process. * Source: https://github.com/google-research/reassessed-imagenet * Paper: "Are we done with ImageNet?" - https://arxiv.org/abs/2006.07159 ### ImageNetV2 Matched Frequency - [`results-imagenetv2-matched-frequency.csv`](results-imagenetv2-matched-frequency.csv) An ImageNet test set of 10,000 images sampled from new images roughly 10 years after the original. Care was taken to replicate the original ImageNet curation/sampling process. * Source: https://github.com/modestyachts/ImageNetV2 * Paper: "Do ImageNet Classifiers Generalize to ImageNet?" - https://arxiv.org/abs/1902.10811 ### ImageNet-Sketch - [`results-sketch.csv`](results-sketch.csv) 50,000 non photographic (or photos of such) images (sketches, doodles, mostly monochromatic) covering all 1000 ImageNet classes. * Source: https://github.com/HaohanWang/ImageNet-Sketch * Paper: "Learning Robust Global Representations by Penalizing Local Predictive Power" - https://arxiv.org/abs/1905.13549 ### ImageNet-Adversarial - [`results-imagenet-a.csv`](results-imagenet-a.csv) A collection of 7500 images covering 200 of the 1000 ImageNet classes. Images are naturally occurring adversarial examples that confuse typical ImageNet classifiers. This is a challenging dataset, your typical ResNet-50 will score 0% top-1. For clean validation with same 200 classes, see [`results-imagenet-a-clean.csv`](results-imagenet-a-clean.csv) * Source: https://github.com/hendrycks/natural-adv-examples * Paper: "Natural Adversarial Examples" - https://arxiv.org/abs/1907.07174 ### ImageNet-Rendition - [`results-imagenet-r.csv`](results-imagenet-r.csv) Renditions of 200 ImageNet classes resulting in 30,000 images for testing robustness. For clean validation with same 200 classes, see [`results-imagenet-r-clean.csv`](results-imagenet-r-clean.csv) * Source: https://github.com/hendrycks/imagenet-r * Paper: "The Many Faces of Robustness" - https://arxiv.org/abs/2006.16241 ### TODO * Explore adding a reduced version of ImageNet-C (Corruptions) and ImageNet-P (Perturbations) from https://github.com/hendrycks/robustness. The originals are huge and image size specific. ## Benchmark CSV files with a `model_benchmark` prefix include benchmark numbers for models on various accelerators with different precision. Currently only run on RTX 3090 w/ AMP for inference, I intend to add more in the future. ## Metadata CSV files with `model_metadata` prefix contain extra information about the source training, currently the pretraining dataset and technique (ie distillation, SSL, WSL, etc). Eventually I'd like to have metadata about augmentation, regularization, etc. but that will be a challenge to source consistently.
0