repo_id
stringlengths
15
89
file_path
stringlengths
27
180
content
stringlengths
1
2.23M
__index_level_0__
int64
0
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenetv2-matched-frequency.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation,top1_diff,top5_diff,rank_diff eva_giant_patch14_336.clip_ft_in1k,82.200,17.800,96.290,3.710,"1,013.01",336,1.000,bicubic,-7.266,-2.536,+6 eva02_large_patch14_448.mim_in22k_ft_in1k,82.130,17.870,96.260,3.740,305.08,448,1.000,bicubic,-7.492,-2.690,+2 eva02_large_patch14_448.mim_m38m_ft_in1k,82.130,17.870,96.160,3.840,305.08,448,1.000,bicubic,-7.444,-2.764,+2 eva_giant_patch14_560.m30m_ft_in22k_in1k,82.040,17.960,96.440,3.560,"1,014.45",560,1.000,bicubic,-7.746,-2.552,-1 eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,81.900,18.100,96.150,3.850,305.08,448,1.000,bicubic,-8.070,-2.862,-3 eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,81.890,18.110,96.370,3.630,305.08,448,1.000,bicubic,-8.162,-2.678,-5 eva_giant_patch14_336.m30m_ft_in22k_in1k,81.820,18.180,96.290,3.710,"1,013.01",336,1.000,bicubic,-7.746,-2.662,-1 eva_giant_patch14_224.clip_ft_in1k,81.750,18.250,96.080,3.920,"1,012.56",224,0.900,bicubic,-7.130,-2.600,+1 eva_large_patch14_336.in22k_ft_in1k,81.190,18.810,95.880,4.120,304.53,336,1.000,bicubic,-7.480,-2.842,+4 eva_large_patch14_336.in22k_ft_in22k_in1k,80.930,19.070,96.010,3.990,304.53,336,1.000,bicubic,-8.276,-2.844,-2 vit_large_patch14_clip_336.openai_ft_in12k_in1k,80.520,19.480,95.500,4.500,304.53,336,1.000,bicubic,-7.748,-3.026,+13 regnety_1280.swag_ft_in1k,80.480,19.520,96.180,3.820,644.81,384,1.000,bicubic,-7.750,-2.506,+16 tf_efficientnet_l2.ns_jft_in1k_475,80.470,19.530,95.730,4.270,480.31,475,0.936,bicubic,-7.764,-2.816,+14 convnext_xxlarge.clip_laion2b_soup_ft_in1k,80.450,19.550,95.780,4.220,846.47,256,1.000,bicubic,-8.154,-2.928,0 beitv2_large_patch16_224.in1k_ft_in22k_in1k,80.270,19.730,95.150,4.850,304.43,224,0.950,bicubic,-8.124,-3.448,+5 tf_efficientnet_l2.ns_jft_in1k,80.250,19.750,95.860,4.140,480.31,800,0.960,bicubic,-8.102,-2.788,+5 eva_large_patch14_196.in22k_ft_in22k_in1k,80.170,19.830,95.380,4.620,304.14,196,1.000,bicubic,-8.404,-3.278,0 maxvit_base_tf_512.in21k_ft_in1k,80.150,19.850,95.480,4.520,119.88,512,1.000,bicubic,-8.070,-3.050,+11 eva_large_patch14_196.in22k_ft_in1k,80.150,19.850,95.450,4.550,304.14,196,1.000,bicubic,-7.782,-3.048,+19 maxvit_xlarge_tf_512.in21k_ft_in1k,80.100,19.900,95.480,4.520,475.77,512,1.000,bicubic,-8.438,-3.164,-2 convnextv2_huge.fcmae_ft_in22k_in1k_512,79.990,20.010,95.900,4.100,660.29,512,1.000,bicubic,-8.868,-2.848,-11 maxvit_large_tf_512.in21k_ft_in1k,79.980,20.020,95.160,4.840,212.33,512,1.000,bicubic,-8.244,-3.438,+7 beit_large_patch16_512.in22k_ft_in22k_in1k,79.950,20.050,95.350,4.650,305.67,512,1.000,bicubic,-8.646,-3.306,-8 convnextv2_huge.fcmae_ft_in22k_in1k_384,79.940,20.060,95.690,4.310,660.29,384,1.000,bicubic,-8.730,-3.048,-12 maxvit_xlarge_tf_384.in21k_ft_in1k,79.710,20.290,95.160,4.840,475.32,384,1.000,bicubic,-8.604,-3.384,-3 vit_large_patch14_clip_224.openai_ft_in1k,79.620,20.380,95.000,5.000,304.20,224,1.000,bicubic,-8.234,-3.426,+15 maxvit_large_tf_384.in21k_ft_in1k,79.590,20.410,95.070,4.930,212.03,384,1.000,bicubic,-8.396,-3.498,+8 eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,79.520,20.480,95.200,4.800,87.12,448,1.000,bicubic,-9.170,-3.524,-17 vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,79.520,20.480,95.000,5.000,632.46,336,1.000,bicubic,-9.072,-3.662,-13 beit_large_patch16_384.in22k_ft_in22k_in1k,79.500,20.500,95.180,4.820,305.00,384,1.000,bicubic,-8.902,-3.428,-11 vit_large_patch14_clip_224.openai_ft_in12k_in1k,79.400,20.600,95.070,4.930,304.20,224,1.000,bicubic,-8.774,-3.476,+2 vit_huge_patch14_clip_224.laion2b_ft_in1k,79.370,20.630,94.920,5.080,632.05,224,1.000,bicubic,-8.218,-3.298,+16 maxvit_base_tf_384.in21k_ft_in1k,79.340,20.660,95.080,4.920,119.65,384,1.000,bicubic,-8.582,-3.464,+5 vit_large_patch14_clip_336.laion2b_ft_in1k,79.240,20.760,95.000,5.000,304.53,336,1.000,bicubic,-8.616,-3.368,+6 vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,79.200,20.800,95.120,4.880,632.05,224,1.000,bicubic,-9.056,-3.432,-10 deit3_huge_patch14_224.fb_in22k_ft_in1k,79.190,20.810,94.870,5.130,632.13,224,1.000,bicubic,-7.996,-3.390,+27 eva02_base_patch14_448.mim_in22k_ft_in1k,79.150,20.850,95.110,4.890,87.12,448,1.000,bicubic,-9.102,-3.454,-11 deit3_large_patch16_384.fb_in22k_ft_in1k,79.080,20.920,94.870,5.130,304.76,384,1.000,bicubic,-8.640,-3.642,+7 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,79.040,20.960,95.010,4.990,200.13,384,1.000,bicubic,-9.266,-3.572,-17 caformer_b36.sail_in22k_ft_in1k_384,79.040,20.960,94.920,5.080,98.75,384,1.000,bicubic,-9.018,-3.662,-5 vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,78.980,21.020,94.890,5.110,304.53,336,1.000,bicubic,-9.200,-3.682,-9 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,78.900,21.100,94.580,5.420,116.14,384,1.000,bicubic,-8.928,-3.792,+1 beit_large_patch16_224.in22k_ft_in22k_in1k,78.830,21.170,94.610,5.390,304.43,224,0.900,bicubic,-8.648,-3.694,+7 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,78.750,21.250,94.950,5.050,200.13,384,1.000,bicubic,-9.098,-3.496,-2 beitv2_large_patch16_224.in1k_ft_in1k,78.730,21.270,94.230,5.770,304.43,224,0.950,bicubic,-8.682,-4.004,+11 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,78.650,21.350,94.660,5.340,200.13,320,1.000,bicubic,-9.308,-3.816,-10 deit3_large_patch16_224.fb_in22k_ft_in1k,78.630,21.370,94.720,5.280,304.37,224,1.000,bicubic,-8.352,-3.516,+26 convnextv2_large.fcmae_ft_in22k_in1k_384,78.570,21.430,94.840,5.160,197.96,384,1.000,bicubic,-9.628,-3.688,-17 tf_efficientnet_b7.ns_jft_in1k,78.530,21.470,94.370,5.630,66.35,600,0.949,bicubic,-8.310,-3.722,+30 vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,78.490,21.510,94.660,5.340,304.20,224,1.000,bicubic,-9.404,-3.748,-11 vit_large_patch14_clip_224.laion2b_ft_in1k,78.440,21.560,94.580,5.420,304.20,224,1.000,bicubic,-8.846,-3.664,+10 regnety_320.swag_ft_in1k,78.380,21.620,95.200,4.800,145.05,384,1.000,bicubic,-8.454,-3.162,+28 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,78.240,21.760,94.350,5.650,73.88,384,1.000,bicubic,-9.142,-3.962,+4 caformer_m36.sail_in22k_ft_in1k_384,78.170,21.830,94.180,5.820,56.20,384,1.000,bicubic,-9.276,-4.128,0 caformer_b36.sail_in22k_ft_in1k,78.110,21.890,94.400,5.600,98.75,224,1.000,bicubic,-9.310,-3.928,0 convnextv2_huge.fcmae_ft_in1k,78.060,21.940,94.060,5.940,660.29,288,1.000,bicubic,-8.520,-3.912,+36 convformer_b36.sail_in22k_ft_in1k_384,78.040,21.960,94.170,5.830,99.88,384,1.000,bicubic,-9.562,-4.264,-10 convnext_xlarge.fb_in22k_ft_in1k_384,77.990,22.010,94.480,5.520,350.20,384,1.000,bicubic,-9.762,-4.076,-14 volo_d5_512.sail_in1k,77.970,22.030,94.160,5.840,296.09,512,1.150,bicubic,-9.088,-3.810,+9 vit_large_patch16_384.augreg_in21k_ft_in1k,77.940,22.060,94.460,5.540,304.72,384,1.000,bicubic,-9.144,-3.842,+6 convnext_large_mlp.clip_laion2b_augreg_ft_in1k,77.940,22.060,94.390,5.610,200.13,256,1.000,bicubic,-9.396,-3.828,-2 convnextv2_large.fcmae_ft_in22k_in1k,77.900,22.100,94.390,5.610,197.96,288,1.000,bicubic,-9.584,-3.966,-13 deit3_base_patch16_384.fb_in22k_ft_in1k,77.870,22.130,94.030,5.970,86.88,384,1.000,bicubic,-8.870,-4.086,+23 vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,77.770,22.230,94.160,5.840,86.86,384,1.000,bicubic,-9.436,-3.874,-2 volo_d5_448.sail_in1k,77.750,22.250,94.050,5.950,295.91,448,1.150,bicubic,-9.202,-3.888,+10 volo_d4_448.sail_in1k,77.740,22.260,93.940,6.060,193.41,448,1.150,bicubic,-9.052,-3.944,+18 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,77.710,22.290,94.330,5.670,116.09,384,1.000,bicubic,-9.754,-4.044,-15 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,77.690,22.310,94.070,5.930,116.14,224,0.950,bicubic,-9.204,-3.944,+8 tf_efficientnetv2_xl.in21k_ft_in1k,77.630,22.370,93.960,6.040,208.12,512,1.000,bicubic,-9.118,-4.054,+16 tf_efficientnetv2_l.in21k_ft_in1k,77.580,22.420,94.280,5.720,118.52,480,1.000,bicubic,-9.222,-3.856,+11 caformer_s36.sail_in22k_ft_in1k_384,77.540,22.460,94.070,5.930,39.30,384,1.000,bicubic,-9.318,-4.142,+7 convnextv2_base.fcmae_ft_in22k_in1k_384,77.490,22.510,94.410,5.590,88.72,384,1.000,bicubic,-10.154,-4.006,-27 caformer_b36.sail_in1k_384,77.490,22.510,93.530,6.470,98.75,384,1.000,bicubic,-8.918,-4.284,+32 convnext_base.clip_laiona_augreg_ft_in1k_384,77.480,22.520,93.960,6.040,88.59,384,1.000,bicubic,-9.022,-4.008,+22 maxvit_base_tf_512.in1k,77.440,22.560,93.970,6.030,119.88,512,1.000,bicubic,-9.162,-3.948,+14 caformer_m36.sail_in22k_ft_in1k,77.440,22.560,93.590,6.410,56.20,224,1.000,bicubic,-9.154,-4.434,+16 convnext_large.fb_in22k_ft_in1k_384,77.420,22.580,94.200,5.800,197.77,384,1.000,bicubic,-10.052,-4.186,-26 seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,77.420,22.580,93.990,6.010,149.39,384,1.000,bicubic,-9.868,-4.344,-18 regnety_1280.swag_lc_in1k,77.380,22.620,94.500,5.500,644.81,224,0.965,bicubic,-8.602,-3.350,+56 swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,77.340,22.660,93.910,6.090,196.74,384,1.000,bicubic,-10.124,-4.340,-27 vit_base_patch16_clip_384.laion2b_ft_in1k,77.320,22.680,93.860,6.140,86.86,384,1.000,bicubic,-9.298,-4.148,+8 maxvit_large_tf_512.in1k,77.300,22.700,93.790,6.210,212.33,512,1.000,bicubic,-9.226,-4.090,+12 convnextv2_base.fcmae_ft_in22k_in1k,77.290,22.710,94.110,5.890,88.72,288,1.000,bicubic,-9.708,-4.058,-11 seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,77.290,22.710,94.050,5.950,93.59,320,1.000,bicubic,-9.434,-4.126,+3 tf_efficientnet_b6.ns_jft_in1k,77.290,22.710,93.890,6.110,43.04,528,0.942,bicubic,-9.168,-4.000,+17 convformer_b36.sail_in22k_ft_in1k,77.270,22.730,93.970,6.030,99.88,224,1.000,bicubic,-9.728,-4.202,-15 swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,77.240,22.760,94.250,5.750,87.92,384,1.000,bicubic,-9.856,-3.984,-21 regnety_160.swag_ft_in1k,77.230,22.770,94.600,5.400,83.59,384,1.000,bicubic,-8.790,-3.452,+41 convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,77.180,22.820,94.170,5.830,88.59,384,1.000,bicubic,-9.954,-4.052,-25 caformer_m36.sail_in1k_384,77.160,22.840,93.630,6.370,56.20,384,1.000,bicubic,-9.006,-4.190,+28 maxvit_large_tf_384.in1k,77.130,22.870,93.460,6.540,212.03,384,1.000,bicubic,-9.100,-4.228,+21 beitv2_base_patch16_224.in1k_ft_in22k_in1k,77.120,22.880,94.020,5.980,86.53,224,0.900,bicubic,-9.354,-4.032,+8 volo_d3_448.sail_in1k,77.090,22.910,94.110,5.890,86.63,448,1.000,bicubic,-9.412,-3.600,+4 swin_large_patch4_window12_384.ms_in22k_ft_in1k,77.070,22.930,93.760,6.240,196.74,384,1.000,bicubic,-10.062,-4.474,-29 vit_large_r50_s32_384.augreg_in21k_ft_in1k,77.070,22.930,93.710,6.290,329.09,384,1.000,bicubic,-9.112,-4.212,+21 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,77.010,22.990,93.320,6.680,73.88,224,0.950,bicubic,-9.494,-4.574,-1 swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,76.970,23.030,93.520,6.480,196.74,256,0.900,bicubic,-9.982,-4.586,-23 vit_base_patch16_clip_384.openai_ft_in1k,76.960,23.040,93.750,6.250,86.86,384,1.000,bicubic,-9.246,-4.126,+15 convformer_m36.sail_in22k_ft_in1k_384,76.960,23.040,93.690,6.310,57.05,384,1.000,bicubic,-9.932,-4.426,-21 beit_base_patch16_384.in22k_ft_in22k_in1k,76.930,23.070,93.910,6.090,86.74,384,1.000,bicubic,-9.870,-4.226,-18 seresnextaa101d_32x8d.sw_in12k_ft_in1k,76.900,23.100,93.850,6.150,93.59,288,1.000,bicubic,-9.584,-4.180,-2 tf_efficientnetv2_m.in21k_ft_in1k,76.890,23.110,93.640,6.360,54.14,480,1.000,bicubic,-9.102,-4.304,+30 vit_base_patch16_clip_384.openai_ft_in12k_in1k,76.870,23.130,93.780,6.220,86.86,384,0.950,bicubic,-10.156,-4.402,-34 cait_m48_448.fb_dist_in1k,76.870,23.130,93.380,6.620,356.46,448,1.000,bicubic,-9.622,-4.372,-5 tf_efficientnet_b5.ns_jft_in1k,76.830,23.170,93.580,6.420,30.39,456,0.934,bicubic,-9.258,-4.176,+19 resnext101_32x32d.fb_wsl_ig1b_ft_in1k,76.810,23.190,93.210,6.790,468.53,224,0.875,bilinear,-8.288,-4.228,+92 maxvit_base_tf_384.in1k,76.790,23.210,93.440,6.560,119.65,384,1.000,bicubic,-9.512,-4.358,+2 convnext_large.fb_in22k_ft_in1k,76.750,23.250,93.710,6.290,197.77,288,1.000,bicubic,-10.276,-4.494,-39 tiny_vit_21m_512.dist_in22k_ft_in1k,76.710,23.290,93.470,6.530,21.27,512,1.000,bicubic,-9.748,-4.414,-8 deit3_large_patch16_384.fb_in1k,76.690,23.310,93.350,6.650,304.76,384,1.000,bicubic,-9.122,-4.248,+32 convnextv2_large.fcmae_ft_in1k,76.660,23.340,93.570,6.430,197.96,288,1.000,bicubic,-9.458,-4.252,+10 convnext_base.fb_in22k_ft_in1k_384,76.650,23.350,93.700,6.300,88.59,384,1.000,bicubic,-10.146,-4.564,-29 convnext_xlarge.fb_in22k_ft_in1k,76.630,23.370,93.860,6.140,350.20,288,1.000,bicubic,-10.700,-4.468,-55 beitv2_base_patch16_224.in1k_ft_in1k,76.630,23.370,92.930,7.070,86.53,224,0.900,bicubic,-8.964,-4.576,+43 coatnet_2_rw_224.sw_in12k_ft_in1k,76.620,23.380,93.380,6.620,73.87,224,0.950,bicubic,-9.944,-4.516,-22 xcit_large_24_p8_384.fb_dist_in1k,76.620,23.380,93.090,6.910,188.93,384,1.000,bicubic,-9.376,-4.600,+14 regnety_160.sw_in12k_ft_in1k,76.610,23.390,93.560,6.440,83.59,288,1.000,bicubic,-9.376,-4.274,+17 vit_base_patch8_224.augreg2_in21k_ft_in1k,76.590,23.410,93.340,6.660,86.58,224,0.900,bicubic,-9.628,-4.492,-5 caformer_s36.sail_in22k_ft_in1k,76.580,23.420,93.620,6.380,39.30,224,1.000,bicubic,-9.210,-4.206,+25 caformer_s36.sail_in1k_384,76.550,23.450,93.450,6.550,39.30,384,1.000,bicubic,-9.192,-4.222,+28 volo_d5_224.sail_in1k,76.550,23.450,93.330,6.670,295.46,224,0.960,bicubic,-9.520,-4.246,+5 deit3_base_patch16_224.fb_in22k_ft_in1k,76.530,23.470,93.570,6.430,86.59,224,1.000,bicubic,-9.170,-4.176,+29 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,76.530,23.470,93.370,6.630,116.09,224,0.950,bicubic,-10.112,-4.650,-35 dm_nfnet_f6.dm_in1k,76.510,23.490,93.340,6.660,438.36,576,0.956,bicubic,-9.852,-4.556,-17 maxvit_small_tf_512.in1k,76.500,23.500,93.360,6.640,69.13,512,1.000,bicubic,-9.584,-4.404,0 vit_base_patch16_384.augreg_in21k_ft_in1k,76.490,23.510,93.760,6.240,86.86,384,1.000,bicubic,-9.504,-4.242,+5 tiny_vit_21m_384.dist_in22k_ft_in1k,76.470,23.530,93.130,6.870,21.23,384,1.000,bicubic,-9.638,-4.580,-5 swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,76.450,23.550,93.700,6.300,87.92,256,0.900,bicubic,-9.818,-4.182,-17 convformer_m36.sail_in1k_384,76.370,23.630,93.100,6.900,57.05,384,1.000,bicubic,-9.210,-4.442,+28 convformer_s36.sail_in22k_ft_in1k_384,76.360,23.640,93.530,6.470,40.01,384,1.000,bicubic,-10.018,-4.454,-26 convformer_m36.sail_in22k_ft_in1k,76.360,23.640,93.450,6.550,57.05,224,1.000,bicubic,-9.788,-4.400,-10 convnext_small.in12k_ft_in1k_384,76.340,23.660,93.420,6.580,50.22,384,1.000,bicubic,-9.842,-4.502,-17 cait_m36_384.fb_dist_in1k,76.330,23.670,93.060,6.940,271.22,384,1.000,bicubic,-9.728,-4.670,-6 swin_large_patch4_window7_224.ms_in22k_ft_in1k,76.310,23.690,93.390,6.610,196.53,224,0.900,bicubic,-10.002,-4.512,-26 vit_large_patch16_224.augreg_in21k_ft_in1k,76.300,23.700,93.610,6.390,304.33,224,0.900,bicubic,-9.536,-4.054,+4 convnext_base.clip_laion2b_augreg_ft_in12k_in1k,76.290,23.710,93.810,6.190,88.59,256,1.000,bicubic,-10.080,-4.174,-30 swin_base_patch4_window12_384.ms_in22k_ft_in1k,76.250,23.750,93.300,6.700,87.90,384,1.000,bicubic,-10.188,-4.766,-34 cait_s36_384.fb_dist_in1k,76.220,23.780,92.960,7.040,68.37,384,1.000,bicubic,-9.234,-4.518,+27 regnety_160.lion_in12k_ft_in1k,76.190,23.810,93.670,6.330,83.59,288,1.000,bicubic,-9.798,-4.164,-6 dm_nfnet_f4.dm_in1k,76.150,23.850,93.050,6.950,316.07,512,0.951,bicubic,-9.686,-4.768,0 xcit_medium_24_p8_384.fb_dist_in1k,76.130,23.870,92.980,7.020,84.32,384,1.000,bicubic,-9.686,-4.612,0 maxvit_small_tf_384.in1k,76.120,23.880,92.610,7.390,69.02,384,1.000,bicubic,-9.420,-4.852,+18 flexivit_large.1200ep_in1k,76.100,23.900,93.010,6.990,304.36,240,0.950,bicubic,-9.544,-4.530,+12 volo_d2_384.sail_in1k,76.090,23.910,93.130,6.870,58.87,384,1.000,bicubic,-9.952,-4.444,-17 tf_efficientnet_b8.ap_in1k,76.090,23.910,92.730,7.270,87.41,672,0.954,bicubic,-9.274,-4.562,+32 tf_efficientnet_b7.ap_in1k,76.080,23.920,92.970,7.030,66.35,600,0.949,bicubic,-9.044,-4.282,+48 convformer_b36.sail_in1k_384,76.070,23.930,92.720,7.280,99.88,384,1.000,bicubic,-9.670,-4.804,+2 maxvit_tiny_tf_512.in1k,76.060,23.940,93.160,6.840,31.05,512,1.000,bicubic,-9.604,-4.424,+5 flexivit_large.600ep_in1k,76.050,23.950,92.960,7.040,304.36,240,0.950,bicubic,-9.490,-4.528,+10 volo_d4_224.sail_in1k,76.020,23.980,92.980,7.020,192.96,224,0.960,bicubic,-9.852,-4.492,-12 tf_efficientnetv2_l.in1k,76.000,24.000,93.070,6.930,118.52,480,1.000,bicubic,-9.664,-4.404,+3 vit_base_patch8_224.augreg_in21k_ft_in1k,75.970,24.030,93.370,6.630,86.58,224,0.900,bicubic,-9.828,-4.420,-9 xcit_large_24_p8_224.fb_dist_in1k,75.970,24.030,92.710,7.290,188.93,224,1.000,bicubic,-9.432,-4.692,+18 flexivit_large.300ep_in1k,75.940,24.060,92.650,7.350,304.36,240,0.950,bicubic,-9.348,-4.750,+25 convnext_base.fb_in22k_ft_in1k,75.930,24.070,93.580,6.420,88.59,288,1.000,bicubic,-10.344,-4.512,-45 convnext_base.clip_laion2b_augreg_ft_in1k,75.840,24.160,93.210,6.790,88.59,256,1.000,bicubic,-10.318,-4.470,-37 xcit_large_24_p16_384.fb_dist_in1k,75.820,24.180,92.740,7.260,189.10,384,1.000,bicubic,-9.934,-4.798,-10 dm_nfnet_f3.dm_in1k,75.790,24.210,92.910,7.090,254.92,416,0.940,bicubic,-9.896,-4.660,-6 eva02_small_patch14_336.mim_in22k_ft_in1k,75.790,24.210,92.820,7.180,22.13,336,1.000,bicubic,-9.928,-4.814,-9 convformer_s36.sail_in1k_384,75.780,24.220,93.090,6.910,40.01,384,1.000,bicubic,-9.598,-4.386,+13 deit3_huge_patch14_224.fb_in1k,75.780,24.220,92.740,7.260,632.13,224,0.900,bicubic,-9.444,-4.620,+24 xcit_small_24_p8_384.fb_dist_in1k,75.770,24.230,92.970,7.030,47.63,384,1.000,bicubic,-9.784,-4.600,-4 caformer_b36.sail_in1k,75.740,24.260,92.690,7.310,98.75,224,1.000,bicubic,-9.764,-4.620,-1 resnext101_32x16d.fb_wsl_ig1b_ft_in1k,75.720,24.280,92.910,7.090,194.03,224,0.875,bilinear,-8.446,-4.288,+119 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,75.710,24.290,92.770,7.230,86.57,224,0.950,bicubic,-10.460,-4.986,-48 tf_efficientnet_b4.ns_jft_in1k,75.690,24.310,93.050,6.950,19.34,380,0.922,bicubic,-9.470,-4.418,+26 caformer_s18.sail_in22k_ft_in1k_384,75.680,24.320,93.510,6.490,26.34,384,1.000,bicubic,-9.734,-4.192,+1 efficientnet_b5.sw_in12k_ft_in1k,75.680,24.320,93.040,6.960,30.39,448,1.000,bicubic,-10.216,-4.696,-31 hrnet_w48_ssld.paddle_in1k,75.670,24.330,92.830,7.170,77.47,288,1.000,bilinear,-8.810,-4.404,+79 vit_medium_patch16_gap_384.sw_in12k_ft_in1k,75.660,24.340,92.980,7.020,39.03,384,0.950,bicubic,-9.870,-4.656,-9 volo_d1_384.sail_in1k,75.650,24.350,93.060,6.940,26.78,384,1.000,bicubic,-9.594,-4.134,+11 volo_d3_224.sail_in1k,75.620,24.380,92.980,7.020,86.33,224,0.960,bicubic,-9.794,-4.296,-3 convnextv2_base.fcmae_ft_in1k,75.620,24.380,92.850,7.150,88.72,288,1.000,bicubic,-9.854,-4.534,-9 dm_nfnet_f5.dm_in1k,75.610,24.390,92.780,7.220,377.21,544,0.954,bicubic,-10.490,-4.908,-51 caformer_m36.sail_in1k,75.600,24.400,92.400,7.600,56.20,224,1.000,bicubic,-9.632,-4.800,+9 vit_base_patch16_clip_224.openai_ft_in1k,75.590,24.410,92.960,7.040,86.57,224,0.900,bicubic,-9.702,-4.476,+2 vit_base_r50_s16_384.orig_in21k_ft_in1k,75.570,24.430,92.790,7.210,98.95,384,1.000,bicubic,-9.406,-4.500,+33 deit_base_distilled_patch16_384.fb_in1k,75.550,24.450,92.500,7.500,87.63,384,1.000,bicubic,-9.874,-4.906,-11 inception_next_base.sail_in1k_384,75.530,24.470,92.560,7.440,86.67,384,1.000,bicubic,-9.672,-4.854,+10 regnetz_e8.ra3_in1k,75.510,24.490,92.690,7.310,57.70,320,1.000,bicubic,-9.524,-4.582,+26 cait_s24_384.fb_dist_in1k,75.500,24.500,92.610,7.390,47.06,384,1.000,bicubic,-9.548,-4.736,+24 convformer_s36.sail_in22k_ft_in1k,75.480,24.520,93.190,6.810,40.01,224,1.000,bicubic,-9.934,-4.378,-13 xcit_medium_24_p8_224.fb_dist_in1k,75.470,24.530,92.890,7.110,84.32,224,1.000,bicubic,-9.604,-4.360,+19 resnext101_32x8d.fb_swsl_ig1b_ft_in1k,75.470,24.530,92.730,7.270,88.79,224,0.875,bilinear,-8.832,-4.446,+86 vit_base_patch16_clip_224.openai_ft_in12k_in1k,75.460,24.540,92.750,7.250,86.57,224,0.950,bicubic,-10.482,-4.978,-49 regnety_2560.seer_ft_in1k,75.440,24.560,92.830,7.170,"1,282.60",384,1.000,bicubic,-9.710,-4.608,+7 vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,75.420,24.580,92.710,7.290,88.34,448,1.000,bicubic,-10.360,-4.928,-42 regnety_320.swag_lc_in1k,75.400,24.600,93.680,6.320,145.05,224,0.965,bicubic,-9.148,-3.762,+50 beit_base_patch16_224.in22k_ft_in22k_in1k,75.390,24.610,93.020,6.980,86.53,224,0.900,bicubic,-9.822,-4.638,-2 tf_efficientnetv2_m.in1k,75.380,24.620,92.760,7.240,54.14,480,1.000,bicubic,-9.824,-4.604,-3 tf_efficientnet_b6.ap_in1k,75.380,24.620,92.440,7.560,43.04,528,0.942,bicubic,-9.408,-4.698,+34 vit_base_patch16_224.augreg2_in21k_ft_in1k,75.360,24.640,93.230,6.770,86.57,224,0.900,bicubic,-9.734,-4.300,+7 regnety_120.sw_in12k_ft_in1k,75.330,24.670,92.970,7.030,51.82,288,1.000,bicubic,-10.070,-4.612,-21 volo_d2_224.sail_in1k,75.310,24.690,92.520,7.480,58.68,224,0.960,bicubic,-9.892,-4.670,-4 mvitv2_large.fb_in1k,75.270,24.730,92.360,7.640,217.99,224,0.900,bicubic,-9.974,-4.854,-13 coat_lite_medium_384.in1k,75.270,24.730,92.230,7.770,44.57,384,1.000,bicubic,-9.608,-5.142,+22 dm_nfnet_f2.dm_in1k,75.260,24.740,92.450,7.550,193.78,352,0.920,bicubic,-9.932,-4.896,-6 caformer_s18.sail_in1k_384,75.210,24.790,92.700,7.300,26.34,384,1.000,bicubic,-9.816,-4.658,+9 convnext_small.fb_in22k_ft_in1k_384,75.160,24.840,93.060,6.940,50.22,384,1.000,bicubic,-10.618,-4.830,-53 efficientnetv2_rw_m.agc_in1k,75.150,24.850,92.570,7.430,53.24,416,1.000,bicubic,-9.660,-4.582,+23 ecaresnet269d.ra2_in1k,75.130,24.870,92.830,7.170,102.09,352,1.000,bicubic,-9.838,-4.392,+10 vit_base_patch16_clip_224.laion2b_ft_in1k,75.120,24.880,92.700,7.300,86.57,224,1.000,bicubic,-10.350,-4.876,-39 deit3_large_patch16_224.fb_in1k,75.120,24.880,92.280,7.720,304.37,224,0.900,bicubic,-9.654,-4.756,+23 deit3_small_patch16_384.fb_in22k_ft_in1k,75.090,24.910,92.810,7.190,22.21,384,1.000,bicubic,-9.734,-4.676,+17 vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,75.090,24.910,92.580,7.420,88.30,384,1.000,bicubic,-10.276,-5.080,-30 xcit_medium_24_p16_384.fb_dist_in1k,75.090,24.910,92.440,7.560,84.40,384,1.000,bicubic,-10.334,-4.890,-40 tiny_vit_21m_224.dist_in22k_ft_in1k,75.070,24.930,92.590,7.410,21.20,224,0.950,bicubic,-10.016,-4.776,-6 maxvit_tiny_tf_384.in1k,75.020,24.980,92.450,7.550,30.98,384,1.000,bicubic,-10.080,-4.928,-11 convformer_b36.sail_in1k,74.980,25.020,91.600,8.400,99.88,224,1.000,bicubic,-9.838,-5.346,+13 xcit_small_24_p8_224.fb_dist_in1k,74.970,25.030,92.320,7.680,47.63,224,1.000,bicubic,-9.898,-4.870,+8 convnext_small.in12k_ft_in1k,74.960,25.040,92.520,7.480,50.22,288,1.000,bicubic,-10.370,-5.026,-34 tf_efficientnet_b8.ra_in1k,74.920,25.080,92.330,7.670,87.41,672,0.954,bicubic,-10.448,-5.064,-38 xcit_small_12_p8_384.fb_dist_in1k,74.850,25.150,92.450,7.550,26.21,384,1.000,bicubic,-10.228,-4.832,-11 eca_nfnet_l2.ra3_in1k,74.820,25.180,92.650,7.350,56.72,384,1.000,bicubic,-9.880,-4.616,+15 deit3_base_patch16_384.fb_in1k,74.800,25.200,92.240,7.760,86.88,384,1.000,bicubic,-10.274,-5.034,-11 convnext_tiny.in12k_ft_in1k_384,74.730,25.270,92.810,7.190,28.59,384,1.000,bicubic,-10.392,-4.796,-21 tf_efficientnet_b7.ra_in1k,74.730,25.270,92.220,7.780,66.35,600,0.949,bicubic,-10.202,-4.988,-4 deit3_medium_patch16_224.fb_in22k_ft_in1k,74.690,25.310,92.470,7.530,38.85,224,1.000,bicubic,-9.860,-4.718,+19 convnext_large.fb_in1k,74.650,25.350,91.970,8.030,197.77,288,1.000,bicubic,-10.196,-5.244,+1 xcit_large_24_p16_224.fb_dist_in1k,74.650,25.350,91.860,8.140,189.10,224,1.000,bicubic,-10.266,-5.268,-5 convformer_s18.sail_in1k_384,74.640,25.360,92.480,7.520,26.77,384,1.000,bicubic,-9.762,-4.632,+42 caformer_s36.sail_in1k,74.640,25.360,92.080,7.920,39.30,224,1.000,bicubic,-9.866,-4.916,+23 xcit_small_24_p16_384.fb_dist_in1k,74.590,25.410,92.460,7.540,47.67,384,1.000,bicubic,-10.500,-4.852,-24 tf_efficientnet_b5.ap_in1k,74.590,25.410,91.990,8.010,30.39,456,0.934,bicubic,-9.668,-4.984,+50 maxvit_large_tf_224.in1k,74.580,25.420,91.700,8.300,211.79,224,0.950,bicubic,-10.362,-5.270,-13 vit_medium_patch16_gap_256.sw_in12k_ft_in1k,74.570,25.430,91.960,8.040,38.86,256,0.950,bicubic,-9.876,-5.250,+26 swin_base_patch4_window7_224.ms_in22k_ft_in1k,74.560,25.440,92.540,7.460,87.77,224,0.900,bicubic,-10.712,-5.024,-48 dm_nfnet_f1.dm_in1k,74.560,25.440,92.170,7.830,132.63,320,0.910,bicubic,-10.142,-5.012,+1 convformer_s18.sail_in22k_ft_in1k_384,74.550,25.450,92.760,7.240,26.77,384,1.000,bicubic,-10.448,-4.810,-20 maxxvit_rmlp_small_rw_256.sw_in1k,74.520,25.480,92.000,8.000,66.01,256,0.950,bicubic,-10.104,-5.068,+2 regnetz_040.ra3_in1k,74.510,25.490,91.880,8.120,27.12,320,1.000,bicubic,-9.730,-5.052,+45 seresnet152d.ra2_in1k,74.500,25.500,92.090,7.910,66.84,320,1.000,bicubic,-9.860,-4.950,+35 convnext_small.fb_in22k_ft_in1k,74.490,25.510,92.700,7.300,50.22,288,1.000,bicubic,-10.772,-4.982,-52 davit_base.msft_in1k,74.490,25.510,91.750,8.250,87.95,224,0.950,bicubic,-10.152,-5.270,-3 fastvit_ma36.apple_dist_in1k,74.480,25.520,91.960,8.040,44.07,256,0.950,bicubic,-10.118,-5.042,0 gcvit_base.in1k,74.480,25.520,91.770,8.230,90.32,224,0.875,bicubic,-9.964,-5.312,+18 regnetz_040_h.ra3_in1k,74.460,25.540,92.250,7.750,28.94,320,1.000,bicubic,-10.032,-4.508,+8 resnest200e.in1k,74.460,25.540,91.880,8.120,70.20,320,0.909,bicubic,-9.384,-5.004,+74 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,74.460,25.540,91.640,8.360,41.72,224,0.950,bicubic,-10.450,-5.318,-21 tf_efficientnetv2_s.in21k_ft_in1k,74.440,25.560,92.500,7.500,21.46,384,1.000,bicubic,-9.846,-4.752,+30 maxvit_rmlp_small_rw_224.sw_in1k,74.400,25.600,91.390,8.610,64.90,224,0.900,bicubic,-10.092,-5.620,+6 caformer_s18.sail_in22k_ft_in1k,74.380,25.620,92.500,7.500,26.34,224,1.000,bicubic,-9.694,-4.698,+49 convformer_m36.sail_in1k,74.380,25.620,91.480,8.520,57.05,224,1.000,bicubic,-10.114,-5.386,+2 flexivit_base.1200ep_in1k,74.350,25.650,91.800,8.200,86.59,240,0.950,bicubic,-10.326,-5.194,-14 resnetrs200.tf_in1k,74.340,25.660,91.940,8.060,93.21,320,1.000,bicubic,-10.104,-4.902,+8 seresnextaa101d_32x8d.ah_in1k,74.320,25.680,91.720,8.280,93.59,288,1.000,bicubic,-10.246,-5.356,-10 maxvit_base_tf_224.in1k,74.290,25.710,91.760,8.240,119.47,224,0.950,bicubic,-10.570,-5.228,-28 regnety_160.swag_lc_in1k,74.230,25.770,92.870,7.130,83.59,224,0.965,bicubic,-9.552,-4.410,+76 convnextv2_tiny.fcmae_ft_in22k_in1k_384,74.220,25.780,92.470,7.530,28.64,384,1.000,bicubic,-10.886,-5.158,-53 mvitv2_base.fb_in1k,74.220,25.780,91.650,8.350,51.47,224,0.900,bicubic,-10.230,-5.208,+1 resnest269e.in1k,74.210,25.790,91.960,8.040,110.93,416,0.928,bicubic,-10.298,-5.030,-9 convformer_s36.sail_in1k,74.210,25.790,91.230,8.770,40.01,224,1.000,bicubic,-9.850,-5.516,+42 convnext_tiny.in12k_ft_in1k,74.200,25.800,92.690,7.310,28.59,288,1.000,bicubic,-10.250,-4.650,-3 seresnext101d_32x8d.ah_in1k,74.180,25.820,91.850,8.150,93.59,288,1.000,bicubic,-10.178,-5.070,+13 coatnet_rmlp_2_rw_224.sw_in1k,74.180,25.820,91.300,8.700,73.88,224,0.950,bicubic,-10.428,-5.440,-21 cait_xs24_384.fb_dist_in1k,74.170,25.830,91.930,8.070,26.67,384,1.000,bicubic,-9.892,-4.954,+36 efficientnetv2_rw_s.ra2_in1k,74.160,25.840,91.710,8.290,23.94,384,1.000,bicubic,-9.646,-5.022,+63 resnext101_32x4d.fb_swsl_ig1b_ft_in1k,74.130,25.870,91.990,8.010,44.18,224,0.875,bilinear,-9.096,-4.770,+126 vit_base_patch16_384.orig_in21k_ft_in1k,74.120,25.880,92.360,7.640,86.86,384,1.000,bicubic,-10.080,-4.858,+20 flexivit_base.600ep_in1k,74.120,25.880,91.750,8.250,86.59,240,0.950,bicubic,-10.404,-5.186,-19 flexivit_base.300ep_in1k,74.120,25.880,91.390,8.610,86.59,240,0.950,bicubic,-10.286,-5.494,+4 vit_large_r50_s32_224.augreg_in21k_ft_in1k,74.110,25.890,92.390,7.610,328.99,224,0.900,bicubic,-10.308,-4.782,-4 xcit_small_12_p16_384.fb_dist_in1k,74.110,25.890,92.090,7.910,26.25,384,1.000,bicubic,-10.602,-5.028,-38 eca_nfnet_l1.ra2_in1k,74.110,25.890,92.070,7.930,41.41,320,1.000,bicubic,-9.902,-4.956,+38 convnext_base.fb_in1k,74.110,25.890,91.710,8.290,88.59,288,1.000,bicubic,-10.318,-5.258,-5 volo_d1_224.sail_in1k,74.100,25.900,92.030,7.970,26.63,224,0.960,bicubic,-10.062,-4.746,+18 inception_next_base.sail_in1k,74.080,25.920,91.380,8.620,86.67,224,0.950,bicubic,-10.012,-5.416,+22 vit_base_patch32_clip_384.openai_ft_in12k_in1k,74.050,25.950,92.410,7.590,88.30,384,0.950,bicubic,-11.164,-4.994,-82 vit_base_patch16_224_miil.in21k_ft_in1k,74.040,25.960,91.700,8.300,86.54,224,0.875,bilinear,-10.226,-5.104,+3 xcit_large_24_p8_224.fb_in1k,74.040,25.960,90.890,9.110,188.93,224,1.000,bicubic,-10.354,-5.774,-4 tf_efficientnet_b7.aa_in1k,74.030,25.970,91.870,8.130,66.35,600,0.949,bicubic,-10.386,-5.038,-9 vit_base_patch16_224.augreg_in21k_ft_in1k,74.010,25.990,92.470,7.530,86.57,224,0.900,bicubic,-10.522,-4.824,-33 resnetv2_152x4_bit.goog_in21k_ft_in1k,74.010,25.990,92.350,7.650,936.53,480,1.000,bilinear,-10.906,-5.088,-58 resnext101_32x16d.fb_swsl_ig1b_ft_in1k,73.990,26.010,92.180,7.820,194.03,224,0.875,bilinear,-9.346,-4.666,+101 tf_efficientnetv2_s.in1k,73.990,26.010,91.540,8.460,21.46,384,1.000,bicubic,-9.908,-5.156,+32 swinv2_base_window16_256.ms_in1k,73.980,26.020,91.750,8.250,87.92,256,0.900,bicubic,-10.620,-5.340,-42 regnetz_d32.ra3_in1k,73.960,26.040,91.950,8.050,27.58,320,0.950,bicubic,-10.062,-4.918,+22 seresnext101_32x8d.ah_in1k,73.960,26.040,91.450,8.550,93.57,288,1.000,bicubic,-10.226,-5.424,+4 resnetv2_152x2_bit.goog_in21k_ft_in1k,73.950,26.050,92.670,7.330,236.34,448,1.000,bilinear,-10.560,-4.764,-37 crossvit_18_dagger_408.in1k,73.930,26.070,91.410,8.590,44.61,408,1.000,bicubic,-10.272,-5.408,0 rexnetr_300.sw_in12k_ft_in1k,73.920,26.080,92.210,7.790,34.81,288,1.000,bicubic,-10.626,-5.046,-43 resnetrs420.tf_in1k,73.920,26.080,91.780,8.220,191.89,416,1.000,bicubic,-11.084,-5.344,-73 xcit_small_12_p8_224.fb_dist_in1k,73.920,26.080,91.720,8.280,26.21,224,1.000,bicubic,-10.316,-5.150,-6 resmlp_big_24_224.fb_in22k_ft_in1k,73.900,26.100,91.760,8.240,129.14,224,0.875,bicubic,-10.498,-5.352,-20 pit_b_distilled_224.in1k,73.900,26.100,90.780,9.220,74.79,224,0.900,bicubic,-9.866,-5.688,+42 tf_efficientnet_b6.aa_in1k,73.890,26.110,91.750,8.250,43.04,528,0.942,bicubic,-10.222,-5.134,+2 edgenext_base.usi_in1k,73.880,26.120,91.760,8.240,18.51,320,1.000,bicubic,-10.078,-5.010,+16 regnety_1280.seer_ft_in1k,73.860,26.140,91.900,8.100,644.81,384,1.000,bicubic,-10.572,-5.192,-32 deit3_small_patch16_224.fb_in22k_ft_in1k,73.850,26.150,91.970,8.030,22.06,224,1.000,bicubic,-9.226,-4.806,+113 tf_efficientnet_b3.ns_jft_in1k,73.850,26.150,91.860,8.140,12.23,300,0.904,bicubic,-10.202,-5.058,+6 maxvit_rmlp_tiny_rw_256.sw_in1k,73.830,26.170,91.440,8.560,29.15,256,0.950,bicubic,-10.394,-5.428,-12 vit_small_r26_s32_384.augreg_in21k_ft_in1k,73.790,26.210,92.300,7.700,36.47,384,1.000,bicubic,-10.258,-5.028,+5 davit_small.msft_in1k,73.780,26.220,91.560,8.440,49.75,224,0.950,bicubic,-10.472,-5.380,-19 fastvit_ma36.apple_in1k,73.780,26.220,91.490,8.510,44.07,256,0.950,bicubic,-10.102,-5.252,+16 regnety_080.ra3_in1k,73.760,26.240,91.800,8.200,39.18,288,1.000,bicubic,-10.166,-5.090,+8 maxvit_small_tf_224.in1k,73.760,26.240,91.410,8.590,68.93,224,0.950,bicubic,-10.666,-5.414,-36 regnetz_d8.ra3_in1k,73.750,26.250,92.000,8.000,23.37,320,1.000,bicubic,-10.302,-4.996,-2 focalnet_base_lrf.ms_in1k,73.740,26.260,90.990,9.010,88.75,224,0.900,bicubic,-10.098,-5.618,+17 fastvit_sa36.apple_dist_in1k,73.730,26.270,91.730,8.270,31.53,256,0.900,bicubic,-10.296,-5.124,-1 resnetrs270.tf_in1k,73.730,26.270,91.580,8.420,129.86,352,1.000,bicubic,-10.698,-5.388,-42 efficientvit_b3.r288_in1k,73.720,26.280,91.450,8.550,48.65,288,1.000,bicubic,-10.434,-5.286,-16 gcvit_small.in1k,73.700,26.300,91.230,8.770,51.09,224,0.875,bicubic,-10.192,-5.428,+7 resnext101_32x8d.fb_wsl_ig1b_ft_in1k,73.670,26.330,92.140,7.860,88.79,224,0.875,bilinear,-9.028,-4.004,+130 resnet200d.ra2_in1k,73.670,26.330,91.570,8.430,64.69,320,1.000,bicubic,-10.294,-5.256,-1 resnetv2_101x3_bit.goog_in21k_ft_in1k,73.660,26.340,92.470,7.530,387.93,448,1.000,bilinear,-10.778,-4.912,-50 xcit_medium_24_p16_224.fb_dist_in1k,73.650,26.350,91.570,8.430,84.40,224,1.000,bicubic,-10.636,-5.362,-35 convnextv2_tiny.fcmae_ft_in22k_in1k,73.640,26.360,91.960,8.040,28.64,288,1.000,bicubic,-10.776,-5.300,-46 inception_next_small.sail_in1k,73.620,26.380,91.240,8.760,49.37,224,0.875,bicubic,-9.958,-5.358,+40 edgenext_base.in21k_ft_in1k,73.610,26.390,91.860,8.140,18.51,320,1.000,bicubic,-10.444,-5.336,-15 repvgg_d2se.rvgg_in1k,73.610,26.390,91.380,8.620,133.33,320,1.000,bilinear,-9.950,-5.278,+38 regnety_064.ra3_in1k,73.610,26.390,91.330,8.670,30.58,288,1.000,bicubic,-10.110,-5.392,+23 tresnet_v2_l.miil_in21k_ft_in1k,73.590,26.410,90.990,9.010,46.17,224,0.875,bilinear,-10.304,-5.500,-4 swinv2_base_window8_256.ms_in1k,73.550,26.450,91.510,8.490,87.92,256,0.900,bicubic,-10.700,-5.414,-38 tf_efficientnet_b5.ra_in1k,73.540,26.460,91.460,8.540,30.39,456,0.934,bicubic,-10.274,-5.292,+5 resnetaa101d.sw_in12k_ft_in1k,73.520,26.480,91.750,8.250,44.57,288,1.000,bicubic,-10.604,-5.356,-28 cs3se_edgenet_x.c2ns_in1k,73.510,26.490,91.480,8.520,50.72,320,1.000,bicubic,-10.036,-5.190,+34 resnet152d.ra2_in1k,73.510,26.490,91.240,8.760,60.21,320,1.000,bicubic,-10.174,-5.498,+23 regnetz_d8_evos.ch_in1k,73.490,26.510,91.710,8.290,23.46,320,1.000,bicubic,-10.636,-5.302,-33 deit3_base_patch16_224.fb_in1k,73.490,26.510,91.280,8.720,86.59,224,0.900,bicubic,-10.296,-5.306,+5 repvit_m2_3.dist_450e_in1k,73.480,26.520,91.260,8.740,23.69,224,0.950,bicubic,-10.262,-5.384,+10 regnetv_064.ra3_in1k,73.460,26.540,91.600,8.400,30.58,288,1.000,bicubic,-10.256,-5.142,+13 convnext_small.fb_in1k,73.450,26.550,91.330,8.670,50.22,288,1.000,bicubic,-10.250,-5.478,+14 coat_lite_medium.in1k,73.450,26.550,91.230,8.770,44.57,224,0.900,bicubic,-10.150,-5.498,+23 sequencer2d_l.in1k,73.450,26.550,91.090,8.910,54.30,224,0.875,bicubic,-9.944,-5.406,+43 xcit_tiny_24_p8_384.fb_dist_in1k,73.430,26.570,91.560,8.440,12.11,384,1.000,bicubic,-10.316,-4.840,+3 twins_svt_large.in1k,73.420,26.580,90.890,9.110,99.27,224,0.900,bicubic,-10.258,-5.698,+15 tiny_vit_21m_224.in1k,73.410,26.590,91.480,8.520,21.20,224,0.950,bicubic,-9.844,-5.112,+54 resnetrs350.tf_in1k,73.400,26.600,91.300,8.700,163.96,384,1.000,bicubic,-11.314,-5.692,-103 pvt_v2_b4.in1k,73.400,26.600,91.070,8.930,62.56,224,0.900,bicubic,-10.312,-5.600,+7 tf_efficientnet_b5.aa_in1k,73.390,26.610,91.210,8.790,30.39,456,0.934,bicubic,-10.298,-5.502,+9 regnety_160.deit_in1k,73.380,26.620,91.700,8.300,83.59,288,1.000,bicubic,-10.310,-5.080,+7 swin_s3_base_224.ms_in1k,73.350,26.650,91.180,8.820,71.13,224,0.900,bicubic,-10.570,-5.492,-27 convformer_s18.sail_in22k_ft_in1k,73.340,26.660,91.910,8.090,26.77,224,1.000,bicubic,-10.398,-5.138,-1 efficientnet_b4.ra2_in1k,73.340,26.660,91.270,8.730,19.34,384,1.000,bicubic,-10.074,-5.328,+30 gcvit_tiny.in1k,73.330,26.670,90.970,9.030,28.22,224,0.875,bicubic,-10.054,-5.428,+34 repvit_m2_3.dist_300e_in1k,73.320,26.680,90.890,9.110,23.69,224,0.950,bicubic,-10.184,-5.614,+16 mvitv2_small.fb_in1k,73.300,26.700,91.230,8.770,34.87,224,0.900,bicubic,-10.470,-5.346,-12 resnet152.a1h_in1k,73.300,26.700,91.180,8.820,60.19,288,1.000,bicubic,-10.150,-5.358,+21 resmlp_big_24_224.fb_distilled_in1k,73.300,26.700,91.170,8.830,129.14,224,0.875,bicubic,-10.292,-5.480,+9 swin_small_patch4_window7_224.ms_in22k_ft_in1k,73.290,26.710,92.030,7.970,49.61,224,0.900,bicubic,-10.008,-4.934,+39 vit_small_patch16_384.augreg_in21k_ft_in1k,73.290,26.710,91.990,8.010,22.20,384,1.000,bicubic,-10.514,-5.110,-20 xcit_small_24_p16_224.fb_dist_in1k,73.270,26.730,91.460,8.540,47.67,224,1.000,bicubic,-10.604,-5.276,-32 focalnet_base_srf.ms_in1k,73.270,26.730,91.260,8.740,88.15,224,0.900,bicubic,-10.550,-5.420,-24 swinv2_small_window16_256.ms_in1k,73.250,26.750,91.290,8.710,49.73,256,0.900,bicubic,-10.974,-5.488,-68 pvt_v2_b5.in1k,73.250,26.750,91.080,8.920,81.96,224,0.900,bicubic,-10.490,-5.556,-14 deit_base_distilled_patch16_224.fb_in1k,73.250,26.750,91.010,8.990,87.34,224,0.900,bicubic,-10.140,-5.478,+24 maxvit_tiny_rw_224.sw_in1k,73.230,26.770,90.770,9.230,29.06,224,0.950,bicubic,-10.274,-5.744,+6 pvt_v2_b3.in1k,73.210,26.790,91.010,8.990,45.24,224,0.900,bicubic,-9.908,-5.546,+49 resnetrs152.tf_in1k,73.200,26.800,91.260,8.740,86.62,320,1.000,bicubic,-10.502,-5.352,-13 fastvit_sa24.apple_dist_in1k,73.180,26.820,91.350,8.650,21.55,256,0.900,bicubic,-10.162,-5.202,+24 swin_base_patch4_window12_384.ms_in1k,73.160,26.840,91.130,8.870,87.90,384,1.000,bicubic,-11.316,-5.762,-102 efficientvit_b3.r256_in1k,73.150,26.850,91.110,8.890,48.65,256,1.000,bicubic,-10.652,-5.406,-30 vit_base_patch32_384.augreg_in21k_ft_in1k,73.130,26.870,91.250,8.750,88.30,384,1.000,bicubic,-10.222,-5.590,+19 nest_base_jx.goog_in1k,73.130,26.870,91.070,8.930,67.72,224,0.875,bicubic,-10.404,-5.304,-2 xcit_medium_24_p8_224.fb_in1k,73.130,26.870,90.280,9.720,84.32,224,1.000,bicubic,-10.616,-6.430,-26 regnety_640.seer_ft_in1k,73.110,26.890,91.520,8.480,281.38,384,1.000,bicubic,-10.798,-5.402,-50 swinv2_small_window8_256.ms_in1k,73.100,26.900,90.950,9.050,49.73,256,0.900,bicubic,-10.754,-5.694,-45 deit3_small_patch16_384.fb_in1k,73.090,26.910,91.220,8.780,22.21,384,1.000,bicubic,-10.338,-5.454,+4 xcit_small_24_p8_224.fb_in1k,73.090,26.910,91.160,8.840,47.63,224,1.000,bicubic,-10.744,-5.472,-42 cait_s24_224.fb_dist_in1k,73.060,26.940,91.120,8.880,46.92,224,1.000,bicubic,-10.382,-5.454,+1 efficientformerv2_l.snap_dist_in1k,73.060,26.940,90.880,9.120,26.32,224,0.950,bicubic,-10.572,-5.678,-18 focalnet_small_srf.ms_in1k,73.060,26.940,90.730,9.270,49.89,224,0.900,bicubic,-10.356,-5.708,+1 coatnet_rmlp_1_rw_224.sw_in1k,73.040,26.960,90.880,9.120,41.69,224,0.950,bicubic,-10.322,-5.570,+9 fastvit_sa36.apple_in1k,73.030,26.970,90.930,9.070,31.53,256,0.900,bicubic,-10.470,-5.700,-10 efficientvit_b3.r224_in1k,72.980,27.020,90.570,9.430,48.65,224,0.950,bicubic,-10.480,-5.760,-6 crossvit_15_dagger_408.in1k,72.970,27.030,91.090,8.910,28.50,408,1.000,bicubic,-10.870,-5.688,-52 caformer_s18.sail_in1k,72.960,27.040,91.010,8.990,26.34,224,1.000,bicubic,-10.694,-5.508,-25 regnety_320.tv2_in1k,72.940,27.060,90.760,9.240,145.05,224,0.965,bicubic,-10.222,-5.654,+21 ecaresnet101d.miil_in1k,72.930,27.070,91.180,8.820,44.57,288,0.950,bicubic,-10.054,-5.362,+43 regnetv_040.ra3_in1k,72.930,27.070,91.120,8.880,20.64,288,1.000,bicubic,-10.260,-5.538,+16 tf_efficientnet_b4.ap_in1k,72.900,27.100,90.980,9.020,19.34,380,0.922,bicubic,-10.350,-5.416,+9 maxvit_tiny_tf_224.in1k,72.900,27.100,90.830,9.170,30.92,224,0.950,bicubic,-10.502,-5.760,-7 coatnet_1_rw_224.sw_in1k,72.900,27.100,90.790,9.210,41.72,224,0.950,bicubic,-10.696,-5.592,-25 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,72.870,27.130,91.550,8.450,236.34,384,1.000,bicubic,-10.966,-5.576,-58 swinv2_cr_small_ns_224.sw_in1k,72.850,27.150,90.820,9.180,49.70,224,0.900,bicubic,-10.648,-5.664,-20 regnety_040.ra3_in1k,72.790,27.210,90.750,9.250,20.65,288,1.000,bicubic,-10.254,-5.752,+29 regnety_032.ra_in1k,72.780,27.220,90.950,9.050,19.44,288,1.000,bicubic,-9.946,-5.466,+54 convnextv2_tiny.fcmae_ft_in1k,72.770,27.230,91.180,8.820,28.64,288,1.000,bicubic,-10.694,-5.538,-20 xception65p.ra3_in1k,72.760,27.240,90.910,9.090,39.82,299,0.940,bicubic,-10.366,-5.572,+15 swin_s3_small_224.ms_in1k,72.720,27.280,90.560,9.440,49.74,224,0.900,bicubic,-11.036,-5.892,-53 resnetv2_101.a1h_in1k,72.690,27.310,90.670,9.330,44.54,288,1.000,bicubic,-10.310,-5.784,+28 efficientformer_l7.snap_dist_in1k,72.660,27.340,90.800,9.200,82.23,224,0.950,bicubic,-10.722,-5.736,-12 xcit_small_12_p8_224.fb_in1k,72.630,27.370,90.670,9.330,26.21,224,1.000,bicubic,-10.704,-5.812,-7 nfnet_l0.ra2_in1k,72.610,27.390,90.990,9.010,35.07,288,1.000,bicubic,-10.140,-5.526,+44 resnext101_64x4d.c1_in1k,72.610,27.390,90.830,9.170,83.46,288,1.000,bicubic,-10.546,-5.544,+3 focalnet_small_lrf.ms_in1k,72.610,27.390,90.720,9.280,50.34,224,0.900,bicubic,-10.884,-5.860,-28 pnasnet5large.tf_in1k,72.610,27.390,90.500,9.500,86.06,331,0.911,bicubic,-10.172,-5.540,+39 xception65.ra3_in1k,72.600,27.400,90.840,9.160,39.92,299,0.940,bicubic,-10.580,-5.752,-1 cs3sedarknet_x.c2ns_in1k,72.580,27.420,91.060,8.940,35.40,288,1.000,bicubic,-10.078,-5.290,+52 resnest101e.in1k,72.580,27.420,90.810,9.190,48.28,256,0.875,bilinear,-10.304,-5.512,+27 twins_pcpvt_large.in1k,72.580,27.420,90.700,9.300,60.99,224,0.900,bicubic,-10.550,-5.904,+2 gc_efficientnetv2_rw_t.agc_in1k,72.570,27.430,90.830,9.170,13.68,288,1.000,bicubic,-9.886,-5.466,+82 tf_efficientnet_b5.in1k,72.560,27.440,91.090,8.910,30.39,456,0.934,bicubic,-10.616,-5.446,-6 resnext50_32x4d.fb_swsl_ig1b_ft_in1k,72.560,27.440,90.840,9.160,25.03,224,0.875,bilinear,-9.612,-5.384,+119 tresnet_xl.miil_in1k_448,72.560,27.440,90.310,9.690,78.44,448,0.875,bilinear,-10.498,-5.862,+9 twins_svt_base.in1k,72.550,27.450,90.450,9.550,56.07,224,0.900,bicubic,-10.570,-5.964,-1 deit_base_patch16_384.fb_in1k,72.550,27.450,90.260,9.740,86.86,384,1.000,bicubic,-10.554,-6.108,+3 resnetv2_50x3_bit.goog_in21k_ft_in1k,72.520,27.480,91.760,8.240,217.32,448,1.000,bilinear,-11.500,-5.366,-98 xcit_small_12_p16_224.fb_dist_in1k,72.520,27.480,91.130,8.870,26.25,224,1.000,bicubic,-10.808,-5.286,-22 rexnet_300.nav_in1k,72.520,27.480,90.610,9.390,34.71,224,0.875,bicubic,-10.254,-5.628,+28 vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,72.510,27.490,90.880,9.120,88.22,224,0.900,bicubic,-10.786,-5.648,-23 deit3_medium_patch16_224.fb_in1k,72.510,27.490,90.810,9.190,38.85,224,0.900,bicubic,-10.576,-5.484,-1 convformer_s18.sail_in1k,72.510,27.490,90.510,9.490,26.77,224,1.000,bicubic,-10.476,-5.740,+10 convnext_tiny.fb_in22k_ft_in1k_384,72.470,27.530,91.540,8.460,28.59,384,1.000,bicubic,-11.618,-5.604,-114 regnety_080_tv.tv2_in1k,72.460,27.540,90.540,9.460,39.38,224,0.965,bicubic,-10.134,-5.708,+47 xcit_tiny_24_p8_224.fb_dist_in1k,72.440,27.560,90.920,9.080,12.11,224,1.000,bicubic,-10.126,-5.138,+55 sequencer2d_m.in1k,72.430,27.570,90.710,9.290,38.31,224,0.875,bicubic,-10.382,-5.564,+14 resnet101d.ra2_in1k,72.430,27.570,90.650,9.350,44.57,320,1.000,bicubic,-10.590,-5.802,0 regnetx_320.tv2_in1k,72.420,27.580,90.300,9.700,107.81,224,0.965,bicubic,-10.390,-5.908,+14 maxxvit_rmlp_nano_rw_256.sw_in1k,72.370,27.630,90.750,9.250,16.78,256,0.950,bicubic,-10.672,-5.600,-4 nest_small_jx.goog_in1k,72.350,27.650,90.690,9.310,38.35,224,0.875,bicubic,-10.774,-5.630,-17 maxvit_rmlp_nano_rw_256.sw_in1k,72.350,27.650,90.430,9.570,15.50,256,0.950,bicubic,-10.604,-5.836,+2 efficientvit_b2.r288_in1k,72.330,27.670,90.930,9.070,24.33,288,1.000,bicubic,-10.770,-5.374,-13 resnext101_32x8d.tv2_in1k,72.330,27.670,90.270,9.730,88.79,224,0.965,bilinear,-10.502,-5.962,+6 tf_efficientnet_b4.aa_in1k,72.300,27.700,90.590,9.410,19.34,380,0.922,bicubic,-10.718,-5.710,-7 tf_efficientnet_b2.ns_jft_in1k,72.280,27.720,91.110,8.890,9.11,260,0.890,bicubic,-10.098,-5.144,+65 hrnet_w18_ssld.paddle_in1k,72.270,27.730,90.810,9.190,21.30,288,1.000,bilinear,-9.778,-5.440,+108 maxvit_nano_rw_256.sw_in1k,72.270,27.730,90.570,9.430,15.45,256,0.950,bicubic,-10.658,-5.650,-3 tresnet_m.miil_in21k_ft_in1k,72.270,27.730,90.230,9.770,31.39,224,0.875,bilinear,-10.800,-5.880,-16 swin_base_patch4_window7_224.ms_in1k,72.260,27.740,90.810,9.190,87.77,224,0.900,bicubic,-11.346,-5.642,-77 resnext101_64x4d.tv_in1k,72.260,27.740,90.550,9.450,83.46,224,0.875,bilinear,-10.732,-5.694,-10 resnetv2_50x1_bit.goog_distilled_in1k,72.240,27.760,90.980,9.020,25.55,224,0.875,bicubic,-10.584,-5.538,-2 nasnetalarge.tf_in1k,72.240,27.760,90.460,9.540,88.75,331,0.911,bicubic,-10.386,-5.582,+24 efficientnetv2_rw_t.ra2_in1k,72.230,27.770,90.420,9.580,13.65,288,1.000,bicubic,-10.120,-5.772,+62 crossvit_18_240.in1k,72.230,27.770,90.270,9.730,43.27,240,0.875,bicubic,-10.170,-5.790,+54 regnetz_c16_evos.ch_in1k,72.220,27.780,91.210,8.790,13.49,320,0.950,bicubic,-10.416,-5.264,+18 cait_xxs36_384.fb_dist_in1k,72.190,27.810,90.840,9.160,17.37,384,1.000,bicubic,-10.014,-5.304,+80 twins_pcpvt_base.in1k,72.190,27.810,90.500,9.500,43.83,224,0.900,bicubic,-10.524,-5.846,+3 crossvit_18_dagger_240.in1k,72.190,27.810,90.090,9.910,44.27,240,0.875,bicubic,-10.328,-5.978,+38 regnetz_c16.ra3_in1k,72.180,27.820,91.120,8.880,13.46,320,1.000,bicubic,-10.452,-5.198,+15 regnety_320.seer_ft_in1k,72.170,27.830,90.870,9.130,145.05,384,1.000,bicubic,-11.158,-5.838,-55 maxxvitv2_nano_rw_256.sw_in1k,72.170,27.830,90.470,9.530,23.70,256,0.950,bicubic,-10.940,-5.854,-33 repvit_m1_5.dist_450e_in1k,72.160,27.840,90.370,9.630,14.64,224,0.950,bicubic,-10.352,-5.742,+34 resnet101.a1h_in1k,72.100,27.900,90.820,9.180,44.55,288,1.000,bicubic,-10.678,-5.490,-9 regnety_160.tv2_in1k,72.100,27.900,90.230,9.770,83.59,224,0.965,bicubic,-10.546,-5.984,+8 inception_next_tiny.sail_in1k,72.090,27.910,90.100,9.900,28.06,224,0.875,bicubic,-10.388,-5.922,+36 xcit_tiny_24_p16_384.fb_dist_in1k,72.070,27.930,90.580,9.420,12.12,384,1.000,bicubic,-10.500,-5.696,+23 tiny_vit_11m_224.dist_in22k_ft_in1k,72.050,27.950,91.450,8.550,11.00,224,0.950,bicubic,-11.178,-5.180,-56 cs3edgenet_x.c2_in1k,72.050,27.950,90.370,9.630,47.82,288,1.000,bicubic,-10.658,-6.000,-5 vit_relpos_medium_patch16_cls_224.sw_in1k,72.020,27.980,90.300,9.700,38.76,224,0.900,bicubic,-10.552,-5.768,+19 davit_tiny.msft_in1k,72.010,27.990,90.070,9.930,28.36,224,0.950,bicubic,-10.686,-6.204,-5 convnext_tiny_hnf.a2h_in1k,72.000,28.000,89.770,10.230,28.59,288,1.000,bicubic,-10.584,-6.238,+13 mobilevitv2_200.cvnets_in22k_ft_in1k_384,71.990,28.010,90.650,9.350,18.45,384,1.000,bicubic,-11.410,-5.932,-77 efficientformer_l3.snap_dist_in1k,71.980,28.020,90.270,9.730,31.41,224,0.950,bicubic,-10.568,-5.980,+18 convnext_tiny.fb_in1k,71.980,28.020,90.220,9.780,28.59,288,1.000,bicubic,-10.718,-6.412,-9 vit_relpos_base_patch16_clsgap_224.sw_in1k,71.970,28.030,90.250,9.750,86.43,224,0.900,bicubic,-10.790,-5.922,-18 sequencer2d_s.in1k,71.940,28.060,90.500,9.500,27.65,224,0.875,bicubic,-10.400,-5.528,+41 resnet152.a2_in1k,71.940,28.060,89.420,10.580,60.19,288,1.000,bicubic,-10.668,-6.708,+2 dm_nfnet_f0.dm_in1k,71.910,28.090,90.760,9.240,71.49,256,0.900,bicubic,-11.576,-5.808,-92 rexnetr_200.sw_in12k_ft_in1k,71.900,28.100,91.260,8.740,16.52,288,1.000,bicubic,-11.238,-5.376,-60 convnext_nano.in12k_ft_in1k,71.900,28.100,91.000,9.000,15.59,288,1.000,bicubic,-10.962,-5.556,-31 swinv2_cr_small_224.sw_in1k,71.900,28.100,90.270,9.730,49.70,224,0.900,bicubic,-11.236,-5.838,-60 convnextv2_nano.fcmae_ft_in22k_in1k,71.890,28.110,90.890,9.110,15.62,288,1.000,bicubic,-10.774,-5.630,-13 fastvit_sa24.apple_in1k,71.890,28.110,90.630,9.370,21.55,256,0.900,bicubic,-10.788,-5.642,-16 repvit_m1_5.dist_300e_in1k,71.850,28.150,90.330,9.670,14.64,224,0.950,bicubic,-10.526,-5.700,+27 resnet101.a1_in1k,71.850,28.150,89.150,10.850,44.55,288,1.000,bicubic,-10.472,-6.482,+36 eca_nfnet_l0.ra2_in1k,71.840,28.160,91.110,8.890,24.14,288,1.000,bicubic,-10.738,-5.382,0 mobilevitv2_175.cvnets_in22k_ft_in1k_384,71.840,28.160,90.770,9.230,14.25,384,1.000,bicubic,-11.098,-5.656,-44 vit_relpos_base_patch16_224.sw_in1k,71.820,28.180,90.250,9.750,86.43,224,0.900,bicubic,-10.676,-5.888,+10 regnetx_160.tv2_in1k,71.800,28.200,90.050,9.950,54.28,224,0.965,bicubic,-10.766,-6.122,+2 seresnext50_32x4d.racm_in1k,71.800,28.200,90.030,9.970,27.56,288,0.950,bicubic,-10.396,-6.118,+48 swin_small_patch4_window7_224.ms_in1k,71.770,28.230,90.260,9.740,49.61,224,0.900,bicubic,-11.438,-6.056,-77 coat_small.in1k,71.750,28.250,90.410,9.590,21.69,224,0.900,bicubic,-10.612,-5.798,+20 flexivit_small.1200ep_in1k,71.750,28.250,90.270,9.730,22.06,240,0.950,bicubic,-10.776,-5.856,0 mvitv2_tiny.fb_in1k,71.740,28.260,90.310,9.690,24.17,224,0.900,bicubic,-10.670,-5.842,+11 flexivit_small.300ep_in1k,71.730,28.270,89.980,10.020,22.06,240,0.950,bicubic,-10.448,-6.058,+45 efficientvit_b2.r256_in1k,71.720,28.280,90.350,9.650,24.33,256,1.000,bicubic,-10.970,-5.744,-30 flexivit_small.600ep_in1k,71.720,28.280,90.150,9.850,22.06,240,0.950,bicubic,-10.642,-5.934,+16 pit_b_224.in1k,71.720,28.280,89.250,10.750,73.76,224,0.900,bicubic,-10.718,-6.464,+6 xcit_large_24_p16_224.fb_in1k,71.710,28.290,89.170,10.830,189.10,224,1.000,bicubic,-11.192,-6.714,-54 pvt_v2_b2_li.in1k,71.700,28.300,90.010,9.990,22.55,224,0.900,bicubic,-10.494,-6.082,+39 resnet50.fb_swsl_ig1b_ft_in1k,71.690,28.310,90.500,9.500,25.56,224,0.875,bilinear,-9.482,-5.486,+136 ecaresnet101d_pruned.miil_in1k,71.680,28.320,90.430,9.570,24.88,288,0.950,bicubic,-10.318,-5.730,+56 coatnet_bn_0_rw_224.sw_in1k,71.670,28.330,90.380,9.620,27.44,224,0.950,bicubic,-10.730,-5.806,+3 gcvit_xtiny.in1k,71.670,28.330,90.250,9.750,19.98,224,0.875,bicubic,-10.284,-5.716,+60 tresnet_xl.miil_in1k,71.650,28.350,89.630,10.370,78.44,224,0.875,bilinear,-10.424,-6.298,+46 resnet61q.ra2_in1k,71.630,28.370,90.280,9.720,36.85,288,1.000,bicubic,-10.894,-5.850,-12 tresnet_l.miil_in1k_448,71.630,28.370,90.030,9.970,55.99,448,0.875,bilinear,-10.646,-5.948,+22 poolformerv2_m48.sail_in1k,71.620,28.380,89.800,10.200,73.35,224,1.000,bicubic,-10.998,-6.272,-32 convnextv2_nano.fcmae_ft_in22k_in1k_384,71.590,28.410,90.760,9.240,15.62,384,1.000,bicubic,-11.784,-5.984,-109 xcit_tiny_12_p8_384.fb_dist_in1k,71.590,28.410,90.700,9.300,6.71,384,1.000,bicubic,-10.798,-5.520,-2 swinv2_tiny_window16_256.ms_in1k,71.590,28.410,90.330,9.670,28.35,256,0.900,bicubic,-11.214,-5.906,-57 convit_base.fb_in1k,71.580,28.420,90.120,9.880,86.54,224,0.875,bicubic,-10.710,-5.816,+13 coatnet_0_rw_224.sw_in1k,71.570,28.430,89.400,10.600,27.44,224,0.950,bicubic,-10.820,-6.436,-5 resnetv2_50d_evos.ah_in1k,71.560,28.440,90.090,9.910,25.59,288,1.000,bicubic,-10.442,-5.810,+43 fbnetv3_g.ra2_in1k,71.530,28.470,90.370,9.630,16.62,288,0.950,bilinear,-10.510,-5.690,+40 crossvit_15_dagger_240.in1k,71.520,28.480,89.850,10.150,28.21,240,0.875,bicubic,-10.810,-6.106,+4 poolformer_m48.sail_in1k,71.520,28.480,89.770,10.230,73.47,224,0.950,bicubic,-10.962,-6.196,-17 resnet152.tv2_in1k,71.510,28.490,89.970,10.030,60.19,224,0.965,bilinear,-10.776,-6.034,+8 resnetaa50d.sw_in12k_ft_in1k,71.500,28.500,90.320,9.680,25.58,288,1.000,bicubic,-11.100,-6.178,-40 mobilevitv2_150.cvnets_in22k_ft_in1k_384,71.490,28.510,90.420,9.580,10.59,384,1.000,bicubic,-11.096,-5.894,-37 resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,71.480,28.520,90.470,9.530,88.79,224,0.875,bilinear,-10.126,-5.570,+68 wide_resnet50_2.racm_in1k,71.480,28.520,90.220,9.780,68.88,288,0.950,bicubic,-10.800,-5.844,+6 efficientnet_b3.ra2_in1k,71.470,28.530,90.060,9.940,12.23,320,1.000,bicubic,-10.776,-6.058,+7 pvt_v2_b2.in1k,71.450,28.550,90.060,9.940,25.36,224,0.900,bicubic,-10.634,-5.896,+26 resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,71.420,28.580,90.530,9.470,194.03,224,0.875,bilinear,-10.418,-5.562,+47 resnet51q.ra2_in1k,71.410,28.590,90.180,9.820,35.70,288,1.000,bilinear,-10.950,-6.006,-12 efficientvit_b2.r224_in1k,71.380,28.620,89.710,10.290,24.33,224,0.950,bicubic,-10.768,-5.996,+17 wide_resnet101_2.tv2_in1k,71.360,28.640,89.790,10.210,126.89,224,0.965,bilinear,-11.142,-6.226,-31 xcit_tiny_24_p8_224.fb_in1k,71.350,28.650,90.230,9.770,12.11,224,1.000,bicubic,-10.542,-5.740,+37 vit_relpos_medium_patch16_224.sw_in1k,71.350,28.650,89.960,10.040,38.75,224,0.900,bicubic,-11.112,-6.122,-28 resnet152.a1_in1k,71.350,28.650,89.310,10.690,60.19,288,1.000,bicubic,-11.382,-6.410,-70 tf_efficientnetv2_b3.in21k_ft_in1k,71.340,28.660,90.760,9.240,14.36,300,0.900,bicubic,-11.330,-5.866,-64 vit_base_patch16_224.orig_in21k_ft_in1k,71.320,28.680,90.480,9.520,86.57,224,0.900,bicubic,-10.470,-5.646,+43 tf_efficientnet_b4.in1k,71.320,28.680,90.110,9.890,19.34,380,0.922,bicubic,-11.288,-5.642,-56 mixer_b16_224.miil_in21k_ft_in1k,71.300,28.700,89.650,10.350,59.88,224,0.875,bilinear,-11.006,-6.070,-11 pit_s_distilled_224.in1k,71.260,28.740,89.640,10.360,24.04,224,0.900,bicubic,-10.554,-6.090,+39 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,71.250,28.750,90.480,9.520,236.34,224,0.875,bicubic,-11.626,-6.102,-90 ecaresnet50t.ra2_in1k,71.240,28.760,90.450,9.550,25.57,320,0.950,bicubic,-11.112,-5.690,-23 convmixer_1536_20.in1k,71.230,28.770,89.450,10.550,51.63,224,0.960,bicubic,-10.132,-6.164,+81 deit_base_patch16_224.fb_in1k,71.220,28.780,89.190,10.810,86.57,224,0.900,bicubic,-10.772,-6.546,+19 xcit_small_12_p16_224.fb_in1k,71.200,28.800,89.750,10.250,26.25,224,1.000,bicubic,-10.770,-6.062,+21 resnext50_32x4d.a1h_in1k,71.190,28.810,89.690,10.310,25.03,288,1.000,bicubic,-10.824,-6.244,+13 ecaresnet50t.a1_in1k,71.190,28.810,89.580,10.420,25.57,288,1.000,bicubic,-10.938,-6.062,+5 vit_relpos_medium_patch16_rpn_224.sw_in1k,71.170,28.830,90.080,9.920,38.73,224,0.900,bicubic,-11.140,-5.892,-22 crossvit_base_240.in1k,71.170,28.830,89.830,10.170,105.03,240,0.875,bicubic,-11.044,-6.004,-9 vit_base_patch32_clip_224.laion2b_ft_in1k,71.160,28.840,90.210,9.790,88.22,224,0.900,bicubic,-11.422,-5.990,-61 swin_s3_tiny_224.ms_in1k,71.150,28.850,89.710,10.290,28.33,224,0.900,bicubic,-10.994,-6.244,-2 cs3sedarknet_l.c2ns_in1k,71.110,28.890,90.350,9.650,21.91,288,0.950,bicubic,-10.674,-5.614,+30 efficientformerv2_s2.snap_dist_in1k,71.110,28.890,90.140,9.860,12.71,224,0.950,bicubic,-11.056,-5.770,-7 halo2botnet50ts_256.a1h_in1k,71.110,28.890,89.600,10.400,22.64,256,0.950,bicubic,-10.950,-6.034,+2 cs3darknet_x.c2ns_in1k,71.090,28.910,90.150,9.850,35.05,288,1.000,bicubic,-11.132,-6.080,-18 mobilevitv2_200.cvnets_in22k_ft_in1k,71.090,28.910,89.700,10.300,18.45,256,0.888,bicubic,-11.242,-6.242,-33 ecaresnet50d.miil_in1k,71.080,28.920,90.240,9.760,25.58,288,0.950,bicubic,-10.570,-5.642,+32 focalnet_tiny_lrf.ms_in1k,71.060,28.940,89.570,10.430,28.65,224,0.900,bicubic,-11.094,-6.378,-11 convnextv2_nano.fcmae_ft_in1k,71.050,28.950,90.100,9.900,15.62,288,1.000,bicubic,-11.436,-6.126,-56 focalnet_tiny_srf.ms_in1k,71.050,28.950,89.600,10.400,28.43,224,0.900,bicubic,-11.088,-6.368,-10 xcit_tiny_12_p8_224.fb_dist_in1k,71.040,28.960,89.890,10.110,6.71,224,1.000,bicubic,-10.172,-5.712,+77 xcit_small_24_p16_224.fb_in1k,71.040,28.960,89.680,10.320,47.67,224,1.000,bicubic,-11.536,-6.332,-70 tresnet_m.miil_in1k_448,71.020,28.980,88.680,11.320,31.39,448,0.875,bilinear,-10.690,-6.894,+21 resnetv2_101x1_bit.goog_in21k_ft_in1k,71.010,28.990,91.080,8.920,44.54,448,1.000,bilinear,-11.332,-5.440,-43 visformer_small.in1k,71.010,28.990,89.440,10.560,40.22,224,0.900,bicubic,-11.096,-6.438,-13 repvit_m3.dist_in1k,70.990,29.010,89.630,10.370,10.68,224,0.950,bicubic,-10.512,-5.938,+39 xcit_medium_24_p16_224.fb_in1k,70.990,29.010,89.530,10.470,84.40,224,1.000,bicubic,-11.650,-6.452,-93 resnet101.a2_in1k,70.990,29.010,89.160,10.840,44.55,288,1.000,bicubic,-11.246,-6.570,-32 lamhalobotnet50ts_256.a1h_in1k,70.990,29.010,89.040,10.960,22.57,256,0.950,bicubic,-10.562,-6.452,+32 edgenext_small.usi_in1k,70.980,29.020,89.880,10.120,5.59,320,1.000,bicubic,-10.584,-5.832,+27 resnetv2_50d_gn.ah_in1k,70.960,29.040,89.830,10.170,25.57,288,1.000,bicubic,-10.998,-6.098,-5 tnt_s_patch16_224,70.960,29.040,89.610,10.390,23.76,224,0.900,bicubic,-10.576,-6.080,+27 convnext_nano.d1h_in1k,70.960,29.040,89.430,10.570,15.59,288,1.000,bicubic,-10.522,-6.228,+38 tiny_vit_11m_224.in1k,70.940,29.060,89.840,10.160,11.00,224,0.950,bicubic,-10.552,-6.022,+31 resnest50d_4s2x40d.in1k,70.940,29.060,89.720,10.280,30.42,224,0.875,bicubic,-10.180,-5.840,+72 coatnet_nano_rw_224.sw_in1k,70.940,29.060,89.700,10.300,15.14,224,0.900,bicubic,-10.756,-5.946,+11 vit_srelpos_medium_patch16_224.sw_in1k,70.920,29.080,89.940,10.060,38.74,224,0.900,bicubic,-11.320,-6.002,-43 tf_efficientnet_b3.ap_in1k,70.920,29.080,89.430,10.570,12.23,300,0.904,bicubic,-10.900,-6.196,+1 vit_small_patch16_224.augreg_in21k_ft_in1k,70.910,29.090,90.170,9.830,22.05,224,0.900,bicubic,-10.476,-5.966,+42 coatnext_nano_rw_224.sw_in1k,70.890,29.110,90.250,9.750,14.70,224,0.900,bicubic,-11.052,-5.666,-12 coatnet_rmlp_nano_rw_224.sw_in1k,70.890,29.110,89.920,10.080,15.15,224,0.900,bicubic,-11.160,-5.958,-23 vit_base_patch16_rpn_224.sw_in1k,70.890,29.110,89.770,10.230,86.54,224,0.900,bicubic,-11.312,-6.226,-41 vit_large_patch32_384.orig_in21k_ft_in1k,70.870,29.130,90.570,9.430,306.63,384,1.000,bicubic,-10.640,-5.520,+22 nest_tiny_jx.goog_in1k,70.860,29.140,89.940,10.060,17.06,224,0.875,bicubic,-10.566,-5.678,+32 resnetrs101.tf_in1k,70.860,29.140,89.830,10.170,63.62,288,0.940,bicubic,-11.424,-6.184,-54 rexnet_200.nav_in1k,70.860,29.140,89.700,10.300,16.37,224,0.875,bicubic,-10.776,-5.966,+5 poolformerv2_m36.sail_in1k,70.850,29.150,89.330,10.670,56.08,224,1.000,bicubic,-11.366,-6.594,-49 tf_efficientnet_b1.ns_jft_in1k,70.840,29.160,90.120,9.880,7.79,240,0.882,bicubic,-10.548,-5.618,+31 regnety_032.tv2_in1k,70.840,29.160,89.850,10.150,19.44,224,0.965,bicubic,-10.916,-5.994,-5 wide_resnet50_2.tv2_in1k,70.840,29.160,89.270,10.730,68.88,224,0.965,bilinear,-10.766,-6.490,+4 tresnet_l.miil_in1k,70.830,29.170,89.600,10.400,55.99,224,0.875,bilinear,-10.650,-6.024,+16 poolformer_m36.sail_in1k,70.830,29.170,89.510,10.490,56.17,224,0.950,bicubic,-11.272,-6.188,-39 tf_efficientnetv2_b3.in1k,70.830,29.170,89.510,10.490,14.36,300,0.904,bicubic,-11.142,-6.292,-28 fastvit_sa12.apple_dist_in1k,70.830,29.170,89.240,10.760,11.58,256,0.900,bicubic,-11.024,-6.470,-16 levit_384.fb_dist_in1k,70.810,29.190,89.320,10.680,39.13,224,0.900,bicubic,-11.786,-6.698,-111 levit_conv_384.fb_dist_in1k,70.800,29.200,89.320,10.680,39.13,224,0.900,bicubic,-11.790,-6.696,-110 coat_lite_small.in1k,70.780,29.220,89.580,10.420,19.84,224,0.900,bicubic,-11.532,-6.270,-71 ecaresnetlight.miil_in1k,70.750,29.250,89.880,10.120,30.16,288,0.950,bicubic,-10.658,-5.936,+19 deit3_small_patch16_224.fb_in1k,70.750,29.250,89.450,10.550,22.06,224,0.900,bicubic,-10.620,-6.006,+25 regnetx_080.tv2_in1k,70.730,29.270,89.330,10.670,39.57,224,0.965,bicubic,-10.810,-6.212,-1 swinv2_cr_tiny_ns_224.sw_in1k,70.700,29.300,89.380,10.620,28.33,224,0.900,bicubic,-11.102,-6.438,-21 seresnet50.ra2_in1k,70.690,29.310,89.870,10.130,28.09,288,0.950,bicubic,-10.594,-5.782,+28 vit_base_patch32_clip_224.openai_ft_in1k,70.690,29.310,89.830,10.170,88.22,224,0.900,bicubic,-11.240,-6.136,-33 resnet50d.ra2_in1k,70.690,29.310,89.310,10.690,25.58,288,0.950,bicubic,-10.666,-6.428,+23 vit_relpos_small_patch16_224.sw_in1k,70.680,29.320,90.000,10.000,21.98,224,0.900,bicubic,-10.782,-5.820,+7 mobilevitv2_175.cvnets_in22k_ft_in1k,70.670,29.330,89.700,10.300,14.25,256,0.888,bicubic,-11.268,-6.090,-36 resnet101.tv2_in1k,70.630,29.370,89.390,10.610,44.55,224,0.965,bilinear,-11.258,-6.378,-34 tf_efficientnet_b3.aa_in1k,70.620,29.380,89.440,10.560,12.23,300,0.904,bicubic,-11.020,-6.282,-20 resnet50_gn.a1h_in1k,70.620,29.380,89.390,10.610,25.56,288,0.950,bicubic,-10.596,-5.994,+27 crossvit_small_240.in1k,70.620,29.380,89.360,10.640,26.86,240,0.875,bicubic,-10.398,-6.096,+51 cait_xxs24_384.fb_dist_in1k,70.600,29.400,89.730,10.270,12.03,384,1.000,bicubic,-10.372,-5.910,+51 senet154.gluon_in1k,70.600,29.400,88.920,11.080,115.09,224,0.875,bicubic,-10.626,-6.438,+22 convit_small.fb_in1k,70.580,29.420,89.590,10.410,27.78,224,0.875,bicubic,-10.840,-6.154,+4 convnext_nano_ols.d1h_in1k,70.570,29.430,89.100,10.900,15.65,288,1.000,bicubic,-11.030,-6.536,-19 twins_pcpvt_small.in1k,70.570,29.430,89.070,10.930,24.11,224,0.900,bicubic,-10.522,-6.578,+37 regnetz_b16.ra3_in1k,70.550,29.450,89.400,10.600,9.72,288,1.000,bicubic,-10.178,-6.118,+75 resnet50.c2_in1k,70.540,29.460,89.170,10.830,25.56,288,1.000,bicubic,-10.330,-6.364,+60 resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,70.530,29.470,89.770,10.230,44.18,224,0.875,bilinear,-10.394,-5.964,+50 resnetv2_50.a1h_in1k,70.530,29.470,89.110,10.890,25.55,288,1.000,bicubic,-10.868,-6.616,+1 vit_small_r26_s32_224.augreg_in21k_ft_in1k,70.520,29.480,90.110,9.890,36.43,224,0.900,bicubic,-11.344,-5.912,-46 swinv2_tiny_window8_256.ms_in1k,70.510,29.490,89.500,10.500,28.35,256,0.900,bicubic,-11.310,-6.494,-44 deit_small_distilled_patch16_224.fb_in1k,70.500,29.500,89.460,10.540,22.44,224,0.900,bicubic,-10.716,-6.164,+15 legacy_senet154.in1k,70.500,29.500,88.990,11.010,115.09,224,0.875,bilinear,-10.812,-6.570,+6 repvit_m1_1.dist_450e_in1k,70.490,29.510,89.140,10.860,8.80,224,0.950,bicubic,-10.822,-6.396,+3 halonet50ts.a1h_in1k,70.480,29.520,89.340,10.660,22.73,256,0.940,bicubic,-11.182,-6.270,-38 tf_efficientnet_lite4.in1k,70.450,29.550,89.130,10.870,13.01,380,0.920,bilinear,-11.080,-6.534,-24 resnetaa50.a1h_in1k,70.440,29.560,89.990,10.010,25.56,288,1.000,bicubic,-11.174,-5.812,-36 crossvit_15_240.in1k,70.440,29.560,89.530,10.470,27.53,240,0.875,bicubic,-11.096,-6.206,-26 poolformerv2_s36.sail_in1k,70.430,29.570,89.630,10.370,30.79,224,1.000,bicubic,-11.136,-6.060,-34 twins_svt_small.in1k,70.430,29.570,89.360,10.640,24.06,224,0.900,bicubic,-11.246,-6.298,-45 ecaresnet50t.a2_in1k,70.430,29.570,89.020,10.980,25.57,288,1.000,bicubic,-11.228,-6.530,-41 resnest50d_1s4x24d.in1k,70.420,29.580,89.220,10.780,25.68,224,0.875,bicubic,-10.568,-6.106,+28 resnest50d.in1k,70.420,29.580,88.760,11.240,27.48,224,0.875,bilinear,-10.540,-6.622,+33 seresnext101_64x4d.gluon_in1k,70.410,29.590,89.360,10.640,88.23,224,0.875,bicubic,-10.484,-5.936,+37 gernet_l.idstcv_in1k,70.410,29.590,88.980,11.020,31.08,256,0.875,bilinear,-10.944,-6.550,-8 gcresnext50ts.ch_in1k,70.400,29.600,89.420,10.580,15.67,288,1.000,bicubic,-10.830,-6.122,-3 cs3darknet_l.c2ns_in1k,70.350,29.650,89.750,10.250,21.16,288,0.950,bicubic,-10.546,-5.912,+34 resnet152s.gluon_in1k,70.310,29.690,88.870,11.130,60.32,224,0.875,bicubic,-10.698,-6.546,+22 vit_srelpos_small_patch16_224.sw_in1k,70.290,29.710,89.540,10.460,21.97,224,0.900,bicubic,-10.802,-6.030,+14 repvgg_b3.rvgg_in1k,70.230,29.770,88.740,11.260,123.09,224,0.875,bilinear,-10.276,-6.514,+69 coat_mini.in1k,70.200,29.800,89.460,10.540,10.34,224,0.900,bicubic,-11.070,-5.922,-9 xception41p.ra3_in1k,70.200,29.800,89.100,10.900,26.91,299,0.940,bicubic,-11.772,-6.684,-78 sebotnet33ts_256.a1h_in1k,70.160,29.840,88.820,11.180,13.70,256,0.940,bicubic,-11.008,-6.348,-1 efficientnet_el.ra_in1k,70.140,29.860,89.310,10.690,10.59,300,0.904,bicubic,-11.172,-6.180,-16 inception_resnet_v2.tf_in1k,70.130,29.870,88.690,11.310,55.84,299,0.897,bicubic,-10.328,-6.500,+71 resnet50.d_in1k,70.120,29.880,88.740,11.260,25.56,288,1.000,bicubic,-10.852,-6.690,+17 resnet50d.a1_in1k,70.120,29.880,88.350,11.650,25.58,288,1.000,bicubic,-11.330,-6.868,-33 poolformer_s36.sail_in1k,70.100,29.900,89.130,10.870,30.86,224,0.900,bicubic,-11.330,-6.314,-34 resmlp_36_224.fb_distilled_in1k,70.100,29.900,89.090,10.910,44.69,224,0.875,bicubic,-11.048,-6.388,-5 haloregnetz_b.ra3_in1k,70.100,29.900,88.900,11.100,11.68,224,0.940,bicubic,-10.946,-6.300,+9 ecaresnet50d_pruned.miil_in1k,70.090,29.910,89.510,10.490,19.94,288,0.950,bicubic,-10.700,-6.060,+34 resnet50.c1_in1k,70.070,29.930,89.000,11.000,25.56,288,1.000,bicubic,-10.842,-6.552,+18 gcresnet50t.ra2_in1k,70.050,29.950,89.520,10.480,25.90,288,1.000,bicubic,-11.406,-6.198,-40 sehalonet33ts.ra2_in1k,70.050,29.950,88.740,11.260,13.69,256,0.940,bicubic,-10.908,-6.532,+12 seresnext101_32x4d.gluon_in1k,70.020,29.980,88.940,11.060,48.96,224,0.875,bicubic,-10.872,-6.356,+17 regnety_320.pycls_in1k,70.020,29.980,88.900,11.100,145.05,224,0.875,bicubic,-10.790,-6.338,+28 seresnet50.a2_in1k,70.000,30.000,88.710,11.290,28.09,288,1.000,bicubic,-11.106,-6.512,-8 levit_256.fb_dist_in1k,69.970,30.030,89.240,10.760,18.89,224,0.900,bicubic,-11.554,-6.254,-55 levit_conv_256.fb_dist_in1k,69.960,30.040,89.250,10.750,18.89,224,0.900,bicubic,-11.562,-6.240,-55 resnet152d.gluon_in1k,69.940,30.060,88.500,11.500,60.21,224,0.875,bicubic,-10.536,-6.702,+53 fastvit_s12.apple_dist_in1k,69.910,30.090,88.930,11.070,9.47,256,0.900,bicubic,-11.160,-6.354,-5 maxvit_rmlp_pico_rw_256.sw_in1k,69.890,30.110,89.250,10.750,7.52,256,0.950,bicubic,-10.624,-5.964,+45 pit_s_224.in1k,69.880,30.120,88.940,11.060,23.46,224,0.900,bicubic,-11.206,-6.390,-8 swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,69.850,30.150,90.410,9.590,28.29,224,0.900,bicubic,-11.118,-5.604,0 resnext50_32x4d.ra_in1k,69.830,30.170,88.220,11.780,25.03,288,0.950,bicubic,-10.868,-7.172,+29 regnety_016.tv2_in1k,69.810,30.190,89.360,10.640,11.20,224,0.965,bicubic,-10.856,-5.970,+31 seresnet50.a1_in1k,69.810,30.190,88.550,11.450,28.09,288,1.000,bicubic,-11.292,-6.778,-16 mobilevitv2_150.cvnets_in22k_ft_in1k,69.800,30.200,89.180,10.820,10.59,256,0.888,bicubic,-11.688,-6.488,-60 resnet50.a1_in1k,69.780,30.220,88.350,11.650,25.56,288,1.000,bicubic,-11.434,-6.752,-31 mobilevitv2_200.cvnets_in1k,69.750,30.250,88.620,11.380,18.45,256,0.888,bicubic,-11.384,-6.742,-24 resnext50_32x4d.a2_in1k,69.750,30.250,88.200,11.800,25.03,288,1.000,bicubic,-11.554,-6.896,-41 resnet50.tv2_in1k,69.740,30.260,88.600,11.400,25.56,224,0.965,bilinear,-11.108,-6.834,+8 ese_vovnet39b.ra_in1k,69.730,30.270,89.550,10.450,24.57,288,0.950,bicubic,-10.620,-5.816,+53 tiny_vit_5m_224.dist_in22k_ft_in1k,69.730,30.270,89.440,10.560,5.39,224,0.950,bicubic,-11.146,-6.224,0 lambda_resnet50ts.a1h_in1k,69.730,30.270,88.830,11.170,21.54,256,0.950,bicubic,-11.428,-6.268,-30 resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,69.710,30.290,89.420,10.580,25.03,224,0.875,bilinear,-10.624,-5.980,+53 xcit_tiny_24_p16_224.fb_dist_in1k,69.710,30.290,88.720,11.280,12.12,224,1.000,bicubic,-10.744,-6.498,+42 fastvit_sa12.apple_in1k,69.700,30.300,88.950,11.050,11.58,256,0.900,bicubic,-11.144,-6.390,+3 xcit_tiny_12_p16_384.fb_dist_in1k,69.690,30.310,89.020,10.980,6.72,384,1.000,bicubic,-11.248,-6.394,-12 resmlp_24_224.fb_distilled_in1k,69.660,30.340,89.070,10.930,30.02,224,0.875,bicubic,-11.096,-6.154,+8 resnext101_64x4d.gluon_in1k,69.660,30.340,88.260,11.740,83.46,224,0.875,bicubic,-10.940,-6.732,+22 tresnet_m.miil_in1k,69.650,30.350,88.000,12.000,31.39,224,0.875,bilinear,-11.148,-6.856,+2 resnext50d_32x4d.bt_in1k,69.640,30.360,89.250,10.750,25.05,288,0.950,bicubic,-11.024,-6.170,+15 regnetx_032.tv2_in1k,69.620,30.380,89.360,10.640,15.30,224,0.965,bicubic,-11.306,-5.918,-16 efficientnet_b3_pruned.in1k,69.580,30.420,88.960,11.040,9.86,300,0.904,bicubic,-11.272,-6.284,-6 fastvit_t12.apple_dist_in1k,69.580,30.420,88.410,11.590,7.55,256,0.900,bicubic,-10.772,-6.632,+39 convnextv2_pico.fcmae_ft_in1k,69.570,30.430,89.230,10.770,9.07,288,0.950,bicubic,-11.516,-6.250,-33 eva02_tiny_patch14_336.mim_in22k_ft_in1k,69.560,30.440,89.320,10.680,5.76,336,1.000,bicubic,-11.070,-6.206,+12 repvit_m1_1.dist_300e_in1k,69.560,30.440,88.820,11.180,8.80,224,0.950,bicubic,-11.266,-6.350,-7 nf_resnet50.ra2_in1k,69.550,30.450,88.730,11.270,25.56,288,0.940,bicubic,-11.090,-6.604,+9 gernet_m.idstcv_in1k,69.540,30.460,88.690,11.310,21.14,224,0.875,bilinear,-11.196,-6.500,-1 inception_resnet_v2.tf_ens_adv_in1k,69.540,30.460,88.490,11.510,55.84,299,0.897,bicubic,-10.438,-6.458,+61 repvgg_b3g4.rvgg_in1k,69.530,30.470,88.450,11.550,83.83,224,0.875,bilinear,-10.686,-6.642,+50 gcresnet33ts.ra2_in1k,69.510,30.490,89.110,10.890,19.88,288,1.000,bicubic,-11.090,-6.212,+7 efficientnet_el_pruned.in1k,69.510,30.490,88.940,11.060,10.59,300,0.904,bicubic,-10.788,-6.282,+40 efficientnet_b2.ra_in1k,69.490,30.510,88.690,11.310,9.11,288,1.000,bicubic,-11.120,-6.624,+5 resnext50_32x4d.a1_in1k,69.490,30.510,88.340,11.660,25.03,288,1.000,bicubic,-11.976,-6.834,-86 swin_tiny_patch4_window7_224.ms_in1k,69.470,30.530,89.060,10.940,28.29,224,0.900,bicubic,-11.906,-6.484,-77 regnetx_320.pycls_in1k,69.470,30.530,88.270,11.730,107.81,224,0.875,bicubic,-10.776,-6.752,+41 vit_base_patch32_224.augreg_in21k_ft_in1k,69.450,30.550,89.440,10.560,88.22,224,0.900,bicubic,-11.266,-6.126,-9 res2net101d.in1k,69.450,30.550,88.710,11.290,45.23,224,0.875,bilinear,-11.768,-6.640,-65 gcvit_xxtiny.in1k,69.440,30.560,88.840,11.160,12.00,224,0.875,bicubic,-10.286,-6.240,+72 cspresnext50.ra_in1k,69.430,30.570,88.600,11.400,20.57,256,0.887,bilinear,-11.124,-6.726,+1 rexnet_150.nav_in1k,69.410,30.590,88.980,11.020,9.73,224,0.875,bicubic,-10.914,-6.010,+25 efficientvit_b1.r288_in1k,69.410,30.590,88.680,11.320,9.10,288,1.000,bicubic,-10.914,-6.496,+27 resnext50_32x4d.tv2_in1k,69.400,30.600,88.440,11.560,25.03,224,0.965,bilinear,-11.782,-6.900,-66 eca_resnet33ts.ra2_in1k,69.380,30.620,89.210,10.790,19.68,288,1.000,bicubic,-11.292,-6.154,-12 seresnet33ts.ra2_in1k,69.380,30.620,89.190,10.810,19.78,288,1.000,bicubic,-11.404,-6.172,-23 convmixer_768_32.in1k,69.380,30.620,88.880,11.120,21.11,224,0.960,bicubic,-10.788,-6.194,+39 inception_v4.tf_in1k,69.370,30.630,88.780,11.220,42.68,299,0.875,bicubic,-10.786,-6.190,+38 xception71.tf_in1k,69.360,30.640,88.270,11.730,42.34,299,0.903,bicubic,-10.514,-6.658,+49 darknet53.c2ns_in1k,69.350,30.650,88.780,11.220,41.61,288,1.000,bicubic,-11.182,-6.652,-6 cs3darknet_focus_l.c2ns_in1k,69.340,30.660,89.420,10.580,21.15,288,0.950,bicubic,-11.536,-6.262,-39 legacy_seresnext101_32x4d.in1k,69.340,30.660,88.050,11.950,48.96,224,0.875,bilinear,-10.892,-6.970,+28 vit_small_patch16_384.augreg_in1k,69.320,30.680,89.000,11.000,22.20,384,1.000,bicubic,-11.796,-6.574,-67 repvit_m1_0.dist_450e_in1k,69.310,30.690,88.700,11.300,7.30,224,0.950,bicubic,-11.124,-6.218,+4 mobilevitv2_175.cvnets_in1k,69.290,30.710,88.960,11.040,14.25,256,0.888,bicubic,-11.570,-6.296,-39 efficientformer_l1.snap_dist_in1k,69.280,30.720,88.560,11.440,12.29,224,0.950,bicubic,-11.218,-6.428,-8 vit_small_patch32_384.augreg_in21k_ft_in1k,69.270,30.730,89.820,10.180,22.92,384,1.000,bicubic,-11.216,-5.780,-8 convnext_pico_ols.d1_in1k,69.240,30.760,88.840,11.160,9.06,288,1.000,bicubic,-11.222,-6.412,-6 repvit_m2.dist_in1k,69.230,30.770,88.740,11.260,8.80,224,0.950,bicubic,-11.230,-6.428,-6 edgenext_small_rw.sw_in1k,69.210,30.790,88.740,11.260,7.83,320,1.000,bicubic,-11.248,-6.568,-5 vit_base_patch16_384.augreg_in1k,69.190,30.810,88.370,11.630,86.86,384,1.000,bicubic,-11.912,-6.750,-73 resnet50.b2k_in1k,69.180,30.820,88.660,11.340,25.56,288,1.000,bicubic,-11.274,-6.658,-6 resnet152c.gluon_in1k,69.140,30.860,87.890,12.110,60.21,224,0.875,bicubic,-10.772,-6.956,+33 resnet50.b1k_in1k,69.100,30.900,88.740,11.260,25.56,288,1.000,bicubic,-11.606,-6.692,-34 resnet50.a1h_in1k,69.100,30.900,88.510,11.490,25.56,224,1.000,bicubic,-11.578,-6.796,-31 tf_efficientnetv2_b2.in1k,69.100,30.900,88.230,11.770,10.10,260,0.890,bicubic,-11.096,-6.812,+16 mixnet_xl.ra_in1k,69.090,30.910,88.310,11.690,11.90,224,0.875,bicubic,-11.392,-6.626,-17 resnetblur50.bt_in1k,69.070,30.930,88.450,11.550,25.56,288,0.950,bicubic,-11.164,-6.784,+11 repvgg_b2g4.rvgg_in1k,69.010,30.990,88.360,11.640,61.76,224,0.875,bilinear,-10.372,-6.316,+69 regnety_160.pycls_in1k,69.010,30.990,88.270,11.730,83.59,224,0.875,bicubic,-11.288,-6.694,+4 resnet101d.gluon_in1k,69.010,30.990,88.080,11.920,44.57,224,0.875,bicubic,-11.416,-6.944,-12 xception65.tf_in1k,68.950,31.050,88.470,11.530,39.92,299,0.903,bicubic,-10.606,-6.188,+54 resnext101_32x4d.gluon_in1k,68.940,31.060,88.340,11.660,44.18,224,0.875,bicubic,-11.400,-6.590,-7 tf_efficientnet_b2.ap_in1k,68.930,31.070,88.330,11.670,9.11,260,0.890,bicubic,-11.380,-6.696,-5 repvit_m1_0.dist_300e_in1k,68.930,31.070,88.100,11.900,7.30,224,0.950,bicubic,-11.196,-6.644,+13 poolformerv2_s24.sail_in1k,68.920,31.080,88.670,11.330,21.34,224,1.000,bicubic,-11.828,-6.640,-50 cspdarknet53.ra_in1k,68.920,31.080,88.600,11.400,27.64,256,0.887,bilinear,-11.148,-6.478,+13 convnext_pico.d1_in1k,68.900,31.100,88.480,11.520,9.05,288,0.950,bicubic,-11.516,-6.568,-18 resnet50d.a2_in1k,68.900,31.100,87.980,12.020,25.58,288,1.000,bicubic,-12.264,-7.100,-98 mobilevitv2_150.cvnets_in1k,68.890,31.110,88.080,11.920,10.59,256,0.888,bicubic,-11.480,-6.994,-18 regnety_120.pycls_in1k,68.860,31.140,88.330,11.670,51.82,224,0.875,bicubic,-11.520,-6.796,-20 resnet152.a3_in1k,68.820,31.180,87.760,12.240,60.19,224,0.950,bicubic,-11.726,-7.240,-39 resnet152.gluon_in1k,68.820,31.180,87.700,12.300,60.19,224,0.875,bicubic,-10.876,-7.030,+32 poolformer_s24.sail_in1k,68.780,31.220,88.170,11.830,21.39,224,0.900,bicubic,-11.514,-6.904,-12 dpn107.mx_in1k,68.780,31.220,88.130,11.870,86.92,224,0.875,bicubic,-11.390,-6.812,-1 gmlp_s16_224.ra3_in1k,68.780,31.220,88.070,11.930,19.42,224,0.875,bicubic,-10.864,-6.552,+36 dpn131.mx_in1k,68.770,31.230,87.570,12.430,79.25,224,0.875,bicubic,-11.044,-7.130,+19 darknetaa53.c2ns_in1k,68.760,31.240,88.700,11.300,36.02,288,1.000,bilinear,-11.746,-6.622,-42 tf_efficientnet_b2.aa_in1k,68.760,31.240,87.950,12.050,9.11,260,0.890,bicubic,-11.324,-6.956,-1 deit_small_patch16_224.fb_in1k,68.730,31.270,88.200,11.800,22.05,224,0.900,bicubic,-11.118,-6.844,+12 regnety_080.pycls_in1k,68.710,31.290,87.970,12.030,39.18,224,0.875,bicubic,-11.158,-6.862,+8 resnet101s.gluon_in1k,68.710,31.290,87.900,12.100,44.67,224,0.875,bicubic,-11.594,-7.252,-21 seresnext50_32x4d.gluon_in1k,68.660,31.340,88.360,11.640,27.56,224,0.875,bicubic,-11.264,-6.464,+1 resnet50.ram_in1k,68.630,31.370,88.330,11.670,25.56,288,0.950,bicubic,-11.346,-6.722,-3 hrnet_w64.ms_in1k,68.630,31.370,88.070,11.930,128.06,224,0.875,bilinear,-10.846,-6.582,+38 xcit_tiny_12_p8_224.fb_in1k,68.580,31.420,88.720,11.280,6.71,224,1.000,bicubic,-11.108,-6.334,+21 resnet50.a2_in1k,68.570,31.430,88.000,12.000,25.56,288,1.000,bicubic,-12.202,-6.988,-72 tf_efficientnet_b3.in1k,68.530,31.470,88.700,11.300,12.23,300,0.904,bicubic,-12.344,-6.600,-84 dpn98.mx_in1k,68.520,31.480,87.610,12.390,61.57,224,0.875,bicubic,-11.150,-7.044,+21 regnetx_160.pycls_in1k,68.510,31.490,88.460,11.540,54.28,224,0.875,bicubic,-11.356,-6.368,0 fastvit_s12.apple_in1k,68.490,31.510,87.850,12.150,9.47,256,0.900,bicubic,-11.452,-6.944,-8 rexnet_130.nav_in1k,68.460,31.540,88.040,11.960,7.56,224,0.875,bicubic,-11.046,-6.638,+27 cspresnet50.ra_in1k,68.450,31.550,87.960,12.040,21.62,256,0.887,bilinear,-11.132,-6.750,+22 tf_efficientnet_el.in1k,68.440,31.560,88.210,11.790,10.59,300,0.904,bicubic,-11.808,-6.910,-29 regnety_064.pycls_in1k,68.440,31.560,88.060,11.940,30.58,224,0.875,bicubic,-11.276,-6.706,+10 xcit_tiny_24_p16_224.fb_in1k,68.420,31.580,88.290,11.710,12.12,224,1.000,bicubic,-11.028,-6.588,+28 cait_xxs36_224.fb_dist_in1k,68.410,31.590,88.650,11.350,17.30,224,1.000,bicubic,-11.336,-6.224,+3 skresnext50_32x4d.ra_in1k,68.400,31.600,87.570,12.430,27.48,224,0.875,bicubic,-11.764,-7.070,-23 resnet50.fb_ssl_yfcc100m_ft_in1k,68.380,31.620,88.560,11.440,25.56,224,0.875,bilinear,-10.850,-6.266,+47 efficientvit_b1.r256_in1k,68.370,31.630,87.910,12.090,9.10,256,1.000,bicubic,-11.364,-6.870,+1 dla102x2.in1k,68.350,31.650,87.890,12.110,41.28,224,0.875,bilinear,-11.096,-6.742,+24 fbnetv3_d.ra2_in1k,68.330,31.670,88.420,11.580,10.31,256,0.950,bilinear,-11.352,-6.524,+6 efficientnet_b2_pruned.in1k,68.300,31.700,88.100,11.900,8.31,260,0.890,bicubic,-11.620,-6.752,-18 res2net50d.in1k,68.300,31.700,88.100,11.900,25.72,224,0.875,bilinear,-11.954,-6.936,-39 resmlp_big_24_224.fb_in1k,68.300,31.700,87.540,12.460,129.14,224,0.875,bicubic,-12.736,-7.478,-119 vit_base_patch16_224.sam_in1k,68.290,31.710,87.730,12.270,86.57,224,0.900,bicubic,-11.948,-7.026,-39 resnext50_32x4d.gluon_in1k,68.290,31.710,87.330,12.670,25.03,224,0.875,bicubic,-11.070,-7.100,+26 ecaresnet26t.ra2_in1k,68.260,31.740,88.810,11.190,16.01,320,0.950,bicubic,-11.590,-6.280,-17 efficientformerv2_s1.snap_dist_in1k,68.240,31.760,88.330,11.670,6.19,224,0.950,bicubic,-11.452,-6.386,-3 tf_efficientnet_lite3.in1k,68.220,31.780,87.730,12.270,8.20,300,0.904,bilinear,-11.586,-7.184,-13 resnet101.a3_in1k,68.220,31.780,87.640,12.360,44.55,224,0.950,bicubic,-11.594,-6.974,-13 pit_xs_distilled_224.in1k,68.190,31.810,87.730,12.270,11.00,224,0.900,bicubic,-10.990,-6.636,+38 resnet50.ra_in1k,68.150,31.850,87.900,12.100,25.56,288,0.950,bicubic,-11.686,-7.066,-18 fbnetv3_b.ra2_in1k,68.140,31.860,87.920,12.080,8.60,256,0.950,bilinear,-11.006,-6.824,+39 tiny_vit_5m_224.in1k,68.140,31.860,87.840,12.160,5.39,224,0.950,bicubic,-11.030,-6.954,+36 regnetx_120.pycls_in1k,68.130,31.870,87.610,12.390,46.11,224,0.875,bicubic,-11.458,-7.132,-3 mobileone_s4.apple_in1k,68.130,31.870,87.110,12.890,14.95,224,0.900,bilinear,-11.296,-7.370,+11 resmlp_36_224.fb_in1k,68.090,31.910,88.180,11.820,44.69,224,0.875,bicubic,-11.682,-6.704,-19 resnet50.bt_in1k,68.070,31.930,87.810,12.190,25.56,288,0.950,bicubic,-11.570,-7.082,-8 dpn68b.ra_in1k,68.070,31.930,87.380,12.620,12.61,288,1.000,bicubic,-11.290,-7.056,+12 regnetx_016.tv2_in1k,68.050,31.950,88.230,11.770,9.19,224,0.965,bicubic,-11.386,-6.538,+5 resnetrs50.tf_in1k,68.040,31.960,87.730,12.270,35.69,224,0.910,bicubic,-11.854,-7.244,-35 dpn92.mx_in1k,67.980,32.020,87.600,12.400,37.67,224,0.875,bicubic,-12.058,-7.260,-43 nf_regnet_b1.ra2_in1k,67.970,32.030,88.220,11.780,10.22,288,0.900,bicubic,-11.338,-6.520,+12 repvit_m0_9.dist_450e_in1k,67.920,32.080,87.890,12.110,5.49,224,0.950,bicubic,-11.146,-6.490,+34 fastvit_t12.apple_in1k,67.920,32.080,87.550,12.450,7.55,256,0.900,bicubic,-11.344,-7.012,+17 resnet50d.gluon_in1k,67.910,32.090,87.120,12.880,25.58,224,0.875,bicubic,-11.168,-7.346,+30 resnetv2_50x1_bit.goog_in21k_ft_in1k,67.900,32.100,89.270,10.730,25.55,448,1.000,bilinear,-12.442,-6.412,-75 levit_192.fb_dist_in1k,67.900,32.100,87.900,12.100,10.95,224,0.900,bicubic,-11.938,-6.884,-34 levit_conv_192.fb_dist_in1k,67.900,32.100,87.890,12.110,10.95,224,0.900,bicubic,-11.938,-6.888,-36 tf_efficientnetv2_b1.in1k,67.890,32.110,87.810,12.190,8.14,240,0.882,bicubic,-11.570,-6.912,-9 regnetx_080.pycls_in1k,67.890,32.110,87.000,13.000,39.57,224,0.875,bicubic,-11.308,-7.554,+18 legacy_seresnext50_32x4d.in1k,67.860,32.140,87.620,12.380,27.56,224,0.875,bilinear,-11.216,-6.812,+25 efficientnet_em.ra2_in1k,67.850,32.150,88.130,11.870,6.90,240,0.882,bicubic,-11.394,-6.664,+11 resnext101_32x8d.tv_in1k,67.840,32.160,87.490,12.510,88.79,224,0.875,bilinear,-11.470,-7.030,0 resmlp_24_224.fb_in1k,67.820,32.180,87.610,12.390,30.02,224,0.875,bicubic,-11.554,-6.936,-6 lambda_resnet26t.c1_in1k,67.800,32.200,87.790,12.210,10.96,256,0.940,bicubic,-11.288,-6.800,+19 ecaresnet50t.a3_in1k,67.790,32.210,87.560,12.440,25.57,224,0.950,bicubic,-11.762,-7.134,-21 hrnet_w48.ms_in1k,67.760,32.240,87.410,12.590,77.47,224,0.875,bilinear,-11.546,-7.106,-3 efficientvit_b1.r224_in1k,67.760,32.240,87.340,12.660,9.10,224,0.950,bicubic,-11.492,-6.964,+5 hrnet_w44.ms_in1k,67.750,32.250,87.540,12.460,67.06,224,0.875,bilinear,-11.144,-6.824,+28 resnet33ts.ra2_in1k,67.730,32.270,88.100,11.900,19.68,288,1.000,bicubic,-11.996,-6.728,-39 coat_lite_mini.in1k,67.710,32.290,87.710,12.290,11.01,224,0.900,bicubic,-11.392,-6.898,+12 tf_efficientnet_b0.ns_jft_in1k,67.700,32.300,88.070,11.930,5.29,224,0.875,bicubic,-10.968,-6.302,+42 resnext50_32x4d.a3_in1k,67.700,32.300,86.930,13.070,25.03,224,0.950,bicubic,-11.568,-7.376,-3 legacy_xception.tf_in1k,67.690,32.310,87.560,12.440,22.86,299,0.897,bicubic,-11.350,-6.822,+15 eca_botnext26ts_256.c1_in1k,67.680,32.320,87.080,12.920,10.59,256,0.950,bicubic,-11.588,-7.526,-7 regnetx_064.pycls_in1k,67.670,32.330,87.520,12.480,26.21,224,0.875,bicubic,-11.396,-6.940,+11 resnet32ts.ra2_in1k,67.650,32.350,87.580,12.420,17.96,288,1.000,bicubic,-11.738,-7.072,-22 convnext_femto_ols.d1_in1k,67.650,32.350,87.390,12.610,5.23,288,0.950,bicubic,-11.274,-7.136,+18 halonet26t.a1h_in1k,67.620,32.380,87.250,12.750,12.48,256,0.950,bicubic,-11.486,-7.056,+3 inception_v3.gluon_in1k,67.590,32.410,87.450,12.550,23.83,299,0.875,bicubic,-11.212,-6.926,+24 hrnet_w40.ms_in1k,67.580,32.420,87.140,12.860,57.56,224,0.875,bilinear,-11.352,-7.324,+13 regnety_040.pycls_in1k,67.570,32.430,87.490,12.510,20.65,224,0.875,bicubic,-11.650,-7.166,-7 resnet101c.gluon_in1k,67.560,32.440,87.160,12.840,44.57,224,0.875,bicubic,-11.978,-7.424,-37 legacy_seresnet152.in1k,67.550,32.450,87.380,12.620,66.82,224,0.875,bilinear,-11.110,-6.990,+33 dla169.in1k,67.540,32.460,87.570,12.430,53.39,224,0.875,bilinear,-11.168,-6.774,+28 tf_efficientnet_b1.ap_in1k,67.520,32.480,87.750,12.250,7.79,240,0.882,bicubic,-11.756,-6.562,-20 efficientnet_b1.ft_in1k,67.520,32.480,87.470,12.530,7.79,256,1.000,bicubic,-11.280,-6.872,+19 mobilevitv2_125.cvnets_in1k,67.480,32.520,87.570,12.430,7.48,256,0.888,bicubic,-12.200,-7.288,-52 tf_efficientnet_cc_b1_8e.in1k,67.480,32.520,87.300,12.700,39.72,240,0.882,bicubic,-11.822,-7.074,-24 eca_halonext26ts.c1_in1k,67.480,32.520,87.240,12.760,10.76,256,0.940,bicubic,-12.006,-7.360,-40 resnet101.gluon_in1k,67.470,32.530,87.230,12.770,44.55,224,0.875,bicubic,-11.840,-7.292,-29 res2net101_26w_4s.in1k,67.460,32.540,87.010,12.990,45.21,224,0.875,bilinear,-11.740,-7.426,-16 res2net50_26w_8s.in1k,67.440,32.560,87.250,12.750,48.40,224,0.875,bilinear,-11.502,-7.044,0 repvit_m0_9.dist_300e_in1k,67.430,32.570,87.230,12.770,5.49,224,0.950,bicubic,-11.228,-6.886,+24 regnety_008_tv.tv2_in1k,67.410,32.590,88.030,11.970,6.43,224,0.965,bicubic,-11.256,-6.360,+21 resnet34d.ra2_in1k,67.400,32.600,87.960,12.040,21.82,288,0.950,bicubic,-11.036,-6.384,+36 tf_efficientnet_b2.in1k,67.400,32.600,87.580,12.420,9.11,260,0.890,bicubic,-12.208,-7.134,-57 regnety_032.pycls_in1k,67.400,32.600,87.260,12.740,19.44,224,0.875,bicubic,-11.476,-7.148,+2 convnextv2_femto.fcmae_ft_in1k,67.350,32.650,87.580,12.420,5.23,288,0.950,bicubic,-11.988,-6.980,-38 cait_xxs24_224.fb_dist_in1k,67.340,32.660,87.520,12.480,11.96,224,1.000,bicubic,-11.044,-6.796,+39 xception41.tf_in1k,67.260,32.740,87.190,12.810,26.97,299,0.903,bicubic,-11.244,-7.086,+23 coat_tiny.in1k,67.240,32.760,87.310,12.690,5.50,224,0.900,bicubic,-11.186,-6.738,+32 repghostnet_200.in1k,67.240,32.760,87.290,12.710,9.80,224,0.875,bicubic,-11.566,-7.040,-1 regnetx_032.pycls_in1k,67.240,32.760,86.990,13.010,15.30,224,0.875,bicubic,-10.928,-7.092,+50 resnest26d.gluon_in1k,67.220,32.780,87.180,12.820,17.07,224,0.875,bilinear,-11.262,-7.114,+23 convnext_femto.d1_in1k,67.190,32.810,87.480,12.520,5.22,288,0.950,bicubic,-11.526,-6.950,+5 repvgg_b2.rvgg_in1k,67.160,32.840,87.320,12.680,89.02,224,0.875,bilinear,-11.632,-7.100,-1 vit_relpos_base_patch32_plus_rpn_256.sw_in1k,67.160,32.840,86.480,13.520,119.42,256,0.900,bicubic,-12.324,-7.658,-59 botnet26t_256.c1_in1k,67.140,32.860,87.510,12.490,12.49,256,0.950,bicubic,-12.118,-7.022,-38 legacy_seresnet101.in1k,67.110,32.890,87.050,12.950,49.33,224,0.875,bilinear,-11.276,-7.212,+28 resnet50s.gluon_in1k,67.110,32.890,86.860,13.140,25.68,224,0.875,bicubic,-11.604,-7.382,+1 dla60x.in1k,67.070,32.930,87.200,12.800,17.35,224,0.875,bilinear,-11.166,-6.826,+37 visformer_tiny.in1k,67.050,32.950,87.060,12.940,10.32,224,0.900,bicubic,-11.110,-7.106,+41 dla60_res2net.in1k,67.030,32.970,87.140,12.860,20.85,224,0.875,bilinear,-11.434,-7.058,+16 resnet34.a1_in1k,67.030,32.970,86.280,13.720,21.80,288,1.000,bicubic,-10.888,-7.484,+57 xcit_tiny_12_p16_224.fb_dist_in1k,67.020,32.980,87.400,12.600,6.72,224,1.000,bicubic,-11.554,-6.798,+3 dla102x.in1k,67.000,33.000,86.790,13.210,26.31,224,0.875,bilinear,-11.512,-7.446,+6 resnet152.tv_in1k,66.990,33.010,87.560,12.440,60.19,224,0.875,bilinear,-11.332,-6.486,+25 lambda_resnet26rpt_256.c1_in1k,66.960,33.040,87.130,12.870,10.99,256,0.940,bicubic,-12.004,-7.306,-27 mixnet_l.ft_in1k,66.960,33.040,86.940,13.060,7.33,224,0.875,bicubic,-12.006,-7.242,-29 pit_xs_224.in1k,66.920,33.080,87.280,12.720,10.62,224,0.900,bicubic,-11.256,-6.882,+31 repvgg_b1.rvgg_in1k,66.920,33.080,86.780,13.220,57.42,224,0.875,bilinear,-11.448,-7.316,+18 resnet50d.a3_in1k,66.920,33.080,86.540,13.460,25.58,224,0.950,bicubic,-11.800,-7.692,-13 pvt_v2_b1.in1k,66.910,33.090,87.410,12.590,14.01,224,0.900,bicubic,-11.794,-7.092,-10 res2net50_26w_6s.in1k,66.910,33.090,86.880,13.120,37.05,224,0.875,bilinear,-11.658,-7.242,-5 tf_efficientnet_b1.aa_in1k,66.900,33.100,87.020,12.980,7.79,240,0.882,bicubic,-11.928,-7.180,-25 xcit_nano_12_p8_384.fb_dist_in1k,66.870,33.130,87.110,12.890,3.05,384,1.000,bicubic,-10.950,-6.930,+51 efficientnet_es.ra_in1k,66.860,33.140,86.710,13.290,5.44,224,0.875,bicubic,-11.198,-7.216,+32 mobilevit_s.cvnets_in1k,66.850,33.150,87.070,12.930,5.58,256,0.900,bicubic,-11.462,-7.078,+15 regnetx_040.pycls_in1k,66.820,33.180,86.740,13.260,22.12,224,0.875,bicubic,-11.672,-7.502,-4 hrnet_w32.ms_in1k,66.780,33.220,87.290,12.710,41.23,224,0.875,bilinear,-11.662,-6.900,0 resnet50.am_in1k,66.780,33.220,86.740,13.260,25.56,224,0.875,bicubic,-12.222,-7.658,-42 tf_mixnet_l.in1k,66.780,33.220,86.480,13.520,7.33,224,0.875,bicubic,-11.996,-7.522,-26 seresnext26t_32x4d.bt_in1k,66.770,33.230,86.720,13.280,16.81,288,0.950,bicubic,-11.974,-7.592,-25 hrnet_w18.ms_aug_in1k,66.760,33.240,87.480,12.520,21.30,224,0.950,bilinear,-11.362,-6.574,+22 repvit_m1.dist_in1k,66.760,33.240,87.180,12.820,5.49,224,0.950,bicubic,-11.778,-6.890,-15 hrnet_w30.ms_in1k,66.760,33.240,86.790,13.210,37.71,224,0.875,bilinear,-11.436,-7.432,+14 selecsls60b.in1k,66.750,33.250,86.540,13.460,32.77,224,0.875,bicubic,-11.662,-7.628,-1 vit_small_patch16_224.augreg_in1k,66.690,33.310,86.720,13.280,22.05,224,0.900,bicubic,-12.158,-7.568,-41 tf_efficientnetv2_b0.in1k,66.690,33.310,86.700,13.300,7.14,224,0.875,bicubic,-11.668,-7.314,+2 wide_resnet101_2.tv_in1k,66.680,33.320,87.030,12.970,126.89,224,0.875,bilinear,-12.162,-7.252,-42 seresnext26d_32x4d.bt_in1k,66.680,33.320,86.830,13.170,16.81,288,0.950,bicubic,-12.134,-7.410,-39 dla60_res2next.in1k,66.660,33.340,87.020,12.980,17.03,224,0.875,bilinear,-11.780,-7.124,-11 wide_resnet50_2.tv_in1k,66.650,33.350,86.800,13.200,68.88,224,0.875,bilinear,-11.826,-7.288,-15 inception_v3.tf_adv_in1k,66.630,33.370,86.580,13.420,23.83,299,0.875,bicubic,-10.962,-7.150,+42 mobilevitv2_100.cvnets_in1k,66.610,33.390,87.020,12.980,4.90,256,0.888,bicubic,-11.470,-7.150,+13 vit_tiny_patch16_384.augreg_in21k_ft_in1k,66.590,33.410,87.250,12.750,5.79,384,1.000,bicubic,-11.834,-7.292,-12 cs3darknet_m.c2ns_in1k,66.580,33.420,87.180,12.820,9.31,288,0.950,bicubic,-11.054,-6.836,+37 levit_128.fb_dist_in1k,66.560,33.440,86.740,13.260,9.21,224,0.900,bicubic,-11.930,-7.272,-22 levit_conv_128.fb_dist_in1k,66.550,33.450,86.730,13.270,9.21,224,0.900,bicubic,-11.944,-7.278,-25 tf_efficientnet_b1.in1k,66.540,33.460,86.700,13.300,7.79,240,0.882,bicubic,-12.022,-7.394,-31 resnet50c.gluon_in1k,66.540,33.460,86.170,13.830,25.58,224,0.875,bicubic,-11.466,-7.822,+13 dla102.in1k,66.530,33.470,86.910,13.090,33.27,224,0.875,bilinear,-11.494,-7.024,+10 hrnet_w18_small_v2.gluon_in1k,66.510,33.490,86.500,13.500,15.60,224,0.875,bicubic,-11.680,-7.402,-3 mobileone_s3.apple_in1k,66.500,33.500,86.370,13.630,10.17,224,0.900,bilinear,-11.492,-7.544,+12 vit_base_patch16_224.augreg_in1k,66.480,33.520,86.260,13.740,86.57,224,0.900,bicubic,-12.674,-7.830,-76 vit_base_patch32_384.augreg_in1k,66.430,33.570,86.960,13.040,88.30,384,1.000,bicubic,-12.326,-7.266,-50 gmixer_24_224.ra3_in1k,66.430,33.570,86.160,13.840,24.72,224,0.875,bicubic,-11.596,-7.508,+5 inception_v3.tf_in1k,66.420,33.580,86.680,13.320,23.83,299,0.875,bicubic,-11.436,-7.186,+17 bat_resnext26ts.ch_in1k,66.390,33.610,86.860,13.140,10.73,256,0.900,bicubic,-11.862,-7.238,-14 hardcorenas_f.miil_green_in1k,66.360,33.640,86.190,13.810,8.20,224,0.875,bilinear,-11.736,-7.612,-3 seresnext26ts.ch_in1k,66.320,33.680,86.700,13.300,10.39,288,1.000,bicubic,-11.950,-7.392,-17 coat_lite_tiny.in1k,66.290,33.710,86.960,13.040,5.72,224,0.900,bicubic,-11.230,-6.962,+27 eca_resnext26ts.ch_in1k,66.270,33.730,86.410,13.590,10.30,288,1.000,bicubic,-11.730,-7.516,+2 legacy_seresnet50.in1k,66.250,33.750,86.300,13.700,28.09,224,0.875,bilinear,-11.394,-7.458,+18 efficientnet_b0.ra_in1k,66.250,33.750,85.970,14.030,5.29,224,0.875,bicubic,-11.444,-7.562,+17 cs3darknet_focus_m.c2ns_in1k,66.240,33.760,87.080,12.920,9.30,288,0.950,bicubic,-11.044,-6.886,+39 selecsls60.in1k,66.220,33.780,86.330,13.670,30.67,224,0.875,bicubic,-11.768,-7.500,0 tf_efficientnet_cc_b0_8e.in1k,66.220,33.780,86.230,13.770,24.01,224,0.875,bicubic,-11.684,-7.432,+4 res2net50_26w_4s.in1k,66.150,33.850,86.610,13.390,25.70,224,0.875,bilinear,-11.800,-7.242,0 tf_efficientnet_em.in1k,66.150,33.850,86.360,13.640,6.90,240,0.882,bicubic,-11.976,-7.688,-16 resnext50_32x4d.tv_in1k,66.150,33.850,86.040,13.960,25.03,224,0.875,bilinear,-11.472,-7.656,+15 densenetblur121d.ra_in1k,66.140,33.860,86.600,13.400,8.00,288,0.950,bicubic,-11.182,-7.188,+28 resmlp_12_224.fb_distilled_in1k,66.120,33.880,86.620,13.380,15.35,224,0.875,bicubic,-11.834,-6.940,-5 inception_v3.tv_in1k,66.110,33.890,86.320,13.680,23.83,299,0.875,bicubic,-11.324,-7.154,+22 resnet50.a3_in1k,66.110,33.890,85.820,14.180,25.56,224,0.950,bicubic,-11.938,-7.960,-15 ghostnetv2_160.in1k,66.080,33.920,86.730,13.270,12.39,224,0.875,bicubic,-11.752,-7.210,0 resnet26t.ra2_in1k,66.080,33.920,86.670,13.330,16.01,320,1.000,bicubic,-12.248,-7.454,-37 regnety_016.pycls_in1k,66.080,33.920,86.370,13.630,11.20,224,0.875,bicubic,-11.788,-7.348,-4 efficientnet_b1_pruned.in1k,66.070,33.930,86.550,13.450,6.33,240,0.882,bicubic,-12.170,-7.284,-32 gcresnext26ts.ch_in1k,66.040,33.960,86.750,13.250,10.48,288,1.000,bicubic,-12.374,-7.286,-45 resnet50.gluon_in1k,66.030,33.970,86.270,13.730,25.56,224,0.875,bicubic,-11.552,-7.450,+7 rexnet_100.nav_in1k,66.020,33.980,86.490,13.510,4.80,224,0.875,bicubic,-11.836,-7.150,-8 tinynet_a.in1k,66.020,33.980,85.780,14.220,6.19,192,0.875,bicubic,-11.628,-7.760,-1 res2net50_14w_8s.in1k,66.000,34.000,86.230,13.770,25.06,224,0.875,bilinear,-12.158,-7.616,-30 poolformerv2_s12.sail_in1k,65.890,34.110,86.510,13.490,11.89,224,1.000,bicubic,-12.112,-7.354,-21 resnet34.a2_in1k,65.870,34.130,86.140,13.860,21.80,288,1.000,bicubic,-11.288,-7.134,+26 densenet161.tv_in1k,65.850,34.150,86.460,13.540,28.68,224,0.875,bicubic,-11.508,-7.182,+12 res2next50.in1k,65.850,34.150,85.830,14.170,24.67,224,0.875,bilinear,-12.392,-8.062,-42 convnextv2_atto.fcmae_ft_in1k,65.840,34.160,86.170,13.830,3.71,288,0.950,bicubic,-11.920,-7.556,-10 hardcorenas_e.miil_green_in1k,65.830,34.170,85.970,14.030,8.07,224,0.875,bilinear,-11.960,-7.730,-12 repvgg_b1g4.rvgg_in1k,65.820,34.180,86.110,13.890,39.97,224,0.875,bilinear,-11.768,-7.726,-4 regnetx_008.tv2_in1k,65.810,34.190,86.210,13.790,7.26,224,0.965,bicubic,-11.496,-7.454,+10 xcit_tiny_12_p16_224.fb_in1k,65.790,34.210,86.220,13.780,6.72,224,1.000,bicubic,-11.350,-7.496,+20 ese_vovnet19b_dw.ra_in1k,65.770,34.230,86.470,13.530,6.54,288,0.950,bicubic,-11.974,-7.314,-14 mobilenetv3_large_100.miil_in21k_ft_in1k,65.770,34.230,85.180,14.820,5.48,224,0.875,bilinear,-12.150,-7.734,-25 skresnet34.ra_in1k,65.740,34.260,85.950,14.050,22.28,224,0.875,bicubic,-11.170,-7.194,+29 resnet101.tv_in1k,65.710,34.290,85.990,14.010,44.55,224,0.875,bilinear,-11.670,-7.556,+1 convnext_tiny.fb_in22k_ft_in1k,65.650,34.350,86.620,13.380,28.59,288,1.000,bicubic,-13.248,-8.054,-103 hardcorenas_d.miil_green_in1k,65.650,34.350,85.450,14.550,7.50,224,0.875,bilinear,-11.784,-8.040,-4 poolformer_s12.sail_in1k,65.630,34.370,86.210,13.790,11.92,224,0.900,bicubic,-11.610,-7.322,+7 dpn68b.mx_in1k,65.620,34.380,85.950,14.050,12.61,224,0.875,bicubic,-11.898,-7.902,-11 selecsls42b.in1k,65.620,34.380,85.840,14.160,32.46,224,0.875,bicubic,-11.550,-7.552,+9 convnext_atto_ols.a2_in1k,65.600,34.400,86.260,13.740,3.70,288,0.950,bicubic,-11.616,-7.416,+5 fastvit_t8.apple_dist_in1k,65.550,34.450,86.160,13.840,4.03,256,0.900,bicubic,-11.626,-7.138,+6 tf_efficientnet_b0.ap_in1k,65.500,34.500,85.570,14.430,5.29,224,0.875,bicubic,-11.590,-7.692,+10 mobileone_s2.apple_in1k,65.440,34.560,85.950,14.050,7.88,224,0.900,bilinear,-12.076,-7.718,-15 tf_efficientnet_lite2.in1k,65.400,34.600,86.020,13.980,6.09,260,0.890,bicubic,-12.062,-7.732,-14 convmixer_1024_20_ks9_p14.in1k,65.390,34.610,85.610,14.390,24.38,224,0.960,bicubic,-11.546,-7.740,+15 res2net50_48w_2s.in1k,65.350,34.650,85.950,14.050,25.29,224,0.875,bilinear,-12.164,-7.600,-17 resnet26d.bt_in1k,65.340,34.660,86.000,14.000,16.01,288,0.950,bicubic,-12.068,-7.638,-13 densenet201.tv_in1k,65.270,34.730,85.670,14.330,20.01,224,0.875,bicubic,-12.016,-7.810,-7 dla60.in1k,65.220,34.780,85.760,14.240,22.04,224,0.875,bilinear,-11.826,-7.558,+6 seresnet50.a3_in1k,65.190,34.810,85.300,14.700,28.09,224,0.950,bicubic,-11.836,-7.772,+6 crossvit_9_dagger_240.in1k,65.170,34.830,86.570,13.430,8.78,240,0.875,bicubic,-11.808,-7.048,+7 gernet_s.idstcv_in1k,65.150,34.850,85.530,14.470,8.17,224,0.875,bilinear,-11.760,-7.786,+11 tf_efficientnet_cc_b0_4e.in1k,65.150,34.850,85.140,14.860,13.31,224,0.875,bicubic,-12.152,-8.196,-13 mobilenetv2_120d.ra_in1k,65.060,34.940,85.990,14.010,5.83,224,0.875,bicubic,-12.248,-7.512,-16 legacy_seresnext26_32x4d.in1k,65.040,34.960,85.630,14.370,16.79,224,0.875,bicubic,-12.068,-7.684,-4 resnet34.bt_in1k,64.940,35.060,86.210,13.790,21.80,288,0.950,bicubic,-11.540,-7.144,+21 convnext_atto.d2_in1k,64.920,35.080,86.230,13.770,3.70,288,0.950,bicubic,-12.088,-7.472,0 hrnet_w18.ms_in1k,64.920,35.080,85.730,14.270,21.30,224,0.875,bilinear,-11.832,-7.714,+8 resnext26ts.ra2_in1k,64.900,35.100,85.710,14.290,10.30,288,1.000,bicubic,-12.278,-7.754,-13 efficientvit_m5.r224_in1k,64.890,35.110,85.390,14.610,12.47,224,0.875,bicubic,-12.168,-7.794,-6 hardcorenas_c.miil_green_in1k,64.870,35.130,85.250,14.750,5.52,224,0.875,bilinear,-12.196,-7.912,-8 repghostnet_150.in1k,64.830,35.170,85.880,14.120,6.58,224,0.875,bicubic,-12.630,-7.630,-31 efficientformerv2_s0.snap_dist_in1k,64.800,35.200,85.650,14.350,3.60,224,0.950,bicubic,-11.314,-7.208,+23 densenet169.tv_in1k,64.790,35.210,85.250,14.750,14.15,224,0.875,bicubic,-11.110,-7.778,+27 fastvit_t8.apple_in1k,64.730,35.270,85.680,14.320,4.03,256,0.900,bicubic,-11.444,-7.372,+19 ghostnetv2_130.in1k,64.720,35.280,85.420,14.580,8.96,224,0.875,bicubic,-12.036,-7.942,-1 mixnet_m.ft_in1k,64.670,35.330,85.460,14.540,5.01,224,0.875,bicubic,-12.590,-7.958,-24 xcit_nano_12_p8_224.fb_dist_in1k,64.610,35.390,85.990,14.010,3.05,224,1.000,bicubic,-11.722,-7.108,+14 levit_128s.fb_dist_in1k,64.590,35.410,84.730,15.270,7.78,224,0.900,bicubic,-11.936,-8.142,+4 levit_conv_128s.fb_dist_in1k,64.590,35.410,84.730,15.270,7.78,224,0.900,bicubic,-11.930,-8.136,+4 repvgg_a2.rvgg_in1k,64.470,35.530,85.140,14.860,28.21,224,0.875,bilinear,-11.988,-7.862,+7 xcit_nano_12_p16_384.fb_dist_in1k,64.420,35.580,85.300,14.700,3.05,384,1.000,bicubic,-11.038,-7.398,+31 hardcorenas_b.miil_green_in1k,64.390,35.610,84.880,15.120,5.18,224,0.875,bilinear,-12.158,-7.882,-2 regnetx_016.pycls_in1k,64.380,35.620,85.470,14.530,9.19,224,0.875,bicubic,-12.544,-7.946,-13 tf_efficientnet_lite1.in1k,64.370,35.630,85.460,14.540,5.42,240,0.882,bicubic,-12.274,-7.764,-7 resmlp_12_224.fb_in1k,64.350,35.650,85.590,14.410,15.35,224,0.875,bicubic,-12.298,-7.588,-9 tf_efficientnet_b0.aa_in1k,64.300,35.700,85.280,14.720,5.29,224,0.875,bicubic,-12.544,-7.938,-13 tf_mixnet_m.in1k,64.260,35.740,85.100,14.900,5.01,224,0.875,bicubic,-12.694,-8.054,-19 densenet121.ra_in1k,64.250,35.750,85.820,14.180,7.98,288,0.950,bicubic,-12.250,-7.548,-3 resnet26.bt_in1k,64.200,35.800,85.210,14.790,16.00,288,0.950,bicubic,-12.166,-7.970,0 tf_efficientnet_es.in1k,64.200,35.800,84.740,15.260,5.44,224,0.875,bicubic,-12.398,-8.462,-11 regnety_008.pycls_in1k,64.140,35.860,85.240,14.760,6.26,224,0.875,bicubic,-12.162,-7.822,+1 dpn68.mx_in1k,64.120,35.880,85.080,14.920,12.61,224,0.875,bicubic,-12.226,-7.928,-2 vit_small_patch32_224.augreg_in21k_ft_in1k,64.090,35.910,85.550,14.450,22.88,224,0.900,bicubic,-11.904,-7.250,+3 mobilenetv2_140.ra_in1k,64.070,35.930,85.030,14.970,6.11,224,0.875,bicubic,-12.446,-7.958,-10 repghostnet_130.in1k,63.960,36.040,84.840,15.160,5.48,224,0.875,bicubic,-12.416,-8.052,-7 hardcorenas_a.miil_green_in1k,63.720,36.280,84.410,15.590,5.26,224,0.875,bilinear,-12.218,-8.098,+3 resnest14d.gluon_in1k,63.620,36.380,84.230,15.770,10.61,224,0.875,bilinear,-11.888,-8.278,+12 regnety_004.tv2_in1k,63.600,36.400,84.860,15.140,4.34,224,0.965,bicubic,-11.994,-7.840,+9 mobilevitv2_075.cvnets_in1k,63.590,36.410,84.950,15.050,2.87,256,0.888,bicubic,-12.018,-7.794,+7 tf_mixnet_s.in1k,63.580,36.420,84.260,15.740,4.13,224,0.875,bicubic,-12.072,-8.380,+4 tf_efficientnet_b0.in1k,63.520,36.480,84.870,15.130,5.29,224,0.875,bicubic,-13.010,-8.138,-20 mixnet_s.ft_in1k,63.390,36.610,84.720,15.280,4.13,224,0.875,bicubic,-12.604,-8.550,-5 mobilenetv3_large_100.ra_in1k,63.380,36.620,84.080,15.920,5.48,224,0.875,bicubic,-12.386,-8.458,-1 vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,63.340,36.660,85.270,14.730,6.36,384,1.000,bicubic,-12.620,-7.992,-6 resnet50.tv_in1k,63.330,36.670,84.670,15.330,25.56,224,0.875,bilinear,-12.798,-8.188,-11 efficientnet_es_pruned.in1k,63.310,36.690,84.950,15.050,5.44,224,0.875,bicubic,-11.696,-7.494,+16 mixer_b16_224.goog_in21k_ft_in1k,63.290,36.710,83.340,16.660,59.88,224,0.875,bicubic,-13.312,-8.884,-29 mobilenetv3_rw.rmsp_in1k,63.240,36.760,84.520,15.480,5.48,224,0.875,bicubic,-12.380,-8.184,-4 efficientnet_lite0.ra_in1k,63.240,36.760,84.410,15.590,4.65,224,0.875,bicubic,-12.242,-8.110,+2 mobileone_s1.apple_in1k,63.200,36.800,84.210,15.790,4.83,224,0.900,bilinear,-12.586,-8.582,-9 semnasnet_100.rmsp_in1k,63.160,36.840,84.540,15.460,3.89,224,0.875,bicubic,-12.290,-8.058,+2 vit_tiny_patch16_224.augreg_in21k_ft_in1k,63.130,36.870,84.870,15.130,5.72,224,0.900,bicubic,-12.332,-7.974,-1 regnety_006.pycls_in1k,63.090,36.910,84.240,15.760,6.06,224,0.875,bicubic,-12.178,-8.286,+1 pit_ti_distilled_224.in1k,63.020,36.980,83.810,16.190,5.10,224,0.900,bicubic,-11.236,-8.142,+22 densenet121.tv_in1k,62.940,37.060,84.250,15.750,7.98,224,0.875,bicubic,-11.824,-7.904,+12 mobilevit_xs.cvnets_in1k,62.930,37.070,84.830,15.170,2.32,256,0.900,bicubic,-11.704,-7.518,+14 ghostnetv2_100.in1k,62.900,37.100,84.090,15.910,6.16,224,0.875,bicubic,-12.266,-8.264,-2 legacy_seresnet34.in1k,62.890,37.110,84.230,15.770,21.96,224,0.875,bilinear,-11.912,-7.896,+8 hrnet_w18_small_v2.ms_in1k,62.830,37.170,83.970,16.030,15.60,224,0.875,bilinear,-12.280,-8.446,-1 edgenext_x_small.in1k,62.810,37.190,84.670,15.330,2.34,288,1.000,bicubic,-12.878,-8.096,-17 mobilenetv2_110d.ra_in1k,62.810,37.190,84.480,15.520,4.52,224,0.875,bicubic,-12.244,-7.704,-1 deit_tiny_distilled_patch16_224.fb_in1k,62.790,37.210,83.930,16.070,5.91,224,0.900,bicubic,-11.714,-7.960,+11 resnet18.fb_swsl_ig1b_ft_in1k,62.750,37.250,84.300,15.700,11.69,224,0.875,bilinear,-10.538,-7.430,+30 tinynet_b.in1k,62.720,37.280,84.220,15.780,3.73,188,0.875,bicubic,-12.258,-7.966,-1 repvgg_b0.rvgg_in1k,62.710,37.290,83.880,16.120,15.82,224,0.875,bilinear,-12.434,-8.536,-9 tf_efficientnet_lite0.in1k,62.580,37.420,84.230,15.770,4.65,224,0.875,bicubic,-12.252,-7.940,-1 xcit_nano_12_p8_224.fb_in1k,62.560,37.440,84.210,15.790,3.05,224,1.000,bicubic,-11.350,-7.958,+17 resnet34.gluon_in1k,62.540,37.460,84.000,16.000,21.80,224,0.875,bicubic,-12.040,-7.982,+4 regnetx_008.pycls_in1k,62.490,37.510,84.020,15.980,7.26,224,0.875,bicubic,-12.538,-8.318,-9 dla34.in1k,62.490,37.510,83.930,16.070,15.74,224,0.875,bilinear,-12.150,-8.136,0 fbnetc_100.rmsp_in1k,62.450,37.550,83.370,16.630,5.57,224,0.875,bilinear,-12.680,-9.018,-14 tf_mobilenetv3_large_100.in1k,62.440,37.560,83.950,16.050,5.48,224,0.875,bilinear,-13.076,-8.644,-24 crossvit_9_240.in1k,62.250,37.750,84.240,15.760,8.55,240,0.875,bicubic,-11.710,-7.722,+8 repghostnet_111.in1k,62.250,37.750,83.880,16.120,4.54,224,0.875,bicubic,-12.806,-8.312,-15 crossvit_tiny_240.in1k,62.080,37.920,83.610,16.390,7.01,240,0.875,bicubic,-11.260,-8.298,+16 regnetx_004_tv.tv2_in1k,62.060,37.940,83.770,16.230,5.50,224,0.965,bicubic,-12.540,-8.400,-5 resnet18d.ra2_in1k,62.000,38.000,83.790,16.210,11.71,288,0.950,bicubic,-11.794,-8.048,+9 repvgg_a1.rvgg_in1k,61.970,38.030,83.040,16.960,14.09,224,0.875,bilinear,-12.492,-8.816,-4 efficientvit_m4.r224_in1k,61.950,38.050,83.580,16.420,8.80,224,0.875,bicubic,-12.418,-8.400,-4 mnasnet_100.rmsp_in1k,61.920,38.080,83.700,16.300,4.38,224,0.875,bicubic,-12.732,-8.422,-12 vgg19_bn.tv_in1k,61.870,38.130,83.450,16.550,143.68,224,0.875,bilinear,-12.346,-8.394,-4 regnety_004.pycls_in1k,61.840,38.160,83.410,16.590,4.34,224,0.875,bicubic,-12.186,-8.338,-2 convit_tiny.fb_in1k,61.590,38.410,84.090,15.910,5.71,224,0.875,bicubic,-11.522,-7.622,+12 resnet18.a1_in1k,61.580,38.420,82.470,17.530,11.69,288,1.000,bicubic,-11.578,-8.556,+10 resnet34.a3_in1k,61.490,38.510,82.610,17.390,21.80,224,0.950,bicubic,-11.480,-8.496,+13 resnet18.fb_ssl_yfcc100m_ft_in1k,61.480,38.520,83.330,16.670,11.69,224,0.875,bilinear,-11.118,-8.086,+15 repghostnet_100.in1k,61.380,38.620,82.750,17.250,4.07,224,0.875,bicubic,-12.826,-8.792,-9 regnetx_006.pycls_in1k,61.360,38.640,83.450,16.550,6.20,224,0.875,bicubic,-12.508,-8.228,-3 hrnet_w18_small.gluon_in1k,61.290,38.710,82.280,17.720,13.19,224,0.875,bicubic,-12.630,-8.914,-6 ghostnet_100.in1k,61.250,38.750,82.300,17.700,5.18,224,0.875,bicubic,-12.708,-9.232,-8 spnasnet_100.rmsp_in1k,61.240,38.760,82.760,17.240,4.42,224,0.875,bilinear,-12.854,-9.060,-12 resnet34.tv_in1k,61.200,38.800,82.740,17.260,21.80,224,0.875,bilinear,-12.106,-8.680,0 vit_base_patch32_224.augreg_in1k,61.040,38.960,82.730,17.270,88.22,224,0.900,bicubic,-13.854,-9.048,-29 efficientvit_m3.r224_in1k,61.010,38.990,83.200,16.800,6.90,224,0.875,bicubic,-12.364,-8.148,-5 pit_ti_224.in1k,60.960,39.040,83.850,16.150,4.85,224,0.900,bicubic,-11.950,-7.554,+5 skresnet18.ra_in1k,60.850,39.150,82.850,17.150,11.96,224,0.875,bicubic,-12.184,-8.322,0 vgg16_bn.tv_in1k,60.770,39.230,82.960,17.040,138.37,224,0.875,bilinear,-12.600,-8.554,-7 semnasnet_075.rmsp_in1k,60.720,39.280,82.540,17.460,2.91,224,0.875,bicubic,-12.284,-8.600,-1 tf_mobilenetv3_large_075.in1k,60.380,39.620,81.970,18.030,3.99,224,0.875,bilinear,-13.050,-9.382,-11 xcit_nano_12_p16_224.fb_dist_in1k,60.220,39.780,82.490,17.510,3.05,224,1.000,bicubic,-12.090,-8.370,+7 resnet18.a2_in1k,60.200,39.800,81.840,18.160,11.69,288,1.000,bicubic,-12.172,-8.756,+4 mobilenetv2_100.ra_in1k,60.150,39.850,82.190,17.810,3.50,224,0.875,bicubic,-12.818,-8.826,-3 vit_base_patch32_224.sam_in1k,59.990,40.010,81.220,18.780,88.22,224,0.900,bicubic,-13.704,-9.794,-16 deit_tiny_patch16_224.fb_in1k,59.800,40.200,82.660,17.340,5.72,224,0.900,bicubic,-12.370,-8.456,+7 legacy_seresnet18.in1k,59.790,40.210,81.680,18.320,11.78,224,0.875,bicubic,-11.970,-8.652,+11 repvgg_a0.rvgg_in1k,59.760,40.240,81.250,18.750,9.11,224,0.875,bilinear,-12.648,-9.242,-4 vgg19.tv_in1k,59.710,40.290,81.460,18.540,143.67,224,0.875,bilinear,-12.668,-9.414,-3 edgenext_xx_small.in1k,59.410,40.590,81.840,18.160,1.33,288,1.000,bicubic,-12.468,-8.712,+6 regnetx_004.pycls_in1k,59.380,40.620,81.740,18.260,5.16,224,0.875,bicubic,-13.022,-9.086,-6 vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,59.080,40.920,81.760,18.240,6.34,224,0.900,bicubic,-12.718,-9.064,+4 tf_mobilenetv3_large_minimal_100.in1k,59.080,40.920,81.130,18.870,3.92,224,0.875,bilinear,-13.184,-9.510,-2 repghostnet_080.in1k,59.060,40.940,81.160,18.840,3.28,224,0.875,bicubic,-13.152,-9.324,-2 hrnet_w18_small.ms_in1k,58.960,41.040,81.340,18.660,13.19,224,0.875,bilinear,-13.376,-9.340,-7 vgg13_bn.tv_in1k,58.960,41.040,81.090,18.910,133.05,224,0.875,bilinear,-12.628,-9.288,+4 lcnet_100.ra2_in1k,58.920,41.080,81.200,18.800,2.95,224,0.875,bicubic,-13.182,-9.154,-3 vgg16.tv_in1k,58.840,41.160,81.660,18.340,138.36,224,0.875,bilinear,-12.752,-8.724,+1 pvt_v2_b0.in1k,58.770,41.230,82.120,17.880,3.67,224,0.900,bicubic,-11.890,-8.076,+7 mobileone_s0.apple_in1k,58.580,41.420,80.080,19.920,5.29,224,0.875,bilinear,-12.822,-9.762,+1 efficientvit_m2.r224_in1k,58.420,41.580,81.360,18.640,4.19,224,0.875,bicubic,-12.394,-8.782,+4 resnet18.gluon_in1k,58.340,41.660,80.970,19.030,11.69,224,0.875,bicubic,-12.494,-8.786,+2 xcit_nano_12_p16_224.fb_in1k,58.330,41.670,80.920,19.080,3.05,224,1.000,bicubic,-11.632,-8.842,+7 tinynet_c.in1k,58.200,41.800,80.280,19.720,2.46,184,0.875,bicubic,-13.042,-9.452,-1 resnet14t.c3_in1k,58.190,41.810,80.300,19.700,10.08,224,0.950,bicubic,-14.064,-10.006,-14 efficientvit_b0.r224_in1k,58.050,41.950,79.800,20.200,3.41,224,0.950,bicubic,-13.348,-9.628,-4 mobilevitv2_050.cvnets_in1k,57.700,42.300,80.880,19.120,1.37,256,0.888,bicubic,-12.448,-9.038,+2 vgg11_bn.tv_in1k,57.410,42.590,80.010,19.990,132.87,224,0.875,bilinear,-12.972,-9.798,-1 resnet18.tv_in1k,57.180,42.820,80.190,19.810,11.69,224,0.875,bilinear,-12.580,-8.880,+3 mobilevit_xxs.cvnets_in1k,57.170,42.830,79.760,20.240,1.27,256,0.900,bicubic,-11.748,-9.186,+4 vgg13.tv_in1k,57.140,42.860,79.550,20.450,133.05,224,0.875,bilinear,-12.792,-9.700,0 regnety_002.pycls_in1k,57.010,42.990,79.880,20.120,3.16,224,0.875,bicubic,-13.270,-9.650,-4 mixer_l16_224.goog_in21k_ft_in1k,56.660,43.340,76.010,23.990,208.20,224,0.875,bicubic,-15.394,-11.664,-18 repghostnet_058.in1k,56.110,43.890,78.510,21.490,2.55,224,0.875,bicubic,-12.804,-9.910,+1 regnetx_002.pycls_in1k,56.070,43.930,79.210,20.790,2.68,224,0.875,bicubic,-12.682,-9.332,+2 resnet18.a3_in1k,56.000,44.000,78.970,21.030,11.69,224,0.950,bicubic,-12.252,-9.202,+4 dla60x_c.in1k,55.990,44.010,78.970,21.030,1.32,224,0.875,bilinear,-11.922,-9.462,+5 vgg11.tv_in1k,55.820,44.180,78.830,21.170,132.86,224,0.875,bilinear,-13.202,-9.794,-5 resnet10t.c3_in1k,55.560,44.440,78.440,21.560,5.44,224,0.950,bicubic,-12.804,-9.596,-1 efficientvit_m1.r224_in1k,55.470,44.530,79.150,20.850,2.98,224,0.875,bicubic,-12.836,-9.520,-1 lcnet_075.ra2_in1k,55.440,44.560,78.350,21.650,2.36,224,0.875,bicubic,-13.342,-10.010,-5 mobilenetv3_small_100.lamb_in1k,54.680,45.320,77.770,22.230,2.54,224,0.875,bicubic,-12.978,-9.866,+1 tf_mobilenetv3_small_100.in1k,54.470,45.530,77.070,22.930,2.54,224,0.875,bilinear,-13.452,-10.602,-2 repghostnet_050.in1k,53.550,46.450,76.740,23.260,2.31,224,0.875,bicubic,-13.416,-10.180,+1 tinynet_d.in1k,53.430,46.570,76.320,23.680,2.34,152,0.875,bicubic,-13.542,-10.746,-1 mnasnet_small.lamb_in1k,53.270,46.730,75.910,24.090,2.03,224,0.875,bicubic,-12.926,-10.594,0 dla46x_c.in1k,53.040,46.960,76.840,23.160,1.07,224,0.875,bilinear,-12.952,-10.134,0 mobilenetv2_050.lamb_in1k,52.840,47.160,75.450,24.550,1.97,224,0.875,bicubic,-13.108,-10.634,0 dla46_c.in1k,52.200,47.800,75.670,24.330,1.30,224,0.875,bilinear,-12.672,-10.628,+2 tf_mobilenetv3_small_075.in1k,52.160,47.840,75.450,24.550,2.04,224,0.875,bilinear,-13.566,-10.682,-1 mobilenetv3_small_075.lamb_in1k,51.890,48.110,74.740,25.260,2.04,224,0.875,bicubic,-13.346,-10.706,-1 efficientvit_m0.r224_in1k,50.750,49.250,74.470,25.530,2.35,224,0.875,bicubic,-12.520,-10.706,0 lcnet_050.ra2_in1k,49.980,50.020,73.440,26.560,1.88,224,0.875,bicubic,-13.158,-10.942,0 tf_mobilenetv3_small_minimal_100.in1k,49.530,50.470,73.020,26.980,2.04,224,0.875,bilinear,-13.364,-11.218,0 tinynet_e.in1k,46.730,53.270,70.360,29.640,2.04,106,0.875,bicubic,-13.136,-11.402,0 mobilenetv3_small_050.lamb_in1k,44.850,55.150,67.690,32.310,1.59,224,0.875,bicubic,-13.066,-12.490,0
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-train-amp-nchw-pt112-cu113-rtx3090.csv
model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count tinynet_e,10001.12,50.423,512,106,2.04 mobilenetv3_small_050,7406.47,68.392,512,224,1.59 tf_mobilenetv3_small_minimal_100,6438.14,78.983,512,224,2.04 mobilenetv3_small_075,6186.83,82.006,512,224,2.04 tf_mobilenetv3_small_075,5783.46,87.782,512,224,2.04 mobilenetv3_small_100,5749.13,88.315,512,224,2.54 lcnet_035,5673.53,89.75,512,224,1.64 tf_mobilenetv3_small_100,5383.9,94.36,512,224,2.54 levit_128s,5298.88,95.701,512,224,7.78 lcnet_050,5280.37,96.452,512,224,1.88 tinynet_d,5161.83,98.416,512,152,2.34 mixer_s32_224,4696.33,108.475,512,224,19.1 resnet10t,4669.46,109.393,512,176,5.44 vit_small_patch32_224,4447.28,114.289,512,224,22.88 lcnet_075,4278.23,119.175,512,224,2.36 vit_tiny_r_s16_p8_224,4137.87,122.895,512,224,6.34 levit_128,3895.0,130.318,512,224,9.21 regnetx_002,3718.05,137.026,512,224,2.68 lcnet_100,3569.0,142.969,512,224,2.95 mnasnet_small,3450.28,147.453,512,224,2.03 regnety_002,3414.18,149.006,512,224,3.16 cs3darknet_focus_s,3251.91,156.949,512,256,3.27 mobilenetv2_035,3160.04,161.202,512,224,1.68 levit_192,3046.5,166.9,512,224,10.95 gernet_s,3034.31,168.028,512,224,8.17 tinynet_c,2919.98,174.314,512,184,2.46 mnasnet_050,2847.14,179.025,512,224,2.22 cs3darknet_s,2821.27,180.951,512,256,3.28 resnet18,2764.22,184.877,512,224,11.69 ssl_resnet18,2760.71,185.109,512,224,11.69 mobilenetv2_050,2751.58,185.257,512,224,1.97 swsl_resnet18,2742.47,186.338,512,224,11.69 semnasnet_050,2741.67,185.816,512,224,2.08 gluon_resnet18_v1b,2741.53,186.395,512,224,11.69 lcnet_150,2713.5,188.193,512,224,4.5 regnetx_004,2695.23,188.875,512,224,5.16 ese_vovnet19b_slim_dw,2588.37,197.313,512,224,1.9 seresnet18,2562.51,199.293,512,224,11.78 nf_regnet_b0,2561.76,198.646,512,192,8.76 legacy_seresnet18,2500.8,204.207,512,224,11.78 tf_efficientnetv2_b0,2483.22,204.949,512,192,7.14 levit_256,2482.39,205.091,512,224,18.89 mobilenetv3_large_075,2392.41,213.119,512,224,3.99 resnet14t,2385.69,214.281,512,176,10.08 tf_mobilenetv3_large_minimal_100,2347.68,217.368,512,224,3.92 vit_tiny_patch16_224,2293.54,222.408,512,224,5.72 regnetx_006,2293.09,222.433,512,224,6.2 deit_tiny_patch16_224,2290.53,222.68,512,224,5.72 tf_mobilenetv3_large_075,2259.6,225.688,512,224,3.99 deit_tiny_distilled_patch16_224,2253.36,226.358,512,224,5.91 edgenext_xx_small,2231.33,228.598,512,256,1.33 ghostnet_050,2189.91,232.414,512,224,2.59 mobilenetv3_rw,2184.31,233.512,512,224,5.48 mnasnet_075,2176.02,234.492,512,224,3.17 mobilenetv3_large_100,2167.29,235.344,512,224,5.48 mobilenetv3_large_100_miil,2165.63,235.504,512,224,5.48 levit_256d,2159.5,235.516,512,224,26.21 resnet18d,2129.12,240.084,512,224,11.71 hardcorenas_a,2118.32,240.968,512,224,5.26 regnety_004,2100.99,242.536,512,224,4.34 pit_ti_distilled_224,2086.5,244.504,512,224,5.1 pit_ti_224,2079.54,245.311,512,224,4.85 ese_vovnet19b_slim,2066.1,247.446,512,224,3.17 mnasnet_100,2053.84,248.477,512,224,4.38 tf_mobilenetv3_large_100,2053.63,248.437,512,224,5.48 mnasnet_b1,2053.54,248.485,512,224,4.38 semnasnet_075,2008.51,253.986,512,224,2.91 hardcorenas_b,2008.46,253.96,512,224,5.18 mobilenetv2_075,1983.69,257.32,512,224,2.64 hardcorenas_c,1977.37,257.94,512,224,5.52 xcit_nano_12_p16_224_dist,1970.62,258.036,512,224,3.05 xcit_nano_12_p16_224,1969.78,258.084,512,224,3.05 tinynet_b,1965.95,259.368,512,188,3.73 hardcorenas_d,1880.3,271.085,512,224,7.5 tf_efficientnetv2_b1,1876.23,271.395,512,192,8.14 resnetblur18,1872.21,273.11,512,224,11.69 spnasnet_100,1862.13,273.955,512,224,4.42 mnasnet_a1,1859.21,274.476,512,224,3.89 semnasnet_100,1857.75,274.693,512,224,3.89 mobilenetv2_100,1832.14,278.633,512,224,3.5 regnety_006,1809.24,281.912,512,224,6.06 visformer_tiny,1802.41,283.384,512,224,10.32 mixer_b32_224,1784.58,286.101,512,224,60.29 skresnet18,1730.13,295.275,512,224,11.96 tinynet_a,1710.13,298.117,512,192,6.19 vit_base_patch32_224_sam,1703.64,299.668,512,224,88.22 vit_base_patch32_224,1703.57,299.695,512,224,88.22 efficientnet_lite0,1674.68,304.971,512,224,4.65 cs3darknet_focus_m,1668.48,306.209,512,256,9.3 hardcorenas_e,1650.74,309.021,512,224,8.07 hardcorenas_f,1646.88,309.777,512,224,8.2 gluon_resnet34_v1b,1634.03,312.731,512,224,21.8 regnetx_008,1632.2,312.851,512,224,7.26 tv_resnet34,1630.02,313.513,512,224,21.8 resnet34,1622.41,314.992,512,224,21.8 ghostnet_100,1601.5,318.319,512,224,5.18 tf_efficientnet_lite0,1591.79,320.884,512,224,4.65 fbnetc_100,1567.77,325.605,512,224,5.57 pit_xs_distilled_224,1551.83,329.02,512,224,11.0 pit_xs_224,1549.02,329.642,512,224,10.62 mixer_s16_224,1543.23,331.197,512,224,18.53 dla46_c,1532.94,333.18,512,224,1.3 mnasnet_140,1525.17,334.879,512,224,7.12 seresnet34,1505.77,339.147,512,224,21.96 cs3darknet_m,1499.82,340.716,512,256,9.31 regnety_008,1498.63,340.596,512,224,6.26 levit_384,1491.26,342.207,512,224,39.13 edgenext_x_small,1481.71,344.446,512,256,2.34 ese_vovnet19b_dw,1466.46,348.623,512,224,6.54 legacy_seresnet34,1465.81,348.38,512,224,21.96 efficientnet_b0,1459.11,262.1,384,224,5.29 gernet_m,1456.76,350.74,512,224,21.14 vit_small_patch32_384,1448.56,352.604,512,384,22.92 regnetz_005,1448.06,352.165,512,224,7.12 rexnet_100,1447.81,264.049,384,224,4.8 rexnetr_100,1441.71,265.216,384,224,4.88 nf_resnet26,1422.76,359.346,512,224,16.0 hrnet_w18_small,1410.43,361.614,512,224,13.19 selecsls42,1405.04,363.736,512,224,30.35 selecsls42b,1401.22,364.735,512,224,32.46 mobilenetv2_110d,1400.15,273.199,384,224,4.52 tf_efficientnet_b0_ap,1398.67,273.43,384,224,5.29 mobilevitv2_050,1396.45,365.664,512,256,1.37 tf_efficientnet_b0_ns,1395.54,274.064,384,224,5.29 tf_efficientnet_b0,1395.32,274.114,384,224,5.29 tf_efficientnetv2_b2,1392.9,365.948,512,208,10.1 vit_tiny_r_s16_p8_384,1392.75,274.873,384,384,6.36 resnet34d,1379.64,370.514,512,224,21.82 ghostnet_130,1364.55,373.824,512,224,7.36 gmixer_12_224,1352.72,377.701,512,224,12.7 crossvit_tiny_240,1349.19,377.902,512,240,7.01 gmlp_ti16_224,1340.6,284.894,384,224,5.87 semnasnet_140,1340.57,380.992,512,224,6.11 dla46x_c,1338.33,381.81,512,224,1.07 xcit_tiny_12_p16_224,1323.84,384.926,512,224,6.72 xcit_tiny_12_p16_224_dist,1317.19,386.895,512,224,6.72 resnetrs50,1317.01,387.565,512,160,35.69 mobilevit_xxs,1316.84,290.489,384,256,1.27 resnet26,1312.7,389.566,512,224,16.0 efficientnet_b1_pruned,1301.95,391.798,512,240,6.33 mobilenetv2_140,1267.4,302.189,384,224,6.11 dla60x_c,1262.98,404.404,512,224,1.32 crossvit_9_240,1260.08,303.33,384,240,8.55 convnext_nano_hnf,1235.34,413.703,512,224,15.59 convnext_nano_ols,1234.94,413.902,512,224,15.6 poolformer_s12,1234.11,414.201,512,224,11.92 convnext_nano,1233.61,414.261,512,224,15.59 resmlp_12_distilled_224,1232.37,414.645,512,224,15.35 resmlp_12_224,1232.04,414.762,512,224,15.35 fbnetv3_b,1226.89,415.617,512,224,8.6 nf_regnet_b2,1219.45,418.235,512,240,14.31 repvgg_b0,1217.24,419.512,512,224,15.82 selecsls60b,1214.07,420.825,512,224,32.77 selecsls60,1211.7,421.663,512,224,30.67 nf_regnet_b1,1209.03,421.975,512,256,10.22 crossvit_9_dagger_240,1206.16,316.906,384,240,8.78 nf_seresnet26,1198.39,426.558,512,224,17.4 mixnet_s,1181.75,431.958,512,224,4.13 nf_ecaresnet26,1174.85,435.233,512,224,16.0 efficientnet_lite1,1171.46,217.556,256,240,5.42 darknet17,1164.06,439.537,512,256,14.3 efficientnet_es_pruned,1160.76,440.317,512,224,5.44 efficientnet_es,1160.37,440.47,512,224,5.44 regnetx_016,1139.3,448.473,512,224,9.19 fbnetv3_d,1138.14,335.598,384,224,10.31 tf_efficientnet_es,1136.29,449.83,512,224,5.44 rexnetr_130,1133.04,224.76,256,224,7.61 dla34,1132.96,451.315,512,224,15.74 resnet26d,1119.56,456.822,512,224,16.01 tf_mixnet_s,1118.11,456.605,512,224,4.13 tf_efficientnet_lite1,1110.94,229.444,256,240,5.42 edgenext_small,1109.37,460.388,512,256,5.59 convit_tiny,1095.04,466.531,512,224,5.71 rexnet_130,1094.78,232.699,256,224,7.56 mobilenetv2_120d,1078.49,236.158,256,224,5.83 darknet21,1073.87,476.43,512,256,20.86 ecaresnet50d_pruned,1067.01,478.899,512,224,19.94 deit_small_patch16_224,1053.64,363.563,384,224,22.05 vit_small_patch16_224,1052.92,363.872,384,224,22.05 deit_small_distilled_patch16_224,1032.61,370.971,384,224,22.44 sedarknet21,1031.46,495.893,512,256,20.95 gernet_l,1030.31,496.058,512,256,31.08 efficientnet_b1,1030.3,246.963,256,224,7.79 rexnetr_150,1022.06,249.288,256,224,9.78 repvgg_a2,1010.18,506.008,512,224,28.21 edgenext_small_rw,1009.52,506.183,512,256,7.83 skresnet34,1008.96,506.323,512,224,22.28 resnest14d,979.06,522.497,512,224,10.61 cs3darknet_focus_l,977.57,391.957,384,256,21.15 deit3_small_patch16_224,977.26,391.961,384,224,22.06 deit3_small_patch16_224_in21ft1k,976.5,392.276,384,224,22.06 rexnet_150,965.2,264.04,256,224,9.73 regnety_016,954.26,534.657,512,224,11.2 vit_base_patch32_plus_256,951.64,537.091,512,256,119.48 mobilevitv2_075,947.54,269.157,256,256,2.87 legacy_seresnext26_32x4d,946.21,405.17,384,224,16.79 pit_s_224,942.8,270.615,256,224,23.46 pit_s_distilled_224,939.97,271.455,256,224,24.04 vit_srelpos_small_patch16_224,922.29,415.451,384,224,21.97 vit_relpos_small_patch16_224,921.7,415.439,384,224,21.98 efficientnet_b0_g16_evos,909.42,421.149,384,224,8.11 resnext26ts,905.09,423.733,384,256,10.3 cs3darknet_l,902.18,282.891,256,256,21.16 coat_lite_tiny,893.97,428.624,384,224,5.72 resnet26t,890.89,574.188,512,256,16.01 efficientnet_b0_gn,881.54,289.263,256,224,5.29 resnetv2_50,880.1,580.976,512,224,25.55 efficientnet_b2_pruned,874.13,291.317,256,260,8.31 seresnext26ts,867.62,294.407,256,256,10.39 eca_resnext26ts,867.54,294.527,256,256,10.3 tf_efficientnet_b1,863.78,294.816,256,240,7.79 tf_efficientnet_b1_ap,863.54,294.906,256,240,7.79 tf_efficientnet_b1_ns,863.39,294.941,256,240,7.79 cs3sedarknet_l,861.38,444.523,384,256,21.91 tf_efficientnetv2_b3,855.0,297.539,256,240,14.36 efficientnet_lite2,852.1,299.402,256,260,6.09 twins_svt_small,851.73,449.18,384,224,24.06 gcresnext26ts,850.58,300.113,256,256,10.48 efficientnetv2_rw_t,850.16,298.981,256,224,13.65 botnet26t_256,849.43,451.465,384,256,12.49 ecaresnetlight,846.78,603.683,512,224,30.16 seresnext26t_32x4d,845.6,453.458,384,224,16.81 seresnext26tn_32x4d,845.31,453.612,384,224,16.81 seresnext26d_32x4d,844.96,453.775,384,224,16.81 coat_lite_mini,842.06,455.115,384,224,11.01 tf_efficientnet_cc_b0_8e,837.03,457.594,384,224,24.01 ecaresnet101d_pruned,837.02,609.921,512,224,24.88 ecaresnext26t_32x4d,835.25,459.196,384,224,15.41 ecaresnext50t_32x4d,834.39,459.653,384,224,15.41 cspresnet50,830.57,461.498,384,256,21.62 swsl_resnet50,829.79,616.192,512,224,25.56 ssl_resnet50,829.64,616.294,512,224,25.56 gluon_resnet50_v1b,829.63,616.32,512,224,25.56 visformer_small,828.8,462.625,384,224,40.22 tv_resnet50,826.55,618.618,512,224,25.56 resnet50,826.06,618.983,512,224,25.56 vgg11,825.98,619.706,512,224,132.86 halonet26t,824.96,464.902,384,256,12.48 vovnet39a,817.65,625.544,512,224,22.6 tf_efficientnet_lite2,816.76,312.458,256,260,6.09 convnext_tiny_hnf,815.48,312.97,256,224,28.59 convnext_tiny_hnfd,815.19,313.078,256,224,28.59 vit_small_resnet26d_224,813.66,470.891,384,224,63.61 convnext_tiny,813.16,313.859,256,224,28.59 efficientnet_cc_b0_8e,812.96,471.165,384,224,24.01 vit_relpos_base_patch32_plus_rpn_256,811.26,630.0,512,256,119.42 mixnet_m,810.2,630.361,512,224,5.01 efficientnet_cc_b0_4e,808.8,473.577,384,224,13.31 convnext_tiny_in22ft1k,808.5,315.666,256,224,28.59 efficientnet_b2a,800.27,318.401,256,256,9.11 efficientnet_b2,799.96,318.544,256,256,9.11 regnetz_b16,796.72,319.811,256,224,9.72 tresnet_m,792.8,643.233,512,224,31.39 mobilevit_xs,792.23,321.979,256,256,2.32 ecaresnet26t,791.55,484.557,384,256,16.01 gc_efficientnetv2_rw_t,791.43,320.691,256,224,13.68 resnetv2_50t,790.83,646.602,512,224,25.57 resnetv2_50d,790.11,647.216,512,224,25.57 regnetx_032,787.5,486.368,384,224,15.3 ese_vovnet39b,786.37,650.429,512,224,24.57 tf_efficientnet_cc_b0_4e,784.54,488.254,384,224,13.31 eca_botnext26ts_256,781.43,326.976,256,256,10.59 resnet32ts,781.02,327.191,256,256,17.96 tf_mixnet_m,777.93,492.059,384,224,5.01 resnet33ts,767.78,332.812,256,256,19.68 gluon_resnet50_v1c,763.32,502.196,384,224,25.58 eca_halonext26ts,763.09,334.836,256,256,10.76 rexnetr_200,762.4,250.686,192,224,16.52 dpn68b,756.57,506.252,384,224,12.61 lambda_resnet26t,751.39,510.429,384,256,10.96 vit_relpos_small_patch16_rpn_224,751.37,510.029,384,224,21.97 resnet50t,748.03,512.487,384,224,25.57 cspresnet50d,746.91,341.842,256,256,21.64 gluon_resnet50_v1d,746.5,513.543,384,224,25.58 resnet50d,744.99,514.575,384,224,25.58 legacy_seresnet50,744.88,514.356,384,224,28.09 cspresnet50w,744.04,343.166,256,256,28.12 eca_resnet33ts,743.27,343.735,256,256,19.68 efficientnet_b0_g8_gn,743.27,343.315,256,224,6.56 seresnet33ts,742.4,344.003,256,256,19.78 resnetaa50,741.95,516.711,384,224,25.56 selecsls84,740.99,689.736,512,224,50.95 dpn68,739.97,517.747,384,224,12.61 res2net50_48w_2s,738.06,519.427,384,224,25.29 vit_small_r26_s32_224,737.22,345.982,256,224,36.43 eca_vovnet39b,735.59,695.354,512,224,22.6 lambda_resnet26rpt_256,735.09,260.579,192,256,10.99 nf_regnet_b3,732.33,522.471,384,288,18.59 rexnet_200,731.68,261.239,192,224,16.37 densenet121,730.11,348.758,256,224,7.98 resnest26d,728.94,526.039,384,224,17.07 bat_resnext26ts,728.42,350.197,256,256,10.73 mobilevitv2_100,727.72,262.852,192,256,4.9 tv_densenet121,727.58,350.07,256,224,7.98 nf_seresnet50,727.17,526.884,384,224,28.09 gcresnet33ts,725.89,351.666,256,256,19.88 eca_nfnet_l0,723.69,706.434,512,224,24.14 nfnet_l0,719.96,532.162,384,224,35.07 seresnet50,714.65,536.208,384,224,28.09 twins_pcpvt_small,714.45,356.63,256,224,24.11 nf_ecaresnet50,713.69,537.063,384,224,25.56 dla60,709.61,540.13,384,224,22.04 efficientnet_em,708.33,360.423,256,240,6.9 hrnet_w18_small_v2,705.02,723.712,512,224,15.6 resnetblur50d,704.94,362.275,256,224,25.58 vgg11_bn,703.05,545.962,384,224,132.87 resnetblur50,698.61,548.824,384,224,25.56 regnety_032,696.58,549.77,384,224,19.44 nf_resnet50,696.17,550.716,384,256,25.56 efficientnet_b3_pruned,694.05,367.106,256,300,9.86 tf_efficientnet_em,690.66,369.697,256,240,6.9 skresnet50,685.67,371.92,256,224,25.8 xcit_tiny_24_p16_224,683.44,371.201,256,224,12.12 poolformer_s24,681.93,374.176,256,224,21.39 xcit_tiny_24_p16_224_dist,681.85,371.937,256,224,12.12 vit_base_resnet26d_224,680.96,562.594,384,224,101.4 vovnet57a,678.75,564.837,384,224,36.64 densenet121d,678.22,375.614,256,224,8.0 resnetaa50d,673.73,569.117,384,224,25.58 gluon_resnet50_v1s,669.16,573.001,384,224,25.68 gmixer_24_224,666.22,382.715,256,224,24.72 swsl_resnext50_32x4d,663.66,577.766,384,224,25.03 resnext50_32x4d,663.39,577.966,384,224,25.03 ssl_resnext50_32x4d,663.18,578.185,384,224,25.03 tv_resnext50_32x4d,662.37,578.888,384,224,25.03 gluon_resnext50_32x4d,662.06,579.185,384,224,25.03 haloregnetz_b,660.09,386.296,256,224,11.68 ese_vovnet57b,656.27,584.17,384,224,38.61 cspresnext50,656.07,389.365,256,256,20.57 seresnet50t,655.71,584.407,384,224,28.1 vit_relpos_medium_patch16_cls_224,654.69,389.857,256,224,38.76 seresnetaa50d,654.11,390.147,256,224,28.11 densenetblur121d,649.47,392.249,256,224,8.0 res2net50_26w_4s,648.76,590.62,384,224,25.7 fbnetv3_g,647.3,294.603,192,240,16.62 swin_tiny_patch4_window7_224,646.76,394.841,256,224,28.29 ecaresnet50d,643.9,595.437,384,224,25.58 regnety_040,640.15,598.298,384,224,20.65 gmlp_s16_224,638.67,299.017,192,224,19.42 crossvit_small_240,637.47,399.952,256,240,26.86 resnext50d_32x4d,635.21,402.121,256,224,25.05 nfnet_f0,634.03,806.334,512,192,71.49 vit_srelpos_medium_patch16_224,629.85,405.54,256,224,38.74 mobilevit_s,629.67,303.779,192,256,5.58 skresnet50d,628.92,405.574,256,224,25.82 vit_relpos_medium_patch16_224,628.2,406.369,256,224,38.75 resnest50d_1s4x24d,628.12,406.263,256,224,25.68 mixnet_l,627.47,406.445,256,224,7.33 tf_efficientnet_b2_ns,627.11,304.591,192,260,9.11 tf_efficientnet_b2_ap,626.79,304.757,192,260,9.11 tf_efficientnet_b2,626.11,305.153,192,260,9.11 regnetx_040,624.89,613.356,384,224,22.12 regnetv_040,622.71,409.581,256,224,20.64 darknetaa53,614.47,415.819,256,256,36.02 seresnext50_32x4d,613.62,416.021,256,224,27.56 gluon_seresnext50_32x4d,613.35,416.206,256,224,27.56 sehalonet33ts,613.13,416.664,256,256,13.69 legacy_seresnext50_32x4d,612.89,416.52,256,224,27.56 dla60x,612.79,416.731,256,224,17.35 gcresnet50t,611.79,626.12,384,256,25.9 xcit_nano_12_p16_384_dist,611.55,416.81,256,384,3.05 resmlp_24_224,609.69,418.351,256,224,30.02 resmlp_24_distilled_224,609.51,418.474,256,224,30.02 gcresnext50ts,606.82,314.923,192,256,15.67 tf_inception_v3,603.29,635.057,384,299,23.83 gluon_inception_v3,603.22,635.143,384,299,23.83 adv_inception_v3,603.01,635.347,384,299,23.83 inception_v3,602.27,636.205,384,299,23.83 tf_mixnet_l,600.24,424.956,256,224,7.33 dm_nfnet_f0,600.1,638.573,384,192,71.49 xcit_small_12_p16_224,598.44,425.955,256,224,26.25 xcit_small_12_p16_224_dist,598.22,426.013,256,224,26.25 semobilevit_s,597.07,320.258,192,256,5.74 densenet169,592.78,429.221,256,224,14.15 res2next50,591.98,431.144,256,224,24.67 resnetv2_101,590.74,431.806,256,224,44.54 darknet53,590.64,432.606,256,256,41.61 resnetv2_50x1_bit_distilled,587.0,326.262,192,224,25.55 res2net50_14w_8s,586.94,433.992,256,224,25.06 swin_s3_tiny_224,586.39,435.576,256,224,28.33 repvgg_b1g4,584.26,875.234,512,224,39.97 dla60_res2net,583.07,437.618,256,224,20.85 crossvit_15_240,576.62,331.16,192,240,27.53 cait_xxs24_224,576.52,441.46,256,224,11.96 cs3darknet_focus_x,569.86,448.292,256,256,35.02 resnet101,568.98,448.321,256,224,44.55 gluon_resnet101_v1b,568.4,448.834,256,224,44.55 tv_resnet101,566.24,450.547,256,224,44.55 resnetrs101,564.72,451.1,256,192,63.62 efficientnet_cc_b1_8e,564.18,452.061,256,240,39.72 crossvit_15_dagger_240,558.23,342.033,192,240,28.21 vit_base_resnet50d_224,557.61,457.501,256,224,110.97 mobilevitv2_125,557.38,343.473,192,256,7.48 xcit_nano_12_p8_224_dist,555.43,459.069,256,224,3.05 xcit_nano_12_p8_224,555.18,459.311,256,224,3.05 sebotnet33ts_256,554.49,230.012,128,256,13.7 resnet51q,551.31,463.504,256,256,35.7 resnetv2_101d,548.02,465.6,256,224,44.56 tf_efficientnet_cc_b1_8e,547.16,466.173,256,240,39.72 resnetv2_50d_gn,546.54,350.469,192,224,25.57 nf_resnet101,543.9,704.337,384,224,44.55 vit_base_patch32_384,542.76,470.804,256,384,88.3 gluon_resnet101_v1c,537.15,475.0,256,224,44.57 cspdarknet53,537.1,475.617,256,256,27.64 cs3darknet_x,534.86,477.64,256,256,35.05 vit_base_r26_s32_224,534.67,357.767,192,224,101.38 resnest50d,534.66,477.434,256,224,27.48 resnet50_gn,531.78,360.235,192,224,25.56 regnetz_c16,530.35,360.552,192,256,13.46 gluon_resnet101_v1d,528.59,482.76,256,224,44.57 mixer_b16_224,528.02,484.004,256,224,59.88 mixer_l32_224,527.33,362.504,192,224,206.94 mixer_b16_224_miil,526.58,485.347,256,224,59.88 vit_large_patch32_224,521.73,489.021,256,224,306.54 dla60_res2next,520.31,490.572,256,224,17.03 ecaresnet50t,516.29,494.896,256,256,25.57 cs3sedarknet_xdw,516.24,246.008,128,256,21.6 lambda_resnet50ts,515.16,371.658,192,256,21.54 vit_tiny_patch16_384,512.2,249.072,128,384,5.79 resnet61q,510.55,375.027,192,256,36.85 swinv2_cr_tiny_224,505.83,504.823,256,224,28.33 halonet50ts,503.76,380.122,192,256,22.73 repvgg_b1,503.57,1015.623,512,224,57.42 swinv2_cr_tiny_ns_224,502.5,508.144,256,224,28.33 cs3sedarknet_x,501.96,508.547,256,256,35.4 dla102,497.28,513.14,256,224,33.27 wide_resnet50_2,495.68,773.85,384,224,68.88 res2net50_26w_6s,493.57,516.914,256,224,37.05 resnetaa101d,490.51,520.338,256,224,44.57 convnext_small,489.81,390.224,192,224,50.22 convnext_small_in22ft1k,489.45,390.576,192,224,50.22 legacy_seresnet101,487.73,522.616,256,224,49.33 vit_relpos_medium_patch16_rpn_224,485.5,526.221,256,224,38.73 efficientnet_lite3,484.47,263.098,128,300,8.2 gluon_resnet101_v1s,483.47,527.891,256,224,44.67 seresnet101,480.65,530.38,256,224,49.33 cs3edgenet_x,477.59,535.019,256,256,47.82 nest_tiny,476.68,267.593,128,224,17.06 nf_seresnet101,474.46,537.213,256,224,49.33 mobilevitv2_150_in22ft1k,473.86,269.132,128,256,10.59 mobilevitv2_150,473.84,269.144,128,256,10.59 resnetblur101d,472.23,540.497,256,224,44.57 jx_nest_tiny,472.22,270.163,128,224,17.06 nf_ecaresnet101,469.53,543.375,256,224,44.55 vgg13_bn,468.37,546.3,256,224,133.05 twins_pcpvt_base,466.47,408.848,192,224,43.83 tf_efficientnet_lite3,465.4,273.895,128,300,8.2 vgg16,465.36,824.954,384,224,138.36 sequencer2d_s,462.43,412.819,192,224,27.65 mixnet_xl,460.21,554.308,256,224,11.9 coat_lite_small,457.06,418.568,192,224,19.84 efficientnet_b3a,456.95,278.403,128,288,12.23 efficientnet_b3,456.81,278.448,128,288,12.23 regnetx_080,454.56,843.629,384,224,39.57 regnetx_064,452.43,564.953,256,224,26.21 halo2botnet50ts_256,451.35,424.392,192,256,22.64 ecaresnet101d,447.44,570.33,256,224,44.57 densenet201,447.44,425.987,192,224,20.01 nf_regnet_b4,445.8,428.533,192,320,30.21 convit_small,443.63,431.737,192,224,27.78 efficientnetv2_s,433.27,293.157,128,288,21.46 skresnext50_32x4d,432.3,590.802,256,224,27.48 cs3se_edgenet_x,431.68,443.324,192,256,50.72 botnet50ts_256,428.8,297.529,128,256,22.74 ssl_resnext101_32x4d,427.28,447.74,192,224,44.18 resnext101_32x4d,427.18,447.921,192,224,44.18 swsl_resnext101_32x4d,427.16,447.915,192,224,44.18 gluon_resnext101_32x4d,427.13,447.97,192,224,44.18 poolformer_s36,425.0,449.906,192,224,30.86 ese_vovnet39b_evos,421.31,302.862,128,224,24.58 resnet101d,418.0,457.739,192,256,44.57 dla102x,417.16,458.658,192,224,26.31 res2net101_26w_4s,416.51,612.121,256,224,45.21 lamhalobotnet50ts_256,413.09,463.774,192,256,22.57 twins_svt_base,411.8,464.138,192,224,56.07 crossvit_18_240,406.79,312.611,128,240,43.27 tresnet_l,404.84,1261.389,512,224,55.99 efficientnetv2_rw_s,402.34,315.806,128,288,23.94 volo_d1_224,401.47,476.8,192,224,26.63 resmlp_36_224,401.06,476.505,192,224,44.69 res2net50_26w_8s,400.52,636.999,256,224,48.4 resmlp_36_distilled_224,400.14,477.557,192,224,44.69 swin_small_patch4_window7_224,399.67,478.499,192,224,49.61 resnest50d_4s2x40d,396.0,645.092,256,224,30.42 vit_base_patch16_224_miil,395.78,484.311,192,224,86.54 crossvit_18_dagger_240,394.08,322.72,128,240,44.27 deit_base_patch16_224,390.88,490.307,192,224,86.57 vit_base_patch16_224,390.86,490.391,192,224,86.57 vit_base_patch16_224_sam,390.67,490.608,192,224,86.57 mobilevitv2_175_in22ft1k,389.97,327.241,128,256,14.25 mobilevitv2_175,389.95,327.23,128,256,14.25 tf_efficientnetv2_s_in21ft1k,389.66,326.288,128,300,21.46 tf_efficientnetv2_s,389.1,326.713,128,300,21.46 vgg16_bn,388.69,658.276,256,224,138.37 regnety_064,388.46,657.256,256,224,30.58 regnety_080,385.84,662.273,256,224,39.18 deit_base_distilled_patch16_224,385.62,497.03,192,224,87.34 xception,385.56,331.194,128,299,22.86 regnety_040s_gn,384.97,330.927,128,224,20.65 repvgg_b2g4,379.42,1348.329,512,224,61.76 resnetv2_152,379.4,503.868,192,224,60.19 regnetz_d8,378.76,336.282,128,256,23.37 hrnet_w18,378.26,671.883,256,224,21.3 ese_vovnet99b,377.27,677.036,256,224,63.2 vit_small_resnet50d_s16_224,376.52,508.654,192,224,57.53 cait_xxs36_224,375.8,507.032,192,224,17.3 gluon_seresnext101_32x4d,375.02,509.78,192,224,48.96 regnetz_040,374.91,339.544,128,256,27.12 seresnext101_32x4d,374.73,510.176,192,224,48.96 regnetv_064,372.69,513.522,192,224,30.58 regnetz_040h,372.64,341.593,128,256,28.94 legacy_seresnext101_32x4d,372.06,513.705,192,224,48.96 deit3_base_patch16_224_in21ft1k,371.79,515.431,192,224,86.59 deit3_base_patch16_224,371.73,515.464,192,224,86.59 tf_efficientnet_b3,370.15,344.089,128,300,12.23 tf_efficientnet_b3_ap,370.14,344.111,128,300,12.23 tf_efficientnet_b3_ns,370.1,344.134,128,300,12.23 resnet152,370.08,516.516,192,224,60.19 vit_relpos_base_patch16_clsgap_224,369.76,518.105,192,224,86.43 vit_relpos_base_patch16_cls_224,369.34,518.67,192,224,86.43 resnetv2_50d_frn,369.16,345.594,128,224,25.59 gluon_resnet152_v1b,369.02,517.998,192,224,60.19 tv_resnet152,369.0,518.088,192,224,60.19 regnetz_b16_evos,365.3,348.518,128,224,9.74 sequencer2d_m,363.12,525.505,192,224,38.31 ese_vovnet99b_iabn,362.9,1055.043,384,224,63.2 resnetv2_152d,360.99,529.48,192,224,60.2 beit_base_patch16_224,358.29,534.776,192,224,86.53 xcit_tiny_12_p16_384_dist,357.91,534.55,192,384,6.72 vit_relpos_base_patch16_224,355.33,539.194,192,224,86.43 gluon_resnet152_v1c,354.77,538.797,192,224,60.21 regnetz_d32,354.52,359.397,128,256,27.58 swinv2_tiny_window8_256,354.35,540.569,192,256,28.35 resnetv2_50d_evos,353.36,270.506,96,224,25.59 dpn92,353.0,723.617,256,224,37.67 vgg19,352.0,1090.655,384,224,143.67 gluon_resnet152_v1d,351.06,544.563,192,224,60.21 densenet161,346.02,367.416,128,224,28.68 xception41p,344.85,370.318,128,299,26.91 gluon_resnet152_v1s,344.7,368.96,128,224,60.32 mobilevitv2_200,342.4,372.843,128,256,18.45 tnt_s_patch16_224,342.25,559.037,192,224,23.76 mobilevitv2_200_in22ft1k,342.08,373.147,128,256,18.45 eca_nfnet_l1,341.07,561.084,192,256,41.41 hrnet_w32,340.54,747.043,256,224,41.23 dla169,338.11,565.259,192,224,53.39 convnext_base_in22ft1k,337.76,377.102,128,224,88.59 convnext_base,336.98,378.091,128,224,88.59 repvgg_b2,335.01,1527.215,512,224,89.02 repvgg_b3g4,334.01,1148.557,384,224,83.83 vgg13,331.37,1544.923,512,224,133.05 pit_b_224,331.17,385.577,128,224,73.76 vgg19_bn,330.96,773.109,256,224,143.68 pit_b_distilled_224,329.46,387.568,128,224,74.79 regnetx_120,327.41,780.952,256,224,46.11 twins_pcpvt_large,322.96,392.17,128,224,60.99 hrnet_w30,321.86,790.607,256,224,37.71 legacy_seresnet152,319.56,397.245,128,224,66.82 inception_v4,316.87,603.734,192,299,42.68 seresnet152,313.75,608.677,192,224,66.82 vit_small_patch16_36x1_224,310.56,409.448,128,224,64.67 dla102x2,309.09,412.537,128,224,41.28 xcit_small_24_p16_224_dist,307.83,412.466,128,224,47.67 convmixer_1024_20_ks9_p14,307.81,830.813,256,224,24.38 vit_small_patch16_18x2_224,307.61,413.3,128,224,64.67 xcit_small_24_p16_224,307.46,412.867,128,224,47.67 regnety_120,307.05,623.971,192,224,51.82 poolformer_m36,303.34,420.132,128,224,56.17 efficientnet_el_pruned,301.49,423.464,128,300,10.59 efficientnet_el,301.45,423.5,128,300,10.59 swinv2_cr_small_ns_224,300.41,423.619,128,224,49.7 swinv2_cr_small_224,297.65,427.521,128,224,49.7 mixnet_xxl,297.33,428.503,128,224,23.96 cait_s24_224,296.96,428.341,128,224,46.92 nest_small,296.72,321.888,96,224,38.35 coat_tiny,296.44,429.708,128,224,5.5 tf_efficientnet_el,295.51,432.07,128,300,10.59 jx_nest_small,294.83,323.932,96,224,38.35 efficientnet_b4,293.1,325.442,96,320,19.34 xception41,293.07,435.505,128,299,26.97 xcit_tiny_12_p8_224_dist,291.52,437.287,128,224,6.71 tresnet_xl,291.4,875.028,256,224,78.44 resnext101_64x4d,291.33,437.816,128,224,83.46 gluon_resnext101_64x4d,291.25,437.881,128,224,83.46 swin_s3_small_224,289.76,439.818,128,224,49.74 wide_resnet101_2,289.62,661.356,192,224,126.89 xcit_tiny_12_p8_224,289.33,440.549,128,224,6.71 twins_svt_large,289.11,440.647,128,224,99.27 resnet152d,281.47,452.46,128,256,60.21 swin_base_patch4_window7_224,279.66,455.817,128,224,87.77 convnext_tiny_384_in22ft1k,278.8,343.389,96,384,28.59 resnet200,276.62,459.688,128,224,64.67 ssl_resnext101_32x8d,276.52,461.341,128,224,88.79 ig_resnext101_32x8d,276.39,461.582,128,224,88.79 resnext101_32x8d,276.22,461.854,128,224,88.79 swsl_resnext101_32x8d,276.22,461.764,128,224,88.79 repvgg_b3,271.93,1411.039,384,224,123.09 nfnet_f1,271.43,705.161,192,224,132.63 resnetv2_50d_evob,268.92,355.729,96,224,25.59 gmlp_b16_224,268.22,356.298,96,224,73.08 dpn98,267.62,476.602,128,224,61.57 regnetx_160,266.55,719.244,192,224,54.28 regnety_160,264.44,724.758,192,224,83.59 gluon_seresnext101_64x4d,264.12,482.344,128,224,88.23 ens_adv_inception_resnet_v2,261.47,730.952,192,299,55.84 inception_resnet_v2,261.44,730.919,192,299,55.84 xception65p,259.32,492.32,128,299,39.82 efficientnet_lite4,255.23,249.374,64,380,13.01 vit_base_patch16_rpn_224,254.51,753.593,192,224,86.54 resnest101e,253.9,501.575,128,256,48.28 crossvit_base_240,253.73,376.737,96,240,105.03 seresnext101_32x8d,251.44,506.792,128,224,93.57 vit_relpos_base_patch16_rpn_224,250.62,765.002,192,224,86.41 vit_base_patch16_plus_240,248.4,514.352,128,240,117.56 tf_efficientnet_lite4,247.32,257.437,64,380,13.01 efficientnet_b3_gn,245.44,258.998,64,288,11.73 dm_nfnet_f1,244.51,521.138,128,224,132.63 seresnext101d_32x8d,242.49,525.503,128,224,93.59 seresnet152d,242.25,392.75,96,256,66.84 xcit_tiny_24_p16_384_dist,241.62,526.318,128,384,12.12 vit_small_patch16_384,239.05,266.865,64,384,22.2 vit_relpos_base_patch16_plus_240,238.57,535.322,128,240,117.38 vit_large_r50_s32_224,237.94,401.033,96,224,328.99 resnetrs152,237.63,535.199,128,256,86.62 swinv2_tiny_window16_256,237.41,403.072,96,256,28.35 seresnextaa101d_32x8d,228.0,559.15,128,224,93.59 xcit_medium_24_p16_224_dist,227.91,558.239,128,224,84.4 deit3_small_patch16_384_in21ft1k,227.77,280.008,64,384,22.21 deit3_small_patch16_384,227.76,280.015,64,384,22.21 xcit_medium_24_p16_224,227.75,558.491,128,224,84.4 vit_small_r26_s32_384,227.25,280.302,64,384,36.47 convit_base,224.86,568.198,128,224,86.54 gluon_xception65,224.1,426.474,96,299,39.92 swin_s3_base_224,223.36,426.944,96,224,71.13 tnt_b_patch16_224,222.94,572.213,128,224,65.41 xception65,222.93,428.728,96,299,39.92 coat_mini,222.88,572.209,128,224,10.34 volo_d2_224,222.28,430.111,96,224,58.68 xcit_small_12_p16_384_dist,221.79,430.984,96,384,26.25 poolformer_m48,220.53,432.741,96,224,73.47 hrnet_w40,219.45,869.959,192,224,57.56 vit_base_r50_s16_224,215.41,443.988,96,224,98.66 swinv2_cr_base_ns_224,213.88,446.428,96,224,87.88 sequencer2d_l,213.86,444.098,96,224,54.3 swinv2_small_window8_256,212.59,449.01,96,256,49.73 swinv2_cr_base_224,211.39,451.682,96,224,87.88 mobilevitv2_150_384_in22ft1k,210.38,303.23,64,384,10.59 nest_base,210.2,302.774,64,224,67.72 tresnet_m_448,209.55,913.447,192,448,31.39 efficientnetv2_m,207.96,304.545,64,320,54.14 jx_nest_base,207.78,306.371,64,224,67.72 regnetz_c16_evos,207.35,306.824,64,256,13.49 hrnet_w44,206.45,925.026,192,224,67.06 resnet200d,204.47,623.017,128,256,64.69 efficientnet_b3_g8_gn,203.44,312.836,64,288,14.25 hrnet_w48,202.15,628.427,128,224,77.47 densenet264,202.1,470.789,96,224,72.69 dpn131,198.25,643.486,128,224,79.25 tf_efficientnet_b4,194.83,326.399,64,380,19.34 tf_efficientnet_b4_ap,194.65,326.738,64,380,19.34 tf_efficientnet_b4_ns,194.23,327.375,64,380,19.34 xcit_nano_12_p8_384_dist,187.76,338.965,64,384,3.05 efficientnetv2_rw_m,187.31,338.14,64,320,53.24 dpn107,187.14,682.151,128,224,86.92 convnext_large_in22ft1k,187.05,511.402,96,224,197.77 convnext_large,187.01,511.523,96,224,197.77 nf_regnet_b5,186.49,512.09,96,384,49.74 xcit_tiny_24_p8_224_dist,183.21,520.533,96,224,12.11 xcit_tiny_24_p8_224,183.21,520.609,96,224,12.11 halonet_h1,177.48,359.151,64,256,8.1 hrnet_w64,176.04,722.362,128,224,128.06 mobilevitv2_175_384_in22ft1k,175.76,363.135,64,384,14.25 senet154,174.83,545.792,96,224,115.09 regnety_320,174.41,732.528,128,224,145.05 gluon_senet154,174.03,548.162,96,224,115.09 regnetz_e8,173.89,365.999,64,256,57.7 legacy_senet154,170.27,560.493,96,224,115.09 xception71,168.81,376.911,64,299,42.34 xcit_small_12_p8_224,168.52,377.961,64,224,26.21 xcit_small_12_p8_224_dist,168.32,378.375,64,224,26.21 vit_large_patch32_384,168.05,569.595,96,384,306.63 convnext_small_384_in22ft1k,164.94,386.292,64,384,50.22 mixer_l16_224,164.43,582.335,96,224,208.2 ecaresnet200d,161.74,392.334,64,256,64.69 seresnet200d,161.56,391.892,64,256,71.86 resnetrs200,160.52,394.222,64,256,93.21 densenet264d_iabn,158.12,804.924,128,224,72.74 regnetx_320,155.94,819.702,128,224,107.81 swin_large_patch4_window7_224,153.79,414.255,64,224,196.53 volo_d3_224,152.73,416.584,64,224,86.33 mobilevitv2_200_384_in22ft1k,150.68,317.559,48,384,18.45 swinv2_base_window8_256,150.28,423.39,64,256,87.92 resnetv2_50x1_bitm,149.04,321.21,48,448,25.55 nfnet_f2,148.92,641.446,96,256,193.78 swinv2_small_window16_256,142.83,445.591,64,256,49.73 tf_efficientnetv2_m,142.41,333.833,48,384,54.14 eca_nfnet_l2,142.2,672.291,96,320,56.72 tf_efficientnetv2_m_in21ft1k,141.35,336.246,48,384,54.14 regnetz_d8_evos,132.2,360.995,48,256,23.46 swinv2_cr_tiny_384,131.5,485.388,64,384,28.33 ig_resnext101_32x16d,130.47,734.203,96,224,194.03 ssl_resnext101_32x16d,130.4,734.63,96,224,194.03 swsl_resnext101_32x16d,130.37,734.771,96,224,194.03 xcit_large_24_p16_224,126.98,500.577,64,224,189.1 xcit_large_24_p16_224_dist,126.97,500.662,64,224,189.1 seresnet269d,125.7,503.318,64,256,113.67 dm_nfnet_f2,125.2,507.681,64,256,193.78 swinv2_cr_large_224,124.7,510.736,64,224,196.68 xcit_tiny_12_p8_384_dist,122.38,390.412,48,384,6.71 resnetrs270,121.5,520.761,64,256,129.86 crossvit_15_dagger_408,117.57,270.29,32,408,28.5 vit_large_patch16_224,117.08,544.981,64,224,304.33 vit_base_patch16_18x2_224,116.55,546.378,64,224,256.73 convnext_base_384_in22ft1k,115.97,412.084,48,384,88.59 convnext_xlarge_in22ft1k,115.91,550.445,64,224,350.2 deit3_large_patch16_224_in21ft1k,113.19,563.501,64,224,304.37 deit3_large_patch16_224,113.17,563.634,64,224,304.37 xcit_small_24_p16_384_dist,112.88,421.839,48,384,47.67 beit_large_patch16_224,107.8,591.544,64,224,304.43 swinv2_base_window16_256,103.68,460.461,48,256,87.92 swinv2_base_window12to16_192to256_22kft1k,103.56,461.021,48,256,87.92 tresnet_l_448,103.2,1236.839,128,448,55.99 volo_d1_384,99.39,320.613,32,384,26.78 cait_xxs24_384,97.83,488.033,48,384,12.03 vit_base_patch16_384,96.96,329.192,32,384,86.86 deit_base_patch16_384,96.37,331.171,32,384,86.86 volo_d4_224,95.75,498.748,48,224,192.96 deit_base_distilled_patch16_384,94.83,336.556,32,384,87.63 efficientnet_b5,93.71,338.901,32,456,30.39 deit3_base_patch16_384,93.22,342.328,32,384,86.88 deit3_base_patch16_384_in21ft1k,92.68,344.327,32,384,86.88 tf_efficientnet_b5,92.16,344.785,32,456,30.39 tf_efficientnet_b5_ns,92.11,344.939,32,456,30.39 tf_efficientnet_b5_ap,91.98,345.405,32,456,30.39 resnetv2_152x2_bit_teacher,89.37,355.711,32,224,236.34 crossvit_18_dagger_408,88.76,358.492,32,408,44.61 xcit_small_24_p8_224,87.25,546.829,48,224,47.63 xcit_small_24_p8_224_dist,86.87,549.24,48,224,47.63 convmixer_768_32,85.53,1121.025,96,224,21.11 vit_large_patch14_224,85.27,561.239,48,224,304.2 eca_nfnet_l3,84.61,563.702,48,352,72.04 resnetv2_101x1_bitm,84.61,187.399,16,448,44.54 beit_base_patch16_384,83.67,381.291,32,384,86.74 resnest200e,83.33,570.802,48,320,70.2 tf_efficientnetv2_l_in21ft1k,83.27,379.678,32,384,118.52 efficientnetv2_l,83.27,379.867,32,384,118.52 tf_efficientnetv2_l,82.74,382.367,32,384,118.52 ecaresnet269d,82.15,579.477,48,320,102.09 tresnet_xl_448,78.31,1222.487,96,448,78.44 xcit_medium_24_p16_384_dist,77.9,407.346,32,384,84.4 vit_large_r50_s32_384,77.49,410.426,32,384,329.09 swinv2_cr_small_384,76.31,416.793,32,384,49.7 swin_base_patch4_window12_384,74.03,430.327,32,384,87.9 pnasnet5large,68.77,461.392,32,331,86.06 resnetrs350,68.24,460.967,32,288,163.96 nfnet_f3,67.87,703.087,48,320,254.92 nasnetalarge,67.38,469.785,32,331,88.75 resmlp_big_24_distilled_224,67.03,475.867,32,224,129.14 resmlp_big_24_224_in22ft1k,67.03,475.857,32,224,129.14 resmlp_big_24_224,67.02,475.97,32,224,129.14 cait_xs24_384,65.59,485.229,32,384,26.67 convnext_large_384_in22ft1k,63.62,501.159,32,384,197.77 vit_base_patch8_224,63.42,377.591,24,224,86.58 cait_xxs36_384,63.23,502.345,32,384,17.37 ig_resnext101_32x32d,62.72,508.666,32,224,468.53 xcit_tiny_24_p8_384_dist,62.14,511.676,32,384,12.11 volo_d5_224,61.58,516.467,32,224,295.46 vit_base_resnet50_384,61.06,391.43,24,384,98.95 vit_base_r50_s16_384,61.0,391.773,24,384,98.95 swinv2_large_window12to16_192to256_22kft1k,60.93,391.352,24,256,196.74 xcit_medium_24_p8_224,60.43,526.111,32,224,84.32 xcit_medium_24_p8_224_dist,60.03,529.652,32,224,84.32 xcit_small_12_p8_384_dist,57.75,413.763,24,384,26.21 dm_nfnet_f3,57.26,554.375,32,320,254.92 volo_d2_384,55.56,286.247,16,384,58.87 efficientnet_b6,54.98,288.003,16,528,43.04 swinv2_cr_base_384,54.71,436.265,24,384,87.88 tf_efficientnet_b6,54.38,291.338,16,528,43.04 tf_efficientnet_b6_ns,54.21,292.241,16,528,43.04 tf_efficientnet_b6_ap,54.17,292.479,16,528,43.04 efficientnetv2_xl,53.77,291.666,16,384,208.12 tf_efficientnetv2_xl_in21ft1k,53.07,295.611,16,384,208.12 convmixer_1536_20,50.1,957.271,48,224,51.63 swinv2_cr_huge_224,49.51,482.114,24,224,657.83 cait_s24_384,49.37,483.331,24,384,47.06 resnetrs420,48.12,489.4,24,320,191.89 xcit_large_24_p16_384_dist,45.6,522.909,24,384,189.1 swin_large_patch4_window12_384,41.65,382.145,16,384,196.74 convnext_xlarge_384_in22ft1k,40.18,595.51,24,384,350.2 vit_huge_patch14_224,39.94,398.436,16,224,632.05 deit3_huge_patch14_224_in21ft1k,38.36,414.578,16,224,632.13 deit3_huge_patch14_224,38.33,414.855,16,224,632.13 nfnet_f4,36.85,646.047,24,384,316.07 resnest269e,35.75,664.499,24,416,110.93 resnetv2_50x3_bitm,34.88,457.822,16,448,217.32 xcit_large_24_p8_224_dist,33.7,471.344,16,224,188.93 xcit_large_24_p8_224,33.68,471.512,16,224,188.93 resnetv2_152x2_bit_teacher_384,32.69,487.138,16,384,236.34 ig_resnext101_32x48d,32.39,492.417,16,224,828.41 swinv2_cr_large_384,32.36,491.839,16,384,196.68 cait_s36_384,31.92,497.404,16,384,68.37 efficientnet_b7,31.74,248.492,8,600,66.35 dm_nfnet_f4,31.4,758.349,24,384,316.07 tf_efficientnet_b7,31.4,251.12,8,600,66.35 tf_efficientnet_b7_ns,31.37,251.394,8,600,66.35 tf_efficientnet_b7_ap,31.35,251.548,8,600,66.35 xcit_small_24_p8_384_dist,29.2,544.65,16,384,47.63 vit_large_patch16_384,29.07,411.127,12,384,304.72 deit3_large_patch16_384,28.22,423.365,12,384,304.76 deit3_large_patch16_384_in21ft1k,28.19,423.825,12,384,304.76 swinv2_base_window12to24_192to384_22kft1k,28.14,423.938,12,384,87.92 beit_large_patch16_384,25.12,475.56,12,384,305.0 volo_d3_448,23.79,333.686,8,448,86.63 nfnet_f5,22.84,694.067,16,416,377.21 resnetv2_152x2_bitm,22.69,350.236,8,448,236.34 vit_giant_patch14_224,22.29,356.113,8,224,1012.61 dm_nfnet_f5,20.95,756.72,16,416,377.21 xcit_medium_24_p8_384_dist,19.97,397.272,8,384,84.32 efficientnet_b8,19.9,297.659,6,672,87.41 tf_efficientnet_b8_ap,19.66,301.198,6,672,87.41 tf_efficientnet_b8,19.65,301.246,6,672,87.41 nfnet_f6,18.5,641.193,12,448,438.36 resnetv2_101x3_bitm,18.0,442.742,8,448,387.93 volo_d4_448,16.87,353.154,6,448,193.41 swinv2_large_window12to24_192to384_22kft1k,16.59,359.187,6,384,196.74 dm_nfnet_f6,15.07,522.261,8,448,438.36 swinv2_cr_huge_384,12.92,461.964,6,384,657.94 nfnet_f7,12.67,622.861,8,480,499.5 cait_m36_384,11.76,506.439,6,384,271.22 xcit_large_24_p8_384_dist,11.53,516.755,6,384,188.93 volo_d5_448,11.08,357.783,4,448,295.91 tf_efficientnet_l2_ns_475,10.91,360.832,4,475,480.31 beit_large_patch16_512,9.42,422.333,4,512,305.67 volo_d5_512,7.72,385.462,3,512,296.09 resnetv2_152x4_bitm,4.91,404.529,2,480,936.53 cait_m48_448,4.71,419.69,2,448,356.46 efficientnet_l2,3.43,285.826,1,800,480.31 tf_efficientnet_l2_ns,3.42,287.247,1,800,480.31
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-train-amp-nhwc-pt111-cu113-rtx3090.csv
model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count tinynet_e,10725.36,46.047,512,106,2.04 mobilenetv3_small_050,9864.52,50.786,512,224,1.59 lcnet_035,9593.72,52.888,512,224,1.64 lcnet_050,8283.82,61.296,512,224,1.88 tf_mobilenetv3_small_minimal_100,8178.73,62.055,512,224,2.04 tinynet_d,7987.22,63.336,512,152,2.34 mobilenetv3_small_075,7734.29,65.482,512,224,2.04 mobilenetv3_small_100,7481.49,67.702,512,224,2.54 tf_mobilenetv3_small_075,7093.89,71.455,512,224,2.04 tf_mobilenetv3_small_100,6879.11,73.705,512,224,2.54 levit_128s,6303.14,80.293,512,224,7.78 lcnet_075,5742.95,88.676,512,224,2.36 lcnet_100,5331.75,95.531,512,224,2.95 mixer_s32_224,4714.36,108.029,512,224,19.1 mnasnet_small,4652.19,109.156,512,224,2.03 mnasnet_050,4534.41,112.14,512,224,2.22 levit_128,4434.56,114.332,512,224,9.21 vit_small_patch32_224,4334.06,117.284,512,224,22.88 mobilenetv2_035,4197.24,121.203,512,224,1.68 tinynet_c,4165.97,121.921,512,184,2.46 gernet_s,4117.74,123.649,512,224,8.17 semnasnet_050,4027.14,126.223,512,224,2.08 vit_tiny_r_s16_p8_224,3857.49,131.88,512,224,6.34 levit_192,3823.94,132.765,512,224,10.95 lcnet_150,3663.02,139.3,512,224,4.5 resnet18,3584.19,142.504,512,224,11.69 gluon_resnet18_v1b,3584.07,142.508,512,224,11.69 swsl_resnet18,3583.72,142.531,512,224,11.69 ssl_resnet18,3558.1,143.543,512,224,11.69 mobilenetv2_050,3541.93,143.76,512,224,1.97 mobilenetv3_large_075,3343.71,152.255,512,224,3.99 ese_vovnet19b_slim_dw,3243.14,157.395,512,224,1.9 tf_mobilenetv3_large_minimal_100,3227.09,157.922,512,224,3.92 seresnet18,3222.19,158.398,512,224,11.78 legacy_seresnet18,3130.77,163.021,512,224,11.78 tf_mobilenetv3_large_075,3109.15,163.824,512,224,3.99 mnasnet_075,3102.76,164.235,512,224,3.17 ghostnet_050,3069.54,165.437,512,224,2.59 mobilenetv3_rw,3020.36,168.644,512,224,5.48 mobilenetv3_large_100,2997.0,169.969,512,224,5.48 mobilenetv3_large_100_miil,2996.51,169.991,512,224,5.48 levit_256,2923.52,174.041,512,224,18.89 hardcorenas_a,2875.54,177.351,512,224,5.26 resnet18d,2830.02,180.547,512,224,11.71 mnasnet_b1,2826.42,180.324,512,224,4.38 mnasnet_100,2810.01,181.39,512,224,4.38 tf_mobilenetv3_large_100,2800.51,181.961,512,224,5.48 tinynet_b,2773.33,183.58,512,188,3.73 hardcorenas_b,2665.39,191.158,512,224,5.18 semnasnet_075,2649.51,192.342,512,224,2.91 hardcorenas_c,2643.17,192.764,512,224,5.52 ese_vovnet19b_slim,2613.26,195.551,512,224,3.17 mobilenetv2_075,2538.45,200.896,512,224,2.64 tf_efficientnetv2_b0,2507.59,202.986,512,224,7.14 spnasnet_100,2504.82,203.411,512,224,4.42 levit_256d,2485.6,204.456,512,224,26.21 hardcorenas_d,2483.8,204.983,512,224,7.5 semnasnet_100,2411.15,211.44,512,224,3.89 mnasnet_a1,2396.96,212.676,512,224,3.89 mobilenetv2_100,2381.65,214.209,512,224,3.5 regnetx_002,2371.97,215.169,512,224,2.68 tinynet_a,2274.6,223.875,512,192,6.19 regnety_002,2255.16,226.095,512,224,3.16 ghostnet_100,2251.56,226.062,512,224,5.18 fbnetc_100,2248.09,226.804,512,224,5.57 deit_tiny_patch16_224,2233.8,228.385,512,224,5.72 vit_tiny_patch16_224,2229.44,228.819,512,224,5.72 efficientnet_lite0,2209.28,231.003,512,224,4.65 hardcorenas_f,2207.45,230.839,512,224,8.2 deit_tiny_distilled_patch16_224,2193.62,232.567,512,224,5.91 hardcorenas_e,2183.35,233.392,512,224,8.07 xcit_nano_12_p16_224_dist,2148.4,236.588,512,224,3.05 xcit_nano_12_p16_224,2147.35,236.626,512,224,3.05 tv_resnet34,2081.13,245.45,512,224,21.8 resnet34,2080.93,245.474,512,224,21.8 gluon_resnet34_v1b,2070.75,246.674,512,224,21.8 pit_ti_distilled_224,2069.0,246.563,512,224,5.1 pit_ti_224,2067.14,246.798,512,224,4.85 tf_efficientnet_lite0,2051.57,248.83,512,224,4.65 skresnet18,2011.18,253.956,512,224,11.96 resnet26,1965.66,259.994,512,224,16.0 resnetblur18,1945.89,262.773,512,224,11.69 gernet_m,1920.15,265.947,512,224,21.14 ese_vovnet19b_dw,1905.39,268.216,512,224,6.54 nf_resnet26,1877.61,272.201,512,224,16.0 hrnet_w18_small,1858.6,274.127,512,224,13.19 seresnet34,1854.8,275.134,512,224,21.96 mnasnet_140,1835.61,278.136,512,224,7.12 legacy_seresnet34,1814.57,281.284,512,224,21.96 efficientnet_b0,1800.57,212.181,384,224,5.29 levit_384,1799.63,283.374,512,224,39.13 resnet34d,1799.03,284.0,512,224,21.82 mobilenetv2_110d,1768.64,216.1,384,224,4.52 rexnetr_100,1759.23,217.141,384,224,4.88 selecsls42,1754.3,291.22,512,224,30.35 selecsls42b,1748.59,292.176,512,224,32.46 mixer_b32_224,1728.02,295.478,512,224,60.29 tf_efficientnet_b0_ns,1702.0,224.532,384,224,5.29 tf_efficientnet_b0_ap,1700.69,224.751,384,224,5.29 tf_efficientnet_b0,1700.24,224.78,384,224,5.29 mixer_s16_224,1649.18,309.899,512,224,18.53 semnasnet_140,1640.99,311.119,512,224,6.11 tf_efficientnet_es,1622.88,314.744,512,224,5.44 efficientnet_es,1618.83,315.528,512,224,5.44 efficientnet_es_pruned,1616.07,316.054,512,224,5.44 vit_base_patch32_224_sam,1613.76,316.429,512,224,88.22 vit_base_patch32_224,1612.96,316.587,512,224,88.22 resnet26d,1609.37,317.63,512,224,16.01 tf_efficientnetv2_b1,1607.05,237.525,384,240,8.14 ghostnet_130,1600.19,318.63,512,224,7.36 pit_xs_distilled_224,1591.2,320.859,512,224,11.0 pit_xs_224,1589.39,321.258,512,224,10.62 repvgg_b0,1586.15,321.714,512,224,15.82 resmlp_12_224,1552.02,329.099,512,224,15.35 resmlp_12_distilled_224,1551.98,329.119,512,224,15.35 gmixer_12_224,1551.47,329.195,512,224,12.7 mobilenetv2_140,1539.46,248.646,384,224,6.11 mobilevit_xxs,1515.36,252.293,384,256,1.27 selecsls60,1486.56,343.544,512,224,30.67 selecsls60b,1480.82,344.867,512,224,32.77 nf_seresnet26,1471.47,347.302,512,224,17.4 xcit_tiny_12_p16_224,1422.37,358.218,512,224,6.72 xcit_tiny_12_p16_224_dist,1420.76,358.558,512,224,6.72 efficientnet_lite1,1418.67,179.483,256,240,5.42 vit_small_patch32_384,1414.68,361.045,512,384,22.92 efficientnet_b1_pruned,1384.32,368.407,512,240,6.33 gmlp_ti16_224,1378.39,276.995,384,224,5.87 dla46_c,1367.99,373.533,512,224,1.3 nf_ecaresnet26,1361.11,375.605,512,224,16.0 poolformer_s12,1359.83,375.831,512,224,11.92 rexnetr_130,1350.37,188.438,256,224,7.61 tf_efficientnet_lite1,1343.78,189.557,256,240,5.42 crossvit_tiny_240,1320.33,386.159,512,240,7.01 mobilenetv2_120d,1309.71,194.276,256,224,5.83 resnetv2_50,1296.0,394.281,512,224,25.55 gernet_l,1283.32,398.106,512,256,31.08 rexnet_100,1277.92,299.324,384,224,4.8 crossvit_9_240,1236.5,309.16,384,240,8.55 resnet26t,1227.85,416.475,512,256,16.01 ssl_resnet50,1223.5,417.643,512,224,25.56 resnet50,1222.61,417.956,512,224,25.56 tv_resnet50,1222.03,418.147,512,224,25.56 swsl_resnet50,1222.0,418.189,512,224,25.56 gluon_resnet50_v1b,1221.97,418.181,512,224,25.56 crossvit_9_dagger_240,1195.59,319.731,384,240,8.78 vit_tiny_r_s16_p8_384,1193.45,320.912,384,384,6.36 rexnetr_150,1185.63,214.799,256,224,9.78 fbnetv3_b,1184.86,322.487,384,256,8.6 botnet26t_256,1168.73,327.971,384,256,12.49 tf_efficientnetv2_b2,1157.41,219.649,256,260,10.1 regnetx_004,1150.82,443.834,512,224,5.16 repvgg_a2,1142.14,447.42,512,224,28.21 skresnet34,1140.48,447.803,512,224,22.28 resnetv2_50t,1134.35,450.541,512,224,25.57 fbnetv3_d,1133.65,223.966,256,256,10.31 resnetv2_50d,1131.93,451.499,512,224,25.57 gluon_resnet50_v1c,1131.41,338.54,384,224,25.58 halonet26t,1122.34,341.57,384,256,12.48 convit_tiny,1108.09,461.02,512,224,5.71 efficientnet_lite2,1096.26,232.544,256,260,6.09 dla34,1094.33,467.287,512,224,15.74 convnext_nano_hnf,1075.54,356.227,384,224,15.59 resnet50d,1070.21,357.929,384,224,25.58 gluon_resnet50_v1d,1070.13,357.997,384,224,25.58 resnet50t,1068.62,358.508,384,224,25.57 mixnet_s,1051.2,485.837,512,224,4.13 legacy_seresnext26_32x4d,1051.18,486.414,512,224,16.79 tf_efficientnet_lite2,1045.58,243.879,256,260,6.09 vit_small_resnet26d_224,1042.37,367.395,384,224,63.61 deit_small_patch16_224,1032.62,371.017,384,224,22.05 vit_small_patch16_224,1027.63,372.823,384,224,22.05 regnety_004,1027.25,497.255,512,224,4.34 tf_efficientnet_b1_ns,1026.16,247.955,256,240,7.79 tf_efficientnet_b1_ap,1026.11,248.006,256,240,7.79 tf_efficientnet_b1,1025.11,248.193,256,240,7.79 resnet32ts,1021.77,249.96,256,256,17.96 deit_small_distilled_patch16_224,1010.79,379.058,384,224,22.44 resnet33ts,1009.39,252.998,256,256,19.68 res2net50_48w_2s,1006.25,380.82,384,224,25.29 vovnet39a,1004.46,509.092,512,224,22.6 seresnext26d_32x4d,1002.27,382.471,384,224,16.81 seresnext26t_32x4d,1001.74,382.665,384,224,16.81 seresnext26tn_32x4d,1001.47,382.779,384,224,16.81 legacy_seresnet50,993.86,385.256,384,224,28.09 tf_efficientnet_em,979.63,260.356,256,240,6.9 efficientnet_em,978.46,260.687,256,240,6.9 dla46x_c,973.77,525.047,512,224,1.07 eca_resnet33ts,964.39,264.788,256,256,19.68 pit_s_224,961.0,265.507,256,224,23.46 pit_s_distilled_224,960.14,265.718,256,224,24.04 tf_mixnet_s,958.59,532.877,512,224,4.13 seresnet50,956.87,400.165,384,224,28.09 efficientnet_b1,954.91,266.596,256,256,7.79 seresnet33ts,954.85,267.313,256,256,19.78 ecaresnetlight,952.86,536.422,512,224,30.16 vit_base2_patch32_256,950.48,537.853,512,256,119.46 ese_vovnet39b,947.73,539.578,512,224,24.57 ecaresnext50t_32x4d,947.69,404.65,384,224,15.41 ecaresnext26t_32x4d,947.22,404.844,384,224,15.41 dla60,945.45,405.196,384,224,22.04 gluon_resnet50_v1s,943.31,406.227,384,224,25.68 resnetaa50d,941.94,406.82,384,224,25.58 eca_vovnet39b,939.18,544.514,512,224,22.6 vgg11,930.6,550.023,512,224,132.86 gcresnet33ts,927.58,274.995,256,256,19.88 lambda_resnet26rpt_256,921.55,207.755,192,256,10.99 dla60x_c,921.01,554.951,512,224,1.32 ecaresnet50d_pruned,911.85,560.565,512,224,19.94 resnetblur50,909.58,421.362,384,224,25.56 mobilevit_xs,909.51,210.0,192,256,2.32 cspresnet50,906.79,422.612,384,256,21.62 rexnetr_200,896.75,212.966,192,224,16.52 coat_lite_tiny,890.79,430.193,384,224,5.72 nf_seresnet50,886.81,431.807,384,224,28.09 dpn68b,878.29,436.039,384,224,12.61 selecsls84,872.56,585.545,512,224,50.95 twins_svt_small,868.85,440.366,384,224,24.06 hrnet_w18_small_v2,867.42,587.948,512,224,15.6 seresnet50t,865.51,442.504,384,224,28.1 cspresnext50,862.61,444.309,384,224,20.57 resnetrs50,861.96,444.354,384,224,35.69 cspresnet50w,860.12,445.567,384,256,28.12 cspresnet50d,849.09,451.363,384,256,21.64 densenet121,845.28,301.077,256,224,7.98 tv_densenet121,845.28,301.063,256,224,7.98 rexnet_150,842.23,302.82,256,224,9.73 tv_resnext50_32x4d,836.18,458.41,384,224,25.03 swsl_resnext50_32x4d,836.09,458.464,384,224,25.03 res2net50_26w_4s,835.77,458.208,384,224,25.7 coat_lite_mini,833.77,459.672,384,224,11.01 vit_base_resnet26d_224,833.37,459.491,384,224,101.4 resnext50_32x4d,832.87,460.244,384,224,25.03 ssl_resnext50_32x4d,832.34,460.521,384,224,25.03 dpn68,831.95,460.44,384,224,12.61 gluon_resnext50_32x4d,831.77,460.799,384,224,25.03 vovnet57a,828.64,616.994,512,224,36.64 efficientnet_b2_pruned,825.77,308.457,256,260,8.31 resnetblur50d,818.48,311.928,256,224,25.58 skresnet50,810.12,472.628,384,224,25.8 tf_efficientnet_b2_ap,809.72,235.646,192,260,9.11 tf_efficientnet_b2_ns,809.32,235.717,192,260,9.11 tf_efficientnet_b2,809.06,235.843,192,260,9.11 vgg11_bn,805.38,476.555,384,224,132.87 densenet121d,805.31,316.045,256,224,8.0 nf_ecaresnet50,804.89,476.102,384,224,25.56 rexnet_130,801.42,318.304,256,224,7.56 ecaresnet50d,793.07,483.245,384,224,25.58 ese_vovnet57b,790.94,484.567,384,224,38.61 regnetx_006,790.56,646.782,512,224,6.2 gcresnet50t,788.09,323.372,256,256,25.9 regnety_006,787.76,648.873,512,224,6.06 convnext_tiny,781.17,326.737,256,224,28.59 tf_inception_v3,774.78,494.217,384,299,23.83 gluon_inception_v3,774.48,494.404,384,299,23.83 seresnetaa50d,773.82,329.682,256,224,28.11 inception_v3,772.99,495.38,384,299,23.83 adv_inception_v3,769.85,497.351,384,299,23.83 resmlp_24_distilled_224,767.92,331.893,256,224,30.02 resnext50d_32x4d,765.61,333.516,256,224,25.05 resmlp_24_224,762.25,334.383,256,224,30.02 gmixer_24_224,759.72,335.461,256,224,24.72 resnetv2_101,757.49,336.449,256,224,44.54 res2net50_14w_8s,756.34,336.303,256,224,25.06 xcit_nano_12_p16_384_dist,754.95,337.338,256,384,3.05 sehalonet33ts,749.52,340.746,256,256,13.69 densenetblur121d,739.98,344.167,256,224,8.0 dla60_res2net,736.45,346.205,256,224,20.85 skresnet50d,736.23,346.324,256,224,25.82 mobilevit_s,734.66,260.236,192,256,5.58 gluon_resnet101_v1b,731.02,348.601,256,224,44.55 tv_resnet101,727.65,350.31,256,224,44.55 resnet101,727.5,350.369,256,224,44.55 xcit_tiny_24_p16_224,726.25,349.143,256,224,12.12 xcit_tiny_24_p16_224_dist,725.28,349.489,256,224,12.12 efficientnet_b2,724.21,263.654,192,288,9.11 twins_pcpvt_small,724.17,351.883,256,224,24.11 efficientnet_b2a,723.56,263.856,192,288,9.11 ecaresnet101d_pruned,714.19,715.116,512,224,24.88 nf_resnet50,710.87,539.322,384,288,25.56 nf_resnet101,707.69,540.968,384,224,44.55 seresnext50_32x4d,706.91,361.01,256,224,27.56 gluon_seresnext50_32x4d,706.58,361.114,256,224,27.56 efficientnet_b0_gn,705.84,361.599,256,224,5.29 legacy_seresnext50_32x4d,704.96,362.028,256,224,27.56 nf_regnet_b0,703.19,726.933,512,256,8.76 darknet53,701.97,363.892,256,256,41.61 resnetv2_101d,699.92,364.177,256,224,44.56 densenet169,698.35,364.121,256,224,14.15 gluon_resnet101_v1c,697.85,365.313,256,224,44.57 dla60x,694.54,367.645,256,224,17.35 poolformer_s24,690.11,369.675,256,224,21.39 semobilevit_s,684.71,279.143,192,256,5.74 efficientnetv2_rw_t,684.48,278.424,192,288,13.65 vit_small_r26_s32_224,682.34,373.878,256,224,36.43 convnext_tiny_hnf,681.83,374.501,256,224,28.59 gluon_resnet101_v1d,674.08,378.237,256,224,44.57 tf_efficientnetv2_b3,670.7,284.467,192,300,14.36 xcit_small_12_p16_224,670.22,380.208,256,224,26.25 xcit_small_12_p16_224_dist,669.97,380.26,256,224,26.25 sebotnet33ts_256,666.38,191.3,128,256,13.7 rexnet_200,665.99,287.162,192,224,16.37 vgg13,663.21,578.818,384,224,133.05 regnety_008,661.82,772.637,512,224,6.26 wide_resnet50_2,661.04,580.088,384,224,68.88 dla102,650.38,392.047,256,224,33.27 gmlp_s16_224,648.9,294.316,192,224,19.42 vit_base_resnet50d_224,646.39,394.444,256,224,110.97 swin_tiny_patch4_window7_224,639.35,399.428,256,224,28.29 ecaresnet26t,628.75,406.586,256,320,16.01 repvgg_b1,627.31,815.089,512,224,57.42 gluon_resnet101_v1s,624.3,408.497,256,224,44.67 crossvit_small_240,624.04,408.587,256,240,26.86 resnetaa101d,621.23,410.532,256,224,44.57 eca_botnext26ts_256,618.03,413.613,256,256,10.59 resnext26ts,615.62,623.252,384,256,10.3 gc_efficientnetv2_rw_t,605.04,314.593,192,288,13.68 eca_halonext26ts,604.41,422.932,256,256,10.76 seresnext26ts,598.53,427.051,256,256,10.39 eca_resnext26ts,598.25,427.346,256,256,10.3 convnext_tiny_hnfd,592.58,430.992,256,224,28.63 regnetx_008,591.8,864.35,512,224,7.26 resnetv2_50x1_bit_distilled,589.64,324.794,192,224,25.55 legacy_seresnet101,588.41,432.899,256,224,49.33 gcresnext26ts,585.17,436.656,256,256,10.48 halonet50ts,584.39,327.573,192,256,22.73 xcit_nano_12_p8_224,583.42,437.05,256,224,3.05 cait_xxs24_224,582.93,436.673,256,224,11.96 xcit_nano_12_p8_224_dist,581.01,438.848,256,224,3.05 mixer_b16_224,580.44,440.268,256,224,59.88 mixer_b16_224_miil,579.94,440.653,256,224,59.88 swin_s3_tiny_224,578.76,441.339,256,224,28.33 seresnet101,574.05,443.691,256,224,49.33 mixnet_m,573.23,891.634,512,224,5.01 res2net50_26w_6s,569.28,447.908,256,224,37.05 vgg13_bn,568.79,449.813,256,224,133.05 crossvit_15_240,568.46,335.957,192,240,27.53 resnetblur101d,567.71,449.352,256,224,44.57 cspdarknet53,565.64,451.547,256,256,27.64 efficientnet_lite3,563.01,226.244,128,300,8.2 tf_efficientnet_lite3,561.05,227.067,128,300,8.2 crossvit_15_dagger_240,549.96,347.22,192,240,28.21 resnext101_32x4d,548.6,465.031,256,224,44.18 tf_mixnet_m,547.03,700.438,384,224,5.01 swsl_resnext101_32x4d,546.13,467.192,256,224,44.18 gluon_resnext101_32x4d,545.31,467.899,256,224,44.18 ssl_resnext101_32x4d,545.31,467.944,256,224,44.18 densenet201,539.32,353.029,192,224,20.01 vgg16,536.49,715.548,384,224,138.36 bat_resnext26ts,533.44,478.688,256,256,10.73 nf_seresnet101,532.2,478.733,256,224,49.33 vit_base_r26_s32_224,528.57,361.981,192,224,101.38 resnetv2_152,524.49,485.916,256,224,60.19 botnet50ts_256,524.41,243.109,128,256,22.74 res2net101_26w_4s,523.46,486.536,256,224,45.21 efficientnet_b3_pruned,519.43,491.117,256,300,9.86 vit_base_patch32_384,517.32,494.013,256,384,88.3 vit_large_patch32_224,511.41,498.976,256,224,306.54 halo2botnet50ts_256,510.64,375.017,192,256,22.64 mixer_l32_224,510.1,374.908,192,224,206.94 swin_v2_cr_tiny_224,506.89,377.55,192,224,28.33 resmlp_36_distilled_224,505.72,377.435,192,224,44.69 resmlp_36_224,505.39,377.735,192,224,44.69 vit_tiny_patch16_384,503.94,253.174,128,384,5.79 res2next50,502.84,507.818,256,224,24.67 dla102x,501.98,380.938,192,224,26.31 swin_v2_cr_tiny_ns_224,501.36,381.688,192,224,28.33 resnet152,499.83,381.783,192,224,60.19 gluon_resnet152_v1b,499.79,381.933,192,224,60.19 tv_resnet152,496.47,384.401,192,224,60.19 xception,494.06,258.29,128,299,22.86 visformer_tiny,491.83,1040.332,512,224,10.32 mixnet_l,488.23,784.993,384,224,7.33 gluon_resnet152_v1c,485.58,393.139,192,224,60.21 resnet50_gn,484.73,395.256,192,224,25.56 resnetv2_152d,484.59,393.938,192,224,60.2 twins_pcpvt_base,480.18,397.102,192,224,43.83 nest_tiny,477.31,267.267,128,224,17.06 res2net50_26w_8s,476.93,534.581,256,224,48.4 ecaresnet101d,475.58,536.508,256,224,44.57 convnext_small,473.89,403.445,192,224,50.22 gluon_resnet152_v1d,473.52,403.216,192,224,60.21 tf_mixnet_l,470.86,542.123,256,224,7.33 jx_nest_tiny,470.71,271.015,128,224,17.06 vgg16_bn,469.97,544.386,256,224,138.37 nf_ecaresnet101,465.87,547.628,256,224,44.55 coat_lite_small,463.34,412.922,192,224,19.84 poolformer_s36,458.24,417.134,192,224,30.86 efficientnet_el,455.42,279.993,128,300,10.59 efficientnet_el_pruned,454.32,280.643,128,300,10.59 vgg19,451.86,849.574,384,224,143.67 convit_small,450.19,425.458,192,224,27.78 fbnetv3_g,449.02,283.045,128,288,16.62 ese_vovnet99b,448.97,568.658,256,224,63.2 seresnext101_32x4d,448.16,426.163,192,224,48.96 gluon_seresnext101_32x4d,447.49,426.94,192,224,48.96 gluon_resnet152_v1s,446.73,427.49,192,224,60.32 legacy_seresnext101_32x4d,446.01,428.263,192,224,48.96 nf_regnet_b3,442.03,577.378,256,320,18.59 tf_efficientnet_el,441.61,288.785,128,300,10.59 ese_vovnet39b_evos,439.23,290.493,128,224,24.58 dla60_res2next,437.89,583.208,256,224,17.03 volo_d1_224,437.25,437.756,192,224,26.63 dla169,436.98,436.866,192,224,53.39 skresnext50_32x4d,435.09,586.972,256,224,27.48 hrnet_w32,433.46,438.263,192,224,41.23 vit_small_resnet50d_s16_224,432.94,442.239,192,224,57.53 twins_svt_base,429.83,444.617,192,224,56.07 hrnet_w18,419.32,605.846,256,224,21.3 crossvit_18_240,400.15,317.858,128,240,43.27 vgg19_bn,399.74,640.035,256,224,143.68 ecaresnet50t,399.44,319.549,128,320,25.57 inception_v4,397.78,480.469,192,299,42.68 tf_efficientnet_b3,393.44,323.695,128,300,12.23 swin_small_patch4_window7_224,393.38,486.272,192,224,49.61 legacy_seresnet152,392.87,485.406,192,224,66.82 tf_efficientnet_b3_ap,392.08,324.783,128,300,12.23 vit_base_patch16_224_miil,391.87,489.169,192,224,86.54 tf_efficientnet_b3_ns,391.61,325.176,128,300,12.23 crossvit_18_dagger_240,387.95,327.891,128,240,44.27 vit_base_patch16_224,385.23,497.575,192,224,86.57 vit_base_patch16_224_sam,384.98,497.891,192,224,86.57 deit_base_patch16_224,384.15,498.956,192,224,86.57 cait_xxs36_224,380.29,501.012,192,224,17.3 repvgg_b2,380.03,1346.183,512,224,89.02 regnetx_016,379.21,1349.264,512,224,9.19 deit_base_distilled_patch16_224,378.28,506.739,192,224,87.34 densenet161,376.13,337.907,128,224,28.68 haloregnetz_b,375.52,680.247,256,224,11.68 xcit_tiny_12_p8_224,374.86,339.659,128,224,6.71 xcit_tiny_12_p8_224_dist,374.8,339.672,128,224,6.71 seresnet152,372.93,339.954,128,224,66.82 dla102x2,362.92,351.15,128,224,41.28 wide_resnet101_2,360.46,531.121,192,224,126.89 gluon_resnext101_64x4d,357.83,356.147,128,224,83.46 efficientnet_b3a,354.6,359.335,128,320,12.23 resnet200,354.57,357.998,128,224,64.67 xception41p,353.88,360.846,128,299,26.91 regnety_016,353.36,1447.082,512,224,11.2 efficientnet_b3,353.18,360.796,128,320,12.23 beit_base_patch16_224,352.29,543.93,192,224,86.53 resnest14d,349.84,1463.045,512,224,10.61 hrnet_w30,346.82,733.381,256,224,37.71 ens_adv_inception_resnet_v2,341.5,558.819,192,299,55.84 inception_resnet_v2,341.03,559.722,192,299,55.84 xcit_small_24_p16_224_dist,341.01,371.894,128,224,47.67 tnt_s_patch16_224,340.3,562.32,192,224,23.76 xcit_small_24_p16_224,339.02,373.952,128,224,47.67 efficientnet_lite4,334.87,189.779,64,380,13.01 dpn92,332.25,769.002,256,224,37.67 nf_regnet_b1,330.04,1549.911,512,288,10.22 twins_pcpvt_large,327.73,386.698,128,224,60.99 resnet101d,327.41,389.353,128,320,44.57 convnext_small_in22ft1k,327.31,389.301,128,224,88.59 convnext_base,327.3,389.374,128,224,88.59 convnext_base_in22ft1k,326.61,390.177,128,224,88.59 convnext_tiny_in22ft1k,324.94,392.181,128,224,88.59 tf_efficientnet_lite4,322.62,197.041,64,380,13.01 resnetrs101,321.74,395.61,128,288,63.62 pit_b_224,318.92,400.391,128,224,73.76 pit_b_distilled_224,318.09,401.455,128,224,74.79 gcresnext50ts,316.73,604.706,192,256,15.67 repvgg_b3,315.56,1215.795,384,224,123.09 gluon_seresnext101_64x4d,313.23,406.424,128,224,88.23 regnetz_d8,311.3,204.013,64,320,23.37 poolformer_m36,307.82,413.95,128,224,56.17 xception41,305.16,418.228,128,299,26.97 resnetv2_50d_gn,304.62,419.347,128,288,25.57 coat_tiny,304.05,418.955,128,224,5.5 vit_small_patch16_36x1_224,302.22,420.928,128,224,64.67 swin_v2_cr_small_224,302.05,421.43,128,224,49.7 cait_s24_224,301.09,422.497,128,224,46.92 mixnet_xl,300.81,849.169,256,224,11.9 vit_small_patch16_18x2_224,299.9,424.102,128,224,64.67 resnetv2_50d_frn,299.64,426.047,128,224,25.59 efficientnetv2_s,299.05,318.819,96,384,21.46 twins_svt_large,298.59,426.599,128,224,99.27 tf_efficientnetv2_s,297.45,320.544,96,384,21.46 tf_efficientnetv2_s_in21ft1k,295.84,322.238,96,384,21.46 efficientnetv2_rw_s,295.58,214.343,64,384,23.94 nest_small,295.19,323.571,96,224,38.35 jx_nest_small,293.04,325.974,96,224,38.35 hrnet_w40,291.68,653.529,192,224,57.56 regnetz_005,286.8,1783.819,512,224,7.12 nf_regnet_b2,284.19,1799.964,512,272,14.31 dpn98,283.21,450.397,128,224,61.57 gluon_xception65,280.82,339.911,96,299,39.92 xception65,279.18,341.922,96,299,39.92 resnet51q,277.93,689.969,192,288,35.7 nf_regnet_b4,277.28,459.47,128,384,30.21 swin_s3_small_224,277.05,344.678,96,224,49.74 swin_base_patch4_window7_224,275.83,462.244,128,224,87.77 xception65p,274.95,464.241,128,299,39.82 gmlp_b16_224,270.89,352.851,96,224,73.08 hrnet_w48,266.5,475.648,128,224,77.47 resnest26d,258.35,1485.604,384,224,17.07 resnest50d_1s4x24d,258.11,990.508,256,224,25.68 xcit_tiny_24_p16_384_dist,251.56,378.207,96,384,12.12 regnetz_c16,250.16,510.248,128,320,13.46 crossvit_base_240,249.99,382.366,96,240,105.03 coat_mini,247.34,515.482,128,224,10.34 xcit_medium_24_p16_224,244.65,519.851,128,224,84.4 xcit_medium_24_p16_224_dist,244.08,521.069,128,224,84.4 hrnet_w44,241.77,789.352,192,224,67.06 efficientnet_b4,241.47,262.953,64,384,19.34 volo_d2_224,238.72,400.292,96,224,58.68 tf_efficientnet_b4,236.52,268.528,64,380,19.34 tf_efficientnet_b4_ap,236.39,268.69,64,380,19.34 tf_efficientnet_b4_ns,236.1,269.028,64,380,19.34 vit_small_patch16_384,235.52,270.897,64,384,22.2 resnetv2_50d_evob,235.19,406.951,96,224,25.59 tresnet_m,234.84,2177.505,512,224,31.39 nfnet_l0,233.22,1096.449,256,288,35.07 visformer_small,232.72,1649.37,384,224,40.22 xcit_small_12_p16_384_dist,230.87,414.048,96,384,26.25 vit_large_r50_s32_224,228.88,417.083,96,224,328.99 convit_base,228.65,558.76,128,224,86.54 eca_nfnet_l0,226.92,1127.142,256,288,24.14 resnetv2_50d_evos,223.6,285.051,64,288,25.59 tnt_b_patch16_224,222.54,573.324,128,224,65.41 vit_small_r26_s32_384,221.41,287.746,64,384,36.47 densenet264,220.0,432.388,96,224,72.69 swin_s3_base_224,219.07,435.557,96,224,71.13 hrnet_w64,218.91,579.973,128,224,128.06 resnext101_64x4d,217.22,440.378,96,288,83.46 resnet152d,216.09,441.927,96,320,60.21 xception71,215.62,294.681,64,299,42.34 swin_v2_cr_base_224,215.23,443.662,96,224,87.88 dpn131,211.54,603.038,128,224,79.25 nest_base,210.35,302.564,64,224,67.72 vit_base_r50_s16_224,208.87,457.959,96,224,98.66 jx_nest_base,208.37,305.48,64,224,67.72 resnet61q,207.91,614.63,128,288,36.85 mixnet_xxl,202.79,629.315,128,224,23.96 xcit_nano_12_p8_384_dist,196.18,324.445,64,384,3.05 poolformer_m48,193.91,492.638,96,224,73.47 xcit_tiny_24_p8_224,190.8,499.85,96,224,12.11 xcit_tiny_24_p8_224_dist,190.62,500.3,96,224,12.11 seresnet200d,190.31,500.165,96,256,71.86 ecaresnet200d,182.23,523.49,96,256,64.69 regnetz_b16,181.6,1055.83,192,288,9.72 convnext_large_in22ft1k,180.86,529.028,96,224,197.77 convnext_large,180.64,529.707,96,224,197.77 convmixer_768_32,179.25,534.249,96,224,21.11 repvgg_b1g4,178.41,2868.637,512,224,39.97 regnety_032,178.01,1436.656,256,288,19.44 regnetx_032,177.68,2160.015,384,224,15.3 resnest50d,177.64,1439.786,256,224,27.48 gluon_senet154,177.29,538.24,96,224,115.09 senet154,176.81,539.67,96,224,115.09 halonet_h1,175.85,362.526,64,256,8.1 legacy_senet154,175.45,543.752,96,224,115.09 xcit_small_12_p8_224,174.99,363.954,64,224,26.21 xcit_small_12_p8_224_dist,174.85,364.256,64,224,26.21 seresnet152d,173.74,364.967,64,320,66.84 dpn107,173.23,552.482,96,224,86.92 mixer_l16_224,172.58,554.751,96,224,208.2 resnetrs152,171.14,370.433,64,320,86.62 resnest50d_4s2x40d,167.22,1529.64,256,224,30.42 resnet200d,166.19,382.131,64,320,64.69 volo_d3_224,162.25,391.709,64,224,86.33 regnetx_040,161.87,2371.182,384,224,22.12 vit_large_patch32_384,161.83,591.666,96,384,306.63 efficientnet_b3_gn,160.22,397.781,64,320,11.73 swin_large_patch4_window7_224,151.35,420.987,64,224,196.53 regnetx_080,150.02,2558.515,384,224,39.57 regnety_040s_gn,149.61,853.983,128,224,20.65 efficientnetv2_m,149.31,318.263,48,416,54.14 ssl_resnext101_32x8d,147.46,866.477,128,224,88.79 resnext101_32x8d,147.32,867.312,128,224,88.79 swsl_resnext101_32x8d,147.16,868.264,128,224,88.79 ig_resnext101_32x8d,146.91,869.691,128,224,88.79 regnetz_e8,146.27,326.163,48,320,57.7 resnetv2_50x1_bitm,140.77,340.162,48,448,25.55 seresnet269d,137.16,460.633,64,256,113.67 xcit_large_24_p16_224,136.77,464.553,64,224,189.1 xcit_large_24_p16_224_dist,136.73,464.738,64,224,189.1 xcit_tiny_12_p8_384_dist,128.06,373.098,48,384,6.71 efficientnetv2_rw_m,126.21,250.013,32,416,53.24 regnetx_064,124.13,2061.422,256,224,26.21 resnetrs200,123.75,383.587,48,320,93.21 dm_nfnet_f0,121.58,2104.417,256,256,71.49 swin_v2_cr_large_224,120.98,394.327,48,224,196.68 regnety_040,120.25,1595.17,192,288,20.65 nfnet_f0,119.63,2138.729,256,256,71.49 regnetv_040,118.92,1074.873,128,288,20.64 ese_vovnet99b_iabn,118.27,3243.951,384,224,63.2 xcit_small_24_p16_384_dist,117.41,405.393,48,384,47.67 regnetz_b16_evos,117.22,544.08,64,288,9.74 crossvit_15_dagger_408,116.43,273.026,32,408,28.5 efficientnet_b0_g8_gn,115.43,2216.717,256,224,6.56 vit_large_patch16_224,115.39,553.095,64,224,304.33 regnetz_c16_evos,115.15,414.978,48,320,13.49 vit_base_patch16_18x2_224,114.12,558.126,64,224,256.73 convnext_xlarge_in22ft1k,114.03,559.475,64,224,350.2 convnext_tiny_384_in22ft1k,112.53,424.859,48,384,88.59 convnext_small_384_in22ft1k,112.49,424.983,48,384,88.59 convnext_base_384_in22ft1k,112.43,425.187,48,384,88.59 swin_v2_cr_tiny_384,111.07,286.85,32,384,28.33 tf_efficientnetv2_m,109.5,289.071,32,480,54.14 tf_efficientnetv2_m_in21ft1k,109.37,289.435,32,480,54.14 beit_large_patch16_224,106.59,598.365,64,224,304.43 volo_d1_384,104.96,303.527,32,384,26.78 tresnet_l,104.79,4882.686,512,224,55.99 repvgg_b2g4,102.33,5002.104,512,224,61.76 eca_nfnet_l1,101.26,1262.246,128,320,41.41 volo_d4_224,101.17,471.916,48,224,192.96 cspdarknet53_iabn,98.65,3890.155,384,256,27.64 cait_xxs24_384,98.52,484.701,48,384,12.03 efficientnet_b5,97.28,326.485,32,456,30.39 tf_efficientnet_b5,95.75,331.792,32,456,30.39 tf_efficientnet_b5_ns,95.73,331.833,32,456,30.39 vit_base_patch16_384,95.69,333.568,32,384,86.86 deit_base_patch16_384,95.67,333.658,32,384,86.86 regnetz_d8_evos,95.66,332.456,32,320,23.46 tf_efficientnet_b5_ap,95.45,332.725,32,456,30.39 regnetz_040,94.56,674.98,64,320,27.12 regnetz_040h,94.14,678.01,64,320,28.94 deit_base_distilled_patch16_384,93.65,340.87,32,384,87.63 tresnet_xl,90.76,4227.401,384,224,78.44 cspresnext50_iabn,89.98,4265.102,384,256,20.57 resnest101e,89.71,1424.366,128,256,48.28 crossvit_18_dagger_408,87.99,361.633,32,408,44.61 xcit_small_24_p8_224,87.73,361.414,32,224,47.63 xcit_small_24_p8_224_dist,87.7,361.441,32,224,47.63 resnetv2_101x1_bitm,86.89,366.637,32,448,44.54 nf_regnet_b5,86.53,736.892,64,456,49.74 resnetv2_152x2_bit_teacher,86.4,368.012,32,224,236.34 repvgg_b3g4,84.75,4530.071,384,224,83.83 vit_large_patch14_224,84.3,567.814,48,224,304.2 beit_base_patch16_384,82.73,385.724,32,384,86.74 seresnext101_32x8d,81.65,781.61,64,288,93.57 xcit_medium_24_p16_384_dist,81.08,391.168,32,384,84.4 ecaresnet269d,77.88,406.425,32,352,102.09 regnetx_120,77.54,3300.773,256,224,46.11 pnasnet5large,76.44,414.721,32,331,86.06 vit_large_r50_s32_384,75.76,419.984,32,384,329.09 regnety_120,75.34,2547.007,192,224,51.82 resnetrs270,75.27,419.128,32,352,129.86 swin_base_patch4_window12_384,73.61,432.836,32,384,87.9 regnety_064,72.69,1759.173,128,288,30.58 regnetz_d32,72.18,885.049,64,320,27.58 regnetv_064,71.81,1780.738,128,288,30.58 resmlp_big_24_224,68.34,466.717,32,224,129.14 resmlp_big_24_224_in22ft1k,68.31,466.955,32,224,129.14 resmlp_big_24_distilled_224,68.26,467.278,32,224,129.14 regnety_320,67.49,1895.092,128,224,145.05 nasnetalarge,66.93,473.19,32,331,88.75 swin_v2_cr_small_384,66.26,359.874,24,384,49.7 cait_xs24_384,65.98,482.447,32,384,26.67 regnety_080,65.45,1954.421,128,288,39.18 regnetx_160,65.01,2952.336,192,224,54.28 xcit_tiny_24_p8_384_dist,64.61,492.002,32,384,12.11 volo_d5_224,64.26,494.733,32,224,295.46 cait_xxs36_384,63.75,498.023,32,384,17.37 vit_base_patch8_224,62.96,380.293,24,224,86.58 xcit_medium_24_p8_224,62.71,506.97,32,224,84.32 xcit_medium_24_p8_224_dist,62.63,507.407,32,224,84.32 efficientnet_b3_g8_gn,62.43,1023.448,64,320,14.25 convnext_large_384_in22ft1k,61.7,516.836,32,384,197.77 convmixer_1024_20_ks9_p14,61.37,4170.722,256,224,24.38 efficientnet_b0_g16_evos,60.46,6350.16,384,224,8.11 tf_efficientnetv2_l_in21ft1k,60.25,261.19,16,480,118.52 xcit_small_12_p8_384_dist,60.04,398.02,24,384,26.21 efficientnetv2_l,59.19,265.957,16,480,118.52 vit_base_resnet50_384,59.0,405.136,24,384,98.95 tf_efficientnetv2_l,58.87,267.382,16,480,118.52 vit_base_r50_s16_384,58.85,406.196,24,384,98.95 volo_d2_384,58.21,273.125,16,384,58.87 tresnet_m_448,53.55,3582.526,192,448,31.39 cait_s24_384,49.8,479.385,24,384,47.06 regnety_160,48.14,1993.0,96,288,83.59 ig_resnext101_32x16d,47.52,2018.737,96,224,194.03 swsl_resnext101_32x16d,47.43,2022.391,96,224,194.03 xcit_large_24_p16_384_dist,47.39,502.961,24,384,189.1 ssl_resnext101_32x16d,47.29,2028.601,96,224,194.03 resnetrs350,47.22,500.442,24,384,163.96 swin_v2_cr_base_384,47.19,336.677,16,384,87.88 swin_v2_cr_huge_224,46.26,343.404,16,224,657.83 regnetx_320,46.16,2771.769,128,224,107.81 eca_nfnet_l2,44.82,1425.204,64,384,56.72 efficientnet_b6,42.73,371.597,16,528,43.04 tf_efficientnet_b6,41.54,382.29,16,528,43.04 tf_efficientnet_b6_ns,41.5,382.621,16,528,43.04 tf_efficientnet_b6_ap,41.36,384.088,16,528,43.04 swin_large_patch4_window12_384,41.02,388.265,16,384,196.74 nfnet_f1,40.44,2371.478,96,320,132.63 vit_huge_patch14_224,39.64,401.543,16,224,632.05 dm_nfnet_f1,38.26,1670.645,64,320,132.63 convnext_xlarge_384_in22ft1k,37.04,430.195,16,384,350.2 efficientnet_b7,36.68,214.625,8,600,66.35 efficientnetv2_xl,36.54,322.755,12,512,208.12 tf_efficientnetv2_xl_in21ft1k,36.36,324.371,12,512,208.12 tf_efficientnet_b7_ap,36.21,217.402,8,600,66.35 tf_efficientnet_b7,36.05,218.422,8,600,66.35 tf_efficientnet_b7_ns,35.41,221.975,8,600,66.35 xcit_large_24_p8_224,34.96,454.269,16,224,188.93 xcit_large_24_p8_224_dist,34.92,454.696,16,224,188.93 resnetrs420,32.2,487.619,16,416,191.89 cait_s36_384,32.09,494.814,16,384,68.37 resnest200e,32.0,1494.763,48,320,70.2 densenet264d_iabn,31.93,4003.992,128,224,72.74 resnetv2_50x3_bitm,31.81,502.194,16,448,217.32 xcit_small_24_p8_384_dist,29.97,396.971,12,384,47.63 resnetv2_152x2_bit_teacher_384,29.92,398.698,12,384,236.34 vit_large_patch16_384,28.85,414.372,12,384,304.72 swin_v2_cr_large_384,28.47,419.18,12,384,196.68 tresnet_l_448,25.64,4988.984,128,448,55.99 beit_large_patch16_384,25.11,475.839,12,384,305.0 volo_d3_448,24.79,320.233,8,448,86.63 eca_nfnet_l3,24.19,1319.468,32,448,72.04 tresnet_xl_448,23.17,4140.191,96,448,78.44 nfnet_f2,22.36,2143.929,48,352,193.78 vit_giant_patch14_224,22.25,356.944,8,224,1012.61 dm_nfnet_f2,22.12,2166.49,48,352,193.78 efficientnet_cc_b0_8e,21.78,44.083,1,224,24.01 resnetv2_152x2_bitm,21.74,365.619,8,448,236.34 tf_efficientnet_cc_b0_4e,21.44,44.859,1,224,13.31 tf_efficientnet_cc_b0_8e,20.98,45.875,1,224,24.01 xcit_medium_24_p8_384_dist,20.42,388.21,8,384,84.32 efficientnet_cc_b0_4e,20.36,47.276,1,224,13.31 ig_resnext101_32x32d,18.17,1760.063,32,224,468.53 volo_d4_448,17.6,338.311,6,448,193.41 resnetv2_101x3_bitm,17.53,454.801,8,448,387.93 tf_efficientnet_cc_b1_8e,17.15,56.006,1,240,39.72 efficientnet_cc_b1_8e,16.21,59.398,1,240,39.72 resnest269e,13.09,1826.778,24,416,110.93 tf_efficientnet_b8_ap,12.18,488.771,6,672,87.41 efficientnet_b8,12.12,491.31,6,672,87.41 nfnet_f3,12.08,1982.52,24,416,254.92 xcit_large_24_p8_384_dist,11.91,500.622,6,384,188.93 tf_efficientnet_b8,11.9,500.516,6,672,87.41 cait_m36_384,11.87,501.638,6,384,271.22 dm_nfnet_f3,11.74,2040.434,24,416,254.92 volo_d5_448,11.52,343.952,4,448,295.91 swin_v2_cr_huge_384,10.9,364.423,4,384,657.94 convmixer_1536_20,9.63,4981.706,48,224,51.63 beit_large_patch16_512,9.42,422.773,4,512,305.67 tf_efficientnet_l2_ns_475,9.0,327.787,3,475,480.31 ig_resnext101_32x48d,8.5,1880.808,16,224,828.41 volo_d5_512,8.05,369.448,3,512,296.09 nfnet_f4,6.47,1849.874,12,512,316.07 dm_nfnet_f4,6.2,1929.065,12,512,316.07 cait_m48_448,4.75,415.897,2,448,356.46 nfnet_f5,4.63,1719.792,8,544,377.21 resnetv2_152x4_bitm,4.49,443.185,2,480,936.53 dm_nfnet_f5,4.47,1782.137,8,544,377.21 nfnet_f6,3.5,1707.387,6,576,438.36 dm_nfnet_f6,3.39,1759.608,6,576,438.36 nfnet_f7,2.67,1489.771,4,608,499.5 efficientnet_l2,2.09,473.733,1,800,480.31 tf_efficientnet_l2_ns,2.09,474.031,1,800,480.31
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt210-cu121-rtx3090.csv
model,infer_img_size,infer_batch_size,infer_samples_per_sec,infer_step_time,infer_gmacs,infer_macts,param_count tinynet_e,106,1024.0,75290.96,13.591,0.03,0.69,2.04 mobilenetv3_small_050,224,1024.0,56785.93,18.023,0.03,0.92,1.59 efficientvit_m0,224,1024.0,50656.23,20.205,0.08,0.91,2.35 lcnet_035,224,1024.0,48853.22,20.951,0.03,1.04,1.64 lcnet_050,224,1024.0,42147.98,24.285,0.05,1.26,1.88 mobilenetv3_small_075,224,1024.0,42002.46,24.369,0.05,1.3,2.04 mobilenetv3_small_100,224,1024.0,38516.23,26.573,0.06,1.42,2.54 tinynet_d,152,1024.0,37989.71,26.944,0.05,1.42,2.34 efficientvit_m1,224,1024.0,37486.44,27.306,0.17,1.33,2.98 tf_mobilenetv3_small_minimal_100,224,1024.0,33948.13,30.153,0.06,1.41,2.04 efficientvit_m2,224,1024.0,33551.67,30.51,0.2,1.47,4.19 tf_mobilenetv3_small_075,224,1024.0,33262.15,30.775,0.05,1.3,2.04 tf_mobilenetv3_small_100,224,1024.0,31002.71,33.019,0.06,1.42,2.54 lcnet_075,224,1024.0,30664.19,33.384,0.1,1.99,2.36 efficientvit_m3,224,1024.0,29423.78,34.792,0.27,1.62,6.9 efficientvit_m4,224,1024.0,27882.1,36.716,0.3,1.7,8.8 mnasnet_small,224,1024.0,25015.02,40.925,0.07,2.16,2.03 regnetx_002,224,1024.0,24564.71,41.67,0.2,2.16,2.68 lcnet_100,224,1024.0,24268.72,42.183,0.16,2.52,2.95 levit_128s,224,1024.0,22705.11,45.089,0.31,1.88,7.78 regnety_002,224,1024.0,22248.91,46.012,0.2,2.17,3.16 resnet10t,176,1024.0,22236.3,46.04,0.7,1.51,5.44 mobilenetv2_035,224,1024.0,22055.42,46.418,0.07,2.86,1.68 levit_conv_128s,224,1024.0,21863.15,46.826,0.31,1.88,7.78 ghostnet_050,224,1024.0,20782.95,49.261,0.05,1.77,2.59 mnasnet_050,224,1024.0,20672.17,49.525,0.11,3.07,2.22 repghostnet_050,224,1024.0,20617.05,49.657,0.05,2.02,2.31 efficientvit_m5,224,1024.0,19010.14,53.856,0.53,2.41,12.47 tinynet_c,184,1024.0,18737.07,54.641,0.11,2.87,2.46 efficientvit_b0,224,1024.0,18023.56,56.804,0.1,2.87,3.41 semnasnet_050,224,1024.0,17573.38,58.26,0.11,3.44,2.08 mobilenetv2_050,224,1024.0,17491.5,58.532,0.1,3.64,1.97 regnetx_004,224,1024.0,17164.74,59.647,0.4,3.14,5.16 repghostnet_058,224,1024.0,16947.81,60.41,0.07,2.59,2.55 regnetx_004_tv,224,1024.0,16485.73,62.101,0.42,3.17,5.5 vit_small_patch32_224,224,1024.0,16428.86,62.319,1.12,2.09,22.88 cs3darknet_focus_s,256,1024.0,16333.25,62.684,0.69,2.7,3.27 lcnet_150,224,1024.0,15841.02,64.632,0.34,3.79,4.5 gernet_s,224,1024.0,15617.62,65.556,0.75,2.65,8.17 cs3darknet_s,256,1024.0,15597.89,65.64,0.72,2.97,3.28 levit_128,224,1024.0,15372.6,66.601,0.41,2.71,9.21 vit_tiny_r_s16_p8_224,224,1024.0,15191.19,67.397,0.43,1.85,6.34 levit_conv_128,224,1024.0,14904.31,68.695,0.41,2.71,9.21 mobilenetv3_large_075,224,1024.0,14843.63,68.964,0.16,4.0,3.99 pit_ti_distilled_224,224,1024.0,14746.15,69.432,0.51,2.77,5.1 pit_ti_224,224,1024.0,14700.08,69.649,0.5,2.75,4.85 mixer_s32_224,224,1024.0,14362.24,71.288,1.0,2.28,19.1 resnet10t,224,1024.0,14254.88,71.825,1.1,2.43,5.44 repghostnet_080,224,1024.0,13967.84,73.293,0.1,3.22,3.28 tf_efficientnetv2_b0,192,1024.0,13629.52,75.121,0.54,3.51,7.14 mobilenetv3_rw,224,1024.0,13582.75,75.38,0.23,4.41,5.48 levit_192,224,1024.0,13511.34,75.778,0.66,3.2,10.95 mnasnet_075,224,1024.0,13417.36,76.309,0.23,4.77,3.17 mobilenetv3_large_100,224,1024.0,13322.79,76.851,0.23,4.41,5.48 hardcorenas_a,224,1024.0,13314.34,76.899,0.23,4.38,5.26 levit_conv_192,224,1024.0,12952.02,79.05,0.66,3.2,10.95 regnety_004,224,1024.0,12651.55,80.929,0.41,3.89,4.34 tf_mobilenetv3_large_075,224,1024.0,12636.69,81.023,0.16,4.0,3.99 nf_regnet_b0,192,1024.0,12264.41,83.481,0.37,3.15,8.76 tinynet_b,188,1024.0,12262.56,83.495,0.21,4.44,3.73 tf_mobilenetv3_large_minimal_100,224,1024.0,12182.74,84.043,0.22,4.4,3.92 hardcorenas_b,224,1024.0,12118.5,84.488,0.26,5.09,5.18 hardcorenas_c,224,1024.0,12088.28,84.699,0.28,5.01,5.52 resnet14t,176,1024.0,11843.82,86.448,1.07,3.61,10.08 mnasnet_100,224,1024.0,11686.43,87.612,0.33,5.46,4.38 regnety_006,224,1024.0,11675.48,87.69,0.61,4.33,6.06 ese_vovnet19b_slim_dw,224,1024.0,11663.91,87.781,0.4,5.28,1.9 repghostnet_100,224,1024.0,11508.79,88.956,0.15,3.98,4.07 tf_mobilenetv3_large_100,224,1024.0,11443.62,89.472,0.23,4.41,5.48 vit_tiny_patch16_224,224,1024.0,11342.82,90.267,1.08,4.12,5.72 hardcorenas_d,224,1024.0,11329.99,90.369,0.3,4.93,7.5 deit_tiny_distilled_patch16_224,224,1024.0,11311.9,90.514,1.09,4.15,5.91 deit_tiny_patch16_224,224,1024.0,11286.31,90.719,1.08,4.12,5.72 semnasnet_075,224,1024.0,11132.28,91.974,0.23,5.54,2.91 resnet18,224,1024.0,11101.69,92.228,1.82,2.48,11.69 ghostnet_100,224,1024.0,11039.87,92.744,0.15,3.55,5.18 mobilenetv2_075,224,1024.0,10984.87,93.208,0.22,5.86,2.64 spnasnet_100,224,1024.0,10557.11,96.986,0.35,6.03,4.42 tf_efficientnetv2_b1,192,1024.0,10473.04,97.765,0.76,4.59,8.14 regnetx_008,224,1024.0,10422.45,98.23,0.81,5.15,7.26 seresnet18,224,1024.0,10416.31,98.297,1.82,2.49,11.78 tf_efficientnetv2_b0,224,1024.0,10174.51,100.633,0.73,4.77,7.14 legacy_seresnet18,224,1024.0,10133.12,101.044,1.82,2.49,11.78 repghostnet_111,224,1024.0,10094.28,101.428,0.18,4.38,4.54 hardcorenas_f,224,1024.0,10012.95,102.257,0.35,5.57,8.2 tinynet_a,192,1024.0,9946.05,102.945,0.35,5.41,6.19 dla46_c,224,1024.0,9943.77,102.967,0.58,4.5,1.3 hardcorenas_e,224,1024.0,9851.75,103.931,0.35,5.65,8.07 semnasnet_100,224,1024.0,9823.16,104.233,0.32,6.23,3.89 levit_256,224,1024.0,9811.76,104.354,1.13,4.23,18.89 repvgg_a0,224,1024.0,9709.7,105.449,1.52,3.59,9.11 mobilenetv2_100,224,1024.0,9654.78,106.051,0.31,6.68,3.5 regnety_008,224,1024.0,9643.2,106.178,0.81,5.25,6.26 fbnetc_100,224,1024.0,9552.51,107.186,0.4,6.51,5.57 efficientnet_lite0,224,1024.0,9466.4,108.161,0.4,6.74,4.65 levit_conv_256,224,1024.0,9461.49,108.218,1.13,4.23,18.89 resnet18d,224,1024.0,9458.4,108.253,2.06,3.29,11.71 pit_xs_224,224,1024.0,9332.33,109.714,1.1,4.12,10.62 ese_vovnet19b_slim,224,1024.0,9277.16,110.369,1.69,3.52,3.17 regnety_008_tv,224,1024.0,9213.78,111.127,0.84,5.42,6.43 pit_xs_distilled_224,224,1024.0,9203.86,111.241,1.11,4.15,11.0 convnext_atto,224,1024.0,9104.06,112.467,0.55,3.81,3.7 repghostnet_130,224,1024.0,8873.05,115.395,0.25,5.24,5.48 ghostnet_130,224,1024.0,8870.81,115.424,0.24,4.6,7.36 convnext_atto_ols,224,1024.0,8829.55,115.964,0.58,4.11,3.7 regnetz_005,224,1024.0,8796.44,116.392,0.52,5.86,7.12 xcit_nano_12_p16_224,224,1024.0,8604.96,118.991,0.56,4.17,3.05 levit_256d,224,1024.0,8322.97,123.022,1.4,4.93,26.21 regnetx_006,224,1024.0,8320.1,123.064,0.61,3.98,6.2 tf_efficientnet_lite0,224,1024.0,8163.21,125.431,0.4,6.74,4.65 fbnetv3_b,224,1024.0,8152.31,125.598,0.42,6.97,8.6 efficientnet_b0,224,1024.0,8085.72,126.633,0.4,6.75,5.29 levit_conv_256d,224,1024.0,8055.13,127.113,1.4,4.93,26.21 edgenext_xx_small,256,1024.0,8014.51,127.757,0.26,3.33,1.33 mnasnet_140,224,1024.0,7984.3,128.241,0.6,7.71,7.12 convnext_femto,224,1024.0,7977.79,128.346,0.79,4.57,5.22 tf_efficientnetv2_b2,208,1024.0,7861.13,130.251,1.06,6.0,10.1 mobilevit_xxs,256,1024.0,7827.79,130.801,0.34,5.74,1.27 repghostnet_150,224,1024.0,7766.69,131.835,0.32,6.0,6.58 convnext_femto_ols,224,1024.0,7757.32,131.994,0.82,4.87,5.23 rexnetr_100,224,1024.0,7545.9,135.692,0.43,7.72,4.88 repvit_m1,224,1024.0,7543.44,135.728,0.83,7.45,5.49 resnet14t,224,1024.0,7466.4,137.137,1.69,5.8,10.08 mobilenetv2_110d,224,1024.0,7331.32,139.66,0.45,8.71,4.52 hrnet_w18_small,224,1024.0,7298.3,140.296,1.61,5.72,13.19 cs3darknet_focus_m,256,1024.0,7202.61,142.16,1.98,4.89,9.3 repvit_m0_9,224,1024.0,7165.5,142.888,0.83,7.45,5.49 crossvit_tiny_240,240,1024.0,7123.68,143.735,1.3,5.67,7.01 efficientvit_b1,224,1024.0,7109.59,144.02,0.53,7.25,9.1 tf_efficientnet_b0,224,1024.0,7104.21,144.129,0.4,6.75,5.29 crossvit_9_240,240,1024.0,7025.32,145.747,1.55,5.59,8.55 nf_regnet_b0,256,1024.0,6992.1,146.441,0.64,5.58,8.76 repvgg_a1,224,1024.0,6942.64,147.483,2.64,4.74,14.09 mobilevitv2_050,256,1024.0,6935.55,147.628,0.48,8.04,1.37 cs3darknet_m,256,1024.0,6929.59,147.762,2.08,5.28,9.31 efficientnet_b1_pruned,240,1024.0,6922.7,147.909,0.4,6.21,6.33 gernet_m,224,1024.0,6840.64,149.682,3.02,5.24,21.14 fbnetv3_d,224,1024.0,6784.35,150.925,0.52,8.5,10.31 semnasnet_140,224,1024.0,6771.35,151.215,0.6,8.87,6.11 crossvit_9_dagger_240,240,1024.0,6704.51,152.722,1.68,6.03,8.78 tf_efficientnetv2_b1,240,1024.0,6611.54,154.87,1.21,7.34,8.14 mobilenetv2_140,224,1024.0,6588.7,155.407,0.6,9.57,6.11 resnet34,224,1024.0,6504.25,157.425,3.67,3.74,21.8 ese_vovnet19b_dw,224,1024.0,6406.95,159.816,1.34,8.25,6.54 selecsls42,224,1024.0,6366.41,160.834,2.94,4.62,30.35 resnet18,288,1024.0,6354.7,161.13,3.01,4.11,11.69 selecsls42b,224,1024.0,6344.62,161.386,2.98,4.62,32.46 efficientnet_b0_g16_evos,224,1024.0,6342.4,161.442,1.01,7.42,8.11 edgenext_xx_small,288,1024.0,6334.97,161.631,0.33,4.21,1.33 efficientnet_lite1,240,1024.0,6268.15,163.355,0.62,10.14,5.42 pvt_v2_b0,224,1024.0,6254.52,163.711,0.53,7.01,3.67 visformer_tiny,224,1024.0,6218.29,164.665,1.27,5.72,10.32 convnext_pico,224,1024.0,6208.02,164.938,1.37,6.1,9.05 fbnetv3_b,256,1024.0,6192.25,165.357,0.55,9.1,8.6 efficientnet_es_pruned,224,1024.0,6175.39,165.809,1.81,8.73,5.44 efficientnet_es,224,1024.0,6170.12,165.95,1.81,8.73,5.44 rexnet_100,224,1024.0,6170.05,165.953,0.41,7.44,4.8 ghostnetv2_100,224,1024.0,6155.62,166.342,0.18,4.55,6.16 seresnet34,224,1024.0,6069.09,168.714,3.67,3.74,21.96 convnext_pico_ols,224,1024.0,6043.01,169.442,1.43,6.5,9.06 seresnet18,288,1024.0,5998.94,170.686,3.01,4.11,11.78 dla46x_c,224,1024.0,5992.19,170.877,0.54,5.66,1.07 dla34,224,1024.0,5954.72,171.952,3.07,5.02,15.74 repghostnet_200,224,1024.0,5934.75,172.524,0.54,7.96,9.8 resnet26,224,1024.0,5916.33,173.07,2.36,7.35,16.0 levit_384,224,1024.0,5897.4,173.625,2.36,6.26,39.13 resnet34d,224,1024.0,5884.13,174.017,3.91,4.54,21.82 cs3darknet_focus_m,288,1024.0,5878.89,174.173,2.51,6.19,9.3 legacy_seresnet34,224,1024.0,5873.4,174.335,3.67,3.74,21.96 repvit_m2,224,1024.0,5866.53,174.53,1.36,9.43,8.8 vit_base_patch32_224,224,1024.0,5866.04,174.553,4.37,4.19,88.22 vit_base_patch32_clip_224,224,1024.0,5864.79,174.59,4.37,4.19,88.22 repvit_m1_0,224,1024.0,5862.26,174.66,1.13,8.69,7.3 tf_efficientnet_es,224,1024.0,5831.76,175.58,1.81,8.73,5.44 rexnetr_130,224,1024.0,5827.09,175.72,0.68,9.81,7.61 resnetrs50,160,1024.0,5819.33,175.954,2.29,6.2,35.69 dla60x_c,224,1024.0,5709.85,179.326,0.59,6.01,1.32 vit_small_patch32_384,384,1024.0,5700.23,179.631,3.26,6.07,22.92 levit_conv_384,224,1024.0,5694.64,179.807,2.36,6.26,39.13 tiny_vit_5m_224,224,1024.0,5681.84,180.212,1.18,9.32,12.08 efficientnet_b1,224,1024.0,5671.54,180.54,0.59,9.36,7.79 cs3darknet_m,288,1024.0,5670.5,180.573,2.63,6.69,9.31 resnetblur18,224,1024.0,5631.98,181.808,2.34,3.39,11.69 tf_efficientnet_lite1,240,1024.0,5588.09,183.236,0.62,10.14,5.42 repvit_m1_1,224,1024.0,5584.25,183.355,1.36,9.43,8.8 mixnet_s,224,1024.0,5566.85,183.931,0.25,6.25,4.13 convnext_atto,288,1024.0,5556.64,184.274,0.91,6.3,3.7 darknet17,256,1024.0,5525.94,185.298,3.26,7.18,14.3 pit_s_224,224,1024.0,5520.06,185.491,2.42,6.18,23.46 resnet18d,288,1024.0,5497.35,186.262,3.41,5.43,11.71 selecsls60,224,1024.0,5496.69,186.283,3.59,5.52,30.67 pit_s_distilled_224,224,1024.0,5494.69,186.349,2.45,6.22,24.04 xcit_tiny_12_p16_224,224,1024.0,5472.11,187.12,1.24,6.29,6.72 selecsls60b,224,1024.0,5466.97,187.296,3.63,5.52,32.77 skresnet18,224,1024.0,5432.07,188.499,1.82,3.24,11.96 convnext_atto_ols,288,1024.0,5378.78,190.367,0.96,6.8,3.7 resmlp_12_224,224,1024.0,5371.14,190.637,3.01,5.5,15.35 regnetz_005,288,1024.0,5353.96,191.249,0.86,9.68,7.12 mobilenetv2_120d,224,1024.0,5347.39,191.484,0.69,11.97,5.83 convnextv2_atto,224,1024.0,5293.77,193.425,0.55,3.81,3.71 repvgg_b0,224,1024.0,5265.8,194.451,3.41,6.15,15.82 mixer_b32_224,224,1024.0,5245.72,195.191,3.24,6.29,60.29 vit_tiny_r_s16_p8_384,384,1024.0,5235.72,195.568,1.25,5.39,6.36 nf_regnet_b1,256,1024.0,5226.46,195.915,0.82,7.27,10.22 nf_regnet_b2,240,1024.0,5223.53,196.02,0.97,7.23,14.31 vit_base_patch32_clip_quickgelu_224,224,1024.0,5220.87,196.124,4.37,4.19,87.85 resnetaa34d,224,1024.0,5205.31,196.711,4.43,5.07,21.82 resnet26d,224,1024.0,5169.81,198.062,2.6,8.15,16.01 tf_mixnet_s,224,1024.0,5128.65,199.652,0.25,6.25,4.13 rexnetr_150,224,1024.0,5105.32,200.564,0.89,11.13,9.78 gmixer_12_224,224,1024.0,5083.79,201.414,2.67,7.26,12.7 fbnetv3_d,256,1024.0,5047.63,202.856,0.68,11.1,10.31 edgenext_x_small,256,1024.0,5018.94,204.014,0.54,5.93,2.34 mixer_s16_224,224,1024.0,5009.58,204.393,3.79,5.97,18.53 regnetz_b16,224,1024.0,5008.24,204.437,1.45,9.95,9.72 gmlp_ti16_224,224,1024.0,4999.44,204.811,1.34,7.55,5.87 darknet21,256,1024.0,4956.17,206.601,3.93,7.47,20.86 eva02_tiny_patch14_224,224,1024.0,4940.45,207.258,1.4,6.17,5.5 ghostnetv2_130,224,1024.0,4896.55,209.116,0.28,5.9,8.96 convnext_femto,288,1024.0,4844.52,211.362,1.3,7.56,5.22 nf_resnet26,224,1024.0,4822.21,212.339,2.41,7.35,16.0 efficientnet_lite2,260,1024.0,4817.66,212.541,0.89,12.9,6.09 tf_efficientnetv2_b2,260,1024.0,4797.27,213.444,1.72,9.84,10.1 efficientnet_cc_b0_8e,224,1024.0,4749.51,215.591,0.42,9.42,24.01 sedarknet21,256,1024.0,4747.46,215.684,3.93,7.47,20.95 efficientnet_cc_b0_4e,224,1024.0,4720.11,216.933,0.41,9.42,13.31 efficientnet_b2_pruned,260,1024.0,4716.64,217.093,0.73,9.13,8.31 convnext_femto_ols,288,1024.0,4709.5,217.422,1.35,8.06,5.23 resnext26ts,256,1024.0,4668.94,219.311,2.43,10.52,10.3 tiny_vit_11m_224,224,1024.0,4649.32,220.237,1.9,10.73,20.35 ecaresnet50d_pruned,224,1024.0,4636.78,220.832,2.53,6.43,19.94 deit_small_patch16_224,224,1024.0,4620.93,221.59,4.25,8.25,22.05 efficientformer_l1,224,1024.0,4616.64,221.795,1.3,5.53,12.29 vit_small_patch16_224,224,1024.0,4614.32,221.907,4.25,8.25,22.05 dpn48b,224,1024.0,4588.67,223.146,1.69,8.92,9.13 deit_small_distilled_patch16_224,224,1024.0,4587.3,223.214,4.27,8.29,22.44 vit_base_patch32_clip_256,256,1024.0,4547.51,225.168,5.68,5.44,87.86 convnextv2_femto,224,1024.0,4545.73,225.256,0.79,4.57,5.23 mobilevitv2_075,256,1024.0,4537.95,225.638,1.05,12.06,2.87 eca_resnext26ts,256,1024.0,4521.18,226.479,2.43,10.52,10.3 seresnext26ts,256,1024.0,4517.43,226.666,2.43,10.52,10.39 efficientnetv2_rw_t,224,1024.0,4511.98,226.94,1.93,9.94,13.65 legacy_seresnext26_32x4d,224,1024.0,4489.21,228.092,2.49,9.39,16.79 gernet_l,256,1024.0,4474.96,228.817,4.57,8.0,31.08 gcresnext26ts,256,1024.0,4472.11,228.964,2.43,10.53,10.48 rexnet_130,224,1024.0,4453.51,229.92,0.68,9.71,7.56 tf_efficientnet_b1,240,1024.0,4442.45,230.492,0.71,10.88,7.79 tf_efficientnet_cc_b0_8e,224,1024.0,4391.83,233.15,0.42,9.42,24.01 convnext_nano,224,1024.0,4389.78,233.258,2.46,8.37,15.59 gc_efficientnetv2_rw_t,224,1024.0,4373.41,234.132,1.94,9.97,13.68 tf_efficientnet_cc_b0_4e,224,1024.0,4373.37,234.134,0.41,9.42,13.31 tf_efficientnetv2_b3,240,1024.0,4372.06,234.204,1.93,9.95,14.36 tf_efficientnet_lite2,260,1024.0,4324.79,236.764,0.89,12.9,6.09 efficientnet_b1,256,1024.0,4298.75,238.198,0.77,12.22,7.79 deit3_small_patch16_224,224,1024.0,4270.38,239.779,4.25,8.25,22.06 cs3darknet_focus_l,256,1024.0,4230.07,242.066,4.66,8.03,21.15 nf_regnet_b1,288,1024.0,4135.98,247.568,1.02,9.2,10.22 convnext_nano_ols,224,1024.0,4118.16,248.644,2.65,9.38,15.65 nf_seresnet26,224,1024.0,4112.79,248.966,2.41,7.36,17.4 nf_ecaresnet26,224,1024.0,4107.39,249.292,2.41,7.36,16.0 efficientnet_b2,256,1024.0,4105.27,249.424,0.89,12.81,9.11 cs3darknet_l,256,1024.0,4101.41,249.66,4.86,8.55,21.16 nf_regnet_b2,272,1024.0,4097.18,249.913,1.22,9.27,14.31 ecaresnext50t_32x4d,224,1024.0,4074.12,251.332,2.7,10.09,15.41 ecaresnext26t_32x4d,224,1024.0,4072.14,251.454,2.7,10.09,15.41 seresnext26t_32x4d,224,1024.0,4061.05,252.141,2.7,10.09,16.81 repvgg_a2,224,1024.0,4049.32,252.867,5.7,6.26,28.21 poolformer_s12,224,1024.0,4047.55,252.981,1.82,5.53,11.92 seresnext26d_32x4d,224,1024.0,4037.54,253.609,2.73,10.19,16.81 regnetx_016,224,1024.0,4025.84,254.342,1.62,7.93,9.19 resnet26t,256,1024.0,4021.85,254.598,3.35,10.52,16.01 flexivit_small,240,1024.0,4011.8,255.236,4.88,9.46,22.06 edgenext_x_small,288,1024.0,3990.87,256.573,0.68,7.5,2.34 rexnet_150,224,1024.0,3983.48,257.051,0.9,11.21,9.73 vit_relpos_small_patch16_rpn_224,224,1024.0,3975.32,257.575,4.24,9.38,21.97 repvit_m3,224,1024.0,3966.18,258.164,1.89,13.94,10.68 vit_relpos_small_patch16_224,224,1024.0,3948.05,259.358,4.24,9.38,21.98 vit_srelpos_small_patch16_224,224,1024.0,3937.22,260.07,4.23,8.49,21.97 mobileone_s1,224,1024.0,3931.71,260.434,0.86,9.67,4.83 resnetv2_50,224,1024.0,3890.29,263.208,4.11,11.11,25.55 eca_botnext26ts_256,256,1024.0,3883.93,263.639,2.46,11.6,10.59 cs3sedarknet_l,256,1024.0,3835.91,266.94,4.86,8.56,21.91 ghostnetv2_160,224,1024.0,3826.79,267.576,0.42,7.23,12.39 resnet34,288,1024.0,3820.15,268.041,6.07,6.18,21.8 edgenext_small,256,1024.0,3794.31,269.865,1.26,9.07,5.59 dpn68,224,1024.0,3788.79,270.258,2.35,10.47,12.61 ese_vovnet19b_dw,288,1024.0,3782.88,270.682,2.22,13.63,6.54 fbnetv3_g,240,1024.0,3779.41,270.931,1.28,14.87,16.62 convnext_pico,288,1024.0,3777.8,271.046,2.27,10.08,9.05 ecaresnetlight,224,1024.0,3759.77,272.346,4.11,8.42,30.16 eca_halonext26ts,256,1024.0,3745.07,273.414,2.44,11.46,10.76 dpn68b,224,1024.0,3719.51,275.293,2.35,10.47,12.61 mixnet_m,224,1024.0,3687.37,277.689,0.36,8.19,5.01 resnet50,224,1024.0,3687.18,277.708,4.11,11.11,25.56 efficientnet_em,240,1024.0,3685.78,277.814,3.04,14.34,6.9 convnext_pico_ols,288,1024.0,3673.49,278.743,2.37,10.74,9.06 resnet32ts,256,1024.0,3641.96,281.156,4.63,11.58,17.96 bat_resnext26ts,256,1024.0,3638.35,281.435,2.53,12.51,10.73 efficientnet_b3_pruned,300,1024.0,3633.29,281.827,1.04,11.86,9.86 botnet26t_256,256,1024.0,3632.31,281.904,3.32,11.98,12.49 hrnet_w18_small_v2,224,1024.0,3631.33,281.979,2.62,9.65,15.6 ecaresnet101d_pruned,224,1024.0,3611.37,283.538,3.48,7.69,24.88 ecaresnet26t,256,1024.0,3599.02,284.511,3.35,10.53,16.01 regnetv_040,224,1024.0,3598.04,284.583,4.0,12.29,20.64 seresnet34,288,1024.0,3583.61,285.735,6.07,6.18,21.96 resnetv2_50t,224,1024.0,3573.26,286.561,4.32,11.82,25.57 pvt_v2_b1,224,1024.0,3571.19,286.726,2.04,14.01,14.01 regnety_016,224,1024.0,3567.37,287.031,1.63,8.04,11.2 resnext26ts,288,1024.0,3565.74,287.167,3.07,13.31,10.3 regnety_040,224,1024.0,3565.62,287.173,4.0,12.29,20.65 resnet33ts,256,1024.0,3563.66,287.335,4.76,11.66,19.68 resnetv2_50d,224,1024.0,3553.44,288.159,4.35,11.92,25.57 tf_efficientnet_em,240,1024.0,3544.42,288.894,3.04,14.34,6.9 halonet26t,256,1024.0,3541.55,289.129,3.19,11.69,12.48 dla60,224,1024.0,3527.55,290.275,4.26,10.16,22.04 tf_mixnet_m,224,1024.0,3524.0,290.567,0.36,8.19,5.01 resnet50c,224,1024.0,3521.04,290.812,4.35,11.92,25.58 edgenext_small_rw,256,1024.0,3501.76,292.411,1.58,9.51,7.83 resnet34d,288,1024.0,3491.3,293.29,6.47,7.51,21.82 convnextv2_pico,224,1024.0,3480.58,294.194,1.37,6.1,9.07 vit_small_resnet26d_224,224,1024.0,3476.26,294.557,5.04,10.65,63.61 convit_tiny,224,1024.0,3460.49,295.901,1.26,7.94,5.71 tresnet_m,224,1024.0,3457.69,296.14,5.75,7.31,31.39 resnet26,288,1024.0,3457.48,296.158,3.9,12.15,16.0 seresnext26ts,288,1024.0,3455.43,296.333,3.07,13.32,10.39 vit_relpos_base_patch32_plus_rpn_256,256,1024.0,3447.98,296.974,7.59,6.63,119.42 seresnet33ts,256,1024.0,3444.98,297.233,4.76,11.66,19.78 eca_resnext26ts,288,1024.0,3443.01,297.404,3.07,13.32,10.3 eca_resnet33ts,256,1024.0,3442.23,297.471,4.76,11.66,19.68 tf_efficientnet_b2,260,1024.0,3440.99,297.578,1.02,13.83,9.11 gcresnet33ts,256,1024.0,3424.64,298.998,4.76,11.68,19.88 gcresnext26ts,288,1024.0,3414.23,299.91,3.07,13.33,10.48 resnet50t,224,1024.0,3401.57,301.026,4.32,11.82,25.57 vovnet39a,224,1024.0,3395.56,301.56,7.09,6.73,22.6 resnet50d,224,1024.0,3380.59,302.894,4.35,11.92,25.58 efficientvit_b2,224,1024.0,3359.89,304.76,1.6,14.62,24.33 resnest14d,224,1024.0,3357.89,304.943,2.76,7.33,10.61 vit_base_patch32_plus_256,256,1024.0,3354.04,305.293,7.7,6.35,119.48 efficientnet_b0_gn,224,1024.0,3353.74,305.319,0.42,6.75,5.29 cs3darknet_focus_l,288,1024.0,3340.22,306.556,5.9,10.16,21.15 selecsls84,224,1024.0,3335.07,307.029,5.9,7.57,50.95 vit_tiny_patch16_384,384,1024.0,3332.37,307.277,3.16,12.08,5.79 legacy_seresnet50,224,1024.0,3325.14,307.946,3.88,10.6,28.09 coatnet_nano_cc_224,224,1024.0,3301.24,310.176,2.13,13.1,13.76 fastvit_t8,256,1024.0,3298.88,310.398,0.7,8.63,4.03 resnetblur18,288,1024.0,3292.39,311.01,3.87,5.6,11.69 repvit_m1_5,224,1024.0,3281.4,312.05,2.31,15.7,14.64 ese_vovnet39b,224,1024.0,3276.58,312.51,7.09,6.74,24.57 levit_512,224,1024.0,3274.29,312.728,5.64,10.22,95.17 haloregnetz_b,224,1024.0,3272.82,312.869,1.97,11.94,11.68 mobilevit_xs,256,1024.0,3272.76,312.87,0.93,13.62,2.32 coat_lite_tiny,224,1024.0,3257.39,314.352,1.6,11.65,5.72 coatnext_nano_rw_224,224,1024.0,3256.31,314.455,2.36,10.68,14.7 eca_vovnet39b,224,1024.0,3252.14,314.859,7.09,6.74,22.6 efficientnet_b2,288,1024.0,3249.31,315.132,1.12,16.2,9.11 resnetaa50,224,1024.0,3245.58,315.495,5.15,11.64,25.56 coatnet_nano_rw_224,224,1024.0,3238.25,316.209,2.29,13.29,15.14 cs3darknet_l,288,1024.0,3236.81,316.35,6.16,10.83,21.16 convnextv2_atto,288,1024.0,3226.1,317.401,0.91,6.3,3.71 mobileone_s2,224,1024.0,3211.19,318.869,1.34,11.55,7.88 seresnet50,224,1024.0,3200.07,319.981,4.11,11.13,28.09 nf_regnet_b3,288,1024.0,3185.16,321.477,1.67,11.84,18.59 crossvit_small_240,240,1024.0,3184.9,321.506,5.09,11.34,26.86 res2net50_48w_2s,224,1024.0,3168.87,323.132,4.18,11.72,25.29 resnetaa34d,288,1024.0,3155.87,324.463,7.33,8.38,21.82 vit_small_r26_s32_224,224,1024.0,3124.44,327.727,3.54,9.44,36.43 dla60x,224,1024.0,3106.99,329.567,3.54,13.8,17.35 efficientnet_b0_g8_gn,224,1024.0,3104.31,329.853,0.66,6.75,6.56 resnext50_32x4d,224,1024.0,3099.2,330.397,4.26,14.4,25.03 levit_conv_512,224,1024.0,3078.02,332.67,5.64,10.22,95.17 skresnet34,224,1024.0,3073.03,333.21,3.67,5.13,22.28 coat_lite_mini,224,1024.0,3058.66,334.777,2.0,12.25,11.01 resnet26d,288,1024.0,3053.73,335.317,4.29,13.48,16.01 mobileone_s0,224,1024.0,3053.01,335.391,1.09,15.48,5.29 levit_512d,224,1024.0,3045.04,336.274,5.85,11.3,92.5 cs3sedarknet_l,288,1024.0,3026.08,338.38,6.16,10.83,21.91 resnetaa50d,224,1024.0,3022.22,338.813,5.39,12.44,25.58 convnext_tiny,224,1024.0,3015.62,339.555,4.47,13.44,28.59 eca_nfnet_l0,224,1024.0,3011.21,340.052,4.35,10.47,24.14 xcit_nano_12_p16_384,384,1024.0,3011.18,340.055,1.64,12.14,3.05 nfnet_l0,224,1024.0,3000.78,341.23,4.36,10.47,35.07 resnetrs50,224,1024.0,2989.89,342.477,4.48,12.14,35.69 efficientnet_cc_b1_8e,240,1024.0,2988.69,342.615,0.75,15.44,39.72 regnetz_b16,288,1024.0,2987.05,342.79,2.39,16.43,9.72 seresnet50t,224,1024.0,2984.21,343.128,4.32,11.83,28.1 ecaresnet50d,224,1024.0,2975.54,344.128,4.35,11.93,25.58 regnetz_c16,256,1024.0,2971.35,344.607,2.51,16.57,13.46 densenet121,224,1024.0,2967.84,345.021,2.87,6.9,7.98 crossvit_15_240,240,1024.0,2967.06,345.11,5.17,12.01,27.53 resnet50s,224,1024.0,2958.0,346.169,5.47,13.52,25.68 rexnetr_200,224,1024.0,2955.32,346.483,1.59,15.11,16.52 mixnet_l,224,1024.0,2926.26,349.918,0.58,10.84,7.33 xcit_tiny_24_p16_224,224,1024.0,2925.33,350.035,2.34,11.82,12.12 levit_conv_512d,224,1024.0,2899.99,353.091,5.85,11.3,92.5 gcresnext50ts,256,1024.0,2897.54,353.393,3.75,15.46,15.67 lambda_resnet26rpt_256,256,1024.0,2887.51,354.621,3.16,11.87,10.99 resnext50d_32x4d,224,1024.0,2876.86,355.933,4.5,15.2,25.05 resnet32ts,288,1024.0,2868.64,356.953,5.86,14.65,17.96 crossvit_15_dagger_240,240,1024.0,2848.99,359.413,5.5,12.68,28.21 tiny_vit_21m_224,224,1024.0,2842.09,360.287,4.08,15.96,33.22 vit_base_resnet26d_224,224,1024.0,2837.87,360.821,6.93,12.34,101.4 tf_efficientnet_cc_b1_8e,240,1024.0,2835.77,361.09,0.75,15.44,39.72 cspresnet50,256,1024.0,2834.55,361.245,4.54,11.5,21.62 mobilevitv2_100,256,1024.0,2833.62,361.358,1.84,16.08,4.9 resnet33ts,288,1024.0,2829.43,361.9,6.02,14.75,19.68 vovnet57a,224,1024.0,2821.83,362.874,8.95,7.52,36.64 deit3_medium_patch16_224,224,1024.0,2805.09,365.038,7.53,10.99,38.85 inception_next_tiny,224,1024.0,2798.9,365.847,4.19,11.98,28.06 tf_mixnet_l,224,1024.0,2798.14,365.947,0.58,10.84,7.33 res2next50,224,1024.0,2797.04,366.091,4.2,13.71,24.67 dla60_res2next,224,1024.0,2795.54,366.285,3.49,13.17,17.03 coatnet_pico_rw_224,224,1024.0,2793.27,366.584,1.96,12.91,10.85 convnext_tiny_hnf,224,1024.0,2770.64,369.577,4.47,13.44,28.59 gcresnet50t,256,1024.0,2767.9,369.943,5.42,14.67,25.9 convnextv2_femto,288,1024.0,2762.62,370.652,1.3,7.56,5.23 tf_efficientnetv2_b3,300,1024.0,2757.15,371.387,3.04,15.74,14.36 legacy_seresnext50_32x4d,224,1024.0,2750.41,372.297,4.26,14.42,27.56 ecaresnet50d_pruned,288,1024.0,2749.78,372.383,4.19,10.61,19.94 res2net50_26w_4s,224,1024.0,2749.69,372.394,4.28,12.61,25.7 seresnext50_32x4d,224,1024.0,2749.17,372.464,4.26,14.42,27.56 vgg11_bn,224,1024.0,2746.28,372.857,7.62,7.44,132.87 resmlp_24_224,224,1024.0,2745.97,372.9,5.96,10.91,30.02 resnetv2_50x1_bit,224,1024.0,2742.41,373.383,4.23,11.11,25.55 eca_resnet33ts,288,1024.0,2737.24,374.089,6.02,14.76,19.68 efficientnetv2_rw_t,288,1024.0,2736.91,374.133,3.19,16.42,13.65 seresnet33ts,288,1024.0,2734.83,374.417,6.02,14.76,19.78 nfnet_f0,192,1024.0,2731.03,374.934,7.21,10.16,71.49 res2net50_14w_8s,224,1024.0,2724.75,375.804,4.21,13.28,25.06 visformer_small,224,1024.0,2720.95,376.328,4.88,11.43,40.22 ese_vovnet57b,224,1024.0,2711.8,377.598,8.95,7.52,38.61 gcresnet33ts,288,1024.0,2705.39,378.493,6.02,14.78,19.88 cspresnet50d,256,1024.0,2702.61,378.881,4.86,12.55,21.64 twins_svt_small,224,1024.0,2696.15,379.788,2.82,10.7,24.06 efficientvit_l1,224,1024.0,2692.51,380.303,5.27,15.85,52.65 resnetblur50,224,1024.0,2689.65,380.707,5.16,12.02,25.56 seresnetaa50d,224,1024.0,2682.26,381.757,5.4,12.46,28.11 fbnetv3_g,288,1024.0,2673.23,383.046,1.77,21.09,16.62 cspresnet50w,256,1024.0,2671.97,383.228,5.04,12.19,28.12 dla60_res2net,224,1024.0,2669.84,383.53,4.15,12.34,20.85 convnext_nano,288,1024.0,2669.05,383.645,4.06,13.84,15.59 gc_efficientnetv2_rw_t,288,1024.0,2659.37,385.042,3.2,16.45,13.68 gcvit_xxtiny,224,1024.0,2658.4,385.182,2.14,15.36,12.0 poolformerv2_s12,224,1024.0,2624.04,390.223,1.83,5.53,11.89 vit_relpos_medium_patch16_rpn_224,224,1024.0,2618.88,390.989,7.5,12.13,38.73 mobileone_s3,224,1024.0,2616.83,391.296,1.94,13.85,10.17 davit_tiny,224,1024.0,2612.7,391.92,4.47,17.08,28.36 vit_relpos_medium_patch16_224,224,1024.0,2603.89,393.246,7.5,12.13,38.75 resnet51q,256,1024.0,2602.52,393.454,6.38,16.55,35.7 gmixer_24_224,224,1024.0,2594.59,394.657,5.28,14.45,24.72 maxvit_pico_rw_256,256,768.0,2593.58,296.105,1.68,18.77,7.46 vit_srelpos_medium_patch16_224,224,1024.0,2591.17,395.176,7.49,11.32,38.74 vit_relpos_medium_patch16_cls_224,224,1024.0,2587.16,395.789,7.55,13.3,38.76 maxvit_rmlp_pico_rw_256,256,768.0,2587.02,296.857,1.69,21.32,7.52 nf_regnet_b3,320,1024.0,2582.41,396.514,2.05,14.61,18.59 res2net50d,224,1024.0,2577.65,397.25,4.52,13.41,25.72 cs3darknet_focus_x,256,1024.0,2569.33,398.536,8.03,10.69,35.02 densenetblur121d,224,1024.0,2559.52,400.063,3.11,7.9,8.0 inception_v3,299,1024.0,2546.29,402.143,5.73,8.97,23.83 coatnet_0_rw_224,224,1024.0,2545.57,402.256,4.23,15.1,27.44 repvgg_b1g4,224,1024.0,2545.06,402.332,8.15,10.64,39.97 regnetx_032,224,1024.0,2534.07,404.077,3.2,11.37,15.3 twins_pcpvt_small,224,1024.0,2533.92,404.104,3.68,15.51,24.11 resnetblur50d,224,1024.0,2528.9,404.909,5.4,12.82,25.58 rexnet_200,224,1024.0,2519.88,406.358,1.56,14.91,16.37 resnetrs101,192,1024.0,2505.12,408.751,6.04,12.7,63.62 resnet26t,320,1024.0,2502.87,409.119,5.24,16.44,16.01 nf_ecaresnet50,224,1024.0,2502.03,409.253,4.21,11.13,25.56 convnext_nano_ols,288,1024.0,2497.73,409.961,4.38,15.5,15.65 convnextv2_nano,224,1024.0,2497.72,409.963,2.46,8.37,15.62 nf_seresnet50,224,1024.0,2494.79,410.425,4.21,11.13,28.09 regnety_032,224,1024.0,2483.68,412.275,3.2,11.26,19.44 vit_medium_patch16_gap_240,240,1024.0,2477.36,413.332,8.6,12.57,44.4 cs3darknet_x,256,1024.0,2475.51,413.641,8.38,11.35,35.05 densenet169,224,1024.0,2463.83,415.603,3.4,7.3,14.15 xcit_small_12_p16_224,224,1024.0,2460.07,416.237,4.82,12.57,26.25 cspresnext50,256,1024.0,2452.36,417.546,4.05,15.86,20.57 mobilevit_s,256,1024.0,2447.35,418.395,1.86,17.03,5.58 darknet53,256,1024.0,2439.82,419.693,9.31,12.39,41.61 darknetaa53,256,1024.0,2432.07,421.03,7.97,12.39,36.02 edgenext_small,320,1024.0,2429.25,421.516,1.97,14.16,5.59 seresnext26t_32x4d,288,1024.0,2412.74,424.404,4.46,16.68,16.81 sehalonet33ts,256,1024.0,2403.77,425.986,3.55,14.7,13.69 seresnext26d_32x4d,288,1024.0,2391.16,428.231,4.51,16.85,16.81 resnet61q,256,1024.0,2368.17,432.39,7.8,17.01,36.85 fastvit_t12,256,1024.0,2356.34,434.562,1.42,12.42,7.55 vit_base_r26_s32_224,224,1024.0,2354.84,434.838,6.76,11.54,101.38 focalnet_tiny_srf,224,1024.0,2353.35,435.113,4.42,16.32,28.43 resnetv2_101,224,1024.0,2342.24,437.176,7.83,16.23,44.54 cs3sedarknet_x,256,1024.0,2329.01,439.66,8.38,11.35,35.4 nf_resnet50,256,1024.0,2318.52,441.645,5.46,14.52,25.56 xcit_nano_12_p8_224,224,1024.0,2310.67,443.15,2.16,15.71,3.05 resnest26d,224,1024.0,2309.28,443.418,3.64,9.97,17.07 coatnet_rmlp_nano_rw_224,224,1024.0,2308.34,443.598,2.51,18.21,15.15 resnetv2_50,288,1024.0,2302.9,444.644,6.79,18.37,25.55 ecaresnet50t,256,1024.0,2299.59,445.285,5.64,15.45,25.57 gmlp_s16_224,224,1024.0,2291.16,446.925,4.42,15.1,19.42 efficientnet_lite3,300,1024.0,2290.17,447.117,1.65,21.85,8.2 dm_nfnet_f0,192,1024.0,2271.28,450.836,7.21,10.16,71.49 resnet101,224,1024.0,2263.99,452.287,7.83,16.23,44.55 ecaresnet26t,320,1024.0,2258.47,453.393,5.24,16.44,16.01 edgenext_base,256,1024.0,2256.96,453.695,3.85,15.58,18.51 efficientnetv2_s,288,1024.0,2251.36,454.825,4.75,20.13,21.46 skresnet50,224,1024.0,2250.82,454.933,4.11,12.5,25.8 dla102,224,1024.0,2248.24,455.455,7.19,14.18,33.27 edgenext_small_rw,320,1024.0,2240.98,456.929,2.46,14.85,7.83 ecaresnetlight,288,1024.0,2235.21,458.11,6.79,13.91,30.16 dpn68b,288,1024.0,2234.13,458.331,3.89,17.3,12.61 gcresnext50ts,288,1024.0,2232.45,458.676,4.75,19.57,15.67 fastvit_s12,256,1024.0,2229.72,459.239,1.82,13.67,9.47 fastvit_sa12,256,1024.0,2225.03,460.206,1.96,13.83,11.58 focalnet_tiny_lrf,224,1024.0,2222.33,460.766,4.49,17.76,28.65 resnetv2_101d,224,1024.0,2216.51,461.976,8.07,17.04,44.56 resnet101c,224,1024.0,2202.12,464.995,8.08,17.04,44.57 vit_base_resnet50d_224,224,1024.0,2199.36,465.578,8.68,16.1,110.97 regnetv_040,288,1024.0,2190.89,467.375,6.6,20.3,20.64 vit_medium_patch16_gap_256,256,1024.0,2190.03,467.563,9.78,14.29,38.86 resnet50,288,1024.0,2185.5,468.532,6.8,18.37,25.56 gcresnet50t,288,1024.0,2180.99,469.5,6.86,18.57,25.9 regnety_040,288,1024.0,2169.28,472.031,6.61,20.3,20.65 vgg13,224,1024.0,2159.6,474.15,11.31,12.25,133.05 eva02_small_patch14_224,224,1024.0,2151.59,475.915,5.53,12.34,21.62 vit_medium_patch16_reg4_gap_256,256,1024.0,2149.02,476.485,9.93,14.51,38.87 efficientnetv2_rw_s,288,1024.0,2146.83,476.971,4.91,21.41,23.94 ecaresnet101d_pruned,288,1024.0,2141.83,478.084,5.75,12.71,24.88 mobilevitv2_125,256,1024.0,2139.71,478.555,2.86,20.1,7.48 vit_medium_patch16_reg4_256,256,1024.0,2136.17,479.352,9.97,14.56,38.87 skresnet50d,224,1024.0,2134.1,479.815,4.36,13.31,25.82 pvt_v2_b2,224,1024.0,2119.72,483.066,3.9,24.96,25.36 hrnet_w18_ssld,224,1024.0,2114.47,484.27,4.32,16.31,21.3 convnextv2_pico,288,1024.0,2113.62,484.464,2.27,10.08,9.07 eva02_tiny_patch14_336,336,1024.0,2113.11,484.582,3.14,13.85,5.76 efficientvit_l2,224,1024.0,2109.14,485.494,6.97,19.58,63.71 hrnet_w18,224,1024.0,2100.77,487.428,4.32,16.31,21.3 regnetx_040,224,1024.0,2099.85,487.636,3.99,12.2,22.12 tf_efficientnet_lite3,300,1024.0,2090.5,489.823,1.65,21.85,8.2 wide_resnet50_2,224,1024.0,2081.66,491.904,11.43,14.4,68.88 resnet51q,288,1024.0,2069.71,494.744,8.07,20.94,35.7 poolformer_s24,224,1024.0,2067.46,495.278,3.41,10.68,21.39 sebotnet33ts_256,256,512.0,2066.45,247.758,3.89,17.46,13.7 efficientformer_l3,224,1024.0,2064.62,495.963,3.93,12.01,31.41 resnest50d_1s4x24d,224,1024.0,2057.55,497.667,4.43,13.57,25.68 gcvit_xtiny,224,1024.0,2053.45,498.662,2.93,20.26,19.98 cspdarknet53,256,1024.0,2048.51,499.863,6.57,16.81,27.64 crossvit_18_240,240,1024.0,2029.53,504.539,8.21,16.14,43.27 mixnet_xl,224,1024.0,2029.05,504.653,0.93,14.57,11.9 vit_base_patch32_384,384,1024.0,2028.15,504.881,12.67,12.14,88.3 efficientnet_b3,288,1024.0,2027.72,504.989,1.63,21.49,12.23 vit_base_patch32_clip_384,384,1024.0,2026.31,505.34,12.67,12.14,88.3 resnet50t,288,1024.0,2024.16,505.879,7.14,19.53,25.57 dla102x,224,1024.0,2023.35,506.08,5.89,19.42,26.31 legacy_seresnet101,224,1024.0,2012.58,508.788,7.61,15.74,49.33 resnet50d,288,1024.0,2012.14,508.9,7.19,19.7,25.58 cs3edgenet_x,256,1024.0,2002.36,511.384,11.53,12.92,47.82 resnetaa101d,224,1024.0,1994.67,513.346,9.12,17.56,44.57 repvgg_b1,224,1024.0,1994.42,513.418,13.16,10.64,57.42 res2net50_26w_6s,224,1024.0,1979.48,517.295,6.33,15.28,37.05 regnetz_d32,256,1024.0,1978.14,517.642,5.98,23.74,27.58 cs3sedarknet_xdw,256,1024.0,1970.5,519.653,5.97,17.18,21.6 resnetaa50,288,1024.0,1968.61,520.152,8.52,19.24,25.56 seresnet101,224,1024.0,1966.15,520.803,7.84,16.27,49.33 resnet101s,224,1024.0,1964.56,521.226,9.19,18.64,44.67 cs3darknet_x,288,1024.0,1958.87,522.739,10.6,14.36,35.05 crossvit_18_dagger_240,240,1024.0,1955.55,523.625,8.65,16.91,44.27 swin_tiny_patch4_window7_224,224,1024.0,1951.67,524.668,4.51,17.06,28.29 tresnet_v2_l,224,1024.0,1947.69,525.738,8.85,16.34,46.17 ese_vovnet39b,288,1024.0,1941.03,527.543,11.71,11.13,24.57 regnetz_d8,256,1024.0,1940.13,527.785,3.97,23.74,23.37 tf_efficientnetv2_s,300,1024.0,1939.51,527.958,5.35,22.73,21.46 regnetz_c16,320,1024.0,1933.29,529.65,3.92,25.88,13.46 coatnet_bn_0_rw_224,224,1024.0,1926.49,531.525,4.48,18.41,27.44 darknet53,288,1024.0,1924.44,532.092,11.78,15.68,41.61 resnext101_32x4d,224,1024.0,1923.83,532.261,8.01,21.23,44.18 coatnet_rmlp_0_rw_224,224,1024.0,1920.22,533.259,4.52,21.26,27.45 xcit_tiny_12_p16_384,384,1024.0,1917.57,533.997,3.64,18.25,6.72 darknetaa53,288,1024.0,1915.93,534.454,10.08,15.68,36.02 mobileone_s4,224,1024.0,1915.84,534.474,3.04,17.74,14.95 maxxvit_rmlp_nano_rw_256,256,768.0,1913.61,401.326,4.17,21.53,16.78 nest_tiny,224,1024.0,1909.31,536.303,5.24,14.75,17.06 regnetz_040,256,1024.0,1906.99,536.946,4.06,24.19,27.12 nf_regnet_b4,320,1024.0,1906.99,536.957,3.29,19.88,30.21 seresnet50,288,1024.0,1902.22,538.306,6.8,18.39,28.09 pvt_v2_b2_li,224,1024.0,1897.86,539.539,3.77,25.04,22.55 regnetz_040_h,256,1024.0,1896.27,539.981,4.12,24.29,28.94 densenet201,224,1024.0,1895.14,540.319,4.34,7.85,20.01 halonet50ts,256,1024.0,1887.53,542.495,5.3,19.2,22.73 nest_tiny_jx,224,1024.0,1885.06,543.199,5.24,14.75,17.06 vgg13_bn,224,1024.0,1884.94,543.241,11.33,12.25,133.05 regnetx_080,224,1024.0,1883.47,543.661,8.02,14.06,39.57 vit_large_patch32_224,224,1024.0,1882.39,543.977,15.27,11.11,305.51 ecaresnet101d,224,1024.0,1880.92,544.404,8.08,17.07,44.57 resnet61q,288,1024.0,1874.14,546.373,9.87,21.52,36.85 nf_resnet101,224,1024.0,1864.42,549.218,8.01,16.23,44.55 cs3se_edgenet_x,256,1024.0,1859.86,550.568,11.53,12.94,50.72 repvit_m2_3,224,1024.0,1852.95,552.61,4.57,26.21,23.69 resmlp_36_224,224,1024.0,1843.66,555.406,8.91,16.33,44.69 cs3sedarknet_x,288,1024.0,1843.16,555.556,10.6,14.37,35.4 resnext50_32x4d,288,1024.0,1841.23,556.139,7.04,23.81,25.03 convnext_small,224,1024.0,1838.66,556.915,8.71,21.56,50.22 convnext_tiny,288,1024.0,1835.18,557.972,7.39,22.21,28.59 resnetv2_50d_gn,224,1024.0,1829.29,559.767,4.38,11.92,25.57 resnetaa50d,288,1024.0,1827.2,560.408,8.92,20.57,25.58 pit_b_224,224,1024.0,1823.77,561.458,10.56,16.6,73.76 eca_nfnet_l0,288,1024.0,1822.69,561.796,7.12,17.29,24.14 nfnet_l0,288,1024.0,1817.7,563.332,7.13,17.29,35.07 sequencer2d_s,224,1024.0,1816.41,563.738,4.96,11.31,27.65 pit_b_distilled_224,224,1024.0,1810.4,565.6,10.63,16.67,74.79 nf_resnet50,288,1024.0,1794.38,570.655,6.88,18.37,25.56 twins_pcpvt_base,224,1024.0,1790.37,571.935,6.46,21.35,43.83 rexnetr_200,288,768.0,1782.92,430.745,2.62,24.96,16.52 seresnet50t,288,1024.0,1780.59,575.079,7.14,19.55,28.1 cait_xxs24_224,224,1024.0,1779.24,575.513,2.53,20.29,11.96 swin_s3_tiny_224,224,1024.0,1777.31,576.139,4.64,19.13,28.33 resnet50_gn,224,1024.0,1776.88,576.279,4.14,11.11,25.56 ecaresnet50d,288,1024.0,1775.84,576.616,7.19,19.72,25.58 resnetblur101d,224,1024.0,1765.86,579.878,9.12,17.94,44.57 densenet121,288,1024.0,1761.12,581.437,4.74,11.41,7.98 coat_lite_small,224,1024.0,1760.12,581.767,3.96,22.09,19.84 mixer_b16_224,224,1024.0,1758.48,582.299,12.62,14.53,59.88 mobilevitv2_150,256,768.0,1748.31,439.266,4.09,24.11,10.59 efficientvit_b3,224,1024.0,1742.56,587.628,3.99,26.9,48.65 rexnetr_300,224,1024.0,1736.82,589.571,3.39,22.16,34.81 vgg16,224,1024.0,1730.88,591.595,15.47,13.56,138.36 maxxvitv2_nano_rw_256,256,768.0,1724.32,445.384,6.12,19.66,23.7 res2net101_26w_4s,224,1024.0,1723.01,594.296,8.1,18.45,45.21 resnext50d_32x4d,288,1024.0,1717.01,596.374,7.44,25.13,25.05 maxvit_nano_rw_256,256,768.0,1709.05,449.363,4.26,25.76,15.45 legacy_seresnext101_32x4d,224,1024.0,1707.02,599.865,8.02,21.26,48.96 seresnext101_32x4d,224,1024.0,1706.74,599.963,8.02,21.26,48.96 maxvit_rmlp_nano_rw_256,256,768.0,1705.93,450.183,4.28,27.4,15.5 resnetv2_50d_frn,224,1024.0,1703.71,601.028,4.33,11.92,25.59 mobilevitv2_175,256,512.0,1701.95,300.817,5.54,28.13,14.25 tf_efficientnet_b3,300,1024.0,1694.25,604.385,1.87,23.83,12.23 convnext_tiny_hnf,288,1024.0,1681.52,608.96,7.39,22.21,28.59 ese_vovnet39b_evos,224,1024.0,1671.22,612.716,7.07,6.74,24.58 res2net50_26w_8s,224,1024.0,1656.9,618.009,8.37,17.95,48.4 resnet101d,256,1024.0,1654.59,618.871,10.55,22.25,44.57 tresnet_l,224,1024.0,1652.13,619.794,10.9,11.9,55.99 res2net101d,224,1024.0,1652.09,619.808,8.35,19.25,45.23 mixer_l32_224,224,1024.0,1651.22,620.129,11.27,19.86,206.94 regnetz_b16_evos,224,1024.0,1648.87,621.016,1.43,9.95,9.74 botnet50ts_256,256,512.0,1645.51,311.14,5.54,22.23,22.74 efficientnet_b3,320,1024.0,1641.76,623.708,2.01,26.52,12.23 seresnext50_32x4d,288,1024.0,1638.34,625.012,7.04,23.82,27.56 coatnet_0_224,224,512.0,1634.58,313.22,4.43,21.14,25.04 swinv2_cr_tiny_224,224,1024.0,1629.27,628.491,4.66,28.45,28.33 inception_next_small,224,1024.0,1628.58,628.755,8.36,19.27,49.37 resnetv2_152,224,1024.0,1628.46,628.801,11.55,22.56,60.19 regnetx_064,224,1024.0,1628.2,628.898,6.49,16.37,26.21 hrnet_w32,224,1024.0,1627.55,629.157,8.97,22.02,41.23 convnextv2_tiny,224,1024.0,1627.26,629.266,4.47,13.44,28.64 seresnetaa50d,288,1024.0,1622.33,631.178,8.92,20.59,28.11 davit_small,224,1024.0,1614.32,634.313,8.69,27.54,49.75 regnety_040_sgn,224,1024.0,1612.57,634.996,4.03,12.29,20.65 legacy_xception,299,768.0,1604.43,478.663,8.4,35.83,22.86 swinv2_cr_tiny_ns_224,224,1024.0,1600.49,639.793,4.66,28.45,28.33 resnetblur50,288,1024.0,1598.7,640.511,8.52,19.87,25.56 efficientnet_el,300,1024.0,1595.26,641.889,8.0,30.7,10.59 efficientnet_el_pruned,300,1024.0,1592.53,642.988,8.0,30.7,10.59 resnet152,224,1024.0,1589.58,644.183,11.56,22.56,60.19 deit_base_patch16_224,224,1024.0,1581.19,647.603,16.87,16.49,86.57 cs3edgenet_x,288,1024.0,1577.26,649.216,14.59,16.36,47.82 deit_base_distilled_patch16_224,224,1024.0,1575.74,649.842,16.95,16.58,87.34 vit_base_patch16_224,224,1024.0,1574.94,650.173,16.87,16.49,86.57 vit_base_patch16_224_miil,224,1024.0,1574.63,650.301,16.88,16.5,94.4 vit_base_patch16_clip_224,224,1024.0,1574.46,650.371,16.87,16.49,86.57 vit_base_patch16_siglip_224,224,1024.0,1571.54,651.577,17.02,16.71,92.88 resnetv2_152d,224,1024.0,1564.52,654.501,11.8,23.36,60.2 vit_base_patch16_gap_224,224,1024.0,1563.13,655.085,16.78,16.41,86.57 halo2botnet50ts_256,256,1024.0,1562.09,655.52,5.02,21.78,22.64 resnet152c,224,1024.0,1558.11,657.195,11.8,23.36,60.21 ese_vovnet99b,224,1024.0,1554.99,658.512,16.51,11.27,63.2 vit_small_resnet50d_s16_224,224,1024.0,1551.97,659.792,13.0,21.12,57.53 nf_seresnet101,224,1024.0,1549.92,660.662,8.02,16.27,49.33 nf_ecaresnet101,224,1024.0,1549.88,660.683,8.01,16.27,44.55 tf_efficientnet_el,300,1024.0,1543.58,663.384,8.0,30.7,10.59 coatnet_rmlp_1_rw_224,224,1024.0,1542.97,663.643,7.44,28.08,41.69 nfnet_f0,256,1024.0,1541.8,664.144,12.62,18.05,71.49 vgg16_bn,224,1024.0,1533.25,667.85,15.5,13.56,138.37 resnest50d,224,1024.0,1530.42,669.084,5.4,14.36,27.48 caformer_s18,224,1024.0,1528.28,670.023,3.9,15.18,26.34 pvt_v2_b3,224,1024.0,1527.57,670.328,6.71,33.8,45.24 densenetblur121d,288,1024.0,1521.38,673.062,5.14,13.06,8.0 maxvit_tiny_rw_224,224,768.0,1520.98,504.928,4.93,28.54,29.06 mvitv2_tiny,224,1024.0,1518.09,674.509,4.7,21.16,24.17 vit_base_patch16_rpn_224,224,1024.0,1516.7,675.134,16.78,16.41,86.54 convnextv2_nano,288,768.0,1514.74,507.006,4.06,13.84,15.62 regnety_032,288,1024.0,1514.59,676.077,5.29,18.61,19.44 rexnet_300,224,1024.0,1508.74,678.701,3.44,22.4,34.71 resnetblur50d,288,1024.0,1506.45,679.732,8.92,21.19,25.58 deit3_base_patch16_224,224,1024.0,1497.14,683.959,16.87,16.49,86.59 convit_small,224,1024.0,1494.54,685.148,5.76,17.87,27.78 vit_base_patch32_clip_448,448,1024.0,1493.83,685.476,17.21,16.49,88.34 dla169,224,1024.0,1487.25,688.504,11.6,20.2,53.39 skresnext50_32x4d,224,1024.0,1470.99,696.12,4.5,17.18,27.48 xcit_tiny_12_p8_224,224,1024.0,1465.13,698.903,4.81,23.6,6.71 vit_small_patch16_36x1_224,224,1024.0,1460.65,701.044,12.63,24.59,64.67 ecaresnet50t,320,1024.0,1451.46,705.484,8.82,24.13,25.57 beitv2_base_patch16_224,224,1024.0,1448.02,707.161,16.87,16.49,86.53 vgg19,224,1024.0,1441.93,710.149,19.63,14.86,143.67 beit_base_patch16_224,224,1024.0,1440.48,710.862,16.87,16.49,86.53 hrnet_w30,224,1024.0,1436.17,712.996,8.15,21.21,37.71 edgenext_base,320,1024.0,1435.98,713.087,6.01,24.32,18.51 resnet152s,224,1024.0,1434.4,713.876,12.92,24.96,60.32 convformer_s18,224,1024.0,1427.19,717.481,3.96,15.82,26.77 resnetv2_50d_evos,224,1024.0,1426.57,717.793,4.33,11.92,25.59 focalnet_small_srf,224,1024.0,1426.35,717.904,8.62,26.26,49.89 sequencer2d_m,224,1024.0,1413.9,724.228,6.55,14.26,38.31 vit_relpos_base_patch16_rpn_224,224,1024.0,1408.36,727.069,16.8,17.63,86.41 volo_d1_224,224,1024.0,1407.83,727.348,6.94,24.43,26.63 regnety_080,224,1024.0,1407.5,727.512,8.0,17.97,39.18 vit_small_patch16_18x2_224,224,1024.0,1407.09,727.729,12.63,24.59,64.67 gcvit_tiny,224,1024.0,1405.32,728.65,4.79,29.82,28.22 dpn92,224,1024.0,1404.08,729.292,6.54,18.21,37.67 vit_relpos_base_patch16_224,224,1024.0,1402.98,729.864,16.8,17.63,86.43 resnetv2_101,288,1024.0,1402.28,730.227,12.94,26.83,44.54 regnetx_160,224,1024.0,1400.84,730.974,15.99,25.52,54.28 dla102x2,224,1024.0,1395.12,733.975,9.34,29.91,41.28 legacy_seresnet152,224,1024.0,1394.86,734.109,11.33,22.08,66.82 vit_relpos_base_patch16_clsgap_224,224,1024.0,1394.83,734.131,16.88,17.72,86.43 vit_relpos_base_patch16_cls_224,224,1024.0,1392.12,735.556,16.88,17.72,86.43 vit_small_patch16_384,384,1024.0,1390.73,736.291,12.45,24.15,22.2 poolformer_s36,224,1024.0,1388.46,737.493,5.0,15.82,30.86 vit_base_patch16_clip_quickgelu_224,224,1024.0,1388.13,737.672,16.87,16.49,86.19 densenet161,224,1024.0,1384.23,739.75,7.79,11.06,28.68 flexivit_base,240,1024.0,1380.45,741.777,19.35,18.92,86.59 efficientformerv2_s0,224,1024.0,1377.72,743.244,0.41,5.3,3.6 seresnet152,224,1024.0,1371.27,746.737,11.57,22.61,66.82 poolformerv2_s24,224,1024.0,1356.43,754.905,3.42,10.68,21.34 resnet101,288,1024.0,1354.29,756.102,12.95,26.83,44.55 focalnet_small_lrf,224,1024.0,1339.63,764.378,8.74,28.61,50.34 inception_v4,299,1024.0,1338.22,765.183,12.28,15.09,42.68 repvgg_b2,224,1024.0,1336.97,765.895,20.45,12.9,89.02 nf_regnet_b4,384,1024.0,1327.28,771.488,4.7,28.61,30.21 repvgg_b2g4,224,1024.0,1323.55,773.658,12.63,12.9,61.76 eca_nfnet_l1,256,1024.0,1319.97,775.763,9.62,22.04,41.41 fastvit_sa24,256,1024.0,1310.4,781.428,3.79,23.92,21.55 xcit_small_24_p16_224,224,1024.0,1307.21,783.335,9.1,23.63,47.67 twins_pcpvt_large,224,1024.0,1303.57,785.524,9.53,30.21,60.99 vit_base_patch16_xp_224,224,1024.0,1302.82,785.975,16.85,16.49,86.51 maxvit_tiny_tf_224,224,768.0,1301.05,590.28,5.42,31.21,30.92 deit3_small_patch16_384,384,1024.0,1298.34,788.686,12.45,24.15,22.21 coatnet_rmlp_1_rw2_224,224,1024.0,1296.36,789.892,7.71,32.74,41.72 coatnet_1_rw_224,224,1024.0,1295.8,790.234,7.63,27.22,41.72 regnety_080_tv,224,1024.0,1291.63,792.778,8.51,19.73,39.38 vgg19_bn,224,1024.0,1290.82,793.286,19.66,14.86,143.68 mixnet_xxl,224,768.0,1286.88,596.774,2.04,23.43,23.96 dm_nfnet_f0,256,1024.0,1286.75,795.79,12.62,18.05,71.49 efficientnet_b4,320,768.0,1280.17,599.91,3.13,34.76,19.34 hrnet_w18_ssld,288,1024.0,1279.49,800.308,7.14,26.96,21.3 maxxvit_rmlp_tiny_rw_256,256,768.0,1274.84,602.417,6.36,32.69,29.64 efficientformerv2_s1,224,1024.0,1271.59,805.28,0.67,7.66,6.19 convnext_base,224,1024.0,1268.86,807.011,15.38,28.75,88.59 mobilevitv2_200,256,512.0,1268.57,403.59,7.22,32.15,18.45 regnetz_d32,320,1024.0,1265.97,808.844,9.33,37.08,27.58 efficientnetv2_s,384,1024.0,1265.12,809.401,8.44,35.77,21.46 twins_svt_base,224,1024.0,1261.93,811.442,8.36,20.42,56.07 wide_resnet50_2,288,1024.0,1242.89,823.878,18.89,23.81,68.88 regnetz_d8,320,1024.0,1242.36,824.221,6.19,37.08,23.37 regnetz_040,320,512.0,1238.82,413.274,6.35,37.78,27.12 regnetz_040_h,320,512.0,1231.07,415.879,6.43,37.94,28.94 nest_small,224,1024.0,1230.37,832.252,9.41,22.88,38.35 tf_efficientnetv2_s,384,1024.0,1224.58,836.191,8.44,35.77,21.46 nest_small_jx,224,1024.0,1220.76,838.798,9.41,22.88,38.35 maxvit_tiny_rw_256,256,768.0,1213.37,632.937,6.44,37.27,29.07 maxvit_rmlp_tiny_rw_256,256,768.0,1210.44,634.468,6.47,39.84,29.15 vit_base_patch16_siglip_256,256,1024.0,1208.23,847.511,22.23,21.83,92.93 efficientnetv2_rw_s,384,1024.0,1208.22,847.514,8.72,38.03,23.94 resnetaa101d,288,1024.0,1207.75,847.844,15.07,29.03,44.57 swin_small_patch4_window7_224,224,1024.0,1206.81,848.507,8.77,27.47,49.61 dpn98,224,1024.0,1206.02,849.061,11.73,25.2,61.57 swinv2_tiny_window8_256,256,1024.0,1197.34,855.217,5.96,24.57,28.35 cs3se_edgenet_x,320,1024.0,1196.49,855.827,18.01,20.21,50.72 resnext101_64x4d,224,1024.0,1196.17,856.053,15.52,31.21,83.46 cait_xxs36_224,224,1024.0,1193.04,858.302,3.77,30.34,17.3 resnext101_32x8d,224,1024.0,1188.06,861.896,16.48,31.21,88.79 seresnet101,288,1024.0,1178.9,868.597,12.95,26.87,49.33 resnet152d,256,1024.0,1177.58,869.569,15.41,30.51,60.21 wide_resnet101_2,224,1024.0,1172.43,873.387,22.8,21.23,126.89 crossvit_base_240,240,1024.0,1171.25,874.269,20.13,22.67,105.03 resnet200,224,1024.0,1159.72,882.961,15.07,32.19,64.67 inception_resnet_v2,299,1024.0,1156.1,885.722,13.18,25.06,55.84 rexnetr_300,288,512.0,1153.3,443.932,5.59,36.61,34.81 resnetrs101,288,1024.0,1142.76,896.066,13.56,28.53,63.62 davit_base,224,1024.0,1141.57,896.996,15.36,36.72,87.95 tresnet_xl,224,1024.0,1136.08,901.333,15.2,15.34,78.44 coat_tiny,224,1024.0,1135.01,902.184,4.35,27.2,5.5 tnt_s_patch16_224,224,1024.0,1134.91,902.262,5.24,24.37,23.76 mvitv2_small,224,1024.0,1131.08,905.308,7.0,28.08,34.87 ecaresnet101d,288,1024.0,1130.54,905.749,13.35,28.19,44.57 vit_base_patch16_reg8_gap_256,256,1024.0,1124.62,910.517,22.6,22.09,86.62 maxvit_tiny_pm_256,256,768.0,1121.86,684.565,6.31,40.82,30.09 hrnet_w40,224,1024.0,1119.9,914.356,12.75,25.29,57.56 convnext_small,288,1024.0,1119.4,914.761,14.39,35.65,50.22 nfnet_f1,224,1024.0,1117.42,916.384,17.87,22.94,132.63 efficientnet_lite4,380,768.0,1117.23,687.403,4.04,45.66,13.01 pvt_v2_b4,224,1024.0,1107.81,924.328,9.83,48.14,62.56 seresnext101_64x4d,224,1024.0,1107.71,924.416,15.53,31.25,88.23 seresnext101_32x8d,224,1024.0,1101.53,929.602,16.48,31.25,93.57 resnetv2_50d_gn,288,1024.0,1100.54,930.437,7.24,19.7,25.57 coatnet_1_224,224,512.0,1098.68,466.003,8.28,31.3,42.23 repvgg_b3g4,224,1024.0,1097.61,932.923,17.89,15.1,83.83 samvit_base_patch16_224,224,1024.0,1097.38,933.118,16.83,17.2,86.46 eva02_base_patch16_clip_224,224,1024.0,1094.75,935.361,16.9,18.91,86.26 mvitv2_small_cls,224,1024.0,1086.56,942.407,7.04,28.17,34.87 vit_large_r50_s32_224,224,1024.0,1082.13,946.268,19.45,22.22,328.99 inception_next_base,224,1024.0,1079.66,948.435,14.85,25.69,86.67 resnet50_gn,288,1024.0,1076.3,951.4,6.85,18.37,25.56 pvt_v2_b5,224,1024.0,1073.94,953.474,11.39,44.23,81.96 seresnext101d_32x8d,224,1024.0,1071.41,955.74,16.72,32.05,93.59 efficientnetv2_m,320,1024.0,1070.2,956.818,11.01,39.97,54.14 vit_small_r26_s32_384,384,1024.0,1066.07,960.526,10.24,27.67,36.47 resnetblur101d,288,1024.0,1059.66,966.334,15.07,29.65,44.57 resnet101d,320,1024.0,1045.1,979.801,16.48,34.77,44.57 regnetz_e8,256,1024.0,1042.94,981.82,9.91,40.94,57.7 tf_efficientnet_lite4,380,768.0,1038.99,739.169,4.04,45.66,13.01 xception41p,299,768.0,1034.81,742.157,9.25,39.86,26.91 repvgg_b3,224,1024.0,1031.23,992.974,29.16,15.1,123.09 xcit_tiny_24_p16_384,384,1024.0,1026.84,997.227,6.87,34.29,12.12 resnetrs152,256,1024.0,1024.28,999.711,15.59,30.83,86.62 seresnet152d,256,1024.0,1022.13,1001.814,15.42,30.56,66.84 swinv2_cr_small_224,224,1024.0,1005.65,1018.232,9.07,50.27,49.7 vit_base_patch16_plus_240,240,1024.0,1004.91,1018.982,26.31,22.07,117.56 regnetz_b16_evos,288,768.0,997.65,769.796,2.36,16.43,9.74 focalnet_base_srf,224,1024.0,995.12,1029.007,15.28,35.01,88.15 swinv2_cr_small_ns_224,224,1024.0,993.65,1030.528,9.08,50.27,49.7 convnextv2_small,224,1024.0,992.07,1032.17,8.71,21.56,50.32 convnextv2_tiny,288,768.0,989.58,776.074,7.39,22.21,28.64 vit_small_patch8_224,224,1024.0,985.02,1039.56,16.76,32.86,21.67 regnety_040_sgn,288,1024.0,979.5,1045.407,6.67,20.3,20.65 regnetz_c16_evos,256,768.0,978.11,785.174,2.48,16.57,13.49 vit_base_r50_s16_224,224,1024.0,971.42,1054.108,20.94,27.88,97.89 hrnet_w44,224,1024.0,967.41,1058.48,14.94,26.92,67.06 efficientformer_l7,224,1024.0,966.26,1059.742,10.17,24.45,82.23 hrnet_w48_ssld,224,1024.0,963.59,1062.678,17.34,28.56,77.47 hrnet_w48,224,1024.0,962.72,1063.645,17.34,28.56,77.47 poolformer_m36,224,1024.0,959.97,1066.674,8.8,22.02,56.17 resnet152,288,1024.0,955.06,1072.17,19.11,37.28,60.19 cait_s24_224,224,1024.0,951.69,1075.97,9.35,40.58,46.92 tiny_vit_21m_384,384,512.0,946.04,541.193,11.94,46.84,21.23 focalnet_base_lrf,224,1024.0,946.02,1082.418,15.43,38.13,88.75 dm_nfnet_f1,224,1024.0,943.8,1084.958,17.87,22.94,132.63 efficientnet_b3_gn,288,512.0,943.58,542.602,1.74,23.35,11.73 efficientnetv2_rw_m,320,1024.0,934.42,1095.856,12.72,47.14,53.24 vit_relpos_base_patch16_plus_240,240,1024.0,933.99,1096.357,26.21,23.41,117.38 gmlp_b16_224,224,1024.0,931.13,1099.724,15.78,30.21,73.08 fastvit_sa36,256,1024.0,928.53,1102.809,5.62,34.02,31.53 xception41,299,768.0,927.7,827.842,9.28,39.86,26.97 eva02_small_patch14_336,336,1024.0,926.94,1104.696,12.41,27.7,22.13 maxvit_rmlp_small_rw_224,224,768.0,923.72,831.408,10.48,42.44,64.9 sequencer2d_l,224,1024.0,917.56,1115.991,9.74,22.12,54.3 poolformerv2_s36,224,1024.0,914.51,1119.704,5.01,15.82,30.79 xcit_medium_24_p16_224,224,1024.0,901.57,1135.786,16.13,31.71,84.4 coat_mini,224,1024.0,900.78,1136.787,6.82,33.68,10.34 coat_lite_medium,224,1024.0,898.48,1139.693,9.81,40.06,44.57 swin_s3_small_224,224,768.0,882.63,870.118,9.43,37.84,49.74 efficientnet_b3_g8_gn,288,512.0,882.63,580.072,2.59,23.35,14.25 dpn131,224,1024.0,878.67,1165.389,16.09,32.97,79.25 levit_384_s8,224,512.0,874.93,585.181,9.98,35.86,39.12 efficientnet_b4,384,512.0,874.47,585.489,4.51,50.04,19.34 vit_medium_patch16_gap_384,384,1024.0,873.17,1172.722,22.01,32.15,39.03 nest_base,224,1024.0,871.22,1175.339,16.71,30.51,67.72 nf_regnet_b5,384,1024.0,867.94,1179.793,7.95,42.9,49.74 resnet200d,256,1024.0,866.43,1181.848,20.0,43.09,64.69 maxvit_small_tf_224,224,512.0,864.97,591.915,11.39,46.31,68.93 nest_base_jx,224,1024.0,863.51,1185.835,16.71,30.51,67.72 xcit_small_12_p16_384,384,1024.0,860.6,1189.852,14.14,36.5,26.25 resnetv2_50d_evos,288,1024.0,857.98,1193.488,7.15,19.7,25.59 swin_base_patch4_window7_224,224,1024.0,857.23,1194.527,15.47,36.63,87.77 gcvit_small,224,1024.0,850.2,1204.416,8.57,41.61,51.09 crossvit_15_dagger_408,408,1024.0,849.94,1204.779,16.07,37.0,28.5 eca_nfnet_l1,320,1024.0,845.79,1210.693,14.92,34.42,41.41 tf_efficientnet_b4,380,512.0,836.31,612.204,4.49,49.49,19.34 regnety_080,288,1024.0,834.08,1227.682,13.22,29.69,39.18 levit_conv_384_s8,224,512.0,831.47,615.767,9.98,35.86,39.12 twins_svt_large,224,1024.0,829.67,1234.208,14.84,27.23,99.27 seresnet152,288,1024.0,826.68,1238.676,19.11,37.34,66.82 xception65p,299,768.0,826.46,929.251,13.91,52.48,39.82 eva02_base_patch14_224,224,1024.0,822.18,1245.459,22.0,24.67,85.76 caformer_s36,224,1024.0,811.28,1262.182,7.55,29.29,39.3 maxxvit_rmlp_small_rw_256,256,768.0,805.75,953.134,14.21,47.76,66.01 coatnet_2_rw_224,224,512.0,802.77,637.783,14.55,39.37,73.87 swinv2_base_window12_192,192,1024.0,801.77,1277.157,11.9,39.72,109.28 mvitv2_base,224,1024.0,789.29,1297.348,10.16,40.5,51.47 densenet264d,224,1024.0,784.72,1304.914,13.57,14.0,72.74 resnest50d_4s2x40d,224,1024.0,782.94,1307.879,4.4,17.94,30.42 swinv2_tiny_window16_256,256,512.0,779.51,656.811,6.68,39.02,28.35 volo_d2_224,224,1024.0,778.59,1315.191,14.34,41.34,58.68 dpn107,224,1024.0,773.9,1323.149,18.38,33.46,86.92 xcit_tiny_24_p8_224,224,1024.0,770.47,1329.042,9.21,45.38,12.11 convnext_base,288,1024.0,769.28,1331.103,25.43,47.53,88.59 coatnet_rmlp_2_rw_224,224,512.0,762.93,671.09,14.64,44.94,73.88 mvitv2_base_cls,224,1024.0,760.58,1346.32,10.23,40.65,65.44 convit_base,224,1024.0,757.3,1352.149,17.52,31.77,86.54 convformer_s36,224,1024.0,757.3,1352.161,7.67,30.5,40.01 coatnet_2_224,224,384.0,753.79,509.418,15.94,42.41,74.68 hrnet_w64,224,1024.0,748.82,1367.478,28.97,35.09,128.06 resnet152d,320,1024.0,747.67,1369.57,24.08,47.67,60.21 ecaresnet200d,256,1024.0,744.16,1376.037,20.0,43.15,64.69 seresnet200d,256,1024.0,743.64,1376.992,20.01,43.15,71.86 resnetrs200,256,1024.0,743.56,1377.137,20.18,43.42,93.21 swinv2_small_window8_256,256,1024.0,740.78,1382.313,11.58,40.14,49.73 xception65,299,768.0,738.05,1040.572,13.96,52.48,39.92 fastvit_ma36,256,1024.0,734.46,1394.207,7.85,40.39,44.07 swinv2_cr_small_ns_256,256,1024.0,733.6,1395.843,12.07,76.21,49.7 senet154,224,1024.0,731.81,1399.262,20.77,38.69,115.09 maxvit_rmlp_small_rw_256,256,768.0,731.54,1049.835,13.69,55.48,64.9 legacy_senet154,224,1024.0,730.99,1400.828,20.77,38.69,115.09 tf_efficientnetv2_m,384,1024.0,728.54,1405.529,15.85,57.52,54.14 xcit_nano_12_p8_384,384,1024.0,723.54,1415.249,6.34,46.06,3.05 poolformer_m48,224,1024.0,722.45,1417.374,11.59,29.17,73.47 tnt_b_patch16_224,224,1024.0,722.04,1418.187,14.09,39.01,65.41 efficientvit_l3,224,1024.0,720.55,1421.127,27.62,39.16,246.04 swinv2_cr_base_224,224,1024.0,719.69,1422.825,15.86,59.66,87.88 efficientnet_b3_g8_gn,320,512.0,718.69,712.395,3.2,28.83,14.25 resnest101e,256,1024.0,718.12,1425.925,13.38,28.66,48.28 swin_s3_base_224,224,1024.0,717.57,1427.034,13.69,48.26,71.13 resnext101_64x4d,288,1024.0,717.4,1427.37,25.66,51.59,83.46 swinv2_cr_base_ns_224,224,1024.0,713.5,1435.162,15.86,59.66,87.88 convnextv2_base,224,768.0,711.23,1079.807,15.38,28.75,88.72 resnet200,288,1024.0,697.53,1468.023,24.91,53.21,64.67 efficientnet_b3_gn,320,512.0,695.5,736.148,2.14,28.83,11.73 coat_small,224,1024.0,694.03,1475.431,12.61,44.25,21.69 convnext_large,224,1024.0,690.43,1483.117,34.4,43.13,197.77 regnetz_e8,320,1024.0,670.8,1526.503,15.46,63.94,57.7 efficientformerv2_s2,224,1024.0,670.26,1527.748,1.27,11.77,12.71 seresnext101_32x8d,288,1024.0,656.14,1560.626,27.24,51.63,93.57 resnetrs152,320,1024.0,655.8,1561.431,24.34,48.14,86.62 xcit_small_12_p8_224,224,1024.0,655.5,1562.148,18.69,47.19,26.21 maxxvitv2_rmlp_base_rw_224,224,768.0,651.85,1178.173,23.88,54.39,116.09 seresnet152d,320,1024.0,649.85,1575.74,24.09,47.72,66.84 vit_large_patch32_384,384,1024.0,647.57,1581.281,44.28,32.22,306.63 poolformerv2_m36,224,1024.0,646.73,1583.338,8.81,22.02,56.08 resnext101_32x16d,224,1024.0,641.29,1596.767,36.27,51.18,194.03 seresnext101d_32x8d,288,1024.0,639.61,1600.97,27.64,52.95,93.59 regnetz_d8_evos,256,1024.0,638.02,1604.938,4.5,24.92,23.46 davit_large,224,1024.0,634.07,1614.963,34.37,55.08,196.81 efficientnetv2_m,416,1024.0,633.12,1617.367,18.6,67.5,54.14 regnety_064,224,1024.0,632.1,1619.968,6.39,16.41,30.58 regnetv_064,224,1024.0,629.87,1625.704,6.39,16.41,30.58 regnetz_c16_evos,320,512.0,622.61,822.333,3.86,25.88,13.49 gcvit_base,224,1024.0,620.94,1649.111,14.87,55.48,90.32 nf_regnet_b5,456,512.0,602.97,849.111,11.7,61.95,49.74 seresnextaa101d_32x8d,288,1024.0,601.98,1701.035,28.51,56.44,93.59 xception71,299,768.0,600.76,1278.366,18.09,69.92,42.34 eca_nfnet_l2,320,1024.0,593.89,1724.216,20.95,47.43,56.72 nfnet_f2,256,1024.0,593.31,1725.904,33.76,41.85,193.78 crossvit_18_dagger_408,408,1024.0,585.92,1747.666,25.31,49.38,44.61 hrnet_w48_ssld,288,1024.0,585.32,1749.444,28.66,47.21,77.47 ecaresnet200d,288,1024.0,584.36,1752.321,25.31,54.59,64.69 seresnet200d,288,1024.0,583.25,1755.672,25.32,54.6,71.86 caformer_m36,224,1024.0,582.88,1756.773,12.75,40.61,56.2 levit_512_s8,224,256.0,582.77,439.271,21.82,52.28,74.05 maxvit_rmlp_base_rw_224,224,768.0,582.44,1318.589,22.63,79.3,116.14 seresnet269d,256,1024.0,581.62,1760.578,26.59,53.6,113.67 convmixer_768_32,224,1024.0,580.09,1765.235,19.55,25.95,21.11 resnetrs270,256,1024.0,565.62,1810.398,27.06,55.84,129.86 mixer_l16_224,224,1024.0,553.36,1850.484,44.6,41.69,208.2 levit_conv_512_s8,224,256.0,552.47,463.363,21.82,52.28,74.05 efficientnetv2_rw_m,416,1024.0,552.47,1853.491,21.49,79.62,53.24 resnet200d,320,1024.0,551.74,1855.93,31.25,67.33,64.69 nfnet_f1,320,1024.0,548.82,1865.795,35.97,46.77,132.63 convformer_m36,224,1024.0,548.78,1865.947,12.89,42.05,57.05 volo_d3_224,224,1024.0,541.9,1889.619,20.78,60.09,86.33 swinv2_base_window8_256,256,1024.0,530.42,1930.519,20.37,52.59,87.92 maxvit_base_tf_224,224,512.0,517.72,988.937,23.52,81.67,119.47 xcit_large_24_p16_224,224,1024.0,511.16,2003.26,35.86,47.26,189.1 convmixer_1024_20_ks9_p14,224,1024.0,510.74,2004.929,5.55,5.51,24.38 dm_nfnet_f2,256,1024.0,503.11,2035.325,33.76,41.85,193.78 swin_large_patch4_window7_224,224,768.0,494.53,1552.967,34.53,54.94,196.53 vit_base_patch16_18x2_224,224,1024.0,494.1,2072.443,50.37,49.17,256.73 deit_base_patch16_384,384,1024.0,493.77,2073.808,49.4,48.3,86.86 vit_base_patch16_384,384,1024.0,493.5,2074.946,49.4,48.3,86.86 deit_base_distilled_patch16_384,384,1024.0,493.31,2075.754,49.49,48.39,87.63 vit_base_patch16_clip_384,384,1024.0,492.52,2079.081,49.41,48.3,86.86 eva_large_patch14_196,196,1024.0,491.4,2083.813,59.66,43.77,304.14 vit_base_patch16_siglip_384,384,1024.0,490.82,2086.272,50.0,49.11,93.18 vit_large_patch16_224,224,1024.0,489.19,2093.231,59.7,43.77,304.33 halonet_h1,256,256.0,487.96,524.621,3.0,51.17,8.1 tiny_vit_21m_512,512,256.0,487.73,524.868,21.23,83.26,21.27 seresnextaa101d_32x8d,320,768.0,487.6,1575.053,35.19,69.67,93.59 swinv2_large_window12_192,192,768.0,487.6,1575.036,26.17,56.53,228.77 swinv2_small_window16_256,256,512.0,487.58,1050.071,12.82,66.29,49.73 poolformerv2_m48,224,1024.0,487.33,2101.208,11.59,29.17,73.35 resnetrs200,320,1024.0,476.69,2148.152,31.51,67.81,93.21 xcit_tiny_12_p8_384,384,1024.0,472.87,2165.479,14.12,69.12,6.71 vit_small_patch14_dinov2,518,1024.0,470.72,2175.374,29.46,57.34,22.06 deit3_base_patch16_384,384,1024.0,469.96,2178.883,49.4,48.3,86.88 vit_small_patch14_reg4_dinov2,518,1024.0,469.28,2182.048,29.55,57.51,22.06 deit3_large_patch16_224,224,1024.0,468.18,2187.162,59.7,43.77,304.37 tf_efficientnetv2_m,480,1024.0,466.8,2193.627,24.76,89.84,54.14 dm_nfnet_f1,320,1024.0,463.74,2208.099,35.97,46.77,132.63 xcit_small_24_p16_384,384,1024.0,458.11,2235.247,26.72,68.57,47.67 seresnet269d,288,1024.0,457.25,2239.451,33.65,67.81,113.67 beit_large_patch16_224,224,1024.0,453.95,2255.726,59.7,43.77,304.43 beitv2_large_patch16_224,224,1024.0,453.79,2256.515,59.7,43.77,304.43 regnetx_120,224,1024.0,452.56,2262.648,12.13,21.37,46.11 efficientnet_b5,448,512.0,444.06,1152.996,9.59,93.56,30.39 regnety_120,224,1024.0,444.03,2306.127,12.14,21.38,51.82 efficientformerv2_l,224,1024.0,441.81,2317.703,2.59,18.54,26.32 coatnet_3_rw_224,224,384.0,441.21,870.327,32.63,59.07,181.81 resnetv2_152x2_bit,224,1024.0,439.95,2327.532,46.95,45.11,236.34 convnext_xlarge,224,768.0,438.91,1749.766,60.98,57.5,350.2 coatnet_rmlp_3_rw_224,224,256.0,438.69,583.549,32.75,64.7,165.15 coatnet_3_224,224,256.0,431.52,593.24,35.72,63.61,166.97 convnextv2_base,288,512.0,430.66,1188.858,25.43,47.53,88.72 flexivit_large,240,1024.0,427.93,2392.897,68.48,50.22,304.36 convnextv2_large,224,512.0,424.61,1205.798,34.4,43.13,197.96 swinv2_cr_large_224,224,768.0,424.12,1810.813,35.1,78.42,196.68 swinv2_cr_tiny_384,384,256.0,420.98,608.099,15.34,161.01,28.33 caformer_b36,224,768.0,420.2,1827.698,22.5,54.14,98.75 maxvit_tiny_tf_384,384,256.0,419.78,609.84,16.0,94.22,30.98 convnext_large,288,768.0,417.93,1837.619,56.87,71.29,197.77 regnety_160,224,1024.0,417.09,2455.096,15.96,23.04,83.59 eca_nfnet_l2,384,1024.0,412.81,2480.539,30.05,68.28,56.72 maxxvitv2_rmlp_large_rw_224,224,768.0,411.22,1867.582,43.69,75.4,215.42 efficientnetv2_l,384,1024.0,409.83,2498.611,36.1,101.16,118.52 davit_huge,224,768.0,407.6,1884.205,60.93,73.44,348.92 tf_efficientnetv2_l,384,1024.0,405.08,2527.906,36.1,101.16,118.52 regnety_320,224,1024.0,403.27,2539.241,32.34,30.26,145.05 regnetz_d8_evos,320,768.0,403.13,1905.094,7.03,38.92,23.46 beit_base_patch16_384,384,1024.0,402.61,2543.386,49.4,48.3,86.74 convformer_b36,224,768.0,397.77,1930.749,22.69,56.06,99.88 tf_efficientnet_b5,456,384.0,394.74,972.77,10.46,98.86,30.39 eca_nfnet_l3,352,1024.0,378.23,2707.314,32.57,73.12,72.04 vit_large_patch16_siglip_256,256,1024.0,375.52,2726.866,78.12,57.42,315.96 ecaresnet269d,320,1024.0,372.48,2749.133,41.53,83.69,102.09 vit_large_r50_s32_384,384,1024.0,369.32,2772.633,56.4,64.88,329.09 maxvit_large_tf_224,224,384.0,359.98,1066.726,42.99,109.57,211.79 vit_large_patch14_224,224,1024.0,359.62,2847.449,77.83,57.11,304.2 vit_large_patch14_clip_224,224,1024.0,359.62,2847.409,77.83,57.11,304.2 swinv2_base_window16_256,256,384.0,359.2,1069.042,22.02,84.71,87.92 swinv2_base_window12to16_192to256,256,384.0,359.01,1069.609,22.02,84.71,87.92 nasnetalarge,331,384.0,356.97,1075.708,23.89,90.56,88.75 resnetrs350,288,1024.0,356.46,2872.642,43.67,87.09,163.96 vit_base_patch8_224,224,1024.0,351.76,2911.045,66.87,65.71,86.58 volo_d4_224,224,1024.0,343.2,2983.708,44.34,80.22,192.96 xcit_small_24_p8_224,224,1024.0,342.74,2987.714,35.81,90.77,47.63 volo_d1_384,384,512.0,340.3,1504.541,22.75,108.55,26.78 convnext_large_mlp,320,512.0,338.23,1513.736,70.21,88.02,200.13 repvgg_d2se,320,1024.0,335.87,3048.766,74.57,46.82,133.33 vit_large_patch14_clip_quickgelu_224,224,1024.0,324.37,3156.896,77.83,57.11,303.97 vit_base_r50_s16_384,384,1024.0,315.28,3247.919,61.29,81.77,98.95 nfnet_f2,352,1024.0,313.79,3263.314,63.22,79.06,193.78 xcit_medium_24_p16_384,384,1024.0,313.38,3267.626,47.39,91.63,84.4 vit_large_patch14_xp_224,224,1024.0,311.53,3287.018,77.77,57.11,304.06 ecaresnet269d,352,1024.0,307.84,3326.422,50.25,101.25,102.09 coat_lite_medium_384,384,512.0,301.48,1698.273,28.73,116.7,44.57 regnety_064,288,1024.0,298.91,3425.709,10.56,27.11,30.58 resnetrs270,352,1024.0,298.81,3426.892,51.13,105.48,129.86 regnetv_064,288,1024.0,298.12,3434.809,10.55,27.11,30.58 resnext101_32x32d,224,512.0,296.06,1729.362,87.29,91.12,468.53 nfnet_f3,320,1024.0,290.3,3527.352,68.77,83.93,254.92 efficientnetv2_xl,384,1024.0,290.02,3530.821,52.81,139.2,208.12 tf_efficientnetv2_xl,384,1024.0,287.47,3562.138,52.81,139.2,208.12 cait_xxs24_384,384,1024.0,284.02,3605.396,9.63,122.65,12.03 maxvit_small_tf_384,384,192.0,274.58,699.228,33.58,139.86,69.02 coatnet_4_224,224,256.0,274.31,933.246,60.81,98.85,275.43 convnext_xlarge,288,512.0,265.38,1929.279,100.8,95.05,350.2 dm_nfnet_f2,352,1024.0,265.36,3858.944,63.22,79.06,193.78 vit_base_patch16_siglip_512,512,512.0,263.16,1945.545,88.89,87.3,93.52 vit_so400m_patch14_siglip_224,224,1024.0,262.63,3898.968,106.18,70.45,427.68 efficientnetv2_l,480,512.0,261.08,1961.059,56.4,157.99,118.52 swinv2_cr_small_384,384,256.0,258.97,988.525,29.7,298.03,49.7 convnextv2_large,288,384.0,257.89,1488.981,56.87,71.29,197.96 tf_efficientnetv2_l,480,512.0,257.78,1986.206,56.4,157.99,118.52 eva02_large_patch14_224,224,1024.0,256.9,3985.935,77.9,65.52,303.27 eva02_large_patch14_clip_224,224,1024.0,253.93,4032.531,77.93,65.52,304.11 regnety_120,288,768.0,253.81,3025.924,20.06,35.34,51.82 xcit_tiny_24_p8_384,384,1024.0,248.2,4125.63,27.05,132.94,12.11 coatnet_rmlp_2_rw_384,384,192.0,247.61,775.41,43.04,132.57,73.88 dm_nfnet_f3,320,1024.0,247.07,4144.617,68.77,83.93,254.92 resnetrs420,320,1024.0,244.54,4187.355,64.2,126.56,191.89 mvitv2_large,224,512.0,243.6,2101.832,43.87,112.02,217.99 mvitv2_large_cls,224,512.0,241.75,2117.866,42.17,111.69,234.58 resmlp_big_24_224,224,1024.0,241.59,4238.519,100.23,87.31,129.14 regnety_160,288,768.0,237.71,3230.76,26.37,38.07,83.59 xcit_medium_24_p8_224,224,768.0,234.01,3281.941,63.52,121.22,84.32 eca_nfnet_l3,448,512.0,233.43,2193.322,52.55,118.4,72.04 volo_d5_224,224,1024.0,228.8,4475.542,72.4,118.11,295.46 swin_base_patch4_window12_384,384,256.0,227.46,1125.454,47.19,134.78,87.9 xcit_small_12_p8_384,384,384.0,223.23,1720.206,54.92,138.25,26.21 swinv2_large_window12to16_192to256,256,256.0,219.08,1168.537,47.81,121.53,196.74 maxxvitv2_rmlp_base_rw_384,384,384.0,217.17,1768.16,70.18,160.22,116.09 efficientnet_b6,528,256.0,205.22,1247.45,19.4,167.39,43.04 regnetx_320,224,768.0,200.5,3830.333,31.81,36.3,107.81 resnetrs350,384,1024.0,199.92,5122.143,77.59,154.74,163.96 cait_xs24_384,384,768.0,198.76,3863.971,19.28,183.98,26.67 maxvit_xlarge_tf_224,224,256.0,198.54,1289.412,96.49,164.37,506.99 tf_efficientnet_b6,528,192.0,198.54,967.028,19.4,167.39,43.04 focalnet_huge_fl3,224,512.0,191.39,2675.182,118.26,104.8,745.28 volo_d2_384,384,384.0,190.85,2012.066,46.17,184.51,58.87 cait_xxs36_384,384,1024.0,189.78,5395.721,14.35,183.7,17.37 eva02_base_patch14_448,448,512.0,189.58,2700.759,87.74,98.4,87.12 vit_huge_patch14_gap_224,224,1024.0,186.27,5497.294,161.36,94.7,630.76 swinv2_cr_base_384,384,256.0,185.05,1383.395,50.57,333.68,87.88 swinv2_cr_huge_224,224,384.0,182.04,2109.357,115.97,121.08,657.83 maxvit_rmlp_base_rw_384,384,384.0,179.65,2137.52,66.51,233.79,116.14 vit_huge_patch14_224,224,1024.0,179.6,5701.574,161.99,95.07,630.76 vit_huge_patch14_clip_224,224,1024.0,179.43,5706.842,161.99,95.07,632.05 xcit_large_24_p16_384,384,1024.0,177.48,5769.692,105.34,137.15,189.1 vit_base_patch14_dinov2,518,512.0,176.68,2897.828,117.11,114.68,86.58 vit_base_patch14_reg4_dinov2,518,512.0,175.98,2909.337,117.45,115.02,86.58 deit3_huge_patch14_224,224,1024.0,173.53,5900.889,161.99,95.07,632.13 nfnet_f3,416,768.0,171.77,4471.127,115.58,141.78,254.92 maxvit_tiny_tf_512,512,128.0,170.91,748.92,28.66,172.66,31.05 seresnextaa201d_32x8d,384,512.0,170.35,3005.583,101.11,199.72,149.39 maxvit_base_tf_384,384,192.0,166.63,1152.259,69.34,247.75,119.65 vit_huge_patch14_clip_quickgelu_224,224,1024.0,165.5,6187.275,161.99,95.07,632.08 efficientnetv2_xl,512,512.0,163.45,3132.529,93.85,247.32,208.12 nfnet_f4,384,768.0,163.26,4704.17,122.14,147.57,316.07 tf_efficientnetv2_xl,512,512.0,161.63,3167.699,93.85,247.32,208.12 vit_huge_patch14_xp_224,224,1024.0,159.72,6411.21,161.88,95.07,631.8 eva_large_patch14_336,336,768.0,155.72,4931.845,174.74,128.21,304.53 vit_large_patch14_clip_336,336,768.0,155.28,4945.947,174.74,128.21,304.53 vit_large_patch16_384,384,768.0,155.12,4950.906,174.85,128.21,304.72 vit_large_patch16_siglip_384,384,768.0,154.94,4956.619,175.76,129.18,316.28 convnext_xxlarge,256,384.0,153.59,2500.071,198.09,124.45,846.47 vit_giant_patch16_gap_224,224,1024.0,153.47,6672.363,198.14,103.64,1011.37 cait_s24_384,384,512.0,153.12,3343.821,32.17,245.3,47.06 davit_giant,224,384.0,152.05,2525.491,192.34,138.2,1406.47 deit3_large_patch16_384,384,1024.0,148.73,6884.872,174.85,128.21,304.76 coatnet_5_224,224,192.0,147.83,1298.762,142.72,143.69,687.47 dm_nfnet_f3,416,512.0,146.0,3506.787,115.58,141.78,254.92 resnetrs420,416,768.0,144.59,5311.727,108.45,213.79,191.89 vit_large_patch14_clip_quickgelu_336,336,768.0,141.12,5441.998,174.74,128.21,304.29 dm_nfnet_f4,384,768.0,139.13,5519.969,122.14,147.57,316.07 swin_large_patch4_window12_384,384,128.0,135.95,941.498,104.08,202.16,196.74 xcit_large_24_p8_224,224,512.0,131.73,3886.696,141.22,181.53,188.93 beit_large_patch16_384,384,768.0,129.79,5917.023,174.84,128.21,305.0 efficientnet_b7,600,192.0,128.05,1499.407,38.33,289.94,66.35 tf_efficientnet_b7,600,192.0,124.56,1541.433,38.33,289.94,66.35 focalnet_huge_fl4,224,512.0,123.26,4153.862,118.9,113.34,686.46 eva_giant_patch14_clip_224,224,1024.0,116.99,8753.07,259.74,135.89,1012.59 eva_giant_patch14_224,224,1024.0,116.91,8758.747,259.74,135.89,1012.56 nfnet_f5,416,768.0,116.91,6569.029,170.71,204.56,377.21 xcit_small_24_p8_384,384,384.0,116.73,3289.571,105.23,265.87,47.63 maxvit_large_tf_384,384,128.0,116.56,1098.144,126.61,332.3,212.03 vit_giant_patch14_224,224,1024.0,114.32,8957.604,259.74,135.89,1012.61 vit_giant_patch14_clip_224,224,1024.0,114.12,8973.257,259.74,135.89,1012.65 swinv2_cr_large_384,384,192.0,113.51,1691.47,108.96,404.96,196.68 eva02_large_patch14_clip_336,336,768.0,110.42,6955.361,174.97,147.1,304.43 mvitv2_huge_cls,224,384.0,105.54,3638.368,120.67,243.63,694.8 maxvit_small_tf_512,512,96.0,104.89,915.238,60.02,256.36,69.13 cait_s36_384,384,512.0,102.28,5005.663,47.99,367.39,68.37 dm_nfnet_f5,416,512.0,99.59,5141.209,170.71,204.56,377.21 swinv2_base_window12to24_192to384,384,96.0,96.5,994.841,55.25,280.36,87.92 focalnet_large_fl3,384,256.0,93.78,2729.925,105.06,168.04,239.13 nfnet_f4,512,512.0,91.69,5583.92,216.26,262.26,316.07 focalnet_large_fl4,384,256.0,90.64,2824.324,105.2,181.78,239.32 nfnet_f6,448,512.0,86.88,5893.345,229.7,273.62,438.36 efficientnet_b8,672,128.0,85.75,1492.768,63.48,442.89,87.41 tf_efficientnet_b8,672,128.0,83.71,1529.068,63.48,442.89,87.41 volo_d3_448,448,128.0,81.1,1578.235,96.33,446.83,86.63 vit_so400m_patch14_siglip_384,384,512.0,80.75,6340.618,302.34,200.62,428.23 xcit_medium_24_p8_384,384,256.0,80.25,3189.919,186.67,354.69,84.32 dm_nfnet_f4,512,384.0,78.23,4908.575,216.26,262.26,316.07 vit_huge_patch14_clip_336,336,512.0,75.44,6786.84,363.7,213.44,632.46 dm_nfnet_f6,448,512.0,74.17,6903.248,229.7,273.62,438.36 maxvit_base_tf_512,512,96.0,72.37,1326.47,123.93,456.26,119.88 nfnet_f5,544,384.0,68.39,5614.643,290.97,349.71,377.21 nfnet_f7,480,512.0,66.61,7686.561,300.08,355.86,499.5 vit_gigantic_patch14_224,224,512.0,66.24,7729.406,473.4,204.12,1844.44 vit_gigantic_patch14_clip_224,224,512.0,66.15,7739.524,473.41,204.12,1844.91 focalnet_xlarge_fl3,384,192.0,65.92,2912.463,185.61,223.99,408.79 maxvit_xlarge_tf_384,384,96.0,64.9,1479.208,283.86,498.45,475.32 focalnet_xlarge_fl4,384,192.0,63.63,3017.361,185.79,242.31,409.03 beit_large_patch16_512,512,256.0,61.48,4163.85,310.6,227.76,305.67 volo_d4_448,448,192.0,60.99,3147.895,197.13,527.35,193.41 regnety_640,384,192.0,60.97,3149.012,188.47,124.83,281.38 convnextv2_huge,384,96.0,60.92,1575.922,337.96,232.35,660.29 swinv2_large_window12to24_192to384,384,48.0,60.75,790.151,116.15,407.83,196.74 eva02_large_patch14_448,448,512.0,59.67,8581.221,310.69,261.32,305.08 dm_nfnet_f5,544,384.0,58.35,6580.773,290.97,349.71,377.21 vit_huge_patch14_clip_378,378,512.0,58.14,8806.389,460.13,270.04,632.68 convmixer_1536_20,224,1024.0,56.99,17967.01,48.68,33.03,51.63 vit_large_patch14_dinov2,518,384.0,56.83,6757.154,414.89,304.42,304.37 vit_large_patch14_reg4_dinov2,518,384.0,56.64,6779.944,416.1,305.31,304.37 maxvit_large_tf_512,512,64.0,54.68,1170.494,225.96,611.85,212.33 tf_efficientnet_l2,475,96.0,54.05,1776.14,172.11,609.89,480.31 vit_huge_patch14_clip_quickgelu_378,378,384.0,53.95,7117.573,460.13,270.04,632.68 vit_huge_patch16_gap_448,448,512.0,52.86,9685.108,494.35,290.02,631.67 nfnet_f6,576,384.0,52.55,7307.184,378.69,452.2,438.36 swinv2_cr_giant_224,224,192.0,52.45,3660.551,483.85,309.15,2598.76 eva_giant_patch14_336,336,512.0,49.65,10312.606,583.14,305.1,1013.01 swinv2_cr_huge_384,384,96.0,49.62,1934.539,352.04,583.18,657.94 xcit_large_24_p8_384,384,192.0,45.19,4249.177,415.0,531.74,188.93 dm_nfnet_f6,576,256.0,44.83,5710.109,378.69,452.2,438.36 volo_d5_448,448,192.0,42.49,4518.905,315.06,737.92,295.91 nfnet_f7,608,256.0,41.52,6165.283,480.39,570.85,499.5 cait_m36_384,384,256.0,33.1,7733.448,173.11,734.79,271.22 resnetv2_152x4_bit,480,96.0,32.12,2989.13,844.84,414.26,936.53 maxvit_xlarge_tf_512,512,48.0,30.41,1578.222,505.95,917.77,475.77 regnety_2560,384,128.0,30.25,4231.43,747.83,296.49,1282.6 volo_d5_512,512,128.0,29.54,4332.489,425.09,1105.37,296.09 samvit_base_patch16,1024,16.0,23.81,671.88,371.55,403.08,89.67 regnety_1280,384,128.0,22.93,5583.053,374.99,210.2,644.81 efficientnet_l2,800,48.0,19.03,2521.932,479.12,1707.39,480.31 vit_giant_patch14_dinov2,518,192.0,17.15,11193.542,1553.56,871.89,1136.48 vit_giant_patch14_reg4_dinov2,518,192.0,17.12,11212.072,1558.09,874.43,1136.48 swinv2_cr_giant_384,384,32.0,15.04,2127.877,1450.71,1394.86,2598.76 eva_giant_patch14_560,560,192.0,15.03,12771.913,1618.04,846.56,1014.45 cait_m48_448,448,128.0,13.96,9172.063,329.4,1708.21,356.46 samvit_large_patch16,1024,12.0,10.64,1127.934,1317.08,1055.58,308.28 samvit_huge_patch16,1024,8.0,6.61,1210.638,2741.59,1727.57,637.03
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-train-amp-nhwc-pt112-cu113-rtx3090.csv
model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count tinynet_e,11915.85,41.681,512,106,2.04 mobilenetv3_small_050,11290.99,44.293,512,224,1.59 lcnet_035,10015.98,50.125,512,224,1.64 lcnet_050,9286.37,54.37,512,224,1.88 tf_mobilenetv3_small_minimal_100,9042.22,55.986,512,224,2.04 mobilenetv3_small_075,8679.98,58.254,512,224,2.04 mobilenetv3_small_100,8035.08,62.981,512,224,2.54 tinynet_d,7990.69,63.223,512,152,2.34 tf_mobilenetv3_small_075,7930.1,63.8,512,224,2.04 tf_mobilenetv3_small_100,7330.24,69.047,512,224,2.54 lcnet_075,6950.91,73.156,512,224,2.36 levit_128s,6539.16,77.346,512,224,7.78 resnet10t,6318.63,80.774,512,176,5.44 mnasnet_small,5607.09,90.422,512,224,2.03 lcnet_100,5354.67,95.126,512,224,2.95 mixer_s32_224,4943.04,103.013,512,224,19.1 mobilenetv2_035,4789.43,106.101,512,224,1.68 mnasnet_050,4680.08,108.62,512,224,2.22 levit_128,4558.28,111.213,512,224,9.21 cs3darknet_focus_s,4469.48,114.041,512,256,3.27 vit_small_patch32_224,4445.76,114.324,512,224,22.88 tinynet_c,4167.16,121.826,512,184,2.46 gernet_s,4165.03,122.198,512,224,8.17 cs3darknet_s,4110.51,124.007,512,256,3.28 regnetx_002,4105.04,124.027,512,224,2.68 mobilenetv2_050,4051.14,125.606,512,224,1.97 vit_tiny_r_s16_p8_224,4025.23,126.328,512,224,6.34 semnasnet_050,3904.91,130.185,512,224,2.08 regnety_002,3777.81,134.562,512,224,3.16 levit_192,3727.29,136.213,512,224,10.95 ghostnet_050,3670.99,138.144,512,224,2.59 ese_vovnet19b_slim_dw,3629.92,140.575,512,224,1.9 lcnet_150,3576.28,142.665,512,224,4.5 gluon_resnet18_v1b,3482.17,146.691,512,224,11.69 resnet18,3481.78,146.713,512,224,11.69 swsl_resnet18,3480.5,146.765,512,224,11.69 ssl_resnet18,3477.04,146.904,512,224,11.69 resnet14t,3472.37,147.102,512,176,10.08 tf_efficientnetv2_b0,3428.08,148.143,512,192,7.14 tf_mobilenetv3_large_minimal_100,3366.45,151.356,512,224,3.92 mnasnet_075,3238.88,157.273,512,224,3.17 tf_mobilenetv3_large_075,3189.08,159.67,512,224,3.99 seresnet18,3138.91,162.608,512,224,11.78 mobilenetv3_large_075,3095.0,164.56,512,224,3.99 legacy_seresnet18,3076.04,165.928,512,224,11.78 hardcorenas_a,2971.63,171.576,512,224,5.26 levit_256,2956.43,172.043,512,224,18.89 mnasnet_b1,2930.02,173.933,512,224,4.38 mnasnet_100,2929.31,173.976,512,224,4.38 tf_mobilenetv3_large_100,2907.93,175.204,512,224,5.48 resnet18d,2875.3,177.69,512,224,11.71 tinynet_b,2851.82,178.435,512,188,3.73 hardcorenas_b,2772.42,183.73,512,224,5.18 hardcorenas_c,2763.94,184.272,512,224,5.52 mobilenetv3_rw,2754.46,184.981,512,224,5.48 nf_regnet_b0,2740.89,185.595,512,192,8.76 mobilenetv3_large_100_miil,2733.62,186.4,512,224,5.48 mobilenetv3_large_100,2732.43,186.472,512,224,5.48 ese_vovnet19b_slim,2684.58,190.344,512,224,3.17 spnasnet_100,2610.47,195.171,512,224,4.42 mobilenetv2_075,2609.91,195.379,512,224,2.64 semnasnet_075,2603.1,195.762,512,224,2.91 hardcorenas_d,2566.48,198.271,512,224,7.5 tf_efficientnetv2_b1,2548.95,199.349,512,192,8.14 levit_256d,2522.09,201.424,512,224,26.21 fbnetc_100,2397.58,212.548,512,224,5.57 tinynet_a,2334.41,218.035,512,192,6.19 mobilenetv2_100,2313.1,220.563,512,224,3.5 vit_tiny_patch16_224,2299.56,221.804,512,224,5.72 mnasnet_a1,2291.94,222.453,512,224,3.89 deit_tiny_patch16_224,2290.33,222.697,512,224,5.72 semnasnet_100,2279.15,223.737,512,224,3.89 edgenext_xx_small,2271.04,224.572,512,256,1.33 dla46_c,2266.89,225.115,512,224,1.3 hardcorenas_f,2252.64,226.141,512,224,8.2 deit_tiny_distilled_patch16_224,2248.67,226.799,512,224,5.91 hardcorenas_e,2245.94,226.861,512,224,8.07 xcit_nano_12_p16_224_dist,2177.52,233.052,512,224,3.05 xcit_nano_12_p16_224,2170.17,234.054,512,224,3.05 tf_efficientnet_lite0,2134.89,239.057,512,224,4.65 ghostnet_100,2129.82,239.0,512,224,5.18 hrnet_w18_small,2121.96,239.906,512,224,13.19 regnety_004,2085.76,244.311,512,224,4.34 efficientnet_lite0,2079.28,245.485,512,224,4.65 cs3darknet_focus_m,2062.98,247.547,512,256,9.3 pit_ti_distilled_224,2061.94,247.414,512,224,5.1 mnasnet_140,2060.59,247.645,512,224,7.12 pit_ti_224,2057.02,247.989,512,224,4.85 gluon_resnet34_v1b,2039.68,250.446,512,224,21.8 tv_resnet34,2038.39,250.573,512,224,21.8 resnet34,2036.51,250.813,512,224,21.8 ese_vovnet19b_dw,1999.58,255.562,512,224,6.54 resnet26,1962.0,260.488,512,224,16.0 tf_efficientnetv2_b2,1951.52,260.748,512,208,10.1 skresnet18,1943.81,262.753,512,224,11.96 cs3darknet_m,1940.79,263.122,512,256,9.31 regnetz_005,1916.17,265.765,512,224,7.12 resnetblur18,1897.99,269.406,512,224,11.69 rexnetr_100,1893.12,201.724,384,224,4.88 nf_resnet26,1869.64,273.344,512,224,16.0 mobilenetv2_110d,1868.27,204.505,384,224,4.52 visformer_tiny,1861.63,274.356,512,224,10.32 mixer_b32_224,1856.75,274.965,512,224,60.29 seresnet34,1837.21,277.783,512,224,21.96 fbnetv3_b,1825.5,278.744,512,224,8.6 mobilevitv2_050,1824.87,279.552,512,256,1.37 gernet_m,1822.12,280.293,512,224,21.14 resnet34d,1813.16,281.758,512,224,21.82 levit_384,1801.0,283.153,512,224,39.13 legacy_seresnet34,1781.32,286.529,512,224,21.96 regnetx_004,1780.61,286.47,512,224,5.16 tf_efficientnet_b0_ns,1779.24,214.77,384,224,5.29 tf_efficientnet_b0,1779.02,214.765,384,224,5.29 tf_efficientnet_b0_ap,1777.73,214.898,384,224,5.29 efficientnet_b0,1751.72,291.183,512,224,5.29 selecsls42,1718.76,297.231,512,224,30.35 selecsls42b,1710.18,298.726,512,224,32.46 vit_base_patch32_224,1708.63,298.818,512,224,88.22 vit_base_patch32_224_sam,1707.5,298.997,512,224,88.22 efficientnet_es_pruned,1687.32,302.688,512,224,5.44 resnetrs50,1686.45,302.42,512,160,35.69 efficientnet_es,1686.11,302.906,512,224,5.44 mixer_s16_224,1660.76,307.737,512,224,18.53 darknet17,1654.01,309.253,512,256,14.3 mobilenetv2_140,1637.57,233.691,384,224,6.11 fbnetv3_d,1634.54,233.136,384,224,10.31 tf_efficientnet_es,1623.9,314.542,512,224,5.44 resnet26d,1623.31,314.899,512,224,16.01 mobilevit_xxs,1602.81,238.427,384,256,1.27 resmlp_12_distilled_224,1577.54,323.769,512,224,15.35 resmlp_12_224,1577.31,323.803,512,224,15.35 pit_xs_224,1555.66,328.198,512,224,10.62 pit_xs_distilled_224,1555.48,328.255,512,224,11.0 semnasnet_140,1546.19,330.184,512,224,6.11 ghostnet_130,1542.47,330.535,512,224,7.36 repvgg_b0,1538.07,331.828,512,224,15.82 efficientnet_lite1,1530.99,166.26,256,240,5.42 dla34,1524.02,335.337,512,224,15.74 edgenext_x_small,1512.48,337.399,512,256,2.34 darknet21,1486.14,344.159,512,256,20.86 selecsls60,1482.76,344.397,512,224,30.67 selecsls60b,1478.62,345.378,512,224,32.77 nf_seresnet26,1473.71,346.754,512,224,17.4 vit_small_patch32_384,1455.89,350.818,512,384,22.92 gmixer_12_224,1448.32,352.721,512,224,12.7 efficientnet_b1_pruned,1446.82,352.35,512,240,6.33 tf_efficientnet_lite1,1443.47,176.394,256,240,5.42 nf_ecaresnet26,1440.41,354.896,512,224,16.0 xcit_tiny_12_p16_224_dist,1426.36,357.157,512,224,6.72 xcit_tiny_12_p16_224,1426.18,357.168,512,224,6.72 sedarknet21,1401.98,364.696,512,256,20.95 rexnetr_130,1388.84,183.199,256,224,7.61 dla46x_c,1388.59,367.953,512,224,1.07 gmlp_ti16_224,1381.11,276.449,384,224,5.87 mixnet_s,1365.54,373.667,512,224,4.13 rexnet_100,1364.31,280.319,384,224,4.8 regnety_006,1361.43,374.963,512,224,6.06 mobilenetv2_120d,1352.9,188.013,256,224,5.83 legacy_seresnext26_32x4d,1349.26,378.798,512,224,16.79 crossvit_tiny_240,1348.01,378.219,512,240,7.01 vit_tiny_r_s16_p8_384,1345.31,284.562,384,384,6.36 poolformer_s12,1342.54,380.659,512,224,11.92 dla60x_c,1341.77,380.621,512,224,1.32 efficientnet_b1,1325.85,191.544,256,224,7.79 resnetv2_50,1288.61,396.553,512,224,25.55 regnetx_006,1286.44,397.176,512,224,6.2 crossvit_9_240,1258.73,303.637,384,240,8.55 convnext_nano_ols,1252.33,408.151,512,224,15.6 convnext_nano,1249.89,408.864,512,224,15.59 convnext_nano_hnf,1249.05,409.138,512,224,15.59 resnet26t,1237.34,413.275,512,256,16.01 tf_mixnet_s,1236.15,412.905,512,224,4.13 nf_regnet_b2,1229.56,414.759,512,240,14.31 rexnetr_150,1224.57,207.878,256,224,9.78 gluon_resnet50_v1b,1219.23,419.12,512,224,25.56 tv_resnet50,1218.99,419.17,512,224,25.56 crossvit_9_dagger_240,1218.38,313.701,384,240,8.78 resnet50,1218.01,419.528,512,224,25.56 swsl_resnet50,1217.39,419.737,512,224,25.56 ssl_resnet50,1217.38,419.757,512,224,25.56 cs3darknet_focus_l,1216.61,314.788,384,256,21.15 repvgg_a2,1214.87,420.579,512,224,28.21 cs3darknet_l,1203.14,318.267,384,256,21.16 gernet_l,1201.09,425.379,512,256,31.08 efficientnet_lite2,1191.67,213.855,256,260,6.09 nf_regnet_b1,1181.15,431.966,512,256,10.22 seresnext26d_32x4d,1178.86,325.051,384,224,16.81 botnet26t_256,1178.34,325.281,384,256,12.49 seresnext26tn_32x4d,1177.85,325.355,384,224,16.81 seresnext26t_32x4d,1176.65,325.669,384,224,16.81 mobilevitv2_075,1174.29,217.001,256,256,2.87 ecaresnext50t_32x4d,1159.52,330.605,384,224,15.41 ecaresnext26t_32x4d,1158.26,330.961,384,224,15.41 gluon_resnet50_v1c,1147.86,333.697,384,224,25.58 halonet26t,1136.15,337.402,384,256,12.48 resnetv2_50d,1134.86,450.316,512,224,25.57 resnetv2_50t,1132.89,451.133,512,224,25.57 edgenext_small,1127.71,452.849,512,256,5.59 tf_efficientnet_lite2,1121.02,227.403,256,260,6.09 convit_tiny,1118.98,456.53,512,224,5.71 skresnet34,1113.08,458.799,512,224,22.28 tf_efficientnet_b1,1099.77,231.299,256,240,7.79 tf_efficientnet_b1_ap,1099.37,231.402,256,240,7.79 efficientnetv2_rw_t,1098.86,230.78,256,224,13.65 tf_efficientnet_b1_ns,1098.29,231.567,256,240,7.79 ecaresnetlight,1091.16,468.275,512,224,30.16 gluon_resnet50_v1d,1084.38,353.226,384,224,25.58 dpn68b,1083.77,353.123,384,224,12.61 cs3sedarknet_l,1083.42,353.12,384,256,21.91 resnet50d,1078.0,355.348,384,224,25.58 resnet50t,1076.81,355.721,384,224,25.57 resnet32ts,1075.86,237.337,256,256,17.96 resnet33ts,1061.36,240.599,256,256,19.68 vit_small_patch16_224,1057.92,362.157,384,224,22.05 resnetaa50,1057.73,362.204,384,224,25.56 vit_small_resnet26d_224,1057.57,362.04,384,224,63.61 deit_small_patch16_224,1050.7,364.638,384,224,22.05 cspresnet50,1042.19,367.617,384,256,21.62 tf_efficientnetv2_b3,1041.71,243.94,256,240,14.36 regnetx_008,1034.73,493.971,512,224,7.26 ecaresnet26t,1033.34,371.048,384,256,16.01 deit_small_distilled_patch16_224,1028.8,372.398,384,224,22.44 vit_relpos_base_patch32_plus_rpn_256,1021.86,499.989,512,256,119.42 dla60,1020.05,375.488,384,224,22.04 res2net50_48w_2s,1018.83,376.079,384,224,25.29 gc_efficientnetv2_rw_t,1014.65,249.524,256,224,13.68 vit_relpos_small_patch16_rpn_224,1013.69,377.786,384,224,21.97 edgenext_small_rw,1011.18,505.339,512,256,7.83 pit_s_224,1010.83,378.943,384,224,23.46 seresnet33ts,1007.26,253.362,256,256,19.78 efficientnet_em,1007.19,253.179,256,240,6.9 vovnet39a,1006.62,507.995,512,224,22.6 legacy_seresnet50,1003.5,381.52,384,224,28.09 gluon_resnext50_32x4d,1001.3,382.689,384,224,25.03 tv_resnext50_32x4d,1001.18,382.711,384,224,25.03 resnext50_32x4d,1001.03,382.776,384,224,25.03 ssl_resnext50_32x4d,1000.68,382.908,384,224,25.03 eca_resnet33ts,999.77,255.368,256,256,19.68 swsl_resnext50_32x4d,997.37,384.186,384,224,25.03 regnety_008,993.3,514.408,512,224,6.26 dpn68,992.27,385.859,384,224,12.61 deit3_small_patch16_224,987.86,387.777,384,224,22.06 deit3_small_patch16_224_in21ft1k,987.15,388.058,384,224,22.06 gcresnet33ts,985.12,258.855,256,256,19.88 efficientnet_b2a,980.29,259.63,256,256,9.11 tf_efficientnet_em,980.0,260.253,256,240,6.9 efficientnet_b2,978.68,260.092,256,256,9.11 seresnet50,971.79,394.011,384,224,28.09 gluon_resnet50_v1s,970.71,394.714,384,224,25.68 vit_srelpos_small_patch16_224,969.18,395.281,384,224,21.97 vit_relpos_small_patch16_224,965.13,396.742,384,224,21.98 ecaresnet50d_pruned,964.18,530.07,512,224,19.94 cspresnet50d,956.82,266.672,256,256,21.64 vgg11,954.03,536.508,512,224,132.86 cspresnet50w,952.27,267.927,256,256,28.12 ese_vovnet39b,951.93,537.173,512,224,24.57 vit_base_patch32_plus_256,951.5,537.138,512,256,119.48 resnetaa50d,950.79,403.026,384,224,25.58 eca_vovnet39b,948.4,539.184,512,224,22.6 lambda_resnet26rpt_256,942.15,203.17,192,256,10.99 pit_s_distilled_224,934.29,273.079,256,224,24.04 mobilevit_xs,924.5,275.792,256,256,2.32 tv_densenet121,917.93,277.067,256,224,7.98 densenet121,913.65,278.353,256,224,7.98 resnetblur50,911.91,420.254,384,224,25.56 hrnet_w18_small_v2,910.26,559.998,512,224,15.6 coat_lite_tiny,909.29,421.406,384,224,5.72 mobilevitv2_100,907.45,281.094,256,256,4.9 nf_resnet50,900.11,425.722,384,256,25.56 resnext50d_32x4d,894.57,285.293,256,224,25.05 nf_seresnet50,892.73,428.967,384,224,28.09 rexnetr_200,890.57,214.407,192,224,16.52 efficientnet_cc_b0_4e,890.34,430.073,384,224,13.31 efficientnet_cc_b0_8e,889.37,430.553,384,224,24.01 dla60x,886.5,287.775,256,224,17.35 twins_svt_small,885.48,432.048,384,224,24.06 seresnet50t,879.71,435.29,384,224,28.1 mixnet_m,878.04,581.529,512,224,5.01 nf_ecaresnet50,875.38,437.674,384,224,25.56 efficientnet_b2_pruned,873.9,291.355,256,260,8.31 densenet121d,873.44,291.238,256,224,8.0 cspresnext50,868.23,294.006,256,256,20.57 rexnet_150,866.26,294.391,256,224,9.73 ecaresnet50d,862.65,444.205,384,224,25.58 fbnetv3_g,862.32,220.642,192,240,16.62 regnetz_b16,862.05,295.457,256,224,9.72 tf_efficientnet_cc_b0_4e,861.1,444.691,384,224,13.31 tf_efficientnet_cc_b0_8e,857.16,446.822,384,224,24.01 gcresnet50t,854.99,447.633,384,256,25.9 res2net50_26w_4s,851.03,449.921,384,224,25.7 coat_lite_mini,849.82,450.985,384,224,11.01 tf_efficientnet_b2_ap,849.52,224.466,192,260,9.11 tf_efficientnet_b2,848.58,224.736,192,260,9.11 tf_efficientnet_b2_ns,847.86,224.983,192,260,9.11 vit_base_resnet26d_224,844.62,453.315,384,224,101.4 vgg11_bn,832.74,460.889,384,224,132.87 vovnet57a,832.06,614.449,512,224,36.64 selecsls84,830.17,615.492,512,224,50.95 resnetblur50d,826.31,308.964,256,224,25.58 convnext_tiny_hnfd,820.9,310.941,256,224,28.59 convnext_tiny_hnf,819.46,311.471,256,224,28.59 convnext_tiny,819.24,311.536,256,224,28.59 convnext_tiny_in22ft1k,818.81,311.724,256,224,28.59 rexnet_130,816.78,312.226,256,224,7.56 seresnext50_32x4d,814.69,313.102,256,224,27.56 legacy_seresnext50_32x4d,813.61,313.477,256,224,27.56 gluon_seresnext50_32x4d,813.13,313.678,256,224,27.56 skresnet50,808.8,473.357,384,224,25.8 visformer_small,806.27,475.588,384,224,40.22 res2net50_14w_8s,794.56,319.93,256,224,25.06 densenetblur121d,789.33,322.521,256,224,8.0 seresnetaa50d,785.32,324.779,256,224,28.11 gluon_inception_v3,782.59,489.263,384,299,23.83 inception_v3,782.35,489.427,384,299,23.83 adv_inception_v3,778.18,491.976,384,299,23.83 resmlp_24_distilled_224,777.24,327.895,256,224,30.02 resmlp_24_224,776.95,327.972,256,224,30.02 tf_inception_v3,775.41,493.776,384,299,23.83 ese_vovnet57b,774.18,495.058,384,224,38.61 tf_mixnet_m,773.08,495.127,384,224,5.01 resnetv2_101,772.45,329.834,256,224,44.54 dla60_res2net,767.35,332.099,256,224,20.85 nf_regnet_b3,766.23,499.321,384,288,18.59 sehalonet33ts,763.66,334.4,256,256,13.69 ecaresnet101d_pruned,754.9,676.449,512,224,24.88 darknet53,753.16,339.081,256,256,41.61 densenet169,752.52,337.551,256,224,14.15 resnet101,747.89,340.74,256,224,44.55 gluon_resnet101_v1b,747.04,341.055,256,224,44.55 tv_resnet101,746.84,341.219,256,224,44.55 skresnet50d,739.17,344.891,256,224,25.82 twins_pcpvt_small,738.11,345.194,256,224,24.11 vit_small_r26_s32_224,733.9,347.477,256,224,36.43 mobilevit_s,733.0,260.821,192,256,5.58 darknetaa53,732.7,348.577,256,256,36.02 xcit_tiny_24_p16_224_dist,727.98,348.335,256,224,12.12 xcit_tiny_24_p16_224,727.1,348.63,256,224,12.12 efficientnet_b0_gn,724.56,352.174,256,224,5.29 efficientnet_b3_pruned,722.23,352.701,256,300,9.86 gluon_resnet101_v1c,717.66,355.143,256,224,44.57 resnext26ts,717.15,534.946,384,256,10.3 resnetv2_101d,715.45,356.238,256,224,44.56 gmixer_24_224,714.67,356.582,256,224,24.72 resnetrs101,714.37,356.071,256,192,63.62 nf_resnet101,712.1,537.603,384,224,44.55 efficientnet_lite3,702.44,181.104,128,300,8.2 mixnet_l,702.18,545.327,384,224,7.33 eca_resnext26ts,694.05,368.289,256,256,10.3 semobilevit_s,692.92,368.16,256,256,5.74 seresnext26ts,691.18,369.699,256,256,10.39 poolformer_s24,689.84,369.792,256,224,21.39 gluon_resnet101_v1d,688.26,370.323,256,224,44.57 dla102,688.03,370.524,256,224,33.27 vit_relpos_medium_patch16_rpn_224,687.13,371.514,256,224,38.73 sebotnet33ts_256,686.07,279.058,192,256,13.7 gcresnext26ts,683.09,373.929,256,256,10.48 regnetx_016,682.73,749.012,512,224,9.19 haloregnetz_b,680.78,374.495,256,224,11.68 cspdarknet53,679.01,375.961,256,256,27.64 vgg13,677.45,566.653,384,224,133.05 xcit_nano_12_p16_384_dist,671.72,379.231,256,384,3.05 wide_resnet50_2,668.78,573.358,384,224,68.88 tf_efficientnet_lite3,665.78,191.165,128,300,8.2 vit_relpos_medium_patch16_cls_224,661.77,385.665,256,224,38.76 vit_srelpos_medium_patch16_224,659.88,386.996,256,224,38.74 rexnet_200,659.06,290.146,192,224,16.37 vit_base_resnet50d_224,658.84,386.945,256,224,110.97 ecaresnet50t,657.78,388.237,256,256,25.57 gmlp_s16_224,657.63,290.408,192,224,19.42 vit_relpos_medium_patch16_224,657.05,388.484,256,224,38.75 tf_efficientnet_cc_b1_8e,654.82,389.25,256,240,39.72 regnety_016,650.07,785.757,512,224,11.2 swin_tiny_patch4_window7_224,648.69,393.641,256,224,28.29 xcit_small_12_p16_224,640.82,397.688,256,224,26.25 gluon_resnet101_v1s,640.79,397.908,256,224,44.67 xcit_small_12_p16_224_dist,639.99,398.193,256,224,26.25 crossvit_small_240,638.8,399.076,256,240,26.86 efficientnet_cc_b1_8e,637.42,399.94,256,240,39.72 resnetaa101d,634.86,401.619,256,224,44.57 cs3sedarknet_xdw,630.82,302.41,192,256,21.6 repvgg_b1,623.55,820.034,512,224,57.42 mobilevitv2_125,620.51,308.406,192,256,7.48 bat_resnext26ts,613.61,415.954,256,256,10.73 gluon_resnext101_32x4d,609.67,418.333,256,224,44.18 swsl_resnext101_32x4d,609.02,418.731,256,224,44.18 resnext101_32x4d,609.01,418.74,256,224,44.18 tf_mixnet_l,606.88,420.297,256,224,7.33 ssl_resnext101_32x4d,606.28,420.718,256,224,44.18 legacy_seresnet101,601.55,423.316,256,224,49.33 cs3darknet_focus_x,600.02,425.715,256,256,35.02 dla102x,598.42,319.231,192,224,26.31 halonet50ts,597.8,320.205,192,256,22.73 xcit_nano_12_p8_224,595.07,428.358,256,224,3.05 xcit_nano_12_p8_224_dist,593.27,429.695,256,224,3.05 cait_xxs24_224,593.22,428.92,256,224,11.96 seresnet101,590.42,431.41,256,224,49.33 swin_s3_tiny_224,588.57,433.98,256,224,28.33 resnetv2_50x1_bit_distilled,585.83,326.889,192,224,25.55 efficientnet_b0_g8_gn,582.67,438.264,256,224,6.56 crossvit_15_240,580.46,328.975,192,240,27.53 resnetblur101d,576.87,442.155,256,224,44.57 res2net50_26w_6s,573.8,444.339,256,224,37.05 vgg13_bn,573.47,446.125,256,224,133.05 efficientnet_b3a,572.29,221.925,128,288,12.23 efficientnet_b3,572.18,221.941,128,288,12.23 cs3darknet_x,571.12,447.259,256,256,35.05 densenet201,562.52,338.221,192,224,20.01 crossvit_15_dagger_240,562.49,339.489,192,240,28.21 efficientnetv2_s,559.15,226.702,128,288,21.46 eca_botnext26ts_256,558.6,457.666,256,256,10.59 mixer_b16_224,556.6,459.152,256,224,59.88 mixer_b16_224_miil,556.5,459.202,256,224,59.88 eca_halonext26ts,547.96,466.574,256,256,10.76 ecaresnet101d,546.58,466.555,256,224,44.57 vgg16,546.06,702.994,384,224,138.36 mixer_l32_224,543.38,351.819,192,224,206.94 vit_base_patch32_384,543.37,470.294,256,384,88.3 nf_seresnet101,540.53,471.014,256,224,49.33 resnetv2_152,536.63,474.697,256,224,60.19 botnet50ts_256,534.71,238.412,128,256,22.74 mobilevitv2_150,533.38,238.97,128,256,10.59 vit_base_r26_s32_224,533.28,358.697,192,224,101.38 mobilevitv2_150_in22ft1k,532.99,239.183,128,256,10.59 cs3sedarknet_x,531.85,479.872,256,256,35.4 nf_ecaresnet101,531.3,479.947,256,224,44.55 cs3edgenet_x,529.37,482.632,256,256,47.82 res2next50,528.59,483.023,256,224,24.67 res2net101_26w_4s,527.01,483.179,256,224,45.21 vit_large_patch32_224,524.74,486.172,256,224,306.54 resnet101d,523.85,364.964,192,256,44.57 efficientnetv2_rw_s,520.77,243.564,128,288,23.94 halo2botnet50ts_256,517.51,369.975,192,256,22.64 resmlp_36_distilled_224,513.23,371.84,192,224,44.69 vit_tiny_patch16_384,510.99,249.657,128,384,5.79 resmlp_36_224,509.53,374.55,192,224,44.69 swinv2_cr_tiny_224,506.82,503.861,256,224,28.33 mixnet_xl,505.67,504.387,256,224,11.9 resnetv2_50d_gn,505.25,379.149,192,224,25.57 swinv2_cr_tiny_ns_224,504.1,506.527,256,224,28.33 gluon_resnet152_v1b,502.02,380.204,192,224,60.19 regnetz_d8,501.8,253.463,128,256,23.37 resnet152,501.44,380.547,192,224,60.19 tv_resnet152,501.12,380.811,192,224,60.19 xception,497.64,256.367,128,299,22.86 regnety_032,496.85,771.405,384,224,19.44 tf_efficientnet_b3_ap,496.0,256.348,128,300,12.23 tf_efficientnet_b3,494.58,257.101,128,300,12.23 tf_efficientnet_b3_ns,492.45,258.213,128,300,12.23 convnext_small_in22ft1k,490.79,389.411,192,224,50.22 res2net50_26w_8s,489.22,520.921,256,224,48.4 tf_efficientnetv2_s_in21ft1k,488.77,259.622,128,300,21.46 tf_efficientnetv2_s,488.25,259.918,128,300,21.46 gluon_resnet152_v1c,488.2,390.894,192,224,60.21 convnext_small,487.15,392.394,192,224,50.22 twins_pcpvt_base,487.13,391.314,192,224,43.83 resnetv2_152d,486.82,392.059,192,224,60.2 legacy_seresnext101_32x4d,484.7,393.829,192,224,48.96 resnet50_gn,482.45,397.141,192,224,25.56 gluon_seresnext101_32x4d,480.63,397.197,192,224,48.96 hrnet_w32,480.24,528.215,256,224,41.23 sequencer2d_s,480.16,264.213,128,224,27.65 seresnext101_32x4d,479.03,398.526,192,224,48.96 nest_tiny,477.97,266.889,128,224,17.06 dla60_res2next,477.74,534.408,256,224,17.03 gluon_resnet152_v1d,476.32,400.788,192,224,60.21 regnetz_c16,475.79,402.061,192,256,13.46 hrnet_w18,473.42,535.867,256,224,21.3 jx_nest_tiny,472.84,269.807,128,224,17.06 regnetz_d32,471.85,269.596,128,256,27.58 regnetz_040,471.81,269.412,128,256,27.12 xception41p,471.79,270.424,128,299,26.91 vgg16_bn,470.3,543.999,256,224,138.37 regnetz_040h,469.27,270.846,128,256,28.94 poolformer_s36,467.39,408.832,192,224,30.86 resnet51q,463.81,551.102,256,256,35.7 efficientnet_el_pruned,461.98,275.957,128,300,10.59 efficientnet_el,461.97,275.94,128,300,10.59 coat_lite_small,461.36,414.606,192,224,19.84 nf_regnet_b4,457.97,417.049,192,320,30.21 vgg19,457.37,839.347,384,224,143.67 cs3se_edgenet_x,457.05,418.615,192,256,50.72 dla169,455.51,419.044,192,224,53.39 convit_small,454.72,421.197,192,224,27.78 gluon_resnet152_v1s,452.53,421.917,192,224,60.32 tf_efficientnet_el,449.8,283.446,128,300,10.59 gcresnext50ts,445.12,429.834,192,256,15.67 regnetx_040,442.35,866.937,384,224,22.12 vit_small_resnet50d_s16_224,437.26,437.826,192,224,57.53 volo_d1_224,437.04,437.842,192,224,26.63 mobilevitv2_175_in22ft1k,434.9,293.339,128,256,14.25 mobilevitv2_175,434.88,293.341,128,256,14.25 resnet61q,433.95,441.405,192,256,36.85 ese_vovnet99b,433.24,589.371,256,224,63.2 ese_vovnet39b_evos,430.54,296.328,128,224,24.58 twins_svt_base,425.02,449.64,192,224,56.07 resnest14d,411.87,1242.634,512,224,10.61 dla102x2,405.87,313.766,128,224,41.28 mobilevitv2_200_in22ft1k,405.83,314.414,128,256,18.45 mobilevitv2_200,405.76,314.447,128,256,18.45 inception_v4,405.43,471.399,192,299,42.68 crossvit_18_240,404.58,314.332,128,240,43.27 swin_small_patch4_window7_224,400.37,477.632,192,224,49.61 densenet161,399.17,318.189,128,224,28.68 vgg19_bn,398.5,642.012,256,224,143.68 legacy_seresnet152,398.4,478.588,192,224,66.82 vit_base_patch16_224_miil,397.86,481.79,192,224,86.54 sequencer2d_m,396.83,480.626,192,224,38.31 crossvit_18_dagger_240,396.31,320.926,128,240,44.27 resnetv2_50d_frn,394.18,323.553,128,224,25.59 vit_base_patch16_224,392.99,487.729,192,224,86.57 vit_base_patch16_224_sam,392.92,487.774,192,224,86.57 vit_base_patch16_rpn_224,391.32,489.846,192,224,86.54 xception41,391.05,326.045,128,299,26.97 deit_base_patch16_224,390.04,491.437,192,224,86.57 cait_xxs36_224,387.24,492.066,192,224,17.3 efficientnet_b0_g16_evos,386.23,993.13,384,224,8.11 deit_base_distilled_patch16_224,384.06,499.086,192,224,87.34 xcit_tiny_12_p16_384_dist,383.09,499.371,192,384,6.72 vit_relpos_base_patch16_rpn_224,382.95,500.328,192,224,86.41 seresnet152,379.38,334.127,128,224,66.82 resnetv2_50d_evos,374.27,340.812,128,224,25.59 deit3_base_patch16_224,374.05,512.341,192,224,86.59 deit3_base_patch16_224_in21ft1k,373.84,512.639,192,224,86.59 vit_relpos_base_patch16_clsgap_224,370.76,516.704,192,224,86.43 vit_relpos_base_patch16_cls_224,370.22,517.437,192,224,86.43 hrnet_w30,369.35,688.202,256,224,37.71 vit_relpos_base_patch16_224,368.93,519.279,192,224,86.43 gluon_resnext101_64x4d,363.93,350.084,128,224,83.46 resnext101_64x4d,363.79,350.21,128,224,83.46 beit_base_patch16_224,358.77,534.02,192,224,86.53 ens_adv_inception_resnet_v2,358.6,532.08,192,299,55.84 wide_resnet101_2,358.56,533.868,192,224,126.89 inception_resnet_v2,358.54,532.143,192,299,55.84 resnet200,357.55,355.04,128,224,64.67 resnet152d,357.54,355.729,128,256,60.21 swinv2_tiny_window8_256,357.0,536.56,192,256,28.35 efficientnet_b4,354.99,268.381,96,320,19.34 dpn92,353.0,723.721,256,224,37.67 repvgg_b2,352.05,1453.222,512,224,89.02 resnest50d_1s4x24d,349.97,730.142,256,224,25.68 regnetz_b16_evos,347.19,366.83,128,224,9.74 tnt_s_patch16_224,342.71,558.25,192,224,23.76 xception65p,341.43,373.588,128,299,39.82 convnext_base_in22ft1k,339.67,374.996,128,224,88.59 convnext_base,338.68,376.119,128,224,88.59 efficientnet_lite4,338.39,187.783,64,380,13.01 twins_pcpvt_large,333.52,379.633,128,224,60.99 pit_b_224,331.08,385.636,128,224,73.76 pit_b_distilled_224,328.87,388.208,128,224,74.79 xcit_small_24_p16_224_dist,326.41,388.817,128,224,47.67 xcit_small_24_p16_224,326.38,388.806,128,224,47.67 tf_efficientnet_lite4,324.6,195.748,64,380,13.01 eca_nfnet_l0,319.84,1599.745,512,224,24.14 nfnet_l0,319.69,1600.317,512,224,35.07 gluon_seresnext101_64x4d,319.51,398.398,128,224,88.23 repvgg_b3,316.57,1211.922,384,224,123.09 skresnext50_32x4d,315.84,809.121,256,224,27.48 poolformer_m36,315.69,403.496,128,224,56.17 ssl_resnext101_32x8d,313.35,406.924,128,224,88.79 resnext101_32x8d,312.8,407.622,128,224,88.79 swsl_resnext101_32x8d,312.76,407.724,128,224,88.79 ig_resnext101_32x8d,311.13,409.865,128,224,88.79 vit_small_patch16_36x1_224,309.04,411.365,128,224,64.67 regnetx_032,308.88,1241.936,384,224,15.3 vit_small_patch16_18x2_224,306.57,414.654,128,224,64.67 xcit_tiny_12_p8_224,306.37,415.93,128,224,6.71 cait_s24_224,305.74,415.965,128,224,46.92 xcit_tiny_12_p8_224_dist,304.23,418.886,128,224,6.71 swinv2_cr_small_ns_224,300.99,422.86,128,224,49.7 twins_svt_large,300.69,423.548,128,224,99.27 swinv2_cr_small_224,299.81,424.482,128,224,49.7 coat_tiny,298.83,426.275,128,224,5.5 resnest26d,298.23,1286.829,384,224,17.07 nest_small,296.79,321.765,96,224,38.35 jx_nest_small,293.75,325.094,96,224,38.35 swin_s3_small_224,290.56,438.612,128,224,49.74 dpn98,290.11,439.591,128,224,61.57 resnetv2_50d_evob,289.65,330.197,96,224,25.59 seresnet152d,283.9,447.414,128,256,66.84 gluon_xception65,283.18,337.068,96,299,39.92 convnext_tiny_384_in22ft1k,282.39,338.982,96,384,28.59 resnetrs152,282.26,450.046,128,256,86.62 xception65,281.11,339.548,96,299,39.92 swin_base_patch4_window7_224,281.0,453.662,128,224,87.77 hrnet_w48,279.44,682.135,192,224,77.47 mixnet_xxl,278.4,457.833,128,224,23.96 seresnext101_32x8d,278.13,458.033,128,224,93.57 gmlp_b16_224,275.97,346.253,96,224,73.08 seresnext101d_32x8d,270.35,471.144,128,224,93.59 resnet200d,267.1,476.272,128,256,64.69 nfnet_f0,265.61,1926.394,512,192,71.49 regnetz_e8,256.51,247.489,64,256,57.7 xcit_tiny_24_p16_384_dist,255.73,371.975,96,384,12.12 crossvit_base_240,254.6,375.374,96,240,105.03 dm_nfnet_f0,251.38,1526.301,384,192,71.49 hrnet_w40,249.23,765.525,192,224,57.56 vit_base_patch16_plus_240,246.96,517.368,128,240,117.56 efficientnetv2_m,246.55,256.379,64,320,54.14 vit_relpos_base_patch16_plus_240,244.88,521.493,128,240,117.38 seresnextaa101d_32x8d,243.89,522.629,128,224,93.59 tf_efficientnet_b4_ap,242.14,262.218,64,380,19.34 tf_efficientnet_b4,241.83,262.52,64,380,19.34 tf_efficientnet_b4_ns,241.46,263.01,64,380,19.34 xcit_medium_24_p16_224,241.39,526.926,128,224,84.4 xcit_medium_24_p16_224_dist,241.08,527.466,128,224,84.4 xcit_small_12_p16_384_dist,240.61,397.192,96,384,26.25 vit_small_patch16_384,239.06,266.856,64,384,22.2 volo_d2_224,238.89,400.019,96,224,58.68 swinv2_tiny_window16_256,238.79,400.76,96,256,28.35 mobilevitv2_150_384_in22ft1k,238.1,267.77,64,384,10.59 vit_large_r50_s32_224,236.27,403.797,96,224,328.99 tresnet_m,233.24,2192.365,512,224,31.39 hrnet_w44,232.48,820.975,192,224,67.06 poolformer_m48,232.43,410.471,96,224,73.47 densenet264,231.27,411.12,96,224,72.69 convit_base,231.06,552.947,128,224,86.54 nf_regnet_b5,228.54,417.354,96,384,49.74 deit3_small_patch16_384,226.74,281.318,64,384,22.21 deit3_small_patch16_384_in21ft1k,226.44,281.652,64,384,22.21 vit_small_r26_s32_384,226.15,281.726,64,384,36.47 coat_mini,225.14,566.497,128,224,10.34 efficientnetv2_rw_m,224.46,281.565,64,320,53.24 swin_s3_base_224,224.0,425.728,96,224,71.13 tnt_b_patch16_224,223.52,570.669,128,224,65.41 hrnet_w64,223.29,568.417,128,224,128.06 sequencer2d_l,220.03,286.022,64,224,54.3 dpn131,216.53,588.962,128,224,79.25 vit_base_r50_s16_224,215.49,443.851,96,224,98.66 swinv2_cr_base_ns_224,214.73,444.647,96,224,87.88 xception71,214.09,296.77,64,299,42.34 swinv2_cr_base_224,213.21,447.81,96,224,87.88 swinv2_small_window8_256,213.06,448.048,96,256,49.73 nest_base,210.25,302.717,64,224,67.72 jx_nest_base,209.06,304.441,64,224,67.72 seresnet200d,203.53,467.209,96,256,71.86 resnetrs200,201.84,471.293,96,256,93.21 resnest50d,201.6,1268.493,256,224,27.48 ecaresnet200d,201.55,472.938,96,256,64.69 xcit_nano_12_p8_384_dist,201.45,315.854,64,384,3.05 efficientnet_b3_gn,197.65,322.123,64,288,11.73 xcit_tiny_24_p8_224_dist,195.37,488.075,96,224,12.11 xcit_tiny_24_p8_224,195.11,488.622,96,224,12.11 dpn107,194.08,492.913,96,224,86.92 regnetz_c16_evos,193.89,328.188,64,256,13.49 regnety_040,190.14,2017.916,384,224,20.65 mobilevitv2_175_384_in22ft1k,189.6,336.534,64,384,14.25 regnetv_040,188.29,1358.084,256,224,20.64 convnext_large,187.93,509.087,96,224,197.77 convnext_large_in22ft1k,187.83,509.365,96,224,197.77 convmixer_768_32,187.17,511.603,96,224,21.11 regnetx_080,181.41,1409.979,256,224,39.57 resnest50d_4s2x40d,180.44,1417.38,256,224,30.42 xcit_small_12_p8_224,179.5,354.768,64,224,26.21 xcit_small_12_p8_224_dist,179.34,355.047,64,224,26.21 halonet_h1,176.7,360.706,64,256,8.1 tf_efficientnetv2_m_in21ft1k,175.14,270.794,48,384,54.14 mobilevitv2_200_384_in22ft1k,175.13,273.08,48,384,18.45 tf_efficientnetv2_m,173.37,273.617,48,384,54.14 mixer_l16_224,171.41,558.471,96,224,208.2 efficientnet_b3_g8_gn,168.79,377.376,64,288,14.25 repvgg_b1g4,167.59,3053.943,512,224,39.97 vit_large_patch32_384,167.04,573.058,96,384,306.63 convnext_small_384_in22ft1k,165.65,384.557,64,384,50.22 volo_d3_224,162.19,392.021,64,224,86.33 regnetz_d8_evos,155.31,307.002,48,256,23.46 swin_large_patch4_window7_224,153.79,414.289,64,224,196.53 swinv2_base_window8_256,151.21,420.663,64,256,87.92 convmixer_1024_20_ks9_p14,149.3,1713.726,256,224,24.38 resnetv2_50x1_bitm,147.75,215.764,32,448,25.55 seresnet269d,145.59,433.61,64,256,113.67 resnetrs270,144.14,437.83,64,256,129.86 swinv2_small_window16_256,143.52,443.487,64,256,49.73 regnety_040s_gn,142.58,896.132,128,224,20.65 repvgg_b2g4,133.72,3827.892,512,224,61.76 eca_nfnet_l1,133.59,1435.413,192,256,41.41 xcit_large_24_p16_224,132.6,479.222,64,224,189.1 swinv2_cr_tiny_384,131.94,483.86,64,384,28.33 xcit_large_24_p16_224_dist,131.66,482.65,64,224,189.1 xcit_tiny_12_p8_384_dist,131.64,362.75,48,384,6.71 regnetx_064,129.82,1970.916,256,224,26.21 swinv2_cr_large_224,124.15,513.018,64,224,196.68 xcit_small_24_p16_384_dist,120.64,394.328,48,384,47.67 regnety_064,119.44,2141.523,256,224,30.58 regnety_080,117.88,2170.37,256,224,39.18 crossvit_15_dagger_408,117.86,269.618,32,408,28.5 vit_large_patch16_224,117.2,544.512,64,224,304.33 regnetv_064,117.03,1638.944,192,224,30.58 ese_vovnet99b_iabn,117.02,3278.167,384,224,63.2 convnext_xlarge_in22ft1k,116.37,548.167,64,224,350.2 vit_base_patch16_18x2_224,116.0,548.972,64,224,256.73 convnext_base_384_in22ft1k,115.58,413.454,48,384,88.59 efficientnet_b5,113.63,279.129,32,456,30.39 deit3_large_patch16_224_in21ft1k,112.51,567.041,64,224,304.37 deit3_large_patch16_224,112.48,567.139,64,224,304.37 tf_efficientnet_b5,111.42,284.665,32,456,30.39 tf_efficientnet_b5_ap,111.14,285.451,32,456,30.39 tf_efficientnet_b5_ns,111.14,285.33,32,456,30.39 legacy_senet154,110.98,861.567,96,224,115.09 senet154,110.82,862.828,96,224,115.09 gluon_senet154,110.77,863.12,96,224,115.09 beit_large_patch16_224,109.02,584.818,64,224,304.43 repvgg_b3g4,108.77,3529.239,384,224,83.83 regnetx_160,107.6,1783.261,192,224,54.28 nfnet_f1,107.01,1791.907,192,224,132.63 volo_d1_384,105.69,301.347,32,384,26.78 swinv2_base_window16_256,103.88,459.56,48,256,87.92 swinv2_base_window12to16_192to256_22kft1k,103.79,460.002,48,256,87.92 tresnet_l,102.82,4975.916,512,224,55.99 dm_nfnet_f1,101.59,1257.525,128,224,132.63 volo_d4_224,101.08,472.359,48,224,192.96 cait_xxs24_384,99.39,480.268,48,384,12.03 ecaresnet269d,99.06,479.988,48,320,102.09 efficientnetv2_l,98.76,319.521,32,384,118.52 tf_efficientnetv2_l_in21ft1k,98.35,320.759,32,384,118.52 tf_efficientnetv2_l,97.56,323.47,32,384,118.52 deit_base_patch16_384,97.3,328.042,32,384,86.86 vit_base_patch16_384,97.1,328.712,32,384,86.86 resnest101e,96.09,1329.413,128,256,48.28 deit_base_distilled_patch16_384,94.63,337.315,32,384,87.63 regnetx_120,94.03,2721.558,256,224,46.11 deit3_base_patch16_384,93.5,341.294,32,384,86.88 deit3_base_patch16_384_in21ft1k,93.49,341.309,32,384,86.88 xcit_small_24_p8_224_dist,92.61,514.968,48,224,47.63 xcit_small_24_p8_224,92.51,515.466,48,224,47.63 regnety_120,92.07,2083.952,192,224,51.82 tresnet_xl,91.15,4209.119,384,224,78.44 crossvit_18_dagger_408,89.17,356.787,32,408,44.61 resnetv2_152x2_bit_teacher,89.16,356.538,32,224,236.34 vit_large_patch14_224,85.06,562.673,48,224,304.2 resnetv2_101x1_bitm,84.72,187.286,16,448,44.54 resnetrs350,84.14,372.211,32,288,163.96 beit_base_patch16_384,83.87,380.424,32,384,86.74 regnety_160,83.24,2305.144,192,224,83.59 pnasnet5large,83.16,380.801,32,331,86.06 xcit_medium_24_p16_384_dist,82.74,383.266,32,384,84.4 vit_large_r50_s32_384,77.34,411.186,32,384,329.09 nasnetalarge,77.32,408.633,32,331,88.75 swinv2_cr_small_384,76.42,416.277,32,384,49.7 swin_base_patch4_window12_384,74.73,426.327,32,384,87.9 resmlp_big_24_distilled_224,70.88,449.95,32,224,129.14 resmlp_big_24_224_in22ft1k,70.88,449.933,32,224,129.14 resmlp_big_24_224,70.41,452.99,32,224,129.14 regnety_320,66.33,1928.357,128,224,145.05 xcit_tiny_24_p8_384_dist,66.29,479.361,32,384,12.11 cait_xs24_384,66.24,480.525,32,384,26.67 ig_resnext101_32x16d,65.9,1455.165,96,224,194.03 ssl_resnext101_32x16d,65.74,1458.688,96,224,194.03 swsl_resnext101_32x16d,65.74,1458.738,96,224,194.03 volo_d5_224,64.41,493.535,32,224,295.46 cait_xxs36_384,64.34,493.602,32,384,17.37 efficientnet_b6,64.08,246.77,16,528,43.04 xcit_medium_24_p8_224,63.96,496.86,32,224,84.32 xcit_medium_24_p8_224_dist,63.93,497.194,32,224,84.32 convnext_large_384_in22ft1k,63.85,499.388,32,384,197.77 vit_base_patch8_224,63.45,377.425,24,224,86.58 tf_efficientnet_b6_ns,63.1,250.577,16,528,43.04 tf_efficientnet_b6,62.84,251.669,16,528,43.04 tf_efficientnet_b6_ap,62.76,252.073,16,528,43.04 efficientnetv2_xl,62.18,251.438,16,384,208.12 tf_efficientnetv2_xl_in21ft1k,62.14,251.721,16,384,208.12 xcit_small_12_p8_384_dist,61.84,386.224,24,384,26.21 vit_base_r50_s16_384,61.01,391.67,24,384,98.95 vit_base_resnet50_384,60.98,391.903,24,384,98.95 swinv2_large_window12to16_192to256_22kft1k,60.98,391.098,24,256,196.74 eca_nfnet_l2,58.72,1632.112,96,320,56.72 volo_d2_384,58.5,271.766,16,384,58.87 resnetrs420,56.49,415.629,24,320,191.89 swinv2_cr_base_384,55.08,433.269,24,384,87.88 nfnet_f2,54.73,1750.573,96,256,193.78 tresnet_m_448,53.52,3584.333,192,448,31.39 dm_nfnet_f2,51.26,1245.084,64,256,193.78 cait_s24_384,50.14,476.064,24,384,47.06 swinv2_cr_huge_224,49.63,481.092,24,224,657.83 regnetx_320,48.06,2662.024,128,224,107.81 xcit_large_24_p16_384_dist,48.02,496.416,24,384,189.1 swin_large_patch4_window12_384,41.75,381.31,16,384,196.74 convnext_xlarge_384_in22ft1k,40.45,591.485,24,384,350.2 deit3_huge_patch14_224_in21ft1k,38.41,414.036,16,224,632.13 deit3_huge_patch14_224,38.4,414.103,16,224,632.13 efficientnet_b7,37.97,207.232,8,600,66.35 tf_efficientnet_b7_ap,37.27,210.986,8,600,66.35 tf_efficientnet_b7_ns,37.25,211.249,8,600,66.35 tf_efficientnet_b7,37.22,211.329,8,600,66.35 eca_nfnet_l3,35.61,1344.526,48,352,72.04 xcit_large_24_p8_224_dist,35.32,449.68,16,224,188.93 xcit_large_24_p8_224,35.06,452.952,16,224,188.93 resnetv2_50x3_bitm,34.68,460.605,16,448,217.32 swinv2_cr_large_384,32.56,488.949,16,384,196.68 cait_s36_384,32.3,491.641,16,384,68.37 densenet264d_iabn,32.11,3982.48,128,224,72.74 resnetv2_152x2_bit_teacher_384,31.17,382.508,12,384,236.34 xcit_small_24_p8_384_dist,31.12,510.761,16,384,47.63 resnest200e,30.3,1579.149,48,320,70.2 vit_large_patch16_384,29.14,410.147,12,384,304.72 deit3_large_patch16_384,28.26,422.768,12,384,304.76 deit3_large_patch16_384_in21ft1k,28.25,422.94,12,384,304.76 swinv2_base_window12to24_192to384_22kft1k,28.19,423.281,12,384,87.92 nfnet_f3,26.1,1834.868,48,320,254.92 beit_large_patch16_384,25.3,472.219,12,384,305.0 tresnet_l_448,25.28,5060.321,128,448,55.99 volo_d3_448,24.7,321.403,8,448,86.63 dm_nfnet_f3,24.56,1297.967,32,320,254.92 tresnet_xl_448,23.27,4122.323,96,448,78.44 efficientnet_b8,22.93,257.589,6,672,87.41 tf_efficientnet_b8,22.71,260.18,6,672,87.41 tf_efficientnet_b8_ap,22.69,260.555,6,672,87.41 resnetv2_152x2_bitm,22.58,351.774,8,448,236.34 vit_giant_patch14_224,22.32,355.766,8,224,1012.61 ig_resnext101_32x32d,21.03,1519.993,32,224,468.53 xcit_medium_24_p8_384_dist,21.03,376.997,8,384,84.32 convmixer_1536_20,20.83,2303.059,48,224,51.63 resnetv2_101x3_bitm,18.05,441.706,8,448,387.93 volo_d4_448,17.57,338.789,6,448,193.41 swinv2_large_window12to24_192to384_22kft1k,16.62,358.548,6,384,196.74 resnest269e,16.0,1493.085,24,416,110.93 nfnet_f4,14.17,1687.74,24,384,316.07 swinv2_cr_huge_384,13.13,454.627,6,384,657.94 dm_nfnet_f4,12.96,1229.019,16,384,316.07 xcit_large_24_p8_384_dist,12.19,488.758,6,384,188.93 cait_m36_384,11.91,500.148,6,384,271.22 volo_d5_448,11.43,346.654,4,448,295.91 ig_resnext101_32x48d,11.2,1427.437,16,224,828.41 tf_efficientnet_l2_ns_475,10.96,267.912,3,475,480.31 dm_nfnet_f5,9.76,1222.345,12,416,377.21 beit_large_patch16_512,9.42,422.548,4,512,305.67 volo_d5_512,8.0,371.847,3,512,296.09 nfnet_f5,8.0,1992.337,16,416,377.21 dm_nfnet_f6,7.45,1065.231,8,448,438.36 nfnet_f6,5.82,2052.248,12,448,438.36 nfnet_f7,5.73,1387.07,8,480,499.5 resnetv2_152x4_bitm,4.89,406.668,2,480,936.53 cait_m48_448,4.76,414.936,2,448,356.46 efficientnet_l2,3.95,247.515,1,800,480.31 tf_efficientnet_l2_ns,3.93,248.975,1,800,480.31
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-train-amp-nchw-pt111-cu113-rtx3090.csv
model,train_samples_per_sec,train_step_time,train_batch_size,train_img_size,param_count tinynet_e,9380.97,53.881,512,106,2.04 mobilenetv3_small_050,7276.68,69.643,512,224,1.59 tf_mobilenetv3_small_minimal_100,6334.14,80.291,512,224,2.04 mobilenetv3_small_075,5920.21,85.765,512,224,2.04 lcnet_035,5760.61,88.397,512,224,1.64 mobilenetv3_small_100,5583.48,90.99,512,224,2.54 tf_mobilenetv3_small_075,5569.37,91.204,512,224,2.04 levit_128s,5426.95,93.402,512,224,7.78 lcnet_050,5425.23,93.895,512,224,1.88 tf_mobilenetv3_small_100,5275.47,96.328,512,224,2.54 tinynet_d,4879.29,104.179,512,152,2.34 mixer_s32_224,4491.84,113.42,512,224,19.1 vit_small_patch32_224,4321.32,117.658,512,224,22.88 lcnet_075,4147.31,122.971,512,224,2.36 levit_128,3971.6,127.764,512,224,9.21 vit_tiny_r_s16_p8_224,3957.53,128.516,512,224,6.34 lcnet_100,3524.02,144.807,512,224,2.95 mnasnet_small,3488.23,145.878,512,224,2.03 levit_192,3436.74,147.842,512,224,10.95 regnetx_002,3423.6,148.87,512,224,2.68 regnety_002,3178.35,160.128,512,224,3.16 mobilenetv2_035,3069.55,166.033,512,224,1.68 gernet_s,2949.06,172.893,512,224,8.17 mnasnet_050,2821.34,180.673,512,224,2.22 ssl_resnet18,2720.94,187.823,512,224,11.69 swsl_resnet18,2720.55,187.842,512,224,11.69 gluon_resnet18_v1b,2718.42,187.998,512,224,11.69 resnet18,2711.83,188.459,512,224,11.69 semnasnet_050,2700.91,188.67,512,224,2.08 tinynet_c,2654.89,191.851,512,184,2.46 mobilenetv2_050,2650.81,192.34,512,224,1.97 levit_256,2620.65,194.218,512,224,18.89 lcnet_150,2613.69,195.4,512,224,4.5 regnetx_004,2532.79,201.109,512,224,5.16 seresnet18,2519.64,202.716,512,224,11.78 legacy_seresnet18,2461.74,207.479,512,224,11.78 ese_vovnet19b_slim_dw,2456.97,207.908,512,224,1.9 mobilenetv3_large_075,2342.92,217.677,512,224,3.99 tf_mobilenetv3_large_minimal_100,2311.18,220.824,512,224,3.92 vit_tiny_patch16_224,2249.49,226.757,512,224,5.72 levit_256d,2248.95,226.128,512,224,26.21 deit_tiny_patch16_224,2244.74,227.248,512,224,5.72 tf_mobilenetv3_large_075,2222.25,229.522,512,224,3.99 deit_tiny_distilled_patch16_224,2207.23,231.107,512,224,5.91 ghostnet_050,2193.43,232.046,512,224,2.59 mnasnet_075,2163.05,235.897,512,224,3.17 mobilenetv3_rw,2147.03,237.6,512,224,5.48 mobilenetv3_large_100_miil,2135.44,238.882,512,224,5.48 mobilenetv3_large_100,2134.66,238.979,512,224,5.48 resnet18d,2086.64,244.99,512,224,11.71 pit_ti_distilled_224,2085.77,244.59,512,224,5.1 pit_ti_224,2083.57,244.847,512,224,4.85 hardcorenas_a,2050.08,249.015,512,224,5.26 regnetx_006,2048.56,249.103,512,224,6.2 tf_mobilenetv3_large_100,2046.24,249.335,512,224,5.48 ese_vovnet19b_slim,1997.73,255.915,512,224,3.17 mnasnet_100,1996.94,255.609,512,224,4.38 mnasnet_b1,1993.53,256.025,512,224,4.38 xcit_nano_12_p16_224_dist,1946.62,261.255,512,224,3.05 xcit_nano_12_p16_224,1946.1,261.308,512,224,3.05 semnasnet_075,1927.77,264.67,512,224,2.91 hardcorenas_b,1912.19,266.758,512,224,5.18 mobilenetv2_075,1888.29,270.368,512,224,2.64 hardcorenas_c,1885.12,270.645,512,224,5.52 tf_efficientnetv2_b0,1880.38,271.08,512,224,7.14 tinynet_b,1857.15,274.614,512,188,3.73 regnety_004,1855.83,274.756,512,224,4.34 resnetblur18,1846.1,276.978,512,224,11.69 regnety_006,1808.76,282.043,512,224,6.06 hardcorenas_d,1808.52,281.873,512,224,7.5 mnasnet_a1,1796.84,284.044,512,224,3.89 semnasnet_100,1784.41,286.019,512,224,3.89 spnasnet_100,1782.41,286.288,512,224,4.42 skresnet18,1776.65,287.57,512,224,11.96 mobilenetv2_100,1761.25,289.902,512,224,3.5 mixer_b32_224,1711.23,298.43,512,224,60.29 regnetx_008,1669.43,305.887,512,224,7.26 levit_384,1662.81,306.81,512,224,39.13 vit_base_patch32_224,1658.09,307.969,512,224,88.22 vit_base_patch32_224_sam,1657.82,308.015,512,224,88.22 efficientnet_lite0,1636.56,312.086,512,224,4.65 visformer_tiny,1629.51,313.524,512,224,10.32 gluon_resnet34_v1b,1626.25,314.261,512,224,21.8 resnet34,1624.32,314.625,512,224,21.8 tv_resnet34,1622.42,314.985,512,224,21.8 ghostnet_100,1610.26,316.618,512,224,5.18 hardcorenas_f,1606.37,317.568,512,224,8.2 pit_xs_distilled_224,1596.23,319.885,512,224,11.0 pit_xs_224,1595.39,320.023,512,224,10.62 hardcorenas_e,1595.11,319.841,512,224,8.07 tinynet_a,1592.8,320.187,512,192,6.19 resmlp_12_distilled_224,1562.43,326.888,512,224,15.35 resmlp_12_224,1562.2,326.933,512,224,15.35 regnety_008,1550.03,329.315,512,224,6.26 tf_efficientnet_lite0,1547.08,330.18,512,224,4.65 mixer_s16_224,1538.34,332.27,512,224,18.53 fbnetc_100,1532.35,333.142,512,224,5.57 seresnet34,1494.24,341.776,512,224,21.96 mnasnet_140,1493.96,341.916,512,224,7.12 nf_regnet_b0,1481.15,344.453,512,256,8.76 legacy_seresnet34,1458.06,350.271,512,224,21.96 gmixer_12_224,1449.53,352.403,512,224,12.7 gernet_m,1442.79,354.129,512,224,21.14 ese_vovnet19b_dw,1440.24,354.984,512,224,6.54 vit_small_patch32_384,1423.05,358.931,512,384,22.92 nf_resnet26,1422.6,359.386,512,224,16.0 efficientnet_b0,1413.79,270.572,384,224,5.29 dla46_c,1408.04,362.893,512,224,1.3 rexnetr_100,1385.71,275.935,384,224,4.88 mobilenetv2_110d,1384.57,276.313,384,224,4.52 rexnet_100,1381.06,276.903,384,224,4.8 vit_tiny_r_s16_p8_384,1371.38,279.143,384,384,6.36 ghostnet_130,1367.64,372.982,512,224,7.36 resnet34d,1367.17,373.876,512,224,21.82 tf_efficientnet_b0,1353.9,282.522,384,224,5.29 tf_efficientnet_b0_ap,1353.18,282.683,384,224,5.29 tf_efficientnet_b0_ns,1352.63,282.744,384,224,5.29 selecsls42,1349.71,378.706,512,224,30.35 selecsls42b,1347.34,379.337,512,224,32.46 gmlp_ti16_224,1340.35,284.915,384,224,5.87 regnetz_005,1326.54,384.587,512,224,7.12 crossvit_tiny_240,1322.74,385.447,512,240,7.01 resnet26,1321.4,386.974,512,224,16.0 semnasnet_140,1315.96,388.179,512,224,6.11 xcit_tiny_12_p16_224,1309.91,389.1,512,224,6.72 xcit_tiny_12_p16_224_dist,1303.81,390.894,512,224,6.72 hrnet_w18_small,1302.26,391.765,512,224,13.19 efficientnet_b1_pruned,1277.21,399.368,512,240,6.33 mobilevit_xxs,1270.89,301.046,384,256,1.27 mobilenetv2_140,1250.7,306.236,384,224,6.11 poolformer_s12,1245.33,410.466,512,224,11.92 crossvit_9_240,1236.49,309.127,384,240,8.55 nf_seresnet26,1207.14,423.49,512,224,17.4 tf_efficientnetv2_b1,1198.02,319.027,384,240,8.14 repvgg_b0,1184.29,431.28,512,224,15.82 crossvit_9_dagger_240,1177.9,324.572,384,240,8.78 selecsls60,1152.93,443.193,512,224,30.67 mixnet_s,1150.64,443.717,512,224,4.13 selecsls60b,1149.12,444.678,512,224,32.77 efficientnet_es,1142.77,447.293,512,224,5.44 efficientnet_es_pruned,1141.22,447.892,512,224,5.44 nf_ecaresnet26,1137.4,449.596,512,224,16.0 resnet26d,1125.5,454.383,512,224,16.01 tf_efficientnet_es,1120.47,456.18,512,224,5.44 efficientnet_lite1,1109.69,229.723,256,240,5.42 rexnetr_130,1097.15,232.191,256,224,7.61 tf_mixnet_s,1090.03,468.412,512,224,4.13 convit_tiny,1087.94,469.614,512,224,5.71 convnext_nano_hnf,1075.51,356.223,384,224,15.59 dla34,1072.51,476.787,512,224,15.74 tf_efficientnet_lite1,1061.0,240.288,256,240,5.42 dla46x_c,1058.5,482.972,512,224,1.07 rexnet_130,1051.04,242.43,256,224,7.56 regnetx_016,1042.11,490.415,512,224,9.19 mobilenetv2_120d,1036.53,245.787,256,224,5.83 skresnet34,1033.13,494.425,512,224,22.28 vit_small_patch16_224,1032.86,370.943,384,224,22.05 deit_small_patch16_224,1031.61,371.386,384,224,22.05 deit_small_distilled_patch16_224,1011.7,378.721,384,224,22.44 dla60x_c,1011.12,505.401,512,224,1.32 ecaresnet50d_pruned,1009.57,506.231,512,224,19.94 gernet_l,1007.43,507.303,512,256,31.08 efficientnet_b0_g16_evos,992.51,385.814,384,224,8.11 rexnetr_150,973.93,261.684,256,224,9.78 vit_base2_patch32_256,970.35,526.818,512,256,119.46 pit_s_distilled_224,963.9,264.693,256,224,24.04 pit_s_224,963.25,264.885,256,224,23.46 fbnetv3_b,936.5,408.4,384,256,8.6 rexnet_150,934.54,272.774,256,224,9.73 repvgg_a2,931.84,548.616,512,224,28.21 legacy_seresnext26_32x4d,930.69,411.955,384,224,16.79 regnety_016,921.99,553.558,512,224,11.2 resnest14d,909.12,562.716,512,224,10.61 efficientnet_cc_b0_4e,892.75,428.931,384,224,13.31 efficientnet_cc_b0_8e,889.3,430.599,384,224,24.01 coat_lite_tiny,885.61,432.738,384,224,5.72 nf_regnet_b1,883.44,578.138,512,288,10.22 resnetv2_50,883.05,579.001,512,224,25.55 resnext26ts,882.89,434.405,384,256,10.3 resnet26t,880.13,581.227,512,256,16.01 tf_efficientnetv2_b2,877.18,290.276,256,260,10.1 fbnetv3_d,875.63,290.586,256,256,10.31 nf_regnet_b2,875.24,583.366,512,272,14.31 tf_efficientnet_cc_b0_4e,872.5,438.913,384,224,13.31 tf_efficientnet_cc_b0_8e,867.49,441.45,384,224,24.01 efficientnet_b0_gn,860.35,296.448,256,224,5.29 eca_resnext26ts,852.81,299.643,256,256,10.3 seresnext26ts,848.06,301.17,256,256,10.39 botnet26t_256,835.32,459.139,384,256,12.49 gluon_resnet50_v1b,835.19,458.946,384,224,25.56 twins_svt_small,835.02,458.264,384,224,24.06 swsl_resnet50,834.38,459.391,384,224,25.56 resnet50,833.17,460.051,384,224,25.56 tf_efficientnet_b1_ap,832.71,305.903,256,240,7.79 tf_efficientnet_b1,832.37,306.044,256,240,7.79 tf_efficientnet_b1_ns,831.62,306.366,256,240,7.79 tv_resnet50,831.54,460.947,384,224,25.56 efficientnet_b2_pruned,831.45,306.38,256,260,8.31 seresnext26tn_32x4d,831.09,461.371,384,224,16.81 seresnext26d_32x4d,830.66,461.598,384,224,16.81 gcresnext26ts,830.6,307.372,256,256,10.48 seresnext26t_32x4d,830.1,461.943,384,224,16.81 ssl_resnet50,828.96,462.397,384,224,25.56 coat_lite_mini,825.96,464.063,384,224,11.01 vgg11,818.58,625.301,512,224,132.86 halonet26t,813.08,471.69,384,256,12.48 vit_small_resnet26d_224,812.32,471.613,384,224,63.61 eca_botnext26ts_256,804.88,317.468,256,256,10.59 efficientnet_lite2,800.14,318.978,256,260,6.09 efficientnet_b1,797.8,319.366,256,256,7.79 resnetv2_50t,793.9,644.111,512,224,25.57 ecaresnext26t_32x4d,792.87,483.752,384,224,15.41 ecaresnext50t_32x4d,790.88,484.99,384,224,15.41 resnetv2_50d,790.5,646.873,512,224,25.57 tresnet_m,787.27,647.568,512,224,31.39 convnext_tiny,782.73,326.109,256,224,28.59 eca_halonext26ts,781.32,327.03,256,256,10.76 vovnet39a,779.14,656.53,512,224,22.6 ecaresnet101d_pruned,778.75,655.702,512,224,24.88 mixnet_m,778.63,491.619,384,224,5.01 cspresnet50,774.32,495.068,384,256,21.62 tf_efficientnet_lite2,771.04,331.043,256,260,6.09 gluon_resnet50_v1c,769.5,498.184,384,224,25.58 ecaresnetlight,767.59,666.098,512,224,30.16 resmlp_24_224,766.31,332.575,256,224,30.02 resmlp_24_distilled_224,766.21,332.58,256,224,30.02 cspresnext50,765.28,500.93,384,224,20.57 resnet50t,753.13,509.003,384,224,25.57 resnet50d,752.95,509.12,384,224,25.58 gluon_resnet50_v1d,752.94,509.122,384,224,25.58 legacy_seresnet50,751.28,510.001,384,224,28.09 mobilevit_xs,751.23,339.638,256,256,2.32 tf_mixnet_m,748.19,511.684,384,224,5.01 ese_vovnet39b,748.06,683.786,512,224,24.57 resnet32ts,744.11,343.453,256,256,17.96 visformer_small,743.29,515.928,384,224,40.22 dpn68b,737.5,519.461,384,224,12.61 selecsls84,735.99,694.378,512,224,50.95 resnet33ts,732.63,348.809,256,256,19.68 nf_seresnet50,732.06,523.375,384,224,28.09 rexnetr_200,724.64,263.786,192,224,16.52 lambda_resnet26t,724.61,529.342,384,256,10.96 seresnet50,722.32,530.5,384,224,28.09 dpn68,721.48,531.095,384,224,12.61 res2net50_48w_2s,717.64,534.245,384,224,25.29 gmixer_24_224,717.31,355.331,256,224,24.72 eca_resnet33ts,712.11,358.824,256,256,19.68 seresnet33ts,709.27,360.12,256,256,19.78 bat_resnext26ts,708.45,360.137,256,256,10.73 rexnet_200,703.57,271.754,192,224,16.37 resnetblur50,702.19,546.026,384,224,25.56 cspresnet50d,701.76,546.305,384,256,21.64 vgg11_bn,698.67,549.368,384,224,132.87 twins_pcpvt_small,698.21,364.986,256,224,24.11 eca_vovnet39b,697.82,733.074,512,224,22.6 efficientnet_em,694.64,551.807,384,240,6.9 dla60,693.8,552.499,384,224,22.04 tf_efficientnet_em,692.96,368.419,256,240,6.9 cspresnet50w,692.76,553.433,384,256,28.12 resnest26d,688.5,556.976,384,224,17.07 gcresnet33ts,687.02,371.584,256,256,19.88 tv_densenet121,686.65,371.007,256,224,7.98 densenet121,686.51,371.091,256,224,7.98 vit_small_r26_s32_224,685.79,371.994,256,224,36.43 convnext_tiny_hnf,683.74,373.449,256,224,28.59 xcit_nano_12_p16_384_dist,682.7,373.202,256,384,3.05 xcit_tiny_24_p16_224_dist,681.26,372.348,256,224,12.12 lambda_resnet26rpt_256,679.63,281.896,192,256,10.99 xcit_tiny_24_p16_224,679.38,373.443,256,224,12.12 vit_base_resnet26d_224,679.21,563.967,384,224,101.4 resnetaa50d,678.8,564.84,384,224,25.58 nf_ecaresnet50,673.73,568.984,384,224,25.56 hrnet_w18_small_v2,672.52,758.874,512,224,15.6 gluon_resnet50_v1s,671.98,570.574,384,224,25.68 efficientnet_b0_g8_gn,661.67,385.796,256,224,6.56 seresnet50t,659.6,581.03,384,224,28.1 efficientnet_b3_pruned,657.34,387.781,256,300,9.86 haloregnetz_b,656.48,388.419,256,224,11.68 tv_resnext50_32x4d,651.27,588.791,384,224,25.03 swsl_resnext50_32x4d,651.11,588.925,384,224,25.03 gluon_resnext50_32x4d,650.97,589.059,384,224,25.03 ssl_resnext50_32x4d,650.9,589.136,384,224,25.03 resnext50_32x4d,649.99,589.957,384,224,25.03 resnetrs50,648.71,590.781,384,224,35.69 densenet121d,646.33,394.275,256,224,8.0 regnetx_032,643.77,595.296,384,224,15.3 resnetblur50d,642.77,397.429,256,224,25.58 res2net50_26w_4s,636.71,601.86,384,224,25.7 swin_tiny_patch4_window7_224,635.13,402.044,256,224,28.29 skresnet50,634.96,603.369,384,224,25.8 poolformer_s24,634.53,402.132,256,224,21.39 gmlp_s16_224,632.58,301.939,192,224,19.42 ese_vovnet57b,632.35,606.334,384,224,38.61 crossvit_small_240,625.73,407.457,256,240,26.86 xcit_small_12_p16_224_dist,625.08,407.723,256,224,26.25 xcit_small_12_p16_224,624.67,407.992,256,224,26.25 densenetblur121d,617.78,412.569,256,224,8.0 ecaresnet50d,612.94,625.548,384,224,25.58 tf_efficientnet_b2_ns,610.27,313.114,192,260,9.11 tf_efficientnet_b2_ap,610.1,313.168,192,260,9.11 tf_efficientnet_b2,609.89,313.274,192,260,9.11 mixnet_l,603.6,634.707,384,224,7.33 gluon_inception_v3,601.71,636.771,384,299,23.83 inception_v3,601.07,637.475,384,299,23.83 adv_inception_v3,601.02,637.509,384,299,23.83 tf_inception_v3,600.65,637.912,384,299,23.83 sehalonet33ts,599.96,425.883,256,256,13.69 seresnetaa50d,599.53,425.823,256,224,28.11 resnext50d_32x4d,598.58,426.825,256,224,25.05 mobilevit_s,596.24,320.895,192,256,5.58 resnetv2_50x1_bit_distilled,588.8,325.252,192,224,25.55 gcresnet50t,583.98,436.858,256,256,25.9 skresnet50d,583.54,437.238,256,224,25.82 swin_s3_tiny_224,576.57,442.971,256,224,28.33 seresnext50_32x4d,576.37,443.036,256,224,27.56 gluon_seresnext50_32x4d,576.3,443.051,256,224,27.56 tf_mixnet_l,576.22,442.743,256,224,7.33 legacy_seresnext50_32x4d,575.52,443.681,256,224,27.56 res2next50,575.07,443.835,256,224,24.67 repvgg_b1g4,572.25,893.649,512,224,39.97 cspresnext50_iabn,572.06,669.169,384,256,20.57 convnext_tiny_hnfd,570.41,447.777,256,224,28.63 res2net50_14w_8s,569.05,447.639,256,224,25.06 resnest50d_1s4x24d,568.93,448.655,256,224,25.68 cait_xxs24_224,568.71,447.7,256,224,11.96 crossvit_15_240,567.12,336.74,192,240,27.53 semobilevit_s,566.94,337.375,192,256,5.74 densenet169,563.82,451.519,256,224,14.15 efficientnet_b2,561.37,340.497,192,288,9.11 efficientnet_cc_b1_8e,559.34,455.785,256,240,39.72 efficientnet_b2a,558.58,342.255,192,288,9.11 darknet53,556.85,458.909,256,256,41.61 dla60_res2net,555.54,459.405,256,224,20.85 dla60x,553.4,461.598,256,224,17.35 mixer_b16_224,552.46,462.598,256,224,59.88 nf_resnet101,550.61,695.793,384,224,44.55 tf_efficientnet_cc_b1_8e,549.81,463.949,256,240,39.72 regnetx_040,549.5,697.703,384,224,22.12 mixer_b16_224_miil,549.25,465.267,256,224,59.88 crossvit_15_dagger_240,547.66,348.734,192,240,28.21 nf_regnet_b3,547.65,465.691,256,320,18.59 vovnet57a,547.59,934.12,512,224,36.64 resnetv2_101,544.49,468.639,256,224,44.54 xcit_nano_12_p8_224,542.16,470.425,256,224,3.05 xcit_nano_12_p8_224_dist,541.55,470.928,256,224,3.05 tf_efficientnetv2_b3,541.54,352.751,192,300,14.36 sebotnet33ts_256,540.04,236.225,128,256,13.7 gcresnext50ts,538.97,354.583,192,256,15.67 nf_resnet50,536.27,715.168,384,288,25.56 resnet50_gn,532.97,359.41,192,224,25.56 vit_base_r26_s32_224,532.84,359.064,192,224,101.38 vit_base_patch32_384,531.15,481.156,256,384,88.3 efficientnetv2_rw_t,527.04,362.193,192,288,13.65 resnet101,526.31,484.87,256,224,44.55 gluon_resnet101_v1b,525.74,485.353,256,224,44.55 tv_resnet101,523.69,487.267,256,224,44.55 vit_large_patch32_224,515.11,495.389,256,224,306.54 vit_base_resnet50d_224,514.44,495.989,256,224,110.97 mixer_l32_224,507.93,376.544,192,224,206.94 resnetv2_101d,506.46,503.899,256,224,44.56 swin_v2_cr_tiny_224,505.66,378.391,192,224,28.33 vit_tiny_patch16_384,505.36,252.456,128,384,5.79 resmlp_36_224,505.0,378.005,192,224,44.69 resmlp_36_distilled_224,504.83,378.088,192,224,44.69 swin_v2_cr_tiny_ns_224,503.02,380.384,192,224,28.33 repvgg_b1,501.28,1020.314,512,224,57.42 dla60_res2next,500.08,510.484,256,224,17.03 gluon_resnet101_v1c,498.53,511.943,256,224,44.57 wide_resnet50_2,491.97,779.7,384,224,68.88 gluon_resnet101_v1d,491.71,519.004,256,224,44.57 resnest50d,484.85,526.671,256,224,27.48 vgg13,482.75,795.25,384,224,133.05 cspdarknet53,481.82,530.306,256,256,27.64 gc_efficientnetv2_rw_t,480.93,396.503,192,288,13.68 convnext_small,478.98,399.137,192,224,50.22 efficientnet_lite3,478.82,266.239,128,300,8.2 ecaresnet26t,478.49,534.465,256,320,16.01 nest_tiny,477.21,267.341,128,224,17.06 regnetz_b16,476.53,401.488,192,288,9.72 dla102,475.31,537.042,256,224,33.27 cspdarknet53_iabn,474.61,806.628,384,256,27.64 res2net50_26w_6s,474.4,537.903,256,224,37.05 jx_nest_tiny,469.53,271.701,128,224,17.06 twins_pcpvt_base,465.48,409.697,192,224,43.83 vgg13_bn,465.35,549.842,256,224,133.05 halonet50ts,463.11,413.595,192,256,22.73 regnetx_080,462.29,829.538,384,224,39.57 lambda_resnet50ts,461.63,414.909,192,256,21.54 coat_lite_small,461.47,414.609,192,224,19.84 legacy_seresnet101,460.47,553.804,256,224,49.33 vgg16,459.25,557.204,256,224,138.36 tf_efficientnet_lite3,458.84,277.849,128,300,8.2 resnetaa101d,458.35,556.916,256,224,44.57 gluon_resnet101_v1s,456.37,559.352,256,224,44.67 xcit_tiny_12_p16_384_dist,451.6,423.4,192,384,6.72 seresnet101,447.82,569.466,256,224,49.33 densenet201,447.49,426.067,192,224,20.01 mixnet_xl,447.09,570.692,256,224,11.9 nf_seresnet101,444.89,573.162,256,224,49.33 convit_small,441.84,433.517,192,224,27.78 resnetblur101d,441.53,578.26,256,224,44.57 nfnet_l0,426.47,599.103,256,288,35.07 skresnext50_32x4d,424.37,601.881,256,224,27.48 poolformer_s36,424.29,450.68,192,224,30.86 botnet50ts_256,421.6,302.649,128,256,22.74 halo2botnet50ts_256,418.8,457.379,192,256,22.64 gluon_resnext101_32x4d,418.26,610.512,256,224,44.18 resnext101_32x4d,417.6,611.486,256,224,44.18 ssl_resnext101_32x4d,417.52,611.578,256,224,44.18 swsl_resnext101_32x4d,417.45,611.654,256,224,44.18 fbnetv3_g,415.62,305.885,128,288,16.62 twins_svt_base,413.84,461.835,192,224,56.07 ese_vovnet39b_evos,413.01,308.979,128,224,24.58 res2net101_26w_4s,405.25,629.29,256,224,45.21 eca_nfnet_l0,404.73,631.533,256,288,24.14 tresnet_l,403.54,1265.42,512,224,55.99 lamhalobotnet50ts_256,403.43,474.897,192,256,22.57 volo_d1_224,400.45,478.074,192,224,26.63 crossvit_18_240,400.32,317.735,128,240,43.27 resnet51q,397.98,481.556,192,288,35.7 nf_ecaresnet101,396.22,644.266,256,224,44.55 dla102x,392.86,487.139,192,224,26.31 vit_base_patch16_224_miil,392.0,489.026,192,224,86.54 swin_small_patch4_window7_224,391.85,488.136,192,224,49.61 regnety_032,391.81,651.958,256,288,19.44 regnetx_064,390.82,654.137,256,224,26.21 res2net50_26w_8s,389.26,655.478,256,224,48.4 vgg16_bn,388.47,658.66,256,224,138.37 deit_base_patch16_224,386.56,495.833,192,224,86.57 crossvit_18_dagger_240,386.08,329.466,128,240,44.27 vit_base_patch16_224,385.82,496.783,192,224,86.57 resnest50d_4s2x40d,385.78,662.242,256,224,30.42 xception,384.95,331.72,128,299,22.86 vit_base_patch16_224_sam,384.94,497.961,192,224,86.57 ecaresnet101d,381.61,669.061,256,224,44.57 deit_base_distilled_patch16_224,379.86,504.583,192,224,87.34 resnetv2_152,379.0,673.236,256,224,60.19 repvgg_b2g4,377.95,1353.629,512,224,61.76 ese_vovnet99b,373.94,683.067,256,224,63.2 vit_small_resnet50d_s16_224,373.61,512.677,192,224,57.53 cait_xxs36_224,371.71,512.777,192,224,17.3 resnet152,371.52,514.561,192,224,60.19 tv_resnet152,371.15,515.007,192,224,60.19 gluon_resnet152_v1b,368.93,518.118,192,224,60.19 gluon_seresnext101_32x4d,368.19,519.228,192,224,48.96 seresnext101_32x4d,367.5,520.242,192,224,48.96 nfnet_f0,366.97,696.402,256,256,71.49 legacy_seresnext101_32x4d,366.06,522.375,192,224,48.96 tf_efficientnet_b3_ap,364.58,349.402,128,300,12.23 tf_efficientnet_b3_ns,364.49,349.53,128,300,12.23 tf_efficientnet_b3,364.34,349.633,128,300,12.23 resnetv2_152d,361.2,529.264,192,224,60.2 resnet61q,358.48,356.024,128,288,36.85 resnetv2_50d_frn,357.45,356.923,128,224,25.59 ese_vovnet99b_iabn,357.31,1071.637,384,224,63.2 gluon_resnet152_v1c,355.88,537.206,192,224,60.21 hrnet_w18,355.73,714.824,256,224,21.3 efficientnet_b3,355.08,358.849,128,320,12.23 efficientnet_b3a,354.83,359.115,128,320,12.23 regnety_040,354.78,539.617,192,288,20.65 beit_base_patch16_224,353.55,541.973,192,224,86.53 gluon_resnet152_v1d,353.52,540.757,192,224,60.21 regnety_040s_gn,353.11,360.919,128,224,20.65 vgg19,352.0,1090.659,384,224,143.67 xcit_tiny_12_p8_224,351.32,362.59,128,224,6.71 xcit_tiny_12_p8_224_dist,351.06,362.838,128,224,6.71 xception41p,343.38,371.913,128,299,26.91 regnetv_040,342.33,372.402,128,288,20.64 tnt_s_patch16_224,339.73,563.196,192,224,23.76 repvgg_b2,339.2,1508.352,512,224,89.02 vgg19_bn,336.08,761.352,256,224,143.68 gluon_resnet152_v1s,334.98,570.781,192,224,60.32 densenet161,332.41,382.595,128,224,28.68 dm_nfnet_f0,331.82,770.266,256,256,71.49 dla169,331.14,577.405,192,224,53.39 resnetv2_50d_gn,330.91,385.985,128,288,25.57 convnext_base_in22ft1k,328.04,388.471,128,224,88.59 convnext_tiny_in22ft1k,327.7,388.845,128,224,88.59 convnext_small_in22ft1k,326.36,390.508,128,224,88.59 convnext_base,325.78,391.109,128,224,88.59 xcit_small_24_p16_224_dist,322.26,393.856,128,224,47.67 xcit_small_24_p16_224,321.22,395.027,128,224,47.67 repvgg_b3g4,321.08,1194.912,384,224,83.83 pit_b_224,319.89,399.203,128,224,73.76 twins_pcpvt_large,319.03,397.109,128,224,60.99 pit_b_distilled_224,318.55,400.853,128,224,74.79 legacy_seresnet152,315.59,605.069,192,224,66.82 dpn92,314.54,812.398,256,224,37.67 inception_v4,312.24,612.734,192,299,42.68 regnetx_120,309.13,827.171,256,224,46.11 hrnet_w32,308.88,823.922,256,224,41.23 convmixer_1024_20_ks9_p14,308.12,830.025,256,224,24.38 ecaresnet50t,306.63,416.493,128,320,25.57 seresnet152,305.84,415.318,128,224,66.82 coat_tiny,303.51,419.779,128,224,5.5 vit_small_patch16_36x1_224,303.33,419.341,128,224,64.67 regnetz_c16,302.72,421.37,128,320,13.46 vit_small_patch16_18x2_224,302.0,421.199,128,224,64.67 hrnet_w30,301.17,845.104,256,224,37.71 swin_v2_cr_small_224,300.16,424.024,128,224,49.7 nest_small,296.43,322.186,96,224,38.35 tresnet_xl,295.35,1296.648,384,224,78.44 jx_nest_small,294.56,324.278,96,224,38.35 efficientnet_el,291.47,438.031,128,300,10.59 xception41,291.46,437.936,128,299,26.97 efficientnet_el_pruned,291.16,438.564,128,300,10.59 regnety_120,291.14,658.173,192,224,51.82 cait_s24_224,290.55,438.065,128,224,46.92 nf_regnet_b4,288.27,441.948,128,384,30.21 twins_svt_large,288.14,442.123,128,224,99.27 wide_resnet101_2,287.9,665.343,192,224,126.89 mixnet_xxl,287.84,442.746,128,224,23.96 tf_efficientnet_el,286.59,445.507,128,300,10.59 poolformer_m36,284.22,448.517,128,224,56.17 swin_s3_small_224,277.99,343.436,96,224,49.74 repvgg_b3,276.27,1388.871,384,224,123.09 swin_base_patch4_window7_224,273.38,466.273,128,224,87.77 gmlp_b16_224,266.77,358.289,96,224,73.08 gluon_resnext101_64x4d,266.55,478.624,128,224,83.46 dla102x2,265.99,479.601,128,224,41.28 resnet200,264.41,481.093,128,224,64.67 resnetv2_50d_evob,261.14,366.354,96,224,25.59 regnetx_160,260.8,735.124,192,224,54.28 xception65p,258.86,493.161,128,299,39.82 inception_resnet_v2,255.7,747.606,192,299,55.84 ens_adv_inception_resnet_v2,255.53,748.108,192,299,55.84 resnetrs101,253.22,503.169,128,288,63.62 resnext101_32x8d,252.1,506.144,128,224,88.79 ig_resnext101_32x8d,251.82,506.789,128,224,88.79 ssl_resnext101_32x8d,251.44,507.525,128,224,88.79 swsl_resnext101_32x8d,251.43,507.504,128,224,88.79 crossvit_base_240,250.95,380.881,96,240,105.03 dpn98,249.4,511.692,128,224,61.57 efficientnet_lite4,247.4,257.372,64,380,13.01 coat_mini,246.33,517.632,128,224,10.34 efficientnetv2_s,245.94,388.167,96,384,21.46 gluon_seresnext101_64x4d,243.95,522.441,128,224,88.23 tf_efficientnetv2_s_in21ft1k,243.54,391.981,96,384,21.46 tf_efficientnetv2_s,242.89,393.02,96,384,21.46 resnet101d,240.52,530.628,128,320,44.57 resnest101e,240.15,530.415,128,256,48.28 tf_efficientnet_lite4,239.36,265.97,64,380,13.01 vit_small_patch16_384,235.44,270.99,64,384,22.2 xcit_tiny_24_p16_384_dist,233.56,407.54,96,384,12.12 efficientnetv2_rw_s,232.48,273.03,64,384,23.94 regnety_064,232.21,549.529,128,288,30.58 xcit_medium_24_p16_224_dist,231.18,550.33,128,224,84.4 xcit_medium_24_p16_224,231.11,550.432,128,224,84.4 vit_large_r50_s32_224,229.5,415.85,96,224,328.99 regnetv_064,225.87,564.974,128,288,30.58 vit_small_r26_s32_384,225.43,282.622,64,384,36.47 convit_base,225.0,567.909,128,224,86.54 gluon_xception65,223.32,427.945,96,299,39.92 xception65,222.42,429.727,96,299,39.92 tnt_b_patch16_224,222.32,573.844,128,224,65.41 volo_d2_224,221.58,431.459,96,224,58.68 regnety_080,221.2,577.488,128,288,39.18 hrnet_w40,220.15,867.238,192,224,57.56 swin_s3_base_224,219.92,433.728,96,224,71.13 xcit_small_12_p16_384_dist,216.0,442.656,96,384,26.25 swin_v2_cr_base_224,214.24,445.643,96,224,87.88 hrnet_w48,213.16,895.867,192,224,77.47 resnetv2_50d_evos,211.1,226.199,48,288,25.59 nest_base,210.29,302.692,64,224,67.72 jx_nest_base,209.17,304.343,64,224,67.72 vit_base_r50_s16_224,208.73,458.333,96,224,98.66 tresnet_m_448,206.95,924.987,192,448,31.39 hrnet_w44,206.72,924.031,192,224,67.06 efficientnet_b4,203.38,312.633,64,384,19.34 regnetz_b16_evos,201.27,316.106,64,288,9.74 regnetz_040h,199.85,318.401,64,320,28.94 regnetz_040,199.66,318.691,64,320,27.12 efficientnet_b3_gn,199.47,319.133,64,320,11.73 densenet264,199.22,477.999,96,224,72.69 regnetz_d8,197.46,322.524,64,320,23.37 eca_nfnet_l1,189.9,672.191,128,320,41.41 tf_efficientnet_b4,188.81,336.904,64,380,19.34 tf_efficientnet_b4_ns,188.45,337.501,64,380,19.34 tf_efficientnet_b4_ap,188.4,337.642,64,380,19.34 poolformer_m48,187.63,509.206,96,224,73.47 dpn131,186.23,685.159,128,224,79.25 regnetz_d32,186.08,342.366,64,320,27.58 xcit_nano_12_p8_384_dist,183.21,347.477,64,384,3.05 convnext_large_in22ft1k,182.13,525.349,96,224,197.77 convnext_large,180.72,529.451,96,224,197.77 xcit_tiny_24_p8_224_dist,179.19,532.437,96,224,12.11 xcit_tiny_24_p8_224,179.14,532.524,96,224,12.11 dpn107,174.56,731.55,128,224,86.92 resnet152d,172.45,554.35,96,320,60.21 hrnet_w64,170.75,744.856,128,224,128.06 halonet_h1,170.55,373.795,64,256,8.1 xception71,168.15,378.514,64,299,42.34 mixer_l16_224,167.46,571.737,96,224,208.2 regnety_320,166.3,768.299,128,224,145.05 vit_large_patch32_384,165.23,579.454,96,384,306.63 densenet264d_iabn,165.07,1158.795,192,224,72.74 xcit_small_12_p8_224,164.33,387.646,64,224,26.21 xcit_small_12_p8_224_dist,164.16,388.107,64,224,26.21 efficientnet_b3_g8_gn,153.99,413.949,64,320,14.25 swin_large_patch4_window7_224,152.41,417.988,64,224,196.53 volo_d3_224,152.25,417.779,64,224,86.33 ecaresnet200d,150.97,632.522,96,256,64.69 seresnet200d,149.9,422.786,64,256,71.86 regnetx_320,146.61,871.937,128,224,107.81 seresnet152d,143.56,442.443,64,320,66.84 resnetv2_50x1_bitm,142.06,337.009,48,448,25.55 gluon_senet154,141.6,674.51,96,224,115.09 resnetrs152,141.55,448.821,64,320,86.62 senet154,141.16,676.729,96,224,115.09 legacy_senet154,139.88,683.0,96,224,115.09 regnety_160,136.04,704.372,96,288,83.59 xcit_large_24_p16_224_dist,130.76,486.175,64,224,189.1 xcit_large_24_p16_224,130.33,487.671,64,224,189.1 seresnext101_32x8d,126.87,502.294,64,288,93.57 nfnet_f1,125.34,763.802,96,320,132.63 resnet200d,124.61,510.654,64,320,64.69 regnetz_c16_evos,123.93,385.448,48,320,13.49 resnext101_64x4d,122.56,781.647,96,288,83.46 efficientnetv2_m,120.01,396.838,48,416,54.14 swin_v2_cr_large_224,119.95,397.782,48,224,196.68 xcit_tiny_12_p8_384_dist,119.32,400.563,48,384,6.71 vit_large_patch16_224,116.44,548.026,64,224,304.33 crossvit_15_dagger_408,116.23,273.461,32,408,28.5 seresnet269d,116.02,545.703,64,256,113.67 vit_base_patch16_18x2_224,115.21,552.796,64,224,256.73 convnext_xlarge_in22ft1k,113.61,561.618,64,224,350.2 convnext_base_384_in22ft1k,112.88,423.483,48,384,88.59 dm_nfnet_f1,112.71,565.567,64,320,132.63 convnext_tiny_384_in22ft1k,112.65,424.398,48,384,88.59 convnext_small_384_in22ft1k,112.59,424.604,48,384,88.59 nf_regnet_b5,112.22,567.655,64,456,49.74 swin_v2_cr_tiny_384,111.16,286.572,32,384,28.33 xcit_small_24_p16_384_dist,110.42,431.325,48,384,47.67 beit_large_patch16_224,107.44,593.678,64,224,304.43 regnetz_e8,103.46,461.955,48,320,57.7 efficientnetv2_rw_m,103.11,307.008,32,416,53.24 tresnet_l_448,101.52,1257.535,128,448,55.99 swsl_resnext101_32x16d,99.54,962.862,96,224,194.03 ig_resnext101_32x16d,99.3,965.129,96,224,194.03 ssl_resnext101_32x16d,99.25,965.706,96,224,194.03 volo_d1_384,98.94,322.06,32,384,26.78 resnetrs200,98.6,482.325,48,320,93.21 cait_xxs24_384,97.24,491.195,48,384,12.03 deit_base_patch16_384,95.92,332.748,32,384,86.86 vit_base_patch16_384,95.88,332.951,32,384,86.86 volo_d4_224,95.4,500.622,48,224,192.96 eca_nfnet_l2,94.36,675.671,64,384,56.72 deit_base_distilled_patch16_384,93.97,339.685,32,384,87.63 efficientnet_b5,90.42,351.458,32,456,30.39 tf_efficientnetv2_m,89.36,354.724,32,480,54.14 tf_efficientnetv2_m_in21ft1k,89.12,355.723,32,480,54.14 tf_efficientnet_b5,88.7,358.215,32,456,30.39 tf_efficientnet_b5_ap,88.68,358.368,32,456,30.39 tf_efficientnet_b5_ns,88.58,358.774,32,456,30.39 crossvit_18_dagger_408,87.86,362.177,32,408,44.61 resnetv2_101x1_bitm,87.29,364.971,32,448,44.54 convmixer_768_32,87.13,1100.537,96,224,21.11 resnetv2_152x2_bit_teacher,87.1,364.899,32,224,236.34 vit_large_patch14_224,84.6,565.739,48,224,304.2 regnetz_d8_evos,83.97,379.015,32,320,23.46 beit_base_patch16_384,82.88,385.038,32,384,86.74 xcit_small_24_p8_224_dist,82.62,383.85,32,224,47.63 xcit_small_24_p8_224,82.5,384.488,32,224,47.63 resnest200e,79.64,597.77,48,320,70.2 tresnet_xl_448,77.44,1236.244,96,448,78.44 xcit_medium_24_p16_384_dist,76.61,414.275,32,384,84.4 vit_large_r50_s32_384,76.27,417.132,32,384,329.09 swin_base_patch4_window12_384,73.39,434.11,32,384,87.9 nfnet_f2,71.5,668.121,48,352,193.78 resmlp_big_24_224_in22ft1k,68.15,468.085,32,224,129.14 resmlp_big_24_224,68.13,468.141,32,224,129.14 resmlp_big_24_distilled_224,68.08,468.542,32,224,129.14 pnasnet5large,66.87,474.686,32,331,86.06 swin_v2_cr_small_384,66.28,359.629,24,384,49.7 nasnetalarge,65.59,482.923,32,331,88.75 cait_xs24_384,65.34,487.167,32,384,26.67 dm_nfnet_f2,64.55,740.206,48,352,193.78 cait_xxs36_384,62.84,505.392,32,384,17.37 vit_base_patch8_224,62.83,381.142,24,224,86.58 convnext_large_384_in22ft1k,61.61,517.714,32,384,197.77 ecaresnet269d,61.52,515.695,32,352,102.09 volo_d5_224,61.49,517.153,32,224,295.46 xcit_tiny_24_p8_384_dist,60.46,525.849,32,384,12.11 xcit_medium_24_p8_224,59.24,536.775,32,224,84.32 xcit_medium_24_p8_224_dist,59.23,536.852,32,224,84.32 vit_base_resnet50_384,58.93,405.608,24,384,98.95 vit_base_r50_s16_384,58.91,405.68,24,384,98.95 resnetrs270,58.9,537.38,32,352,129.86 xcit_small_12_p8_384_dist,56.03,426.632,24,384,26.21 volo_d2_384,55.33,287.363,16,384,58.87 ig_resnext101_32x32d,52.68,605.908,32,224,468.53 eca_nfnet_l3,50.62,628.636,32,448,72.04 convmixer_1536_20,49.63,966.338,48,224,51.63 cait_s24_384,49.12,486.034,24,384,47.06 efficientnet_b6,48.5,327.112,16,528,43.04 tf_efficientnet_b6_ns,48.02,330.391,16,528,43.04 tf_efficientnet_b6_ap,47.83,331.608,16,528,43.04 tf_efficientnet_b6,47.78,331.966,16,528,43.04 efficientnetv2_l,47.17,334.927,16,480,118.52 swin_v2_cr_base_384,47.07,337.445,16,384,87.88 tf_efficientnetv2_l_in21ft1k,46.85,337.127,16,480,118.52 tf_efficientnetv2_l,46.53,339.329,16,480,118.52 swin_v2_cr_huge_224,46.2,343.813,16,224,657.83 xcit_large_24_p16_384_dist,44.95,530.527,24,384,189.1 swin_large_patch4_window12_384,41.24,386.07,16,384,196.74 vit_huge_patch14_224,39.65,401.44,16,224,632.05 resnetrs350,37.15,638.194,24,384,163.96 convnext_xlarge_384_in22ft1k,36.94,431.409,16,384,350.2 nfnet_f3,35.43,673.367,24,416,254.92 resnest269e,33.7,705.124,24,416,110.93 xcit_large_24_p8_224_dist,33.34,476.606,16,224,188.93 xcit_large_24_p8_224,33.33,476.71,16,224,188.93 dm_nfnet_f3,32.28,738.882,24,416,254.92 resnetv2_50x3_bitm,31.96,499.813,16,448,217.32 cait_s36_384,31.71,500.682,16,384,68.37 resnetv2_152x2_bit_teacher_384,31.41,506.876,16,384,236.34 tf_efficientnetv2_xl_in21ft1k,31.07,380.33,12,512,208.12 efficientnetv2_xl,30.57,386.62,12,512,208.12 efficientnet_b7,30.54,258.47,8,600,66.35 tf_efficientnet_b7,30.24,261.049,8,600,66.35 tf_efficientnet_b7_ap,30.18,261.545,8,600,66.35 tf_efficientnet_b7_ns,30.17,261.527,8,600,66.35 vit_large_patch16_384,29.1,410.723,12,384,304.72 xcit_small_24_p8_384_dist,28.47,558.499,16,384,47.63 swin_v2_cr_large_384,28.33,421.122,12,384,196.68 ig_resnext101_32x48d,27.82,573.581,16,224,828.41 resnetrs420,25.59,615.408,16,416,191.89 beit_large_patch16_384,24.96,478.806,12,384,305.0 volo_d3_448,23.79,333.801,8,448,86.63 vit_giant_patch14_224,22.41,354.342,8,224,1012.61 resnetv2_152x2_bitm,21.79,364.675,8,448,236.34 xcit_medium_24_p8_384_dist,19.42,408.574,8,384,84.32 nfnet_f4,18.89,630.122,12,512,316.07 resnetv2_101x3_bitm,17.61,452.554,8,448,387.93 dm_nfnet_f4,17.17,693.324,12,512,316.07 volo_d4_448,16.84,353.766,6,448,193.41 efficientnet_b8,14.4,412.697,6,672,87.41 tf_efficientnet_b8_ap,14.32,415.19,6,672,87.41 tf_efficientnet_b8,14.24,417.31,6,672,87.41 nfnet_f5,12.31,643.8,8,544,377.21 cait_m36_384,11.75,507.058,6,384,271.22 xcit_large_24_p8_384_dist,11.36,524.55,6,384,188.93 dm_nfnet_f5,11.21,706.654,8,544,377.21 volo_d5_448,11.01,359.686,4,448,295.91 swin_v2_cr_huge_384,10.89,364.734,4,384,657.94 tf_efficientnet_l2_ns_475,10.43,377.703,4,475,480.31 nfnet_f6,10.18,778.679,8,576,438.36 beit_large_patch16_512,9.37,425.057,4,512,305.67 dm_nfnet_f6,8.56,692.978,6,576,438.36 volo_d5_512,7.76,383.588,3,512,296.09 nfnet_f7,7.54,787.101,6,608,499.5 cait_m48_448,4.71,419.695,2,448,356.46 resnetv2_152x4_bitm,4.53,438.64,2,480,936.53 tf_efficientnet_l2_ns,2.96,331.907,1,800,480.31 efficientnet_l2,2.92,336.419,1,800,480.31
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet-r-clean.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,98.150,1.850,99.880,0.120,305.08,448,1.000,bicubic eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,98.030,1.970,99.890,0.110,305.08,448,1.000,bicubic eva_giant_patch14_560.m30m_ft_in22k_in1k,98.000,2.000,99.860,0.140,"1,014.45",560,1.000,bicubic eva_giant_patch14_336.m30m_ft_in22k_in1k,97.990,2.010,99.900,0.100,"1,013.01",336,1.000,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_384,97.870,2.130,99.910,0.090,660.29,384,1.000,bicubic eva_large_patch14_336.in22k_ft_in22k_in1k,97.860,2.140,99.880,0.120,304.53,336,1.000,bicubic eva02_large_patch14_448.mim_in22k_ft_in1k,97.860,2.140,99.800,0.200,305.08,448,1.000,bicubic eva_giant_patch14_336.clip_ft_in1k,97.860,2.140,99.790,0.210,"1,013.01",336,1.000,bicubic eva02_large_patch14_448.mim_m38m_ft_in1k,97.830,2.170,99.820,0.180,305.08,448,1.000,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_512,97.810,2.190,99.860,0.140,660.29,512,1.000,bicubic eva_large_patch14_336.in22k_ft_in1k,97.810,2.190,99.840,0.160,304.53,336,1.000,bicubic beit_large_patch16_384.in22k_ft_in22k_in1k,97.810,2.190,99.790,0.210,305.00,384,1.000,bicubic tf_efficientnet_l2.ns_jft_in1k,97.780,2.220,99.890,0.110,480.31,800,0.960,bicubic regnety_1280.swag_ft_in1k,97.780,2.220,99.860,0.140,644.81,384,1.000,bicubic beit_large_patch16_512.in22k_ft_in22k_in1k,97.780,2.220,99.820,0.180,305.67,512,1.000,bicubic maxvit_base_tf_512.in21k_ft_in1k,97.760,2.240,99.860,0.140,119.88,512,1.000,bicubic maxvit_xlarge_tf_512.in21k_ft_in1k,97.760,2.240,99.820,0.180,475.77,512,1.000,bicubic tf_efficientnet_l2.ns_jft_in1k_475,97.750,2.250,99.820,0.180,480.31,475,0.936,bicubic convnext_xxlarge.clip_laion2b_soup_ft_in1k,97.750,2.250,99.810,0.190,846.47,256,1.000,bicubic beitv2_large_patch16_224.in1k_ft_in22k_in1k,97.750,2.250,99.790,0.210,304.43,224,0.950,bicubic maxvit_xlarge_tf_384.in21k_ft_in1k,97.740,2.260,99.850,0.150,475.32,384,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in1k,97.720,2.280,99.760,0.240,87.12,448,1.000,bicubic maxvit_large_tf_512.in21k_ft_in1k,97.670,2.330,99.730,0.270,212.33,512,1.000,bicubic caformer_b36.sail_in22k_ft_in1k_384,97.660,2.340,99.860,0.140,98.75,384,1.000,bicubic maxvit_large_tf_384.in21k_ft_in1k,97.660,2.340,99.820,0.180,212.03,384,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k_384,97.630,2.370,99.800,0.200,197.96,384,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,97.610,2.390,99.820,0.180,87.12,448,1.000,bicubic eva_large_patch14_196.in22k_ft_in22k_in1k,97.610,2.390,99.810,0.190,304.14,196,1.000,bicubic vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,97.610,2.390,99.780,0.220,632.46,336,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in12k_in1k,97.610,2.390,99.730,0.270,304.20,224,1.000,bicubic vit_large_patch14_clip_336.openai_ft_in12k_in1k,97.600,2.400,99.730,0.270,304.53,336,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k_384,97.590,2.410,99.770,0.230,350.20,384,1.000,bicubic deit3_large_patch16_384.fb_in22k_ft_in1k,97.580,2.420,99.710,0.290,304.76,384,1.000,bicubic eva_giant_patch14_224.clip_ft_in1k,97.570,2.430,99.710,0.290,"1,012.56",224,0.900,bicubic maxvit_base_tf_384.in21k_ft_in1k,97.560,2.440,99.760,0.240,119.65,384,1.000,bicubic eva_large_patch14_196.in22k_ft_in1k,97.520,2.480,99.790,0.210,304.14,196,1.000,bicubic convformer_b36.sail_in22k_ft_in1k_384,97.490,2.510,99.760,0.240,99.88,384,1.000,bicubic beit_large_patch16_224.in22k_ft_in22k_in1k,97.480,2.520,99.690,0.310,304.43,224,0.900,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,97.470,2.530,99.760,0.240,200.13,384,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,97.460,2.540,99.780,0.220,304.53,336,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k,97.450,2.550,99.820,0.180,350.20,288,1.000,bicubic maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,97.450,2.550,99.760,0.240,116.09,384,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in1k,97.440,2.560,99.680,0.320,304.20,224,1.000,bicubic vit_large_patch16_384.augreg_in21k_ft_in1k,97.410,2.590,99.780,0.220,304.72,384,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,97.390,2.610,99.740,0.260,304.20,224,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,97.390,2.610,99.730,0.270,200.13,384,1.000,bicubic regnety_1280.swag_lc_in1k,97.390,2.610,99.730,0.270,644.81,224,0.965,bicubic regnety_320.swag_ft_in1k,97.380,2.620,99.760,0.240,145.05,384,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k_384,97.380,2.620,99.720,0.280,88.72,384,1.000,bicubic caformer_m36.sail_in22k_ft_in1k_384,97.370,2.630,99.790,0.210,56.20,384,1.000,bicubic coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,97.370,2.630,99.700,0.300,73.88,384,1.000,bicubic convformer_m36.sail_in22k_ft_in1k_384,97.370,2.630,99.680,0.320,57.05,384,1.000,bicubic caformer_b36.sail_in22k_ft_in1k,97.360,2.640,99.830,0.170,98.75,224,1.000,bicubic vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,97.360,2.640,99.800,0.200,632.05,224,1.000,bicubic maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,97.340,2.660,99.690,0.310,116.14,384,1.000,bicubic tf_efficientnetv2_xl.in21k_ft_in1k,97.330,2.670,99.600,0.400,208.12,512,1.000,bicubic beit_base_patch16_384.in22k_ft_in22k_in1k,97.320,2.680,99.720,0.280,86.74,384,1.000,bicubic tf_efficientnetv2_l.in21k_ft_in1k,97.320,2.680,99.640,0.360,118.52,480,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k,97.310,2.690,99.760,0.240,197.96,288,1.000,bicubic beitv2_large_patch16_224.in1k_ft_in1k,97.310,2.690,99.740,0.260,304.43,224,0.950,bicubic deit3_large_patch16_224.fb_in22k_ft_in1k,97.310,2.690,99.680,0.320,304.37,224,1.000,bicubic convnext_large.fb_in22k_ft_in1k_384,97.300,2.700,99.760,0.240,197.77,384,1.000,bicubic volo_d5_512.sail_in1k,97.300,2.700,99.760,0.240,296.09,512,1.150,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,97.290,2.710,99.780,0.220,93.59,320,1.000,bicubic seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,97.290,2.710,99.750,0.250,149.39,384,1.000,bicubic caformer_s36.sail_in22k_ft_in1k_384,97.290,2.710,99.720,0.280,39.30,384,1.000,bicubic swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,97.280,2.720,99.780,0.220,196.74,384,1.000,bicubic swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,97.270,2.730,99.790,0.210,87.92,384,1.000,bicubic convformer_b36.sail_in22k_ft_in1k,97.260,2.740,99.750,0.250,99.88,224,1.000,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,97.260,2.740,99.740,0.260,200.13,320,1.000,bicubic convnext_base.fb_in22k_ft_in1k_384,97.260,2.740,99.710,0.290,88.59,384,1.000,bicubic convnextv2_huge.fcmae_ft_in1k,97.250,2.750,99.720,0.280,660.29,288,1.000,bicubic deit3_huge_patch14_224.fb_in22k_ft_in1k,97.250,2.750,99.720,0.280,632.13,224,1.000,bicubic volo_d5_448.sail_in1k,97.240,2.760,99.740,0.260,295.91,448,1.150,bicubic swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,97.240,2.760,99.710,0.290,196.74,256,0.900,bicubic deit3_base_patch16_384.fb_in22k_ft_in1k,97.240,2.760,99.670,0.330,86.88,384,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in1k,97.230,2.770,99.720,0.280,304.53,336,1.000,bicubic convnext_large.fb_in22k_ft_in1k,97.220,2.780,99.730,0.270,197.77,288,1.000,bicubic vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,97.220,2.780,99.700,0.300,86.86,384,1.000,bicubic convnext_base.fb_in22k_ft_in1k,97.200,2.800,99.760,0.240,88.59,288,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k,97.200,2.800,99.760,0.240,88.72,288,1.000,bicubic maxvit_small_tf_512.in1k,97.200,2.800,99.620,0.380,69.13,512,1.000,bicubic tf_efficientnet_b7.ns_jft_in1k,97.190,2.810,99.700,0.300,66.35,600,0.949,bicubic coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,97.180,2.820,99.650,0.350,73.88,224,0.950,bicubic regnety_160.swag_ft_in1k,97.170,2.830,99.780,0.220,83.59,384,1.000,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k,97.170,2.830,99.740,0.260,93.59,288,1.000,bicubic swin_large_patch4_window12_384.ms_in22k_ft_in1k,97.170,2.830,99.680,0.320,196.74,384,1.000,bicubic maxvit_base_tf_512.in1k,97.170,2.830,99.640,0.360,119.88,512,1.000,bicubic caformer_b36.sail_in1k_384,97.160,2.840,99.610,0.390,98.75,384,1.000,bicubic swin_base_patch4_window12_384.ms_in22k_ft_in1k,97.130,2.870,99.780,0.220,87.90,384,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k,97.130,2.870,99.720,0.280,200.13,256,1.000,bicubic vit_base_patch16_clip_384.openai_ft_in12k_in1k,97.120,2.880,99.640,0.360,86.86,384,0.950,bicubic maxvit_base_tf_384.in1k,97.120,2.880,99.570,0.430,119.65,384,1.000,bicubic convnext_small.fb_in22k_ft_in1k_384,97.110,2.890,99.640,0.360,50.22,384,1.000,bicubic maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,97.110,2.890,99.600,0.400,116.14,224,0.950,bicubic vit_huge_patch14_clip_224.laion2b_ft_in1k,97.100,2.900,99.690,0.310,632.05,224,1.000,bicubic maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,97.090,2.910,99.680,0.320,116.09,224,0.950,bicubic vit_base_patch8_224.augreg_in21k_ft_in1k,97.090,2.910,99.610,0.390,86.58,224,0.900,bicubic volo_d4_448.sail_in1k,97.070,2.930,99.750,0.250,193.41,448,1.150,bicubic convformer_m36.sail_in22k_ft_in1k,97.070,2.930,99.630,0.370,57.05,224,1.000,bicubic convformer_s36.sail_in22k_ft_in1k_384,97.060,2.940,99.710,0.290,40.01,384,1.000,bicubic swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,97.050,2.950,99.660,0.340,87.92,256,0.900,bicubic maxvit_large_tf_512.in1k,97.050,2.950,99.590,0.410,212.33,512,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,97.040,2.960,99.670,0.330,88.59,384,1.000,bicubic caformer_m36.sail_in1k_384,97.030,2.970,99.710,0.290,56.20,384,1.000,bicubic volo_d3_448.sail_in1k,97.030,2.970,99.680,0.320,86.63,448,1.000,bicubic dm_nfnet_f5.dm_in1k,97.030,2.970,99.670,0.330,377.21,544,0.954,bicubic caformer_m36.sail_in22k_ft_in1k,97.020,2.980,99.730,0.270,56.20,224,1.000,bicubic tf_efficientnet_b6.ns_jft_in1k,97.020,2.980,99.710,0.290,43.04,528,0.942,bicubic vit_base_patch16_384.augreg_in21k_ft_in1k,97.020,2.980,99.710,0.290,86.86,384,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in1k,97.020,2.980,99.670,0.330,304.20,224,1.000,bicubic tf_efficientnetv2_m.in21k_ft_in1k,97.000,3.000,99.630,0.370,54.14,480,1.000,bicubic convnext_small.in12k_ft_in1k_384,96.990,3.010,99.660,0.340,50.22,384,1.000,bicubic coatnet_2_rw_224.sw_in12k_ft_in1k,96.990,3.010,99.650,0.350,73.87,224,0.950,bicubic dm_nfnet_f6.dm_in1k,96.970,3.030,99.760,0.240,438.36,576,0.956,bicubic maxvit_tiny_tf_512.in1k,96.970,3.030,99.670,0.330,31.05,512,1.000,bicubic vit_large_r50_s32_384.augreg_in21k_ft_in1k,96.950,3.050,99.710,0.290,329.09,384,1.000,bicubic vit_base_patch8_224.augreg2_in21k_ft_in1k,96.950,3.050,99.640,0.360,86.58,224,0.900,bicubic dm_nfnet_f4.dm_in1k,96.950,3.050,99.630,0.370,316.07,512,0.951,bicubic tiny_vit_21m_384.dist_in22k_ft_in1k,96.950,3.050,99.610,0.390,21.23,384,1.000,bicubic swin_large_patch4_window7_224.ms_in22k_ft_in1k,96.940,3.060,99.670,0.330,196.53,224,0.900,bicubic xcit_large_24_p16_384.fb_dist_in1k,96.940,3.060,99.510,0.490,189.10,384,1.000,bicubic maxvit_large_tf_384.in1k,96.930,3.070,99.570,0.430,212.03,384,1.000,bicubic beitv2_base_patch16_224.in1k_ft_in22k_in1k,96.910,3.090,99.730,0.270,86.53,224,0.900,bicubic tiny_vit_21m_512.dist_in22k_ft_in1k,96.900,3.100,99.690,0.310,21.27,512,1.000,bicubic vit_base_patch16_clip_384.laion2b_ft_in1k,96.900,3.100,99.670,0.330,86.86,384,1.000,bicubic caformer_s36.sail_in1k_384,96.880,3.120,99.670,0.330,39.30,384,1.000,bicubic volo_d5_224.sail_in1k,96.880,3.120,99.670,0.330,295.46,224,0.960,bicubic resnetv2_152x4_bit.goog_in21k_ft_in1k,96.880,3.120,99.660,0.340,936.53,480,1.000,bilinear cait_m48_448.fb_dist_in1k,96.880,3.120,99.620,0.380,356.46,448,1.000,bicubic convformer_b36.sail_in1k_384,96.870,3.130,99.650,0.350,99.88,384,1.000,bicubic tf_efficientnet_b5.ns_jft_in1k,96.870,3.130,99.640,0.360,30.39,456,0.934,bicubic convnext_base.clip_laiona_augreg_ft_in1k_384,96.860,3.140,99.690,0.310,88.59,384,1.000,bicubic deit3_base_patch16_224.fb_in22k_ft_in1k,96.860,3.140,99.620,0.380,86.59,224,1.000,bicubic deit3_large_patch16_384.fb_in1k,96.850,3.150,99.620,0.380,304.76,384,1.000,bicubic cait_m36_384.fb_dist_in1k,96.840,3.160,99.660,0.340,271.22,384,1.000,bicubic convnextv2_large.fcmae_ft_in1k,96.830,3.170,99.760,0.240,197.96,288,1.000,bicubic regnety_160.sw_in12k_ft_in1k,96.820,3.180,99.690,0.310,83.59,288,1.000,bicubic caformer_s36.sail_in22k_ft_in1k,96.820,3.180,99.620,0.380,39.30,224,1.000,bicubic regnety_160.lion_in12k_ft_in1k,96.810,3.190,99.710,0.290,83.59,288,1.000,bicubic vit_base_patch16_clip_384.openai_ft_in1k,96.810,3.190,99.660,0.340,86.86,384,1.000,bicubic xcit_small_24_p8_384.fb_dist_in1k,96.810,3.190,99.630,0.370,47.63,384,1.000,bicubic convnext_small.fb_in22k_ft_in1k,96.810,3.190,99.510,0.490,50.22,288,1.000,bicubic convformer_s18.sail_in22k_ft_in1k_384,96.790,3.210,99.710,0.290,26.77,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k,96.790,3.210,99.680,0.320,88.59,256,1.000,bicubic regnety_320.swag_lc_in1k,96.780,3.220,99.730,0.270,145.05,224,0.965,bicubic volo_d4_224.sail_in1k,96.780,3.220,99.670,0.330,192.96,224,0.960,bicubic convformer_m36.sail_in1k_384,96.780,3.220,99.620,0.380,57.05,384,1.000,bicubic flexivit_large.1200ep_in1k,96.780,3.220,99.610,0.390,304.36,240,0.950,bicubic xcit_medium_24_p8_384.fb_dist_in1k,96.770,3.230,99.620,0.380,84.32,384,1.000,bicubic efficientnet_b5.sw_in12k_ft_in1k,96.770,3.230,99.600,0.400,30.39,448,1.000,bicubic resnext101_32x32d.fb_wsl_ig1b_ft_in1k,96.770,3.230,99.530,0.470,468.53,224,0.875,bilinear xcit_large_24_p8_384.fb_dist_in1k,96.760,3.240,99.560,0.440,188.93,384,1.000,bicubic maxvit_small_tf_384.in1k,96.750,3.250,99.600,0.400,69.02,384,1.000,bicubic beitv2_base_patch16_224.in1k_ft_in1k,96.750,3.250,99.540,0.460,86.53,224,0.900,bicubic tf_efficientnetv2_l.in1k,96.740,3.260,99.550,0.450,118.52,480,1.000,bicubic flexivit_large.600ep_in1k,96.730,3.270,99.560,0.440,304.36,240,0.950,bicubic inception_next_base.sail_in1k_384,96.720,3.280,99.610,0.390,86.67,384,1.000,bicubic tf_efficientnet_b4.ns_jft_in1k,96.710,3.290,99.640,0.360,19.34,380,0.922,bicubic volo_d2_384.sail_in1k,96.710,3.290,99.600,0.400,58.87,384,1.000,bicubic vit_large_patch16_224.augreg_in21k_ft_in1k,96.700,3.300,99.650,0.350,304.33,224,0.900,bicubic flexivit_large.300ep_in1k,96.700,3.300,99.580,0.420,304.36,240,0.950,bicubic convformer_s36.sail_in1k_384,96.700,3.300,99.570,0.430,40.01,384,1.000,bicubic tf_efficientnet_b8.ra_in1k,96.700,3.300,99.530,0.470,87.41,672,0.954,bicubic eva02_small_patch14_336.mim_in22k_ft_in1k,96.690,3.310,99.610,0.390,22.13,336,1.000,bicubic xcit_medium_24_p16_384.fb_dist_in1k,96.690,3.310,99.600,0.400,84.40,384,1.000,bicubic swin_base_patch4_window7_224.ms_in22k_ft_in1k,96.680,3.320,99.670,0.330,87.77,224,0.900,bicubic deit3_small_patch16_384.fb_in22k_ft_in1k,96.670,3.330,99.640,0.360,22.21,384,1.000,bicubic beit_base_patch16_224.in22k_ft_in22k_in1k,96.660,3.340,99.660,0.340,86.53,224,0.900,bicubic cait_s36_384.fb_dist_in1k,96.630,3.370,99.610,0.390,68.37,384,1.000,bicubic xcit_large_24_p8_224.fb_dist_in1k,96.630,3.370,99.460,0.540,188.93,224,1.000,bicubic dm_nfnet_f3.dm_in1k,96.620,3.380,99.630,0.370,254.92,416,0.940,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k_384,96.620,3.380,99.580,0.420,28.64,384,1.000,bicubic vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,96.620,3.380,99.560,0.440,86.57,224,0.950,bicubic vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,96.610,3.390,99.480,0.520,88.30,384,1.000,bicubic regnetz_e8.ra3_in1k,96.600,3.400,99.620,0.380,57.70,320,1.000,bicubic convnext_small.in12k_ft_in1k,96.600,3.400,99.580,0.420,50.22,288,1.000,bicubic maxvit_tiny_tf_384.in1k,96.600,3.400,99.560,0.440,30.98,384,1.000,bicubic deit3_huge_patch14_224.fb_in1k,96.580,3.420,99.520,0.480,632.13,224,0.900,bicubic cait_s24_384.fb_dist_in1k,96.570,3.430,99.550,0.450,47.06,384,1.000,bicubic tf_efficientnet_b7.ra_in1k,96.570,3.430,99.520,0.480,66.35,600,0.949,bicubic coat_lite_medium_384.in1k,96.570,3.430,99.470,0.530,44.57,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in1k,96.560,3.440,99.650,0.350,88.59,256,1.000,bicubic convnext_tiny.in12k_ft_in1k_384,96.560,3.440,99.630,0.370,28.59,384,1.000,bicubic vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,96.560,3.440,99.520,0.480,88.34,448,1.000,bicubic regnety_120.sw_in12k_ft_in1k,96.550,3.450,99.680,0.320,51.82,288,1.000,bicubic xcit_small_24_p8_224.fb_dist_in1k,96.550,3.450,99.560,0.440,47.63,224,1.000,bicubic tf_efficientnet_b8.ap_in1k,96.550,3.450,99.540,0.460,87.41,672,0.954,bicubic hrnet_w48_ssld.paddle_in1k,96.540,3.460,99.640,0.360,77.47,288,1.000,bilinear caformer_s18.sail_in22k_ft_in1k_384,96.530,3.470,99.580,0.420,26.34,384,1.000,bicubic regnety_2560.seer_ft_in1k,96.530,3.470,99.520,0.480,"1,282.60",384,1.000,bicubic xcit_medium_24_p8_224.fb_dist_in1k,96.530,3.470,99.510,0.490,84.32,224,1.000,bicubic resnetv2_152x2_bit.goog_in21k_ft_in1k,96.520,3.480,99.590,0.410,236.34,448,1.000,bilinear dm_nfnet_f2.dm_in1k,96.520,3.480,99.570,0.430,193.78,352,0.920,bicubic deit_base_distilled_patch16_384.fb_in1k,96.510,3.490,99.590,0.410,87.63,384,1.000,bicubic vit_base_patch16_224.augreg2_in21k_ft_in1k,96.510,3.490,99.560,0.440,86.57,224,0.900,bicubic vit_base_patch16_clip_224.openai_ft_in12k_in1k,96.510,3.490,99.550,0.450,86.57,224,0.950,bicubic convformer_s36.sail_in22k_ft_in1k,96.500,3.500,99.630,0.370,40.01,224,1.000,bicubic caformer_b36.sail_in1k,96.500,3.500,99.460,0.540,98.75,224,1.000,bicubic vit_medium_patch16_gap_384.sw_in12k_ft_in1k,96.490,3.510,99.620,0.380,39.03,384,0.950,bicubic tf_efficientnetv2_m.in1k,96.480,3.520,99.610,0.390,54.14,480,1.000,bicubic volo_d1_384.sail_in1k,96.480,3.520,99.550,0.450,26.78,384,1.000,bicubic convnextv2_base.fcmae_ft_in1k,96.480,3.520,99.520,0.480,88.72,288,1.000,bicubic tf_efficientnetv2_s.in21k_ft_in1k,96.470,3.530,99.570,0.430,21.46,384,1.000,bicubic xcit_small_12_p8_384.fb_dist_in1k,96.470,3.530,99.490,0.510,26.21,384,1.000,bicubic regnety_160.swag_lc_in1k,96.450,3.550,99.750,0.250,83.59,224,0.965,bicubic vit_base_r50_s16_384.orig_in21k_ft_in1k,96.450,3.550,99.660,0.340,98.95,384,1.000,bicubic eca_nfnet_l2.ra3_in1k,96.450,3.550,99.610,0.390,56.72,384,1.000,bicubic ecaresnet269d.ra2_in1k,96.450,3.550,99.610,0.390,102.09,352,1.000,bicubic seresnextaa101d_32x8d.ah_in1k,96.440,3.560,99.510,0.490,93.59,288,1.000,bicubic volo_d3_224.sail_in1k,96.430,3.570,99.630,0.370,86.33,224,0.960,bicubic resnext101_32x16d.fb_wsl_ig1b_ft_in1k,96.430,3.570,99.540,0.460,194.03,224,0.875,bilinear volo_d2_224.sail_in1k,96.420,3.580,99.500,0.500,58.68,224,0.960,bicubic vit_base_patch32_clip_384.openai_ft_in12k_in1k,96.420,3.580,99.460,0.540,88.30,384,0.950,bicubic caformer_s18.sail_in1k_384,96.410,3.590,99.560,0.440,26.34,384,1.000,bicubic caformer_m36.sail_in1k,96.410,3.590,99.530,0.470,56.20,224,1.000,bicubic resnetrs420.tf_in1k,96.400,3.600,99.540,0.460,191.89,416,1.000,bicubic convnext_large.fb_in1k,96.400,3.600,99.530,0.470,197.77,288,1.000,bicubic mvitv2_large.fb_in1k,96.400,3.600,99.450,0.550,217.99,224,0.900,bicubic tiny_vit_21m_224.dist_in22k_ft_in1k,96.380,3.620,99.500,0.500,21.20,224,0.950,bicubic swin_base_patch4_window12_384.ms_in1k,96.380,3.620,99.420,0.580,87.90,384,1.000,bicubic tf_efficientnet_b6.ap_in1k,96.370,3.630,99.550,0.450,43.04,528,0.942,bicubic seresnext101d_32x8d.ah_in1k,96.360,3.640,99.470,0.530,93.59,288,1.000,bicubic resnetaa101d.sw_in12k_ft_in1k,96.360,3.640,99.440,0.560,44.57,288,1.000,bicubic tf_efficientnet_b7.ap_in1k,96.350,3.650,99.590,0.410,66.35,600,0.949,bicubic resnetrs200.tf_in1k,96.350,3.650,99.550,0.450,93.21,320,1.000,bicubic resmlp_big_24_224.fb_in22k_ft_in1k,96.350,3.650,99.520,0.480,129.14,224,0.875,bicubic xcit_small_24_p16_384.fb_dist_in1k,96.340,3.660,99.580,0.420,47.67,384,1.000,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k,96.340,3.660,99.550,0.450,28.64,288,1.000,bicubic xcit_small_12_p16_384.fb_dist_in1k,96.340,3.660,99.490,0.510,26.25,384,1.000,bicubic maxvit_base_tf_224.in1k,96.340,3.660,99.370,0.630,119.47,224,0.950,bicubic maxvit_large_tf_224.in1k,96.330,3.670,99.410,0.590,211.79,224,0.950,bicubic vit_base_patch16_clip_224.laion2b_ft_in1k,96.320,3.680,99.540,0.460,86.57,224,1.000,bicubic regnetz_040_h.ra3_in1k,96.320,3.680,99.520,0.480,28.94,320,1.000,bicubic xcit_large_24_p16_224.fb_dist_in1k,96.320,3.680,99.500,0.500,189.10,224,1.000,bicubic vit_base_patch16_clip_224.openai_ft_in1k,96.310,3.690,99.550,0.450,86.57,224,0.900,bicubic seresnet152d.ra2_in1k,96.310,3.690,99.510,0.490,66.84,320,1.000,bicubic convnext_base.fb_in1k,96.310,3.690,99.500,0.500,88.59,288,1.000,bicubic regnety_1280.seer_ft_in1k,96.310,3.690,99.410,0.590,644.81,384,1.000,bicubic vit_base_patch16_224.augreg_in21k_ft_in1k,96.300,3.700,99.560,0.440,86.57,224,0.900,bicubic dm_nfnet_f1.dm_in1k,96.300,3.700,99.530,0.470,132.63,320,0.910,bicubic tf_efficientnet_b6.aa_in1k,96.300,3.700,99.530,0.470,43.04,528,0.942,bicubic fastvit_ma36.apple_dist_in1k,96.300,3.700,99.500,0.500,44.07,256,0.950,bicubic resnetv2_50x3_bit.goog_in21k_ft_in1k,96.270,3.730,99.630,0.370,217.32,448,1.000,bilinear efficientnetv2_rw_m.agc_in1k,96.270,3.730,99.560,0.440,53.24,416,1.000,bicubic resnext101_32x16d.fb_swsl_ig1b_ft_in1k,96.270,3.730,99.500,0.500,194.03,224,0.875,bilinear resnext101_32x8d.fb_swsl_ig1b_ft_in1k,96.250,3.750,99.590,0.410,88.79,224,0.875,bilinear resnetv2_101x3_bit.goog_in21k_ft_in1k,96.250,3.750,99.580,0.420,387.93,448,1.000,bilinear convformer_s18.sail_in1k_384,96.250,3.750,99.540,0.460,26.77,384,1.000,bicubic resnetrs350.tf_in1k,96.250,3.750,99.470,0.530,163.96,384,1.000,bicubic xcit_medium_24_p16_224.fb_dist_in1k,96.250,3.750,99.410,0.590,84.40,224,1.000,bicubic convnext_tiny.in12k_ft_in1k,96.240,3.760,99.640,0.360,28.59,288,1.000,bicubic davit_base.msft_in1k,96.240,3.760,99.410,0.590,87.95,224,0.950,bicubic convformer_b36.sail_in1k,96.240,3.760,99.290,0.710,99.88,224,1.000,bicubic xcit_tiny_24_p8_384.fb_dist_in1k,96.230,3.770,99.440,0.560,12.11,384,1.000,bicubic deit3_base_patch16_384.fb_in1k,96.230,3.770,99.400,0.600,86.88,384,1.000,bicubic maxxvit_rmlp_small_rw_256.sw_in1k,96.210,3.790,99.480,0.520,66.01,256,0.950,bicubic coatnet_rmlp_2_rw_224.sw_in1k,96.210,3.790,99.280,0.720,73.88,224,0.950,bicubic vit_base_patch16_384.orig_in21k_ft_in1k,96.200,3.800,99.530,0.470,86.86,384,1.000,bicubic edgenext_base.in21k_ft_in1k,96.200,3.800,99.470,0.530,18.51,320,1.000,bicubic maxvit_small_tf_224.in1k,96.200,3.800,99.460,0.540,68.93,224,0.950,bicubic resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,96.190,3.810,99.500,0.500,236.34,384,1.000,bicubic deit3_large_patch16_224.fb_in1k,96.190,3.810,99.300,0.700,304.37,224,0.900,bicubic vit_large_r50_s32_224.augreg_in21k_ft_in1k,96.180,3.820,99.530,0.470,328.99,224,0.900,bicubic regnetz_040.ra3_in1k,96.180,3.820,99.510,0.490,27.12,320,1.000,bicubic convnext_tiny.fb_in22k_ft_in1k_384,96.170,3.830,99.500,0.500,28.59,384,1.000,bicubic swinv2_base_window16_256.ms_in1k,96.170,3.830,99.390,0.610,87.92,256,0.900,bicubic crossvit_18_dagger_408.in1k,96.150,3.850,99.470,0.530,44.61,408,1.000,bicubic regnetz_d8_evos.ch_in1k,96.140,3.860,99.490,0.510,23.46,320,1.000,bicubic deit3_medium_patch16_224.fb_in22k_ft_in1k,96.140,3.860,99.480,0.520,38.85,224,1.000,bicubic seresnext101_32x8d.ah_in1k,96.140,3.860,99.360,0.640,93.57,288,1.000,bicubic efficientvit_b3.r288_in1k,96.140,3.860,99.290,0.710,48.65,288,1.000,bicubic coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,96.130,3.870,99.340,0.660,41.72,224,0.950,bicubic flexivit_base.1200ep_in1k,96.120,3.880,99.410,0.590,86.59,240,0.950,bicubic resnest269e.in1k,96.110,3.890,99.520,0.480,110.93,416,0.928,bicubic resnet200d.ra2_in1k,96.110,3.890,99.460,0.540,64.69,320,1.000,bicubic convformer_s36.sail_in1k,96.110,3.890,99.310,0.690,40.01,224,1.000,bicubic convformer_s18.sail_in22k_ft_in1k,96.100,3.900,99.490,0.510,26.77,224,1.000,bicubic tf_efficientnet_b3.ns_jft_in1k,96.100,3.900,99.480,0.520,12.23,300,0.904,bicubic rexnetr_300.sw_in12k_ft_in1k,96.090,3.910,99.540,0.460,34.81,288,1.000,bicubic tf_efficientnet_b5.ap_in1k,96.090,3.910,99.540,0.460,30.39,456,0.934,bicubic xcit_large_24_p8_224.fb_in1k,96.090,3.910,99.140,0.860,188.93,224,1.000,bicubic caformer_s36.sail_in1k,96.080,3.920,99.510,0.490,39.30,224,1.000,bicubic gcvit_base.in1k,96.080,3.920,99.390,0.610,90.32,224,0.875,bicubic convformer_m36.sail_in1k,96.080,3.920,99.250,0.750,57.05,224,1.000,bicubic resnest200e.in1k,96.070,3.930,99.480,0.520,70.20,320,0.909,bicubic tf_efficientnet_b7.aa_in1k,96.070,3.930,99.450,0.550,66.35,600,0.949,bicubic swinv2_small_window16_256.ms_in1k,96.070,3.930,99.340,0.660,49.73,256,0.900,bicubic vit_small_r26_s32_384.augreg_in21k_ft_in1k,96.060,3.940,99.550,0.450,36.47,384,1.000,bicubic regnety_640.seer_ft_in1k,96.060,3.940,99.500,0.500,281.38,384,1.000,bicubic resnetrs270.tf_in1k,96.060,3.940,99.480,0.520,129.86,352,1.000,bicubic swin_small_patch4_window7_224.ms_in22k_ft_in1k,96.060,3.940,99.480,0.520,49.61,224,0.900,bicubic swinv2_base_window8_256.ms_in1k,96.060,3.940,99.410,0.590,87.92,256,0.900,bicubic resnext101_32x4d.fb_swsl_ig1b_ft_in1k,96.040,3.960,99.540,0.460,44.18,224,0.875,bilinear maxvit_rmlp_tiny_rw_256.sw_in1k,96.040,3.960,99.410,0.590,29.15,256,0.950,bicubic swin_s3_base_224.ms_in1k,96.040,3.960,99.350,0.650,71.13,224,0.900,bicubic vit_base_patch16_224_miil.in21k_ft_in1k,96.040,3.960,99.350,0.650,86.54,224,0.875,bilinear davit_small.msft_in1k,96.030,3.970,99.400,0.600,49.75,224,0.950,bicubic volo_d1_224.sail_in1k,96.030,3.970,99.390,0.610,26.63,224,0.960,bicubic caformer_s18.sail_in22k_ft_in1k,96.010,3.990,99.550,0.450,26.34,224,1.000,bicubic regnetz_d8.ra3_in1k,96.010,3.990,99.520,0.480,23.37,320,1.000,bicubic vit_medium_patch16_gap_256.sw_in12k_ft_in1k,96.000,4.000,99.500,0.500,38.86,256,0.950,bicubic cs3se_edgenet_x.c2ns_in1k,96.000,4.000,99.430,0.570,50.72,320,1.000,bicubic cait_xs24_384.fb_dist_in1k,96.000,4.000,99.420,0.580,26.67,384,1.000,bicubic coat_lite_medium.in1k,96.000,4.000,99.350,0.650,44.57,224,0.900,bicubic repvit_m2_3.dist_450e_in1k,95.990,4.010,99.400,0.600,23.69,224,0.950,bicubic vit_small_patch16_384.augreg_in21k_ft_in1k,95.980,4.020,99.590,0.410,22.20,384,1.000,bicubic mvitv2_base.fb_in1k,95.980,4.020,99.330,0.670,51.47,224,0.900,bicubic tf_efficientnet_b5.ra_in1k,95.970,4.030,99.460,0.540,30.39,456,0.934,bicubic convnext_small.fb_in1k,95.970,4.030,99.430,0.570,50.22,288,1.000,bicubic fastvit_ma36.apple_in1k,95.970,4.030,99.360,0.640,44.07,256,0.950,bicubic xcit_small_12_p8_224.fb_dist_in1k,95.960,4.040,99.430,0.570,26.21,224,1.000,bicubic flexivit_base.600ep_in1k,95.960,4.040,99.420,0.580,86.59,240,0.950,bicubic resnetrs152.tf_in1k,95.960,4.040,99.380,0.620,86.62,320,1.000,bicubic fastvit_sa36.apple_dist_in1k,95.960,4.040,99.370,0.630,31.53,256,0.900,bicubic maxvit_rmlp_small_rw_224.sw_in1k,95.960,4.040,99.350,0.650,64.90,224,0.900,bicubic repvgg_d2se.rvgg_in1k,95.950,4.050,99.470,0.530,133.33,320,1.000,bilinear flexivit_base.300ep_in1k,95.950,4.050,99.370,0.630,86.59,240,0.950,bicubic pvt_v2_b5.in1k,95.940,4.060,99.390,0.610,81.96,224,0.900,bicubic resnext101_32x8d.fb_wsl_ig1b_ft_in1k,95.940,4.060,99.380,0.620,88.79,224,0.875,bilinear eca_nfnet_l1.ra2_in1k,95.930,4.070,99.490,0.510,41.41,320,1.000,bicubic pvt_v2_b4.in1k,95.920,4.080,99.360,0.640,62.56,224,0.900,bicubic inception_next_base.sail_in1k,95.920,4.080,99.220,0.780,86.67,224,0.950,bicubic gcvit_small.in1k,95.910,4.090,99.280,0.720,51.09,224,0.875,bicubic vit_base_patch32_384.augreg_in21k_ft_in1k,95.900,4.100,99.440,0.560,88.30,384,1.000,bicubic focalnet_base_srf.ms_in1k,95.900,4.100,99.340,0.660,88.15,224,0.900,bicubic swin_base_patch4_window7_224.ms_in1k,95.900,4.100,99.310,0.690,87.77,224,0.900,bicubic xcit_small_24_p8_224.fb_in1k,95.900,4.100,99.180,0.820,47.63,224,1.000,bicubic mvitv2_small.fb_in1k,95.890,4.110,99.360,0.640,34.87,224,0.900,bicubic tf_efficientnet_b5.aa_in1k,95.880,4.120,99.350,0.650,30.39,456,0.934,bicubic regnety_160.deit_in1k,95.870,4.130,99.560,0.440,83.59,288,1.000,bicubic sequencer2d_l.in1k,95.870,4.130,99.470,0.530,54.30,224,0.875,bicubic regnety_080.ra3_in1k,95.870,4.130,99.440,0.560,39.18,288,1.000,bicubic resmlp_big_24_224.fb_distilled_in1k,95.870,4.130,99.440,0.560,129.14,224,0.875,bicubic regnetz_d32.ra3_in1k,95.870,4.130,99.430,0.570,27.58,320,0.950,bicubic resnet152d.ra2_in1k,95.870,4.130,99.430,0.570,60.21,320,1.000,bicubic tf_efficientnet_b5.in1k,95.870,4.130,99.390,0.610,30.39,456,0.934,bicubic xcit_medium_24_p8_224.fb_in1k,95.860,4.140,99.080,0.920,84.32,224,1.000,bicubic deit3_small_patch16_224.fb_in22k_ft_in1k,95.830,4.170,99.390,0.610,22.06,224,1.000,bicubic convnextv2_tiny.fcmae_ft_in1k,95.830,4.170,99.340,0.660,28.64,288,1.000,bicubic efficientvit_b3.r256_in1k,95.830,4.170,99.220,0.780,48.65,256,1.000,bicubic swin_s3_small_224.ms_in1k,95.830,4.170,99.200,0.800,49.74,224,0.900,bicubic focalnet_base_lrf.ms_in1k,95.830,4.170,99.180,0.820,88.75,224,0.900,bicubic resnext101_64x4d.tv_in1k,95.820,4.180,99.320,0.680,83.46,224,0.875,bilinear crossvit_15_dagger_408.in1k,95.820,4.180,99.310,0.690,28.50,408,1.000,bicubic tresnet_v2_l.miil_in21k_ft_in1k,95.820,4.180,99.290,0.710,46.17,224,0.875,bilinear pit_b_distilled_224.in1k,95.820,4.180,99.210,0.790,74.79,224,0.900,bicubic maxvit_tiny_tf_224.in1k,95.810,4.190,99.260,0.740,30.92,224,0.950,bicubic edgenext_base.usi_in1k,95.790,4.210,99.570,0.430,18.51,320,1.000,bicubic regnety_320.seer_ft_in1k,95.790,4.210,99.390,0.610,145.05,384,1.000,bicubic xcit_small_24_p16_224.fb_dist_in1k,95.790,4.210,99.350,0.650,47.67,224,1.000,bicubic convnextv2_nano.fcmae_ft_in22k_in1k_384,95.790,4.210,99.300,0.700,15.62,384,1.000,bicubic regnety_064.ra3_in1k,95.790,4.210,99.290,0.710,30.58,288,1.000,bicubic regnetv_064.ra3_in1k,95.780,4.220,99.420,0.580,30.58,288,1.000,bicubic deit3_base_patch16_224.fb_in1k,95.770,4.230,99.270,0.730,86.59,224,0.900,bicubic efficientformerv2_l.snap_dist_in1k,95.760,4.240,99.370,0.630,26.32,224,0.950,bicubic resnet152.a1h_in1k,95.750,4.250,99.430,0.570,60.19,288,1.000,bicubic resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,95.750,4.250,99.430,0.570,236.34,224,0.875,bicubic deit_base_distilled_patch16_224.fb_in1k,95.750,4.250,99.280,0.720,87.34,224,0.900,bicubic resnet101d.ra2_in1k,95.740,4.260,99.440,0.560,44.57,320,1.000,bicubic focalnet_small_lrf.ms_in1k,95.740,4.260,99.210,0.790,50.34,224,0.900,bicubic maxvit_tiny_rw_224.sw_in1k,95.740,4.260,99.160,0.840,29.06,224,0.950,bicubic regnetv_040.ra3_in1k,95.730,4.270,99.380,0.620,20.64,288,1.000,bicubic swinv2_small_window8_256.ms_in1k,95.730,4.270,99.360,0.640,49.73,256,0.900,bicubic xcit_small_12_p16_224.fb_dist_in1k,95.730,4.270,99.300,0.700,26.25,224,1.000,bicubic twins_pcpvt_large.in1k,95.720,4.280,99.490,0.510,60.99,224,0.900,bicubic tf_efficientnetv2_s.in1k,95.710,4.290,99.400,0.600,21.46,384,1.000,bicubic efficientnetv2_rw_s.ra2_in1k,95.710,4.290,99.380,0.620,23.94,384,1.000,bicubic hrnet_w18_ssld.paddle_in1k,95.710,4.290,99.340,0.660,21.30,288,1.000,bilinear swin_small_patch4_window7_224.ms_in1k,95.710,4.290,99.290,0.710,49.61,224,0.900,bicubic swinv2_cr_small_ns_224.sw_in1k,95.710,4.290,99.290,0.710,49.70,224,0.900,bicubic tiny_vit_11m_224.dist_in22k_ft_in1k,95.710,4.290,99.260,0.740,11.00,224,0.950,bicubic twins_svt_large.in1k,95.700,4.300,99.370,0.630,99.27,224,0.900,bicubic dm_nfnet_f0.dm_in1k,95.690,4.310,99.350,0.650,71.49,256,0.900,bicubic xception65.ra3_in1k,95.690,4.310,99.320,0.680,39.92,299,0.940,bicubic caformer_s18.sail_in1k,95.680,4.320,99.290,0.710,26.34,224,1.000,bicubic inception_next_small.sail_in1k,95.680,4.320,99.250,0.750,49.37,224,0.875,bicubic cait_s24_224.fb_dist_in1k,95.660,4.340,99.390,0.610,46.92,224,1.000,bicubic gcvit_tiny.in1k,95.660,4.340,99.330,0.670,28.22,224,0.875,bicubic xception65p.ra3_in1k,95.660,4.340,99.270,0.730,39.82,299,0.940,bicubic tiny_vit_21m_224.in1k,95.650,4.350,99.250,0.750,21.20,224,0.950,bicubic regnetz_c16_evos.ch_in1k,95.640,4.360,99.420,0.580,13.49,320,0.950,bicubic deit_base_patch16_384.fb_in1k,95.640,4.360,99.240,0.760,86.86,384,1.000,bicubic resnext50_32x4d.fb_swsl_ig1b_ft_in1k,95.630,4.370,99.440,0.560,25.03,224,0.875,bilinear ecaresnet101d.miil_in1k,95.630,4.370,99.410,0.590,44.57,288,0.950,bicubic focalnet_small_srf.ms_in1k,95.630,4.370,99.290,0.710,49.89,224,0.900,bicubic coatnet_1_rw_224.sw_in1k,95.620,4.380,99.220,0.780,41.72,224,0.950,bicubic fastvit_sa36.apple_in1k,95.610,4.390,99.320,0.680,31.53,256,0.900,bicubic efficientformer_l7.snap_dist_in1k,95.600,4.400,99.440,0.560,82.23,224,0.950,bicubic deit3_small_patch16_384.fb_in1k,95.600,4.400,99.390,0.610,22.21,384,1.000,bicubic tf_efficientnetv2_b3.in21k_ft_in1k,95.600,4.400,99.280,0.720,14.36,300,0.900,bicubic repvit_m2_3.dist_300e_in1k,95.590,4.410,99.390,0.610,23.69,224,0.950,bicubic tf_efficientnet_b4.aa_in1k,95.590,4.410,99.330,0.670,19.34,380,0.922,bicubic sequencer2d_m.in1k,95.580,4.420,99.270,0.730,38.31,224,0.875,bicubic resnet101.a1h_in1k,95.580,4.420,99.250,0.750,44.55,288,1.000,bicubic efficientvit_b2.r288_in1k,95.580,4.420,99.220,0.780,24.33,288,1.000,bicubic resnetv2_101.a1h_in1k,95.570,4.430,99.370,0.630,44.54,288,1.000,bicubic resnest101e.in1k,95.570,4.430,99.270,0.730,48.28,256,0.875,bilinear regnety_320.tv2_in1k,95.560,4.440,99.390,0.610,145.05,224,0.965,bicubic twins_svt_base.in1k,95.560,4.440,99.230,0.770,56.07,224,0.900,bicubic fastvit_sa24.apple_dist_in1k,95.550,4.450,99.310,0.690,21.55,256,0.900,bicubic rexnet_300.nav_in1k,95.540,4.460,99.320,0.680,34.71,224,0.875,bicubic nest_base_jx.goog_in1k,95.540,4.460,99.290,0.710,67.72,224,0.875,bicubic nest_small_jx.goog_in1k,95.540,4.460,99.220,0.780,38.35,224,0.875,bicubic efficientvit_b3.r224_in1k,95.540,4.460,99.190,0.810,48.65,224,0.950,bicubic efficientnet_b4.ra2_in1k,95.530,4.470,99.400,0.600,19.34,384,1.000,bicubic resnext101_64x4d.c1_in1k,95.530,4.470,99.290,0.710,83.46,288,1.000,bicubic tf_efficientnet_b2.ns_jft_in1k,95.520,4.480,99.340,0.660,9.11,260,0.890,bicubic tresnet_xl.miil_in1k_448,95.510,4.490,99.340,0.660,78.44,448,0.875,bilinear regnety_040.ra3_in1k,95.490,4.510,99.420,0.580,20.65,288,1.000,bicubic tf_efficientnet_b4.ap_in1k,95.490,4.510,99.390,0.610,19.34,380,0.922,bicubic xcit_tiny_24_p16_384.fb_dist_in1k,95.490,4.510,99.360,0.640,12.12,384,1.000,bicubic coatnet_rmlp_1_rw_224.sw_in1k,95.490,4.510,99.250,0.750,41.69,224,0.950,bicubic tf_efficientnet_b4.in1k,95.480,4.520,99.270,0.730,19.34,380,0.922,bicubic twins_pcpvt_base.in1k,95.470,4.530,99.390,0.610,43.83,224,0.900,bicubic pvt_v2_b3.in1k,95.470,4.530,99.310,0.690,45.24,224,0.900,bicubic maxvit_nano_rw_256.sw_in1k,95.470,4.530,99.120,0.880,15.45,256,0.950,bicubic eca_nfnet_l0.ra2_in1k,95.460,4.540,99.390,0.610,24.14,288,1.000,bicubic regnety_032.ra_in1k,95.460,4.540,99.320,0.680,19.44,288,1.000,bicubic cs3edgenet_x.c2_in1k,95.460,4.540,99.280,0.720,47.82,288,1.000,bicubic sequencer2d_s.in1k,95.460,4.540,99.260,0.740,27.65,224,0.875,bicubic xcit_tiny_24_p8_224.fb_dist_in1k,95.450,4.550,99.360,0.640,12.11,224,1.000,bicubic maxvit_rmlp_nano_rw_256.sw_in1k,95.440,4.560,99.060,0.940,15.50,256,0.950,bicubic maxxvitv2_nano_rw_256.sw_in1k,95.430,4.570,99.190,0.810,23.70,256,0.950,bicubic convnextv2_nano.fcmae_ft_in22k_in1k,95.420,4.580,99.310,0.690,15.62,288,1.000,bicubic xcit_small_12_p8_224.fb_in1k,95.420,4.580,99.190,0.810,26.21,224,1.000,bicubic resnetv2_50x1_bit.goog_distilled_in1k,95.410,4.590,99.430,0.570,25.55,224,0.875,bicubic cs3sedarknet_x.c2ns_in1k,95.410,4.590,99.320,0.680,35.40,288,1.000,bicubic swinv2_cr_small_224.sw_in1k,95.410,4.590,99.060,0.940,49.70,224,0.900,bicubic resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,95.400,4.600,99.400,0.600,194.03,224,0.875,bilinear tresnet_l.miil_in1k_448,95.400,4.600,99.300,0.700,55.99,448,0.875,bilinear mvitv2_tiny.fb_in1k,95.400,4.600,99.160,0.840,24.17,224,0.900,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k_384,95.390,4.610,99.280,0.720,18.45,384,1.000,bicubic nfnet_l0.ra2_in1k,95.380,4.620,99.420,0.580,35.07,288,1.000,bicubic regnetz_c16.ra3_in1k,95.380,4.620,99.350,0.650,13.46,320,1.000,bicubic deit3_medium_patch16_224.fb_in1k,95.380,4.620,99.210,0.790,38.85,224,0.900,bicubic tresnet_m.miil_in21k_ft_in1k,95.380,4.620,99.150,0.850,31.39,224,0.875,bilinear pnasnet5large.tf_in1k,95.360,4.640,99.130,0.870,86.06,331,0.911,bicubic convnext_nano.in12k_ft_in1k,95.350,4.650,99.450,0.550,15.59,288,1.000,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k_384,95.350,4.650,99.120,0.880,10.59,384,1.000,bicubic xcit_tiny_12_p8_384.fb_dist_in1k,95.340,4.660,99.340,0.660,6.71,384,1.000,bicubic maxxvit_rmlp_nano_rw_256.sw_in1k,95.340,4.660,99.310,0.690,16.78,256,0.950,bicubic swinv2_tiny_window16_256.ms_in1k,95.330,4.670,99.300,0.700,28.35,256,0.900,bicubic convformer_s18.sail_in1k,95.330,4.670,99.150,0.850,26.77,224,1.000,bicubic resnetv2_101x1_bit.goog_in21k_ft_in1k,95.320,4.680,99.370,0.630,44.54,448,1.000,bilinear resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,95.320,4.680,99.320,0.680,88.79,224,0.875,bilinear rexnetr_200.sw_in12k_ft_in1k,95.310,4.690,99.470,0.530,16.52,288,1.000,bicubic resnext101_32x8d.tv2_in1k,95.300,4.700,99.360,0.640,88.79,224,0.965,bilinear regnety_080_tv.tv2_in1k,95.300,4.700,99.230,0.770,39.38,224,0.965,bicubic vit_relpos_medium_patch16_cls_224.sw_in1k,95.300,4.700,99.100,0.900,38.76,224,0.900,bicubic resnetaa50d.sw_in12k_ft_in1k,95.290,4.710,99.380,0.620,25.58,288,1.000,bicubic gc_efficientnetv2_rw_t.agc_in1k,95.290,4.710,99.220,0.780,13.68,288,1.000,bicubic fastvit_sa24.apple_in1k,95.280,4.720,99.310,0.690,21.55,256,0.900,bicubic cs3darknet_x.c2ns_in1k,95.280,4.720,99.290,0.710,35.05,288,1.000,bicubic regnetx_320.tv2_in1k,95.280,4.720,99.290,0.710,107.81,224,0.965,bicubic repvit_m1_5.dist_450e_in1k,95.280,4.720,99.230,0.770,14.64,224,0.950,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k_384,95.260,4.740,99.380,0.620,14.25,384,1.000,bicubic flexivit_small.600ep_in1k,95.260,4.740,99.160,0.840,22.06,240,0.950,bicubic resnetrs101.tf_in1k,95.250,4.750,99.210,0.790,63.62,288,0.940,bicubic vit_relpos_base_patch16_clsgap_224.sw_in1k,95.250,4.750,99.200,0.800,86.43,224,0.900,bicubic convnext_tiny_hnf.a2h_in1k,95.250,4.750,98.980,1.020,28.59,288,1.000,bicubic cait_xxs36_384.fb_dist_in1k,95.240,4.760,99.320,0.680,17.37,384,1.000,bicubic vit_large_patch32_384.orig_in21k_ft_in1k,95.240,4.760,99.320,0.680,306.63,384,1.000,bicubic tiny_vit_11m_224.in1k,95.240,4.760,99.230,0.770,11.00,224,0.950,bicubic wide_resnet101_2.tv2_in1k,95.240,4.760,99.200,0.800,126.89,224,0.965,bilinear vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,95.230,4.770,99.240,0.760,88.22,224,0.900,bicubic pvt_v2_b2_li.in1k,95.220,4.780,99.260,0.740,22.55,224,0.900,bicubic efficientvit_b2.r256_in1k,95.220,4.780,99.130,0.870,24.33,256,1.000,bicubic resnetv2_50d_gn.ah_in1k,95.220,4.780,99.030,0.970,25.57,288,1.000,bicubic convnext_tiny.fb_in1k,95.210,4.790,99.310,0.690,28.59,288,1.000,bicubic efficientformer_l3.snap_dist_in1k,95.210,4.790,99.310,0.690,31.41,224,0.950,bicubic regnetx_160.tv2_in1k,95.210,4.790,99.280,0.720,54.28,224,0.965,bicubic levit_384.fb_dist_in1k,95.210,4.790,99.160,0.840,39.13,224,0.900,bicubic levit_conv_384.fb_dist_in1k,95.210,4.790,99.160,0.840,39.13,224,0.900,bicubic resnet50.fb_swsl_ig1b_ft_in1k,95.200,4.800,99.390,0.610,25.56,224,0.875,bilinear resnet51q.ra2_in1k,95.200,4.800,99.280,0.720,35.70,288,1.000,bilinear vit_base_patch16_224.orig_in21k_ft_in1k,95.200,4.800,99.230,0.770,86.57,224,0.900,bicubic coat_small.in1k,95.190,4.810,99.280,0.720,21.69,224,0.900,bicubic focalnet_tiny_lrf.ms_in1k,95.190,4.810,99.220,0.780,28.65,224,0.900,bicubic vit_relpos_medium_patch16_224.sw_in1k,95.190,4.810,99.220,0.780,38.75,224,0.900,bicubic flexivit_small.1200ep_in1k,95.190,4.810,99.180,0.820,22.06,240,0.950,bicubic poolformerv2_m48.sail_in1k,95.180,4.820,99.160,0.840,73.35,224,1.000,bicubic crossvit_18_dagger_240.in1k,95.180,4.820,99.120,0.880,44.27,240,0.875,bicubic regnety_160.tv2_in1k,95.160,4.840,99.250,0.750,83.59,224,0.965,bicubic repvit_m1_5.dist_300e_in1k,95.150,4.850,99.270,0.730,14.64,224,0.950,bicubic flexivit_small.300ep_in1k,95.150,4.850,99.150,0.850,22.06,240,0.950,bicubic nasnetalarge.tf_in1k,95.150,4.850,99.130,0.870,88.75,331,0.911,bicubic resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,95.140,4.860,99.300,0.700,44.18,224,0.875,bilinear convnextv2_nano.fcmae_ft_in1k,95.140,4.860,99.220,0.780,15.62,288,1.000,bicubic efficientnet_b3.ra2_in1k,95.140,4.860,99.210,0.790,12.23,320,1.000,bicubic vit_relpos_base_patch16_224.sw_in1k,95.130,4.870,99.290,0.710,86.43,224,0.900,bicubic wide_resnet50_2.racm_in1k,95.130,4.870,99.260,0.740,68.88,288,0.950,bicubic resnet61q.ra2_in1k,95.130,4.870,99.080,0.920,36.85,288,1.000,bicubic xcit_medium_24_p16_224.fb_in1k,95.130,4.870,98.940,1.060,84.40,224,1.000,bicubic vit_small_r26_s32_224.augreg_in21k_ft_in1k,95.120,4.880,99.220,0.780,36.43,224,0.900,bicubic fbnetv3_g.ra2_in1k,95.120,4.880,99.200,0.800,16.62,288,0.950,bilinear tf_efficientnetv2_b3.in1k,95.120,4.880,99.200,0.800,14.36,300,0.904,bicubic cs3sedarknet_l.c2ns_in1k,95.110,4.890,99.210,0.790,21.91,288,0.950,bicubic efficientformerv2_s2.snap_dist_in1k,95.110,4.890,99.120,0.880,12.71,224,0.950,bicubic convit_base.fb_in1k,95.100,4.900,99.150,0.850,86.54,224,0.875,bicubic inception_next_tiny.sail_in1k,95.100,4.900,99.140,0.860,28.06,224,0.875,bicubic poolformer_m48.sail_in1k,95.100,4.900,99.100,0.900,73.47,224,0.950,bicubic coatnet_rmlp_nano_rw_224.sw_in1k,95.090,4.910,99.170,0.830,15.15,224,0.900,bicubic resnet152.a1_in1k,95.090,4.910,98.990,1.010,60.19,288,1.000,bicubic ecaresnet50t.ra2_in1k,95.080,4.920,99.290,0.710,25.57,320,0.950,bicubic tresnet_xl.miil_in1k,95.080,4.920,99.260,0.740,78.44,224,0.875,bilinear davit_tiny.msft_in1k,95.080,4.920,99.140,0.860,28.36,224,0.950,bicubic crossvit_18_240.in1k,95.070,4.930,99.120,0.880,43.27,240,0.875,bicubic coat_lite_small.in1k,95.070,4.930,99.030,0.970,19.84,224,0.900,bicubic crossvit_base_240.in1k,95.070,4.930,98.980,1.020,105.03,240,0.875,bicubic efficientnetv2_rw_t.ra2_in1k,95.060,4.940,99.220,0.780,13.65,288,1.000,bicubic vit_relpos_medium_patch16_rpn_224.sw_in1k,95.060,4.940,99.200,0.800,38.73,224,0.900,bicubic xcit_small_24_p16_224.fb_in1k,95.060,4.940,99.070,0.930,47.67,224,1.000,bicubic xception41p.ra3_in1k,95.050,4.950,99.160,0.840,26.91,299,0.940,bicubic poolformerv2_m36.sail_in1k,95.050,4.950,99.150,0.850,56.08,224,1.000,bicubic coatnet_nano_rw_224.sw_in1k,95.050,4.950,99.140,0.860,15.14,224,0.900,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k,95.050,4.950,99.080,0.920,18.45,256,0.888,bicubic focalnet_tiny_srf.ms_in1k,95.040,4.960,99.280,0.720,28.43,224,0.900,bicubic resnet152.tv2_in1k,95.040,4.960,99.170,0.830,60.19,224,0.965,bilinear poolformer_m36.sail_in1k,95.030,4.970,99.100,0.900,56.17,224,0.950,bicubic swinv2_tiny_window8_256.ms_in1k,95.020,4.980,99.170,0.830,28.35,256,0.900,bicubic gcvit_xtiny.in1k,95.020,4.980,99.160,0.840,19.98,224,0.875,bicubic deit_base_patch16_224.fb_in1k,95.020,4.980,98.970,1.030,86.57,224,0.900,bicubic pvt_v2_b2.in1k,95.010,4.990,99.140,0.860,25.36,224,0.900,bicubic halo2botnet50ts_256.a1h_in1k,95.010,4.990,99.050,0.950,22.64,256,0.950,bicubic ecaresnet101d_pruned.miil_in1k,95.000,5.000,99.230,0.770,24.88,288,0.950,bicubic seresnext50_32x4d.racm_in1k,95.000,5.000,99.190,0.810,27.56,288,0.950,bicubic resnext50_32x4d.a1h_in1k,94.990,5.010,99.190,0.810,25.03,288,1.000,bicubic crossvit_15_dagger_240.in1k,94.990,5.010,99.160,0.840,28.21,240,0.875,bicubic coatnet_bn_0_rw_224.sw_in1k,94.980,5.020,99.230,0.770,27.44,224,0.950,bicubic visformer_small.in1k,94.970,5.030,99.210,0.790,40.22,224,0.900,bicubic convmixer_1536_20.in1k,94.970,5.030,99.170,0.830,51.63,224,0.960,bicubic tf_efficientnet_b3.ap_in1k,94.970,5.030,99.110,0.890,12.23,300,0.904,bicubic resnet152.a2_in1k,94.970,5.030,99.070,0.930,60.19,288,1.000,bicubic xcit_large_24_p16_224.fb_in1k,94.960,5.040,98.830,1.170,189.10,224,1.000,bicubic cait_xxs24_384.fb_dist_in1k,94.950,5.050,99.130,0.870,12.03,384,1.000,bicubic vit_srelpos_medium_patch16_224.sw_in1k,94.940,5.060,99.200,0.800,38.74,224,0.900,bicubic resnet101.a1_in1k,94.940,5.060,99.040,0.960,44.55,288,1.000,bicubic gernet_l.idstcv_in1k,94.930,5.070,99.200,0.800,31.08,256,0.875,bilinear resnetv2_50d_evos.ah_in1k,94.920,5.080,99.180,0.820,25.59,288,1.000,bicubic swin_s3_tiny_224.ms_in1k,94.920,5.080,99.170,0.830,28.33,224,0.900,bicubic convit_small.fb_in1k,94.920,5.080,99.100,0.900,27.78,224,0.875,bicubic nest_tiny_jx.goog_in1k,94.920,5.080,99.100,0.900,17.06,224,0.875,bicubic tf_efficientnet_b3.aa_in1k,94.910,5.090,99.110,0.890,12.23,300,0.904,bicubic xcit_tiny_24_p8_224.fb_in1k,94.900,5.100,99.190,0.810,12.11,224,1.000,bicubic tresnet_l.miil_in1k,94.900,5.100,99.030,0.970,55.99,224,0.875,bilinear coatnet_0_rw_224.sw_in1k,94.900,5.100,99.020,0.980,27.44,224,0.950,bicubic vit_small_patch16_224.augreg_in21k_ft_in1k,94.890,5.110,99.270,0.730,22.05,224,0.900,bicubic ecaresnet50t.a1_in1k,94.890,5.110,99.070,0.930,25.57,288,1.000,bicubic resnet101.a2_in1k,94.890,5.110,99.060,0.940,44.55,288,1.000,bicubic mixer_b16_224.miil_in21k_ft_in1k,94.880,5.120,99.080,0.920,59.88,224,0.875,bilinear regnety_032.tv2_in1k,94.870,5.130,99.230,0.770,19.44,224,0.965,bicubic convnext_nano.d1h_in1k,94.870,5.130,99.140,0.860,15.59,288,1.000,bicubic tf_efficientnet_lite4.in1k,94.870,5.130,99.100,0.900,13.01,380,0.920,bilinear tf_efficientnet_b1.ns_jft_in1k,94.860,5.140,99.250,0.750,7.79,240,0.882,bicubic coatnext_nano_rw_224.sw_in1k,94.850,5.150,99.200,0.800,14.70,224,0.900,bicubic resnetaa50.a1h_in1k,94.850,5.150,99.120,0.880,25.56,288,1.000,bicubic efficientvit_b2.r224_in1k,94.850,5.150,98.970,1.030,24.33,224,0.950,bicubic resnet101.tv2_in1k,94.840,5.160,99.030,0.970,44.55,224,0.965,bilinear edgenext_small.usi_in1k,94.830,5.170,99.410,0.590,5.59,320,1.000,bicubic vit_base_patch16_rpn_224.sw_in1k,94.820,5.180,99.090,0.910,86.54,224,0.900,bicubic xcit_small_12_p16_224.fb_in1k,94.820,5.180,99.060,0.940,26.25,224,1.000,bicubic wide_resnet50_2.tv2_in1k,94.810,5.190,99.260,0.740,68.88,224,0.965,bilinear resnet50d.ra2_in1k,94.810,5.190,99.230,0.770,25.58,288,0.950,bicubic lamhalobotnet50ts_256.a1h_in1k,94.810,5.190,98.980,1.020,22.57,256,0.950,bicubic pit_b_224.in1k,94.810,5.190,98.820,1.180,73.76,224,0.900,bicubic swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,94.800,5.200,99.290,0.710,28.29,224,0.900,bicubic cs3darknet_focus_l.c2ns_in1k,94.790,5.210,99.160,0.840,21.15,288,0.950,bicubic gcresnet50t.ra2_in1k,94.780,5.220,99.120,0.880,25.90,288,1.000,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k,94.780,5.220,99.090,0.910,14.25,256,0.888,bicubic swinv2_cr_tiny_ns_224.sw_in1k,94.770,5.230,99.110,0.890,28.33,224,0.900,bicubic twins_svt_small.in1k,94.760,5.240,99.090,0.910,24.06,224,0.900,bicubic coat_mini.in1k,94.760,5.240,98.950,1.050,10.34,224,0.900,bicubic vit_base_patch32_clip_224.laion2b_ft_in1k,94.750,5.250,99.070,0.930,88.22,224,0.900,bicubic resnetv2_50x1_bit.goog_in21k_ft_in1k,94.740,5.260,99.180,0.820,25.55,448,1.000,bilinear seresnet50.ra2_in1k,94.740,5.260,99.110,0.890,28.09,288,0.950,bicubic legacy_senet154.in1k,94.730,5.270,99.100,0.900,115.09,224,0.875,bilinear regnetx_080.tv2_in1k,94.730,5.270,99.030,0.970,39.57,224,0.965,bicubic repvit_m3.dist_in1k,94.720,5.280,99.060,0.940,10.68,224,0.950,bicubic halonet50ts.a1h_in1k,94.720,5.280,98.830,1.170,22.73,256,0.940,bicubic resnet152s.gluon_in1k,94.710,5.290,99.060,0.940,60.32,224,0.875,bicubic resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,94.700,5.300,99.240,0.760,25.03,224,0.875,bilinear poolformerv2_s36.sail_in1k,94.700,5.300,99.230,0.770,30.79,224,1.000,bicubic resnest50d_4s2x40d.in1k,94.700,5.300,99.130,0.870,30.42,224,0.875,bicubic crossvit_15_240.in1k,94.700,5.300,99.080,0.920,27.53,240,0.875,bicubic senet154.gluon_in1k,94.700,5.300,98.970,1.030,115.09,224,0.875,bicubic xcit_tiny_12_p8_224.fb_dist_in1k,94.690,5.310,99.180,0.820,6.71,224,1.000,bicubic pit_s_distilled_224.in1k,94.690,5.310,99.150,0.850,24.04,224,0.900,bicubic deit3_small_patch16_224.fb_in1k,94.690,5.310,98.760,1.240,22.06,224,0.900,bicubic vit_relpos_small_patch16_224.sw_in1k,94.680,5.320,99.110,0.890,21.98,224,0.900,bicubic fastvit_sa12.apple_dist_in1k,94.680,5.320,99.100,0.900,11.58,256,0.900,bicubic resnetv2_50.a1h_in1k,94.680,5.320,99.090,0.910,25.55,288,1.000,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k,94.680,5.320,98.920,1.080,10.59,256,0.888,bicubic ecaresnet50d.miil_in1k,94.670,5.330,99.260,0.740,25.58,288,0.950,bicubic cs3darknet_l.c2ns_in1k,94.670,5.330,99.230,0.770,21.16,288,0.950,bicubic efficientnet_el.ra_in1k,94.670,5.330,99.130,0.870,10.59,300,0.904,bicubic regnetz_b16.ra3_in1k,94.670,5.330,99.130,0.870,9.72,288,1.000,bicubic rexnet_200.nav_in1k,94.670,5.330,99.090,0.910,16.37,224,0.875,bicubic tresnet_m.miil_in1k_448,94.660,5.340,99.150,0.850,31.39,448,0.875,bilinear seresnext101_64x4d.gluon_in1k,94.650,5.350,98.970,1.030,88.23,224,0.875,bicubic tiny_vit_5m_224.dist_in22k_ft_in1k,94.630,5.370,99.140,0.860,5.39,224,0.950,bicubic resnet50_gn.a1h_in1k,94.620,5.380,99.150,0.850,25.56,288,0.950,bicubic swin_tiny_patch4_window7_224.ms_in1k,94.620,5.380,99.120,0.880,28.29,224,0.900,bicubic poolformer_s36.sail_in1k,94.620,5.380,99.050,0.950,30.86,224,0.900,bicubic vit_small_patch16_384.augreg_in1k,94.610,5.390,99.140,0.860,22.20,384,1.000,bicubic twins_pcpvt_small.in1k,94.600,5.400,99.150,0.850,24.11,224,0.900,bicubic deit_small_distilled_patch16_224.fb_in1k,94.600,5.400,99.100,0.900,22.44,224,0.900,bicubic resnet50.tv2_in1k,94.600,5.400,99.090,0.910,25.56,224,0.965,bilinear efficientnet_b3_pruned.in1k,94.600,5.400,99.070,0.930,9.86,300,0.904,bicubic resnest50d.in1k,94.600,5.400,99.030,0.970,27.48,224,0.875,bilinear vit_small_patch32_384.augreg_in21k_ft_in1k,94.590,5.410,99.140,0.860,22.92,384,1.000,bicubic pit_s_224.in1k,94.590,5.410,98.930,1.070,23.46,224,0.900,bicubic crossvit_small_240.in1k,94.580,5.420,99.120,0.880,26.86,240,0.875,bicubic convnext_nano_ols.d1h_in1k,94.580,5.420,99.050,0.950,15.65,288,1.000,bicubic ecaresnet50t.a2_in1k,94.570,5.430,99.040,0.960,25.57,288,1.000,bicubic repvgg_b3.rvgg_in1k,94.570,5.430,98.910,1.090,123.09,224,0.875,bilinear lambda_resnet50ts.a1h_in1k,94.570,5.430,98.650,1.350,21.54,256,0.950,bicubic tnt_s_patch16_224,94.560,5.440,99.170,0.830,23.76,224,0.900,bicubic resmlp_36_224.fb_distilled_in1k,94.560,5.440,99.160,0.840,44.69,224,0.875,bicubic convnextv2_pico.fcmae_ft_in1k,94.560,5.440,99.140,0.860,9.07,288,0.950,bicubic vit_srelpos_small_patch16_224.sw_in1k,94.550,5.450,99.150,0.850,21.97,224,0.900,bicubic repvit_m1_1.dist_450e_in1k,94.550,5.450,99.090,0.910,8.80,224,0.950,bicubic gernet_m.idstcv_in1k,94.540,5.460,98.920,1.080,21.14,224,0.875,bilinear ecaresnetlight.miil_in1k,94.530,5.470,99.180,0.820,30.16,288,0.950,bicubic regnety_320.pycls_in1k,94.520,5.480,99.170,0.830,145.05,224,0.875,bicubic xcit_tiny_12_p16_384.fb_dist_in1k,94.520,5.480,99.170,0.830,6.72,384,1.000,bicubic res2net101d.in1k,94.520,5.480,98.980,1.020,45.23,224,0.875,bilinear mobilevitv2_200.cvnets_in1k,94.520,5.480,98.970,1.030,18.45,256,0.888,bicubic haloregnetz_b.ra3_in1k,94.520,5.480,98.960,1.040,11.68,224,0.940,bicubic regnetx_032.tv2_in1k,94.520,5.480,98.910,1.090,15.30,224,0.965,bicubic resnet50.c1_in1k,94.510,5.490,99.070,0.930,25.56,288,1.000,bicubic resnet50.b1k_in1k,94.510,5.490,99.000,1.000,25.56,288,1.000,bicubic sehalonet33ts.ra2_in1k,94.510,5.490,98.760,1.240,13.69,256,0.940,bicubic repvgg_b3g4.rvgg_in1k,94.500,5.500,99.020,0.980,83.83,224,0.875,bilinear gcresnext50ts.ch_in1k,94.490,5.510,99.010,0.990,15.67,288,1.000,bicubic ese_vovnet39b.ra_in1k,94.480,5.520,99.060,0.940,24.57,288,0.950,bicubic poolformerv2_s24.sail_in1k,94.470,5.530,99.010,0.990,21.34,224,1.000,bicubic resnet50.d_in1k,94.470,5.530,99.000,1.000,25.56,288,1.000,bicubic resnext50_32x4d.tv2_in1k,94.460,5.540,99.030,0.970,25.03,224,0.965,bilinear resnet50d.a2_in1k,94.460,5.540,98.900,1.100,25.58,288,1.000,bicubic eva02_tiny_patch14_336.mim_in22k_ft_in1k,94.450,5.550,99.100,0.900,5.76,336,1.000,bicubic seresnet50.a2_in1k,94.450,5.550,98.890,1.110,28.09,288,1.000,bicubic vit_base_patch32_clip_224.openai_ft_in1k,94.440,5.560,99.180,0.820,88.22,224,0.900,bicubic convmixer_768_32.in1k,94.440,5.560,99.110,0.890,21.11,224,0.960,bicubic vit_base_patch16_384.augreg_in1k,94.440,5.560,99.030,0.970,86.86,384,1.000,bicubic resnet152.a3_in1k,94.440,5.560,98.880,1.120,60.19,224,0.950,bicubic seresnext101_32x4d.gluon_in1k,94.430,5.570,99.090,0.910,48.96,224,0.875,bicubic fastvit_sa12.apple_in1k,94.430,5.570,99.030,0.970,11.58,256,0.900,bicubic resnet152d.gluon_in1k,94.430,5.570,99.000,1.000,60.21,224,0.875,bicubic regnety_016.tv2_in1k,94.410,5.590,99.040,0.960,11.20,224,0.965,bicubic levit_256.fb_dist_in1k,94.400,5.600,99.060,0.940,18.89,224,0.900,bicubic levit_conv_256.fb_dist_in1k,94.400,5.600,99.060,0.940,18.89,224,0.900,bicubic vit_base_patch32_224.augreg_in21k_ft_in1k,94.400,5.600,99.060,0.940,88.22,224,0.900,bicubic resnext50d_32x4d.bt_in1k,94.400,5.600,99.050,0.950,25.05,288,0.950,bicubic repvit_m2.dist_in1k,94.400,5.600,99.040,0.960,8.80,224,0.950,bicubic resnet50d.a1_in1k,94.400,5.600,98.790,1.210,25.58,288,1.000,bicubic poolformer_s24.sail_in1k,94.390,5.610,99.060,0.940,21.39,224,0.900,bicubic nf_resnet50.ra2_in1k,94.380,5.620,99.070,0.930,25.56,288,0.940,bicubic resnest50d_1s4x24d.in1k,94.380,5.620,99.070,0.930,25.68,224,0.875,bicubic inception_v4.tf_in1k,94.380,5.620,98.820,1.180,42.68,299,0.875,bicubic resnext50_32x4d.a1_in1k,94.380,5.620,98.780,1.220,25.03,288,1.000,bicubic darknet53.c2ns_in1k,94.360,5.640,99.050,0.950,41.61,288,1.000,bicubic efficientnet_b2.ra_in1k,94.360,5.640,99.050,0.950,9.11,288,1.000,bicubic edgenext_small_rw.sw_in1k,94.360,5.640,99.040,0.960,7.83,320,1.000,bicubic inception_resnet_v2.tf_in1k,94.360,5.640,98.800,1.200,55.84,299,0.897,bicubic tf_efficientnet_el.in1k,94.350,5.650,99.100,0.900,10.59,300,0.904,bicubic xcit_tiny_12_p8_224.fb_in1k,94.350,5.650,99.070,0.930,6.71,224,1.000,bicubic gcresnet33ts.ra2_in1k,94.350,5.650,98.960,1.040,19.88,288,1.000,bicubic resnext101_64x4d.gluon_in1k,94.350,5.650,98.880,1.120,83.46,224,0.875,bicubic resmlp_24_224.fb_distilled_in1k,94.330,5.670,99.090,0.910,30.02,224,0.875,bicubic resnext50_32x4d.ra_in1k,94.330,5.670,99.030,0.970,25.03,288,0.950,bicubic resnet50.fb_ssl_yfcc100m_ft_in1k,94.310,5.690,99.150,0.850,25.56,224,0.875,bilinear sebotnet33ts_256.a1h_in1k,94.310,5.690,98.600,1.400,13.70,256,0.940,bicubic ecaresnet50d_pruned.miil_in1k,94.300,5.700,99.200,0.800,19.94,288,0.950,bicubic resnet50.b2k_in1k,94.300,5.700,98.930,1.070,25.56,288,1.000,bicubic tf_efficientnet_b3.in1k,94.290,5.710,99.100,0.900,12.23,300,0.904,bicubic rexnet_150.nav_in1k,94.280,5.720,99.090,0.910,9.73,224,0.875,bicubic fastvit_s12.apple_dist_in1k,94.280,5.720,98.980,1.020,9.47,256,0.900,bicubic res2net50d.in1k,94.280,5.720,98.860,1.140,25.72,224,0.875,bilinear repvit_m1_0.dist_450e_in1k,94.270,5.730,99.040,0.960,7.30,224,0.950,bicubic resnet50.c2_in1k,94.270,5.730,99.040,0.960,25.56,288,1.000,bicubic tf_efficientnet_b2.ap_in1k,94.270,5.730,98.950,1.050,9.11,260,0.890,bicubic resmlp_big_24_224.fb_in1k,94.270,5.730,98.820,1.180,129.14,224,0.875,bicubic regnetx_120.pycls_in1k,94.260,5.740,99.170,0.830,46.11,224,0.875,bicubic seresnet33ts.ra2_in1k,94.260,5.740,99.000,1.000,19.78,288,1.000,bicubic eca_resnet33ts.ra2_in1k,94.250,5.750,99.030,0.970,19.68,288,1.000,bicubic cspresnext50.ra_in1k,94.240,5.760,99.050,0.950,20.57,256,0.887,bilinear xcit_tiny_24_p16_224.fb_dist_in1k,94.240,5.760,98.960,1.040,12.12,224,1.000,bicubic regnetx_320.pycls_in1k,94.230,5.770,99.050,0.950,107.81,224,0.875,bicubic efficientvit_b1.r288_in1k,94.230,5.770,98.950,1.050,9.10,288,1.000,bicubic mobilevitv2_175.cvnets_in1k,94.230,5.770,98.930,1.070,14.25,256,0.888,bicubic mixnet_xl.ra_in1k,94.230,5.770,98.820,1.180,11.90,224,0.875,bicubic tf_efficientnet_b2.aa_in1k,94.220,5.780,99.040,0.960,9.11,260,0.890,bicubic resnet50.a1_in1k,94.220,5.780,98.930,1.070,25.56,288,1.000,bicubic resnext50_32x4d.a2_in1k,94.220,5.780,98.750,1.250,25.03,288,1.000,bicubic maxvit_rmlp_pico_rw_256.sw_in1k,94.210,5.790,99.000,1.000,7.52,256,0.950,bicubic darknetaa53.c2ns_in1k,94.210,5.790,98.950,1.050,36.02,288,1.000,bilinear resnet50.a1h_in1k,94.200,5.800,98.920,1.080,25.56,224,1.000,bicubic repvit_m1_1.dist_300e_in1k,94.180,5.820,99.080,0.920,8.80,224,0.950,bicubic resnet101s.gluon_in1k,94.180,5.820,99.010,0.990,44.67,224,0.875,bicubic resnet101d.gluon_in1k,94.180,5.820,98.940,1.060,44.57,224,0.875,bicubic resnetblur50.bt_in1k,94.170,5.830,99.010,0.990,25.56,288,0.950,bicubic seresnext50_32x4d.gluon_in1k,94.170,5.830,98.920,1.080,27.56,224,0.875,bicubic seresnet50.a1_in1k,94.160,5.840,98.850,1.150,28.09,288,1.000,bicubic dpn92.mx_in1k,94.150,5.850,98.950,1.050,37.67,224,0.875,bicubic regnety_064.pycls_in1k,94.130,5.870,99.030,0.970,30.58,224,0.875,bicubic regnety_160.pycls_in1k,94.130,5.870,99.020,0.980,83.59,224,0.875,bicubic resnext101_32x4d.gluon_in1k,94.130,5.870,98.940,1.060,44.18,224,0.875,bicubic legacy_seresnext101_32x4d.in1k,94.120,5.880,98.970,1.030,48.96,224,0.875,bilinear resnet50.a2_in1k,94.120,5.880,98.850,1.150,25.56,288,1.000,bicubic inception_resnet_v2.tf_ens_adv_in1k,94.120,5.880,98.790,1.210,55.84,299,0.897,bicubic cspdarknet53.ra_in1k,94.100,5.900,98.980,1.020,27.64,256,0.887,bilinear fastvit_t12.apple_dist_in1k,94.100,5.900,98.950,1.050,7.55,256,0.900,bicubic efficientnet_el_pruned.in1k,94.090,5.910,99.020,0.980,10.59,300,0.904,bicubic tf_efficientnet_lite3.in1k,94.090,5.910,98.960,1.040,8.20,300,0.904,bilinear resnet50.ra_in1k,94.090,5.910,98.840,1.160,25.56,288,0.950,bicubic tresnet_m.miil_in1k,94.080,5.920,98.830,1.170,31.39,224,0.875,bilinear tf_efficientnetv2_b2.in1k,94.060,5.940,98.930,1.070,10.10,260,0.890,bicubic gcvit_xxtiny.in1k,94.050,5.950,99.080,0.920,12.00,224,0.875,bicubic mobilevitv2_150.cvnets_in1k,94.050,5.950,98.900,1.100,10.59,256,0.888,bicubic convnext_pico.d1_in1k,94.030,5.970,99.010,0.990,9.05,288,0.950,bicubic resnetrs50.tf_in1k,94.030,5.970,98.850,1.150,35.69,224,0.910,bicubic resnet152.gluon_in1k,94.030,5.970,98.740,1.260,60.19,224,0.875,bicubic regnetx_016.tv2_in1k,94.020,5.980,98.930,1.070,9.19,224,0.965,bicubic hrnet_w48.ms_in1k,94.010,5.990,99.030,0.970,77.47,224,0.875,bilinear regnety_120.pycls_in1k,94.010,5.990,99.030,0.970,51.82,224,0.875,bicubic convnext_pico_ols.d1_in1k,94.010,5.990,98.930,1.070,9.06,288,1.000,bicubic dpn107.mx_in1k,94.010,5.990,98.820,1.180,86.92,224,0.875,bicubic resnet50.ram_in1k,94.000,6.000,98.880,1.120,25.56,288,0.950,bicubic dla102x2.in1k,93.990,6.010,99.040,0.960,41.28,224,0.875,bilinear deit_small_patch16_224.fb_in1k,93.990,6.010,98.960,1.040,22.05,224,0.900,bicubic skresnext50_32x4d.ra_in1k,93.970,6.030,98.830,1.170,27.48,224,0.875,bicubic resnet50.bt_in1k,93.960,6.040,98.930,1.070,25.56,288,0.950,bicubic efficientformer_l1.snap_dist_in1k,93.940,6.060,99.030,0.970,12.29,224,0.950,bicubic ecaresnet26t.ra2_in1k,93.940,6.060,98.930,1.070,16.01,320,0.950,bicubic dpn98.mx_in1k,93.930,6.070,98.910,1.090,61.57,224,0.875,bicubic resnet33ts.ra2_in1k,93.930,6.070,98.880,1.120,19.68,288,1.000,bicubic xception71.tf_in1k,93.920,6.080,98.950,1.050,42.34,299,0.903,bicubic regnetx_160.pycls_in1k,93.910,6.090,99.090,0.910,54.28,224,0.875,bicubic cait_xxs36_224.fb_dist_in1k,93.910,6.090,98.890,1.110,17.30,224,1.000,bicubic vit_base_patch16_224.sam_in1k,93.890,6.110,98.890,1.110,86.57,224,0.900,bicubic nf_regnet_b1.ra2_in1k,93.890,6.110,98.740,1.260,10.22,288,0.900,bicubic regnety_080.pycls_in1k,93.880,6.120,99.000,1.000,39.18,224,0.875,bicubic fbnetv3_d.ra2_in1k,93.870,6.130,98.890,1.110,10.31,256,0.950,bilinear cspresnet50.ra_in1k,93.870,6.130,98.870,1.130,21.62,256,0.887,bilinear resnet152c.gluon_in1k,93.870,6.130,98.800,1.200,60.21,224,0.875,bicubic ecaresnet50t.a3_in1k,93.860,6.140,98.850,1.150,25.57,224,0.950,bicubic resnet101.a3_in1k,93.860,6.140,98.760,1.240,44.55,224,0.950,bicubic xcit_tiny_24_p16_224.fb_in1k,93.850,6.150,98.750,1.250,12.12,224,1.000,bicubic efficientformerv2_s1.snap_dist_in1k,93.840,6.160,98.890,1.110,6.19,224,0.950,bicubic hrnet_w64.ms_in1k,93.830,6.170,98.940,1.060,128.06,224,0.875,bilinear repvgg_b2g4.rvgg_in1k,93.830,6.170,98.930,1.070,61.76,224,0.875,bilinear efficientnet_b2_pruned.in1k,93.800,6.200,98.910,1.090,8.31,260,0.890,bicubic dla169.in1k,93.800,6.200,98.860,1.140,53.39,224,0.875,bilinear tiny_vit_5m_224.in1k,93.790,6.210,98.940,1.060,5.39,224,0.950,bicubic regnetx_080.pycls_in1k,93.790,6.210,98.910,1.090,39.57,224,0.875,bicubic dpn68b.ra_in1k,93.790,6.210,98.540,1.460,12.61,288,1.000,bicubic resnext101_32x8d.tv_in1k,93.780,6.220,98.960,1.040,88.79,224,0.875,bilinear dpn131.mx_in1k,93.780,6.220,98.850,1.150,79.25,224,0.875,bicubic repvit_m1_0.dist_300e_in1k,93.760,6.240,98.920,1.080,7.30,224,0.950,bicubic resnet101.gluon_in1k,93.760,6.240,98.700,1.300,44.55,224,0.875,bicubic tf_efficientnet_b0.ns_jft_in1k,93.750,6.250,98.970,1.030,5.29,224,0.875,bicubic convnextv2_femto.fcmae_ft_in1k,93.750,6.250,98.930,1.070,5.23,288,0.950,bicubic xception65.tf_in1k,93.750,6.250,98.870,1.130,39.92,299,0.903,bicubic efficientnet_em.ra2_in1k,93.730,6.270,98.930,1.070,6.90,240,0.882,bicubic hrnet_w40.ms_in1k,93.730,6.270,98.800,1.200,57.56,224,0.875,bilinear wide_resnet101_2.tv_in1k,93.720,6.280,98.810,1.190,126.89,224,0.875,bilinear tf_efficientnet_b1.aa_in1k,93.720,6.280,98.800,1.200,7.79,240,0.882,bicubic tf_efficientnet_b2.in1k,93.710,6.290,98.930,1.070,9.11,260,0.890,bicubic tf_efficientnetv2_b1.in1k,93.710,6.290,98.820,1.180,8.14,240,0.882,bicubic efficientvit_b1.r256_in1k,93.710,6.290,98.810,1.190,9.10,256,1.000,bicubic levit_192.fb_dist_in1k,93.710,6.290,98.790,1.210,10.95,224,0.900,bicubic levit_conv_192.fb_dist_in1k,93.710,6.290,98.790,1.210,10.95,224,0.900,bicubic resnet101c.gluon_in1k,93.700,6.300,98.760,1.240,44.57,224,0.875,bicubic fastvit_s12.apple_in1k,93.700,6.300,98.720,1.280,9.47,256,0.900,bicubic regnetx_040.pycls_in1k,93.690,6.310,98.930,1.070,22.12,224,0.875,bicubic rexnet_130.nav_in1k,93.680,6.320,98.700,1.300,7.56,224,0.875,bicubic resnext50_32x4d.gluon_in1k,93.670,6.330,98.690,1.310,25.03,224,0.875,bicubic resmlp_36_224.fb_in1k,93.650,6.350,98.950,1.050,44.69,224,0.875,bicubic mobileone_s4.apple_in1k,93.650,6.350,98.650,1.350,14.95,224,0.900,bilinear regnetx_064.pycls_in1k,93.640,6.360,99.040,0.960,26.21,224,0.875,bicubic resnet50.am_in1k,93.640,6.360,98.870,1.130,25.56,224,0.875,bicubic regnety_040.pycls_in1k,93.630,6.370,98.950,1.050,20.65,224,0.875,bicubic fbnetv3_b.ra2_in1k,93.630,6.370,98.910,1.090,8.60,256,0.950,bilinear tf_efficientnet_b1.ap_in1k,93.630,6.370,98.800,1.200,7.79,240,0.882,bicubic hrnet_w44.ms_in1k,93.620,6.380,98.960,1.040,67.06,224,0.875,bilinear legacy_xception.tf_in1k,93.620,6.380,98.770,1.230,22.86,299,0.897,bicubic resnet34d.ra2_in1k,93.600,6.400,98.760,1.240,21.82,288,0.950,bicubic res2net50_26w_6s.in1k,93.590,6.410,98.740,1.260,37.05,224,0.875,bilinear resnet32ts.ra2_in1k,93.590,6.410,98.740,1.260,17.96,288,1.000,bicubic halonet26t.a1h_in1k,93.590,6.410,98.630,1.370,12.48,256,0.950,bicubic repvgg_b2.rvgg_in1k,93.580,6.420,99.070,0.930,89.02,224,0.875,bilinear dla60_res2next.in1k,93.580,6.420,98.790,1.210,17.03,224,0.875,bilinear tf_efficientnet_cc_b1_8e.in1k,93.580,6.420,98.690,1.310,39.72,240,0.882,bicubic resnet50s.gluon_in1k,93.570,6.430,98.840,1.160,25.68,224,0.875,bicubic inception_v3.gluon_in1k,93.560,6.440,98.840,1.160,23.83,299,0.875,bicubic resnext50_32x4d.a3_in1k,93.550,6.450,98.820,1.180,25.03,224,0.950,bicubic eca_halonext26ts.c1_in1k,93.550,6.450,98.680,1.320,10.76,256,0.940,bicubic repghostnet_200.in1k,93.550,6.450,98.600,1.400,9.80,224,0.875,bicubic dla102x.in1k,93.540,6.460,98.850,1.150,26.31,224,0.875,bilinear resnet50d.gluon_in1k,93.540,6.460,98.710,1.290,25.58,224,0.875,bicubic res2net101_26w_4s.in1k,93.530,6.470,98.600,1.400,45.21,224,0.875,bilinear convnext_tiny.fb_in22k_ft_in1k,93.530,6.470,98.570,1.430,28.59,288,1.000,bicubic coat_tiny.in1k,93.510,6.490,98.680,1.320,5.50,224,0.900,bicubic selecsls60b.in1k,93.500,6.500,98.840,1.160,32.77,224,0.875,bicubic gmlp_s16_224.ra3_in1k,93.500,6.500,98.780,1.220,19.42,224,0.875,bicubic pvt_v2_b1.in1k,93.490,6.510,98.860,1.140,14.01,224,0.900,bicubic fastvit_t12.apple_in1k,93.490,6.510,98.710,1.290,7.55,256,0.900,bicubic hrnet_w18.ms_aug_in1k,93.480,6.520,98.980,1.020,21.30,224,0.950,bilinear mobilevitv2_125.cvnets_in1k,93.480,6.520,98.840,1.160,7.48,256,0.888,bicubic xception41.tf_in1k,93.480,6.520,98.750,1.250,26.97,299,0.903,bicubic coat_lite_mini.in1k,93.470,6.530,98.770,1.230,11.01,224,0.900,bicubic regnety_032.pycls_in1k,93.460,6.540,98.950,1.050,19.44,224,0.875,bicubic wide_resnet50_2.tv_in1k,93.460,6.540,98.950,1.050,68.88,224,0.875,bilinear repvit_m0_9.dist_300e_in1k,93.460,6.540,98.820,1.180,5.49,224,0.950,bicubic legacy_seresnext50_32x4d.in1k,93.450,6.550,98.800,1.200,27.56,224,0.875,bilinear cait_xxs24_224.fb_dist_in1k,93.450,6.550,98.780,1.220,11.96,224,1.000,bicubic vit_small_patch16_224.augreg_in1k,93.450,6.550,98.780,1.220,22.05,224,0.900,bicubic repvit_m0_9.dist_450e_in1k,93.440,6.560,98.910,1.090,5.49,224,0.950,bicubic convnext_femto.d1_in1k,93.440,6.560,98.820,1.180,5.22,288,0.950,bicubic repvgg_b1.rvgg_in1k,93.440,6.560,98.790,1.210,57.42,224,0.875,bilinear botnet26t_256.c1_in1k,93.440,6.560,98.650,1.350,12.49,256,0.950,bicubic lambda_resnet26rpt_256.c1_in1k,93.430,6.570,98.880,1.120,10.99,256,0.940,bicubic lambda_resnet26t.c1_in1k,93.430,6.570,98.730,1.270,10.96,256,0.940,bicubic vit_tiny_patch16_384.augreg_in21k_ft_in1k,93.420,6.580,98.830,1.170,5.79,384,1.000,bicubic resmlp_24_224.fb_in1k,93.420,6.580,98.810,1.190,30.02,224,0.875,bicubic legacy_seresnet152.in1k,93.410,6.590,98.850,1.150,66.82,224,0.875,bilinear hrnet_w30.ms_in1k,93.410,6.590,98.830,1.170,37.71,224,0.875,bilinear resnet50d.a3_in1k,93.410,6.590,98.750,1.250,25.58,224,0.950,bicubic res2net50_26w_8s.in1k,93.410,6.590,98.690,1.310,48.40,224,0.875,bilinear convnext_femto_ols.d1_in1k,93.390,6.610,98.910,1.090,5.23,288,0.950,bicubic repvit_m1.dist_in1k,93.380,6.620,98.650,1.350,5.49,224,0.950,bicubic dla60_res2net.in1k,93.370,6.630,98.840,1.160,20.85,224,0.875,bilinear xcit_tiny_12_p16_224.fb_dist_in1k,93.350,6.650,98.760,1.240,6.72,224,1.000,bicubic eca_botnext26ts_256.c1_in1k,93.350,6.650,98.690,1.310,10.59,256,0.950,bicubic seresnext26t_32x4d.bt_in1k,93.350,6.650,98.690,1.310,16.81,288,0.950,bicubic vit_base_patch16_224.augreg_in1k,93.350,6.650,98.660,1.340,86.57,224,0.900,bicubic efficientvit_b1.r224_in1k,93.330,6.670,98.570,1.430,9.10,224,0.950,bicubic xcit_nano_12_p8_384.fb_dist_in1k,93.300,6.700,98.860,1.140,3.05,384,1.000,bicubic pit_xs_distilled_224.in1k,93.290,6.710,98.790,1.210,11.00,224,0.900,bicubic cs3darknet_m.c2ns_in1k,93.280,6.720,98.720,1.280,9.31,288,0.950,bicubic dla102.in1k,93.270,6.730,98.790,1.210,33.27,224,0.875,bilinear legacy_seresnet101.in1k,93.270,6.730,98.740,1.260,49.33,224,0.875,bilinear resnet152.tv_in1k,93.240,6.760,98.750,1.250,60.19,224,0.875,bilinear regnetx_032.pycls_in1k,93.240,6.760,98.720,1.280,15.30,224,0.875,bicubic mixnet_l.ft_in1k,93.240,6.760,98.700,1.300,7.33,224,0.875,bicubic resnest26d.gluon_in1k,93.220,6.780,98.850,1.150,17.07,224,0.875,bilinear dla60x.in1k,93.190,6.810,98.720,1.280,17.35,224,0.875,bilinear tf_efficientnet_em.in1k,93.190,6.810,98.660,1.340,6.90,240,0.882,bicubic inception_v3.tf_in1k,93.190,6.810,98.490,1.510,23.83,299,0.875,bicubic res2net50_26w_4s.in1k,93.180,6.820,98.660,1.340,25.70,224,0.875,bilinear vit_base_patch32_384.augreg_in1k,93.160,6.840,98.610,1.390,88.30,384,1.000,bicubic mobilevit_s.cvnets_in1k,93.150,6.850,98.780,1.220,5.58,256,0.900,bicubic regnety_008_tv.tv2_in1k,93.150,6.850,98.680,1.320,6.43,224,0.965,bicubic res2next50.in1k,93.150,6.850,98.640,1.360,24.67,224,0.875,bilinear mobilevitv2_100.cvnets_in1k,93.140,6.860,98.760,1.240,4.90,256,0.888,bicubic vit_relpos_base_patch32_plus_rpn_256.sw_in1k,93.140,6.860,98.310,1.690,119.42,256,0.900,bicubic bat_resnext26ts.ch_in1k,93.120,6.880,98.730,1.270,10.73,256,0.900,bicubic cs3darknet_focus_m.c2ns_in1k,93.100,6.900,98.750,1.250,9.30,288,0.950,bicubic ghostnetv2_160.in1k,93.090,6.910,98.740,1.260,12.39,224,0.875,bicubic seresnext26d_32x4d.bt_in1k,93.060,6.940,98.710,1.290,16.81,288,0.950,bicubic tf_efficientnetv2_b0.in1k,93.060,6.940,98.700,1.300,7.14,224,0.875,bicubic repvgg_b1g4.rvgg_in1k,93.030,6.970,98.820,1.180,39.97,224,0.875,bilinear levit_128.fb_dist_in1k,93.030,6.970,98.710,1.290,9.21,224,0.900,bicubic levit_conv_128.fb_dist_in1k,93.030,6.970,98.700,1.300,9.21,224,0.900,bicubic res2net50_14w_8s.in1k,93.030,6.970,98.700,1.300,25.06,224,0.875,bilinear densenetblur121d.ra_in1k,93.030,6.970,98.600,1.400,8.00,288,0.950,bicubic tf_mixnet_l.in1k,93.030,6.970,98.530,1.470,7.33,224,0.875,bicubic efficientnet_b1.ft_in1k,93.020,6.980,98.710,1.290,7.79,256,1.000,bicubic selecsls60.in1k,93.010,6.990,98.820,1.180,30.67,224,0.875,bicubic regnety_016.pycls_in1k,93.010,6.990,98.670,1.330,11.20,224,0.875,bicubic inception_v3.tf_adv_in1k,93.010,6.990,98.490,1.510,23.83,299,0.875,bicubic hrnet_w18_small_v2.gluon_in1k,93.000,7.000,98.760,1.240,15.60,224,0.875,bicubic resnet34.a1_in1k,93.000,7.000,98.630,1.370,21.80,288,1.000,bicubic visformer_tiny.in1k,92.980,7.020,98.730,1.270,10.32,224,0.900,bicubic convnext_atto_ols.a2_in1k,92.980,7.020,98.670,1.330,3.70,288,0.950,bicubic mobileone_s3.apple_in1k,92.980,7.020,98.630,1.370,10.17,224,0.900,bilinear hardcorenas_f.miil_green_in1k,92.980,7.020,98.620,1.380,8.20,224,0.875,bilinear efficientnet_b1_pruned.in1k,92.980,7.020,98.540,1.460,6.33,240,0.882,bicubic hrnet_w32.ms_in1k,92.950,7.050,98.850,1.150,41.23,224,0.875,bilinear seresnext26ts.ch_in1k,92.940,7.060,98.670,1.330,10.39,288,1.000,bicubic hardcorenas_e.miil_green_in1k,92.940,7.060,98.580,1.420,8.07,224,0.875,bilinear resnet50.a3_in1k,92.940,7.060,98.510,1.490,25.56,224,0.950,bicubic tf_efficientnet_b1.in1k,92.930,7.070,98.660,1.340,7.79,240,0.882,bicubic convnextv2_atto.fcmae_ft_in1k,92.920,7.080,98.560,1.440,3.71,288,0.950,bicubic resnet50c.gluon_in1k,92.910,7.090,98.700,1.300,25.58,224,0.875,bicubic efficientnet_es.ra_in1k,92.910,7.090,98.690,1.310,5.44,224,0.875,bicubic resnet26t.ra2_in1k,92.910,7.090,98.680,1.320,16.01,320,1.000,bicubic resnext50_32x4d.tv_in1k,92.900,7.100,98.730,1.270,25.03,224,0.875,bilinear inception_v3.tv_in1k,92.900,7.100,98.320,1.680,23.83,299,0.875,bicubic densenet161.tv_in1k,92.890,7.110,98.790,1.210,28.68,224,0.875,bicubic pit_xs_224.in1k,92.890,7.110,98.780,1.220,10.62,224,0.900,bicubic poolformerv2_s12.sail_in1k,92.890,7.110,98.530,1.470,11.89,224,1.000,bicubic resnet101.tv_in1k,92.880,7.120,98.660,1.340,44.55,224,0.875,bilinear resmlp_12_224.fb_distilled_in1k,92.870,7.130,98.620,1.380,15.35,224,0.875,bicubic tf_efficientnet_cc_b0_8e.in1k,92.870,7.130,98.460,1.540,24.01,224,0.875,bicubic coat_lite_tiny.in1k,92.860,7.140,98.640,1.360,5.72,224,0.900,bicubic rexnet_100.nav_in1k,92.830,7.170,98.600,1.400,4.80,224,0.875,bicubic tf_efficientnet_cc_b0_4e.in1k,92.820,7.180,98.440,1.560,13.31,224,0.875,bicubic tinynet_a.in1k,92.810,7.190,98.560,1.440,6.19,192,0.875,bicubic dpn68b.mx_in1k,92.780,7.220,98.520,1.480,12.61,224,0.875,bicubic res2net50_48w_2s.in1k,92.780,7.220,98.470,1.530,25.29,224,0.875,bilinear hrnet_w18.ms_in1k,92.770,7.230,98.660,1.340,21.30,224,0.875,bilinear convnext_atto.d2_in1k,92.770,7.230,98.620,1.380,3.70,288,0.950,bicubic crossvit_9_dagger_240.in1k,92.770,7.230,98.490,1.510,8.78,240,0.875,bicubic ese_vovnet19b_dw.ra_in1k,92.760,7.240,98.650,1.350,6.54,288,0.950,bicubic eca_resnext26ts.ch_in1k,92.750,7.250,98.710,1.290,10.30,288,1.000,bicubic gcresnext26ts.ch_in1k,92.740,7.260,98.610,1.390,10.48,288,1.000,bicubic densenet201.tv_in1k,92.700,7.300,98.640,1.360,20.01,224,0.875,bicubic densenet121.ra_in1k,92.700,7.300,98.600,1.400,7.98,288,0.950,bicubic repvgg_a2.rvgg_in1k,92.680,7.320,98.530,1.470,28.21,224,0.875,bilinear gmixer_24_224.ra3_in1k,92.680,7.320,98.280,1.720,24.72,224,0.875,bicubic mobileone_s2.apple_in1k,92.660,7.340,98.680,1.320,7.88,224,0.900,bilinear legacy_seresnet50.in1k,92.660,7.340,98.650,1.350,28.09,224,0.875,bilinear dla60.in1k,92.650,7.350,98.630,1.370,22.04,224,0.875,bilinear tf_efficientnet_b0.ap_in1k,92.620,7.380,98.370,1.630,5.29,224,0.875,bicubic mobilenetv2_120d.ra_in1k,92.610,7.390,98.510,1.490,5.83,224,0.875,bicubic hardcorenas_d.miil_green_in1k,92.610,7.390,98.430,1.570,7.50,224,0.875,bilinear legacy_seresnext26_32x4d.in1k,92.600,7.400,98.410,1.590,16.79,224,0.875,bicubic tf_efficientnet_lite2.in1k,92.590,7.410,98.540,1.460,6.09,260,0.890,bicubic fastvit_t8.apple_dist_in1k,92.590,7.410,98.430,1.570,4.03,256,0.900,bicubic resnet34.a2_in1k,92.570,7.430,98.570,1.430,21.80,288,1.000,bicubic skresnet34.ra_in1k,92.570,7.430,98.520,1.480,22.28,224,0.875,bicubic resnet50.gluon_in1k,92.560,7.440,98.550,1.450,25.56,224,0.875,bicubic resnet26d.bt_in1k,92.550,7.450,98.650,1.350,16.01,288,0.950,bicubic regnetx_016.pycls_in1k,92.530,7.470,98.550,1.450,9.19,224,0.875,bicubic poolformer_s12.sail_in1k,92.500,7.500,98.390,1.610,11.92,224,0.900,bicubic regnetx_008.tv2_in1k,92.490,7.510,98.430,1.570,7.26,224,0.965,bicubic efficientnet_b0.ra_in1k,92.480,7.520,98.680,1.320,5.29,224,0.875,bicubic xcit_tiny_12_p16_224.fb_in1k,92.480,7.520,98.630,1.370,6.72,224,1.000,bicubic selecsls42b.in1k,92.480,7.520,98.430,1.570,32.46,224,0.875,bicubic gernet_s.idstcv_in1k,92.440,7.560,98.500,1.500,8.17,224,0.875,bilinear xcit_nano_12_p8_224.fb_dist_in1k,92.430,7.570,98.540,1.460,3.05,224,1.000,bicubic tf_efficientnet_b0.aa_in1k,92.400,7.600,98.470,1.530,5.29,224,0.875,bicubic repghostnet_150.in1k,92.380,7.620,98.530,1.470,6.58,224,0.875,bicubic resnext26ts.ra2_in1k,92.380,7.620,98.390,1.610,10.30,288,1.000,bicubic seresnet50.a3_in1k,92.360,7.640,98.330,1.670,28.09,224,0.950,bicubic hardcorenas_c.miil_green_in1k,92.350,7.650,98.340,1.660,5.52,224,0.875,bilinear convmixer_1024_20_ks9_p14.in1k,92.330,7.670,98.430,1.570,24.38,224,0.960,bicubic dpn68.mx_in1k,92.300,7.700,98.610,1.390,12.61,224,0.875,bicubic densenet169.tv_in1k,92.300,7.700,98.590,1.410,14.15,224,0.875,bicubic tf_efficientnet_lite1.in1k,92.290,7.710,98.500,1.500,5.42,240,0.882,bicubic resnet34.bt_in1k,92.280,7.720,98.600,1.400,21.80,288,0.950,bicubic tf_efficientnet_b0.in1k,92.280,7.720,98.550,1.450,5.29,224,0.875,bicubic mixnet_m.ft_in1k,92.270,7.730,98.360,1.640,5.01,224,0.875,bicubic mobilenetv3_large_100.miil_in21k_ft_in1k,92.260,7.740,98.240,1.760,5.48,224,0.875,bilinear ghostnetv2_130.in1k,92.240,7.760,98.380,1.620,8.96,224,0.875,bicubic tf_mixnet_m.in1k,92.210,7.790,98.420,1.580,5.01,224,0.875,bicubic efficientvit_m5.r224_in1k,92.150,7.850,98.520,1.480,12.47,224,0.875,bicubic vit_small_patch32_224.augreg_in21k_ft_in1k,92.140,7.860,98.520,1.480,22.88,224,0.900,bicubic xcit_nano_12_p16_384.fb_dist_in1k,92.130,7.870,98.510,1.490,3.05,384,1.000,bicubic resmlp_12_224.fb_in1k,92.120,7.880,98.570,1.430,15.35,224,0.875,bicubic resnet50.tv_in1k,92.120,7.880,98.410,1.590,25.56,224,0.875,bilinear resnet26.bt_in1k,92.110,7.890,98.550,1.450,16.00,288,0.950,bicubic tf_efficientnet_es.in1k,92.110,7.890,98.430,1.570,5.44,224,0.875,bicubic mobilenetv2_140.ra_in1k,92.050,7.950,98.250,1.750,6.11,224,0.875,bicubic mobilevitv2_075.cvnets_in1k,91.970,8.030,98.300,1.700,2.87,256,0.888,bicubic repghostnet_130.in1k,91.940,8.060,98.390,1.610,5.48,224,0.875,bicubic fastvit_t8.apple_in1k,91.930,8.070,98.380,1.620,4.03,256,0.900,bicubic hardcorenas_b.miil_green_in1k,91.920,8.080,98.410,1.590,5.18,224,0.875,bilinear vit_tiny_patch16_224.augreg_in21k_ft_in1k,91.920,8.080,98.340,1.660,5.72,224,0.900,bicubic regnety_008.pycls_in1k,91.900,8.100,98.410,1.590,6.26,224,0.875,bicubic efficientformerv2_s0.snap_dist_in1k,91.860,8.140,98.370,1.630,3.60,224,0.950,bicubic mobileone_s1.apple_in1k,91.790,8.210,98.460,1.540,4.83,224,0.900,bilinear mixnet_s.ft_in1k,91.780,8.220,98.300,1.700,4.13,224,0.875,bicubic vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,91.730,8.270,98.430,1.570,6.36,384,1.000,bicubic efficientnet_es_pruned.in1k,91.700,8.300,98.410,1.590,5.44,224,0.875,bicubic repvgg_b0.rvgg_in1k,91.680,8.320,98.450,1.550,15.82,224,0.875,bilinear tf_mixnet_s.in1k,91.680,8.320,98.240,1.760,4.13,224,0.875,bicubic semnasnet_100.rmsp_in1k,91.670,8.330,98.290,1.710,3.89,224,0.875,bicubic ghostnetv2_100.in1k,91.630,8.370,98.290,1.710,6.16,224,0.875,bicubic regnety_004.tv2_in1k,91.620,8.380,98.280,1.720,4.34,224,0.965,bicubic hardcorenas_a.miil_green_in1k,91.620,8.380,98.170,1.830,5.26,224,0.875,bilinear edgenext_x_small.in1k,91.580,8.420,98.190,1.810,2.34,288,1.000,bicubic regnety_006.pycls_in1k,91.560,8.440,98.430,1.570,6.06,224,0.875,bicubic mobilenetv3_rw.rmsp_in1k,91.550,8.450,98.280,1.720,5.48,224,0.875,bicubic levit_128s.fb_dist_in1k,91.510,8.490,98.400,1.600,7.78,224,0.900,bicubic levit_conv_128s.fb_dist_in1k,91.500,8.500,98.400,1.600,7.78,224,0.900,bicubic legacy_seresnet34.in1k,91.490,8.510,98.200,1.800,21.96,224,0.875,bilinear mobilenetv3_large_100.ra_in1k,91.470,8.530,98.320,1.680,5.48,224,0.875,bicubic tf_mobilenetv3_large_100.in1k,91.420,8.580,98.260,1.740,5.48,224,0.875,bilinear densenet121.tv_in1k,91.400,8.600,98.250,1.750,7.98,224,0.875,bicubic mobilenetv2_110d.ra_in1k,91.330,8.670,98.190,1.810,4.52,224,0.875,bicubic tf_efficientnet_lite0.in1k,91.280,8.720,98.080,1.920,4.65,224,0.875,bicubic fbnetc_100.rmsp_in1k,91.280,8.720,97.840,2.160,5.57,224,0.875,bilinear efficientnet_lite0.ra_in1k,91.250,8.750,98.240,1.760,4.65,224,0.875,bicubic dla34.in1k,91.220,8.780,98.170,1.830,15.74,224,0.875,bilinear mobilevit_xs.cvnets_in1k,91.210,8.790,98.220,1.780,2.32,256,0.900,bicubic mnasnet_100.rmsp_in1k,91.210,8.790,98.050,1.950,4.38,224,0.875,bicubic regnetx_008.pycls_in1k,91.170,8.830,98.370,1.630,7.26,224,0.875,bicubic hrnet_w18_small_v2.ms_in1k,91.160,8.840,98.340,1.660,15.60,224,0.875,bilinear regnetx_004_tv.tv2_in1k,91.160,8.840,98.100,1.900,5.50,224,0.965,bicubic resnest14d.gluon_in1k,91.150,8.850,98.330,1.670,10.61,224,0.875,bilinear mixer_b16_224.goog_in21k_ft_in1k,91.140,8.860,97.400,2.600,59.88,224,0.875,bicubic repvgg_a1.rvgg_in1k,91.120,8.880,98.160,1.840,14.09,224,0.875,bilinear tinynet_b.in1k,91.110,8.890,98.060,1.940,3.73,188,0.875,bicubic xcit_nano_12_p8_224.fb_in1k,91.100,8.900,98.230,1.770,3.05,224,1.000,bicubic resnet18.fb_swsl_ig1b_ft_in1k,91.100,8.900,98.200,1.800,11.69,224,0.875,bilinear repghostnet_111.in1k,91.100,8.900,98.050,1.950,4.54,224,0.875,bicubic resnet34.gluon_in1k,91.090,8.910,98.180,1.820,21.80,224,0.875,bicubic deit_tiny_distilled_patch16_224.fb_in1k,91.080,8.920,98.270,1.730,5.91,224,0.900,bicubic crossvit_9_240.in1k,91.050,8.950,98.320,1.680,8.55,240,0.875,bicubic vgg19_bn.tv_in1k,90.990,9.010,98.100,1.900,143.68,224,0.875,bilinear resnet18d.ra2_in1k,90.800,9.200,98.160,1.840,11.71,288,0.950,bicubic regnetx_006.pycls_in1k,90.790,9.210,98.090,1.910,6.20,224,0.875,bicubic regnety_004.pycls_in1k,90.770,9.230,98.070,1.930,4.34,224,0.875,bicubic efficientvit_m4.r224_in1k,90.740,9.260,98.040,1.960,8.80,224,0.875,bicubic pit_ti_distilled_224.in1k,90.730,9.270,98.250,1.750,5.10,224,0.900,bicubic resnet18.fb_ssl_yfcc100m_ft_in1k,90.700,9.300,98.020,1.980,11.69,224,0.875,bilinear repghostnet_100.in1k,90.690,9.310,98.120,1.880,4.07,224,0.875,bicubic spnasnet_100.rmsp_in1k,90.590,9.410,97.950,2.050,4.42,224,0.875,bilinear vit_base_patch32_224.augreg_in1k,90.590,9.410,97.720,2.280,88.22,224,0.900,bicubic convit_tiny.fb_in1k,90.550,9.450,98.190,1.810,5.71,224,0.875,bicubic vgg16_bn.tv_in1k,90.540,9.460,97.990,2.010,138.37,224,0.875,bilinear crossvit_tiny_240.in1k,90.530,9.470,97.950,2.050,7.01,240,0.875,bicubic ghostnet_100.in1k,90.460,9.540,97.910,2.090,5.18,224,0.875,bicubic pit_ti_224.in1k,90.420,9.580,98.010,1.990,4.85,224,0.900,bicubic tf_mobilenetv3_large_075.in1k,90.330,9.670,97.870,2.130,3.99,224,0.875,bilinear hrnet_w18_small.gluon_in1k,90.310,9.690,97.750,2.250,13.19,224,0.875,bicubic resnet34.tv_in1k,90.300,9.700,97.970,2.030,21.80,224,0.875,bilinear resnet34.a3_in1k,90.240,9.760,97.880,2.120,21.80,224,0.950,bicubic semnasnet_075.rmsp_in1k,90.220,9.780,97.950,2.050,2.91,224,0.875,bicubic resnet18.a1_in1k,90.200,9.800,97.760,2.240,11.69,288,1.000,bicubic xcit_nano_12_p16_224.fb_dist_in1k,90.190,9.810,97.750,2.250,3.05,224,1.000,bicubic skresnet18.ra_in1k,90.180,9.820,97.780,2.220,11.96,224,0.875,bicubic efficientvit_m3.r224_in1k,90.000,10.000,97.830,2.170,6.90,224,0.875,bicubic hrnet_w18_small.ms_in1k,89.870,10.130,97.890,2.110,13.19,224,0.875,bilinear mobilenetv2_100.ra_in1k,89.870,10.130,97.830,2.170,3.50,224,0.875,bicubic vit_base_patch32_224.sam_in1k,89.870,10.130,97.600,2.400,88.22,224,0.900,bicubic edgenext_xx_small.in1k,89.800,10.200,97.500,2.500,1.33,288,1.000,bicubic repvgg_a0.rvgg_in1k,89.680,10.320,97.760,2.240,9.11,224,0.875,bilinear vgg19.tv_in1k,89.680,10.320,97.550,2.450,143.67,224,0.875,bilinear deit_tiny_patch16_224.fb_in1k,89.610,10.390,97.960,2.040,5.72,224,0.900,bicubic regnetx_004.pycls_in1k,89.470,10.530,97.760,2.240,5.16,224,0.875,bicubic resnet18.a2_in1k,89.470,10.530,97.630,2.370,11.69,288,1.000,bicubic repghostnet_080.in1k,89.470,10.530,97.410,2.590,3.28,224,0.875,bicubic vgg16.tv_in1k,89.370,10.630,97.520,2.480,138.36,224,0.875,bilinear vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,89.340,10.660,97.700,2.300,6.34,224,0.900,bicubic legacy_seresnet18.in1k,89.260,10.740,97.690,2.310,11.78,224,0.875,bicubic resnet14t.c3_in1k,89.250,10.750,97.440,2.560,10.08,224,0.950,bicubic vgg13_bn.tv_in1k,89.200,10.800,97.530,2.470,133.05,224,0.875,bilinear tf_mobilenetv3_large_minimal_100.in1k,89.160,10.840,97.310,2.690,3.92,224,0.875,bilinear mobilevitv2_050.cvnets_in1k,89.030,10.970,97.600,2.400,1.37,256,0.888,bicubic pvt_v2_b0.in1k,88.970,11.030,97.690,2.310,3.67,224,0.900,bicubic xcit_nano_12_p16_224.fb_in1k,88.970,11.030,97.410,2.590,3.05,224,1.000,bicubic efficientvit_m2.r224_in1k,88.910,11.090,97.390,2.610,4.19,224,0.875,bicubic lcnet_100.ra2_in1k,88.910,11.090,97.380,2.620,2.95,224,0.875,bicubic mobileone_s0.apple_in1k,88.810,11.190,97.220,2.780,5.29,224,0.875,bilinear resnet18.gluon_in1k,88.660,11.340,97.100,2.900,11.69,224,0.875,bicubic tinynet_c.in1k,88.400,11.600,97.260,2.740,2.46,184,0.875,bicubic vgg11_bn.tv_in1k,88.400,11.600,97.250,2.750,132.87,224,0.875,bilinear efficientvit_b0.r224_in1k,88.300,11.700,96.880,3.120,3.41,224,0.950,bicubic regnety_002.pycls_in1k,88.170,11.830,97.440,2.560,3.16,224,0.875,bicubic resnet18.tv_in1k,88.150,11.850,97.120,2.880,11.69,224,0.875,bilinear mobilevit_xxs.cvnets_in1k,87.940,12.060,97.190,2.810,1.27,256,0.900,bicubic vgg13.tv_in1k,87.570,12.430,97.110,2.890,133.05,224,0.875,bilinear regnetx_002.pycls_in1k,87.370,12.630,97.000,3.000,2.68,224,0.875,bicubic vgg11.tv_in1k,87.350,12.650,97.100,2.900,132.86,224,0.875,bilinear efficientvit_m1.r224_in1k,87.220,12.780,97.020,2.980,2.98,224,0.875,bicubic repghostnet_058.in1k,87.150,12.850,96.780,3.220,2.55,224,0.875,bicubic dla60x_c.in1k,87.110,12.890,97.140,2.860,1.32,224,0.875,bilinear resnet18.a3_in1k,87.070,12.930,96.660,3.340,11.69,224,0.950,bicubic mixer_l16_224.goog_in21k_ft_in1k,86.990,13.010,94.070,5.930,208.20,224,0.875,bicubic lcnet_075.ra2_in1k,86.960,13.040,96.550,3.450,2.36,224,0.875,bicubic resnet10t.c3_in1k,86.680,13.320,96.730,3.270,5.44,224,0.950,bicubic mobilenetv3_small_100.lamb_in1k,86.180,13.820,96.450,3.550,2.54,224,0.875,bicubic tf_mobilenetv3_small_100.in1k,85.950,14.050,96.400,3.600,2.54,224,0.875,bilinear mnasnet_small.lamb_in1k,85.480,14.520,96.000,4.000,2.03,224,0.875,bicubic repghostnet_050.in1k,85.450,14.550,96.150,3.850,2.31,224,0.875,bicubic dla46x_c.in1k,85.440,14.560,96.420,3.580,1.07,224,0.875,bilinear tinynet_d.in1k,85.440,14.560,96.020,3.980,2.34,152,0.875,bicubic mobilenetv2_050.lamb_in1k,84.990,15.010,95.620,4.380,1.97,224,0.875,bicubic dla46_c.in1k,84.700,15.300,96.210,3.790,1.30,224,0.875,bilinear tf_mobilenetv3_small_075.in1k,84.500,15.500,95.880,4.120,2.04,224,0.875,bilinear mobilenetv3_small_075.lamb_in1k,84.120,15.880,95.520,4.480,2.04,224,0.875,bicubic efficientvit_m0.r224_in1k,83.220,16.780,95.700,4.300,2.35,224,0.875,bicubic lcnet_050.ra2_in1k,83.040,16.960,95.020,4.980,1.88,224,0.875,bicubic tf_mobilenetv3_small_minimal_100.in1k,82.660,17.340,95.030,4.970,2.04,224,0.875,bilinear tinynet_e.in1k,79.810,20.190,93.970,6.030,2.04,106,0.875,bicubic mobilenetv3_small_050.lamb_in1k,78.080,21.920,93.010,6.990,1.59,224,0.875,bicubic
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt112-cu113-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count tinynet_e,70939.06,14.424,1024,106,0.03,0.69,2.04 mobilenetv3_small_050,53363.87,19.179,1024,224,0.03,0.92,1.59 lcnet_035,39908.29,25.648,1024,224,0.03,1.04,1.64 mobilenetv3_small_075,38048.72,26.902,1024,224,0.05,1.3,2.04 tinynet_d,35634.7,28.724,1024,152,0.05,1.42,2.34 lcnet_050,35231.0,29.055,1024,224,0.05,1.26,1.88 mobilenetv3_small_100,34913.55,29.319,1024,224,0.06,1.42,2.54 tf_mobilenetv3_small_minimal_100,31288.96,32.716,1024,224,0.06,1.41,2.04 tf_mobilenetv3_small_075,30676.85,33.368,1024,224,0.05,1.3,2.04 lcnet_075,30088.74,34.022,1024,224,0.1,1.99,2.36 tf_mobilenetv3_small_100,28547.5,35.858,1024,224,0.06,1.42,2.54 lcnet_100,23945.91,42.753,1024,224,0.16,2.52,2.95 mnasnet_small,22244.35,46.024,1024,224,0.07,2.16,2.03 levit_128s,22002.58,46.529,1024,224,0.31,1.88,7.78 mobilenetv2_035,20937.19,48.897,1024,224,0.07,2.86,1.68 mnasnet_050,18984.06,53.93,1024,224,0.11,3.07,2.22 ghostnet_050,18415.88,55.593,1024,224,0.05,1.77,2.59 tinynet_c,17846.73,57.365,1024,184,0.11,2.87,2.46 mobilenetv2_050,16928.19,60.48,1024,224,0.1,3.64,1.97 semnasnet_050,16394.61,62.449,1024,224,0.11,3.44,2.08 lcnet_150,15508.0,66.02,1024,224,0.34,3.79,4.5 gernet_s,15282.73,66.993,1024,224,0.75,2.65,8.17 levit_128,14929.05,68.581,1024,224,0.41,2.71,9.21 cs3darknet_focus_s,14654.05,69.868,1024,256,0.69,2.7,3.27 cs3darknet_s,14422.34,70.991,1024,256,0.72,2.97,3.28 mobilenetv3_large_075,14412.2,71.04,1024,224,0.16,4.0,3.99 mixer_s32_224,13576.58,75.414,1024,224,1.0,2.28,19.1 resnet10t,13509.21,75.789,1024,224,1.1,2.43,5.44 mobilenetv3_rw,13202.47,77.551,1024,224,0.23,4.41,5.48 levit_192,13174.02,77.717,1024,224,0.66,3.2,10.95 mobilenetv3_large_100,12955.77,79.027,1024,224,0.23,4.41,5.48 mobilenetv3_large_100_miil,12954.49,79.035,1024,224,0.23,4.41,5.48 vit_small_patch32_224,12913.76,79.284,1024,224,1.15,2.5,22.88 hardcorenas_a,12748.25,80.313,1024,224,0.23,4.38,5.26 mnasnet_075,12700.79,80.614,1024,224,0.23,4.77,3.17 tf_mobilenetv3_large_075,12296.64,83.262,1024,224,0.16,4.0,3.99 tinynet_b,12104.09,84.587,1024,188,0.21,4.44,3.73 tf_mobilenetv3_large_minimal_100,11915.92,85.923,1024,224,0.22,4.4,3.92 hardcorenas_b,11667.78,87.752,1024,224,0.26,5.09,5.18 hardcorenas_c,11602.35,88.247,1024,224,0.28,5.01,5.52 ese_vovnet19b_slim_dw,11450.49,89.417,1024,224,0.4,5.28,1.9 mnasnet_b1,11305.32,90.567,1024,224,0.33,5.46,4.38 mnasnet_100,11303.72,90.578,1024,224,0.33,5.46,4.38 tf_mobilenetv3_large_100,11165.87,91.695,1024,224,0.23,4.41,5.48 gluon_resnet18_v1b,11046.16,92.691,1024,224,1.82,2.48,11.69 ssl_resnet18,11027.01,92.852,1024,224,1.82,2.48,11.69 resnet18,11023.6,92.881,1024,224,1.82,2.48,11.69 swsl_resnet18,11003.86,93.048,1024,224,1.82,2.48,11.69 semnasnet_075,10953.15,93.479,1024,224,0.23,5.54,2.91 regnetx_004,10946.78,93.533,1024,224,0.4,3.14,5.16 hardcorenas_d,10898.13,93.95,1024,224,0.3,4.93,7.5 mobilenetv2_075,10779.36,94.985,1024,224,0.22,5.86,2.64 ghostnet_100,10498.38,97.527,1024,224,0.15,3.55,5.18 seresnet18,10333.85,99.081,1024,224,1.82,2.49,11.78 vit_tiny_r_s16_p8_224,10273.23,99.666,1024,224,0.44,2.06,6.34 spnasnet_100,10240.55,99.983,1024,224,0.35,6.03,4.42 legacy_seresnet18,10026.58,102.118,1024,224,1.82,2.49,11.78 mnasnet_a1,9730.7,105.223,1024,224,0.32,6.23,3.89 semnasnet_100,9728.29,105.249,1024,224,0.32,6.23,3.89 tf_efficientnetv2_b0,9714.68,105.397,1024,224,0.73,4.77,7.14 tinynet_a,9706.17,105.487,1024,192,0.35,5.41,6.19 hardcorenas_f,9654.05,106.058,1024,224,0.35,5.57,8.2 mobilenetv2_100,9591.46,106.751,1024,224,0.31,6.68,3.5 levit_256,9580.42,106.874,1024,224,1.13,4.23,18.89 regnetx_002,9551.99,107.191,1024,224,0.2,2.16,2.68 hardcorenas_e,9521.78,107.531,1024,224,0.35,5.65,8.07 efficientnet_lite0,9415.07,108.751,1024,224,0.4,6.74,4.65 regnety_002,9227.09,110.966,1024,224,0.2,2.17,3.16 fbnetc_100,9182.63,111.504,1024,224,0.4,6.51,5.57 resnet18d,9153.04,111.864,1024,224,2.06,3.29,11.71 regnety_006,9048.64,113.154,1024,224,0.61,4.33,6.06 ese_vovnet19b_slim,8822.42,116.057,1024,224,1.69,3.52,3.17 ghostnet_130,8402.81,121.852,1024,224,0.24,4.6,7.36 regnetx_006,8395.84,121.954,1024,224,0.61,3.98,6.2 levit_256d,8131.84,125.914,1024,224,1.4,4.93,26.21 tf_efficientnet_lite0,8115.07,126.174,1024,224,0.4,6.74,4.65 regnetz_005,8104.32,126.341,1024,224,0.52,5.86,7.12 efficientnet_b0,8015.36,127.743,1024,224,0.4,6.75,5.29 xcit_nano_12_p16_224_dist,7700.28,132.971,1024,224,0.56,4.17,3.05 xcit_nano_12_p16_224,7692.58,133.102,1024,224,0.56,4.17,3.05 mnasnet_140,7484.35,136.808,1024,224,0.6,7.71,7.12 rexnetr_100,7414.06,138.105,1024,224,0.43,7.72,4.88 resnet14t,7298.17,140.296,1024,224,1.69,5.8,10.08 mobilenetv2_110d,7233.3,141.556,1024,224,0.45,8.71,4.52 regnetx_008,7112.68,143.957,1024,224,0.81,5.15,7.26 tf_efficientnet_b0_ns,7058.22,145.067,1024,224,0.4,6.75,5.29 tf_efficientnet_b0_ap,7055.15,145.131,1024,224,0.4,6.75,5.29 tf_efficientnet_b0,7052.24,145.19,1024,224,0.4,6.75,5.29 edgenext_xx_small,6998.78,146.298,1024,256,0.33,4.21,1.33 dla46_c,6933.78,147.671,1024,224,0.58,4.5,1.3 deit_tiny_patch16_224,6855.38,149.36,1024,224,1.26,5.97,5.72 vit_tiny_patch16_224,6844.8,149.592,1024,224,1.26,5.97,5.72 regnety_008,6827.19,149.977,1024,224,0.81,5.25,6.26 gernet_m,6753.27,151.619,1024,224,3.02,5.24,21.14 deit_tiny_distilled_patch16_224,6720.97,152.347,1024,224,1.27,6.01,5.91 efficientnet_b1_pruned,6608.04,154.952,1024,240,0.4,6.21,6.33 hrnet_w18_small,6603.38,155.061,1024,224,1.61,5.72,13.19 gluon_resnet34_v1b,6434.28,159.136,1024,224,3.67,3.74,21.8 semnasnet_140,6428.21,159.287,1024,224,0.6,8.87,6.11 tv_resnet34,6406.04,159.838,1024,224,3.67,3.74,21.8 resnet34,6404.45,159.878,1024,224,3.67,3.74,21.8 ese_vovnet19b_dw,6353.89,161.15,1024,224,1.34,8.25,6.54 rexnet_100,6291.85,162.738,1024,224,0.41,7.44,4.8 mobilenetv2_140,6258.1,163.617,1024,224,0.6,9.57,6.11 mobilevitv2_050,6228.2,164.403,1024,256,0.48,8.04,1.37 efficientnet_lite1,6215.56,164.736,1024,240,0.62,10.14,5.42 tf_efficientnetv2_b1,6143.78,166.661,1024,240,1.21,7.34,8.14 visformer_tiny,6090.13,168.13,1024,224,1.27,5.72,10.32 fbnetv3_b,6012.29,170.307,1024,256,0.55,9.1,8.6 seresnet34,5988.65,170.978,1024,224,3.67,3.74,21.96 resnet26,5923.37,172.863,1024,224,2.36,7.35,16.0 efficientnet_es,5871.09,174.403,1024,224,1.81,8.73,5.44 efficientnet_es_pruned,5866.42,174.542,1024,224,1.81,8.73,5.44 selecsls42,5796.58,176.643,1024,224,2.94,4.62,30.35 pit_ti_distilled_224,5792.34,176.773,1024,224,0.71,6.23,5.1 legacy_seresnet34,5780.67,177.13,1024,224,3.67,3.74,21.96 selecsls42b,5766.92,177.544,1024,224,2.98,4.62,32.46 pit_ti_224,5764.0,177.643,1024,224,0.7,6.19,4.85 resnet34d,5748.0,178.138,1024,224,3.91,4.54,21.82 levit_384,5659.16,180.934,1024,224,2.36,6.26,39.13 tf_efficientnet_es,5608.15,182.58,1024,224,1.81,8.73,5.44 resnetblur18,5572.02,183.764,1024,224,2.34,3.39,11.69 tf_efficientnet_lite1,5541.93,184.761,1024,240,0.62,10.14,5.42 rexnetr_130,5487.71,186.587,1024,224,0.68,9.81,7.61 cs3darknet_m,5481.96,186.783,1024,288,2.63,6.69,9.31 mixnet_s,5402.43,189.533,1024,224,0.25,6.25,4.13 regnety_004,5382.71,190.227,1024,224,0.41,3.89,4.34 skresnet18,5371.9,190.61,1024,224,1.82,3.24,11.96 darknet17,5347.86,143.598,768,256,3.26,7.18,14.3 mobilevit_xxs,5306.36,192.964,1024,256,0.42,8.34,1.27 cs3darknet_focus_m,5289.88,193.566,1024,288,2.51,6.19,9.3 mobilenetv2_120d,5178.64,197.724,1024,224,0.69,11.97,5.83 repvgg_b0,5161.18,198.394,1024,224,3.41,6.15,15.82 xcit_tiny_12_p16_224_dist,5107.76,200.467,1024,224,1.24,6.29,6.72 xcit_tiny_12_p16_224,5104.48,200.597,1024,224,1.24,6.29,6.72 resnet26d,5093.48,201.03,1024,224,2.6,8.15,16.01 tf_mixnet_s,4981.9,205.528,1024,224,0.25,6.25,4.13 vit_base_patch32_224_sam,4925.79,207.875,1024,224,4.41,5.01,88.22 vit_base_patch32_224,4923.14,207.986,1024,224,4.41,5.01,88.22 selecsls60,4922.02,208.033,1024,224,3.59,5.52,30.67 mixer_b32_224,4909.46,208.566,1024,224,3.24,6.29,60.29 selecsls60b,4902.59,208.858,1024,224,3.63,5.52,32.77 rexnetr_150,4887.15,209.518,1024,224,0.89,11.13,9.78 nf_resnet26,4834.78,211.787,1024,224,2.41,7.35,16.0 darknet21,4804.05,159.854,768,256,3.93,7.47,20.86 resmlp_12_distilled_224,4801.62,213.251,1024,224,3.01,5.5,15.35 resmlp_12_224,4801.47,213.257,1024,224,3.01,5.5,15.35 efficientnet_lite2,4791.14,213.716,1024,260,0.89,12.9,6.09 pit_xs_224,4790.75,213.733,1024,224,1.4,7.71,10.62 fbnetv3_d,4788.83,213.819,1024,256,0.68,11.1,10.31 pit_xs_distilled_224,4740.73,215.989,1024,224,1.41,7.76,11.0 dla34,4712.5,217.283,1024,224,3.07,5.02,15.74 sedarknet21,4615.23,166.394,768,256,3.93,7.47,20.95 resnext26ts,4512.74,226.902,1024,256,2.43,10.52,10.3 tf_efficientnetv2_b2,4506.54,227.212,1024,260,1.72,9.84,10.1 mixer_s16_224,4471.0,229.021,1024,224,3.79,5.97,18.53 legacy_seresnext26_32x4d,4467.81,229.184,1024,224,2.49,9.39,16.79 edgenext_x_small,4458.42,229.664,1024,256,0.68,7.5,2.34 gernet_l,4450.89,230.055,1024,256,4.57,8.0,31.08 tf_efficientnet_b1,4403.29,232.542,1024,240,0.71,10.88,7.79 tf_efficientnet_b1_ns,4402.75,232.57,1024,240,0.71,10.88,7.79 tf_efficientnet_b1_ap,4402.24,232.597,1024,240,0.71,10.88,7.79 eca_resnext26ts,4354.84,235.13,1024,256,2.43,10.52,10.3 seresnext26ts,4350.24,235.378,1024,256,2.43,10.52,10.39 tf_efficientnet_lite2,4300.72,238.087,1024,260,0.89,12.9,6.09 gcresnext26ts,4295.78,238.361,1024,256,2.43,10.53,10.48 rexnet_130,4282.77,239.085,1024,224,0.68,9.71,7.56 efficientnet_b1,4273.32,239.615,1024,256,0.77,12.22,7.79 gmlp_ti16_224,4143.15,247.143,1024,224,1.34,7.55,5.87 efficientnet_b0_g16_evos,4127.77,248.064,1024,224,1.01,7.42,8.11 crossvit_tiny_240,4122.07,248.408,1024,240,1.57,9.08,7.01 nf_ecaresnet26,4104.24,249.486,1024,224,2.41,7.36,16.0 efficientnet_b2_pruned,4103.05,249.558,1024,260,0.73,9.13,8.31 nf_seresnet26,4102.39,249.599,1024,224,2.41,7.36,17.4 mobilevitv2_075,4066.07,251.829,1024,256,1.05,12.06,2.87 vit_small_patch32_384,4025.63,254.359,1024,384,3.45,8.25,22.92 ecaresnext50t_32x4d,4000.29,255.97,1024,224,2.7,10.09,15.41 ecaresnext26t_32x4d,3998.13,256.108,1024,224,2.7,10.09,15.41 seresnext26tn_32x4d,3995.56,256.274,1024,224,2.7,10.09,16.81 seresnext26t_32x4d,3993.92,256.378,1024,224,2.7,10.09,16.81 seresnext26d_32x4d,3982.98,257.083,1024,224,2.73,10.19,16.81 resnet26t,3922.56,261.042,1024,256,3.35,10.52,16.01 dla46x_c,3917.72,261.363,1024,224,0.54,5.66,1.07 rexnet_150,3870.49,264.554,1024,224,0.9,11.21,9.73 resnetv2_50,3868.33,264.701,1024,224,4.11,11.11,25.55 crossvit_9_240,3865.11,264.922,1024,240,1.85,9.52,8.55 convnext_nano_ols,3859.14,265.333,1024,224,2.5,8.37,15.6 nf_regnet_b0,3819.49,268.086,1024,256,0.64,5.58,8.76 ecaresnet50d_pruned,3812.92,268.549,1024,224,2.53,6.43,19.94 regnetx_016,3808.7,268.846,1024,224,1.62,7.93,9.19 crossvit_9_dagger_240,3792.18,270.018,1024,240,1.99,9.97,8.78 dla60x_c,3787.69,270.337,1024,224,0.59,6.01,1.32 convnext_nano_hnf,3786.83,270.399,1024,224,2.46,8.37,15.59 ecaresnetlight,3729.3,274.57,1024,224,4.11,8.42,30.16 poolformer_s12,3722.39,275.081,1024,224,1.82,5.53,11.92 gmixer_12_224,3686.02,277.795,1024,224,2.67,7.26,12.7 gluon_resnet50_v1b,3677.5,278.438,1024,224,4.11,11.11,25.56 resnet50,3676.35,278.526,1024,224,4.11,11.11,25.56 ssl_resnet50,3674.86,278.638,1024,224,4.11,11.11,25.56 tv_resnet50,3673.31,278.756,1024,224,4.11,11.11,25.56 swsl_resnet50,3672.81,278.794,1024,224,4.11,11.11,25.56 dpn68,3650.67,280.484,1024,224,2.35,10.47,12.61 dpn68b,3606.63,283.907,1024,224,2.35,10.47,12.61 botnet26t_256,3555.59,287.983,1024,256,3.32,11.98,12.49 regnety_016,3516.07,291.222,1024,224,1.63,8.04,11.2 repvgg_a2,3514.85,291.324,1024,224,5.7,6.26,28.21 resnetv2_50t,3513.08,291.47,1024,224,4.32,11.82,25.57 efficientnet_em,3504.92,292.149,1024,240,3.04,14.34,6.9 mixnet_m,3496.31,292.868,1024,224,0.36,8.19,5.01 resnetv2_50d,3496.21,292.876,1024,224,4.35,11.92,25.57 rexnetr_200,3492.0,219.921,768,224,1.59,15.11,16.52 halonet26t,3480.88,294.167,1024,256,3.19,11.69,12.48 gluon_resnet50_v1c,3476.97,294.498,1024,224,4.35,11.92,25.58 resnet32ts,3465.97,295.433,1024,256,4.63,11.58,17.96 bat_resnext26ts,3457.26,296.173,1024,256,2.53,12.51,10.73 resnet33ts,3415.09,299.834,1024,256,4.76,11.66,19.68 tf_efficientnet_b2_ns,3414.14,299.918,1024,260,1.02,13.83,9.11 tf_efficientnet_b2,3412.6,300.052,1024,260,1.02,13.83,9.11 tf_efficientnet_b2_ap,3412.15,300.092,1024,260,1.02,13.83,9.11 tf_efficientnet_em,3389.12,302.132,1024,240,3.04,14.34,6.9 resnet50t,3345.79,306.045,1024,224,4.32,11.82,25.57 gluon_resnet50_v1d,3337.44,306.809,1024,224,4.35,11.92,25.58 resnet50d,3336.65,306.882,1024,224,4.35,11.92,25.58 vit_tiny_r_s16_p8_384,3314.06,154.482,512,384,1.34,6.49,6.36 legacy_seresnet50,3311.17,309.245,1024,224,3.88,10.6,28.09 seresnet33ts,3304.6,309.859,1024,256,4.76,11.66,19.78 tf_mixnet_m,3303.11,309.997,1024,224,0.36,8.19,5.01 eca_resnet33ts,3297.96,310.484,1024,256,4.76,11.66,19.68 convit_tiny,3289.83,311.251,1024,224,1.26,7.94,5.71 gcresnet33ts,3263.32,313.778,1024,256,4.76,11.68,19.88 vit_small_resnet26d_224,3252.42,314.83,1024,224,5.07,11.12,63.61 vovnet39a,3229.96,317.018,1024,224,7.09,6.73,22.6 efficientnet_b2a,3221.33,317.868,1024,288,1.12,16.2,9.11 efficientnet_b2,3221.08,317.894,1024,288,1.12,16.2,9.11 efficientnet_b3_pruned,3195.08,320.48,1024,300,1.04,11.86,9.86 seresnet50,3183.22,321.675,1024,224,4.11,11.13,28.09 cs3darknet_l,3171.55,322.859,1024,288,6.16,10.83,21.16 cs3darknet_focus_l,3146.07,325.473,1024,288,5.9,10.16,21.15 res2net50_48w_2s,3141.04,325.995,1024,224,4.18,11.72,25.29 eca_vovnet39b,3123.78,327.796,1024,224,7.09,6.74,22.6 ese_vovnet39b,3117.85,328.419,1024,224,7.09,6.74,24.57 mobilevit_xs,3095.24,248.113,768,256,1.05,16.33,2.32 resnext50_32x4d,3092.67,331.094,1024,224,4.26,14.4,25.03 ssl_resnext50_32x4d,3089.61,331.422,1024,224,4.26,14.4,25.03 gluon_resnext50_32x4d,3087.43,331.656,1024,224,4.26,14.4,25.03 swsl_resnext50_32x4d,3086.28,331.779,1024,224,4.26,14.4,25.03 tv_resnext50_32x4d,3085.42,331.872,1024,224,4.26,14.4,25.03 hrnet_w18_small_v2,3075.57,332.934,1024,224,2.62,9.65,15.6 eca_botnext26ts_256,3069.01,333.646,1024,256,2.46,11.6,10.59 dla60,3049.62,335.767,1024,224,4.26,10.16,22.04 vgg11,3048.59,167.933,512,224,7.61,7.44,132.86 skresnet34,3035.0,337.386,1024,224,3.67,5.13,22.28 mobilevitv2_100,3028.13,253.611,768,256,1.84,16.08,4.9 vit_small_patch16_224,3005.65,340.679,1024,224,4.61,11.95,22.05 deit_small_patch16_224,3005.16,340.735,1024,224,4.61,11.95,22.05 eca_halonext26ts,2980.4,343.567,1024,256,2.44,11.46,10.76 resnetaa50d,2972.16,344.518,1024,224,5.39,12.44,25.58 ecaresnet101d_pruned,2963.47,345.529,1024,224,3.48,7.69,24.88 coat_lite_tiny,2957.59,346.216,1024,224,1.6,11.65,5.72 cs3sedarknet_l,2955.87,346.418,1024,288,6.16,10.83,21.91 deit_small_distilled_patch16_224,2950.21,347.082,1024,224,4.63,12.02,22.44 gluon_resnet50_v1s,2947.99,347.343,1024,224,5.47,13.52,25.68 resnetrs50,2945.06,347.688,1024,224,4.48,12.14,35.69 seresnet50t,2939.07,348.397,1024,224,4.32,11.83,28.1 densenet121,2936.15,348.744,1024,224,2.87,6.9,7.98 pit_s_224,2935.87,348.777,1024,224,2.88,11.56,23.46 ecaresnet50d,2934.67,348.92,1024,224,4.35,11.93,25.58 tv_densenet121,2927.3,349.799,1024,224,2.87,6.9,7.98 selecsls84,2927.1,349.822,1024,224,5.9,7.57,50.95 pit_s_distilled_224,2909.88,351.892,1024,224,2.9,11.64,24.04 vit_relpos_base_patch32_plus_rpn_256,2858.63,358.203,1024,256,7.68,8.01,119.42 deit3_small_patch16_224_in21ft1k,2858.2,358.255,1024,224,4.61,11.95,22.06 deit3_small_patch16_224,2853.97,358.786,1024,224,4.61,11.95,22.06 resnext50d_32x4d,2849.78,359.313,1024,224,4.5,15.2,25.05 vit_relpos_small_patch16_rpn_224,2814.18,363.86,1024,224,4.59,13.05,21.97 densenet121d,2808.28,364.624,1024,224,3.11,7.7,8.0 cspresnet50,2805.19,365.024,1024,256,4.54,11.5,21.62 vit_relpos_small_patch16_224,2800.45,365.643,1024,224,4.59,13.05,21.98 gcresnext50ts,2798.56,365.89,1024,256,3.75,15.46,15.67 vit_srelpos_small_patch16_224,2795.09,366.343,1024,224,4.59,12.16,21.97 coat_lite_mini,2774.65,369.044,1024,224,2.0,12.25,11.01 haloregnetz_b,2774.49,369.064,1024,224,1.97,11.94,11.68 vit_base_patch32_plus_256,2772.64,369.31,1024,256,7.79,7.76,119.48 rexnet_200,2762.14,278.034,768,224,1.56,14.91,16.37 res2net50_26w_4s,2757.69,371.313,1024,224,4.28,12.61,25.7 seresnext50_32x4d,2741.98,373.44,1024,224,4.26,14.42,27.56 gluon_seresnext50_32x4d,2737.7,374.024,1024,224,4.26,14.42,27.56 legacy_seresnext50_32x4d,2737.27,374.083,1024,224,4.26,14.42,27.56 xcit_tiny_24_p16_224_dist,2733.14,374.648,1024,224,2.34,11.82,12.12 xcit_tiny_24_p16_224,2731.46,374.879,1024,224,2.34,11.82,12.12 xcit_nano_12_p16_384_dist,2727.34,375.445,1024,384,1.64,12.15,3.05 dla60x,2724.01,375.903,1024,224,3.54,13.8,17.35 gcresnet50t,2718.77,376.628,1024,256,5.42,14.67,25.9 vgg11_bn,2701.91,189.486,512,224,7.62,7.44,132.87 visformer_small,2695.9,379.825,1024,224,4.88,11.43,40.22 lambda_resnet26rpt_256,2689.85,380.679,1024,256,3.16,11.87,10.99 mixnet_l,2682.98,286.237,768,224,0.58,10.84,7.33 resnetblur50,2682.32,381.746,1024,224,5.16,12.02,25.56 vovnet57a,2674.97,382.797,1024,224,8.95,7.52,36.64 efficientnet_lite3,2659.04,192.54,512,300,1.65,21.85,8.2 cspresnet50d,2649.78,386.434,1024,256,4.86,12.55,21.64 seresnetaa50d,2644.86,387.154,1024,224,5.4,12.46,28.11 efficientnetv2_rw_t,2633.28,388.856,1024,288,3.19,16.42,13.65 cspresnet50w,2624.25,390.195,1024,256,5.04,12.19,28.12 twins_svt_small,2599.22,393.951,1024,224,2.94,13.75,24.06 tf_efficientnetv2_b3,2587.08,395.8,1024,300,3.04,15.74,14.36 nf_regnet_b2,2583.08,396.413,1024,272,1.22,9.27,14.31 vit_base_resnet26d_224,2575.01,397.656,1024,224,6.97,13.16,101.4 ese_vovnet57b,2572.63,398.024,1024,224,8.95,7.52,38.61 fbnetv3_g,2570.51,398.353,1024,288,1.77,21.09,16.62 gc_efficientnetv2_rw_t,2557.73,400.342,1024,288,3.2,16.45,13.68 tf_mixnet_l,2550.98,301.047,768,224,0.58,10.84,7.33 nf_regnet_b1,2527.71,405.098,1024,288,1.02,9.2,10.22 res2net50_14w_8s,2514.56,407.217,1024,224,4.21,13.28,25.06 inception_v3,2512.32,407.579,1024,299,5.73,8.97,23.83 densenetblur121d,2509.93,407.967,1024,224,3.11,7.9,8.0 adv_inception_v3,2509.35,408.057,1024,299,5.73,8.97,23.83 tf_inception_v3,2505.31,408.714,1024,299,5.73,8.97,23.83 gluon_inception_v3,2501.93,409.271,1024,299,5.73,8.97,23.83 resnetblur50d,2498.32,409.863,1024,224,5.4,12.82,25.58 nf_ecaresnet50,2492.25,410.862,1024,224,4.21,11.13,25.56 nf_seresnet50,2488.35,411.506,1024,224,4.21,11.13,28.09 resmlp_24_224,2465.19,415.371,1024,224,5.96,10.91,30.02 resmlp_24_distilled_224,2463.93,415.584,1024,224,5.96,10.91,30.02 mobilevit_s,2450.02,313.456,768,256,2.03,19.94,5.58 regnetx_032,2449.76,417.988,1024,224,3.2,11.37,15.3 cspresnext50,2440.84,419.515,1024,256,4.05,15.86,20.57 dla60_res2net,2430.52,421.296,1024,224,4.15,12.34,20.85 resnest14d,2424.63,422.32,1024,224,2.76,7.33,10.61 densenet169,2421.68,422.835,1024,224,3.4,7.3,14.15 convnext_tiny_hnfd,2418.1,423.46,1024,224,4.47,13.44,28.59 convnext_tiny_hnf,2414.45,424.101,1024,224,4.47,13.44,28.59 tf_efficientnet_lite3,2396.12,213.668,512,300,1.65,21.85,8.2 sehalonet33ts,2392.73,427.951,1024,256,3.55,14.7,13.69 efficientnet_cc_b0_4e,2389.83,428.47,1024,224,0.41,9.42,13.31 efficientnet_cc_b0_8e,2386.88,429.0,1024,224,0.42,9.42,24.01 convnext_tiny_in22ft1k,2380.94,430.068,1024,224,4.47,13.44,28.59 convnext_tiny,2379.5,430.329,1024,224,4.47,13.44,28.59 regnetz_b16,2348.93,435.929,1024,288,2.39,16.43,9.72 resnetv2_101,2321.74,441.036,1024,224,7.83,16.23,44.54 convnext_nano,2304.31,444.37,1024,288,4.06,13.84,15.59 tf_efficientnet_cc_b0_4e,2293.39,446.488,1024,224,0.41,9.42,13.31 semobilevit_s,2279.96,336.836,768,256,2.03,19.95,5.74 gluon_resnet101_v1b,2249.95,455.108,1024,224,7.83,16.23,44.55 tv_resnet101,2246.24,455.861,1024,224,7.83,16.23,44.55 resnet101,2246.09,455.891,1024,224,7.83,16.23,44.55 mobilevitv2_125,2233.52,343.842,768,256,2.86,20.1,7.48 skresnet50,2232.97,458.569,1024,224,4.11,12.5,25.8 ecaresnet26t,2203.93,464.611,1024,320,5.24,16.44,16.01 resnetv2_101d,2180.36,469.635,1024,224,8.07,17.04,44.56 gluon_resnet101_v1c,2174.26,470.952,1024,224,8.08,17.04,44.57 twins_pcpvt_small,2160.75,473.897,1024,224,3.83,18.08,24.11 xcit_small_12_p16_224_dist,2141.07,478.253,1024,224,4.82,12.58,26.25 xcit_small_12_p16_224,2140.23,478.441,1024,224,4.82,12.58,26.25 cs3darknet_focus_x,2138.85,478.75,1024,256,8.03,10.69,35.02 edgenext_small,2120.03,482.998,1024,320,1.97,14.16,5.59 gluon_resnet101_v1d,2116.52,483.8,1024,224,8.08,17.04,44.57 tf_efficientnet_cc_b0_8e,2114.86,484.181,1024,224,0.42,9.42,24.01 vgg13,2106.04,486.207,1024,224,11.31,12.25,133.05 skresnet50d,2104.19,486.637,1024,224,4.36,13.31,25.82 xcit_nano_12_p8_224_dist,2091.47,489.594,1024,224,2.16,15.71,3.05 xcit_nano_12_p8_224,2088.8,490.222,1024,224,2.16,15.71,3.05 sebotnet33ts_256,2061.15,248.392,512,256,3.89,17.46,13.7 efficientnet_b0_gn,2058.74,373.032,768,224,0.42,6.75,5.29 wide_resnet50_2,2057.11,497.774,1024,224,11.43,14.4,68.88 dla102,2034.05,503.416,1024,224,7.19,14.18,33.27 vit_base_resnet50d_224,2032.15,503.887,1024,224,8.73,16.92,110.97 resnet51q,2003.15,511.181,1024,288,8.07,20.94,35.7 legacy_seresnet101,1997.44,512.643,1024,224,7.61,15.74,49.33 regnetx_040,1987.99,515.08,1024,224,3.99,12.2,22.12 gmlp_s16_224,1983.97,516.124,1024,224,4.42,15.1,19.42 res2net50_26w_6s,1970.9,519.546,1024,224,6.33,15.28,37.05 resnetaa101d,1964.05,521.361,1024,224,9.12,17.56,44.57 gluon_resnet101_v1s,1954.76,523.835,1024,224,9.19,18.64,44.67 seresnet101,1951.77,524.639,1024,224,7.84,16.27,49.33 repvgg_b1,1949.45,525.265,1024,224,13.16,10.64,57.42 crossvit_small_240,1948.12,525.623,1024,240,5.63,18.17,26.86 cs3sedarknet_xdw,1942.13,527.244,1024,256,5.97,17.18,21.6 resnetaa50,1934.76,529.254,1024,288,8.52,19.24,25.56 swin_tiny_patch4_window7_224,1924.88,531.966,1024,224,4.51,17.06,28.29 resnext101_32x4d,1924.17,532.166,1024,224,8.01,21.23,44.18 ssl_resnext101_32x4d,1923.99,532.215,1024,224,8.01,21.23,44.18 poolformer_s24,1923.48,532.355,1024,224,3.41,10.68,21.39 gluon_resnext101_32x4d,1922.64,532.587,1024,224,8.01,21.23,44.18 swsl_resnext101_32x4d,1922.44,532.644,1024,224,8.01,21.23,44.18 vit_relpos_medium_patch16_cls_224,1918.8,533.655,1024,224,8.03,18.24,38.76 vit_relpos_medium_patch16_rpn_224,1917.82,533.927,1024,224,7.97,17.02,38.73 vit_relpos_medium_patch16_224,1911.97,535.56,1024,224,7.97,17.02,38.75 vit_srelpos_medium_patch16_224,1908.42,536.559,1024,224,7.96,16.21,38.74 resnest50d_1s4x24d,1891.51,541.355,1024,224,4.43,13.57,25.68 darknet53,1883.2,407.805,768,288,11.78,15.68,41.61 gmixer_24_224,1881.95,544.104,1024,224,5.28,14.45,24.72 darknetaa53,1875.8,409.414,768,288,10.08,15.68,36.02 densenet201,1868.67,547.971,1024,224,4.34,7.85,20.01 halonet50ts,1867.02,548.456,1024,256,5.3,19.2,22.73 mobilevitv2_150,1865.71,274.416,512,256,4.09,24.11,10.59 mobilevitv2_150_in22ft1k,1864.94,274.529,512,256,4.09,24.11,10.59 tf_efficientnet_b3_ns,1862.24,274.927,512,300,1.87,23.83,12.23 tf_efficientnet_b3,1861.19,275.081,512,300,1.87,23.83,12.23 tf_efficientnet_b3_ap,1860.71,275.153,512,300,1.87,23.83,12.23 nf_resnet101,1854.11,552.273,1024,224,8.01,16.23,44.55 dla102x,1853.94,552.322,1024,224,5.89,19.42,26.31 ecaresnet101d,1853.67,552.405,1024,224,8.08,17.07,44.57 vgg13_bn,1850.18,276.718,512,224,11.33,12.25,133.05 cspdarknet53,1837.13,418.032,768,256,6.57,16.81,27.64 efficientnet_b3a,1829.01,279.921,512,320,2.01,26.52,12.23 efficientnet_b3,1828.85,279.946,512,320,2.01,26.52,12.23 mixnet_xl,1821.62,281.057,512,224,0.93,14.57,11.9 resnet61q,1810.56,565.559,1024,288,9.87,21.52,36.85 vit_small_r26_s32_224,1806.33,566.883,1024,224,3.56,9.85,36.43 xcit_tiny_12_p16_384_dist,1805.03,567.29,1024,384,3.64,18.26,6.72 edgenext_small_rw,1803.36,567.813,1024,320,2.46,14.85,7.83 crossvit_15_240,1792.63,571.217,1024,240,5.81,19.77,27.53 resnest26d,1781.59,574.753,1024,224,3.64,9.97,17.07 nf_resnet50,1773.35,577.425,1024,288,6.88,18.37,25.56 hrnet_w18,1766.17,579.773,1024,224,4.32,16.31,21.3 crossvit_15_dagger_240,1755.64,583.25,1024,240,6.13,20.43,28.21 swin_s3_tiny_224,1746.31,586.364,1024,224,4.64,19.13,28.33 resnetblur101d,1744.07,587.12,1024,224,9.12,17.94,44.57 res2net101_26w_4s,1715.56,596.875,1024,224,8.1,18.45,45.21 cait_xxs24_224,1707.34,599.75,1024,224,2.53,20.29,11.96 nf_regnet_b3,1702.33,601.516,1024,320,2.05,14.61,18.59 seresnext101_32x4d,1701.46,601.825,1024,224,8.02,21.26,48.96 gluon_seresnext101_32x4d,1701.17,601.927,1024,224,8.02,21.26,48.96 legacy_seresnext101_32x4d,1697.89,603.09,1024,224,8.02,21.26,48.96 resnetv2_50d_frn,1691.2,605.475,1024,224,4.33,11.92,25.59 vgg16,1690.51,605.724,1024,224,15.47,13.56,138.36 repvgg_b1g4,1670.27,613.064,1024,224,8.15,10.64,39.97 res2net50_26w_8s,1662.2,616.038,1024,224,8.37,17.95,48.4 resmlp_36_224,1656.29,618.237,1024,224,8.91,16.33,44.69 resmlp_36_distilled_224,1655.44,618.553,1024,224,8.91,16.33,44.69 regnetz_c16,1654.15,309.514,512,320,3.92,25.88,13.46 sequencer2d_s,1646.91,621.756,1024,224,4.96,11.31,27.65 efficientnet_b0_g8_gn,1636.03,469.418,768,224,0.66,6.75,6.56 botnet50ts_256,1633.5,313.424,512,256,5.54,22.23,22.74 vit_large_patch32_224,1629.91,628.244,1024,224,15.39,13.3,306.54 ese_vovnet39b_evos,1627.7,629.096,1024,224,7.07,6.74,24.58 cs3darknet_x,1627.54,629.156,1024,288,10.6,14.36,35.05 resnetv2_50d_evob,1620.95,631.713,1024,224,4.33,11.92,25.59 efficientnet_cc_b1_8e,1619.01,632.471,1024,240,0.75,15.44,39.72 resnetv2_152,1614.21,634.351,1024,224,11.55,22.56,60.19 xception41p,1587.33,322.543,512,299,9.25,39.86,26.91 regnetx_064,1586.15,484.18,768,224,6.49,16.37,26.21 coat_lite_small,1583.04,646.84,1024,224,3.96,22.09,19.84 swinv2_cr_tiny_224,1581.48,647.481,1024,224,4.66,28.45,28.33 xception,1578.2,486.619,768,299,8.4,35.83,22.86 gluon_resnet152_v1b,1573.68,650.689,1024,224,11.56,22.56,60.19 tv_resnet152,1573.22,650.883,1024,224,11.56,22.56,60.19 resnetv2_50x1_bit_distilled,1572.94,650.997,1024,224,4.23,11.11,25.55 resnet152,1571.71,651.505,1024,224,11.56,22.56,60.19 tf_efficientnet_cc_b1_8e,1564.9,654.344,1024,240,0.75,15.44,39.72 halo2botnet50ts_256,1559.2,656.732,1024,256,5.02,21.78,22.64 mixer_l32_224,1558.59,656.992,1024,224,11.27,19.86,206.94 vit_tiny_patch16_384,1557.53,657.441,1024,384,4.7,25.39,5.79 mobilevitv2_175,1554.07,329.447,512,256,5.54,28.13,14.25 swinv2_cr_tiny_ns_224,1551.84,659.847,1024,224,4.66,28.45,28.33 mobilevitv2_175_in22ft1k,1551.58,329.973,512,256,5.54,28.13,14.25 vit_base_patch32_384,1550.87,660.263,1024,384,13.06,16.5,88.3 cs3sedarknet_x,1549.02,661.048,1024,288,10.6,14.37,35.4 resnetv2_152d,1545.41,662.596,1024,224,11.8,23.36,60.2 nf_ecaresnet101,1540.66,664.639,1024,224,8.01,16.27,44.55 nf_seresnet101,1538.7,665.483,1024,224,8.02,16.27,49.33 gluon_resnet152_v1c,1536.27,666.538,1024,224,11.8,23.36,60.21 efficientnet_el,1524.59,335.818,512,300,8.0,30.7,10.59 efficientnet_el_pruned,1523.29,336.105,512,300,8.0,30.7,10.59 gluon_resnet152_v1d,1508.62,678.753,1024,224,11.8,23.36,60.21 vgg16_bn,1504.44,340.315,512,224,15.5,13.56,138.37 twins_pcpvt_base,1494.56,685.139,1024,224,6.68,25.25,43.83 tf_efficientnet_el,1481.51,345.582,512,300,8.0,30.7,10.59 cs3edgenet_x,1479.52,692.101,1024,288,14.59,16.36,47.82 vit_base_r26_s32_224,1479.31,692.202,1024,224,6.81,12.36,101.38 skresnext50_32x4d,1465.64,698.657,1024,224,4.5,17.18,27.48 convnext_small,1452.43,705.012,1024,224,8.71,21.56,50.22 convnext_small_in22ft1k,1450.42,705.987,1024,224,8.71,21.56,50.22 hrnet_w32,1444.27,708.991,1024,224,8.97,22.02,41.23 ese_vovnet99b,1442.7,709.767,1024,224,16.51,11.27,63.2 mixer_b16_224,1424.87,718.648,1024,224,12.62,14.53,59.88 gluon_resnet152_v1s,1424.84,718.665,1024,224,12.92,24.96,60.32 ecaresnet50t,1422.0,720.1,1024,320,8.82,24.13,25.57 mixer_b16_224_miil,1421.45,720.381,1024,224,12.62,14.53,59.88 vgg19,1411.57,725.42,1024,224,19.63,14.86,143.67 regnety_032,1398.62,732.137,1024,288,5.29,18.61,19.44 convit_small,1398.4,732.254,1024,224,5.76,17.87,27.78 nest_tiny,1387.46,553.516,768,224,5.83,25.48,17.06 legacy_seresnet152,1382.46,740.694,1024,224,11.33,22.08,66.82 dla169,1382.4,740.729,1024,224,11.6,20.2,53.39 xcit_tiny_12_p8_224,1374.74,744.858,1024,224,4.81,23.6,6.71 xcit_tiny_12_p8_224_dist,1374.04,745.236,1024,224,4.81,23.6,6.71 densenet161,1366.11,749.563,1024,224,7.79,11.06,28.68 jx_nest_tiny,1362.5,563.656,768,224,5.83,25.48,17.06 seresnet152,1361.36,752.174,1024,224,11.57,22.61,66.82 mobilevitv2_200_in22ft1k,1354.63,283.461,384,256,7.22,32.15,18.45 mobilevitv2_200,1354.25,283.54,384,256,7.22,32.15,18.45 xception41,1347.67,379.903,512,299,9.28,39.86,26.97 inception_v4,1323.37,773.767,1024,299,12.28,15.09,42.68 twins_svt_base,1316.07,778.059,1024,224,8.59,26.33,56.07 vit_small_resnet50d_s16_224,1305.38,784.435,1024,224,13.48,24.82,57.53 dpn92,1303.44,785.601,1024,224,6.54,18.21,37.67 tresnet_m,1297.91,788.947,1024,224,5.74,7.31,31.39 poolformer_s36,1296.72,789.674,1024,224,5.0,15.82,30.86 sequencer2d_m,1285.21,796.745,1024,224,6.55,14.26,38.31 crossvit_18_240,1273.5,804.072,1024,240,9.05,26.26,43.27 regnetx_080,1271.94,805.056,1024,224,8.02,14.06,39.57 dla102x2,1271.93,402.524,512,224,9.34,29.91,41.28 vgg19_bn,1265.83,404.467,512,224,19.66,14.86,143.68 efficientnet_lite4,1263.67,303.867,384,380,4.04,45.66,13.01 crossvit_18_dagger_240,1245.15,822.375,1024,240,9.5,27.03,44.27 res2next50,1241.53,824.775,1024,224,4.2,13.71,24.67 volo_d1_224,1235.2,829.0,1024,224,6.94,24.43,26.63 efficientnetv2_s,1221.73,838.141,1024,384,8.44,35.77,21.46 resnest50d,1214.35,843.233,1024,224,5.4,14.36,27.48 tf_efficientnetv2_s_in21ft1k,1191.03,859.741,1024,384,8.44,35.77,21.46 tf_efficientnetv2_s,1191.03,859.748,1024,384,8.44,35.77,21.46 dpn98,1188.11,861.858,1024,224,11.73,25.2,61.57 mixnet_xxl,1187.83,323.267,384,224,2.04,23.43,23.96 swin_small_patch4_window7_224,1183.48,865.227,1024,224,8.77,27.47,49.61 regnetz_d8,1180.44,867.458,1024,320,6.19,37.08,23.37 hrnet_w30,1180.28,867.576,1024,224,8.15,21.21,37.71 gluon_resnext101_64x4d,1176.11,870.653,1024,224,15.52,31.21,83.46 efficientnetv2_rw_s,1166.72,877.658,1024,384,8.72,38.03,23.94 tf_efficientnet_lite4,1164.88,329.636,384,380,4.04,45.66,13.01 swinv2_tiny_window8_256,1158.39,883.971,1024,256,5.96,24.57,28.35 wide_resnet101_2,1155.6,886.11,1024,224,22.8,21.23,126.89 repvgg_b2,1154.84,886.691,1024,224,20.45,12.9,89.02 vit_base_patch16_224_miil,1153.59,887.648,1024,224,17.58,23.9,86.54 resnet50_gn,1150.43,890.083,1024,224,4.14,11.11,25.56 resnet200,1149.46,890.84,1024,224,15.07,32.19,64.67 cait_xxs36_224,1148.13,891.873,1024,224,3.77,30.34,17.3 xception65p,1140.81,448.791,512,299,13.91,52.48,39.82 regnetz_040,1140.64,336.641,384,320,6.35,37.78,27.12 xcit_small_24_p16_224_dist,1137.7,900.049,1024,224,9.1,23.64,47.67 xcit_small_24_p16_224,1136.58,900.934,1024,224,9.1,23.64,47.67 regnetz_040h,1135.68,338.111,384,320,6.43,37.94,28.94 deit_base_patch16_224,1133.84,903.113,1024,224,17.58,23.9,86.57 vit_base_patch16_224,1133.45,903.419,1024,224,17.58,23.9,86.57 vit_base_patch16_224_sam,1132.11,904.493,1024,224,17.58,23.9,86.57 regnetz_d32,1128.13,907.679,1024,320,9.33,37.08,27.58 dla60_res2next,1127.83,907.922,1024,224,3.49,13.17,17.03 eca_nfnet_l0,1126.64,908.88,1024,288,7.12,17.29,24.14 resnetrs101,1123.2,911.667,1024,288,13.56,28.53,63.62 nfnet_l0,1123.1,911.747,1024,288,7.13,17.29,35.07 cs3se_edgenet_x,1120.46,913.898,1024,320,18.01,20.21,50.72 deit_base_distilled_patch16_224,1119.36,914.798,1024,224,17.68,24.05,87.34 vit_base_patch16_rpn_224,1111.53,921.235,1024,224,17.49,23.75,86.54 inception_resnet_v2,1108.79,923.511,1024,299,13.18,25.06,55.84 ens_adv_inception_resnet_v2,1107.31,924.747,1024,299,13.18,25.06,55.84 deit3_base_patch16_224,1093.88,936.101,1024,224,17.58,23.9,86.59 deit3_base_patch16_224_in21ft1k,1092.45,937.33,1024,224,17.58,23.9,86.59 gluon_seresnext101_64x4d,1088.94,940.353,1024,224,15.53,31.25,88.23 vit_relpos_base_patch16_clsgap_224,1081.95,946.422,1024,224,17.6,25.12,86.43 vit_relpos_base_patch16_cls_224,1081.77,946.586,1024,224,17.6,25.12,86.43 vit_relpos_base_patch16_rpn_224,1080.35,947.826,1024,224,17.51,24.97,86.41 vit_relpos_base_patch16_224,1079.52,948.56,1024,224,17.51,24.97,86.43 tnt_s_patch16_224,1078.48,949.47,1024,224,5.24,24.37,23.76 twins_pcpvt_large,1066.87,959.801,1024,224,9.84,35.82,60.99 ssl_resnext101_32x8d,1054.92,970.677,1024,224,16.48,31.21,88.79 resnext101_32x8d,1054.71,970.869,1024,224,16.48,31.21,88.79 ig_resnext101_32x8d,1054.19,971.349,1024,224,16.48,31.21,88.79 swsl_resnext101_32x8d,1053.69,971.812,1024,224,16.48,31.21,88.79 beit_base_patch16_224,1049.2,975.962,1024,224,17.58,23.9,86.53 resnest50d_4s2x40d,1042.05,982.666,1024,224,4.4,17.94,30.42 coat_tiny,1040.04,984.566,1024,224,4.35,27.2,5.5 resnet101d,1029.19,994.942,1024,320,16.48,34.77,44.57 convnext_base,1012.72,1011.124,1024,224,15.38,28.75,88.59 convnext_base_in22ft1k,1011.75,1012.088,1024,224,15.38,28.75,88.59 efficientnet_b4,993.87,386.356,384,384,4.51,50.04,19.34 pit_b_224,992.43,515.895,512,224,12.42,32.94,73.76 pit_b_distilled_224,988.79,517.791,512,224,12.5,33.07,74.79 gluon_xception65,981.26,521.764,512,299,13.96,52.48,39.92 xception65,975.37,524.918,512,299,13.96,52.48,39.92 vit_small_patch16_36x1_224,973.92,1051.404,1024,224,13.71,35.69,64.67 repvgg_b3,972.06,1053.416,1024,224,29.16,15.1,123.09 repvgg_b2g4,969.39,1056.316,1024,224,12.63,12.9,61.76 xcit_tiny_24_p16_384_dist,969.37,1056.345,1024,384,6.87,34.29,12.12 swinv2_cr_small_224,967.97,1057.869,1024,224,9.07,50.27,49.7 swinv2_cr_small_ns_224,957.86,1069.034,1024,224,9.08,50.27,49.7 vit_small_patch16_18x2_224,951.03,1076.715,1024,224,13.71,35.69,64.67 twins_svt_large,923.66,1108.616,1024,224,15.15,35.1,99.27 tf_efficientnet_b4,922.69,416.164,384,380,4.49,49.49,19.34 tf_efficientnet_b4_ap,922.5,416.247,384,380,4.49,49.49,19.34 tf_efficientnet_b4_ns,922.41,416.289,384,380,4.49,49.49,19.34 hrnet_w40,910.46,1124.691,1024,224,12.75,25.29,57.56 regnetz_b16_evos,903.54,849.98,768,288,2.36,16.43,9.74 cait_s24_224,902.24,1134.941,1024,224,9.35,40.58,46.92 nfnet_f0,901.6,1135.748,1024,256,12.62,18.05,71.49 nf_regnet_b4,900.78,1136.78,1024,384,4.7,28.61,30.21 poolformer_m36,896.53,1142.174,1024,224,8.8,22.02,56.17 nest_small,884.77,868.006,768,224,10.35,40.04,38.35 hrnet_w48,875.56,1169.527,1024,224,17.34,28.56,77.47 jx_nest_small,874.29,878.41,768,224,10.35,40.04,38.35 dpn131,866.66,1181.531,1024,224,16.09,32.97,79.25 swin_s3_small_224,854.8,898.443,768,224,9.43,37.84,49.74 regnety_040,854.48,898.782,768,288,6.61,20.3,20.65 regnetv_040,854.18,899.093,768,288,6.6,20.3,20.64 regnety_080,846.16,605.071,512,288,13.22,29.69,39.18 resnetv2_50d_evos,844.23,1212.929,1024,288,7.15,19.7,25.59 coat_mini,836.76,1223.748,1024,224,6.82,33.68,10.34 swin_base_patch4_window7_224,836.19,1224.59,1024,224,15.47,36.63,87.77 repvgg_b3g4,835.5,1225.597,1024,224,17.89,15.1,83.83 sequencer2d_l,832.91,1229.407,1024,224,9.74,22.12,54.3 dm_nfnet_f0,831.16,1232.004,1024,256,12.62,18.05,71.49 mobilevitv2_150_384_in22ft1k,826.94,309.566,256,384,9.2,54.25,10.59 gmlp_b16_224,825.63,1240.256,1024,224,15.78,30.21,73.08 convnext_tiny_384_in22ft1k,814.55,628.553,512,384,13.14,39.48,28.59 xcit_medium_24_p16_224_dist,812.18,1260.787,1024,224,16.13,31.71,84.4 xcit_medium_24_p16_224,812.16,1260.822,1024,224,16.13,31.71,84.4 regnetx_120,810.53,631.674,512,224,12.13,21.37,46.11 xcit_small_12_p16_384_dist,800.29,1279.521,1024,384,14.14,36.51,26.25 densenet264,798.84,1281.845,1024,224,12.95,12.8,72.69 hrnet_w44,790.45,1295.441,1024,224,14.94,26.92,67.06 crossvit_base_240,787.5,975.226,768,240,21.22,36.33,105.03 regnety_120,783.87,653.154,512,224,12.14,21.38,51.82 swinv2_tiny_window16_256,765.77,668.599,512,256,6.68,39.02,28.35 resnetv2_50d_gn,751.14,1022.427,768,288,7.24,19.7,25.57 xception71,749.93,682.721,512,299,18.09,69.92,42.34 vit_large_r50_s32_224,739.74,1384.252,1024,224,19.58,24.41,328.99 vit_base_patch16_plus_240,737.95,1387.618,1024,240,27.41,33.08,117.56 dpn107,736.42,1390.497,1024,224,18.38,33.46,86.92 resnet152d,736.09,1391.121,1024,320,24.08,47.67,60.21 ecaresnet200d,730.76,1401.271,1024,256,20.0,43.15,64.69 seresnet200d,728.63,1405.363,1024,256,20.01,43.15,71.86 vit_relpos_base_patch16_plus_240,727.74,1407.074,1024,240,27.3,34.33,117.38 xcit_tiny_24_p8_224,725.69,1411.06,1024,224,9.21,45.39,12.11 xcit_tiny_24_p8_224_dist,725.66,1411.108,1024,224,9.21,45.39,12.11 hrnet_w64,719.99,1422.231,1024,224,28.97,35.09,128.06 regnety_040s_gn,719.08,1068.018,768,224,4.03,12.29,20.65 xcit_nano_12_p8_384_dist,713.49,1435.191,1024,384,6.34,46.08,3.05 swinv2_small_window8_256,712.51,1437.16,1024,256,11.58,40.14,49.73 convit_base,706.35,1449.693,1024,224,17.52,31.77,86.54 resnext101_64x4d,704.57,1090.007,768,288,25.66,51.59,83.46 swin_s3_base_224,695.14,1473.064,1024,224,13.69,48.26,71.13 vit_small_patch16_384,693.62,1107.217,768,384,15.52,50.78,22.2 tnt_b_patch16_224,691.83,1480.107,1024,224,14.09,39.01,65.41 swinv2_cr_base_224,689.84,1484.394,1024,224,15.86,59.66,87.88 regnety_064,684.37,748.122,512,288,10.56,27.11,30.58 swinv2_cr_base_ns_224,683.96,1497.137,1024,224,15.86,59.66,87.88 volo_d2_224,679.94,1506.002,1024,224,14.34,41.34,58.68 mobilevitv2_175_384_in22ft1k,679.77,376.586,256,384,12.47,63.29,14.25 regnetv_064,678.0,755.149,512,288,10.55,27.11,30.58 poolformer_m48,676.06,1514.652,1024,224,11.59,29.17,73.47 deit3_small_patch16_384,669.71,1146.752,768,384,15.52,50.78,22.21 deit3_small_patch16_384_in21ft1k,669.36,1147.345,768,384,15.52,50.78,22.21 legacy_senet154,660.41,1550.529,1024,224,20.77,38.69,115.09 senet154,659.33,1553.081,1024,224,20.77,38.69,115.09 gluon_senet154,659.08,1553.657,1024,224,20.77,38.69,115.09 regnetx_160,650.99,786.486,512,224,15.99,25.52,54.28 resnetrs152,646.22,1584.595,1024,320,24.34,48.14,86.62 seresnet152d,642.19,1594.525,1024,320,24.09,47.72,66.84 regnetz_e8,633.28,1212.715,768,320,15.46,63.94,57.7 tresnet_l,630.57,1623.908,1024,224,10.88,11.9,55.99 nest_base,629.43,813.42,512,224,17.96,53.39,67.72 ese_vovnet99b_iabn,628.09,1630.325,1024,224,16.49,11.27,63.2 jx_nest_base,622.33,822.697,512,224,17.96,53.39,67.72 vit_small_r26_s32_384,613.78,834.168,512,384,10.43,29.85,36.47 vit_base_r50_s16_224,610.7,1676.739,1024,224,21.66,35.29,98.66 xcit_small_12_p8_224,609.86,1679.054,1024,224,18.69,47.21,26.21 xcit_small_12_p8_224_dist,609.57,1679.853,1024,224,18.69,47.21,26.21 efficientnetv2_m,603.09,1697.911,1024,416,18.6,67.5,54.14 mobilevitv2_200_384_in22ft1k,594.06,323.186,192,384,16.24,72.34,18.45 seresnext101_32x8d,590.8,1299.927,768,288,27.24,51.63,93.57 resnest101e,588.3,1305.448,768,256,13.38,28.66,48.28 regnetz_c16_evos,588.05,870.656,512,320,3.86,25.88,13.49 convmixer_768_32,578.91,1768.818,1024,224,19.55,25.95,21.11 seresnext101d_32x8d,575.36,1334.812,768,288,27.64,52.95,93.59 seresnet269d,570.63,1794.5,1024,256,26.59,53.6,113.67 convnext_large,561.47,1823.764,1024,224,34.4,43.13,197.77 convnext_large_in22ft1k,560.92,1825.557,1024,224,34.4,43.13,197.77 resnet200d,544.65,1880.08,1024,320,31.25,67.33,64.69 efficientnetv2_rw_m,534.87,1435.852,768,416,21.49,79.62,53.24 seresnextaa101d_32x8d,521.71,1472.057,768,288,28.51,56.44,93.59 vit_large_patch32_384,517.33,1979.373,1024,384,45.31,43.86,306.63 swinv2_base_window8_256,509.01,2011.746,1024,256,20.37,52.59,87.92 eca_nfnet_l1,497.06,2060.113,1024,320,14.92,34.42,41.41 convnext_small_384_in22ft1k,496.5,1031.206,512,384,25.58,63.37,50.22 mixer_l16_224,495.85,2065.122,1024,224,44.6,41.69,208.2 efficientnet_b5,493.19,519.054,256,456,10.46,98.86,30.39 halonet_h1,492.19,520.115,256,256,3.0,51.17,8.1 regnety_320,483.53,1058.87,512,224,32.34,30.26,145.05 swin_large_patch4_window7_224,480.21,1599.271,768,224,34.53,54.94,196.53 swinv2_small_window16_256,477.23,1072.842,512,256,12.82,66.29,49.73 volo_d3_224,474.32,2158.852,1024,224,20.78,60.09,86.33 resnetrs200,471.22,2173.072,1024,320,31.51,67.81,93.21 tf_efficientnet_b5_ns,469.35,545.419,256,456,10.46,98.86,30.39 tf_efficientnet_b5_ap,469.08,545.738,256,456,10.46,98.86,30.39 tf_efficientnet_b5,468.97,545.864,256,456,10.46,98.86,30.39 xcit_tiny_12_p8_384_dist,468.35,2186.374,1024,384,14.13,69.14,6.71 tresnet_xl,466.16,2196.648,1024,224,15.17,15.34,78.44 efficientnet_b3_gn,464.67,550.914,256,320,2.14,28.83,11.73 xcit_large_24_p16_224_dist,454.83,2251.393,1024,224,35.86,47.27,189.1 xcit_large_24_p16_224,454.8,2251.543,1024,224,35.86,47.27,189.1 tf_efficientnetv2_m_in21ft1k,444.81,1726.544,768,480,24.76,89.84,54.14 tf_efficientnetv2_m,444.79,1726.633,768,480,24.76,89.84,54.14 xcit_small_24_p16_384_dist,426.37,2401.669,1024,384,26.72,68.58,47.67 regnety_160,422.88,908.045,384,288,26.37,38.07,83.59 nf_regnet_b5,413.3,1238.797,512,456,11.7,61.95,49.74 swinv2_cr_tiny_384,408.94,625.992,256,384,15.34,161.01,28.33 swinv2_cr_large_224,406.2,1890.673,768,224,35.1,78.42,196.68 resnetv2_50x1_bitm,400.73,958.233,384,448,16.62,44.46,25.55 regnetz_d8_evos,392.85,1954.947,768,320,7.03,38.92,23.46 convmixer_1024_20_ks9_p14,390.62,2621.469,1024,224,5.55,5.51,24.38 efficientnet_b3_g8_gn,373.24,685.874,256,320,3.2,28.83,14.25 vit_large_patch16_224,370.72,2762.206,1024,224,61.6,63.52,304.33 convnext_xlarge_in22ft1k,368.8,1388.275,512,224,60.98,57.5,350.2 crossvit_15_dagger_408,368.65,694.421,256,408,21.45,95.05,28.5 vit_base_patch16_18x2_224,361.92,2829.305,1024,224,52.51,71.38,256.73 deit3_large_patch16_224_in21ft1k,358.3,2857.929,1024,224,61.6,63.52,304.37 deit3_large_patch16_224,357.82,2861.791,1024,224,61.6,63.52,304.37 swinv2_base_window16_256,346.22,1109.109,384,256,22.02,84.71,87.92 swinv2_base_window12to16_192to256_22kft1k,345.97,1109.898,384,256,22.02,84.71,87.92 nasnetalarge,345.75,1110.628,384,331,23.89,90.56,88.75 convnext_base_384_in22ft1k,345.74,1110.63,384,384,45.21,84.49,88.59 beit_large_patch16_224,343.01,2985.299,1024,224,61.6,63.52,304.43 ssl_resnext101_32x16d,338.92,1510.65,512,224,36.27,51.18,194.03 ig_resnext101_32x16d,338.75,1511.419,512,224,36.27,51.18,194.03 swsl_resnext101_32x16d,338.52,1512.441,512,224,36.27,51.18,194.03 tresnet_m_448,325.14,3149.347,1024,448,22.94,29.21,31.39 pnasnet5large,323.98,1185.25,384,331,25.04,92.89,86.06 regnetx_320,320.95,1196.437,384,224,31.81,36.3,107.81 xcit_small_24_p8_224,319.26,3207.434,1024,224,35.81,90.78,47.63 xcit_small_24_p8_224_dist,319.16,3208.44,1024,224,35.81,90.78,47.63 volo_d1_384,315.83,1621.098,512,384,22.75,108.55,26.78 nfnet_f1,306.71,3338.679,1024,320,35.97,46.77,132.63 ecaresnet269d,304.87,3358.754,1024,352,50.25,101.25,102.09 volo_d4_224,303.38,3375.331,1024,224,44.34,80.22,192.96 xcit_medium_24_p16_384_dist,297.67,2580.013,768,384,47.39,91.64,84.4 resnetrs270,296.93,3448.599,1024,352,51.13,105.48,129.86 resnetv2_152x2_bit_teacher,290.64,2642.472,768,224,46.95,45.11,236.34 vit_base_patch16_384,289.22,1327.696,384,384,55.54,101.56,86.86 deit_base_patch16_384,289.04,1328.502,384,384,55.54,101.56,86.86 deit_base_distilled_patch16_384,285.12,1346.806,384,384,55.65,101.82,87.63 dm_nfnet_f1,282.58,3623.721,1024,320,35.97,46.77,132.63 deit3_base_patch16_384,281.04,1366.341,384,384,55.54,101.56,86.88 deit3_base_patch16_384_in21ft1k,280.92,1366.918,384,384,55.54,101.56,86.88 efficientnet_b6,279.71,457.611,128,528,19.4,167.39,43.04 cait_xxs24_384,275.0,3723.573,1024,384,9.63,122.66,12.03 vit_large_patch14_224,271.58,3770.566,1024,224,81.08,88.79,304.2 crossvit_18_dagger_408,269.56,712.259,192,408,32.47,124.87,44.61 tf_efficientnet_b6_ap,267.5,478.495,128,528,19.4,167.39,43.04 tf_efficientnet_b6,267.48,478.534,128,528,19.4,167.39,43.04 tf_efficientnet_b6_ns,267.38,478.715,128,528,19.4,167.39,43.04 efficientnetv2_l,254.55,2011.402,512,480,56.4,157.99,118.52 resnetv2_101x1_bitm,252.46,1521.025,384,448,31.65,64.93,44.54 tf_efficientnetv2_l,251.41,2036.496,512,480,56.4,157.99,118.52 tf_efficientnetv2_l_in21ft1k,251.09,2039.122,512,480,56.4,157.99,118.52 swinv2_cr_small_384,250.5,1021.951,256,384,29.7,298.03,49.7 beit_base_patch16_384,248.36,1546.143,384,384,55.54,101.56,86.74 xcit_tiny_24_p8_384_dist,246.6,4152.437,1024,384,27.05,132.95,12.11 vit_large_r50_s32_384,246.12,2080.308,512,384,57.43,76.52,329.09 eca_nfnet_l2,237.09,3239.214,768,384,30.05,68.28,56.72 resmlp_big_24_224,228.25,4486.35,1024,224,100.23,87.31,129.14 resmlp_big_24_224_in22ft1k,227.96,4491.908,1024,224,100.23,87.31,129.14 resmlp_big_24_distilled_224,227.94,4492.471,1024,224,100.23,87.31,129.14 xcit_medium_24_p8_224_dist,222.27,3455.29,768,224,63.53,121.23,84.32 xcit_medium_24_p8_224,222.27,3455.239,768,224,63.53,121.23,84.32 swin_base_patch4_window12_384,221.01,868.732,192,384,47.19,134.78,87.9 swinv2_large_window12to16_192to256_22kft1k,212.32,1205.699,256,256,47.81,121.53,196.74 xcit_small_12_p8_384_dist,207.32,1852.22,384,384,54.92,138.29,26.21 resnest200e,201.89,2536.056,512,320,35.69,82.78,70.2 volo_d5_224,200.39,5110.009,1024,224,72.4,118.11,295.46 resnetrs350,194.78,3942.989,768,384,77.59,154.74,163.96 convnext_large_384_in22ft1k,191.43,1337.313,256,384,101.1,126.74,197.77 cait_xs24_384,190.0,4042.088,768,384,19.28,183.98,26.67 vit_base_patch8_224,188.23,1360.04,256,224,78.22,161.69,86.58 cait_xxs36_384,183.87,5569.221,1024,384,14.35,183.7,17.37 swinv2_cr_base_384,178.69,1432.608,256,384,50.57,333.68,87.88 vit_base_r50_s16_384,176.73,1448.509,256,384,67.43,135.03,98.95 vit_base_resnet50_384,176.72,1448.639,256,384,67.43,135.03,98.95 volo_d2_384,176.17,2179.696,384,384,46.17,184.51,58.87 swinv2_cr_huge_224,175.72,2185.293,384,224,115.97,121.08,657.83 nfnet_f2,172.68,5929.942,1024,352,63.22,79.06,193.78 xcit_large_24_p16_384_dist,168.33,3041.628,512,384,105.35,137.17,189.1 densenet264d_iabn,166.37,6155.083,1024,224,13.47,14.0,72.74 efficientnet_b7,161.46,594.574,96,600,38.33,289.94,66.35 efficientnetv2_xl,159.28,2410.894,384,512,93.85,247.32,208.12 dm_nfnet_f2,159.16,4825.445,768,352,63.22,79.06,193.78 tf_efficientnetv2_xl_in21ft1k,158.05,2429.572,384,512,93.85,247.32,208.12 tf_efficientnet_b7,155.86,615.938,96,600,38.33,289.94,66.35 tf_efficientnet_b7_ap,155.83,616.029,96,600,38.33,289.94,66.35 tf_efficientnet_b7_ns,155.78,616.248,96,600,38.33,289.94,66.35 tresnet_l_448,151.99,6737.079,1024,448,43.5,47.56,55.99 cait_s24_384,148.32,3451.871,512,384,32.17,245.31,47.06 vit_huge_patch14_224,146.38,6995.606,1024,224,167.4,139.41,632.05 ig_resnext101_32x32d,143.03,1789.868,256,224,87.29,91.12,468.53 resnetrs420,142.89,5374.778,768,416,108.45,213.79,191.89 deit3_huge_patch14_224,142.28,7197.12,1024,224,167.4,139.41,632.13 deit3_huge_patch14_224_in21ft1k,142.06,7208.264,1024,224,167.4,139.41,632.13 eca_nfnet_l3,132.47,3864.977,512,448,52.55,118.4,72.04 swin_large_patch4_window12_384,130.79,978.633,128,384,104.08,202.16,196.74 convnext_xlarge_384_in22ft1k,126.14,2029.4,256,384,179.2,168.99,350.2 xcit_large_24_p8_224,125.6,4076.305,512,224,141.23,181.56,188.93 xcit_large_24_p8_224_dist,125.51,4079.48,512,224,141.23,181.56,188.93 tresnet_xl_448,111.87,9153.659,1024,448,60.65,61.31,78.44 xcit_small_24_p8_384_dist,108.62,3535.115,384,384,105.24,265.91,47.63 swinv2_cr_large_384,108.25,1182.395,128,384,108.95,404.96,196.68 efficientnet_b8,101.79,943.075,96,672,63.48,442.89,87.41 resnetv2_50x3_bitm,101.1,1266.075,128,448,145.7,133.37,217.32 cait_s36_384,99.17,5162.791,512,384,47.99,367.4,68.37 tf_efficientnet_b8,98.82,971.416,96,672,63.48,442.89,87.41 tf_efficientnet_b8_ap,98.81,971.518,96,672,63.48,442.89,87.41 resnetv2_152x2_bit_teacher_384,98.49,2599.208,256,384,136.16,132.56,236.34 vit_large_patch16_384,97.65,2621.481,256,384,191.21,270.24,304.72 vit_giant_patch14_224,95.7,8025.142,768,224,267.18,192.64,1012.61 deit3_large_patch16_384,94.92,2697.101,256,384,191.21,270.24,304.76 deit3_large_patch16_384_in21ft1k,94.92,2697.083,256,384,191.21,270.24,304.76 swinv2_base_window12to24_192to384_22kft1k,94.52,677.087,64,384,55.25,280.36,87.92 nfnet_f3,93.84,8184.276,768,416,115.58,141.78,254.92 resnest269e,93.31,4115.183,384,416,77.69,171.98,110.93 dm_nfnet_f3,86.56,5914.801,512,416,115.58,141.78,254.92 beit_large_patch16_384,84.77,3019.757,256,384,191.21,270.24,305.0 volo_d3_448,76.33,2515.269,192,448,96.33,446.83,86.63 xcit_medium_24_p8_384_dist,75.97,3369.835,256,384,186.67,354.73,84.32 ig_resnext101_32x48d,74.47,2578.247,192,224,153.57,131.06,828.41 resnetv2_152x2_bitm,72.95,2631.902,192,448,184.99,180.43,236.34 tf_efficientnet_l2_ns_475,63.13,1013.713,64,475,172.11,609.89,480.31 resnetv2_101x3_bitm,60.06,2131.166,128,448,280.33,194.78,387.93 swinv2_large_window12to24_192to384_22kft1k,59.82,802.459,48,384,116.15,407.83,196.74 vit_gigantic_patch14_224,57.64,8883.342,512,224,483.95,275.37,1844.44 volo_d4_448,56.09,3423.322,192,448,197.13,527.35,193.41 convmixer_1536_20,53.95,18979.912,1024,224,48.68,33.03,51.63 swinv2_cr_giant_224,50.56,2531.46,128,224,483.85,309.15,2598.76 nfnet_f4,49.93,10254.329,512,512,216.26,262.26,316.07 swinv2_cr_huge_384,47.13,1357.909,64,384,352.04,583.18,657.94 dm_nfnet_f4,45.97,8353.673,384,512,216.26,262.26,316.07 xcit_large_24_p8_384_dist,42.84,4481.402,192,384,415.0,531.82,188.93 volo_d5_448,38.62,3314.317,128,448,315.06,737.92,295.91 nfnet_f5,37.03,10370.994,384,544,290.97,349.71,377.21 dm_nfnet_f5,33.93,11318.026,384,544,290.97,349.71,377.21 beit_large_patch16_512,33.87,2834.401,96,512,362.24,656.39,305.67 cait_m36_384,32.22,7945.944,256,384,173.11,734.81,271.22 nfnet_f6,28.33,13554.319,384,576,378.69,452.2,438.36 volo_d5_512,26.99,4742.789,128,512,425.09,1105.37,296.09 dm_nfnet_f6,26.14,9792.719,256,576,378.69,452.2,438.36 resnetv2_152x4_bitm,24.34,2629.892,64,480,844.84,414.26,936.53 efficientnet_l2,23.12,1037.889,24,800,479.12,1707.39,480.31 tf_efficientnet_l2_ns,22.7,1057.422,24,800,479.12,1707.39,480.31 nfnet_f7,22.34,11460.175,256,608,480.39,570.85,499.5 swinv2_cr_giant_384,14.63,2187.208,32,384,1450.71,1394.86,2598.76 cait_m48_448,13.64,9385.159,128,448,329.41,1708.23,356.46
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nchw-pt111-cu113-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,param_count tinynet_e,47972.76,21.335,1024,106,2.04 mobilenetv3_small_050,42473.43,24.099,1024,224,1.59 lcnet_035,39739.31,25.756,1024,224,1.64 lcnet_050,35211.0,29.071,1024,224,1.88 mobilenetv3_small_075,31410.3,32.589,1024,224,2.04 mobilenetv3_small_100,28111.39,36.416,1024,224,2.54 tf_mobilenetv3_small_minimal_100,27538.82,37.173,1024,224,2.04 tinynet_d,26670.17,38.384,1024,152,2.34 tf_mobilenetv3_small_075,26522.93,38.597,1024,224,2.04 tf_mobilenetv3_small_100,24036.65,42.591,1024,224,2.54 lcnet_075,22451.72,45.598,1024,224,2.36 levit_128s,19963.52,51.282,1024,224,7.78 mnasnet_small,19706.27,51.952,1024,224,2.03 lcnet_100,18132.59,56.461,1024,224,2.95 mobilenetv2_035,17586.23,58.217,1024,224,1.68 ghostnet_050,16726.5,61.209,1024,224,2.59 regnetx_002,16238.56,63.048,1024,224,2.68 regnety_002,15227.23,67.235,1024,224,3.16 mnasnet_050,15022.24,68.154,1024,224,2.22 tinynet_c,14089.9,72.665,1024,184,2.46 mobilenetv2_050,14032.51,72.961,1024,224,1.97 levit_128,13679.77,74.845,1024,224,9.21 semnasnet_050,13508.98,75.79,1024,224,2.08 vit_small_patch32_224,12109.88,84.548,1024,224,22.88 mixer_s32_224,11702.15,87.494,1024,224,19.1 levit_192,11695.39,87.545,1024,224,10.95 lcnet_150,11564.86,88.533,1024,224,4.5 mobilenetv3_large_075,11407.33,89.755,1024,224,3.99 gernet_s,10837.81,94.473,1024,224,8.17 vit_tiny_r_s16_p8_224,10598.14,96.609,1024,224,6.34 mobilenetv3_rw,10164.28,100.733,1024,224,5.48 tf_mobilenetv3_large_075,10125.76,101.117,1024,224,3.99 regnetx_004,10069.8,101.678,1024,224,5.16 mobilenetv3_large_100,10017.28,102.212,1024,224,5.48 mobilenetv3_large_100_miil,10014.68,102.238,1024,224,5.48 ese_vovnet19b_slim_dw,9944.69,102.957,1024,224,1.9 hardcorenas_a,9792.24,104.561,1024,224,5.26 mnasnet_075,9774.09,104.755,1024,224,3.17 tf_mobilenetv3_large_minimal_100,9771.38,104.784,1024,224,3.92 ghostnet_100,9041.17,113.248,1024,224,5.18 hardcorenas_b,9021.74,113.492,1024,224,5.18 tinynet_b,8976.69,114.061,1024,188,3.73 swsl_resnet18,8971.65,114.125,1024,224,11.69 tf_mobilenetv3_large_100,8954.66,114.343,1024,224,5.48 gluon_resnet18_v1b,8949.74,114.406,1024,224,11.69 ssl_resnet18,8947.2,114.439,1024,224,11.69 resnet18,8927.25,114.693,1024,224,11.69 hardcorenas_c,8864.36,115.506,1024,224,5.52 mobilenetv2_075,8764.66,116.82,1024,224,2.64 mnasnet_100,8646.99,118.411,1024,224,4.38 mnasnet_b1,8646.34,118.421,1024,224,4.38 semnasnet_075,8603.57,119.009,1024,224,2.91 levit_256,8528.42,120.058,1024,224,18.89 regnety_004,8497.03,120.501,1024,224,4.34 seresnet18,8461.0,121.015,1024,224,11.78 hardcorenas_d,8306.25,123.269,1024,224,7.5 legacy_seresnet18,8213.74,124.658,1024,224,11.78 regnetx_006,8055.06,127.114,1024,224,6.2 mobilenetv2_100,7900.5,129.6,1024,224,3.5 spnasnet_100,7827.4,130.811,1024,224,4.42 semnasnet_100,7701.96,132.941,1024,224,3.89 mnasnet_a1,7678.8,133.342,1024,224,3.89 resnet18d,7478.23,136.919,1024,224,11.71 levit_256d,7357.48,139.166,1024,224,26.21 ghostnet_130,7270.82,140.824,1024,224,7.36 regnety_006,7263.32,140.971,1024,224,6.06 hardcorenas_f,7222.67,141.764,1024,224,8.2 hardcorenas_e,7174.56,142.715,1024,224,8.07 efficientnet_lite0,7057.13,145.09,1024,224,4.65 ese_vovnet19b_slim,6975.46,146.789,1024,224,3.17 tinynet_a,6918.13,148.004,1024,192,6.19 fbnetc_100,6847.55,149.531,1024,224,5.57 tf_efficientnetv2_b0,6842.85,149.633,1024,224,7.14 xcit_nano_12_p16_224_dist,6769.74,151.25,1024,224,3.05 xcit_nano_12_p16_224,6760.61,151.454,1024,224,3.05 regnetx_008,6358.56,161.031,1024,224,7.26 deit_tiny_patch16_224,6350.86,161.227,1024,224,5.72 vit_tiny_patch16_224,6346.8,161.33,1024,224,5.72 tf_efficientnet_lite0,6324.64,161.895,1024,224,4.65 deit_tiny_distilled_patch16_224,6241.01,164.064,1024,224,5.91 efficientnet_b0,6183.5,165.59,1024,224,5.29 efficientnet_b1_pruned,6044.57,169.396,1024,240,6.33 rexnet_100,6031.43,169.765,1024,224,4.8 mnasnet_140,6024.95,169.948,1024,224,7.12 rexnetr_100,5992.24,170.876,1024,224,4.88 dla46_c,5989.01,170.968,1024,224,1.3 pit_ti_distilled_224,5978.67,171.264,1024,224,5.1 mobilenetv2_110d,5966.33,171.618,1024,224,4.52 pit_ti_224,5950.27,172.082,1024,224,4.85 regnety_008,5940.31,172.37,1024,224,6.26 resnetblur18,5929.76,172.677,1024,224,11.69 tf_efficientnet_b0,5620.98,182.161,1024,224,5.29 tf_efficientnet_b0_ns,5610.83,182.491,1024,224,5.29 tf_efficientnet_b0_ap,5603.36,182.734,1024,224,5.29 skresnet18,5578.53,183.549,1024,224,11.96 regnetz_005,5482.6,186.761,1024,224,7.12 semnasnet_140,5325.69,192.263,1024,224,6.11 mobilenetv2_140,5271.81,194.229,1024,224,6.11 resnet34,5239.3,195.434,1024,224,21.8 tv_resnet34,5236.24,195.548,1024,224,21.8 gluon_resnet34_v1b,5233.7,195.644,1024,224,21.8 ese_vovnet19b_dw,5190.19,197.284,1024,224,6.54 levit_384,5177.17,197.779,1024,224,39.13 mobilevit_xxs,5154.01,198.668,1024,256,1.27 visformer_tiny,5148.77,198.871,1024,224,10.32 hrnet_w18_small,5137.51,199.307,1024,224,13.19 nf_regnet_b0,5134.01,199.442,1024,256,8.76 seresnet34,4940.74,207.245,1024,224,21.96 mixnet_s,4921.18,208.067,1024,224,4.13 gernet_m,4881.9,209.742,1024,224,21.14 efficientnet_lite1,4817.11,212.565,1024,240,5.42 legacy_seresnet34,4790.34,213.752,1024,224,21.96 selecsls42,4787.26,213.889,1024,224,30.35 selecsls42b,4772.45,214.553,1024,224,32.46 dla46x_c,4717.05,217.071,1024,224,1.07 resnet34d,4707.81,217.499,1024,224,21.82 vit_base_patch32_224,4653.29,220.048,1024,224,88.22 vit_base_patch32_224_sam,4636.98,220.822,1024,224,88.22 pit_xs_224,4628.58,221.222,1024,224,10.62 tf_mixnet_s,4615.88,221.831,1024,224,4.13 fbnetv3_b,4595.16,222.83,1024,256,8.6 rexnetr_130,4587.31,223.212,1024,224,7.61 pit_xs_distilled_224,4586.36,223.258,1024,224,11.0 resmlp_12_distilled_224,4524.79,226.297,1024,224,15.35 resmlp_12_224,4522.51,226.411,1024,224,15.35 tf_efficientnetv2_b1,4515.62,226.756,1024,240,8.14 dla60x_c,4459.55,229.607,1024,224,1.32 tf_efficientnet_lite1,4427.03,231.295,1024,240,5.42 mixer_b32_224,4423.78,231.465,1024,224,60.29 rexnet_130,4423.43,231.482,1024,224,7.56 xcit_tiny_12_p16_224_dist,4363.62,234.654,1024,224,6.72 xcit_tiny_12_p16_224,4352.75,235.24,1024,224,6.72 resnet26,4300.48,238.1,1024,224,16.0 mobilenetv2_120d,4276.4,239.441,1024,224,5.83 efficientnet_es_pruned,4244.8,241.225,1024,224,5.44 efficientnet_es,4243.52,241.298,1024,224,5.44 repvgg_b0,4216.88,242.821,1024,224,15.82 selecsls60,4146.99,246.913,1024,224,30.67 selecsls60b,4134.81,247.64,1024,224,32.77 tf_efficientnet_es,4097.34,249.906,1024,224,5.44 fbnetv3_d,4060.14,252.196,1024,256,10.31 efficientnet_b2_pruned,4051.65,252.724,1024,260,8.31 efficientnet_b0_g16_evos,3982.5,257.113,1024,224,8.11 rexnetr_150,3947.19,259.414,1024,224,9.78 crossvit_tiny_240,3922.12,261.07,1024,240,7.01 mixer_s16_224,3902.13,262.409,1024,224,18.53 resnet26d,3896.6,262.781,1024,224,16.01 dla34,3859.49,265.307,1024,224,15.74 ecaresnet50d_pruned,3854.93,265.621,1024,224,19.94 rexnet_150,3827.99,267.492,1024,224,9.73 vit_small_patch32_384,3806.52,269.0,1024,384,22.92 nf_resnet26,3804.26,269.16,1024,224,16.0 gmixer_12_224,3797.94,269.608,1024,224,12.7 efficientnet_lite2,3793.99,269.889,1024,260,6.09 gmlp_ti16_224,3724.27,274.941,1024,224,5.87 crossvit_9_240,3711.74,275.869,1024,240,8.55 regnetx_016,3640.75,281.247,1024,224,9.19 efficientnet_cc_b0_4e,3606.59,283.912,1024,224,13.31 efficientnet_cc_b0_8e,3600.63,284.383,1024,224,24.01 crossvit_9_dagger_240,3560.19,287.614,1024,240,8.78 tf_efficientnet_b1_ap,3560.01,287.626,1024,240,7.79 tf_efficientnet_b1,3559.25,287.687,1024,240,7.79 tf_efficientnet_b1_ns,3553.74,288.134,1024,240,7.79 tf_efficientnet_lite2,3505.87,292.07,1024,260,6.09 efficientnet_b1,3481.01,294.155,1024,256,7.79 poolformer_s12,3480.88,294.166,1024,224,11.92 vit_tiny_r_s16_p8_384,3451.73,148.319,512,384,6.36 tf_efficientnetv2_b2,3443.76,297.337,1024,260,10.1 tf_efficientnet_cc_b0_8e,3407.59,300.493,1024,224,24.01 tf_efficientnet_cc_b0_4e,3402.61,300.934,1024,224,13.31 mixnet_m,3369.57,303.884,1024,224,5.01 regnety_016,3343.57,306.248,1024,224,11.2 nf_seresnet26,3326.57,307.813,1024,224,17.4 nf_ecaresnet26,3308.22,309.519,1024,224,16.0 repvgg_a2,3284.74,311.731,1024,224,28.21 gernet_l,3260.13,314.086,1024,256,31.08 tf_mixnet_m,3258.23,314.269,1024,224,5.01 resnest14d,3225.43,317.465,1024,224,10.61 efficientnet_b3_pruned,3214.49,318.545,1024,300,9.86 convnext_nano_hnf,3199.89,319.999,1024,224,15.59 skresnet34,3189.47,321.044,1024,224,22.28 convit_tiny,3117.16,328.49,1024,224,5.71 resnext26ts,3098.65,330.453,1024,256,10.3 legacy_seresnext26_32x4d,3086.27,331.78,1024,224,16.79 nf_regnet_b1,3049.58,335.771,1024,288,10.22 resnet26t,3040.5,336.774,1024,256,16.01 seresnext26ts,3026.32,338.35,1024,256,10.39 eca_resnext26ts,3023.05,338.719,1024,256,10.3 gcresnext26ts,2976.22,344.049,1024,256,10.48 ecaresnet101d_pruned,2954.94,346.526,1024,224,24.88 nf_regnet_b2,2933.65,349.041,1024,272,14.31 mobilevit_xs,2913.13,175.744,512,256,2.32 seresnext26tn_32x4d,2898.81,353.236,1024,224,16.81 seresnext26t_32x4d,2897.48,353.398,1024,224,16.81 ecaresnext26t_32x4d,2893.22,353.918,1024,224,15.41 ecaresnext50t_32x4d,2891.83,354.088,1024,224,15.41 seresnext26d_32x4d,2884.91,354.937,1024,224,16.81 ecaresnetlight,2878.45,355.733,1024,224,30.16 pit_s_224,2872.59,356.46,1024,224,23.46 deit_small_patch16_224,2853.43,358.855,1024,224,22.05 pit_s_distilled_224,2851.86,359.052,1024,224,24.04 vit_small_patch16_224,2845.41,359.865,1024,224,22.05 tf_efficientnet_b2_ap,2814.51,363.814,1024,260,9.11 tf_efficientnet_b2_ns,2814.31,363.839,1024,260,9.11 coat_lite_tiny,2814.08,363.872,1024,224,5.72 tf_efficientnet_b2,2813.96,363.886,1024,260,9.11 rexnetr_200,2808.62,182.283,512,224,16.52 deit_small_distilled_patch16_224,2801.73,365.478,1024,224,22.44 tresnet_m,2787.92,367.287,1024,224,31.39 resnetv2_50,2780.22,368.303,1024,224,25.55 eca_botnext26ts_256,2766.45,370.137,1024,256,10.59 rexnet_200,2763.52,185.259,512,224,16.37 vit_base2_patch32_256,2752.1,372.066,1024,256,119.46 botnet26t_256,2750.58,372.273,1024,256,12.49 halonet26t,2727.12,375.475,1024,256,12.48 eca_halonext26ts,2721.42,376.262,1024,256,10.76 swsl_resnet50,2693.51,380.159,1024,224,25.56 tv_resnet50,2687.71,380.98,1024,224,25.56 efficientnet_b0_gn,2686.21,381.194,1024,224,5.29 ssl_resnet50,2684.8,381.394,1024,224,25.56 gluon_resnet50_v1b,2682.34,381.744,1024,224,25.56 resnet50,2681.21,381.904,1024,224,25.56 vit_small_resnet26d_224,2675.44,382.728,1024,224,63.61 efficientnet_b2a,2654.03,385.816,1024,288,9.11 efficientnet_b2,2649.9,386.418,1024,288,9.11 coat_lite_mini,2646.6,386.899,1024,224,11.01 hrnet_w18_small_v2,2638.47,388.089,1024,224,15.6 resnetv2_50t,2621.75,390.565,1024,224,25.57 vovnet39a,2620.98,390.68,1024,224,22.6 resnetv2_50d,2613.09,391.86,1024,224,25.57 bat_resnext26ts,2594.52,394.665,1024,256,10.73 resnet32ts,2591.72,395.092,1024,256,17.96 efficientnet_em,2587.13,395.792,1024,240,6.9 cspresnet50,2561.78,399.709,1024,256,21.62 mixnet_l,2560.63,199.939,512,224,7.33 resnet33ts,2550.89,401.417,1024,256,19.68 dpn68b,2548.03,401.866,1024,224,12.61 gluon_resnet50_v1c,2543.04,402.654,1024,224,25.58 ese_vovnet39b,2535.01,403.931,1024,224,24.57 eca_vovnet39b,2533.56,404.162,1024,224,22.6 cspresnext50,2530.86,404.592,1024,224,20.57 legacy_seresnet50,2527.3,405.162,1024,224,28.09 vgg11_bn,2524.72,202.784,512,224,132.87 tf_efficientnet_em,2523.81,405.723,1024,240,6.9 resnet50t,2521.66,406.069,1024,224,25.57 resnet50d,2517.37,406.76,1024,224,25.58 gluon_resnet50_v1d,2514.4,407.243,1024,224,25.58 dpn68,2513.01,407.467,1024,224,12.61 selecsls84,2490.46,411.155,1024,224,50.95 seresnet33ts,2489.53,411.308,1024,256,19.78 eca_resnet33ts,2483.09,412.378,1024,256,19.68 lambda_resnet26t,2479.99,412.893,1024,256,10.96 tf_mixnet_l,2478.99,206.524,512,224,7.33 twins_svt_small,2475.31,413.674,1024,224,24.06 gcresnet33ts,2439.7,419.711,1024,256,19.88 cspresnet50w,2418.46,423.398,1024,256,28.12 seresnet50,2407.37,425.348,1024,224,28.09 cspresnet50d,2400.89,426.492,1024,256,21.64 dla60,2376.63,430.848,1024,224,22.04 densenet121,2346.76,436.333,1024,224,7.98 resnest26d,2346.08,436.46,1024,224,17.07 tv_densenet121,2345.79,436.514,1024,224,7.98 xcit_tiny_24_p16_224_dist,2334.54,438.616,1024,224,12.12 xcit_nano_12_p16_384_dist,2332.68,438.968,1024,384,3.05 xcit_tiny_24_p16_224,2328.43,439.766,1024,224,12.12 haloregnetz_b,2320.38,441.294,1024,224,11.68 resmlp_24_224,2308.85,443.498,1024,224,30.02 resmlp_24_distilled_224,2308.13,443.636,1024,224,30.02 resnetaa50d,2295.34,446.109,1024,224,25.58 seresnet50t,2282.97,448.526,1024,224,28.1 efficientnet_cc_b1_8e,2282.2,448.676,1024,240,39.72 convnext_tiny,2276.32,449.828,1024,224,28.59 res2net50_48w_2s,2265.43,451.999,1024,224,25.29 resnetblur50,2265.02,452.08,1024,224,25.56 efficientnet_lite3,2261.44,226.393,512,300,8.2 ecaresnet50d,2260.92,452.9,1024,224,25.58 efficientnet_b0_g8_gn,2259.05,453.276,1024,224,6.56 densenet121d,2243.46,456.425,1024,224,8.0 resnetrs50,2241.6,456.804,1024,224,35.69 mobilevit_s,2240.37,228.522,512,256,5.58 regnetx_032,2201.52,465.118,1024,224,15.3 visformer_small,2194.82,466.539,1024,224,40.22 gluon_resnet50_v1s,2193.42,466.838,1024,224,25.68 tf_efficientnet_cc_b1_8e,2188.26,467.941,1024,240,39.72 vit_base_resnet26d_224,2188.18,467.954,1024,224,101.4 resnetblur50d,2150.42,476.173,1024,224,25.58 gluon_inception_v3,2150.17,476.225,1024,299,23.83 adv_inception_v3,2148.48,476.602,1024,299,23.83 vovnet57a,2148.25,476.651,1024,224,36.64 tf_inception_v3,2147.17,476.894,1024,299,23.83 inception_v3,2146.78,476.978,1024,299,23.83 densenetblur121d,2133.31,479.992,1024,224,8.0 cspresnext50_iabn,2129.31,480.895,1024,256,20.57 semobilevit_s,2105.83,243.122,512,256,5.74 seresnetaa50d,2088.02,490.403,1024,224,28.11 cspdarknet53_iabn,2087.26,490.582,1024,256,27.64 swsl_resnext50_32x4d,2080.34,492.214,1024,224,25.03 convnext_tiny_hnf,2075.56,493.349,1024,224,28.59 ese_vovnet57b,2074.63,493.57,1024,224,38.61 tf_efficientnet_lite3,2074.49,246.795,512,300,8.2 resnext50_32x4d,2073.97,493.725,1024,224,25.03 ssl_resnext50_32x4d,2073.23,493.902,1024,224,25.03 gluon_resnext50_32x4d,2072.3,494.125,1024,224,25.03 tv_resnext50_32x4d,2055.26,498.221,1024,224,25.03 res2net50_26w_4s,2037.79,502.491,1024,224,25.7 twins_pcpvt_small,2036.4,502.835,1024,224,24.11 xcit_small_12_p16_224_dist,2021.26,506.599,1024,224,26.25 tf_efficientnetv2_b3,2020.91,506.688,1024,300,14.36 xcit_small_12_p16_224,2020.4,506.814,1024,224,26.25 nf_seresnet50,2015.9,507.948,1024,224,28.09 skresnet50,2014.26,508.362,1024,224,25.8 nf_ecaresnet50,2005.54,510.572,1024,224,25.56 regnetx_040,2003.23,511.16,1024,224,22.12 efficientnetv2_rw_t,1999.8,512.038,1024,288,13.65 sehalonet33ts,1991.52,257.078,512,256,13.69 fbnetv3_g,1991.44,514.187,1024,288,16.62 dla60x,1986.19,515.547,1024,224,17.35 gcresnet50t,1982.14,516.599,1024,256,25.9 resnext50d_32x4d,1976.72,518.018,1024,224,25.05 lambda_resnet26rpt_256,1950.98,262.42,512,256,10.99 gmixer_24_224,1937.61,528.474,1024,224,24.72 gc_efficientnetv2_rw_t,1928.42,530.993,1024,288,13.68 res2net50_14w_8s,1920.35,533.22,1024,224,25.06 skresnet50d,1919.46,533.468,1024,224,25.82 densenet169,1916.46,534.305,1024,224,14.15 dla60_res2net,1907.38,536.848,1024,224,20.85 gcresnext50ts,1902.33,538.276,1024,256,15.67 seresnext50_32x4d,1902.13,538.331,1024,224,27.56 gluon_seresnext50_32x4d,1901.68,538.457,1024,224,27.56 res2next50,1896.89,539.818,1024,224,24.67 legacy_seresnext50_32x4d,1896.31,539.984,1024,224,27.56 repvgg_b1g4,1884.44,543.384,1024,224,39.97 resnest50d_1s4x24d,1879.81,544.722,1024,224,25.68 crossvit_small_240,1855.05,551.992,1024,240,26.86 nf_regnet_b3,1852.1,552.873,1024,320,18.59 darknet53,1847.62,277.102,512,256,41.61 mixnet_xl,1839.34,278.346,512,224,11.9 dla60_res2next,1829.2,559.793,1024,224,17.03 swin_tiny_patch4_window7_224,1820.74,562.394,1024,224,28.29 cspdarknet53,1804.24,283.762,512,256,27.64 poolformer_s24,1803.36,567.817,1024,224,21.39 vit_small_r26_s32_224,1799.77,568.949,1024,224,36.43 xcit_nano_12_p8_224_dist,1796.05,570.128,1024,224,3.05 xcit_nano_12_p8_224,1795.49,570.304,1024,224,3.05 regnetz_b16,1791.93,571.438,1024,288,9.72 ecaresnet26t,1786.82,573.073,1024,320,16.01 convnext_tiny_hnfd,1744.82,586.868,1024,224,28.63 gmlp_s16_224,1741.6,587.951,1024,224,19.42 sebotnet33ts_256,1718.54,223.433,384,256,13.7 crossvit_15_240,1711.44,598.314,1024,240,27.53 resnetv2_101,1693.03,604.82,1024,224,44.54 vit_base_resnet50d_224,1670.98,612.798,1024,224,110.97 swin_s3_tiny_224,1660.14,616.801,1024,224,28.33 repvgg_b1,1657.85,617.654,1024,224,57.42 tv_resnet101,1656.03,618.332,1024,224,44.55 gluon_resnet101_v1b,1653.8,619.167,1024,224,44.55 resnet101,1652.45,619.673,1024,224,44.55 tf_efficientnet_b3_ap,1649.82,310.323,512,300,12.23 tf_efficientnet_b3,1649.61,310.363,512,300,12.23 tf_efficientnet_b3_ns,1649.37,310.407,512,300,12.23 crossvit_15_dagger_240,1648.34,621.218,1024,240,28.21 lambda_resnet50ts,1639.74,624.475,1024,256,21.54 resnetv2_101d,1628.19,628.906,1024,224,44.56 efficientnet_b3,1614.3,317.152,512,320,12.23 efficientnet_b3a,1613.57,317.296,512,320,12.23 gluon_resnet101_v1c,1597.11,641.145,1024,224,44.57 resnest50d,1586.43,645.46,1024,224,27.48 gluon_resnet101_v1d,1584.97,646.054,1024,224,44.57 wide_resnet50_2,1583.06,646.835,1024,224,68.88 cait_xxs24_224,1580.68,647.808,1024,224,11.96 dla102,1573.96,650.576,1024,224,33.27 resnetv2_50x1_bit_distilled,1561.81,655.635,1024,224,25.55 res2net50_26w_6s,1556.3,657.955,1024,224,37.05 vit_large_patch32_224,1551.79,659.869,1024,224,306.54 resmlp_36_224,1549.07,661.03,1024,224,44.69 regnetx_080,1548.92,661.091,1024,224,39.57 resmlp_36_distilled_224,1548.49,661.277,1024,224,44.69 halonet50ts,1542.39,663.891,1024,256,22.73 legacy_seresnet101,1528.82,669.783,1024,224,49.33 ese_vovnet39b_evos,1523.51,672.121,1024,224,24.58 coat_lite_small,1509.49,678.361,1024,224,19.84 vgg13_bn,1504.09,340.392,512,224,133.05 xcit_tiny_12_p16_384_dist,1501.95,681.763,1024,384,6.72 resnetaa101d,1496.92,684.059,1024,224,44.57 swin_v2_cr_tiny_224,1495.36,684.765,1024,224,28.33 densenet201,1488.38,687.985,1024,224,20.01 seresnet101,1484.39,689.83,1024,224,49.33 vit_tiny_patch16_384,1479.06,692.319,1024,384,5.79 lamhalobotnet50ts_256,1474.4,694.504,1024,256,22.57 swin_v2_cr_tiny_ns_224,1471.62,695.817,1024,224,28.33 vit_base_patch32_384,1470.27,696.459,1024,384,88.3 vit_base_r26_s32_224,1467.48,697.779,1024,224,101.38 gluon_resnet101_v1s,1452.66,704.901,1024,224,44.67 regnetx_064,1450.48,352.975,512,224,26.21 mixer_b16_224,1448.87,706.746,1024,224,59.88 nf_resnet101,1448.19,707.076,1024,224,44.55 mixer_b16_224_miil,1446.14,708.08,1024,224,59.88 resnetv2_50d_frn,1444.18,709.041,1024,224,25.59 resnetblur101d,1433.31,714.414,1024,224,44.57 nf_resnet50,1425.83,718.163,1024,288,25.56 mixer_l32_224,1425.39,718.388,1024,224,206.94 ecaresnet101d,1423.43,719.375,1024,224,44.57 hrnet_w18,1416.64,722.817,1024,224,21.3 convnext_small,1412.23,725.081,1024,224,50.22 tresnet_l,1401.27,730.75,1024,224,55.99 twins_pcpvt_base,1398.04,732.441,1024,224,43.83 regnety_032,1384.84,739.421,1024,288,19.44 nest_tiny,1381.77,370.526,512,224,17.06 resnet50_gn,1377.54,743.338,1024,224,25.56 resnet51q,1366.14,749.545,1024,288,35.7 resnetv2_50d_evob,1365.49,749.897,1024,224,25.59 jx_nest_tiny,1357.18,377.241,512,224,17.06 botnet50ts_256,1354.82,377.899,512,256,22.74 xception,1347.6,379.923,512,299,22.86 dla102x,1333.01,768.169,1024,224,26.31 convit_small,1329.45,770.231,1024,224,27.78 halo2botnet50ts_256,1327.73,385.607,512,256,22.64 skresnext50_32x4d,1314.86,778.776,1024,224,27.48 swsl_resnext101_32x4d,1313.2,779.762,1024,224,44.18 ssl_resnext101_32x4d,1309.86,781.751,1024,224,44.18 gluon_resnext101_32x4d,1309.44,781.999,1024,224,44.18 resnext101_32x4d,1308.3,782.684,1024,224,44.18 repvgg_b2g4,1287.88,795.093,1024,224,61.76 res2net50_26w_8s,1277.42,801.601,1024,224,48.4 res2net101_26w_4s,1275.83,802.597,1024,224,45.21 resnest50d_4s2x40d,1267.83,807.666,1024,224,30.42 nf_seresnet101,1246.67,821.372,1024,224,49.33 twins_svt_base,1242.25,824.296,1024,224,56.07 nf_ecaresnet101,1240.12,825.715,1024,224,44.55 vgg16_bn,1239.17,413.169,512,224,138.37 resnet61q,1236.58,828.077,1024,288,36.85 eca_nfnet_l0,1234.82,829.257,1024,288,24.14 nfnet_l0,1234.39,829.546,1024,288,35.07 hrnet_w32,1225.86,835.318,1024,224,41.23 xception41p,1219.47,419.841,512,299,26.91 poolformer_s36,1217.85,840.81,1024,224,30.86 ese_vovnet99b_iabn,1214.4,843.2,1024,224,63.2 crossvit_18_240,1210.54,845.892,1024,240,43.27 regnetv_040,1210.02,423.122,512,288,20.64 regnety_040,1209.84,423.186,512,288,20.65 hrnet_w30,1208.97,846.988,1024,224,37.71 dpn92,1205.79,849.224,1024,224,37.67 gluon_seresnext101_32x4d,1198.19,854.61,1024,224,48.96 seresnext101_32x4d,1197.93,854.792,1024,224,48.96 legacy_seresnext101_32x4d,1196.55,855.783,1024,224,48.96 efficientnet_el,1181.26,433.424,512,300,10.59 efficientnet_el_pruned,1179.3,434.142,512,300,10.59 ese_vovnet99b,1178.02,869.24,1024,224,63.2 resnetv2_152,1172.64,873.226,1024,224,60.19 crossvit_18_dagger_240,1169.98,875.211,1024,240,44.27 tf_efficientnet_el,1156.16,442.832,512,300,10.59 tv_resnet152,1155.28,886.354,1024,224,60.19 resnet152,1153.46,887.752,1024,224,60.19 gluon_resnet152_v1b,1153.39,887.802,1024,224,60.19 xcit_tiny_12_p8_224_dist,1148.77,891.372,1024,224,6.71 xcit_tiny_12_p8_224,1148.55,891.542,1024,224,6.71 vit_small_resnet50d_s16_224,1140.9,897.523,1024,224,57.53 resnetv2_152d,1140.85,897.561,1024,224,60.2 mixnet_xxl,1136.05,338.002,384,224,23.96 ecaresnet50t,1133.49,903.391,1024,320,25.57 regnetz_c16,1132.12,452.237,512,320,13.46 repvgg_b2,1129.63,906.478,1024,224,89.02 gluon_resnet152_v1c,1126.87,908.694,1024,224,60.21 vit_base_patch16_224_miil,1124.8,910.37,1024,224,86.54 gluon_resnet152_v1d,1122.21,912.468,1024,224,60.21 volo_d1_224,1121.56,912.997,1024,224,26.63 swin_small_patch4_window7_224,1117.13,916.62,1024,224,49.61 regnety_040s_gn,1113.45,919.647,1024,224,20.65 inception_v4,1099.65,931.189,1024,299,42.68 vit_base_patch16_224_sam,1089.03,940.269,1024,224,86.57 xception41,1089.03,470.133,512,299,26.97 vit_base_patch16_224,1089.0,940.3,1024,224,86.57 deit_base_patch16_224,1088.05,941.117,1024,224,86.57 xcit_small_24_p16_224_dist,1079.16,948.867,1024,224,47.67 xcit_small_24_p16_224,1078.82,949.17,1024,224,47.67 densenet161,1076.84,950.914,1024,224,28.68 convmixer_1024_20_ks9_p14,1075.95,951.707,1024,224,24.38 nfnet_f0,1075.06,952.487,1024,256,71.49 deit_base_distilled_patch16_224,1073.74,953.659,1024,224,87.34 dla169,1071.22,955.906,1024,224,53.39 vgg19_bn,1060.19,482.919,512,224,143.68 cait_xxs36_224,1058.79,967.13,1024,224,17.3 tnt_s_patch16_224,1056.28,969.422,1024,224,23.76 legacy_seresnet152,1054.79,970.791,1024,224,66.82 gluon_resnet152_v1s,1052.41,972.991,1024,224,60.32 regnetx_120,1048.48,488.312,512,224,46.11 seresnet152,1033.07,991.203,1024,224,66.82 tresnet_xl,1032.49,991.76,1024,224,78.44 efficientnet_lite4,1029.33,373.047,384,380,13.01 beit_base_patch16_224,1003.86,1020.053,1024,224,86.53 regnety_120,1003.65,510.126,512,224,51.82 repvgg_b3g4,997.42,1026.637,1024,224,83.83 twins_pcpvt_large,995.78,1028.325,1024,224,60.99 convnext_base,984.44,1040.164,1024,224,88.59 convnext_base_in22ft1k,984.35,1040.256,1024,224,88.59 coat_tiny,976.27,1048.875,1024,224,5.5 tf_efficientnet_lite4,967.59,396.848,384,380,13.01 pit_b_224,954.91,536.164,512,224,73.76 dm_nfnet_f0,948.25,1079.874,1024,256,71.49 pit_b_distilled_224,947.46,540.381,512,224,74.79 vit_small_patch16_36x1_224,919.98,1113.057,1024,224,64.67 wide_resnet101_2,917.07,1116.581,1024,224,126.89 swin_v2_cr_small_224,915.96,1117.937,1024,224,49.7 dla102x2,910.31,562.434,512,224,41.28 resnetv2_50d_gn,909.47,1125.915,1024,288,25.57 efficientnetv2_s,905.47,1130.894,1024,384,21.46 vit_small_patch16_18x2_224,899.06,1138.948,1024,224,64.67 tf_efficientnetv2_s_in21ft1k,889.42,1151.294,1024,384,21.46 tf_efficientnetv2_s,889.32,1151.431,1024,384,21.46 xception65p,886.31,577.66,512,299,39.82 nest_small,881.75,580.652,512,224,38.35 twins_svt_large,880.33,1163.185,1024,224,99.27 repvgg_b3,878.37,1165.779,1024,224,123.09 resnetrs101,877.57,1166.842,1024,288,63.62 jx_nest_small,871.53,587.458,512,224,38.35 efficientnetv2_rw_s,866.51,1181.735,1024,384,23.94 dpn98,862.25,1187.578,1024,224,61.57 ens_adv_inception_resnet_v2,856.37,1195.737,1024,299,55.84 inception_resnet_v2,855.57,1196.844,1024,299,55.84 nf_regnet_b4,854.46,1198.403,1024,384,30.21 regnetz_b16_evos,853.4,599.942,512,288,9.74 regnetx_160,848.43,603.455,512,224,54.28 regnetz_d8,845.88,1210.552,1024,320,23.37 cait_s24_224,834.81,1226.608,1024,224,46.92 gluon_resnext101_64x4d,834.02,1227.777,1024,224,83.46 resnet200,828.19,1236.414,1024,224,64.67 regnetz_040,826.88,464.381,384,320,27.12 regnetz_040h,823.24,466.438,384,320,28.94 efficientnet_b4,820.41,468.046,384,384,19.34 swin_s3_small_224,817.53,626.263,512,224,49.74 hrnet_w40,816.49,1254.128,1024,224,57.56 poolformer_m36,815.39,1255.826,1024,224,56.17 swsl_resnext101_32x8d,805.27,1271.611,1024,224,88.79 regnety_064,803.23,637.411,512,288,30.58 ssl_resnext101_32x8d,802.86,1275.43,1024,224,88.79 xcit_tiny_24_p16_384_dist,802.73,1275.631,1024,384,12.12 ig_resnext101_32x8d,802.17,1276.521,1024,224,88.79 resnext101_32x8d,802.06,1276.704,1024,224,88.79 regnetv_064,800.43,639.64,512,288,30.58 resnetv2_50d_evos,798.97,640.813,512,288,25.59 gluon_xception65,797.15,642.277,512,299,39.92 resnet101d,796.13,1286.203,1024,320,44.57 xception65,795.21,643.84,512,299,39.92 resnest101e,791.92,646.513,512,256,48.28 swin_base_patch4_window7_224,791.65,1293.482,1024,224,87.77 gluon_seresnext101_64x4d,787.65,1300.055,1024,224,88.23 coat_mini,785.23,1304.064,1024,224,10.34 tf_efficientnet_b4_ap,782.92,490.459,384,380,19.34 tf_efficientnet_b4,782.13,490.953,384,380,19.34 tf_efficientnet_b4_ns,782.09,490.976,384,380,19.34 regnety_080,767.29,667.271,512,288,39.18 hrnet_w44,759.24,1348.7,1024,224,67.06 crossvit_base_240,756.03,677.208,512,240,105.03 xcit_medium_24_p16_224_dist,748.3,1368.42,1024,224,84.4 xcit_medium_24_p16_224,747.93,1369.089,1024,224,84.4 gmlp_b16_224,744.43,1375.538,1024,224,73.08 hrnet_w48,733.55,1395.939,1024,224,77.47 tresnet_m_448,727.54,1407.473,1024,448,31.39 vit_large_r50_s32_224,726.03,1410.402,1024,224,328.99 regnetz_d32,721.75,1418.755,1024,320,27.58 vit_small_patch16_384,684.33,748.167,512,384,22.2 tnt_b_patch16_224,677.0,1512.541,1024,224,65.41 xcit_small_12_p16_384_dist,675.76,1515.313,1024,384,26.25 convit_base,673.78,1519.763,1024,224,86.54 swin_s3_base_224,663.17,1544.087,1024,224,71.13 swin_v2_cr_base_224,651.94,1570.69,1024,224,87.88 densenet264d_iabn,647.21,1582.161,1024,224,72.74 efficientnet_b3_gn,646.96,395.683,256,320,11.73 dpn131,635.27,1611.889,1024,224,79.25 densenet264,628.46,1629.36,1024,224,72.69 nest_base,627.45,815.992,512,224,67.72 volo_d2_224,626.17,1635.329,1024,224,58.68 jx_nest_base,620.43,825.215,512,224,67.72 poolformer_m48,615.67,1663.217,1024,224,73.47 vit_small_r26_s32_384,611.26,628.196,384,384,36.47 xcit_nano_12_p8_384_dist,610.06,1678.498,1024,384,3.05 xcit_tiny_24_p8_224,603.0,1698.15,1024,224,12.11 xcit_tiny_24_p8_224_dist,602.22,1700.353,1024,224,12.11 xception71,600.16,853.086,512,299,42.34 hrnet_w64,599.02,1709.451,1024,224,128.06 vit_base_r50_s16_224,598.25,1711.642,1024,224,98.66 legacy_senet154,582.07,1759.212,1024,224,115.09 senet154,582.01,1759.392,1024,224,115.09 gluon_senet154,581.94,1759.609,1024,224,115.09 dpn107,578.97,1768.627,1024,224,86.92 eca_nfnet_l1,575.61,1778.965,1024,320,41.41 seresnet200d,562.84,1819.333,1024,256,71.86 resnet152d,561.29,1824.359,1024,320,60.21 ecaresnet200d,559.73,1829.437,1024,256,64.69 convnext_large_in22ft1k,546.71,936.5,512,224,197.77 convnext_large,546.09,937.561,512,224,197.77 regnetz_c16_evos,539.7,948.669,512,320,13.49 regnety_320,534.72,957.496,512,224,145.05 regnety_160,523.72,733.2,384,288,83.59 efficientnet_b3_g8_gn,520.23,492.079,256,320,14.25 xcit_small_12_p8_224,514.94,1988.547,1024,224,26.21 xcit_small_12_p8_224_dist,514.63,1989.761,1024,224,26.21 halonet_h1,507.89,504.03,256,256,8.1 resnext101_64x4d,505.79,1012.259,512,288,83.46 seresnet152d,503.07,2035.474,1024,320,66.84 resnetrs152,499.61,2049.599,1024,320,86.62 vit_large_patch32_384,494.68,2070.028,1024,384,306.63 regnetx_320,468.44,819.734,384,224,107.81 mixer_l16_224,464.51,2204.436,1024,224,208.2 seresnext101_32x8d,461.67,1109.006,512,288,93.57 swin_large_patch4_window7_224,454.97,1125.326,512,224,196.53 regnetz_e8,451.54,1133.877,512,320,57.7 efficientnetv2_m,442.19,2315.716,1024,416,54.14 seresnet269d,440.45,2324.895,1024,256,113.67 volo_d3_224,438.95,2332.847,1024,224,86.33 xcit_large_24_p16_224,432.87,2365.575,1024,224,189.1 xcit_large_24_p16_224_dist,432.7,2366.505,1024,224,189.1 efficientnet_b5,411.07,622.743,256,456,30.39 efficientnetv2_rw_m,406.88,1258.338,512,416,53.24 resnet200d,404.01,2534.588,1024,320,64.69 tf_efficientnet_b5,395.61,647.082,256,456,30.39 tf_efficientnet_b5_ap,395.52,647.242,256,456,30.39 tf_efficientnet_b5_ns,395.47,647.322,256,456,30.39 resnetv2_50x1_bitm,392.67,1303.884,512,448,25.55 xcit_tiny_12_p8_384_dist,390.32,2623.487,1024,384,6.71 swin_v2_cr_large_224,385.91,1326.718,512,224,196.68 swsl_resnext101_32x16d,375.78,1362.484,512,224,194.03 ig_resnext101_32x16d,373.86,1369.478,512,224,194.03 ssl_resnext101_32x16d,373.64,1370.28,512,224,194.03 regnetz_d8_evos,373.09,1372.306,512,320,23.46 swin_v2_cr_tiny_384,364.64,702.039,256,384,28.33 tresnet_l_448,361.5,2832.633,1024,448,55.99 convnext_xlarge_in22ft1k,360.86,1418.822,512,224,350.2 xcit_small_24_p16_384_dist,360.65,2839.301,1024,384,47.67 resnetrs200,358.31,2857.856,1024,320,93.21 nfnet_f1,357.09,2867.576,1024,320,132.63 vit_large_patch16_224,356.78,2870.107,1024,224,304.33 crossvit_15_dagger_408,354.9,721.306,256,408,28.5 vit_base_patch16_18x2_224,348.19,2940.87,1024,224,256.73 tf_efficientnetv2_m_in21ft1k,347.38,1473.892,512,480,54.14 tf_efficientnetv2_m,346.86,1476.074,512,480,54.14 dm_nfnet_f1,342.33,1495.606,512,320,132.63 convnext_base_384_in22ft1k,336.37,1141.59,384,384,88.59 beit_large_patch16_224,330.46,3098.668,1024,224,304.43 volo_d1_384,293.12,1746.724,512,384,26.78 convmixer_768_32,290.99,3518.992,1024,224,21.11 eca_nfnet_l2,282.42,1812.878,512,384,56.72 volo_d4_224,281.7,3635.003,1024,224,192.96 resnetv2_152x2_bit_teacher,280.73,1823.773,512,224,236.34 vit_base_patch16_384,280.43,1369.296,384,384,86.86 deit_base_patch16_384,280.4,1369.456,384,384,86.86 deit_base_distilled_patch16_384,276.56,1388.495,384,384,87.63 xcit_small_24_p8_224,269.73,3796.43,1024,224,47.63 tresnet_xl_448,269.71,1898.302,512,448,78.44 xcit_small_24_p8_224_dist,269.67,3797.157,1024,224,47.63 resnest200e,265.14,1931.055,512,320,70.2 cait_xxs24_384,264.07,3877.737,1024,384,12.03 vit_large_patch14_224,262.13,3906.369,1024,224,304.2 crossvit_18_dagger_408,260.17,983.968,256,408,44.61 xcit_medium_24_p16_384_dist,254.44,2012.271,512,384,84.4 nasnetalarge,254.21,1510.535,384,331,88.75 pnasnet5large,251.02,1529.719,384,331,86.06 resnetv2_101x1_bitm,246.55,2076.684,512,448,44.54 beit_base_patch16_384,241.2,1592.025,384,384,86.74 vit_large_r50_s32_384,240.58,1596.142,384,384,329.09 efficientnet_b6,239.36,534.745,128,528,43.04 ecaresnet269d,233.52,4385.094,1024,352,102.09 tf_efficientnet_b6_ns,231.37,553.209,128,528,43.04 tf_efficientnet_b6,231.23,553.545,128,528,43.04 tf_efficientnet_b6_ap,231.04,553.998,128,528,43.04 resnetrs270,227.52,4500.663,1024,352,129.86 swin_v2_cr_small_384,224.2,1141.845,256,384,49.7 swin_base_patch4_window12_384,211.77,906.647,192,384,87.9 resmlp_big_24_224,209.16,4895.869,1024,224,129.14 resmlp_big_24_distilled_224,208.94,4900.863,1024,224,129.14 resmlp_big_24_224_in22ft1k,208.92,4901.346,1024,224,129.14 xcit_tiny_24_p8_384_dist,204.37,5010.586,1024,384,12.11 nfnet_f2,200.76,5100.492,1024,352,193.78 tf_efficientnetv2_l,199.73,1922.595,384,480,118.52 efficientnetv2_l,198.4,2580.63,512,480,118.52 tf_efficientnetv2_l_in21ft1k,196.98,2599.257,512,480,118.52 dm_nfnet_f2,194.75,2628.942,512,352,193.78 xcit_medium_24_p8_224,189.81,2697.371,512,224,84.32 xcit_medium_24_p8_224_dist,189.81,2697.462,512,224,84.32 volo_d5_224,187.06,5474.175,1024,224,295.46 convnext_large_384_in22ft1k,186.8,1370.399,256,384,197.77 cait_xs24_384,184.72,2771.758,512,384,26.67 vit_base_patch8_224,183.25,1396.951,256,224,86.58 cait_xxs36_384,176.62,5797.903,1024,384,17.37 vit_base_r50_s16_384,174.09,2205.77,384,384,98.95 vit_base_resnet50_384,174.05,2206.21,384,384,98.95 xcit_small_12_p8_384_dist,173.11,2957.56,512,384,26.21 swin_v2_cr_huge_224,170.28,2255.094,384,224,657.83 convmixer_1536_20,167.4,6117.1,1024,224,51.63 volo_d2_384,164.47,2334.792,384,384,58.87 swin_v2_cr_base_384,160.01,1199.906,192,384,87.88 eca_nfnet_l3,159.42,3211.652,512,448,72.04 resnetrs350,151.88,3371.146,512,384,163.96 xcit_large_24_p16_384_dist,147.05,3481.712,512,384,189.1 ig_resnext101_32x32d,146.83,1743.474,256,224,468.53 cait_s24_384,142.26,3598.927,512,384,47.06 vit_huge_patch14_224,141.6,7231.567,1024,224,632.05 efficientnet_b7,139.66,687.357,96,600,66.35 tf_efficientnet_b7,135.86,706.608,96,600,66.35 tf_efficientnet_b7_ap,135.79,706.955,96,600,66.35 tf_efficientnet_b7_ns,135.74,707.2,96,600,66.35 efficientnetv2_xl,127.77,3005.388,384,512,208.12 tf_efficientnetv2_xl_in21ft1k,127.07,3021.991,384,512,208.12 swin_large_patch4_window12_384,125.28,1021.736,128,384,196.74 resnest269e,123.52,3108.719,384,416,110.93 convnext_xlarge_384_in22ft1k,123.3,1557.136,192,384,350.2 xcit_large_24_p8_224,110.05,4652.475,512,224,188.93 xcit_large_24_p8_224_dist,109.94,4656.907,512,224,188.93 nfnet_f3,109.46,4677.461,512,416,254.92 resnetrs420,108.78,4706.738,512,416,191.89 dm_nfnet_f3,98.93,5175.208,512,416,254.92 swin_v2_cr_large_384,98.1,1304.756,128,384,196.68 resnetv2_152x2_bit_teacher_384,97.22,2633.19,256,384,236.34 cait_s36_384,95.27,5374.225,512,384,68.37 vit_large_patch16_384,94.74,2702.22,256,384,304.72 resnetv2_50x3_bitm,94.62,1352.761,128,448,217.32 vit_giant_patch14_224,92.89,5511.692,512,224,1012.61 xcit_small_24_p8_384_dist,90.84,4227.257,384,384,47.63 ig_resnext101_32x48d,87.18,2202.253,192,224,828.41 efficientnet_b8,83.91,1144.078,96,672,87.41 beit_large_patch16_384,82.64,3097.749,256,384,305.0 tf_efficientnet_b8_ap,82.27,1166.925,96,672,87.41 tf_efficientnet_b8,82.25,1167.133,96,672,87.41 volo_d3_448,72.26,2657.14,192,448,86.63 resnetv2_152x2_bitm,71.6,2681.389,192,448,236.34 xcit_medium_24_p8_384_dist,64.15,3990.849,256,384,84.32 nfnet_f4,60.24,6374.659,384,512,316.07 dm_nfnet_f4,59.09,4332.344,256,512,316.07 resnetv2_101x3_bitm,58.2,2199.411,128,448,387.93 vit_gigantic_patch14_224,56.14,9120.818,512,224,1844.44 volo_d4_448,52.76,2425.859,128,448,193.41 swin_v2_cr_giant_224,49.04,2610.23,128,224,2598.76 tf_efficientnet_l2_ns_475,46.41,1378.993,64,475,480.31 nfnet_f5,44.14,5799.172,256,544,377.21 swin_v2_cr_huge_384,43.59,1468.203,64,384,657.94 dm_nfnet_f5,39.84,6426.216,256,544,377.21 xcit_large_24_p8_384_dist,36.78,5220.859,192,384,188.93 volo_d5_448,36.57,3500.029,128,448,295.91 nfnet_f6,34.59,7401.234,256,576,438.36 beit_large_patch16_512,33.3,2882.954,96,512,305.67 cait_m36_384,31.36,8162.98,256,384,271.22 dm_nfnet_f6,31.17,8214.193,256,576,438.36 nfnet_f7,26.91,9514.003,256,608,499.5 volo_d5_512,25.64,4991.614,128,512,296.09 resnetv2_152x4_bitm,18.58,3444.83,64,480,936.53 efficientnet_l2,16.55,1450.295,24,800,480.31 tf_efficientnet_l2_ns,16.36,1467.093,24,800,480.31 swin_v2_cr_giant_384,13.63,1760.856,24,384,2598.76 cait_m48_448,13.35,9584.614,128,448,356.46
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nchw-pt112-cu113-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count tinynet_e,49285.12,20.767,1024,106,0.03,0.69,2.04 mobilenetv3_small_050,43905.96,23.312,1024,224,0.03,0.92,1.59 lcnet_035,40961.84,24.988,1024,224,0.03,1.04,1.64 lcnet_050,36451.18,28.081,1024,224,0.05,1.26,1.88 mobilenetv3_small_075,32291.57,31.7,1024,224,0.05,1.3,2.04 mobilenetv3_small_100,28935.54,35.379,1024,224,0.06,1.42,2.54 tf_mobilenetv3_small_minimal_100,27926.5,36.657,1024,224,0.06,1.41,2.04 tinynet_d,27303.88,37.493,1024,152,0.05,1.42,2.34 tf_mobilenetv3_small_075,26850.04,38.127,1024,224,0.05,1.3,2.04 tf_mobilenetv3_small_100,24320.21,42.094,1024,224,0.06,1.42,2.54 lcnet_075,22627.19,45.245,1024,224,0.1,1.99,2.36 mnasnet_small,20150.91,50.806,1024,224,0.07,2.16,2.03 levit_128s,19458.78,52.613,1024,224,0.31,1.88,7.78 lcnet_100,18910.66,54.139,1024,224,0.16,2.52,2.95 mobilenetv2_035,18047.72,56.728,1024,224,0.07,2.86,1.68 regnetx_002,17921.55,57.126,1024,224,0.2,2.16,2.68 regnety_002,16656.92,61.462,1024,224,0.2,2.17,3.16 ghostnet_050,16494.57,62.071,1024,224,0.05,1.77,2.59 mnasnet_050,15574.97,65.736,1024,224,0.11,3.07,2.22 mobilenetv2_050,14533.98,70.445,1024,224,0.1,3.64,1.97 tinynet_c,14397.76,71.111,1024,184,0.11,2.87,2.46 semnasnet_050,14065.61,72.79,1024,224,0.11,3.44,2.08 levit_128,13348.5,76.702,1024,224,0.41,2.71,9.21 vit_small_patch32_224,12899.41,79.373,1024,224,1.15,2.5,22.88 mixer_s32_224,12823.61,79.842,1024,224,1.0,2.28,19.1 lcnet_150,12599.24,81.264,1024,224,0.34,3.79,4.5 regnetx_004,12314.46,83.141,1024,224,0.4,3.14,5.16 cs3darknet_focus_s,11852.98,86.381,1024,256,0.69,2.7,3.27 mobilenetv3_large_075,11687.27,87.605,1024,224,0.16,4.0,3.99 resnet10t,11549.51,88.651,1024,224,1.1,2.43,5.44 cs3darknet_s,11540.93,88.716,1024,256,0.72,2.97,3.28 vit_tiny_r_s16_p8_224,10917.33,93.785,1024,224,0.44,2.06,6.34 ese_vovnet19b_slim_dw,10530.7,97.229,1024,224,0.4,5.28,1.9 mobilenetv3_rw,10453.43,97.947,1024,224,0.23,4.41,5.48 hardcorenas_a,10387.47,98.569,1024,224,0.23,4.38,5.26 mobilenetv3_large_100_miil,10298.68,99.419,1024,224,0.23,4.41,5.48 mobilenetv3_large_100,10295.13,99.453,1024,224,0.23,4.41,5.48 tf_mobilenetv3_large_075,10277.2,99.627,1024,224,0.16,4.0,3.99 gernet_s,10228.24,100.105,1024,224,0.75,2.65,8.17 mnasnet_075,10209.23,100.29,1024,224,0.23,4.77,3.17 levit_192,10099.95,101.375,1024,224,0.66,3.2,10.95 tf_mobilenetv3_large_minimal_100,10021.88,102.166,1024,224,0.22,4.4,3.92 hardcorenas_b,9469.88,108.121,1024,224,0.26,5.09,5.18 regnetx_006,9309.45,109.982,1024,224,0.61,3.98,6.2 tinynet_b,9298.6,110.113,1024,188,0.21,4.44,3.73 regnety_004,9296.36,110.137,1024,224,0.41,3.89,4.34 ghostnet_100,9264.87,110.513,1024,224,0.15,3.55,5.18 hardcorenas_c,9196.31,111.338,1024,224,0.28,5.01,5.52 resnet18,9171.4,111.64,1024,224,1.82,2.48,11.69 tf_mobilenetv3_large_100,9170.64,111.649,1024,224,0.23,4.41,5.48 mobilenetv2_075,9151.72,111.88,1024,224,0.22,5.86,2.64 swsl_resnet18,9145.07,111.962,1024,224,1.82,2.48,11.69 mnasnet_100,9128.95,112.159,1024,224,0.33,5.46,4.38 mnasnet_b1,9096.68,112.558,1024,224,0.33,5.46,4.38 gluon_resnet18_v1b,9092.93,112.604,1024,224,1.82,2.48,11.69 ssl_resnet18,9043.33,113.221,1024,224,1.82,2.48,11.69 semnasnet_075,8958.16,114.297,1024,224,0.23,5.54,2.91 hardcorenas_d,8756.1,116.935,1024,224,0.3,4.93,7.5 seresnet18,8678.54,117.981,1024,224,1.82,2.49,11.78 regnety_006,8404.01,121.832,1024,224,0.61,4.33,6.06 mobilenetv2_100,8360.81,122.466,1024,224,0.31,6.68,3.5 legacy_seresnet18,8318.12,123.094,1024,224,1.82,2.49,11.78 spnasnet_100,8246.33,124.165,1024,224,0.35,6.03,4.42 semnasnet_100,8027.18,127.555,1024,224,0.32,6.23,3.89 mnasnet_a1,8013.14,127.779,1024,224,0.32,6.23,3.89 levit_256,7862.24,130.228,1024,224,1.13,4.23,18.89 resnet18d,7721.04,132.614,1024,224,2.06,3.29,11.71 hardcorenas_f,7642.68,133.973,1024,224,0.35,5.57,8.2 hardcorenas_e,7588.05,134.938,1024,224,0.35,5.65,8.07 ese_vovnet19b_slim,7530.8,135.964,1024,224,1.69,3.52,3.17 efficientnet_lite0,7530.79,135.964,1024,224,0.4,6.74,4.65 ghostnet_130,7411.84,138.146,1024,224,0.24,4.6,7.36 regnetx_008,7376.89,138.798,1024,224,0.81,5.15,7.26 tinynet_a,7260.16,141.032,1024,192,0.35,5.41,6.19 tf_efficientnetv2_b0,7117.22,143.865,1024,224,0.73,4.77,7.14 fbnetc_100,7115.49,143.899,1024,224,0.4,6.51,5.57 regnety_008,7108.36,144.037,1024,224,0.81,5.25,6.26 xcit_nano_12_p16_224_dist,7019.86,145.861,1024,224,0.56,4.17,3.05 xcit_nano_12_p16_224,7000.29,146.268,1024,224,0.56,4.17,3.05 edgenext_xx_small,6963.01,147.05,1024,256,0.33,4.21,1.33 levit_256d,6856.41,149.338,1024,224,1.4,4.93,26.21 deit_tiny_patch16_224,6794.46,150.698,1024,224,1.26,5.97,5.72 vit_tiny_patch16_224,6769.81,151.248,1024,224,1.26,5.97,5.72 tf_efficientnet_lite0,6667.82,153.562,1024,224,0.4,6.74,4.65 deit_tiny_distilled_patch16_224,6647.4,154.032,1024,224,1.27,6.01,5.91 efficientnet_b0,6576.16,155.702,1024,224,0.4,6.75,5.29 dla46_c,6538.59,156.596,1024,224,0.58,4.5,1.3 rexnetr_100,6369.79,160.748,1024,224,0.43,7.72,4.88 mnasnet_140,6297.39,162.595,1024,224,0.6,7.71,7.12 rexnet_100,6295.89,162.634,1024,224,0.41,7.44,4.8 efficientnet_b1_pruned,6269.62,163.315,1024,240,0.4,6.21,6.33 mobilenetv2_110d,6263.44,163.477,1024,224,0.45,8.71,4.52 regnetz_005,6057.27,169.042,1024,224,0.52,5.86,7.12 resnetblur18,6056.25,169.07,1024,224,2.34,3.39,11.69 pit_ti_distilled_224,6026.49,169.903,1024,224,0.71,6.23,5.1 pit_ti_224,5988.08,170.993,1024,224,0.7,6.19,4.85 nf_regnet_b0,5936.35,172.485,1024,256,0.64,5.58,8.76 mobilevitv2_050,5906.65,173.353,1024,256,0.48,8.04,1.37 tf_efficientnet_b0_ap,5894.61,173.707,1024,224,0.4,6.75,5.29 tf_efficientnet_b0,5892.32,173.774,1024,224,0.4,6.75,5.29 tf_efficientnet_b0_ns,5891.52,173.799,1024,224,0.4,6.75,5.29 visformer_tiny,5845.93,175.153,1024,224,1.27,5.72,10.32 resnet14t,5834.5,175.495,1024,224,1.69,5.8,10.08 dla46x_c,5690.98,179.922,1024,224,0.54,5.66,1.07 skresnet18,5640.2,181.543,1024,224,1.82,3.24,11.96 semnasnet_140,5544.22,184.685,1024,224,0.6,8.87,6.11 hrnet_w18_small,5451.81,187.816,1024,224,1.61,5.72,13.19 mobilenetv2_140,5399.1,189.649,1024,224,0.6,9.57,6.11 resnet34,5356.43,191.161,1024,224,3.67,3.74,21.8 dla60x_c,5292.02,193.487,1024,224,0.59,6.01,1.32 mobilevit_xxs,5275.05,194.109,1024,256,0.42,8.34,1.27 ese_vovnet19b_dw,5260.83,194.634,1024,224,1.34,8.25,6.54 gluon_resnet34_v1b,5203.76,196.769,1024,224,3.67,3.74,21.8 tv_resnet34,5193.55,197.156,1024,224,3.67,3.74,21.8 efficientnet_lite1,5144.81,199.024,1024,240,0.62,10.14,5.42 mixnet_s,5054.78,202.566,1024,224,0.25,6.25,4.13 seresnet34,5051.53,202.699,1024,224,3.67,3.74,21.96 gernet_m,5028.39,203.632,1024,224,3.02,5.24,21.14 fbnetv3_b,4982.49,205.508,1024,256,0.55,9.1,8.6 selecsls42,4945.53,207.043,1024,224,2.94,4.62,30.35 selecsls42b,4942.3,207.179,1024,224,2.98,4.62,32.46 vit_base_patch32_224_sam,4921.3,208.063,1024,224,4.41,5.01,88.22 vit_base_patch32_224,4918.17,208.197,1024,224,4.41,5.01,88.22 resnet34d,4834.03,211.82,1024,224,3.91,4.54,21.82 rexnetr_130,4789.2,213.803,1024,224,0.68,9.81,7.61 pit_xs_224,4766.56,214.816,1024,224,1.4,7.71,10.62 tf_efficientnetv2_b1,4738.51,216.09,1024,240,1.21,7.34,8.14 legacy_seresnet34,4737.15,216.152,1024,224,3.67,3.74,21.96 pit_xs_distilled_224,4722.37,216.826,1024,224,1.41,7.76,11.0 mixer_b32_224,4707.3,217.523,1024,224,3.24,6.29,60.29 tf_mixnet_s,4706.57,217.551,1024,224,0.25,6.25,4.13 tf_efficientnet_lite1,4662.36,219.62,1024,240,0.62,10.14,5.42 xcit_tiny_12_p16_224_dist,4593.26,222.924,1024,224,1.24,6.29,6.72 xcit_tiny_12_p16_224,4592.09,222.979,1024,224,1.24,6.29,6.72 rexnet_130,4578.43,223.646,1024,224,0.68,9.71,7.56 levit_384,4538.82,225.597,1024,224,2.36,6.26,39.13 mobilenetv2_120d,4530.56,226.009,1024,224,0.69,11.97,5.83 edgenext_x_small,4436.58,230.795,1024,256,0.68,7.5,2.34 cs3darknet_focus_m,4399.27,232.755,1024,288,2.51,6.19,9.3 efficientnet_b0_g16_evos,4394.3,233.017,1024,224,1.01,7.42,8.11 efficientnet_es,4389.85,233.253,1024,224,1.81,8.73,5.44 efficientnet_es_pruned,4389.6,233.266,1024,224,1.81,8.73,5.44 resnet26,4383.27,233.604,1024,224,2.36,7.35,16.0 cs3darknet_m,4330.89,236.429,1024,288,2.63,6.69,9.31 fbnetv3_d,4328.59,236.555,1024,256,0.68,11.1,10.31 repvgg_b0,4286.85,238.858,1024,224,3.41,6.15,15.82 selecsls60,4286.11,238.899,1024,224,3.59,5.52,30.67 darknet17,4270.14,179.843,768,256,3.26,7.18,14.3 selecsls60b,4265.59,240.05,1024,224,3.63,5.52,32.77 efficientnet_b2_pruned,4264.69,240.099,1024,260,0.73,9.13,8.31 tf_efficientnet_es,4239.07,241.551,1024,224,1.81,8.73,5.44 regnetx_016,4196.72,243.986,1024,224,1.62,7.93,9.19 rexnetr_150,4170.12,245.545,1024,224,0.89,11.13,9.78 crossvit_tiny_240,4122.19,248.4,1024,240,1.57,9.08,7.01 dla34,4120.09,248.525,1024,224,3.07,5.02,15.74 mixer_s16_224,4085.83,250.611,1024,224,3.79,5.97,18.53 vit_small_patch32_384,4015.79,254.982,1024,384,3.45,8.25,22.92 rexnet_150,3990.72,256.583,1024,224,0.9,11.21,9.73 resnet26d,3989.2,256.681,1024,224,2.6,8.15,16.01 ecaresnet50d_pruned,3983.23,257.066,1024,224,2.53,6.43,19.94 efficientnet_lite2,3977.91,257.41,1024,260,0.89,12.9,6.09 gmlp_ti16_224,3944.3,259.603,1024,224,1.34,7.55,5.87 mobilevitv2_075,3905.27,262.199,1024,256,1.05,12.06,2.87 crossvit_9_240,3875.46,264.215,1024,240,1.85,9.52,8.55 darknet21,3872.25,198.322,768,256,3.93,7.47,20.86 nf_resnet26,3857.21,265.465,1024,224,2.41,7.35,16.0 convnext_nano_ols,3756.44,272.585,1024,224,2.5,8.37,15.6 convnext_nano_hnf,3749.56,273.084,1024,224,2.46,8.37,15.59 sedarknet21,3744.18,205.107,768,256,3.93,7.47,20.95 efficientnet_b1,3742.67,273.59,1024,256,0.77,12.22,7.79 crossvit_9_dagger_240,3734.14,274.215,1024,240,1.99,9.97,8.78 tf_efficientnet_b1,3731.51,274.409,1024,240,0.71,10.88,7.79 tf_efficientnet_b1_ns,3731.48,274.411,1024,240,0.71,10.88,7.79 tf_efficientnet_b1_ap,3726.19,274.8,1024,240,0.71,10.88,7.79 resnest14d,3644.88,280.93,1024,224,2.76,7.33,10.61 regnety_016,3624.55,282.503,1024,224,1.63,8.04,11.2 tf_efficientnet_lite2,3624.06,282.543,1024,260,0.89,12.9,6.09 vit_tiny_r_s16_p8_384,3594.94,213.622,768,384,1.34,6.49,6.36 tf_efficientnetv2_b2,3593.98,284.91,1024,260,1.72,9.84,10.1 poolformer_s12,3483.41,293.951,1024,224,1.82,5.53,11.92 resmlp_12_224,3460.87,295.868,1024,224,3.01,5.5,15.35 resmlp_12_distilled_224,3458.54,296.067,1024,224,3.01,5.5,15.35 mixnet_m,3455.23,296.35,1024,224,0.36,8.19,5.01 gmixer_12_224,3401.29,301.051,1024,224,2.67,7.26,12.7 resnext26ts,3375.26,303.371,1024,256,2.43,10.52,10.3 nf_ecaresnet26,3365.9,304.215,1024,224,2.41,7.36,16.0 nf_seresnet26,3360.23,304.729,1024,224,2.41,7.36,17.4 gernet_l,3328.59,307.626,1024,256,4.57,8.0,31.08 repvgg_a2,3325.03,307.955,1024,224,5.7,6.26,28.21 tf_mixnet_m,3322.0,308.236,1024,224,0.36,8.19,5.01 efficientnet_b3_pruned,3297.4,310.535,1024,300,1.04,11.86,9.86 nf_regnet_b1,3293.07,310.944,1024,288,1.02,9.2,10.22 seresnext26ts,3291.26,311.115,1024,256,2.43,10.52,10.39 eca_resnext26ts,3290.56,311.182,1024,256,2.43,10.52,10.3 legacy_seresnext26_32x4d,3269.09,313.225,1024,224,2.49,9.39,16.79 skresnet34,3229.96,317.02,1024,224,3.67,5.13,22.28 gcresnext26ts,3229.79,317.037,1024,256,2.43,10.53,10.48 nf_regnet_b2,3193.49,320.64,1024,272,1.22,9.27,14.31 convit_tiny,3179.42,322.058,1024,224,1.26,7.94,5.71 resnet26t,3149.41,325.128,1024,256,3.35,10.52,16.01 rexnetr_200,3135.78,244.904,768,224,1.59,15.11,16.52 ecaresnet101d_pruned,3129.51,327.195,1024,224,3.48,7.69,24.88 seresnext26tn_32x4d,3050.2,335.704,1024,224,2.7,10.09,16.81 seresnext26t_32x4d,3050.01,335.724,1024,224,2.7,10.09,16.81 ecaresnext50t_32x4d,3049.83,335.744,1024,224,2.7,10.09,15.41 ecaresnext26t_32x4d,3048.36,335.905,1024,224,2.7,10.09,15.41 seresnext26d_32x4d,3037.9,337.063,1024,224,2.73,10.19,16.81 deit_small_patch16_224,3002.36,341.052,1024,224,4.61,11.95,22.05 rexnet_200,3001.86,255.828,768,224,1.56,14.91,16.37 vit_small_patch16_224,3000.37,341.279,1024,224,4.61,11.95,22.05 mobilevit_xs,2981.72,257.559,768,256,1.05,16.33,2.32 deit_small_distilled_patch16_224,2950.87,347.001,1024,224,4.63,12.02,22.44 pit_s_224,2945.22,347.668,1024,224,2.88,11.56,23.46 ecaresnetlight,2941.7,348.085,1024,224,4.11,8.42,30.16 coat_lite_tiny,2932.4,349.189,1024,224,1.6,11.65,5.72 eca_botnext26ts_256,2930.99,349.358,1024,256,2.46,11.6,10.59 pit_s_distilled_224,2918.75,350.821,1024,224,2.9,11.64,24.04 tf_efficientnet_b2_ns,2903.13,352.71,1024,260,1.02,13.83,9.11 tf_efficientnet_b2,2902.67,352.766,1024,260,1.02,13.83,9.11 tf_efficientnet_b2_ap,2901.98,352.851,1024,260,1.02,13.83,9.11 eca_halonext26ts,2883.09,355.163,1024,256,2.44,11.46,10.76 tresnet_m,2870.7,356.694,1024,224,5.74,7.31,31.39 botnet26t_256,2862.72,357.688,1024,256,3.32,11.98,12.49 regnetx_032,2852.1,359.019,1024,224,3.2,11.37,15.3 hrnet_w18_small_v2,2845.04,359.912,1024,224,2.62,9.65,15.6 deit3_small_patch16_224_in21ft1k,2837.48,360.868,1024,224,4.61,11.95,22.06 halonet26t,2832.73,361.477,1024,256,3.19,11.69,12.48 resnetv2_50,2829.74,361.858,1024,224,4.11,11.11,25.55 deit3_small_patch16_224,2828.59,362.004,1024,224,4.61,11.95,22.06 vgg11,2795.7,183.125,512,224,7.61,7.44,132.86 haloregnetz_b,2794.73,366.391,1024,224,1.97,11.94,11.68 bat_resnext26ts,2793.93,366.495,1024,256,2.53,12.51,10.73 vit_relpos_base_patch32_plus_rpn_256,2775.87,368.882,1024,256,7.68,8.01,119.42 vit_base_patch32_plus_256,2773.66,369.174,1024,256,7.79,7.76,119.48 dpn68b,2762.53,370.662,1024,224,2.35,10.47,12.61 vit_small_resnet26d_224,2758.05,371.264,1024,224,5.07,11.12,63.61 efficientnet_b2,2753.12,371.929,1024,288,1.12,16.2,9.11 coat_lite_mini,2752.31,372.037,1024,224,2.0,12.25,11.01 efficientnet_b2a,2752.1,372.068,1024,288,1.12,16.2,9.11 efficientnet_b0_gn,2748.63,372.536,1024,224,0.42,6.75,5.29 resnet50,2733.34,374.621,1024,224,4.11,11.11,25.56 ssl_resnet50,2732.73,374.705,1024,224,4.11,11.11,25.56 tv_resnet50,2732.0,374.804,1024,224,4.11,11.11,25.56 gluon_resnet50_v1b,2731.92,374.815,1024,224,4.11,11.11,25.56 swsl_resnet50,2730.89,374.957,1024,224,4.11,11.11,25.56 cspresnet50,2720.51,376.385,1024,256,4.54,11.5,21.62 resnet32ts,2719.03,376.593,1024,256,4.63,11.58,17.96 dpn68,2711.28,377.669,1024,224,2.35,10.47,12.61 mobilevitv2_100,2710.59,283.322,768,256,1.84,16.08,4.9 vovnet39a,2706.48,378.339,1024,224,7.09,6.73,22.6 resnetv2_50t,2687.6,380.997,1024,224,4.32,11.82,25.57 resnet33ts,2683.32,381.605,1024,256,4.76,11.66,19.68 resnetv2_50d,2678.25,382.327,1024,224,4.35,11.92,25.57 efficientnet_em,2663.14,384.496,1024,240,3.04,14.34,6.9 mixnet_l,2651.17,289.672,768,224,0.58,10.84,7.33 visformer_small,2638.82,388.04,1024,224,4.88,11.43,40.22 ese_vovnet39b,2631.4,389.135,1024,224,7.09,6.74,24.57 resnest26d,2624.21,390.2,1024,224,3.64,9.97,17.07 vit_relpos_small_patch16_224,2615.53,391.496,1024,224,4.59,13.05,21.98 seresnet33ts,2613.57,391.79,1024,256,4.76,11.66,19.78 eca_resnet33ts,2609.68,392.373,1024,256,4.76,11.66,19.68 vit_srelpos_small_patch16_224,2607.7,392.67,1024,224,4.59,12.16,21.97 eca_vovnet39b,2607.14,392.755,1024,224,7.09,6.74,22.6 gluon_resnet50_v1c,2599.91,393.848,1024,224,4.35,11.92,25.58 tf_efficientnet_em,2599.16,393.961,1024,240,3.04,14.34,6.9 cspresnet50w,2589.44,395.44,1024,256,5.04,12.19,28.12 resnet50d,2584.02,396.27,1024,224,4.35,11.92,25.58 legacy_seresnet50,2582.34,396.527,1024,224,3.88,10.6,28.09 resnet50t,2580.37,396.829,1024,224,4.32,11.82,25.57 twins_svt_small,2576.63,397.407,1024,224,2.94,13.75,24.06 gluon_resnet50_v1d,2570.89,398.293,1024,224,4.35,11.92,25.58 gcresnet33ts,2569.2,398.556,1024,256,4.76,11.68,19.88 cspresnet50d,2560.0,399.988,1024,256,4.86,12.55,21.64 lambda_resnet26t,2551.69,401.29,1024,256,3.02,11.87,10.96 tf_mixnet_l,2550.79,301.072,768,224,0.58,10.84,7.33 selecsls84,2543.3,402.613,1024,224,5.9,7.57,50.95 vgg11_bn,2541.42,201.45,512,224,7.62,7.44,132.87 dla60,2525.2,405.498,1024,224,4.26,10.16,22.04 cs3darknet_focus_l,2520.03,406.331,1024,288,5.9,10.16,21.15 res2net50_48w_2s,2502.4,409.196,1024,224,4.18,11.72,25.29 cs3darknet_l,2485.99,411.896,1024,288,6.16,10.83,21.16 densenet121,2467.71,414.945,1024,224,2.87,6.9,7.98 xcit_nano_12_p16_384_dist,2466.74,415.111,1024,384,1.64,12.15,3.05 xcit_tiny_24_p16_224_dist,2463.21,415.705,1024,224,2.34,11.82,12.12 tv_densenet121,2461.4,416.011,1024,224,2.87,6.9,7.98 xcit_tiny_24_p16_224,2457.2,416.72,1024,224,2.34,11.82,12.12 seresnet50,2438.84,419.859,1024,224,4.11,11.13,28.09 convnext_tiny_hnfd,2399.93,426.664,1024,224,4.47,13.44,28.59 convnext_tiny_hnf,2395.62,427.433,1024,224,4.47,13.44,28.59 efficientnet_lite3,2383.15,214.83,512,300,1.65,21.85,8.2 efficientnet_b0_g8_gn,2375.8,431.002,1024,224,0.66,6.75,6.56 convnext_tiny_in22ft1k,2362.17,433.485,1024,224,4.47,13.44,28.59 densenet121d,2362.07,433.503,1024,224,3.11,7.7,8.0 convnext_tiny,2359.72,433.936,1024,224,4.47,13.44,28.59 cs3sedarknet_l,2353.08,435.161,1024,288,6.16,10.83,21.91 resnetaa50d,2350.26,435.685,1024,224,5.39,12.44,25.58 efficientnet_cc_b0_4e,2334.0,438.721,1024,224,0.41,9.42,13.31 seresnet50t,2333.68,438.78,1024,224,4.32,11.83,28.1 ecaresnet50d,2316.33,442.066,1024,224,4.35,11.93,25.58 resnetblur50,2298.66,445.465,1024,224,5.16,12.02,25.56 mobilevit_s,2279.76,336.866,768,256,2.03,19.94,5.58 convnext_nano,2276.19,449.862,1024,288,4.06,13.84,15.59 resnetrs50,2276.18,449.864,1024,224,4.48,12.14,35.69 vit_base_resnet26d_224,2262.15,452.654,1024,224,6.97,13.16,101.4 gluon_resnet50_v1s,2257.16,453.655,1024,224,5.47,13.52,25.68 vovnet57a,2253.6,454.372,1024,224,8.95,7.52,36.64 adv_inception_v3,2250.27,455.041,1024,299,5.73,8.97,23.83 gluon_inception_v3,2249.35,455.229,1024,299,5.73,8.97,23.83 tf_inception_v3,2245.22,456.064,1024,299,5.73,8.97,23.83 tf_efficientnet_cc_b0_4e,2243.01,456.518,1024,224,0.41,9.42,13.31 inception_v3,2240.78,456.965,1024,299,5.73,8.97,23.83 tf_efficientnet_cc_b0_8e,2240.71,456.986,1024,224,0.42,9.42,24.01 densenetblur121d,2235.56,458.037,1024,224,3.11,7.9,8.0 resnest50d_1s4x24d,2213.57,462.589,1024,224,4.43,13.57,25.68 res2net50_26w_4s,2209.54,463.432,1024,224,4.28,12.61,25.7 ssl_resnext50_32x4d,2205.13,464.359,1024,224,4.26,14.4,25.03 swsl_resnext50_32x4d,2204.8,464.429,1024,224,4.26,14.4,25.03 gluon_resnext50_32x4d,2203.2,464.765,1024,224,4.26,14.4,25.03 resnext50_32x4d,2199.44,465.561,1024,224,4.26,14.4,25.03 tv_resnext50_32x4d,2198.23,465.818,1024,224,4.26,14.4,25.03 regnetx_040,2190.95,467.362,1024,224,3.99,12.2,22.12 cspresnext50,2182.4,469.194,1024,256,4.05,15.86,20.57 resnetblur50d,2182.09,469.263,1024,224,5.4,12.82,25.58 regnetz_b16,2180.8,469.54,1024,288,2.39,16.43,9.72 ese_vovnet57b,2171.57,471.535,1024,224,8.95,7.52,38.61 tf_efficientnet_lite3,2166.77,236.285,512,300,1.65,21.85,8.2 mobilevitv2_125,2151.63,356.926,768,256,2.86,20.1,7.48 efficientnet_cc_b0_8e,2149.58,476.36,1024,224,0.42,9.42,24.01 semobilevit_s,2143.19,358.331,768,256,2.03,19.95,5.74 twins_pcpvt_small,2142.01,478.043,1024,224,3.83,18.08,24.11 nf_regnet_b3,2133.81,479.88,1024,320,2.05,14.61,18.59 tf_efficientnetv2_b3,2121.62,482.639,1024,300,3.04,15.74,14.36 seresnetaa50d,2118.99,483.236,1024,224,5.4,12.46,28.11 efficientnetv2_rw_t,2117.33,483.616,1024,288,3.19,16.42,13.65 gcresnext50ts,2113.73,484.438,1024,256,3.75,15.46,15.67 edgenext_small,2107.47,485.876,1024,320,1.97,14.16,5.59 resnext50d_32x4d,2094.1,488.98,1024,224,4.5,15.2,25.05 dla60x,2080.97,492.062,1024,224,3.54,13.8,17.35 res2net50_14w_8s,2066.79,495.441,1024,224,4.21,13.28,25.06 gc_efficientnetv2_rw_t,2061.37,496.743,1024,288,3.2,16.45,13.68 sehalonet33ts,2057.14,373.322,768,256,3.55,14.7,13.69 gcresnet50t,2055.89,498.068,1024,256,5.42,14.67,25.9 skresnet50,2048.81,499.79,1024,224,4.11,12.5,25.8 fbnetv3_g,2047.87,500.019,1024,288,1.77,21.09,16.62 nf_ecaresnet50,2039.26,502.129,1024,224,4.21,11.13,25.56 nf_seresnet50,2037.45,502.576,1024,224,4.21,11.13,28.09 cs3darknet_focus_x,2026.01,505.415,1024,256,8.03,10.69,35.02 dla60_res2net,2015.55,508.035,1024,224,4.15,12.34,20.85 lambda_resnet26rpt_256,2015.24,190.536,384,256,3.16,11.87,10.99 seresnext50_32x4d,2010.4,509.339,1024,224,4.26,14.42,27.56 legacy_seresnext50_32x4d,2003.57,511.076,1024,224,4.26,14.42,27.56 repvgg_b1g4,2003.2,511.169,1024,224,8.15,10.64,39.97 gluon_seresnext50_32x4d,2002.45,511.358,1024,224,4.26,14.42,27.56 densenet169,1987.41,515.228,1024,224,3.4,7.3,14.15 res2next50,1967.78,520.369,1024,224,4.2,13.71,24.67 vit_relpos_small_patch16_rpn_224,1966.99,520.579,1024,224,4.59,13.05,21.97 skresnet50d,1957.14,523.201,1024,224,4.36,13.31,25.82 xcit_small_12_p16_224_dist,1952.72,524.382,1024,224,4.82,12.58,26.25 crossvit_small_240,1952.54,524.431,1024,240,5.63,18.17,26.86 xcit_small_12_p16_224,1952.1,524.55,1024,224,4.82,12.58,26.25 cs3sedarknet_xdw,1919.73,533.397,1024,256,5.97,17.18,21.6 swin_tiny_patch4_window7_224,1915.52,534.569,1024,224,4.51,17.06,28.29 vit_relpos_medium_patch16_cls_224,1909.56,536.236,1024,224,8.03,18.24,38.76 mixnet_xl,1903.31,268.993,512,224,0.93,14.57,11.9 dla60_res2next,1893.19,540.873,1024,224,3.49,13.17,17.03 xcit_nano_12_p8_224_dist,1887.0,542.649,1024,224,2.16,15.71,3.05 xcit_nano_12_p8_224,1883.21,543.74,1024,224,2.16,15.71,3.05 cspdarknet53,1881.33,408.211,768,256,6.57,16.81,27.64 gmlp_s16_224,1873.82,546.464,1024,224,4.42,15.1,19.42 edgenext_small_rw,1831.96,558.95,1024,320,2.46,14.85,7.83 ecaresnet26t,1828.87,559.898,1024,320,5.24,16.44,16.01 vit_small_r26_s32_224,1825.94,560.792,1024,224,3.56,9.85,36.43 vgg13,1819.73,281.346,512,224,11.31,12.25,133.05 poolformer_s24,1804.4,567.487,1024,224,3.41,10.68,21.39 crossvit_15_240,1799.06,569.173,1024,240,5.81,19.77,27.53 vit_relpos_medium_patch16_224,1794.09,570.75,1024,224,7.97,17.02,38.75 vit_srelpos_medium_patch16_224,1787.05,573.0,1024,224,7.96,16.21,38.74 mobilevitv2_150,1774.77,288.477,512,256,4.09,24.11,10.59 mobilevitv2_150_in22ft1k,1773.43,288.695,512,256,4.09,24.11,10.59 sebotnet33ts_256,1762.47,217.864,384,256,3.89,17.46,13.7 resmlp_24_224,1761.92,581.171,1024,224,5.96,10.91,30.02 efficientnet_b3,1761.71,290.615,512,320,2.01,26.52,12.23 efficientnet_b3a,1761.71,290.614,512,320,2.01,26.52,12.23 resmlp_24_distilled_224,1760.69,581.576,1024,224,5.96,10.91,30.02 regnetx_064,1757.88,436.877,768,224,6.49,16.37,26.21 resnest50d,1750.78,584.87,1024,224,5.4,14.36,27.48 gmixer_24_224,1741.35,588.036,1024,224,5.28,14.45,24.72 swin_s3_tiny_224,1737.42,589.369,1024,224,4.64,19.13,28.33 crossvit_15_dagger_240,1736.98,589.517,1024,240,6.13,20.43,28.21 vit_base_resnet50d_224,1722.65,594.42,1024,224,8.73,16.92,110.97 resnetv2_101,1717.18,596.314,1024,224,7.83,16.23,44.54 tf_efficientnet_b3_ap,1706.97,299.935,512,300,1.87,23.83,12.23 tf_efficientnet_b3,1705.74,300.151,512,300,1.87,23.83,12.23 tf_efficientnet_b3_ns,1705.51,300.191,512,300,1.87,23.83,12.23 lambda_resnet50ts,1694.68,604.231,1024,256,5.07,17.48,21.54 dla102,1693.75,604.56,1024,224,7.19,14.18,33.27 darknetaa53,1689.16,454.651,768,288,10.08,15.68,36.02 gluon_resnet101_v1b,1679.75,609.599,1024,224,7.83,16.23,44.55 tv_resnet101,1679.18,609.808,1024,224,7.83,16.23,44.55 resnet101,1676.67,610.719,1024,224,7.83,16.23,44.55 repvgg_b1,1663.53,615.546,1024,224,13.16,10.64,57.42 resnetv2_101d,1653.14,619.414,1024,224,8.07,17.04,44.56 gluon_resnet101_v1c,1649.02,620.96,1024,224,8.08,17.04,44.57 vgg13_bn,1642.15,311.774,512,224,11.33,12.25,133.05 cait_xxs24_224,1641.65,623.749,1024,224,2.53,20.29,11.96 res2net50_26w_6s,1639.34,624.627,1024,224,6.33,15.28,37.05 hrnet_w18,1631.65,627.569,1024,224,4.32,16.31,21.3 vit_large_patch32_224,1623.29,630.805,1024,224,15.39,13.3,306.54 wide_resnet50_2,1618.04,632.851,1024,224,11.43,14.4,68.88 gluon_resnet101_v1d,1616.88,633.307,1024,224,8.08,17.04,44.57 xcit_tiny_12_p16_384_dist,1614.06,634.414,1024,384,3.64,18.26,6.72 regnetv_040,1604.78,478.557,768,288,6.6,20.3,20.64 halonet50ts,1600.56,639.764,1024,256,5.3,19.2,22.73 regnety_040,1597.66,480.688,768,288,6.61,20.3,20.65 darknet53,1585.01,484.528,768,288,11.78,15.68,41.61 efficientnet_cc_b1_8e,1576.34,649.593,1024,240,0.75,15.44,39.72 coat_lite_small,1576.03,649.72,1024,224,3.96,22.09,19.84 regnety_032,1576.03,649.722,1024,288,5.29,18.61,19.44 resnetv2_50x1_bit_distilled,1575.9,649.775,1024,224,4.23,11.11,25.55 swinv2_cr_tiny_224,1574.62,650.304,1024,224,4.66,28.45,28.33 legacy_seresnet101,1569.43,652.454,1024,224,7.61,15.74,49.33 vit_base_patch32_384,1551.76,659.885,1024,384,13.06,16.5,88.3 ese_vovnet39b_evos,1551.37,660.05,1024,224,7.07,6.74,24.58 swinv2_cr_tiny_ns_224,1546.02,662.33,1024,224,4.66,28.45,28.33 vit_tiny_patch16_384,1542.96,663.648,1024,384,4.7,25.39,5.79 lamhalobotnet50ts_256,1533.2,667.873,1024,256,5.02,18.44,22.57 tf_efficientnet_cc_b1_8e,1527.24,670.479,1024,240,0.75,15.44,39.72 resnetaa101d,1521.49,673.009,1024,224,9.12,17.56,44.57 densenet201,1515.85,675.514,1024,224,4.34,7.85,20.01 resnetaa50,1510.7,677.817,1024,288,8.52,19.24,25.56 mixer_l32_224,1508.54,678.791,1024,224,11.27,19.86,206.94 seresnet101,1502.48,681.526,1024,224,7.84,16.27,49.33 vit_base_r26_s32_224,1492.4,686.129,1024,224,6.81,12.36,101.38 gluon_resnet101_v1s,1485.37,689.375,1024,224,9.19,18.64,44.67 twins_pcpvt_base,1484.93,689.584,1024,224,6.68,25.25,43.83 mobilevitv2_175,1472.18,347.77,512,256,5.54,28.13,14.25 mobilevitv2_175_in22ft1k,1472.06,347.8,512,256,5.54,28.13,14.25 nf_resnet101,1469.16,696.987,1024,224,8.01,16.23,44.55 resnest50d_4s2x40d,1467.36,697.84,1024,224,4.4,17.94,30.42 vgg16,1464.57,349.576,512,224,15.47,13.56,138.36 resnetv2_50d_frn,1463.93,699.474,1024,224,4.33,11.92,25.59 resnetblur101d,1458.09,702.276,1024,224,9.12,17.94,44.57 ecaresnet101d,1457.01,702.796,1024,224,8.08,17.07,44.57 sequencer2d_s,1455.29,703.627,1024,224,4.96,11.31,27.65 nf_resnet50,1445.9,708.195,1024,288,6.88,18.37,25.56 convnext_small,1445.85,708.22,1024,224,8.71,21.56,50.22 convnext_small_in22ft1k,1443.98,709.135,1024,224,8.71,21.56,50.22 regnetz_c16,1437.42,356.181,512,320,3.92,25.88,13.46 tresnet_l,1432.52,714.812,1024,224,10.88,11.9,55.99 cs3darknet_x,1429.24,716.453,1024,288,10.6,14.36,35.05 dla102x,1397.97,732.475,1024,224,5.89,19.42,26.31 ssl_resnext101_32x4d,1392.96,735.11,1024,224,8.01,21.23,44.18 swsl_resnext101_32x4d,1392.73,735.231,1024,224,8.01,21.23,44.18 resnext101_32x4d,1390.48,736.423,1024,224,8.01,21.23,44.18 botnet50ts_256,1389.99,276.247,384,256,5.54,22.23,22.74 skresnext50_32x4d,1389.9,736.732,1024,224,4.5,17.18,27.48 gluon_resnext101_32x4d,1389.41,736.987,1024,224,8.01,21.23,44.18 nest_tiny,1388.05,553.283,768,224,5.83,25.48,17.06 resnet50_gn,1386.72,738.422,1024,224,4.14,11.11,25.56 resnetv2_50d_evob,1383.3,740.244,1024,224,4.33,11.92,25.59 res2net50_26w_8s,1373.33,745.622,1024,224,8.37,17.95,48.4 halo2botnet50ts_256,1372.33,559.619,768,256,5.02,21.78,22.64 regnetx_080,1370.56,747.125,1024,224,8.02,14.06,39.57 cs3sedarknet_x,1368.84,748.067,1024,288,10.6,14.37,35.4 jx_nest_tiny,1362.62,563.605,768,224,5.83,25.48,17.06 convit_small,1355.18,755.603,1024,224,5.76,17.87,27.78 res2net101_26w_4s,1353.43,756.586,1024,224,8.1,18.45,45.21 xception,1340.72,572.814,768,299,8.4,35.83,22.86 mixer_b16_224_miil,1340.03,764.147,1024,224,12.62,14.53,59.88 repvgg_b2g4,1335.06,766.992,1024,224,12.63,12.9,61.76 vgg16_bn,1335.02,383.503,512,224,15.5,13.56,138.37 mixer_b16_224,1328.05,771.041,1024,224,12.62,14.53,59.88 twins_svt_base,1307.2,783.34,1024,224,8.59,26.33,56.07 dpn92,1299.67,787.878,1024,224,6.54,18.21,37.67 cs3edgenet_x,1289.05,794.37,1024,288,14.59,16.36,47.82 ese_vovnet99b_iabn,1282.63,798.345,1024,224,16.49,11.27,63.2 crossvit_18_240,1272.74,804.553,1024,240,9.05,26.26,43.27 regnety_040s_gn,1271.39,805.405,1024,224,4.03,12.29,20.65 eca_nfnet_l0,1271.38,805.411,1024,288,7.12,17.29,24.14 nfnet_l0,1269.37,806.681,1024,288,7.13,17.29,35.07 seresnext101_32x4d,1268.1,807.494,1024,224,8.02,21.26,48.96 legacy_seresnext101_32x4d,1267.59,807.817,1024,224,8.02,21.26,48.96 gluon_seresnext101_32x4d,1265.67,809.045,1024,224,8.02,21.26,48.96 nf_ecaresnet101,1264.2,809.986,1024,224,8.01,16.27,44.55 vit_relpos_medium_patch16_rpn_224,1263.66,810.331,1024,224,7.97,17.02,38.73 nf_seresnet101,1261.42,811.77,1024,224,8.02,16.27,49.33 mobilevitv2_200,1256.15,305.684,384,256,7.22,32.15,18.45 mobilevitv2_200_in22ft1k,1255.83,305.762,384,256,7.22,32.15,18.45 xception41p,1254.65,408.071,512,299,9.25,39.86,26.91 resnet51q,1254.6,816.185,1024,288,8.07,20.94,35.7 efficientnet_el,1254.42,408.143,512,300,8.0,30.7,10.59 efficientnet_el_pruned,1254.28,408.188,512,300,8.0,30.7,10.59 ese_vovnet99b,1240.88,825.205,1024,224,16.51,11.27,63.2 xcit_tiny_12_p8_224_dist,1237.16,827.688,1024,224,4.81,23.6,6.71 xcit_tiny_12_p8_224,1235.05,829.105,1024,224,4.81,23.6,6.71 crossvit_18_dagger_240,1235.02,829.126,1024,240,9.5,27.03,44.27 vgg19,1227.1,417.229,512,224,19.63,14.86,143.67 tf_efficientnet_el,1226.94,417.286,512,300,8.0,30.7,10.59 poolformer_s36,1217.09,841.334,1024,224,5.0,15.82,30.86 hrnet_w32,1204.83,849.897,1024,224,8.97,22.02,41.23 hrnet_w30,1202.88,851.275,1024,224,8.15,21.21,37.71 resnetv2_152,1196.21,856.023,1024,224,11.55,22.56,60.19 nfnet_f0,1193.84,857.722,1024,256,12.62,18.05,71.49 swin_small_patch4_window7_224,1179.92,867.841,1024,224,8.77,27.47,49.61 resmlp_36_224,1179.88,867.87,1024,224,8.91,16.33,44.69 vit_small_resnet50d_s16_224,1179.15,868.406,1024,224,13.48,24.82,57.53 resmlp_36_distilled_224,1179.01,868.509,1024,224,8.91,16.33,44.69 efficientnet_lite4,1178.02,325.958,384,380,4.04,45.66,13.01 tv_resnet152,1172.68,873.198,1024,224,11.56,22.56,60.19 gluon_resnet152_v1b,1172.67,873.208,1024,224,11.56,22.56,60.19 resnet152,1170.69,874.682,1024,224,11.56,22.56,60.19 mixnet_xxl,1163.99,329.888,384,224,2.04,23.43,23.96 resnetv2_152d,1163.57,880.032,1024,224,11.8,23.36,60.2 ecaresnet50t,1162.34,880.97,1024,320,8.82,24.13,25.57 resnet61q,1160.54,882.331,1024,288,9.87,21.52,36.85 vit_base_patch16_224_miil,1154.75,886.763,1024,224,17.58,23.9,86.54 repvgg_b2,1154.25,887.146,1024,224,20.45,12.9,89.02 inception_v4,1153.57,887.661,1024,299,12.28,15.09,42.68 swinv2_tiny_window8_256,1152.79,888.266,1024,256,5.96,24.57,28.35 densenet161,1147.8,892.122,1024,224,7.79,11.06,28.68 gluon_resnet152_v1c,1146.71,892.979,1024,224,11.8,23.36,60.21 gluon_resnet152_v1d,1141.31,897.204,1024,224,11.8,23.36,60.21 sequencer2d_m,1138.06,899.765,1024,224,6.55,14.26,38.31 vit_base_patch16_224_sam,1132.42,904.242,1024,224,17.58,23.9,86.57 deit_base_patch16_224,1132.42,904.245,1024,224,17.58,23.9,86.57 vit_base_patch16_224,1132.21,904.413,1024,224,17.58,23.9,86.57 dla169,1130.13,906.071,1024,224,11.6,20.2,53.39 regnetx_120,1129.55,453.263,512,224,12.13,21.37,46.11 volo_d1_224,1126.62,908.904,1024,224,6.94,24.43,26.63 vgg19_bn,1122.31,456.189,512,224,19.66,14.86,143.68 deit_base_distilled_patch16_224,1116.6,917.056,1024,224,17.68,24.05,87.34 xception41,1110.46,461.057,512,299,9.28,39.86,26.97 cait_xxs36_224,1104.66,926.97,1024,224,3.77,30.34,17.3 tf_efficientnet_lite4,1091.59,351.767,384,380,4.04,45.66,13.01 convmixer_1024_20_ks9_p14,1091.56,938.092,1024,224,5.55,5.51,24.38 deit3_base_patch16_224,1090.26,939.213,1024,224,17.58,23.9,86.59 deit3_base_patch16_224_in21ft1k,1088.57,940.667,1024,224,17.58,23.9,86.59 legacy_seresnet152,1086.41,942.544,1024,224,11.33,22.08,66.82 tnt_s_patch16_224,1079.54,948.54,1024,224,5.24,24.37,23.76 regnety_120,1077.58,475.125,512,224,12.14,21.38,51.82 repvgg_b3g4,1077.28,950.524,1024,224,17.89,15.1,83.83 vit_relpos_base_patch16_clsgap_224,1077.01,950.767,1024,224,17.6,25.12,86.43 vit_relpos_base_patch16_cls_224,1076.19,951.489,1024,224,17.6,25.12,86.43 gluon_resnet152_v1s,1074.28,953.181,1024,224,12.92,24.96,60.32 twins_pcpvt_large,1061.77,964.416,1024,224,9.84,35.82,60.99 seresnet152,1047.32,977.721,1024,224,11.57,22.61,66.82 beit_base_patch16_224,1045.12,979.774,1024,224,17.58,23.9,86.53 xcit_small_24_p16_224_dist,1038.39,986.125,1024,224,9.1,23.64,47.67 xcit_small_24_p16_224,1037.69,986.793,1024,224,9.1,23.64,47.67 coat_tiny,1036.7,987.731,1024,224,4.35,27.2,5.5 dm_nfnet_f0,1035.11,989.253,1024,256,12.62,18.05,71.49 nf_regnet_b4,1027.0,997.065,1024,384,4.7,28.61,30.21 vit_relpos_base_patch16_224,1017.61,1006.263,1024,224,17.51,24.97,86.43 convnext_base_in22ft1k,1006.85,1017.02,1024,224,15.38,28.75,88.59 convnext_base,1006.73,1017.126,1024,224,15.38,28.75,88.59 pit_b_224,993.61,515.277,512,224,12.42,32.94,73.76 pit_b_distilled_224,985.16,519.696,512,224,12.5,33.07,74.79 tresnet_xl,983.38,1041.292,1024,224,15.17,15.34,78.44 efficientnetv2_s,976.0,1049.166,1024,384,8.44,35.77,21.46 dla102x2,973.1,526.138,512,224,9.34,29.91,41.28 cs3se_edgenet_x,972.26,1053.196,1024,320,18.01,20.21,50.72 vit_small_patch16_36x1_224,972.14,1053.329,1024,224,13.71,35.69,64.67 swinv2_cr_small_224,966.28,1059.712,1024,224,9.07,50.27,49.7 swinv2_cr_small_ns_224,955.69,1071.465,1024,224,9.08,50.27,49.7 tf_efficientnetv2_s_in21ft1k,955.24,1071.964,1024,384,8.44,35.77,21.46 tf_efficientnetv2_s,955.13,1072.086,1024,384,8.44,35.77,21.46 vit_small_patch16_18x2_224,948.32,1079.793,1024,224,13.71,35.69,64.67 wide_resnet101_2,939.08,1090.412,1024,224,22.8,21.23,126.89 regnetx_160,936.53,546.684,512,224,15.99,25.52,54.28 regnety_080,933.52,548.447,512,288,13.22,29.69,39.18 regnetz_b16_evos,933.51,822.691,768,288,2.36,16.43,9.74 efficientnetv2_rw_s,931.24,1099.596,1024,384,8.72,38.03,23.94 resnetv2_50d_gn,920.9,1111.946,1024,288,7.24,19.7,25.57 twins_svt_large,918.22,1115.185,1024,224,15.15,35.1,99.27 efficientnet_b4,917.89,418.339,384,384,4.51,50.04,19.34 regnetz_040,913.72,420.249,384,320,6.35,37.78,27.12 xception65p,910.71,562.184,512,299,13.91,52.48,39.82 regnetz_040h,909.33,422.274,384,320,6.43,37.94,28.94 dpn98,906.73,1129.316,1024,224,11.73,25.2,61.57 repvgg_b3,901.67,1135.661,1024,224,29.16,15.1,123.09 resnetrs101,898.53,1139.62,1024,288,13.56,28.53,63.62 gluon_resnext101_64x4d,887.37,1153.955,1024,224,15.52,31.21,83.46 nest_small,885.28,867.51,768,224,10.35,40.04,38.35 poolformer_m36,879.83,1163.84,1024,224,8.8,22.02,56.17 regnetz_d8,877.84,1166.489,1024,320,6.19,37.08,23.37 jx_nest_small,874.11,878.596,768,224,10.35,40.04,38.35 ssl_resnext101_32x8d,874.01,1171.597,1024,224,16.48,31.21,88.79 swsl_resnext101_32x8d,873.31,1172.532,1024,224,16.48,31.21,88.79 resnext101_32x8d,873.01,1172.932,1024,224,16.48,31.21,88.79 ig_resnext101_32x8d,872.81,1173.211,1024,224,16.48,31.21,88.79 regnetz_d32,869.58,1177.564,1024,320,9.33,37.08,27.58 inception_resnet_v2,868.78,1178.653,1024,299,13.18,25.06,55.84 ens_adv_inception_resnet_v2,868.32,1179.275,1024,299,13.18,25.06,55.84 xcit_tiny_24_p16_384_dist,866.54,1181.7,1024,384,6.87,34.29,12.12 cait_s24_224,865.33,1183.354,1024,224,9.35,40.58,46.92 resnest101e,858.93,894.122,768,256,13.38,28.66,48.28 tf_efficientnet_b4,858.91,447.067,384,380,4.49,49.49,19.34 tf_efficientnet_b4_ap,858.7,447.171,384,380,4.49,49.49,19.34 tf_efficientnet_b4_ns,858.52,447.267,384,380,4.49,49.49,19.34 swin_s3_small_224,853.54,899.766,768,224,9.43,37.84,49.74 regnetv_064,852.1,600.857,512,288,10.55,27.11,30.58 regnety_064,851.33,601.396,512,288,10.56,27.11,30.58 resnet200,847.44,1208.333,1024,224,15.07,32.19,64.67 gluon_seresnext101_64x4d,834.87,1226.518,1024,224,15.53,31.25,88.23 coat_mini,833.41,1228.669,1024,224,6.82,33.68,10.34 swin_base_patch4_window7_224,832.6,1229.869,1024,224,15.47,36.63,87.77 resnet101d,816.8,1253.661,1024,320,16.48,34.77,44.57 gluon_xception65,816.5,627.052,512,299,13.96,52.48,39.92 xception65,811.16,631.185,512,299,13.96,52.48,39.92 resnetv2_50d_evos,810.51,947.543,768,288,7.15,19.7,25.59 convnext_tiny_384_in22ft1k,807.27,634.218,512,384,13.14,39.48,28.59 gmlp_b16_224,789.84,1296.449,1024,224,15.78,30.21,73.08 hrnet_w40,787.85,1299.728,1024,224,12.75,25.29,57.56 crossvit_base_240,787.17,975.639,768,240,21.22,36.33,105.03 hrnet_w44,771.15,1327.87,1024,224,14.94,26.92,67.06 swinv2_tiny_window16_256,763.4,670.672,512,256,6.68,39.02,28.35 mobilevitv2_150_384_in22ft1k,757.55,337.918,256,384,9.2,54.25,10.59 xcit_medium_24_p16_224_dist,748.7,1367.689,1024,224,16.13,31.71,84.4 xcit_medium_24_p16_224,748.18,1368.635,1024,224,16.13,31.71,84.4 tresnet_m_448,743.16,1377.885,1024,448,22.94,29.21,31.39 vit_large_r50_s32_224,742.19,1379.692,1024,224,19.58,24.41,328.99 hrnet_w48,738.63,1386.343,1024,224,17.34,28.56,77.47 vit_base_patch16_plus_240,738.11,1387.321,1024,240,27.41,33.08,117.56 sequencer2d_l,736.17,1390.978,1024,224,9.74,22.12,54.3 xcit_small_12_p16_384_dist,715.91,1430.327,1024,384,14.14,36.51,26.25 swinv2_small_window8_256,710.32,1441.594,1024,256,11.58,40.14,49.73 swin_s3_base_224,693.67,1476.198,1024,224,13.69,48.26,71.13 vit_small_patch16_384,692.4,1109.164,768,384,15.52,50.78,22.2 vit_relpos_base_patch16_plus_240,691.79,1480.194,1024,240,27.3,34.33,117.38 tnt_b_patch16_224,691.78,1480.223,1024,224,14.09,39.01,65.41 swinv2_cr_base_224,688.11,1488.125,1024,224,15.86,59.66,87.88 densenet264d_iabn,687.57,1489.287,1024,224,13.47,14.0,72.74 convit_base,685.88,1492.962,1024,224,17.52,31.77,86.54 swinv2_cr_base_ns_224,682.58,1500.17,1024,224,15.86,59.66,87.88 vit_base_patch16_rpn_224,667.73,1533.544,1024,224,17.49,23.75,86.54 densenet264,664.62,1540.716,1024,224,12.95,12.8,72.69 deit3_small_patch16_384,664.03,1156.564,768,384,15.52,50.78,22.21 poolformer_m48,663.83,1542.547,1024,224,11.59,29.17,73.47 deit3_small_patch16_384_in21ft1k,663.62,1157.274,768,384,15.52,50.78,22.21 efficientnet_b3_gn,662.87,386.187,256,320,2.14,28.83,11.73 dpn131,660.11,1551.238,1024,224,16.09,32.97,79.25 eca_nfnet_l1,655.87,1561.27,1024,320,14.92,34.42,41.41 vit_relpos_base_patch16_rpn_224,655.49,1562.186,1024,224,17.51,24.97,86.41 xcit_tiny_24_p8_224,650.45,1574.283,1024,224,9.21,45.39,12.11 xcit_tiny_24_p8_224_dist,649.22,1577.262,1024,224,9.21,45.39,12.11 xcit_nano_12_p8_384_dist,643.06,1592.369,1024,384,6.34,46.08,3.05 nest_base,629.02,813.95,512,224,17.96,53.39,67.72 volo_d2_224,627.91,1630.781,1024,224,14.34,41.34,58.68 mobilevitv2_175_384_in22ft1k,627.52,407.942,256,384,12.47,63.29,14.25 jx_nest_base,621.88,823.3,512,224,17.96,53.39,67.72 vit_small_r26_s32_384,619.54,619.804,384,384,10.43,29.85,36.47 senet154,618.82,1654.743,1024,224,20.77,38.69,115.09 gluon_senet154,618.51,1655.586,1024,224,20.77,38.69,115.09 legacy_senet154,618.16,1656.503,1024,224,20.77,38.69,115.09 xception71,616.97,829.852,512,299,18.09,69.92,42.34 vit_base_r50_s16_224,613.11,1670.152,1024,224,21.66,35.29,98.66 hrnet_w64,609.7,1679.491,1024,224,28.97,35.09,128.06 regnety_320,607.61,842.637,512,224,32.34,30.26,145.05 dpn107,606.08,1689.539,1024,224,18.38,33.46,86.92 regnetz_c16_evos,598.89,854.904,512,320,3.86,25.88,13.49 ecaresnet200d,592.5,1728.248,1024,256,20.0,43.15,64.69 seresnet200d,591.19,1732.085,1024,256,20.01,43.15,71.86 resnet152d,576.9,1774.999,1024,320,24.08,47.67,60.21 convnext_large,559.02,1831.761,1024,224,34.4,43.13,197.77 convnext_large_in22ft1k,558.96,1831.941,1024,224,34.4,43.13,197.77 regnety_160,558.21,687.896,384,288,26.37,38.07,83.59 efficientnet_b3_g8_gn,557.9,458.854,256,320,3.2,28.83,14.25 xcit_small_12_p8_224,546.6,1873.371,1024,224,18.69,47.21,26.21 xcit_small_12_p8_224_dist,546.45,1873.905,1024,224,18.69,47.21,26.21 resnext101_64x4d,541.68,1417.803,768,288,25.66,51.59,83.46 mobilevitv2_200_384_in22ft1k,527.08,364.262,192,384,16.24,72.34,18.45 halonet_h1,518.76,493.471,256,256,3.0,51.17,8.1 vit_large_patch32_384,517.18,1979.967,1024,384,45.31,43.86,306.63 seresnet152d,516.02,1984.399,1024,320,24.09,47.72,66.84 resnetrs152,512.78,1996.941,1024,320,24.34,48.14,86.62 swinv2_base_window8_256,507.32,1513.812,768,256,20.37,52.59,87.92 seresnext101_32x8d,503.19,1526.235,768,288,27.24,51.63,93.57 convnext_small_384_in22ft1k,494.64,1035.087,512,384,25.58,63.37,50.22 seresnext101d_32x8d,494.43,1553.287,768,288,27.64,52.95,93.59 swin_large_patch4_window7_224,478.67,1604.435,768,224,34.53,54.94,196.53 swinv2_small_window16_256,476.38,1074.753,512,256,12.82,66.29,49.73 regnetz_e8,474.49,1618.577,768,320,15.46,63.94,57.7 regnetx_320,471.27,814.799,384,224,31.81,36.3,107.81 ssl_resnext101_32x16d,471.02,1086.983,512,224,36.27,51.18,194.03 swsl_resnext101_32x16d,470.83,1087.428,512,224,36.27,51.18,194.03 ig_resnext101_32x16d,470.74,1087.624,512,224,36.27,51.18,194.03 mixer_l16_224,470.73,2175.315,1024,224,44.6,41.69,208.2 seresnextaa101d_32x8d,463.39,1657.351,768,288,28.51,56.44,93.59 seresnet269d,463.29,2210.273,1024,256,26.59,53.6,113.67 nf_regnet_b5,450.96,1135.344,512,456,11.7,61.95,49.74 efficientnetv2_m,449.82,2276.453,1024,416,18.6,67.5,54.14 volo_d3_224,439.99,2327.294,1024,224,20.78,60.09,86.33 efficientnet_b5,425.78,601.238,256,456,10.46,98.86,30.39 xcit_large_24_p16_224_dist,423.07,2420.403,1024,224,35.86,47.27,189.1 xcit_large_24_p16_224,422.98,2420.908,1024,224,35.86,47.27,189.1 xcit_tiny_12_p8_384_dist,419.35,2441.847,1024,384,14.13,69.14,6.71 resnet200d,417.0,2455.593,1024,320,31.25,67.33,64.69 efficientnetv2_rw_m,411.82,1864.879,768,416,21.49,79.62,53.24 tf_efficientnet_b5_ns,408.16,627.186,256,456,10.46,98.86,30.39 swinv2_cr_tiny_384,408.1,627.286,256,384,15.34,161.01,28.33 tf_efficientnet_b5,407.78,627.773,256,456,10.46,98.86,30.39 tf_efficientnet_b5_ap,407.68,627.936,256,456,10.46,98.86,30.39 swinv2_cr_large_224,405.25,1895.127,768,224,35.1,78.42,196.68 resnetv2_50x1_bitm,401.93,955.37,384,448,16.62,44.46,25.55 nfnet_f1,399.69,2561.946,1024,320,35.97,46.77,132.63 xcit_small_24_p16_384_dist,382.57,2676.633,1024,384,26.72,68.58,47.67 regnetz_d8_evos,376.87,2037.797,768,320,7.03,38.92,23.46 tresnet_l_448,371.52,2756.242,1024,448,43.5,47.56,55.99 vit_large_patch16_224,369.7,2769.802,1024,224,61.6,63.52,304.33 resnetrs200,368.58,2778.22,1024,320,31.51,67.81,93.21 convnext_xlarge_in22ft1k,368.02,1391.221,512,224,60.98,57.5,350.2 crossvit_15_dagger_408,366.37,698.731,256,408,21.45,95.05,28.5 vit_base_patch16_18x2_224,361.96,2829.064,1024,224,52.51,71.38,256.73 deit3_large_patch16_224,358.07,2859.733,1024,224,61.6,63.52,304.37 deit3_large_patch16_224_in21ft1k,357.9,2861.143,1024,224,61.6,63.52,304.37 dm_nfnet_f1,357.87,2146.026,768,320,35.97,46.77,132.63 tf_efficientnetv2_m,350.54,2190.896,768,480,24.76,89.84,54.14 tf_efficientnetv2_m_in21ft1k,350.14,2193.372,768,480,24.76,89.84,54.14 swinv2_base_window16_256,345.6,1111.087,384,256,22.02,84.71,87.92 swinv2_base_window12to16_192to256_22kft1k,345.47,1111.525,384,256,22.02,84.71,87.92 convnext_base_384_in22ft1k,344.56,1485.926,512,384,45.21,84.49,88.59 beit_large_patch16_224,342.32,2991.347,1024,224,61.6,63.52,304.43 eca_nfnet_l2,322.02,2384.947,768,384,30.05,68.28,56.72 volo_d1_384,293.04,1747.159,512,384,22.75,108.55,26.78 convmixer_768_32,292.83,3496.872,1024,224,19.55,25.95,21.11 resnetv2_152x2_bit_teacher,291.46,2634.992,768,224,46.95,45.11,236.34 deit_base_patch16_384,288.65,1330.327,384,384,55.54,101.56,86.86 vit_base_patch16_384,288.47,1331.141,384,384,55.54,101.56,86.86 resnest200e,288.19,1776.58,512,320,35.69,82.78,70.2 xcit_small_24_p8_224,286.12,3578.848,1024,224,35.81,90.78,47.63 xcit_small_24_p8_224_dist,286.06,3579.677,1024,224,35.81,90.78,47.63 deit_base_distilled_patch16_384,284.56,1349.413,384,384,55.65,101.82,87.63 volo_d4_224,282.61,3623.333,1024,224,44.34,80.22,192.96 deit3_base_patch16_384,277.81,1382.217,384,384,55.54,101.56,86.88 deit3_base_patch16_384_in21ft1k,277.78,1382.367,384,384,55.54,101.56,86.88 tresnet_xl_448,277.15,2771.052,768,448,60.65,61.31,78.44 nasnetalarge,276.88,1386.877,384,331,23.89,90.56,88.75 vit_large_patch14_224,271.51,3771.489,1024,224,81.08,88.79,304.2 cait_xxs24_384,269.82,3795.14,1024,384,9.63,122.66,12.03 crossvit_18_dagger_408,269.4,950.247,256,408,32.47,124.87,44.61 xcit_medium_24_p16_384_dist,269.2,2852.889,768,384,47.39,91.64,84.4 pnasnet5large,264.84,1449.925,384,331,25.04,92.89,86.06 resnetv2_101x1_bitm,252.59,1520.226,384,448,31.65,64.93,44.54 efficientnet_b6,252.26,507.392,128,528,19.4,167.39,43.04 swinv2_cr_small_384,250.03,1023.876,256,384,29.7,298.03,49.7 beit_base_patch16_384,247.68,1550.363,384,384,55.54,101.56,86.74 vit_large_r50_s32_384,246.17,1559.866,384,384,57.43,76.52,329.09 tf_efficientnet_b6_ns,242.42,527.986,128,528,19.4,167.39,43.04 tf_efficientnet_b6,242.34,528.179,128,528,19.4,167.39,43.04 tf_efficientnet_b6_ap,242.3,528.255,128,528,19.4,167.39,43.04 ecaresnet269d,241.69,4236.816,1024,352,50.25,101.25,102.09 resnetrs270,234.11,4373.986,1024,352,51.13,105.48,129.86 nfnet_f2,224.73,4556.614,1024,352,63.22,79.06,193.78 swin_base_patch4_window12_384,220.36,871.278,192,384,47.19,134.78,87.9 xcit_tiny_24_p8_384_dist,219.9,4656.678,1024,384,27.05,132.95,12.11 resmlp_big_24_224,218.18,4693.363,1024,224,100.23,87.31,129.14 resmlp_big_24_224_in22ft1k,217.68,4704.164,1024,224,100.23,87.31,129.14 resmlp_big_24_distilled_224,217.65,4704.831,1024,224,100.23,87.31,129.14 swinv2_large_window12to16_192to256_22kft1k,211.96,1207.756,256,256,47.81,121.53,196.74 efficientnetv2_l,206.63,2477.808,512,480,56.4,157.99,118.52 tf_efficientnetv2_l,204.52,2503.355,512,480,56.4,157.99,118.52 tf_efficientnetv2_l_in21ft1k,204.48,2503.917,512,480,56.4,157.99,118.52 ig_resnext101_32x32d,202.59,1263.594,256,224,87.29,91.12,468.53 xcit_medium_24_p8_224,202.12,5066.293,1024,224,63.53,121.23,84.32 xcit_medium_24_p8_224_dist,201.88,5072.196,1024,224,63.53,121.23,84.32 dm_nfnet_f2,200.18,3836.576,768,352,63.22,79.06,193.78 convnext_large_384_in22ft1k,190.55,1343.472,256,384,101.1,126.74,197.77 vit_base_patch8_224,188.25,1359.85,256,224,78.22,161.69,86.58 volo_d5_224,187.56,5459.662,1024,224,72.4,118.11,295.46 cait_xs24_384,186.33,4121.716,768,384,19.28,183.98,26.67 xcit_small_12_p8_384_dist,183.57,2091.823,384,384,54.92,138.29,26.21 eca_nfnet_l3,182.91,2799.141,512,448,52.55,118.4,72.04 cait_xxs36_384,180.41,5675.791,1024,384,14.35,183.7,17.37 swinv2_cr_base_384,178.38,1435.085,256,384,50.57,333.68,87.88 vit_base_resnet50_384,177.85,2159.087,384,384,67.43,135.03,98.95 vit_base_r50_s16_384,177.6,2162.196,384,384,67.43,135.03,98.95 swinv2_cr_huge_224,175.47,2188.347,384,224,115.97,121.08,657.83 convmixer_1536_20,167.1,6128.044,1024,224,48.68,33.03,51.63 volo_d2_384,164.75,1553.889,256,384,46.17,184.51,58.87 resnetrs350,156.77,4898.75,768,384,77.59,154.74,163.96 xcit_large_24_p16_384_dist,154.33,3317.602,512,384,105.35,137.17,189.1 vit_huge_patch14_224,146.32,6998.359,1024,224,167.4,139.41,632.05 efficientnet_b7,145.11,661.558,96,600,38.33,289.94,66.35 cait_s24_384,144.99,3531.336,512,384,32.17,245.31,47.06 deit3_huge_patch14_224,142.26,7197.843,1024,224,167.4,139.41,632.13 deit3_huge_patch14_224_in21ft1k,142.17,7202.758,1024,224,167.4,139.41,632.13 tf_efficientnet_b7_ns,140.64,682.566,96,600,38.33,289.94,66.35 tf_efficientnet_b7_ap,140.61,682.704,96,600,38.33,289.94,66.35 tf_efficientnet_b7,140.6,682.756,96,600,38.33,289.94,66.35 efficientnetv2_xl,139.56,2751.573,384,512,93.85,247.32,208.12 tf_efficientnetv2_xl_in21ft1k,138.42,2774.117,384,512,93.85,247.32,208.12 resnest269e,135.65,2830.833,384,416,77.69,171.98,110.93 swin_large_patch4_window12_384,130.35,981.936,128,384,104.08,202.16,196.74 convnext_xlarge_384_in22ft1k,125.25,1532.9,192,384,179.2,168.99,350.2 nfnet_f3,124.74,4104.555,512,416,115.58,141.78,254.92 ig_resnext101_32x48d,118.28,1623.193,192,224,153.57,131.06,828.41 xcit_large_24_p8_224,115.22,4443.765,512,224,141.23,181.56,188.93 xcit_large_24_p8_224_dist,115.18,4445.056,512,224,141.23,181.56,188.93 resnetrs420,112.12,6849.78,768,416,108.45,213.79,191.89 dm_nfnet_f3,110.18,4647.097,512,416,115.58,141.78,254.92 swinv2_cr_large_384,108.04,1184.75,128,384,108.95,404.96,196.68 resnetv2_50x3_bitm,102.09,1253.798,128,448,145.7,133.37,217.32 resnetv2_152x2_bit_teacher_384,98.91,2588.163,256,384,136.16,132.56,236.34 vit_large_patch16_384,97.45,2626.88,256,384,191.21,270.24,304.72 cait_s36_384,97.05,5275.469,512,384,47.99,367.4,68.37 xcit_small_24_p8_384_dist,96.34,3985.916,384,384,105.24,265.91,47.63 vit_giant_patch14_224,95.73,8022.929,768,224,267.18,192.64,1012.61 deit3_large_patch16_384,94.64,2704.996,256,384,191.21,270.24,304.76 deit3_large_patch16_384_in21ft1k,94.52,2708.314,256,384,191.21,270.24,304.76 swinv2_base_window12to24_192to384_22kft1k,94.37,678.174,64,384,55.25,280.36,87.92 efficientnet_b8,91.29,1051.594,96,672,63.48,442.89,87.41 tf_efficientnet_b8,88.95,1079.277,96,672,63.48,442.89,87.41 tf_efficientnet_b8_ap,88.84,1080.533,96,672,63.48,442.89,87.41 beit_large_patch16_384,84.67,3023.634,256,384,191.21,270.24,305.0 resnetv2_152x2_bitm,73.09,2626.956,192,448,184.99,180.43,236.34 volo_d3_448,72.41,2651.496,192,448,96.33,446.83,86.63 nfnet_f4,69.91,5493.031,384,512,216.26,262.26,316.07 xcit_medium_24_p8_384_dist,67.93,3768.466,256,384,186.67,354.73,84.32 dm_nfnet_f4,62.55,4092.528,256,512,216.26,262.26,316.07 resnetv2_101x3_bitm,61.05,2096.759,128,448,280.33,194.78,387.93 swinv2_large_window12to24_192to384_22kft1k,59.71,803.821,48,384,116.15,407.83,196.74 vit_gigantic_patch14_224,57.59,8890.782,512,224,483.95,275.37,1844.44 tf_efficientnet_l2_ns_475,56.35,1135.833,64,475,172.11,609.89,480.31 volo_d4_448,52.92,2418.622,128,448,197.13,527.35,193.41 swinv2_cr_giant_224,50.53,2532.906,128,224,483.85,309.15,2598.76 nfnet_f5,49.64,5157.064,256,544,290.97,349.71,377.21 swinv2_cr_huge_384,47.06,1360.056,64,384,352.04,583.18,657.94 dm_nfnet_f5,44.17,5795.363,256,544,290.97,349.71,377.21 xcit_large_24_p8_384_dist,38.64,4968.379,192,384,415.0,531.82,188.93 nfnet_f6,37.99,6738.223,256,576,378.69,452.2,438.36 volo_d5_448,36.49,3507.831,128,448,315.06,737.92,295.91 beit_large_patch16_512,33.88,2833.282,96,512,362.24,656.39,305.67 dm_nfnet_f6,33.83,7567.962,256,576,378.69,452.2,438.36 cait_m36_384,31.72,8071.786,256,384,173.11,734.81,271.22 nfnet_f7,30.38,8426.213,256,608,480.39,570.85,499.5 volo_d5_512,25.58,3752.221,96,512,425.09,1105.37,296.09 resnetv2_152x4_bitm,22.67,4234.474,96,480,844.84,414.26,936.53 efficientnet_l2,20.51,1169.975,24,800,479.12,1707.39,480.31 tf_efficientnet_l2_ns,20.15,1191.261,24,800,479.12,1707.39,480.31 swinv2_cr_giant_384,14.62,2188.205,32,384,1450.71,1394.86,2598.76 cait_m48_448,13.47,9503.031,128,448,329.41,1708.23,356.46
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,90.052,9.948,99.048,0.952,305.08,448,1.000,bicubic eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,89.970,10.030,99.012,0.988,305.08,448,1.000,bicubic eva_giant_patch14_560.m30m_ft_in22k_in1k,89.786,10.214,98.992,1.008,"1,014.45",560,1.000,bicubic eva02_large_patch14_448.mim_in22k_ft_in1k,89.622,10.378,98.950,1.050,305.08,448,1.000,bicubic eva02_large_patch14_448.mim_m38m_ft_in1k,89.574,10.426,98.924,1.076,305.08,448,1.000,bicubic eva_giant_patch14_336.m30m_ft_in22k_in1k,89.566,10.434,98.952,1.048,"1,013.01",336,1.000,bicubic eva_giant_patch14_336.clip_ft_in1k,89.466,10.534,98.826,1.174,"1,013.01",336,1.000,bicubic eva_large_patch14_336.in22k_ft_in22k_in1k,89.206,10.794,98.854,1.146,304.53,336,1.000,bicubic eva_giant_patch14_224.clip_ft_in1k,88.880,11.120,98.680,1.320,"1,012.56",224,0.900,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_512,88.858,11.142,98.748,1.252,660.29,512,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,88.690,11.310,98.724,1.276,87.12,448,1.000,bicubic convnextv2_huge.fcmae_ft_in22k_in1k_384,88.670,11.330,98.738,1.262,660.29,384,1.000,bicubic eva_large_patch14_336.in22k_ft_in1k,88.670,11.330,98.722,1.278,304.53,336,1.000,bicubic convnext_xxlarge.clip_laion2b_soup_ft_in1k,88.604,11.396,98.708,1.292,846.47,256,1.000,bicubic beit_large_patch16_512.in22k_ft_in22k_in1k,88.596,11.404,98.656,1.344,305.67,512,1.000,bicubic vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,88.592,11.408,98.662,1.338,632.46,336,1.000,bicubic eva_large_patch14_196.in22k_ft_in22k_in1k,88.574,11.426,98.658,1.342,304.14,196,1.000,bicubic maxvit_xlarge_tf_512.in21k_ft_in1k,88.538,11.462,98.644,1.356,475.77,512,1.000,bicubic beit_large_patch16_384.in22k_ft_in22k_in1k,88.402,11.598,98.608,1.392,305.00,384,1.000,bicubic beitv2_large_patch16_224.in1k_ft_in22k_in1k,88.394,11.606,98.598,1.402,304.43,224,0.950,bicubic tf_efficientnet_l2.ns_jft_in1k,88.352,11.648,98.648,1.352,480.31,800,0.960,bicubic maxvit_xlarge_tf_384.in21k_ft_in1k,88.314,11.686,98.544,1.456,475.32,384,1.000,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,88.306,11.694,98.582,1.418,200.13,384,1.000,bicubic vit_large_patch14_clip_336.openai_ft_in12k_in1k,88.268,11.732,98.526,1.474,304.53,336,1.000,bicubic vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,88.256,11.744,98.552,1.448,632.05,224,1.000,bicubic eva02_base_patch14_448.mim_in22k_ft_in1k,88.252,11.748,98.564,1.436,87.12,448,1.000,bicubic tf_efficientnet_l2.ns_jft_in1k_475,88.234,11.766,98.546,1.454,480.31,475,0.936,bicubic regnety_1280.swag_ft_in1k,88.230,11.770,98.686,1.314,644.81,384,1.000,bicubic maxvit_large_tf_512.in21k_ft_in1k,88.224,11.776,98.598,1.402,212.33,512,1.000,bicubic maxvit_base_tf_512.in21k_ft_in1k,88.220,11.780,98.530,1.470,119.88,512,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k_384,88.198,11.802,98.528,1.472,197.96,384,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,88.180,11.820,98.572,1.428,304.53,336,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in12k_in1k,88.174,11.826,98.546,1.454,304.20,224,1.000,bicubic caformer_b36.sail_in22k_ft_in1k_384,88.058,11.942,98.582,1.418,98.75,384,1.000,bicubic maxvit_large_tf_384.in21k_ft_in1k,87.986,12.014,98.568,1.432,212.03,384,1.000,bicubic convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,87.958,12.042,98.476,1.524,200.13,320,1.000,bicubic eva_large_patch14_196.in22k_ft_in1k,87.932,12.068,98.498,1.502,304.14,196,1.000,bicubic maxvit_base_tf_384.in21k_ft_in1k,87.922,12.078,98.544,1.456,119.65,384,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,87.894,12.106,98.408,1.592,304.20,224,1.000,bicubic vit_large_patch14_clip_336.laion2b_ft_in1k,87.856,12.144,98.368,1.632,304.53,336,1.000,bicubic vit_large_patch14_clip_224.openai_ft_in1k,87.854,12.146,98.426,1.574,304.20,224,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,87.848,12.152,98.446,1.554,200.13,384,1.000,bicubic maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,87.828,12.172,98.372,1.628,116.14,384,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k_384,87.752,12.248,98.556,1.444,350.20,384,1.000,bicubic deit3_large_patch16_384.fb_in22k_ft_in1k,87.720,12.280,98.512,1.488,304.76,384,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k_384,87.644,12.356,98.416,1.584,88.72,384,1.000,bicubic convformer_b36.sail_in22k_ft_in1k_384,87.602,12.398,98.434,1.566,99.88,384,1.000,bicubic vit_huge_patch14_clip_224.laion2b_ft_in1k,87.588,12.412,98.218,1.782,632.05,224,1.000,bicubic convnextv2_large.fcmae_ft_in22k_in1k,87.484,12.516,98.356,1.644,197.96,288,1.000,bicubic beit_large_patch16_224.in22k_ft_in22k_in1k,87.478,12.522,98.304,1.696,304.43,224,0.900,bicubic convnext_large.fb_in22k_ft_in1k_384,87.472,12.528,98.386,1.614,197.77,384,1.000,bicubic maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,87.464,12.536,98.374,1.626,116.09,384,1.000,bicubic swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,87.464,12.536,98.250,1.750,196.74,384,1.000,bicubic caformer_m36.sail_in22k_ft_in1k_384,87.446,12.554,98.308,1.692,56.20,384,1.000,bicubic caformer_b36.sail_in22k_ft_in1k,87.420,12.580,98.328,1.672,98.75,224,1.000,bicubic beitv2_large_patch16_224.in1k_ft_in1k,87.412,12.588,98.234,1.766,304.43,224,0.950,bicubic coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,87.382,12.618,98.312,1.688,73.88,384,1.000,bicubic convnext_large_mlp.clip_laion2b_augreg_ft_in1k,87.336,12.664,98.218,1.782,200.13,256,1.000,bicubic convnext_xlarge.fb_in22k_ft_in1k,87.330,12.670,98.328,1.672,350.20,288,1.000,bicubic seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,87.288,12.712,98.334,1.666,149.39,384,1.000,bicubic vit_large_patch14_clip_224.laion2b_ft_in1k,87.286,12.714,98.244,1.756,304.20,224,1.000,bicubic vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,87.206,12.794,98.034,1.966,86.86,384,1.000,bicubic deit3_huge_patch14_224.fb_in22k_ft_in1k,87.186,12.814,98.260,1.740,632.13,224,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,87.134,12.866,98.222,1.778,88.59,384,1.000,bicubic swin_large_patch4_window12_384.ms_in22k_ft_in1k,87.132,12.868,98.234,1.766,196.74,384,1.000,bicubic swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,87.096,12.904,98.234,1.766,87.92,384,1.000,bicubic vit_large_patch16_384.augreg_in21k_ft_in1k,87.084,12.916,98.302,1.698,304.72,384,1.000,bicubic volo_d5_512.sail_in1k,87.058,12.942,97.970,2.030,296.09,512,1.150,bicubic convnext_large.fb_in22k_ft_in1k,87.026,12.974,98.204,1.796,197.77,288,1.000,bicubic vit_base_patch16_clip_384.openai_ft_in12k_in1k,87.026,12.974,98.182,1.818,86.86,384,0.950,bicubic convformer_b36.sail_in22k_ft_in1k,86.998,13.002,98.172,1.828,99.88,224,1.000,bicubic convnextv2_base.fcmae_ft_in22k_in1k,86.998,13.002,98.168,1.832,88.72,288,1.000,bicubic deit3_large_patch16_224.fb_in22k_ft_in1k,86.982,13.018,98.236,1.764,304.37,224,1.000,bicubic swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,86.952,13.048,98.106,1.894,196.74,256,0.900,bicubic volo_d5_448.sail_in1k,86.952,13.048,97.938,2.062,295.91,448,1.150,bicubic maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,86.894,13.106,98.014,1.986,116.14,224,0.950,bicubic convformer_m36.sail_in22k_ft_in1k_384,86.892,13.108,98.116,1.884,57.05,384,1.000,bicubic caformer_s36.sail_in22k_ft_in1k_384,86.858,13.142,98.212,1.788,39.30,384,1.000,bicubic tf_efficientnet_b7.ns_jft_in1k,86.840,13.160,98.092,1.908,66.35,600,0.949,bicubic regnety_320.swag_ft_in1k,86.834,13.166,98.362,1.638,145.05,384,1.000,bicubic tf_efficientnetv2_l.in21k_ft_in1k,86.802,13.198,98.136,1.864,118.52,480,1.000,bicubic beit_base_patch16_384.in22k_ft_in22k_in1k,86.800,13.200,98.136,1.864,86.74,384,1.000,bicubic convnext_base.fb_in22k_ft_in1k_384,86.796,13.204,98.264,1.736,88.59,384,1.000,bicubic volo_d4_448.sail_in1k,86.792,13.208,97.884,2.116,193.41,448,1.150,bicubic tf_efficientnetv2_xl.in21k_ft_in1k,86.748,13.252,98.014,1.986,208.12,512,1.000,bicubic deit3_base_patch16_384.fb_in22k_ft_in1k,86.740,13.260,98.116,1.884,86.88,384,1.000,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,86.724,13.276,98.176,1.824,93.59,320,1.000,bicubic maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,86.642,13.358,98.020,1.980,116.09,224,0.950,bicubic vit_base_patch16_clip_384.laion2b_ft_in1k,86.618,13.382,98.008,1.992,86.86,384,1.000,bicubic maxvit_base_tf_512.in1k,86.602,13.398,97.918,2.082,119.88,512,1.000,bicubic caformer_m36.sail_in22k_ft_in1k,86.594,13.406,98.024,1.976,56.20,224,1.000,bicubic convnextv2_huge.fcmae_ft_in1k,86.580,13.420,97.972,2.028,660.29,288,1.000,bicubic coatnet_2_rw_224.sw_in12k_ft_in1k,86.564,13.436,97.896,2.104,73.87,224,0.950,bicubic maxvit_large_tf_512.in1k,86.526,13.474,97.880,2.120,212.33,512,1.000,bicubic coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,86.504,13.496,97.894,2.106,73.88,224,0.950,bicubic convnext_base.clip_laiona_augreg_ft_in1k_384,86.502,13.498,97.968,2.032,88.59,384,1.000,bicubic volo_d3_448.sail_in1k,86.502,13.498,97.710,2.290,86.63,448,1.000,bicubic cait_m48_448.fb_dist_in1k,86.492,13.508,97.752,2.248,356.46,448,1.000,bicubic seresnextaa101d_32x8d.sw_in12k_ft_in1k,86.484,13.516,98.030,1.970,93.59,288,1.000,bicubic beitv2_base_patch16_224.in1k_ft_in22k_in1k,86.474,13.526,98.052,1.948,86.53,224,0.900,bicubic tiny_vit_21m_512.dist_in22k_ft_in1k,86.458,13.542,97.890,2.110,21.27,512,1.000,bicubic tf_efficientnet_b6.ns_jft_in1k,86.458,13.542,97.884,2.116,43.04,528,0.942,bicubic swin_base_patch4_window12_384.ms_in22k_ft_in1k,86.438,13.562,98.066,1.934,87.90,384,1.000,bicubic caformer_b36.sail_in1k_384,86.408,13.592,97.814,2.186,98.75,384,1.000,bicubic convformer_s36.sail_in22k_ft_in1k_384,86.378,13.622,97.984,2.016,40.01,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in12k_in1k,86.370,13.630,97.984,2.016,88.59,256,1.000,bicubic dm_nfnet_f6.dm_in1k,86.362,13.638,97.896,2.104,438.36,576,0.956,bicubic swin_large_patch4_window7_224.ms_in22k_ft_in1k,86.312,13.688,97.902,2.098,196.53,224,0.900,bicubic maxvit_base_tf_384.in1k,86.302,13.698,97.798,2.202,119.65,384,1.000,bicubic convnext_base.fb_in22k_ft_in1k,86.274,13.726,98.092,1.908,88.59,288,1.000,bicubic swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,86.268,13.732,97.882,2.118,87.92,256,0.900,bicubic maxvit_large_tf_384.in1k,86.230,13.770,97.688,2.312,212.03,384,1.000,bicubic vit_base_patch8_224.augreg2_in21k_ft_in1k,86.218,13.782,97.832,2.168,86.58,224,0.900,bicubic vit_base_patch16_clip_384.openai_ft_in1k,86.206,13.794,97.876,2.124,86.86,384,1.000,bicubic convnext_small.in12k_ft_in1k_384,86.182,13.818,97.922,2.078,50.22,384,1.000,bicubic vit_large_r50_s32_384.augreg_in21k_ft_in1k,86.182,13.818,97.922,2.078,329.09,384,1.000,bicubic vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,86.170,13.830,97.756,2.244,86.57,224,0.950,bicubic caformer_m36.sail_in1k_384,86.166,13.834,97.820,2.180,56.20,384,1.000,bicubic convnext_base.clip_laion2b_augreg_ft_in1k,86.158,13.842,97.680,2.320,88.59,256,1.000,bicubic convformer_m36.sail_in22k_ft_in1k,86.148,13.852,97.850,2.150,57.05,224,1.000,bicubic convnextv2_large.fcmae_ft_in1k,86.118,13.882,97.822,2.178,197.96,288,1.000,bicubic tiny_vit_21m_384.dist_in22k_ft_in1k,86.108,13.892,97.710,2.290,21.23,384,1.000,bicubic dm_nfnet_f5.dm_in1k,86.100,13.900,97.688,2.312,377.21,544,0.954,bicubic tf_efficientnet_b5.ns_jft_in1k,86.088,13.912,97.756,2.244,30.39,456,0.934,bicubic maxvit_small_tf_512.in1k,86.084,13.916,97.764,2.236,69.13,512,1.000,bicubic volo_d5_224.sail_in1k,86.070,13.930,97.576,2.424,295.46,224,0.960,bicubic cait_m36_384.fb_dist_in1k,86.058,13.942,97.730,2.270,271.22,384,1.000,bicubic volo_d2_384.sail_in1k,86.042,13.958,97.574,2.426,58.87,384,1.000,bicubic regnety_160.swag_ft_in1k,86.020,13.980,98.052,1.948,83.59,384,1.000,bicubic xcit_large_24_p8_384.fb_dist_in1k,85.996,14.004,97.690,2.310,188.93,384,1.000,bicubic vit_base_patch16_384.augreg_in21k_ft_in1k,85.994,14.006,98.002,1.998,86.86,384,1.000,bicubic tf_efficientnetv2_m.in21k_ft_in1k,85.992,14.008,97.944,2.056,54.14,480,1.000,bicubic regnety_160.lion_in12k_ft_in1k,85.988,14.012,97.834,2.166,83.59,288,1.000,bicubic regnety_160.sw_in12k_ft_in1k,85.986,14.014,97.834,2.166,83.59,288,1.000,bicubic regnety_1280.swag_lc_in1k,85.982,14.018,97.850,2.150,644.81,224,0.965,bicubic vit_base_patch16_clip_224.openai_ft_in12k_in1k,85.942,14.058,97.728,2.272,86.57,224,0.950,bicubic efficientnet_b5.sw_in12k_ft_in1k,85.896,14.104,97.736,2.264,30.39,448,1.000,bicubic volo_d4_224.sail_in1k,85.872,14.128,97.472,2.528,192.96,224,0.960,bicubic vit_large_patch16_224.augreg_in21k_ft_in1k,85.836,14.164,97.818,2.182,304.33,224,0.900,bicubic dm_nfnet_f4.dm_in1k,85.836,14.164,97.664,2.336,316.07,512,0.951,bicubic xcit_medium_24_p8_384.fb_dist_in1k,85.816,14.184,97.592,2.408,84.32,384,1.000,bicubic deit3_large_patch16_384.fb_in1k,85.812,14.188,97.598,2.402,304.76,384,1.000,bicubic vit_base_patch8_224.augreg_in21k_ft_in1k,85.798,14.202,97.790,2.210,86.58,224,0.900,bicubic caformer_s36.sail_in22k_ft_in1k,85.790,14.210,97.826,2.174,39.30,224,1.000,bicubic vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,85.780,14.220,97.638,2.362,88.34,448,1.000,bicubic convnext_small.fb_in22k_ft_in1k_384,85.778,14.222,97.890,2.110,50.22,384,1.000,bicubic xcit_large_24_p16_384.fb_dist_in1k,85.754,14.246,97.538,2.462,189.10,384,1.000,bicubic caformer_s36.sail_in1k_384,85.742,14.258,97.672,2.328,39.30,384,1.000,bicubic convformer_b36.sail_in1k_384,85.740,14.260,97.524,2.476,99.88,384,1.000,bicubic eva02_small_patch14_336.mim_in22k_ft_in1k,85.718,14.282,97.634,2.366,22.13,336,1.000,bicubic deit3_base_patch16_224.fb_in22k_ft_in1k,85.700,14.300,97.746,2.254,86.59,224,1.000,bicubic dm_nfnet_f3.dm_in1k,85.686,14.314,97.570,2.430,254.92,416,0.940,bicubic maxvit_tiny_tf_512.in1k,85.664,14.336,97.584,2.416,31.05,512,1.000,bicubic tf_efficientnetv2_l.in1k,85.664,14.336,97.474,2.526,118.52,480,1.000,bicubic flexivit_large.1200ep_in1k,85.644,14.356,97.540,2.460,304.36,240,0.950,bicubic beitv2_base_patch16_224.in1k_ft_in1k,85.594,14.406,97.506,2.494,86.53,224,0.900,bicubic convformer_m36.sail_in1k_384,85.580,14.420,97.542,2.458,57.05,384,1.000,bicubic xcit_small_24_p8_384.fb_dist_in1k,85.554,14.446,97.570,2.430,47.63,384,1.000,bicubic flexivit_large.600ep_in1k,85.540,14.460,97.488,2.512,304.36,240,0.950,bicubic maxvit_small_tf_384.in1k,85.540,14.460,97.462,2.538,69.02,384,1.000,bicubic vit_medium_patch16_gap_384.sw_in12k_ft_in1k,85.530,14.470,97.636,2.364,39.03,384,0.950,bicubic caformer_b36.sail_in1k,85.504,14.496,97.310,2.690,98.75,224,1.000,bicubic convnextv2_base.fcmae_ft_in1k,85.474,14.526,97.384,2.616,88.72,288,1.000,bicubic vit_base_patch16_clip_224.laion2b_ft_in1k,85.470,14.530,97.576,2.424,86.57,224,1.000,bicubic cait_s36_384.fb_dist_in1k,85.454,14.546,97.478,2.522,68.37,384,1.000,bicubic xcit_medium_24_p16_384.fb_dist_in1k,85.424,14.576,97.406,2.594,84.40,384,1.000,bicubic deit_base_distilled_patch16_384.fb_in1k,85.424,14.576,97.330,2.670,87.63,384,1.000,bicubic caformer_s18.sail_in22k_ft_in1k_384,85.414,14.586,97.702,2.298,26.34,384,1.000,bicubic convformer_s36.sail_in22k_ft_in1k,85.414,14.586,97.568,2.432,40.01,224,1.000,bicubic volo_d3_224.sail_in1k,85.414,14.586,97.276,2.724,86.33,224,0.960,bicubic xcit_large_24_p8_224.fb_dist_in1k,85.402,14.598,97.402,2.598,188.93,224,1.000,bicubic regnety_120.sw_in12k_ft_in1k,85.400,14.600,97.582,2.418,51.82,288,1.000,bicubic convformer_s36.sail_in1k_384,85.378,14.622,97.476,2.524,40.01,384,1.000,bicubic tf_efficientnet_b8.ra_in1k,85.368,14.632,97.394,2.606,87.41,672,0.954,bicubic vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,85.366,14.634,97.660,2.340,88.30,384,1.000,bicubic tf_efficientnet_b8.ap_in1k,85.364,14.636,97.292,2.708,87.41,672,0.954,bicubic convnext_small.in12k_ft_in1k,85.330,14.670,97.546,2.454,50.22,288,1.000,bicubic vit_base_patch16_clip_224.openai_ft_in1k,85.292,14.708,97.436,2.564,86.57,224,0.900,bicubic flexivit_large.300ep_in1k,85.288,14.712,97.400,2.600,304.36,240,0.950,bicubic swin_base_patch4_window7_224.ms_in22k_ft_in1k,85.272,14.728,97.564,2.436,87.77,224,0.900,bicubic convnext_small.fb_in22k_ft_in1k,85.262,14.738,97.682,2.318,50.22,288,1.000,bicubic volo_d1_384.sail_in1k,85.244,14.756,97.214,2.786,26.78,384,1.000,bicubic mvitv2_large.fb_in1k,85.244,14.756,97.194,2.806,217.99,224,0.900,bicubic caformer_m36.sail_in1k,85.232,14.768,97.200,2.800,56.20,224,1.000,bicubic deit3_huge_patch14_224.fb_in1k,85.224,14.776,97.360,2.640,632.13,224,0.900,bicubic vit_base_patch32_clip_384.openai_ft_in12k_in1k,85.214,14.786,97.404,2.596,88.30,384,0.950,bicubic beit_base_patch16_224.in22k_ft_in22k_in1k,85.212,14.788,97.658,2.342,86.53,224,0.900,bicubic tf_efficientnetv2_m.in1k,85.204,14.796,97.364,2.636,54.14,480,1.000,bicubic inception_next_base.sail_in1k_384,85.202,14.798,97.414,2.586,86.67,384,1.000,bicubic volo_d2_224.sail_in1k,85.202,14.798,97.190,2.810,58.68,224,0.960,bicubic dm_nfnet_f2.dm_in1k,85.192,14.808,97.346,2.654,193.78,352,0.920,bicubic tf_efficientnet_b4.ns_jft_in1k,85.160,14.840,97.468,2.532,19.34,380,0.922,bicubic regnety_2560.seer_ft_in1k,85.150,14.850,97.438,2.562,"1,282.60",384,1.000,bicubic tf_efficientnet_b7.ap_in1k,85.124,14.876,97.252,2.748,66.35,600,0.949,bicubic convnext_tiny.in12k_ft_in1k_384,85.122,14.878,97.606,2.394,28.59,384,1.000,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k_384,85.106,14.894,97.628,2.372,28.64,384,1.000,bicubic maxvit_tiny_tf_384.in1k,85.100,14.900,97.378,2.622,30.98,384,1.000,bicubic resnext101_32x32d.fb_wsl_ig1b_ft_in1k,85.098,14.902,97.438,2.562,468.53,224,0.875,bilinear vit_base_patch16_224.augreg2_in21k_ft_in1k,85.094,14.906,97.530,2.470,86.57,224,0.900,bicubic xcit_small_24_p16_384.fb_dist_in1k,85.090,14.910,97.312,2.688,47.67,384,1.000,bicubic tiny_vit_21m_224.dist_in22k_ft_in1k,85.086,14.914,97.366,2.634,21.20,224,0.950,bicubic xcit_small_12_p8_384.fb_dist_in1k,85.078,14.922,97.282,2.718,26.21,384,1.000,bicubic xcit_medium_24_p8_224.fb_dist_in1k,85.074,14.926,97.274,2.726,84.32,224,1.000,bicubic deit3_base_patch16_384.fb_in1k,85.074,14.926,97.250,2.750,86.88,384,1.000,bicubic cait_s24_384.fb_dist_in1k,85.048,14.952,97.346,2.654,47.06,384,1.000,bicubic regnetz_e8.ra3_in1k,85.034,14.966,97.272,2.728,57.70,320,1.000,bicubic caformer_s18.sail_in1k_384,85.026,14.974,97.358,2.642,26.34,384,1.000,bicubic resnetrs420.tf_in1k,85.004,14.996,97.124,2.876,191.89,416,1.000,bicubic convformer_s18.sail_in22k_ft_in1k_384,84.998,15.002,97.570,2.430,26.77,384,1.000,bicubic vit_base_r50_s16_384.orig_in21k_ft_in1k,84.976,15.024,97.290,2.710,98.95,384,1.000,bicubic ecaresnet269d.ra2_in1k,84.968,15.032,97.222,2.778,102.09,352,1.000,bicubic maxvit_large_tf_224.in1k,84.942,15.058,96.970,3.030,211.79,224,0.950,bicubic tf_efficientnet_b7.ra_in1k,84.932,15.068,97.208,2.792,66.35,600,0.949,bicubic resnetv2_152x4_bit.goog_in21k_ft_in1k,84.916,15.084,97.438,2.562,936.53,480,1.000,bilinear xcit_large_24_p16_224.fb_dist_in1k,84.916,15.084,97.128,2.872,189.10,224,1.000,bicubic coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,84.910,15.090,96.958,3.042,41.72,224,0.950,bicubic coat_lite_medium_384.in1k,84.878,15.122,97.372,2.628,44.57,384,1.000,bicubic xcit_small_24_p8_224.fb_dist_in1k,84.868,15.132,97.190,2.810,47.63,224,1.000,bicubic maxvit_base_tf_224.in1k,84.860,15.140,96.988,3.012,119.47,224,0.950,bicubic convnext_large.fb_in1k,84.846,15.154,97.214,2.786,197.77,288,1.000,bicubic deit3_small_patch16_384.fb_in22k_ft_in1k,84.824,15.176,97.486,2.514,22.21,384,1.000,bicubic convformer_b36.sail_in1k,84.818,15.182,96.946,3.054,99.88,224,1.000,bicubic efficientnetv2_rw_m.agc_in1k,84.810,15.190,97.152,2.848,53.24,416,1.000,bicubic tf_efficientnet_b6.ap_in1k,84.788,15.212,97.138,2.862,43.04,528,0.942,bicubic deit3_large_patch16_224.fb_in1k,84.774,15.226,97.036,2.964,304.37,224,0.900,bicubic resnetrs350.tf_in1k,84.714,15.286,96.992,3.008,163.96,384,1.000,bicubic xcit_small_12_p16_384.fb_dist_in1k,84.712,15.288,97.118,2.882,26.25,384,1.000,bicubic dm_nfnet_f1.dm_in1k,84.702,15.298,97.182,2.818,132.63,320,0.910,bicubic eca_nfnet_l2.ra3_in1k,84.700,15.300,97.266,2.734,56.72,384,1.000,bicubic flexivit_base.1200ep_in1k,84.676,15.324,96.994,3.006,86.59,240,0.950,bicubic davit_base.msft_in1k,84.642,15.358,97.020,2.980,87.95,224,0.950,bicubic maxxvit_rmlp_small_rw_256.sw_in1k,84.624,15.376,97.068,2.932,66.01,256,0.950,bicubic coatnet_rmlp_2_rw_224.sw_in1k,84.608,15.392,96.740,3.260,73.88,224,0.950,bicubic swinv2_base_window16_256.ms_in1k,84.600,15.400,97.090,2.910,87.92,256,0.900,bicubic fastvit_ma36.apple_dist_in1k,84.598,15.402,97.002,2.998,44.07,256,0.950,bicubic seresnextaa101d_32x8d.ah_in1k,84.566,15.434,97.076,2.924,93.59,288,1.000,bicubic deit3_medium_patch16_224.fb_in22k_ft_in1k,84.550,15.450,97.188,2.812,38.85,224,1.000,bicubic regnety_320.swag_lc_in1k,84.548,15.452,97.442,2.558,145.05,224,0.965,bicubic rexnetr_300.sw_in12k_ft_in1k,84.546,15.454,97.256,2.744,34.81,288,1.000,bicubic vit_base_patch16_224.augreg_in21k_ft_in1k,84.532,15.468,97.294,2.706,86.57,224,0.900,bicubic flexivit_base.600ep_in1k,84.524,15.476,96.936,3.064,86.59,240,0.950,bicubic resnetv2_152x2_bit.goog_in21k_ft_in1k,84.510,15.490,97.434,2.566,236.34,448,1.000,bilinear resnest269e.in1k,84.508,15.492,96.990,3.010,110.93,416,0.928,bicubic caformer_s36.sail_in1k,84.506,15.494,96.996,3.004,39.30,224,1.000,bicubic convformer_m36.sail_in1k,84.494,15.506,96.866,3.134,57.05,224,1.000,bicubic regnetz_040_h.ra3_in1k,84.492,15.508,97.010,2.990,28.94,320,1.000,bicubic maxvit_rmlp_small_rw_224.sw_in1k,84.492,15.508,96.758,3.242,64.90,224,0.900,bicubic hrnet_w48_ssld.paddle_in1k,84.480,15.520,97.234,2.766,77.47,288,1.000,bilinear swin_base_patch4_window12_384.ms_in1k,84.476,15.524,96.892,3.108,87.90,384,1.000,bicubic convnext_tiny.in12k_ft_in1k,84.450,15.550,97.340,2.660,28.59,288,1.000,bicubic mvitv2_base.fb_in1k,84.450,15.550,96.858,3.142,51.47,224,0.900,bicubic vit_medium_patch16_gap_256.sw_in12k_ft_in1k,84.446,15.554,97.210,2.790,38.86,256,0.950,bicubic resnetrs200.tf_in1k,84.444,15.556,97.082,2.918,93.21,320,1.000,bicubic gcvit_base.in1k,84.444,15.556,96.842,3.158,90.32,224,0.875,bicubic resnetv2_101x3_bit.goog_in21k_ft_in1k,84.438,15.562,97.382,2.618,387.93,448,1.000,bilinear regnety_1280.seer_ft_in1k,84.432,15.568,97.092,2.908,644.81,384,1.000,bicubic convnext_base.fb_in1k,84.428,15.572,96.968,3.032,88.59,288,1.000,bicubic resnetrs270.tf_in1k,84.428,15.572,96.968,3.032,129.86,352,1.000,bicubic maxvit_small_tf_224.in1k,84.426,15.574,96.824,3.176,68.93,224,0.950,bicubic vit_large_r50_s32_224.augreg_in21k_ft_in1k,84.418,15.582,97.172,2.828,328.99,224,0.900,bicubic convnextv2_tiny.fcmae_ft_in22k_in1k,84.416,15.584,97.260,2.740,28.64,288,1.000,bicubic tf_efficientnet_b7.aa_in1k,84.416,15.584,96.908,3.092,66.35,600,0.949,bicubic flexivit_base.300ep_in1k,84.406,15.594,96.884,3.116,86.59,240,0.950,bicubic convformer_s18.sail_in1k_384,84.402,15.598,97.112,2.888,26.77,384,1.000,bicubic resmlp_big_24_224.fb_in22k_ft_in1k,84.398,15.602,97.112,2.888,129.14,224,0.875,bicubic xcit_large_24_p8_224.fb_in1k,84.394,15.606,96.664,3.336,188.93,224,1.000,bicubic seresnet152d.ra2_in1k,84.360,15.640,97.040,2.960,66.84,320,1.000,bicubic seresnext101d_32x8d.ah_in1k,84.358,15.642,96.920,3.080,93.59,288,1.000,bicubic resnext101_32x8d.fb_swsl_ig1b_ft_in1k,84.302,15.698,97.176,2.824,88.79,224,0.875,bilinear tf_efficientnetv2_s.in21k_ft_in1k,84.286,15.714,97.252,2.748,21.46,384,1.000,bicubic xcit_medium_24_p16_224.fb_dist_in1k,84.286,15.714,96.932,3.068,84.40,224,1.000,bicubic vit_base_patch16_224_miil.in21k_ft_in1k,84.266,15.734,96.804,3.196,86.54,224,0.875,bilinear tf_efficientnet_b5.ap_in1k,84.258,15.742,96.974,3.026,30.39,456,0.934,bicubic davit_small.msft_in1k,84.252,15.748,96.940,3.060,49.75,224,0.950,bicubic swinv2_base_window8_256.ms_in1k,84.250,15.750,96.924,3.076,87.92,256,0.900,bicubic regnetz_040.ra3_in1k,84.240,15.760,96.932,3.068,27.12,320,1.000,bicubic xcit_small_12_p8_224.fb_dist_in1k,84.236,15.764,96.870,3.130,26.21,224,1.000,bicubic swinv2_small_window16_256.ms_in1k,84.224,15.776,96.868,3.132,49.73,256,0.900,bicubic maxvit_rmlp_tiny_rw_256.sw_in1k,84.224,15.776,96.778,3.222,29.15,256,0.950,bicubic crossvit_18_dagger_408.in1k,84.202,15.798,96.818,3.182,44.61,408,1.000,bicubic vit_base_patch16_384.orig_in21k_ft_in1k,84.200,15.800,97.218,2.782,86.86,384,1.000,bicubic seresnext101_32x8d.ah_in1k,84.186,15.814,96.874,3.126,93.57,288,1.000,bicubic resnext101_32x16d.fb_wsl_ig1b_ft_in1k,84.166,15.834,97.198,2.802,194.03,224,0.875,bilinear volo_d1_224.sail_in1k,84.162,15.838,96.776,3.224,26.63,224,0.960,bicubic efficientvit_b3.r288_in1k,84.154,15.846,96.736,3.264,48.65,288,1.000,bicubic regnetz_d8_evos.ch_in1k,84.126,15.874,97.012,2.988,23.46,320,1.000,bicubic resnetaa101d.sw_in12k_ft_in1k,84.124,15.876,97.106,2.894,44.57,288,1.000,bicubic tf_efficientnet_b6.aa_in1k,84.112,15.888,96.884,3.116,43.04,528,0.942,bicubic inception_next_base.sail_in1k,84.092,15.908,96.796,3.204,86.67,224,0.950,bicubic convnext_tiny.fb_in22k_ft_in1k_384,84.088,15.912,97.144,2.856,28.59,384,1.000,bicubic caformer_s18.sail_in22k_ft_in1k,84.074,15.926,97.198,2.802,26.34,224,1.000,bicubic cait_xs24_384.fb_dist_in1k,84.062,15.938,96.884,3.116,26.67,384,1.000,bicubic convformer_s36.sail_in1k,84.060,15.940,96.746,3.254,40.01,224,1.000,bicubic edgenext_base.in21k_ft_in1k,84.054,15.946,97.196,2.804,18.51,320,1.000,bicubic regnetz_d8.ra3_in1k,84.052,15.948,96.996,3.004,23.37,320,1.000,bicubic tf_efficientnet_b3.ns_jft_in1k,84.052,15.948,96.918,3.082,12.23,300,0.904,bicubic vit_small_r26_s32_384.augreg_in21k_ft_in1k,84.048,15.952,97.328,2.672,36.47,384,1.000,bicubic fastvit_sa36.apple_dist_in1k,84.026,15.974,96.854,3.146,31.53,256,0.900,bicubic regnetz_d32.ra3_in1k,84.022,15.978,96.868,3.132,27.58,320,0.950,bicubic resnetv2_50x3_bit.goog_in21k_ft_in1k,84.020,15.980,97.126,2.874,217.32,448,1.000,bilinear eca_nfnet_l1.ra2_in1k,84.012,15.988,97.026,2.974,41.41,320,1.000,bicubic resnet200d.ra2_in1k,83.964,16.036,96.826,3.174,64.69,320,1.000,bicubic edgenext_base.usi_in1k,83.958,16.042,96.770,3.230,18.51,320,1.000,bicubic regnety_080.ra3_in1k,83.926,16.074,96.890,3.110,39.18,288,1.000,bicubic swin_s3_base_224.ms_in1k,83.920,16.080,96.672,3.328,71.13,224,0.900,bicubic regnety_640.seer_ft_in1k,83.908,16.092,96.922,3.078,281.38,384,1.000,bicubic tf_efficientnetv2_s.in1k,83.898,16.102,96.696,3.304,21.46,384,1.000,bicubic tresnet_v2_l.miil_in21k_ft_in1k,83.894,16.106,96.490,3.510,46.17,224,0.875,bilinear gcvit_small.in1k,83.892,16.108,96.658,3.342,51.09,224,0.875,bicubic fastvit_ma36.apple_in1k,83.882,16.118,96.742,3.258,44.07,256,0.950,bicubic xcit_small_24_p16_224.fb_dist_in1k,83.874,16.126,96.736,3.264,47.67,224,1.000,bicubic swinv2_small_window8_256.ms_in1k,83.854,16.146,96.644,3.356,49.73,256,0.900,bicubic resnest200e.in1k,83.844,16.156,96.884,3.116,70.20,320,0.909,bicubic crossvit_15_dagger_408.in1k,83.840,16.160,96.778,3.222,28.50,408,1.000,bicubic focalnet_base_lrf.ms_in1k,83.838,16.162,96.608,3.392,88.75,224,0.900,bicubic resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,83.836,16.164,97.126,2.874,236.34,384,1.000,bicubic xcit_small_24_p8_224.fb_in1k,83.834,16.166,96.632,3.368,47.63,224,1.000,bicubic focalnet_base_srf.ms_in1k,83.820,16.180,96.680,3.320,88.15,224,0.900,bicubic tf_efficientnet_b5.ra_in1k,83.814,16.186,96.752,3.248,30.39,456,0.934,bicubic efficientnetv2_rw_s.ra2_in1k,83.806,16.194,96.732,3.268,23.94,384,1.000,bicubic vit_small_patch16_384.augreg_in21k_ft_in1k,83.804,16.196,97.100,2.900,22.20,384,1.000,bicubic efficientvit_b3.r256_in1k,83.802,16.198,96.516,3.484,48.65,256,1.000,bicubic deit3_base_patch16_224.fb_in1k,83.786,16.214,96.586,3.414,86.59,224,0.900,bicubic regnety_160.swag_lc_in1k,83.782,16.218,97.280,2.720,83.59,224,0.965,bicubic mvitv2_small.fb_in1k,83.770,16.230,96.576,3.424,34.87,224,0.900,bicubic pit_b_distilled_224.in1k,83.766,16.234,96.468,3.532,74.79,224,0.900,bicubic swin_s3_small_224.ms_in1k,83.756,16.244,96.452,3.548,49.74,224,0.900,bicubic xcit_tiny_24_p8_384.fb_dist_in1k,83.746,16.254,96.710,3.290,12.11,384,1.000,bicubic xcit_medium_24_p8_224.fb_in1k,83.746,16.254,96.400,3.600,84.32,224,1.000,bicubic repvit_m2_3.dist_450e_in1k,83.742,16.258,96.644,3.356,23.69,224,0.950,bicubic pvt_v2_b5.in1k,83.740,16.260,96.636,3.364,81.96,224,0.900,bicubic convformer_s18.sail_in22k_ft_in1k,83.738,16.262,97.048,2.952,26.77,224,1.000,bicubic regnety_064.ra3_in1k,83.720,16.280,96.722,3.278,30.58,288,1.000,bicubic regnetv_064.ra3_in1k,83.716,16.284,96.742,3.258,30.58,288,1.000,bicubic pvt_v2_b4.in1k,83.712,16.288,96.670,3.330,62.56,224,0.900,bicubic resnetrs152.tf_in1k,83.702,16.298,96.612,3.388,86.62,320,1.000,bicubic convnext_small.fb_in1k,83.700,16.300,96.808,3.192,50.22,288,1.000,bicubic regnety_160.deit_in1k,83.690,16.310,96.780,3.220,83.59,288,1.000,bicubic tf_efficientnet_b5.aa_in1k,83.688,16.312,96.712,3.288,30.39,456,0.934,bicubic resnet152d.ra2_in1k,83.684,16.316,96.738,3.262,60.21,320,1.000,bicubic twins_svt_large.in1k,83.678,16.322,96.588,3.412,99.27,224,0.900,bicubic caformer_s18.sail_in1k,83.654,16.346,96.518,3.482,26.34,224,1.000,bicubic efficientformerv2_l.snap_dist_in1k,83.632,16.368,96.558,3.442,26.32,224,0.950,bicubic swin_base_patch4_window7_224.ms_in1k,83.606,16.394,96.452,3.548,87.77,224,0.900,bicubic coat_lite_medium.in1k,83.600,16.400,96.728,3.272,44.57,224,0.900,bicubic coatnet_1_rw_224.sw_in1k,83.596,16.404,96.382,3.618,41.72,224,0.950,bicubic resmlp_big_24_224.fb_distilled_in1k,83.592,16.408,96.650,3.350,129.14,224,0.875,bicubic inception_next_small.sail_in1k,83.578,16.422,96.598,3.402,49.37,224,0.875,bicubic repvgg_d2se.rvgg_in1k,83.560,16.440,96.658,3.342,133.33,320,1.000,bilinear cs3se_edgenet_x.c2ns_in1k,83.546,16.454,96.670,3.330,50.72,320,1.000,bicubic nest_base_jx.goog_in1k,83.534,16.466,96.374,3.626,67.72,224,0.875,bicubic repvit_m2_3.dist_300e_in1k,83.504,16.496,96.514,3.486,23.69,224,0.950,bicubic maxvit_tiny_rw_224.sw_in1k,83.504,16.496,96.504,3.496,29.06,224,0.950,bicubic fastvit_sa36.apple_in1k,83.500,16.500,96.630,3.370,31.53,256,0.900,bicubic swinv2_cr_small_ns_224.sw_in1k,83.498,16.502,96.484,3.516,49.70,224,0.900,bicubic focalnet_small_lrf.ms_in1k,83.494,16.506,96.580,3.420,50.34,224,0.900,bicubic dm_nfnet_f0.dm_in1k,83.486,16.514,96.568,3.432,71.49,256,0.900,bicubic convnextv2_tiny.fcmae_ft_in1k,83.464,16.536,96.718,3.282,28.64,288,1.000,bicubic efficientvit_b3.r224_in1k,83.460,16.540,96.330,3.670,48.65,224,0.950,bicubic resnet152.a1h_in1k,83.450,16.550,96.538,3.462,60.19,288,1.000,bicubic cait_s24_224.fb_dist_in1k,83.442,16.558,96.574,3.426,46.92,224,1.000,bicubic deit3_small_patch16_384.fb_in1k,83.428,16.572,96.674,3.326,22.21,384,1.000,bicubic focalnet_small_srf.ms_in1k,83.416,16.584,96.438,3.562,49.89,224,0.900,bicubic efficientnet_b4.ra2_in1k,83.414,16.586,96.598,3.402,19.34,384,1.000,bicubic maxvit_tiny_tf_224.in1k,83.402,16.598,96.590,3.410,30.92,224,0.950,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k_384,83.400,16.600,96.582,3.418,18.45,384,1.000,bicubic sequencer2d_l.in1k,83.394,16.606,96.496,3.504,54.30,224,0.875,bicubic deit_base_distilled_patch16_224.fb_in1k,83.390,16.610,96.488,3.512,87.34,224,0.900,bicubic gcvit_tiny.in1k,83.384,16.616,96.398,3.602,28.22,224,0.875,bicubic efficientformer_l7.snap_dist_in1k,83.382,16.618,96.536,3.464,82.23,224,0.950,bicubic convnextv2_nano.fcmae_ft_in22k_in1k_384,83.374,16.626,96.744,3.256,15.62,384,1.000,bicubic coatnet_rmlp_1_rw_224.sw_in1k,83.362,16.638,96.450,3.550,41.69,224,0.950,bicubic vit_base_patch32_384.augreg_in21k_ft_in1k,83.352,16.648,96.840,3.160,88.30,384,1.000,bicubic fastvit_sa24.apple_dist_in1k,83.342,16.658,96.552,3.448,21.55,256,0.900,bicubic resnext101_32x16d.fb_swsl_ig1b_ft_in1k,83.336,16.664,96.846,3.154,194.03,224,0.875,bilinear xcit_small_12_p8_224.fb_in1k,83.334,16.666,96.482,3.518,26.21,224,1.000,bicubic regnety_320.seer_ft_in1k,83.328,16.672,96.708,3.292,145.05,384,1.000,bicubic xcit_small_12_p16_224.fb_dist_in1k,83.328,16.672,96.416,3.584,26.25,224,1.000,bicubic swin_small_patch4_window7_224.ms_in22k_ft_in1k,83.298,16.702,96.964,3.036,49.61,224,0.900,bicubic vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,83.296,16.704,96.528,3.472,88.22,224,0.900,bicubic tiny_vit_21m_224.in1k,83.254,16.746,96.592,3.408,21.20,224,0.950,bicubic tf_efficientnet_b4.ap_in1k,83.250,16.750,96.396,3.604,19.34,380,0.922,bicubic tiny_vit_11m_224.dist_in22k_ft_in1k,83.228,16.772,96.630,3.370,11.00,224,0.950,bicubic resnext101_32x4d.fb_swsl_ig1b_ft_in1k,83.226,16.774,96.760,3.240,44.18,224,0.875,bilinear swin_small_patch4_window7_224.ms_in1k,83.208,16.792,96.316,3.684,49.61,224,0.900,bicubic regnetv_040.ra3_in1k,83.190,16.810,96.658,3.342,20.64,288,1.000,bicubic xception65.ra3_in1k,83.180,16.820,96.592,3.408,39.92,299,0.940,bicubic tf_efficientnet_b5.in1k,83.176,16.824,96.536,3.464,30.39,456,0.934,bicubic regnety_320.tv2_in1k,83.162,16.838,96.414,3.586,145.05,224,0.965,bicubic resnext101_64x4d.c1_in1k,83.156,16.844,96.374,3.626,83.46,288,1.000,bicubic rexnetr_200.sw_in12k_ft_in1k,83.138,16.862,96.636,3.364,16.52,288,1.000,bicubic swinv2_cr_small_224.sw_in1k,83.136,16.864,96.108,3.892,49.70,224,0.900,bicubic twins_pcpvt_large.in1k,83.130,16.870,96.604,3.396,60.99,224,0.900,bicubic xception65p.ra3_in1k,83.126,16.874,96.482,3.518,39.82,299,0.940,bicubic nest_small_jx.goog_in1k,83.124,16.876,96.320,3.680,38.35,224,0.875,bicubic twins_svt_base.in1k,83.120,16.880,96.414,3.586,56.07,224,0.900,bicubic pvt_v2_b3.in1k,83.118,16.882,96.556,3.444,45.24,224,0.900,bicubic maxxvitv2_nano_rw_256.sw_in1k,83.110,16.890,96.324,3.676,23.70,256,0.950,bicubic deit_base_patch16_384.fb_in1k,83.104,16.896,96.368,3.632,86.86,384,1.000,bicubic efficientvit_b2.r288_in1k,83.100,16.900,96.304,3.696,24.33,288,1.000,bicubic deit3_medium_patch16_224.fb_in1k,83.086,16.914,96.294,3.706,38.85,224,0.900,bicubic deit3_small_patch16_224.fb_in22k_ft_in1k,83.076,16.924,96.776,3.224,22.06,224,1.000,bicubic tresnet_m.miil_in21k_ft_in1k,83.070,16.930,96.110,3.890,31.39,224,0.875,bilinear tresnet_xl.miil_in1k_448,83.058,16.942,96.172,3.828,78.44,448,0.875,bilinear regnety_040.ra3_in1k,83.044,16.956,96.502,3.498,20.65,288,1.000,bicubic maxxvit_rmlp_nano_rw_256.sw_in1k,83.042,16.958,96.350,3.650,16.78,256,0.950,bicubic resnet101d.ra2_in1k,83.020,16.980,96.452,3.548,44.57,320,1.000,bicubic tf_efficientnet_b4.aa_in1k,83.018,16.982,96.300,3.700,19.34,380,0.922,bicubic resnetv2_101.a1h_in1k,83.000,17.000,96.454,3.546,44.54,288,1.000,bicubic resnext101_64x4d.tv_in1k,82.992,17.008,96.244,3.756,83.46,224,0.875,bilinear convformer_s18.sail_in1k,82.986,17.014,96.250,3.750,26.77,224,1.000,bicubic ecaresnet101d.miil_in1k,82.984,17.016,96.542,3.458,44.57,288,0.950,bicubic maxvit_rmlp_nano_rw_256.sw_in1k,82.954,17.046,96.266,3.734,15.50,256,0.950,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k_384,82.938,17.062,96.426,3.574,14.25,384,1.000,bicubic maxvit_nano_rw_256.sw_in1k,82.928,17.072,96.220,3.780,15.45,256,0.950,bicubic xcit_large_24_p16_224.fb_in1k,82.902,17.098,95.884,4.116,189.10,224,1.000,bicubic resnest101e.in1k,82.884,17.116,96.322,3.678,48.28,256,0.875,bilinear resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,82.876,17.124,96.582,3.418,236.34,224,0.875,bicubic convnext_nano.in12k_ft_in1k,82.862,17.138,96.556,3.444,15.59,288,1.000,bicubic resnext101_32x8d.tv2_in1k,82.832,17.168,96.232,3.768,88.79,224,0.965,bilinear resnetv2_50x1_bit.goog_distilled_in1k,82.824,17.176,96.518,3.482,25.55,224,0.875,bicubic sequencer2d_m.in1k,82.812,17.188,96.274,3.726,38.31,224,0.875,bicubic regnetx_320.tv2_in1k,82.810,17.190,96.208,3.792,107.81,224,0.965,bicubic swinv2_tiny_window16_256.ms_in1k,82.804,17.196,96.236,3.764,28.35,256,0.900,bicubic pnasnet5large.tf_in1k,82.782,17.218,96.040,3.960,86.06,331,0.911,bicubic resnet101.a1h_in1k,82.778,17.222,96.310,3.690,44.55,288,1.000,bicubic rexnet_300.nav_in1k,82.774,17.226,96.238,3.762,34.71,224,0.875,bicubic vit_relpos_base_patch16_clsgap_224.sw_in1k,82.760,17.240,96.172,3.828,86.43,224,0.900,bicubic nfnet_l0.ra2_in1k,82.750,17.250,96.516,3.484,35.07,288,1.000,bicubic resnet152.a1_in1k,82.732,17.268,95.720,4.280,60.19,288,1.000,bicubic regnety_032.ra_in1k,82.726,17.274,96.416,3.584,19.44,288,1.000,bicubic twins_pcpvt_base.in1k,82.714,17.286,96.346,3.654,43.83,224,0.900,bicubic cs3edgenet_x.c2_in1k,82.708,17.292,96.370,3.630,47.82,288,1.000,bicubic resnext101_32x8d.fb_wsl_ig1b_ft_in1k,82.698,17.302,96.632,3.368,88.79,224,0.875,bilinear convnext_tiny.fb_in1k,82.698,17.302,96.144,3.856,28.59,288,1.000,bicubic davit_tiny.msft_in1k,82.696,17.304,96.274,3.726,28.36,224,0.950,bicubic efficientvit_b2.r256_in1k,82.690,17.310,96.094,3.906,24.33,256,1.000,bicubic fastvit_sa24.apple_in1k,82.678,17.322,96.272,3.728,21.55,256,0.900,bicubic tf_efficientnetv2_b3.in21k_ft_in1k,82.670,17.330,96.626,3.374,14.36,300,0.900,bicubic convnextv2_nano.fcmae_ft_in22k_in1k,82.664,17.336,96.520,3.480,15.62,288,1.000,bicubic cs3sedarknet_x.c2ns_in1k,82.658,17.342,96.350,3.650,35.40,288,1.000,bicubic regnety_160.tv2_in1k,82.646,17.354,96.214,3.786,83.59,224,0.965,bicubic xcit_medium_24_p16_224.fb_in1k,82.640,17.360,95.982,4.018,84.40,224,1.000,bicubic regnetz_c16_evos.ch_in1k,82.636,17.364,96.474,3.526,13.49,320,0.950,bicubic regnetz_c16.ra3_in1k,82.632,17.368,96.318,3.682,13.46,320,1.000,bicubic nasnetalarge.tf_in1k,82.626,17.374,96.042,3.958,88.75,331,0.911,bicubic poolformerv2_m48.sail_in1k,82.618,17.382,96.072,3.928,73.35,224,1.000,bicubic tf_efficientnet_b4.in1k,82.608,17.392,96.128,3.872,19.34,380,0.922,bicubic resnet152.a2_in1k,82.608,17.392,95.752,4.248,60.19,288,1.000,bicubic resnetaa50d.sw_in12k_ft_in1k,82.600,17.400,96.498,3.502,25.58,288,1.000,bicubic levit_384.fb_dist_in1k,82.596,17.404,96.018,3.982,39.13,224,0.900,bicubic regnety_080_tv.tv2_in1k,82.594,17.406,96.248,3.752,39.38,224,0.965,bicubic levit_conv_384.fb_dist_in1k,82.590,17.410,96.016,3.984,39.13,224,0.900,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k_384,82.586,17.414,96.314,3.686,10.59,384,1.000,bicubic convnext_tiny_hnf.a2h_in1k,82.584,17.416,96.008,3.992,28.59,288,1.000,bicubic vit_base_patch32_clip_224.laion2b_ft_in1k,82.582,17.418,96.200,3.800,88.22,224,0.900,bicubic eca_nfnet_l0.ra2_in1k,82.578,17.422,96.492,3.508,24.14,288,1.000,bicubic xcit_small_24_p16_224.fb_in1k,82.576,17.424,96.012,3.988,47.67,224,1.000,bicubic vit_relpos_medium_patch16_cls_224.sw_in1k,82.572,17.428,96.068,3.932,38.76,224,0.900,bicubic xcit_tiny_24_p16_384.fb_dist_in1k,82.570,17.430,96.276,3.724,12.12,384,1.000,bicubic xcit_tiny_24_p8_224.fb_dist_in1k,82.566,17.434,96.172,3.828,12.11,224,1.000,bicubic regnetx_160.tv2_in1k,82.566,17.434,96.058,3.942,54.28,224,0.965,bicubic efficientformer_l3.snap_dist_in1k,82.548,17.452,96.250,3.750,31.41,224,0.950,bicubic flexivit_small.1200ep_in1k,82.526,17.474,96.126,3.874,22.06,240,0.950,bicubic resnet61q.ra2_in1k,82.524,17.476,96.130,3.870,36.85,288,1.000,bicubic crossvit_18_dagger_240.in1k,82.518,17.482,96.068,3.932,44.27,240,0.875,bicubic repvit_m1_5.dist_450e_in1k,82.512,17.488,96.112,3.888,14.64,224,0.950,bicubic wide_resnet101_2.tv2_in1k,82.502,17.498,96.016,3.984,126.89,224,0.965,bilinear vit_relpos_base_patch16_224.sw_in1k,82.496,17.504,96.138,3.862,86.43,224,0.900,bicubic convnextv2_nano.fcmae_ft_in1k,82.486,17.514,96.226,3.774,15.62,288,1.000,bicubic poolformer_m48.sail_in1k,82.482,17.518,95.966,4.034,73.47,224,0.950,bicubic inception_next_tiny.sail_in1k,82.478,17.522,96.022,3.978,28.06,224,0.875,bicubic vit_relpos_medium_patch16_224.sw_in1k,82.462,17.538,96.082,3.918,38.75,224,0.900,bicubic gc_efficientnetv2_rw_t.agc_in1k,82.456,17.544,96.296,3.704,13.68,288,1.000,bicubic pit_b_224.in1k,82.438,17.562,95.714,4.286,73.76,224,0.900,bicubic mvitv2_tiny.fb_in1k,82.410,17.590,96.152,3.848,24.17,224,0.900,bicubic coatnet_bn_0_rw_224.sw_in1k,82.400,17.600,96.186,3.814,27.44,224,0.950,bicubic crossvit_18_240.in1k,82.400,17.600,96.060,3.940,43.27,240,0.875,bicubic coatnet_0_rw_224.sw_in1k,82.390,17.610,95.836,4.164,27.44,224,0.950,bicubic xcit_tiny_12_p8_384.fb_dist_in1k,82.388,17.612,96.220,3.780,6.71,384,1.000,bicubic tf_efficientnet_b2.ns_jft_in1k,82.378,17.622,96.254,3.746,9.11,260,0.890,bicubic repvit_m1_5.dist_300e_in1k,82.376,17.624,96.030,3.970,14.64,224,0.950,bicubic coat_small.in1k,82.362,17.638,96.208,3.792,21.69,224,0.900,bicubic flexivit_small.600ep_in1k,82.362,17.638,96.084,3.916,22.06,240,0.950,bicubic resnet51q.ra2_in1k,82.360,17.640,96.186,3.814,35.70,288,1.000,bilinear ecaresnet50t.ra2_in1k,82.352,17.648,96.140,3.860,25.57,320,0.950,bicubic efficientnetv2_rw_t.ra2_in1k,82.350,17.650,96.192,3.808,13.65,288,1.000,bicubic resnetv2_101x1_bit.goog_in21k_ft_in1k,82.342,17.658,96.520,3.480,44.54,448,1.000,bilinear sequencer2d_s.in1k,82.340,17.660,96.028,3.972,27.65,224,0.875,bicubic mobilevitv2_200.cvnets_in22k_ft_in1k,82.332,17.668,95.942,4.058,18.45,256,0.888,bicubic crossvit_15_dagger_240.in1k,82.330,17.670,95.956,4.044,28.21,240,0.875,bicubic resnet101.a1_in1k,82.322,17.678,95.632,4.368,44.55,288,1.000,bicubic coat_lite_small.in1k,82.312,17.688,95.850,4.150,19.84,224,0.900,bicubic vit_relpos_medium_patch16_rpn_224.sw_in1k,82.310,17.690,95.972,4.028,38.73,224,0.900,bicubic mixer_b16_224.miil_in21k_ft_in1k,82.306,17.694,95.720,4.280,59.88,224,0.875,bilinear convit_base.fb_in1k,82.290,17.710,95.936,4.064,86.54,224,0.875,bicubic resnet152.tv2_in1k,82.286,17.714,96.004,3.996,60.19,224,0.965,bilinear resnetrs101.tf_in1k,82.284,17.716,96.014,3.986,63.62,288,0.940,bicubic wide_resnet50_2.racm_in1k,82.280,17.720,96.064,3.936,68.88,288,0.950,bicubic tresnet_l.miil_in1k_448,82.276,17.724,95.978,4.022,55.99,448,0.875,bilinear efficientnet_b3.ra2_in1k,82.246,17.754,96.118,3.882,12.23,320,1.000,bicubic vit_srelpos_medium_patch16_224.sw_in1k,82.240,17.760,95.942,4.058,38.74,224,0.900,bicubic resnet101.a2_in1k,82.236,17.764,95.730,4.270,44.55,288,1.000,bicubic cs3darknet_x.c2ns_in1k,82.222,17.778,96.230,3.770,35.05,288,1.000,bicubic poolformerv2_m36.sail_in1k,82.216,17.784,95.924,4.076,56.08,224,1.000,bicubic crossvit_base_240.in1k,82.214,17.786,95.834,4.166,105.03,240,0.875,bicubic cait_xxs36_384.fb_dist_in1k,82.204,17.796,96.144,3.856,17.37,384,1.000,bicubic vit_base_patch16_rpn_224.sw_in1k,82.202,17.798,95.996,4.004,86.54,224,0.900,bicubic seresnext50_32x4d.racm_in1k,82.196,17.804,96.148,3.852,27.56,288,0.950,bicubic pvt_v2_b2_li.in1k,82.194,17.806,96.092,3.908,22.55,224,0.900,bicubic flexivit_small.300ep_in1k,82.178,17.822,96.038,3.962,22.06,240,0.950,bicubic resnext50_32x4d.fb_swsl_ig1b_ft_in1k,82.172,17.828,96.224,3.776,25.03,224,0.875,bilinear efficientformerv2_s2.snap_dist_in1k,82.166,17.834,95.910,4.090,12.71,224,0.950,bicubic focalnet_tiny_lrf.ms_in1k,82.154,17.846,95.948,4.052,28.65,224,0.900,bicubic efficientvit_b2.r224_in1k,82.148,17.852,95.706,4.294,24.33,224,0.950,bicubic swin_s3_tiny_224.ms_in1k,82.144,17.856,95.954,4.046,28.33,224,0.900,bicubic focalnet_tiny_srf.ms_in1k,82.138,17.862,95.968,4.032,28.43,224,0.900,bicubic ecaresnet50t.a1_in1k,82.128,17.872,95.642,4.358,25.57,288,1.000,bicubic visformer_small.in1k,82.106,17.894,95.878,4.122,40.22,224,0.900,bicubic poolformer_m36.sail_in1k,82.102,17.898,95.698,4.302,56.17,224,0.950,bicubic pvt_v2_b2.in1k,82.084,17.916,95.956,4.044,25.36,224,0.900,bicubic tresnet_xl.miil_in1k,82.074,17.926,95.928,4.072,78.44,224,0.875,bilinear halo2botnet50ts_256.a1h_in1k,82.060,17.940,95.634,4.366,22.64,256,0.950,bicubic coatnet_rmlp_nano_rw_224.sw_in1k,82.050,17.950,95.878,4.122,15.15,224,0.900,bicubic hrnet_w18_ssld.paddle_in1k,82.048,17.952,96.250,3.750,21.30,288,1.000,bilinear fbnetv3_g.ra2_in1k,82.040,17.960,96.060,3.940,16.62,288,0.950,bilinear resnext50_32x4d.a1h_in1k,82.014,17.986,95.934,4.066,25.03,288,1.000,bicubic resnetv2_50d_evos.ah_in1k,82.002,17.998,95.900,4.100,25.59,288,1.000,bicubic ecaresnet101d_pruned.miil_in1k,81.998,18.002,96.160,3.840,24.88,288,0.950,bicubic deit_base_patch16_224.fb_in1k,81.992,18.008,95.736,4.264,86.57,224,0.900,bicubic xception41p.ra3_in1k,81.972,18.028,95.802,4.198,26.91,299,0.940,bicubic tf_efficientnetv2_b3.in1k,81.972,18.028,95.784,4.216,14.36,300,0.904,bicubic xcit_small_12_p16_224.fb_in1k,81.970,18.030,95.812,4.188,26.25,224,1.000,bicubic resnetv2_50d_gn.ah_in1k,81.958,18.042,95.928,4.072,25.57,288,1.000,bicubic gcvit_xtiny.in1k,81.954,18.046,95.966,4.034,19.98,224,0.875,bicubic coatnext_nano_rw_224.sw_in1k,81.942,18.058,95.916,4.084,14.70,224,0.900,bicubic mobilevitv2_175.cvnets_in22k_ft_in1k,81.938,18.062,95.790,4.210,14.25,256,0.888,bicubic vit_base_patch32_clip_224.openai_ft_in1k,81.930,18.070,95.966,4.034,88.22,224,0.900,bicubic xcit_tiny_24_p8_224.fb_in1k,81.892,18.108,95.970,4.030,12.11,224,1.000,bicubic resnet101.tv2_in1k,81.888,18.112,95.768,4.232,44.55,224,0.965,bilinear vit_small_r26_s32_224.augreg_in21k_ft_in1k,81.864,18.136,96.022,3.978,36.43,224,0.900,bicubic fastvit_sa12.apple_dist_in1k,81.854,18.146,95.710,4.290,11.58,256,0.900,bicubic resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,81.838,18.162,96.092,3.908,194.03,224,0.875,bilinear swinv2_tiny_window8_256.ms_in1k,81.820,18.180,95.994,4.006,28.35,256,0.900,bicubic tf_efficientnet_b3.ap_in1k,81.820,18.180,95.626,4.374,12.23,300,0.904,bicubic pit_s_distilled_224.in1k,81.814,18.186,95.730,4.270,24.04,224,0.900,bicubic swinv2_cr_tiny_ns_224.sw_in1k,81.802,18.198,95.818,4.182,28.33,224,0.900,bicubic vit_base_patch16_224.orig_in21k_ft_in1k,81.790,18.210,96.126,3.874,86.57,224,0.900,bicubic cs3sedarknet_l.c2ns_in1k,81.784,18.216,95.964,4.036,21.91,288,0.950,bicubic regnety_032.tv2_in1k,81.756,18.244,95.844,4.156,19.44,224,0.965,bicubic tresnet_m.miil_in1k_448,81.710,18.290,95.574,4.426,31.39,448,0.875,bilinear coatnet_nano_rw_224.sw_in1k,81.696,18.304,95.646,4.354,15.14,224,0.900,bicubic twins_svt_small.in1k,81.676,18.324,95.658,4.342,24.06,224,0.900,bicubic halonet50ts.a1h_in1k,81.662,18.338,95.610,4.390,22.73,256,0.940,bicubic ecaresnet50t.a2_in1k,81.658,18.342,95.550,4.450,25.57,288,1.000,bicubic ecaresnet50d.miil_in1k,81.650,18.350,95.882,4.118,25.58,288,0.950,bicubic tf_efficientnet_b3.aa_in1k,81.640,18.360,95.722,4.278,12.23,300,0.904,bicubic rexnet_200.nav_in1k,81.636,18.364,95.666,4.334,16.37,224,0.875,bicubic resnetaa50.a1h_in1k,81.614,18.386,95.802,4.198,25.56,288,1.000,bicubic resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,81.606,18.394,96.040,3.960,88.79,224,0.875,bilinear wide_resnet50_2.tv2_in1k,81.606,18.394,95.760,4.240,68.88,224,0.965,bilinear convnext_nano_ols.d1h_in1k,81.600,18.400,95.636,4.364,15.65,288,1.000,bicubic poolformerv2_s36.sail_in1k,81.566,18.434,95.690,4.310,30.79,224,1.000,bicubic edgenext_small.usi_in1k,81.564,18.436,95.712,4.288,5.59,320,1.000,bicubic lamhalobotnet50ts_256.a1h_in1k,81.552,18.448,95.492,4.508,22.57,256,0.950,bicubic regnetx_080.tv2_in1k,81.540,18.460,95.542,4.458,39.57,224,0.965,bicubic tnt_s_patch16_224,81.536,18.464,95.736,4.264,23.76,224,0.900,bicubic crossvit_15_240.in1k,81.536,18.464,95.690,4.310,27.53,240,0.875,bicubic tf_efficientnet_lite4.in1k,81.530,18.470,95.664,4.336,13.01,380,0.920,bilinear levit_256.fb_dist_in1k,81.524,18.476,95.494,4.506,18.89,224,0.900,bicubic levit_conv_256.fb_dist_in1k,81.522,18.478,95.490,4.510,18.89,224,0.900,bicubic vit_large_patch32_384.orig_in21k_ft_in1k,81.510,18.490,96.090,3.910,306.63,384,1.000,bicubic repvit_m3.dist_in1k,81.502,18.498,95.568,4.432,10.68,224,0.950,bicubic tiny_vit_11m_224.in1k,81.492,18.508,95.862,4.138,11.00,224,0.950,bicubic mobilevitv2_150.cvnets_in22k_ft_in1k,81.488,18.512,95.668,4.332,10.59,256,0.888,bicubic convnext_nano.d1h_in1k,81.482,18.518,95.658,4.342,15.59,288,1.000,bicubic tresnet_l.miil_in1k,81.480,18.520,95.624,4.376,55.99,224,0.875,bilinear resnext50_32x4d.a1_in1k,81.466,18.534,95.174,4.826,25.03,288,1.000,bicubic vit_relpos_small_patch16_224.sw_in1k,81.462,18.538,95.820,4.180,21.98,224,0.900,bicubic gcresnet50t.ra2_in1k,81.456,18.544,95.718,4.282,25.90,288,1.000,bicubic resnet50d.a1_in1k,81.450,18.550,95.218,4.782,25.58,288,1.000,bicubic poolformer_s36.sail_in1k,81.430,18.570,95.444,4.556,30.86,224,0.900,bicubic nest_tiny_jx.goog_in1k,81.426,18.574,95.618,4.382,17.06,224,0.875,bicubic convit_small.fb_in1k,81.420,18.580,95.744,4.256,27.78,224,0.875,bicubic ecaresnetlight.miil_in1k,81.408,18.592,95.816,4.184,30.16,288,0.950,bicubic resnetv2_50.a1h_in1k,81.398,18.602,95.726,4.274,25.55,288,1.000,bicubic tf_efficientnet_b1.ns_jft_in1k,81.388,18.612,95.738,4.262,7.79,240,0.882,bicubic vit_small_patch16_224.augreg_in21k_ft_in1k,81.386,18.614,96.136,3.864,22.05,224,0.900,bicubic swin_tiny_patch4_window7_224.ms_in1k,81.376,18.624,95.544,4.456,28.29,224,0.900,bicubic deit3_small_patch16_224.fb_in1k,81.370,18.630,95.456,4.544,22.06,224,0.900,bicubic convmixer_1536_20.in1k,81.362,18.638,95.614,4.386,51.63,224,0.960,bicubic resnet50d.ra2_in1k,81.356,18.644,95.738,4.262,25.58,288,0.950,bicubic gernet_l.idstcv_in1k,81.354,18.646,95.530,4.470,31.08,256,0.875,bilinear repvit_m1_1.dist_450e_in1k,81.312,18.688,95.560,4.440,8.80,224,0.950,bicubic efficientnet_el.ra_in1k,81.312,18.688,95.536,4.464,10.59,300,0.904,bicubic legacy_senet154.in1k,81.312,18.688,95.490,4.510,115.09,224,0.875,bilinear resnext50_32x4d.a2_in1k,81.304,18.696,95.096,4.904,25.03,288,1.000,bicubic seresnet50.ra2_in1k,81.284,18.716,95.652,4.348,28.09,288,0.950,bicubic coat_mini.in1k,81.270,18.730,95.382,4.618,10.34,224,0.900,bicubic gcresnext50ts.ch_in1k,81.230,18.770,95.542,4.458,15.67,288,1.000,bicubic senet154.gluon_in1k,81.226,18.774,95.358,4.642,115.09,224,0.875,bicubic res2net101d.in1k,81.218,18.782,95.350,4.650,45.23,224,0.875,bilinear resnet50_gn.a1h_in1k,81.216,18.784,95.624,4.376,25.56,288,0.950,bicubic deit_small_distilled_patch16_224.fb_in1k,81.216,18.784,95.384,4.616,22.44,224,0.900,bicubic resnet50.a1_in1k,81.214,18.786,95.102,4.898,25.56,288,1.000,bicubic xcit_tiny_12_p8_224.fb_dist_in1k,81.212,18.788,95.602,4.398,6.71,224,1.000,bicubic resnext50_32x4d.tv2_in1k,81.182,18.818,95.340,4.660,25.03,224,0.965,bilinear resnet50.fb_swsl_ig1b_ft_in1k,81.172,18.828,95.986,4.014,25.56,224,0.875,bilinear sebotnet33ts_256.a1h_in1k,81.168,18.832,95.168,4.832,13.70,256,0.940,bicubic resnet50d.a2_in1k,81.164,18.836,95.080,4.920,25.58,288,1.000,bicubic lambda_resnet50ts.a1h_in1k,81.158,18.842,95.098,4.902,21.54,256,0.950,bicubic resmlp_36_224.fb_distilled_in1k,81.148,18.852,95.478,4.522,44.69,224,0.875,bicubic mobilevitv2_200.cvnets_in1k,81.134,18.866,95.362,4.638,18.45,256,0.888,bicubic resnest50d_4s2x40d.in1k,81.120,18.880,95.560,4.440,30.42,224,0.875,bicubic vit_small_patch16_384.augreg_in1k,81.116,18.884,95.574,4.426,22.20,384,1.000,bicubic seresnet50.a2_in1k,81.106,18.894,95.222,4.778,28.09,288,1.000,bicubic vit_base_patch16_384.augreg_in1k,81.102,18.898,95.328,4.672,86.86,384,1.000,bicubic seresnet50.a1_in1k,81.102,18.898,95.120,4.880,28.09,288,1.000,bicubic twins_pcpvt_small.in1k,81.092,18.908,95.648,4.352,24.11,224,0.900,bicubic vit_srelpos_small_patch16_224.sw_in1k,81.092,18.908,95.570,4.430,21.97,224,0.900,bicubic convnextv2_pico.fcmae_ft_in1k,81.086,18.914,95.480,4.520,9.07,288,0.950,bicubic pit_s_224.in1k,81.086,18.914,95.330,4.670,23.46,224,0.900,bicubic fastvit_s12.apple_dist_in1k,81.070,18.930,95.284,4.716,9.47,256,0.900,bicubic haloregnetz_b.ra3_in1k,81.046,18.954,95.200,4.800,11.68,224,0.940,bicubic resmlp_big_24_224.fb_in1k,81.036,18.964,95.018,4.982,129.14,224,0.875,bicubic crossvit_small_240.in1k,81.018,18.982,95.456,4.544,26.86,240,0.875,bicubic resnet152s.gluon_in1k,81.008,18.992,95.416,4.584,60.32,224,0.875,bicubic resnest50d_1s4x24d.in1k,80.988,19.012,95.326,4.674,25.68,224,0.875,bicubic cait_xxs24_384.fb_dist_in1k,80.972,19.028,95.640,4.360,12.03,384,1.000,bicubic resnet50.d_in1k,80.972,19.028,95.430,4.570,25.56,288,1.000,bicubic swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,80.968,19.032,96.014,3.986,28.29,224,0.900,bicubic resnest50d.in1k,80.960,19.040,95.382,4.618,27.48,224,0.875,bilinear sehalonet33ts.ra2_in1k,80.958,19.042,95.272,4.728,13.69,256,0.940,bicubic xcit_tiny_12_p16_384.fb_dist_in1k,80.938,19.062,95.414,4.586,6.72,384,1.000,bicubic regnetx_032.tv2_in1k,80.926,19.074,95.278,4.722,15.30,224,0.965,bicubic resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,80.924,19.076,95.734,4.266,44.18,224,0.875,bilinear resnet50.c1_in1k,80.912,19.088,95.552,4.448,25.56,288,1.000,bicubic cs3darknet_l.c2ns_in1k,80.896,19.104,95.662,4.338,21.16,288,0.950,bicubic seresnext101_64x4d.gluon_in1k,80.894,19.106,95.296,4.704,88.23,224,0.875,bicubic seresnext101_32x4d.gluon_in1k,80.892,19.108,95.296,4.704,48.96,224,0.875,bicubic cs3darknet_focus_l.c2ns_in1k,80.876,19.124,95.682,4.318,21.15,288,0.950,bicubic tiny_vit_5m_224.dist_in22k_ft_in1k,80.876,19.124,95.664,4.336,5.39,224,0.950,bicubic tf_efficientnet_b3.in1k,80.874,19.126,95.300,4.700,12.23,300,0.904,bicubic resnet50.c2_in1k,80.870,19.130,95.534,4.466,25.56,288,1.000,bicubic mobilevitv2_175.cvnets_in1k,80.860,19.140,95.256,4.744,14.25,256,0.888,bicubic efficientnet_b3_pruned.in1k,80.852,19.148,95.244,4.756,9.86,300,0.904,bicubic resnet50.tv2_in1k,80.848,19.152,95.434,4.566,25.56,224,0.965,bilinear fastvit_sa12.apple_in1k,80.844,19.156,95.340,4.660,11.58,256,0.900,bicubic repvit_m1_1.dist_300e_in1k,80.826,19.174,95.170,4.830,8.80,224,0.950,bicubic regnety_320.pycls_in1k,80.810,19.190,95.238,4.762,145.05,224,0.875,bicubic tresnet_m.miil_in1k,80.798,19.202,94.856,5.144,31.39,224,0.875,bilinear ecaresnet50d_pruned.miil_in1k,80.790,19.210,95.570,4.430,19.94,288,0.950,bicubic seresnet33ts.ra2_in1k,80.784,19.216,95.362,4.638,19.78,288,1.000,bicubic resnet50.a2_in1k,80.772,19.228,94.988,5.012,25.56,288,1.000,bicubic resmlp_24_224.fb_distilled_in1k,80.756,19.244,95.224,4.776,30.02,224,0.875,bicubic poolformerv2_s24.sail_in1k,80.748,19.252,95.310,4.690,21.34,224,1.000,bicubic gernet_m.idstcv_in1k,80.736,19.264,95.190,4.810,21.14,224,0.875,bilinear regnetz_b16.ra3_in1k,80.728,19.272,95.518,4.482,9.72,288,1.000,bicubic vit_base_patch32_224.augreg_in21k_ft_in1k,80.716,19.284,95.566,4.434,88.22,224,0.900,bicubic resnet50.b1k_in1k,80.706,19.294,95.432,4.568,25.56,288,1.000,bicubic resnext50_32x4d.ra_in1k,80.698,19.302,95.392,4.608,25.03,288,0.950,bicubic resnet50.a1h_in1k,80.678,19.322,95.306,4.694,25.56,224,1.000,bicubic eca_resnet33ts.ra2_in1k,80.672,19.328,95.364,4.636,19.68,288,1.000,bicubic regnety_016.tv2_in1k,80.666,19.334,95.330,4.670,11.20,224,0.965,bicubic resnext50d_32x4d.bt_in1k,80.664,19.336,95.420,4.580,25.05,288,0.950,bicubic nf_resnet50.ra2_in1k,80.640,19.360,95.334,4.666,25.56,288,0.940,bicubic eva02_tiny_patch14_336.mim_in22k_ft_in1k,80.630,19.370,95.526,4.474,5.76,336,1.000,bicubic efficientnet_b2.ra_in1k,80.610,19.390,95.314,4.686,9.11,288,1.000,bicubic gcresnet33ts.ra2_in1k,80.600,19.400,95.322,4.678,19.88,288,1.000,bicubic resnext101_64x4d.gluon_in1k,80.600,19.400,94.992,5.008,83.46,224,0.875,bicubic cspresnext50.ra_in1k,80.554,19.446,95.326,4.674,20.57,256,0.887,bilinear resnet152.a3_in1k,80.546,19.454,95.000,5.000,60.19,224,0.950,bicubic darknet53.c2ns_in1k,80.532,19.468,95.432,4.568,41.61,288,1.000,bicubic maxvit_rmlp_pico_rw_256.sw_in1k,80.514,19.486,95.214,4.786,7.52,256,0.950,bicubic darknetaa53.c2ns_in1k,80.506,19.494,95.322,4.678,36.02,288,1.000,bilinear repvgg_b3.rvgg_in1k,80.506,19.494,95.254,4.746,123.09,224,0.875,bilinear efficientformer_l1.snap_dist_in1k,80.498,19.502,94.988,5.012,12.29,224,0.950,bicubic vit_small_patch32_384.augreg_in21k_ft_in1k,80.486,19.514,95.600,4.400,22.92,384,1.000,bicubic mixnet_xl.ra_in1k,80.482,19.518,94.936,5.064,11.90,224,0.875,bicubic resnet152d.gluon_in1k,80.476,19.524,95.202,4.798,60.21,224,0.875,bicubic convnext_pico_ols.d1_in1k,80.462,19.538,95.252,4.748,9.06,288,1.000,bicubic repvit_m2.dist_in1k,80.460,19.540,95.168,4.832,8.80,224,0.950,bicubic inception_resnet_v2.tf_in1k,80.458,19.542,95.308,4.692,55.84,299,0.897,bicubic edgenext_small_rw.sw_in1k,80.458,19.542,95.190,4.810,7.83,320,1.000,bicubic resnet50.b2k_in1k,80.454,19.546,95.318,4.682,25.56,288,1.000,bicubic xcit_tiny_24_p16_224.fb_dist_in1k,80.454,19.546,95.218,4.782,12.12,224,1.000,bicubic repvit_m1_0.dist_450e_in1k,80.434,19.566,94.918,5.082,7.30,224,0.950,bicubic resnet101d.gluon_in1k,80.426,19.574,95.024,4.976,44.57,224,0.875,bicubic convnext_pico.d1_in1k,80.416,19.584,95.048,4.952,9.05,288,0.950,bicubic regnety_120.pycls_in1k,80.380,19.620,95.126,4.874,51.82,224,0.875,bicubic mobilevitv2_150.cvnets_in1k,80.370,19.630,95.074,4.926,10.59,256,0.888,bicubic fastvit_t12.apple_dist_in1k,80.352,19.648,95.042,4.958,7.55,256,0.900,bicubic ese_vovnet39b.ra_in1k,80.350,19.650,95.366,4.634,24.57,288,0.950,bicubic resnetv2_50x1_bit.goog_in21k_ft_in1k,80.342,19.658,95.682,4.318,25.55,448,1.000,bilinear resnext101_32x4d.gluon_in1k,80.340,19.660,94.930,5.070,44.18,224,0.875,bicubic resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,80.334,19.666,95.400,4.600,25.03,224,0.875,bilinear rexnet_150.nav_in1k,80.324,19.676,95.176,4.824,9.73,224,0.875,bicubic efficientvit_b1.r288_in1k,80.324,19.676,94.990,5.010,9.10,288,1.000,bicubic tf_efficientnet_b2.ap_in1k,80.310,19.690,95.026,4.974,9.11,260,0.890,bicubic resnet101s.gluon_in1k,80.304,19.696,95.152,4.848,44.67,224,0.875,bicubic efficientnet_el_pruned.in1k,80.298,19.702,95.222,4.778,10.59,300,0.904,bicubic regnety_160.pycls_in1k,80.298,19.702,94.964,5.036,83.59,224,0.875,bicubic poolformer_s24.sail_in1k,80.294,19.706,95.074,4.926,21.39,224,0.900,bicubic res2net50d.in1k,80.254,19.746,95.036,4.964,25.72,224,0.875,bilinear tf_efficientnet_el.in1k,80.248,19.752,95.120,4.880,10.59,300,0.904,bicubic regnetx_320.pycls_in1k,80.246,19.754,95.022,4.978,107.81,224,0.875,bicubic vit_base_patch16_224.sam_in1k,80.238,19.762,94.756,5.244,86.57,224,0.900,bicubic resnetblur50.bt_in1k,80.234,19.766,95.234,4.766,25.56,288,0.950,bicubic legacy_seresnext101_32x4d.in1k,80.232,19.768,95.020,4.980,48.96,224,0.875,bilinear repvgg_b3g4.rvgg_in1k,80.216,19.784,95.092,4.908,83.83,224,0.875,bilinear tf_efficientnetv2_b2.in1k,80.196,19.804,95.042,4.958,10.10,260,0.890,bicubic dpn107.mx_in1k,80.170,19.830,94.942,5.058,86.92,224,0.875,bicubic convmixer_768_32.in1k,80.168,19.832,95.074,4.926,21.11,224,0.960,bicubic skresnext50_32x4d.ra_in1k,80.164,19.836,94.640,5.360,27.48,224,0.875,bicubic inception_v4.tf_in1k,80.156,19.844,94.970,5.030,42.68,299,0.875,bicubic repvit_m1_0.dist_300e_in1k,80.126,19.874,94.744,5.256,7.30,224,0.950,bicubic tf_efficientnet_b2.aa_in1k,80.084,19.916,94.906,5.094,9.11,260,0.890,bicubic cspdarknet53.ra_in1k,80.068,19.932,95.078,4.922,27.64,256,0.887,bilinear dpn92.mx_in1k,80.038,19.962,94.860,5.140,37.67,224,0.875,bicubic inception_resnet_v2.tf_ens_adv_in1k,79.978,20.022,94.948,5.052,55.84,299,0.897,bicubic resnet50.ram_in1k,79.976,20.024,95.052,4.948,25.56,288,0.950,bicubic fastvit_s12.apple_in1k,79.942,20.058,94.794,5.206,9.47,256,0.900,bicubic seresnext50_32x4d.gluon_in1k,79.924,20.076,94.824,5.176,27.56,224,0.875,bicubic efficientnet_b2_pruned.in1k,79.920,20.080,94.852,5.148,8.31,260,0.890,bicubic resnet152c.gluon_in1k,79.912,20.088,94.846,5.154,60.21,224,0.875,bicubic resnetrs50.tf_in1k,79.894,20.106,94.974,5.026,35.69,224,0.910,bicubic xception71.tf_in1k,79.874,20.126,94.928,5.072,42.34,299,0.903,bicubic regnety_080.pycls_in1k,79.868,20.132,94.832,5.168,39.18,224,0.875,bicubic regnetx_160.pycls_in1k,79.866,20.134,94.828,5.172,54.28,224,0.875,bicubic ecaresnet26t.ra2_in1k,79.850,20.150,95.090,4.910,16.01,320,0.950,bicubic deit_small_patch16_224.fb_in1k,79.848,20.152,95.044,4.956,22.05,224,0.900,bicubic levit_conv_192.fb_dist_in1k,79.838,20.162,94.784,5.216,10.95,224,0.900,bicubic levit_192.fb_dist_in1k,79.838,20.162,94.778,5.222,10.95,224,0.900,bicubic resnet50.ra_in1k,79.836,20.164,94.966,5.034,25.56,288,0.950,bicubic dpn131.mx_in1k,79.814,20.186,94.700,5.300,79.25,224,0.875,bicubic resnet101.a3_in1k,79.814,20.186,94.614,5.386,44.55,224,0.950,bicubic tf_efficientnet_lite3.in1k,79.806,20.194,94.914,5.086,8.20,300,0.904,bilinear resmlp_36_224.fb_in1k,79.772,20.228,94.884,5.116,44.69,224,0.875,bicubic cait_xxs36_224.fb_dist_in1k,79.746,20.254,94.874,5.126,17.30,224,1.000,bicubic efficientvit_b1.r256_in1k,79.734,20.266,94.780,5.220,9.10,256,1.000,bicubic gcvit_xxtiny.in1k,79.726,20.274,95.080,4.920,12.00,224,0.875,bicubic resnet33ts.ra2_in1k,79.726,20.274,94.828,5.172,19.68,288,1.000,bicubic regnety_064.pycls_in1k,79.716,20.284,94.766,5.234,30.58,224,0.875,bicubic resnet152.gluon_in1k,79.696,20.304,94.730,5.270,60.19,224,0.875,bicubic efficientformerv2_s1.snap_dist_in1k,79.692,20.308,94.716,5.284,6.19,224,0.950,bicubic xcit_tiny_12_p8_224.fb_in1k,79.688,20.312,95.054,4.946,6.71,224,1.000,bicubic fbnetv3_d.ra2_in1k,79.682,20.318,94.944,5.056,10.31,256,0.950,bilinear mobilevitv2_125.cvnets_in1k,79.680,20.320,94.858,5.142,7.48,256,0.888,bicubic dpn98.mx_in1k,79.670,20.330,94.654,5.346,61.57,224,0.875,bicubic gmlp_s16_224.ra3_in1k,79.644,20.356,94.622,5.378,19.42,224,0.875,bicubic resnet50.bt_in1k,79.640,20.360,94.892,5.108,25.56,288,0.950,bicubic tf_efficientnet_b2.in1k,79.608,20.392,94.714,5.286,9.11,260,0.890,bicubic regnetx_120.pycls_in1k,79.588,20.412,94.742,5.258,46.11,224,0.875,bicubic cspresnet50.ra_in1k,79.582,20.418,94.710,5.290,21.62,256,0.887,bilinear xception65.tf_in1k,79.556,20.444,94.658,5.342,39.92,299,0.903,bicubic ecaresnet50t.a3_in1k,79.552,20.448,94.694,5.306,25.57,224,0.950,bicubic resnet101c.gluon_in1k,79.538,20.462,94.584,5.416,44.57,224,0.875,bicubic rexnet_130.nav_in1k,79.506,20.494,94.678,5.322,7.56,224,0.875,bicubic eca_halonext26ts.c1_in1k,79.486,20.514,94.600,5.400,10.76,256,0.940,bicubic vit_relpos_base_patch32_plus_rpn_256.sw_in1k,79.484,20.516,94.138,5.862,119.42,256,0.900,bicubic hrnet_w64.ms_in1k,79.476,20.524,94.652,5.348,128.06,224,0.875,bilinear tf_efficientnetv2_b1.in1k,79.460,20.540,94.722,5.278,8.14,240,0.882,bicubic xcit_tiny_24_p16_224.fb_in1k,79.448,20.552,94.878,5.122,12.12,224,1.000,bicubic dla102x2.in1k,79.446,20.554,94.632,5.368,41.28,224,0.875,bilinear regnetx_016.tv2_in1k,79.436,20.564,94.768,5.232,9.19,224,0.965,bicubic mobileone_s4.apple_in1k,79.426,20.574,94.480,5.520,14.95,224,0.900,bilinear resnet32ts.ra2_in1k,79.388,20.612,94.652,5.348,17.96,288,1.000,bicubic repvgg_b2g4.rvgg_in1k,79.382,20.618,94.676,5.324,61.76,224,0.875,bilinear resmlp_24_224.fb_in1k,79.374,20.626,94.546,5.454,30.02,224,0.875,bicubic dpn68b.ra_in1k,79.360,20.640,94.436,5.564,12.61,288,1.000,bicubic resnext50_32x4d.gluon_in1k,79.360,20.640,94.430,5.570,25.03,224,0.875,bicubic convnextv2_femto.fcmae_ft_in1k,79.338,20.662,94.560,5.440,5.23,288,0.950,bicubic resnet101.gluon_in1k,79.310,20.690,94.522,5.478,44.55,224,0.875,bicubic resnext101_32x8d.tv_in1k,79.310,20.690,94.520,5.480,88.79,224,0.875,bilinear nf_regnet_b1.ra2_in1k,79.308,20.692,94.740,5.260,10.22,288,0.900,bicubic hrnet_w48.ms_in1k,79.306,20.694,94.516,5.484,77.47,224,0.875,bilinear tf_efficientnet_cc_b1_8e.in1k,79.302,20.698,94.374,5.626,39.72,240,0.882,bicubic tf_efficientnet_b1.ap_in1k,79.276,20.724,94.312,5.688,7.79,240,0.882,bicubic eca_botnext26ts_256.c1_in1k,79.268,20.732,94.606,5.394,10.59,256,0.950,bicubic resnext50_32x4d.a3_in1k,79.268,20.732,94.306,5.694,25.03,224,0.950,bicubic fastvit_t12.apple_in1k,79.264,20.736,94.562,5.438,7.55,256,0.900,bicubic botnet26t_256.c1_in1k,79.258,20.742,94.532,5.468,12.49,256,0.950,bicubic efficientvit_b1.r224_in1k,79.252,20.748,94.304,5.696,9.10,224,0.950,bicubic efficientnet_em.ra2_in1k,79.244,20.756,94.794,5.206,6.90,240,0.882,bicubic resnet50.fb_ssl_yfcc100m_ft_in1k,79.230,20.770,94.826,5.174,25.56,224,0.875,bilinear regnety_040.pycls_in1k,79.220,20.780,94.656,5.344,20.65,224,0.875,bicubic res2net101_26w_4s.in1k,79.200,20.800,94.436,5.564,45.21,224,0.875,bilinear regnetx_080.pycls_in1k,79.198,20.802,94.554,5.446,39.57,224,0.875,bicubic pit_xs_distilled_224.in1k,79.180,20.820,94.366,5.634,11.00,224,0.900,bicubic tiny_vit_5m_224.in1k,79.170,20.830,94.794,5.206,5.39,224,0.950,bicubic vit_base_patch16_224.augreg_in1k,79.154,20.846,94.090,5.910,86.57,224,0.900,bicubic fbnetv3_b.ra2_in1k,79.146,20.854,94.744,5.256,8.60,256,0.950,bilinear halonet26t.a1h_in1k,79.106,20.894,94.306,5.694,12.48,256,0.950,bicubic coat_lite_mini.in1k,79.102,20.898,94.608,5.392,11.01,224,0.900,bicubic lambda_resnet26t.c1_in1k,79.088,20.912,94.590,5.410,10.96,256,0.940,bicubic resnet50d.gluon_in1k,79.078,20.922,94.466,5.534,25.58,224,0.875,bicubic legacy_seresnext50_32x4d.in1k,79.076,20.924,94.432,5.568,27.56,224,0.875,bilinear regnetx_064.pycls_in1k,79.066,20.934,94.460,5.540,26.21,224,0.875,bicubic repvit_m0_9.dist_450e_in1k,79.066,20.934,94.380,5.620,5.49,224,0.950,bicubic legacy_xception.tf_in1k,79.040,20.960,94.382,5.618,22.86,299,0.897,bicubic resnet50.am_in1k,79.002,20.998,94.398,5.602,25.56,224,0.875,bicubic mixnet_l.ft_in1k,78.966,21.034,94.182,5.818,7.33,224,0.875,bicubic lambda_resnet26rpt_256.c1_in1k,78.964,21.036,94.436,5.564,10.99,256,0.940,bicubic res2net50_26w_8s.in1k,78.942,21.058,94.294,5.706,48.40,224,0.875,bilinear hrnet_w40.ms_in1k,78.932,21.068,94.464,5.536,57.56,224,0.875,bilinear convnext_femto_ols.d1_in1k,78.924,21.076,94.526,5.474,5.23,288,0.950,bicubic convnext_tiny.fb_in22k_ft_in1k,78.898,21.102,94.674,5.326,28.59,288,1.000,bicubic hrnet_w44.ms_in1k,78.894,21.106,94.364,5.636,67.06,224,0.875,bilinear regnety_032.pycls_in1k,78.876,21.124,94.408,5.592,19.44,224,0.875,bicubic vit_small_patch16_224.augreg_in1k,78.848,21.152,94.288,5.712,22.05,224,0.900,bicubic wide_resnet101_2.tv_in1k,78.842,21.158,94.282,5.718,126.89,224,0.875,bilinear tf_efficientnet_b1.aa_in1k,78.828,21.172,94.200,5.800,7.79,240,0.882,bicubic seresnext26d_32x4d.bt_in1k,78.814,21.186,94.240,5.760,16.81,288,0.950,bicubic repghostnet_200.in1k,78.806,21.194,94.330,5.670,9.80,224,0.875,bicubic inception_v3.gluon_in1k,78.802,21.198,94.376,5.624,23.83,299,0.875,bicubic efficientnet_b1.ft_in1k,78.800,21.200,94.342,5.658,7.79,256,1.000,bicubic repvgg_b2.rvgg_in1k,78.792,21.208,94.420,5.580,89.02,224,0.875,bilinear tf_mixnet_l.in1k,78.776,21.224,94.002,5.998,7.33,224,0.875,bicubic vit_base_patch32_384.augreg_in1k,78.756,21.244,94.226,5.774,88.30,384,1.000,bicubic seresnext26t_32x4d.bt_in1k,78.744,21.256,94.312,5.688,16.81,288,0.950,bicubic resnet50d.a3_in1k,78.720,21.280,94.232,5.768,25.58,224,0.950,bicubic convnext_femto.d1_in1k,78.716,21.284,94.430,5.570,5.22,288,0.950,bicubic resnet50s.gluon_in1k,78.714,21.286,94.242,5.758,25.68,224,0.875,bicubic dla169.in1k,78.708,21.292,94.344,5.656,53.39,224,0.875,bilinear pvt_v2_b1.in1k,78.704,21.296,94.502,5.498,14.01,224,0.900,bicubic tf_efficientnet_b0.ns_jft_in1k,78.668,21.332,94.372,5.628,5.29,224,0.875,bicubic regnety_008_tv.tv2_in1k,78.666,21.334,94.390,5.610,6.43,224,0.965,bicubic legacy_seresnet152.in1k,78.660,21.340,94.370,5.630,66.82,224,0.875,bilinear repvit_m0_9.dist_300e_in1k,78.658,21.342,94.116,5.884,5.49,224,0.950,bicubic xcit_tiny_12_p16_224.fb_dist_in1k,78.574,21.426,94.198,5.802,6.72,224,1.000,bicubic res2net50_26w_6s.in1k,78.568,21.432,94.122,5.878,37.05,224,0.875,bilinear tf_efficientnet_b1.in1k,78.562,21.438,94.094,5.906,7.79,240,0.882,bicubic repvit_m1.dist_in1k,78.538,21.462,94.070,5.930,5.49,224,0.950,bicubic dla102x.in1k,78.512,21.488,94.236,5.764,26.31,224,0.875,bilinear xception41.tf_in1k,78.504,21.496,94.276,5.724,26.97,299,0.903,bicubic levit_conv_128.fb_dist_in1k,78.494,21.506,94.008,5.992,9.21,224,0.900,bicubic regnetx_040.pycls_in1k,78.492,21.508,94.242,5.758,22.12,224,0.875,bicubic levit_128.fb_dist_in1k,78.490,21.510,94.012,5.988,9.21,224,0.900,bicubic resnest26d.gluon_in1k,78.482,21.518,94.294,5.706,17.07,224,0.875,bilinear wide_resnet50_2.tv_in1k,78.476,21.524,94.088,5.912,68.88,224,0.875,bilinear dla60_res2net.in1k,78.464,21.536,94.198,5.802,20.85,224,0.875,bilinear hrnet_w32.ms_in1k,78.442,21.558,94.190,5.810,41.23,224,0.875,bilinear dla60_res2next.in1k,78.440,21.560,94.144,5.856,17.03,224,0.875,bilinear resnet34d.ra2_in1k,78.436,21.564,94.344,5.656,21.82,288,0.950,bicubic coat_tiny.in1k,78.426,21.574,94.048,5.952,5.50,224,0.900,bicubic vit_tiny_patch16_384.augreg_in21k_ft_in1k,78.424,21.576,94.542,5.458,5.79,384,1.000,bicubic gcresnext26ts.ch_in1k,78.414,21.586,94.036,5.964,10.48,288,1.000,bicubic selecsls60b.in1k,78.412,21.588,94.168,5.832,32.77,224,0.875,bicubic legacy_seresnet101.in1k,78.386,21.614,94.262,5.738,49.33,224,0.875,bilinear cait_xxs24_224.fb_dist_in1k,78.384,21.616,94.316,5.684,11.96,224,1.000,bicubic repvgg_b1.rvgg_in1k,78.368,21.632,94.096,5.904,57.42,224,0.875,bilinear tf_efficientnetv2_b0.in1k,78.358,21.642,94.014,5.986,7.14,224,0.875,bicubic resnet26t.ra2_in1k,78.328,21.672,94.124,5.876,16.01,320,1.000,bicubic resnet152.tv_in1k,78.322,21.678,94.046,5.954,60.19,224,0.875,bilinear mobilevit_s.cvnets_in1k,78.312,21.688,94.148,5.852,5.58,256,0.900,bicubic seresnext26ts.ch_in1k,78.270,21.730,94.092,5.908,10.39,288,1.000,bicubic bat_resnext26ts.ch_in1k,78.252,21.748,94.098,5.902,10.73,256,0.900,bicubic res2next50.in1k,78.242,21.758,93.892,6.108,24.67,224,0.875,bilinear efficientnet_b1_pruned.in1k,78.240,21.760,93.834,6.166,6.33,240,0.882,bicubic dla60x.in1k,78.236,21.764,94.026,5.974,17.35,224,0.875,bilinear hrnet_w30.ms_in1k,78.196,21.804,94.222,5.778,37.71,224,0.875,bilinear hrnet_w18_small_v2.gluon_in1k,78.190,21.810,93.902,6.098,15.60,224,0.875,bicubic pit_xs_224.in1k,78.176,21.824,94.162,5.838,10.62,224,0.900,bicubic regnetx_032.pycls_in1k,78.168,21.832,94.082,5.918,15.30,224,0.875,bicubic visformer_tiny.in1k,78.160,21.840,94.166,5.834,10.32,224,0.900,bicubic res2net50_14w_8s.in1k,78.158,21.842,93.846,6.154,25.06,224,0.875,bilinear tf_efficientnet_em.in1k,78.126,21.874,94.048,5.952,6.90,240,0.882,bicubic hrnet_w18.ms_aug_in1k,78.122,21.878,94.054,5.946,21.30,224,0.950,bilinear hardcorenas_f.miil_green_in1k,78.096,21.904,93.802,6.198,8.20,224,0.875,bilinear mobilevitv2_100.cvnets_in1k,78.080,21.920,94.170,5.830,4.90,256,0.888,bicubic efficientnet_es.ra_in1k,78.058,21.942,93.926,6.074,5.44,224,0.875,bicubic resnet50.a3_in1k,78.048,21.952,93.780,6.220,25.56,224,0.950,bicubic gmixer_24_224.ra3_in1k,78.026,21.974,93.668,6.332,24.72,224,0.875,bicubic dla102.in1k,78.024,21.976,93.934,6.066,33.27,224,0.875,bilinear resnet50c.gluon_in1k,78.006,21.994,93.992,6.008,25.58,224,0.875,bicubic poolformerv2_s12.sail_in1k,78.002,21.998,93.864,6.136,11.89,224,1.000,bicubic eca_resnext26ts.ch_in1k,78.000,22.000,93.926,6.074,10.30,288,1.000,bicubic mobileone_s3.apple_in1k,77.992,22.008,93.914,6.086,10.17,224,0.900,bilinear selecsls60.in1k,77.988,22.012,93.830,6.170,30.67,224,0.875,bicubic resmlp_12_224.fb_distilled_in1k,77.954,22.046,93.560,6.440,15.35,224,0.875,bicubic res2net50_26w_4s.in1k,77.950,22.050,93.852,6.148,25.70,224,0.875,bilinear mobilenetv3_large_100.miil_in21k_ft_in1k,77.920,22.080,92.914,7.086,5.48,224,0.875,bilinear resnet34.a1_in1k,77.918,22.082,93.764,6.236,21.80,288,1.000,bicubic tf_efficientnet_cc_b0_8e.in1k,77.904,22.096,93.662,6.338,24.01,224,0.875,bicubic regnety_016.pycls_in1k,77.868,22.132,93.718,6.282,11.20,224,0.875,bicubic rexnet_100.nav_in1k,77.856,22.144,93.866,6.134,4.80,224,0.875,bicubic inception_v3.tf_in1k,77.856,22.144,93.640,6.360,23.83,299,0.875,bicubic ghostnetv2_160.in1k,77.832,22.168,93.940,6.060,12.39,224,0.875,bicubic xcit_nano_12_p8_384.fb_dist_in1k,77.820,22.180,94.040,5.960,3.05,384,1.000,bicubic hardcorenas_e.miil_green_in1k,77.790,22.210,93.700,6.300,8.07,224,0.875,bilinear convnextv2_atto.fcmae_ft_in1k,77.760,22.240,93.726,6.274,3.71,288,0.950,bicubic ese_vovnet19b_dw.ra_in1k,77.744,22.256,93.784,6.216,6.54,288,0.950,bicubic efficientnet_b0.ra_in1k,77.694,22.306,93.532,6.468,5.29,224,0.875,bicubic tinynet_a.in1k,77.648,22.352,93.540,6.460,6.19,192,0.875,bicubic legacy_seresnet50.in1k,77.644,22.356,93.758,6.242,28.09,224,0.875,bilinear cs3darknet_m.c2ns_in1k,77.634,22.366,94.016,5.984,9.31,288,0.950,bicubic resnext50_32x4d.tv_in1k,77.622,22.378,93.696,6.304,25.03,224,0.875,bilinear inception_v3.tf_adv_in1k,77.592,22.408,93.730,6.270,23.83,299,0.875,bicubic repvgg_b1g4.rvgg_in1k,77.588,22.412,93.836,6.164,39.97,224,0.875,bilinear resnet50.gluon_in1k,77.582,22.418,93.720,6.280,25.56,224,0.875,bicubic coat_lite_tiny.in1k,77.520,22.480,93.922,6.078,5.72,224,0.900,bicubic dpn68b.mx_in1k,77.518,22.482,93.852,6.148,12.61,224,0.875,bicubic mobileone_s2.apple_in1k,77.516,22.484,93.668,6.332,7.88,224,0.900,bilinear res2net50_48w_2s.in1k,77.514,22.486,93.550,6.450,25.29,224,0.875,bilinear tf_efficientnet_lite2.in1k,77.462,22.538,93.752,6.248,6.09,260,0.890,bicubic repghostnet_150.in1k,77.460,22.540,93.510,6.490,6.58,224,0.875,bicubic hardcorenas_d.miil_green_in1k,77.434,22.566,93.490,6.510,7.50,224,0.875,bilinear inception_v3.tv_in1k,77.434,22.566,93.474,6.526,23.83,299,0.875,bicubic resnet26d.bt_in1k,77.408,22.592,93.638,6.362,16.01,288,0.950,bicubic resnet101.tv_in1k,77.380,22.620,93.546,6.454,44.55,224,0.875,bilinear densenet161.tv_in1k,77.358,22.642,93.642,6.358,28.68,224,0.875,bicubic densenetblur121d.ra_in1k,77.322,22.678,93.788,6.212,8.00,288,0.950,bicubic mobilenetv2_120d.ra_in1k,77.308,22.692,93.502,6.498,5.83,224,0.875,bicubic regnetx_008.tv2_in1k,77.306,22.694,93.664,6.336,7.26,224,0.965,bicubic tf_efficientnet_cc_b0_4e.in1k,77.302,22.698,93.336,6.664,13.31,224,0.875,bicubic densenet201.tv_in1k,77.286,22.714,93.480,6.520,20.01,224,0.875,bicubic cs3darknet_focus_m.c2ns_in1k,77.284,22.716,93.966,6.034,9.30,288,0.950,bicubic mixnet_m.ft_in1k,77.260,22.740,93.418,6.582,5.01,224,0.875,bicubic poolformer_s12.sail_in1k,77.240,22.760,93.532,6.468,11.92,224,0.900,bicubic convnext_atto_ols.a2_in1k,77.216,22.784,93.676,6.324,3.70,288,0.950,bicubic resnext26ts.ra2_in1k,77.178,22.822,93.464,6.536,10.30,288,1.000,bicubic fastvit_t8.apple_dist_in1k,77.176,22.824,93.298,6.702,4.03,256,0.900,bicubic selecsls42b.in1k,77.170,22.830,93.392,6.608,32.46,224,0.875,bicubic resnet34.a2_in1k,77.158,22.842,93.274,6.726,21.80,288,1.000,bicubic xcit_tiny_12_p16_224.fb_in1k,77.140,22.860,93.716,6.284,6.72,224,1.000,bicubic legacy_seresnext26_32x4d.in1k,77.108,22.892,93.314,6.686,16.79,224,0.875,bicubic tf_efficientnet_b0.ap_in1k,77.090,22.910,93.262,6.738,5.29,224,0.875,bicubic hardcorenas_c.miil_green_in1k,77.066,22.934,93.162,6.838,5.52,224,0.875,bilinear efficientvit_m5.r224_in1k,77.058,22.942,93.184,6.816,12.47,224,0.875,bicubic dla60.in1k,77.046,22.954,93.318,6.682,22.04,224,0.875,bilinear seresnet50.a3_in1k,77.026,22.974,93.072,6.928,28.09,224,0.950,bicubic convnext_atto.d2_in1k,77.008,22.992,93.702,6.298,3.70,288,0.950,bicubic crossvit_9_dagger_240.in1k,76.978,23.022,93.618,6.382,8.78,240,0.875,bicubic tf_mixnet_m.in1k,76.954,23.046,93.154,6.846,5.01,224,0.875,bicubic convmixer_1024_20_ks9_p14.in1k,76.936,23.064,93.350,6.650,24.38,224,0.960,bicubic regnetx_016.pycls_in1k,76.924,23.076,93.416,6.584,9.19,224,0.875,bicubic skresnet34.ra_in1k,76.910,23.090,93.316,6.684,22.28,224,0.875,bicubic gernet_s.idstcv_in1k,76.910,23.090,93.144,6.856,8.17,224,0.875,bilinear tf_efficientnet_b0.aa_in1k,76.844,23.156,93.218,6.782,5.29,224,0.875,bicubic ghostnetv2_130.in1k,76.756,23.244,93.362,6.638,8.96,224,0.875,bicubic hrnet_w18.ms_in1k,76.752,23.248,93.444,6.556,21.30,224,0.875,bilinear resmlp_12_224.fb_in1k,76.648,23.352,93.178,6.822,15.35,224,0.875,bicubic tf_efficientnet_lite1.in1k,76.644,23.356,93.224,6.776,5.42,240,0.882,bicubic mixer_b16_224.goog_in21k_ft_in1k,76.602,23.398,92.224,7.776,59.88,224,0.875,bicubic tf_efficientnet_es.in1k,76.598,23.402,93.202,6.798,5.44,224,0.875,bicubic hardcorenas_b.miil_green_in1k,76.548,23.452,92.762,7.238,5.18,224,0.875,bilinear tf_efficientnet_b0.in1k,76.530,23.470,93.008,6.992,5.29,224,0.875,bicubic levit_128s.fb_dist_in1k,76.526,23.474,92.872,7.128,7.78,224,0.900,bicubic levit_conv_128s.fb_dist_in1k,76.520,23.480,92.866,7.134,7.78,224,0.900,bicubic mobilenetv2_140.ra_in1k,76.516,23.484,92.988,7.012,6.11,224,0.875,bicubic densenet121.ra_in1k,76.500,23.500,93.368,6.632,7.98,288,0.950,bicubic resnet34.bt_in1k,76.480,23.520,93.354,6.646,21.80,288,0.950,bicubic repvgg_a2.rvgg_in1k,76.458,23.542,93.002,6.998,28.21,224,0.875,bilinear repghostnet_130.in1k,76.376,23.624,92.892,7.108,5.48,224,0.875,bicubic resnet26.bt_in1k,76.366,23.634,93.180,6.820,16.00,288,0.950,bicubic dpn68.mx_in1k,76.346,23.654,93.008,6.992,12.61,224,0.875,bicubic xcit_nano_12_p8_224.fb_dist_in1k,76.332,23.668,93.098,6.902,3.05,224,1.000,bicubic regnety_008.pycls_in1k,76.302,23.698,93.062,6.938,6.26,224,0.875,bicubic fastvit_t8.apple_in1k,76.174,23.826,93.052,6.948,4.03,256,0.900,bicubic resnet50.tv_in1k,76.128,23.872,92.858,7.142,25.56,224,0.875,bilinear efficientformerv2_s0.snap_dist_in1k,76.114,23.886,92.858,7.142,3.60,224,0.950,bicubic vit_small_patch32_224.augreg_in21k_ft_in1k,75.994,24.006,93.270,6.730,22.88,224,0.900,bicubic mixnet_s.ft_in1k,75.994,24.006,92.800,7.200,4.13,224,0.875,bicubic vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,75.960,24.040,93.262,6.738,6.36,384,1.000,bicubic hardcorenas_a.miil_green_in1k,75.938,24.062,92.508,7.492,5.26,224,0.875,bilinear densenet169.tv_in1k,75.900,24.100,93.028,6.972,14.15,224,0.875,bicubic mobileone_s1.apple_in1k,75.786,24.214,92.792,7.208,4.83,224,0.900,bilinear mobilenetv3_large_100.ra_in1k,75.766,24.234,92.538,7.462,5.48,224,0.875,bicubic edgenext_x_small.in1k,75.688,24.312,92.766,7.234,2.34,288,1.000,bicubic tf_mixnet_s.in1k,75.652,24.348,92.640,7.360,4.13,224,0.875,bicubic mobilenetv3_rw.rmsp_in1k,75.620,24.380,92.704,7.296,5.48,224,0.875,bicubic mobilevitv2_075.cvnets_in1k,75.608,24.392,92.744,7.256,2.87,256,0.888,bicubic regnety_004.tv2_in1k,75.594,24.406,92.700,7.300,4.34,224,0.965,bicubic tf_mobilenetv3_large_100.in1k,75.516,24.484,92.594,7.406,5.48,224,0.875,bilinear resnest14d.gluon_in1k,75.508,24.492,92.508,7.492,10.61,224,0.875,bilinear efficientnet_lite0.ra_in1k,75.482,24.518,92.520,7.480,4.65,224,0.875,bicubic vit_tiny_patch16_224.augreg_in21k_ft_in1k,75.462,24.538,92.844,7.156,5.72,224,0.900,bicubic xcit_nano_12_p16_384.fb_dist_in1k,75.458,24.542,92.698,7.302,3.05,384,1.000,bicubic semnasnet_100.rmsp_in1k,75.450,24.550,92.598,7.402,3.89,224,0.875,bicubic regnety_006.pycls_in1k,75.268,24.732,92.526,7.474,6.06,224,0.875,bicubic ghostnetv2_100.in1k,75.166,24.834,92.354,7.646,6.16,224,0.875,bicubic repvgg_b0.rvgg_in1k,75.144,24.856,92.416,7.584,15.82,224,0.875,bilinear fbnetc_100.rmsp_in1k,75.130,24.870,92.388,7.612,5.57,224,0.875,bilinear hrnet_w18_small_v2.ms_in1k,75.110,24.890,92.416,7.584,15.60,224,0.875,bilinear repghostnet_111.in1k,75.056,24.944,92.192,7.808,4.54,224,0.875,bicubic mobilenetv2_110d.ra_in1k,75.054,24.946,92.184,7.816,4.52,224,0.875,bicubic regnetx_008.pycls_in1k,75.028,24.972,92.338,7.662,7.26,224,0.875,bicubic efficientnet_es_pruned.in1k,75.006,24.994,92.444,7.556,5.44,224,0.875,bicubic tinynet_b.in1k,74.978,25.022,92.186,7.814,3.73,188,0.875,bicubic vit_base_patch32_224.augreg_in1k,74.894,25.106,91.778,8.222,88.22,224,0.900,bicubic tf_efficientnet_lite0.in1k,74.832,25.168,92.170,7.830,4.65,224,0.875,bicubic legacy_seresnet34.in1k,74.802,25.198,92.126,7.874,21.96,224,0.875,bilinear densenet121.tv_in1k,74.764,25.236,92.154,7.846,7.98,224,0.875,bicubic mnasnet_100.rmsp_in1k,74.652,25.348,92.122,7.878,4.38,224,0.875,bicubic dla34.in1k,74.640,25.360,92.066,7.934,15.74,224,0.875,bilinear mobilevit_xs.cvnets_in1k,74.634,25.366,92.348,7.652,2.32,256,0.900,bicubic regnetx_004_tv.tv2_in1k,74.600,25.400,92.170,7.830,5.50,224,0.965,bicubic resnet34.gluon_in1k,74.580,25.420,91.982,8.018,21.80,224,0.875,bicubic deit_tiny_distilled_patch16_224.fb_in1k,74.504,25.496,91.890,8.110,5.91,224,0.900,bicubic repvgg_a1.rvgg_in1k,74.462,25.538,91.856,8.144,14.09,224,0.875,bilinear efficientvit_m4.r224_in1k,74.368,25.632,91.980,8.020,8.80,224,0.875,bicubic pit_ti_distilled_224.in1k,74.256,25.744,91.952,8.048,5.10,224,0.900,bicubic vgg19_bn.tv_in1k,74.216,25.784,91.844,8.156,143.68,224,0.875,bilinear repghostnet_100.in1k,74.206,25.794,91.542,8.458,4.07,224,0.875,bicubic spnasnet_100.rmsp_in1k,74.094,25.906,91.820,8.180,4.42,224,0.875,bilinear regnety_004.pycls_in1k,74.026,25.974,91.748,8.252,4.34,224,0.875,bicubic crossvit_9_240.in1k,73.960,26.040,91.962,8.038,8.55,240,0.875,bicubic ghostnet_100.in1k,73.958,26.042,91.532,8.468,5.18,224,0.875,bicubic hrnet_w18_small.gluon_in1k,73.920,26.080,91.194,8.806,13.19,224,0.875,bicubic xcit_nano_12_p8_224.fb_in1k,73.910,26.090,92.168,7.832,3.05,224,1.000,bicubic regnetx_006.pycls_in1k,73.868,26.132,91.678,8.322,6.20,224,0.875,bicubic resnet18d.ra2_in1k,73.794,26.206,91.838,8.162,11.71,288,0.950,bicubic vit_base_patch32_224.sam_in1k,73.694,26.306,91.014,8.986,88.22,224,0.900,bicubic tf_mobilenetv3_large_075.in1k,73.430,26.570,91.352,8.648,3.99,224,0.875,bilinear efficientvit_m3.r224_in1k,73.374,26.626,91.348,8.652,6.90,224,0.875,bicubic vgg16_bn.tv_in1k,73.370,26.630,91.514,8.486,138.37,224,0.875,bilinear crossvit_tiny_240.in1k,73.340,26.660,91.908,8.092,7.01,240,0.875,bicubic resnet34.tv_in1k,73.306,26.694,91.420,8.580,21.80,224,0.875,bilinear resnet18.fb_swsl_ig1b_ft_in1k,73.288,26.712,91.730,8.270,11.69,224,0.875,bilinear resnet18.a1_in1k,73.158,26.842,91.026,8.974,11.69,288,1.000,bicubic convit_tiny.fb_in1k,73.112,26.888,91.712,8.288,5.71,224,0.875,bicubic skresnet18.ra_in1k,73.034,26.966,91.172,8.828,11.96,224,0.875,bicubic semnasnet_075.rmsp_in1k,73.004,26.996,91.140,8.860,2.91,224,0.875,bicubic resnet34.a3_in1k,72.970,27.030,91.106,8.894,21.80,224,0.950,bicubic mobilenetv2_100.ra_in1k,72.968,27.032,91.016,8.984,3.50,224,0.875,bicubic pit_ti_224.in1k,72.910,27.090,91.404,8.596,4.85,224,0.900,bicubic resnet18.fb_ssl_yfcc100m_ft_in1k,72.598,27.402,91.416,8.584,11.69,224,0.875,bilinear repvgg_a0.rvgg_in1k,72.408,27.592,90.492,9.508,9.11,224,0.875,bilinear regnetx_004.pycls_in1k,72.402,27.598,90.826,9.174,5.16,224,0.875,bicubic vgg19.tv_in1k,72.378,27.622,90.874,9.126,143.67,224,0.875,bilinear resnet18.a2_in1k,72.372,27.628,90.596,9.404,11.69,288,1.000,bicubic hrnet_w18_small.ms_in1k,72.336,27.664,90.680,9.320,13.19,224,0.875,bilinear xcit_nano_12_p16_224.fb_dist_in1k,72.310,27.690,90.860,9.140,3.05,224,1.000,bicubic tf_mobilenetv3_large_minimal_100.in1k,72.264,27.736,90.640,9.360,3.92,224,0.875,bilinear resnet14t.c3_in1k,72.254,27.746,90.306,9.694,10.08,224,0.950,bicubic repghostnet_080.in1k,72.212,27.788,90.484,9.516,3.28,224,0.875,bicubic deit_tiny_patch16_224.fb_in1k,72.170,27.830,91.116,8.884,5.72,224,0.900,bicubic lcnet_100.ra2_in1k,72.102,27.898,90.354,9.646,2.95,224,0.875,bicubic mixer_l16_224.goog_in21k_ft_in1k,72.054,27.946,87.674,12.326,208.20,224,0.875,bicubic edgenext_xx_small.in1k,71.878,28.122,90.552,9.448,1.33,288,1.000,bicubic vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,71.798,28.202,90.824,9.176,6.34,224,0.900,bicubic legacy_seresnet18.in1k,71.760,28.240,90.332,9.668,11.78,224,0.875,bicubic vgg16.tv_in1k,71.592,28.408,90.384,9.616,138.36,224,0.875,bilinear vgg13_bn.tv_in1k,71.588,28.412,90.378,9.622,133.05,224,0.875,bilinear mobileone_s0.apple_in1k,71.402,28.598,89.842,10.158,5.29,224,0.875,bilinear efficientvit_b0.r224_in1k,71.398,28.602,89.428,10.572,3.41,224,0.950,bicubic tinynet_c.in1k,71.242,28.758,89.732,10.268,2.46,184,0.875,bicubic resnet18.gluon_in1k,70.834,29.166,89.756,10.244,11.69,224,0.875,bicubic efficientvit_m2.r224_in1k,70.814,29.186,90.142,9.858,4.19,224,0.875,bicubic pvt_v2_b0.in1k,70.660,29.340,90.196,9.804,3.67,224,0.900,bicubic vgg11_bn.tv_in1k,70.382,29.618,89.808,10.192,132.87,224,0.875,bilinear regnety_002.pycls_in1k,70.280,29.720,89.530,10.470,3.16,224,0.875,bicubic mobilevitv2_050.cvnets_in1k,70.148,29.852,89.918,10.082,1.37,256,0.888,bicubic xcit_nano_12_p16_224.fb_in1k,69.962,30.038,89.762,10.238,3.05,224,1.000,bicubic vgg13.tv_in1k,69.932,30.068,89.250,10.750,133.05,224,0.875,bilinear resnet18.tv_in1k,69.760,30.240,89.070,10.930,11.69,224,0.875,bilinear vgg11.tv_in1k,69.022,30.978,88.624,11.376,132.86,224,0.875,bilinear mobilevit_xxs.cvnets_in1k,68.918,31.082,88.946,11.054,1.27,256,0.900,bicubic repghostnet_058.in1k,68.914,31.086,88.420,11.580,2.55,224,0.875,bicubic lcnet_075.ra2_in1k,68.782,31.218,88.360,11.640,2.36,224,0.875,bicubic regnetx_002.pycls_in1k,68.752,31.248,88.542,11.458,2.68,224,0.875,bicubic resnet10t.c3_in1k,68.364,31.636,88.036,11.964,5.44,224,0.950,bicubic efficientvit_m1.r224_in1k,68.306,31.694,88.670,11.330,2.98,224,0.875,bicubic resnet18.a3_in1k,68.252,31.748,88.172,11.828,11.69,224,0.950,bicubic tf_mobilenetv3_small_100.in1k,67.922,32.078,87.672,12.328,2.54,224,0.875,bilinear dla60x_c.in1k,67.912,32.088,88.432,11.568,1.32,224,0.875,bilinear mobilenetv3_small_100.lamb_in1k,67.658,32.342,87.636,12.364,2.54,224,0.875,bicubic tinynet_d.in1k,66.972,33.028,87.066,12.934,2.34,152,0.875,bicubic repghostnet_050.in1k,66.966,33.034,86.920,13.080,2.31,224,0.875,bicubic mnasnet_small.lamb_in1k,66.196,33.804,86.504,13.496,2.03,224,0.875,bicubic dla46x_c.in1k,65.992,34.008,86.974,13.026,1.07,224,0.875,bilinear mobilenetv2_050.lamb_in1k,65.948,34.052,86.084,13.916,1.97,224,0.875,bicubic tf_mobilenetv3_small_075.in1k,65.726,34.274,86.132,13.868,2.04,224,0.875,bilinear mobilenetv3_small_075.lamb_in1k,65.236,34.764,85.446,14.554,2.04,224,0.875,bicubic dla46_c.in1k,64.872,35.128,86.298,13.702,1.30,224,0.875,bilinear efficientvit_m0.r224_in1k,63.270,36.730,85.176,14.824,2.35,224,0.875,bicubic lcnet_050.ra2_in1k,63.138,36.862,84.382,15.618,1.88,224,0.875,bicubic tf_mobilenetv3_small_minimal_100.in1k,62.894,37.106,84.238,15.762,2.04,224,0.875,bilinear tinynet_e.in1k,59.866,40.134,81.762,18.238,2.04,106,0.875,bicubic mobilenetv3_small_050.lamb_in1k,57.916,42.084,80.180,19.820,1.59,224,0.875,bicubic
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nchw-pt210-cu121-rtx3090.csv
model,infer_img_size,infer_batch_size,infer_samples_per_sec,infer_step_time,infer_gmacs,infer_macts,param_count tinynet_e,106,1024.0,50604.03,20.225,0.03,0.69,2.04 mobilenetv3_small_050,224,1024.0,46069.42,22.217,0.03,0.92,1.59 lcnet_035,224,1024.0,41190.64,24.85,0.03,1.04,1.64 lcnet_050,224,1024.0,37663.82,27.178,0.05,1.26,1.88 mobilenetv3_small_075,224,1024.0,33398.64,30.649,0.05,1.3,2.04 efficientvit_m0,224,1024.0,32179.13,31.812,0.08,0.91,2.35 mobilenetv3_small_100,224,1024.0,29653.41,34.522,0.06,1.42,2.54 tf_mobilenetv3_small_minimal_100,224,1024.0,28352.57,36.106,0.06,1.41,2.04 tinynet_d,152,1024.0,27612.87,37.074,0.05,1.42,2.34 tf_mobilenetv3_small_075,224,1024.0,27505.95,37.218,0.05,1.3,2.04 tf_mobilenetv3_small_100,224,1024.0,24859.95,41.18,0.06,1.42,2.54 efficientvit_m1,224,1024.0,24836.87,41.219,0.17,1.33,2.98 lcnet_075,224,1024.0,24184.78,42.33,0.1,1.99,2.36 efficientvit_m2,224,1024.0,21907.95,46.731,0.2,1.47,4.19 mnasnet_small,224,1024.0,20764.95,49.303,0.07,2.16,2.03 levit_128s,224,1024.0,20669.44,49.531,0.31,1.88,7.78 lcnet_100,224,1024.0,19774.93,51.772,0.16,2.52,2.95 regnetx_002,224,1024.0,18945.55,54.04,0.2,2.16,2.68 resnet10t,176,1024.0,18840.28,54.342,0.7,1.51,5.44 efficientvit_m3,224,1024.0,18627.14,54.963,0.27,1.62,6.9 mobilenetv2_035,224,1024.0,18464.78,55.447,0.07,2.86,1.68 ghostnet_050,224,1024.0,17741.46,57.707,0.05,1.77,2.59 resnet18,160,1024.0,17592.15,58.198,0.93,1.27,11.69 regnety_002,224,1024.0,17571.32,58.267,0.2,2.17,3.16 levit_conv_128s,224,1024.0,17529.9,58.404,0.31,1.88,7.78 efficientvit_m4,224,1024.0,17446.52,58.683,0.3,1.7,8.8 repghostnet_050,224,1024.0,17090.91,59.904,0.05,2.02,2.31 efficientvit_b0,224,1024.0,16784.26,60.999,0.1,2.87,3.41 vit_tiny_r_s16_p8_224,224,1024.0,16479.31,62.128,0.43,1.85,6.34 vit_small_patch32_224,224,1024.0,15974.78,64.091,1.12,2.09,22.88 mnasnet_050,224,1024.0,15859.35,64.557,0.11,3.07,2.22 mobilenetv2_050,224,1024.0,14885.11,68.783,0.1,3.64,1.97 tinynet_c,184,1024.0,14726.2,69.525,0.11,2.87,2.46 pit_ti_224,224,1024.0,14628.51,69.989,0.5,2.75,4.85 pit_ti_distilled_224,224,1024.0,14546.3,70.385,0.51,2.77,5.1 semnasnet_050,224,1024.0,14351.42,71.341,0.11,3.44,2.08 levit_128,224,1024.0,14192.78,72.139,0.41,2.71,9.21 repghostnet_058,224,1024.0,13482.93,75.937,0.07,2.59,2.55 mixer_s32_224,224,1024.0,13082.53,78.262,1.0,2.28,19.1 cs3darknet_focus_s,256,1024.0,12838.86,79.748,0.69,2.7,3.27 regnetx_004,224,1024.0,12620.59,81.127,0.4,3.14,5.16 levit_conv_128,224,1024.0,12584.5,81.359,0.41,2.71,9.21 cs3darknet_s,256,1024.0,12531.56,81.703,0.72,2.97,3.28 lcnet_150,224,1024.0,12510.06,81.844,0.34,3.79,4.5 regnetx_004_tv,224,1024.0,12294.91,83.276,0.42,3.17,5.5 efficientvit_m5,224,1024.0,12067.16,84.847,0.53,2.41,12.47 mobilenetv3_large_075,224,1024.0,12041.45,85.029,0.16,4.0,3.99 levit_192,224,1024.0,11986.94,85.416,0.66,3.2,10.95 resnet10t,224,1024.0,11963.05,85.587,1.1,2.43,5.44 gernet_s,224,1024.0,11809.29,86.701,0.75,2.65,8.17 ese_vovnet19b_slim_dw,224,1024.0,11618.32,88.126,0.4,5.28,1.9 vit_tiny_patch16_224,224,1024.0,11270.42,90.846,1.08,4.12,5.72 deit_tiny_patch16_224,224,1024.0,11259.37,90.936,1.08,4.12,5.72 deit_tiny_distilled_patch16_224,224,1024.0,11217.54,91.275,1.09,4.15,5.91 repghostnet_080,224,1024.0,11079.58,92.412,0.1,3.22,3.28 mobilenetv3_rw,224,1024.0,10908.78,93.859,0.23,4.41,5.48 levit_conv_192,224,1024.0,10768.96,95.077,0.66,3.2,10.95 mobilenetv3_large_100,224,1024.0,10731.24,95.412,0.23,4.41,5.48 hardcorenas_a,224,1024.0,10620.31,96.408,0.23,4.38,5.26 tf_mobilenetv3_large_075,224,1024.0,10495.83,97.552,0.16,4.0,3.99 resnet14t,176,1024.0,10451.45,97.965,1.07,3.61,10.08 mnasnet_075,224,1024.0,10423.24,98.231,0.23,4.77,3.17 tf_mobilenetv3_large_minimal_100,224,1024.0,10369.07,98.745,0.22,4.4,3.92 resnet34,160,1024.0,10330.89,99.109,1.87,1.91,21.8 regnety_004,224,1024.0,9931.33,103.097,0.41,3.89,4.34 nf_regnet_b0,192,1024.0,9884.05,103.59,0.37,3.15,8.76 regnetx_006,224,1024.0,9823.29,104.232,0.61,3.98,6.2 hardcorenas_b,224,1024.0,9755.67,104.953,0.26,5.09,5.18 hardcorenas_c,224,1024.0,9572.88,106.958,0.28,5.01,5.52 ghostnet_100,224,1024.0,9528.83,107.453,0.15,3.55,5.18 tf_mobilenetv3_large_100,224,1024.0,9484.05,107.96,0.23,4.41,5.48 tinynet_b,188,1024.0,9358.37,109.409,0.21,4.44,3.73 mnasnet_100,224,1024.0,9357.9,109.416,0.33,5.46,4.38 tf_efficientnetv2_b0,192,1024.0,9316.15,109.906,0.54,3.51,7.14 repghostnet_100,224,1024.0,9303.14,110.06,0.15,3.98,4.07 mobilenetv2_075,224,1024.0,9280.78,110.325,0.22,5.86,2.64 resnet18,224,1024.0,9222.44,111.023,1.82,2.48,11.69 pit_xs_distilled_224,224,1024.0,9172.76,111.624,1.11,4.15,11.0 semnasnet_075,224,1024.0,9145.4,111.959,0.23,5.54,2.91 pit_xs_224,224,1024.0,9134.12,112.096,1.1,4.12,10.62 regnety_006,224,1024.0,9106.78,112.433,0.61,4.33,6.06 convnext_atto,224,1024.0,8993.29,113.851,0.55,3.81,3.7 hardcorenas_d,224,1024.0,8915.53,114.845,0.3,4.93,7.5 levit_256,224,1024.0,8893.96,115.124,1.13,4.23,18.89 seresnet18,224,1024.0,8718.39,117.442,1.82,2.49,11.78 convnext_atto_ols,224,1024.0,8549.03,119.769,0.58,4.11,3.7 mobilenetv2_100,224,1024.0,8479.08,120.757,0.31,6.68,3.5 legacy_seresnet18,224,1024.0,8452.0,121.144,1.82,2.49,11.78 spnasnet_100,224,1024.0,8438.72,121.334,0.35,6.03,4.42 repghostnet_111,224,1024.0,8382.7,122.146,0.18,4.38,4.54 semnasnet_100,224,1024.0,8351.88,122.597,0.32,6.23,3.89 dla46_c,224,1024.0,8209.51,124.721,0.58,4.5,1.3 repvgg_a0,224,1024.0,8124.8,126.024,1.52,3.59,9.11 levit_conv_256,224,1024.0,7997.32,128.032,1.13,4.23,18.89 edgenext_xx_small,256,1024.0,7955.06,128.711,0.26,3.33,1.33 regnetx_008,224,1024.0,7889.15,129.787,0.81,5.15,7.26 resnet18d,224,1024.0,7873.83,130.041,2.06,3.29,11.71 convnext_femto,224,1024.0,7867.13,130.151,0.79,4.57,5.22 ese_vovnet19b_slim,224,1024.0,7834.56,130.693,1.69,3.52,3.17 mobilevit_xxs,256,1024.0,7818.95,130.953,0.34,5.74,1.27 hardcorenas_f,224,1024.0,7811.68,131.075,0.35,5.57,8.2 hardcorenas_e,224,1024.0,7751.65,132.09,0.35,5.65,8.07 efficientnet_lite0,224,1024.0,7716.09,132.699,0.4,6.74,4.65 xcit_nano_12_p16_224,224,1024.0,7711.63,132.776,0.56,4.17,3.05 ghostnet_130,224,1024.0,7680.26,133.318,0.24,4.6,7.36 levit_256d,224,1024.0,7643.23,133.964,1.4,4.93,26.21 tf_efficientnetv2_b0,224,1024.0,7637.19,134.07,0.73,4.77,7.14 repghostnet_130,224,1024.0,7550.55,135.609,0.25,5.24,5.48 convnext_femto_ols,224,1024.0,7514.81,136.254,0.82,4.87,5.23 regnety_008,224,1024.0,7508.88,136.361,0.81,5.25,6.26 tinynet_a,192,1024.0,7458.0,137.291,0.35,5.41,6.19 fbnetc_100,224,1024.0,7362.02,139.082,0.4,6.51,5.57 tf_efficientnetv2_b1,192,1024.0,7241.64,141.394,0.76,4.59,8.14 crossvit_tiny_240,240,1024.0,7093.57,144.345,1.3,5.67,7.01 regnety_008_tv,224,1024.0,7067.28,144.882,0.84,5.42,6.43 mobilevitv2_050,256,1024.0,7057.9,145.075,0.48,8.04,1.37 crossvit_9_240,240,1024.0,6964.15,147.028,1.55,5.59,8.55 dla46x_c,224,1024.0,6837.04,149.761,0.54,5.66,1.07 tf_efficientnet_lite0,224,1024.0,6819.73,150.142,0.4,6.74,4.65 efficientnet_b0,224,1024.0,6721.47,152.337,0.4,6.75,5.29 rexnet_100,224,1024.0,6689.15,153.073,0.41,7.44,4.8 rexnetr_100,224,1024.0,6646.85,154.047,0.43,7.72,4.88 levit_conv_256d,224,1024.0,6618.0,154.719,1.4,4.93,26.21 repvit_m1,224,1024.0,6591.52,155.339,0.83,7.45,5.49 efficientnet_b1_pruned,240,1024.0,6583.2,155.537,0.4,6.21,6.33 repghostnet_150,224,1024.0,6564.41,155.982,0.32,6.0,6.58 mnasnet_140,224,1024.0,6559.1,156.108,0.6,7.71,7.12 efficientvit_b1,224,1024.0,6458.82,158.532,0.53,7.25,9.1 visformer_tiny,224,1024.0,6456.3,158.594,1.27,5.72,10.32 crossvit_9_dagger_240,240,1024.0,6436.13,159.091,1.68,6.03,8.78 resnet14t,224,1024.0,6404.13,159.886,1.69,5.8,10.08 dla60x_c,224,1024.0,6404.11,159.885,0.59,6.01,1.32 mobilenetv2_110d,224,1024.0,6387.15,160.311,0.45,8.71,4.52 ghostnetv2_100,224,1024.0,6375.73,160.599,0.18,4.55,6.16 regnetz_005,224,1024.0,6372.66,160.676,0.52,5.86,7.12 repvit_m0_9,224,1024.0,6295.33,162.649,0.83,7.45,5.49 edgenext_xx_small,288,1024.0,6241.41,164.053,0.33,4.21,1.33 fbnetv3_b,224,1024.0,6166.1,166.058,0.42,6.97,8.6 convnext_pico,224,1024.0,6145.95,166.603,1.37,6.1,9.05 cs3darknet_focus_m,256,1024.0,6145.46,166.616,1.98,4.89,9.3 pvt_v2_b0,224,1024.0,6126.38,167.135,0.53,7.01,3.67 tf_efficientnet_b0,224,1024.0,6026.91,169.894,0.4,6.75,5.29 nf_regnet_b0,256,1024.0,5970.36,171.503,0.64,5.58,8.76 resnetblur18,224,1024.0,5963.74,171.694,2.34,3.39,11.69 ese_vovnet19b_dw,224,1024.0,5956.2,171.911,1.34,8.25,6.54 hrnet_w18_small,224,1024.0,5950.21,172.083,1.61,5.72,13.19 resnet50,160,1024.0,5943.32,172.284,2.1,5.67,25.56 repvgg_a1,224,1024.0,5891.09,173.812,2.64,4.74,14.09 cs3darknet_m,256,1024.0,5871.36,174.395,2.08,5.28,9.31 convnext_pico_ols,224,1024.0,5852.38,174.961,1.43,6.5,9.06 vit_base_patch32_clip_224,224,1024.0,5768.1,177.517,4.37,4.19,88.22 tf_efficientnetv2_b2,208,1024.0,5753.76,177.96,1.06,6.0,10.1 vit_base_patch32_224,224,1024.0,5748.7,178.117,4.37,4.19,88.22 semnasnet_140,224,1024.0,5744.77,178.239,0.6,8.87,6.11 skresnet18,224,1024.0,5740.29,178.378,1.82,3.24,11.96 vit_tiny_r_s16_p8_384,384,1024.0,5663.72,180.79,1.25,5.39,6.36 resnet50d,160,1024.0,5651.35,181.185,2.22,6.08,25.58 resnet18,288,1024.0,5636.85,181.651,3.01,4.11,11.69 mobilenetv2_140,224,1024.0,5629.57,181.886,0.6,9.57,6.11 vit_small_patch32_384,384,1024.0,5499.31,186.195,3.26,6.07,22.92 convnext_atto,288,1024.0,5487.38,186.599,0.91,6.3,3.7 efficientnet_b0_gn,224,1024.0,5481.83,186.788,0.42,6.75,5.29 selecsls42,224,1024.0,5458.22,187.596,2.94,4.62,30.35 efficientnet_lite1,240,1024.0,5452.84,187.782,0.62,10.14,5.42 fbnetv3_d,224,1024.0,5449.6,187.893,0.52,8.5,10.31 pit_s_224,224,1024.0,5438.08,188.291,2.42,6.18,23.46 selecsls42b,224,1024.0,5414.81,189.1,2.98,4.62,32.46 resnet34,224,1024.0,5413.46,189.147,3.67,3.74,21.8 pit_s_distilled_224,224,1024.0,5407.14,189.368,2.45,6.22,24.04 efficientvit_b1,256,1024.0,5391.26,189.926,0.69,9.46,9.1 seresnet18,288,1024.0,5348.84,191.432,3.01,4.11,11.78 tf_efficientnetv2_b1,240,1024.0,5293.37,193.439,1.21,7.34,8.14 levit_384,224,1024.0,5286.23,193.7,2.36,6.26,39.13 convnextv2_atto,224,1024.0,5265.85,194.45,0.55,3.81,3.71 repvit_m1_0,224,1024.0,5259.32,194.683,1.13,8.69,7.3 seresnet50,160,1024.0,5236.4,195.543,2.1,5.69,28.09 convnext_atto_ols,288,1024.0,5201.4,196.86,0.96,6.8,3.7 gernet_m,224,1024.0,5195.05,197.1,3.02,5.24,21.14 fbnetv3_b,256,1024.0,5178.49,197.729,0.55,9.1,8.6 mixnet_s,224,1024.0,5129.76,199.608,0.25,6.25,4.13 repghostnet_200,224,1024.0,5125.91,199.759,0.54,7.96,9.8 vit_base_patch32_clip_quickgelu_224,224,1024.0,5125.16,199.787,4.37,4.19,87.85 seresnet34,224,1024.0,5104.13,200.612,3.67,3.74,21.96 repvit_m2,224,1024.0,5098.16,200.845,1.36,9.43,8.8 rexnetr_130,224,1024.0,5082.35,201.471,0.68,9.81,7.61 efficientnet_b0_g16_evos,224,1024.0,5016.04,204.134,1.01,7.42,8.11 ghostnetv2_130,224,1024.0,5011.79,204.307,0.28,5.9,8.96 edgenext_x_small,256,1024.0,4992.08,205.112,0.54,5.93,2.34 ecaresnet50t,160,1024.0,4989.39,205.225,2.21,6.04,25.57 tiny_vit_5m_224,224,1024.0,4963.53,206.293,1.18,9.32,12.08 rexnet_130,224,1024.0,4939.41,207.301,0.68,9.71,7.56 legacy_seresnet34,224,1024.0,4938.49,207.34,3.67,3.74,21.96 eva02_tiny_patch14_224,224,1024.0,4931.19,207.646,1.4,6.17,5.5 resnet34d,224,1024.0,4924.89,207.912,3.91,4.54,21.82 tf_efficientnet_lite1,240,1024.0,4918.8,208.17,0.62,10.14,5.42 mixer_b32_224,224,1024.0,4917.45,208.227,3.24,6.29,60.29 resnet50,176,1024.0,4914.58,208.348,2.62,6.92,25.56 resnetrs50,160,1024.0,4904.24,208.788,2.29,6.2,35.69 xcit_tiny_12_p16_224,224,1024.0,4900.19,208.961,1.24,6.29,6.72 repvit_m1_1,224,1024.0,4858.32,210.759,1.36,9.43,8.8 levit_conv_384,224,1024.0,4851.29,211.066,2.36,6.26,39.13 efficientnet_es_pruned,224,1024.0,4832.02,211.909,1.81,8.73,5.44 efficientnet_es,224,1024.0,4828.47,212.065,1.81,8.73,5.44 dla34,224,1024.0,4823.61,212.277,3.07,5.02,15.74 resnet26,224,1024.0,4806.46,213.036,2.36,7.35,16.0 resnet18d,288,1024.0,4806.17,213.049,3.41,5.43,11.71 resnext50_32x4d,160,1024.0,4797.48,213.435,2.17,7.35,25.03 tf_mixnet_s,224,1024.0,4783.68,214.05,0.25,6.25,4.13 convnext_femto,288,1024.0,4774.19,214.475,1.3,7.56,5.22 efficientnet_b1,224,1024.0,4707.45,217.516,0.59,9.36,7.79 gmlp_ti16_224,224,1024.0,4694.71,218.108,1.34,7.55,5.87 cs3darknet_focus_m,288,1024.0,4686.36,218.495,2.51,6.19,9.3 mobilenetv2_120d,224,1024.0,4673.25,219.108,0.69,11.97,5.83 selecsls60,224,1024.0,4656.74,219.885,3.59,5.52,30.67 selecsls60b,224,1024.0,4628.67,221.219,3.63,5.52,32.77 tf_efficientnet_es,224,1024.0,4617.85,221.737,1.81,8.73,5.44 resmlp_12_224,224,1024.0,4607.73,222.224,3.01,5.5,15.35 vit_small_patch16_224,224,1024.0,4586.65,223.246,4.25,8.25,22.05 deit_small_patch16_224,224,1024.0,4584.29,223.359,4.25,8.25,22.05 fbnetv3_d,256,1024.0,4567.33,224.19,0.68,11.1,10.31 gmixer_12_224,224,1024.0,4565.4,224.285,2.67,7.26,12.7 deit_small_distilled_patch16_224,224,1024.0,4564.97,224.306,4.27,8.29,22.44 convnext_femto_ols,288,1024.0,4561.96,224.454,1.35,8.06,5.23 efficientnet_b0_g8_gn,224,1024.0,4561.27,224.488,0.66,6.75,6.56 efficientnet_cc_b0_8e,224,1024.0,4542.29,225.426,0.42,9.42,24.01 efficientnet_cc_b0_4e,224,1024.0,4540.5,225.515,0.41,9.42,13.31 repvgg_b0,224,1024.0,4526.99,226.188,3.41,6.15,15.82 mixer_s16_224,224,1024.0,4518.8,226.598,3.79,5.97,18.53 cs3darknet_m,288,1024.0,4513.42,226.868,2.63,6.69,9.31 convnextv2_femto,224,1024.0,4509.16,227.082,0.79,4.57,5.23 regnetx_016,224,1024.0,4476.6,228.734,1.62,7.93,9.19 nf_regnet_b1,256,1024.0,4444.68,230.377,0.82,7.27,10.22 vit_base_patch32_clip_256,256,1024.0,4442.76,230.476,5.68,5.44,87.86 mobilevitv2_075,256,1024.0,4419.22,231.704,1.05,12.06,2.87 rexnetr_150,224,1024.0,4415.72,231.888,0.89,11.13,9.78 darknet17,256,1024.0,4402.14,232.603,3.26,7.18,14.3 resnet26d,224,1024.0,4396.77,232.887,2.6,8.15,16.01 resnetaa34d,224,1024.0,4381.9,233.677,4.43,5.07,21.82 efficientnet_b2_pruned,260,1024.0,4356.91,235.018,0.73,9.13,8.31 convnext_nano,224,1024.0,4340.39,235.913,2.46,8.37,15.59 ecaresnet50d_pruned,224,1024.0,4337.48,236.07,2.53,6.43,19.94 efficientformer_l1,224,1024.0,4271.29,239.728,1.3,5.53,12.29 nf_resnet26,224,1024.0,4216.31,242.856,2.41,7.35,16.0 deit3_small_patch16_224,224,1024.0,4203.29,243.607,4.25,8.25,22.06 nf_regnet_b2,240,1024.0,4197.9,243.92,0.97,7.23,14.31 tf_efficientnet_cc_b0_4e,224,1024.0,4196.5,244.002,0.41,9.42,13.31 tf_efficientnet_cc_b0_8e,224,1024.0,4190.23,244.367,0.42,9.42,24.01 regnety_016,224,1024.0,4161.97,246.026,1.63,8.04,11.2 rexnet_150,224,1024.0,4147.2,246.903,0.9,11.21,9.73 ghostnetv2_160,224,1024.0,4116.92,248.718,0.42,7.23,12.39 tiny_vit_11m_224,224,1024.0,4086.56,250.566,1.9,10.73,20.35 poolformer_s12,224,1024.0,4071.24,251.51,1.82,5.53,11.92 regnetz_005,288,1024.0,4056.8,252.404,0.86,9.68,7.12 efficientnet_lite2,260,1024.0,4046.71,253.034,0.89,12.9,6.09 darknet21,256,1024.0,4001.6,255.887,3.93,7.47,20.86 efficientvit_b1,288,1024.0,3997.55,256.145,0.87,11.96,9.1 resnext50_32x4d,176,1024.0,3992.51,256.47,2.71,8.97,25.03 edgenext_x_small,288,1024.0,3965.96,258.184,0.68,7.5,2.34 efficientnet_b1,256,1024.0,3961.36,258.486,0.77,12.22,7.79 convnext_nano_ols,224,1024.0,3944.64,259.582,2.65,9.38,15.65 resnest14d,224,1024.0,3932.19,260.404,2.76,7.33,10.61 tf_efficientnet_b1,240,1024.0,3922.37,261.055,0.71,10.88,7.79 flexivit_small,240,1024.0,3913.54,261.645,4.88,9.46,22.06 mobilevit_xs,256,768.0,3904.8,196.672,0.93,13.62,2.32 regnetz_b16,224,1024.0,3893.58,262.986,1.45,9.95,9.72 sedarknet21,256,1024.0,3874.2,264.302,3.93,7.47,20.95 resnext26ts,256,1024.0,3832.52,267.176,2.43,10.52,10.3 mobileone_s1,224,1024.0,3826.99,267.562,0.86,9.67,4.83 tf_efficientnetv2_b2,260,1024.0,3817.93,268.197,1.72,9.84,10.1 edgenext_small,256,1024.0,3770.23,271.588,1.26,9.07,5.59 convnext_pico,288,1024.0,3731.48,274.411,2.27,10.08,9.05 gernet_l,256,1024.0,3727.69,274.69,4.57,8.0,31.08 seresnext26ts,256,1024.0,3724.62,274.916,2.43,10.52,10.39 eca_resnext26ts,256,1024.0,3723.07,275.031,2.43,10.52,10.3 dpn48b,224,1024.0,3716.75,275.497,1.69,8.92,9.13 tf_efficientnet_lite2,260,1024.0,3695.32,277.096,0.89,12.9,6.09 gcresnext26ts,256,1024.0,3691.17,277.409,2.43,10.53,10.48 efficientnet_b2,256,1024.0,3671.26,278.912,0.89,12.81,9.11 nf_ecaresnet26,224,1024.0,3640.87,281.24,2.41,7.36,16.0 resnetblur18,288,1024.0,3639.91,281.314,3.87,5.6,11.69 nf_seresnet26,224,1024.0,3637.43,281.506,2.41,7.36,17.4 resnet101,160,1024.0,3616.15,283.164,4.0,8.28,44.55 vit_relpos_small_patch16_224,224,1024.0,3590.52,285.183,4.24,9.38,21.98 resnet26t,256,1024.0,3578.9,286.111,3.35,10.52,16.01 vit_srelpos_small_patch16_224,224,1024.0,3572.97,286.585,4.23,8.49,21.97 convnext_pico_ols,288,1024.0,3558.03,287.789,2.37,10.74,9.06 cs3darknet_focus_l,256,1024.0,3544.69,288.872,4.66,8.03,21.15 tf_efficientnetv2_b3,240,1024.0,3543.38,288.978,1.93,9.95,14.36 legacy_seresnext26_32x4d,224,1024.0,3516.72,291.169,2.49,9.39,16.79 pvt_v2_b1,224,1024.0,3507.87,291.903,2.04,14.01,14.01 repvit_m3,224,1024.0,3501.61,292.425,1.89,13.94,10.68 repvgg_a2,224,1024.0,3495.75,292.916,5.7,6.26,28.21 efficientnetv2_rw_t,224,1024.0,3486.59,293.686,1.93,9.94,13.65 ecaresnet101d_pruned,224,1024.0,3483.13,293.977,3.48,7.69,24.88 ese_vovnet19b_dw,288,1024.0,3478.51,294.369,2.22,13.63,6.54 mixnet_m,224,1024.0,3474.22,294.731,0.36,8.19,5.01 edgenext_small_rw,256,1024.0,3458.08,296.106,1.58,9.51,7.83 convnextv2_pico,224,1024.0,3458.0,296.113,1.37,6.1,9.07 gc_efficientnetv2_rw_t,224,1024.0,3445.15,297.218,1.94,9.97,13.68 cs3darknet_l,256,1024.0,3414.99,299.845,4.86,8.55,21.16 efficientnet_b3_pruned,300,1024.0,3412.19,300.09,1.04,11.86,9.86 nf_regnet_b1,288,1024.0,3373.08,303.57,1.02,9.2,10.22 tf_mixnet_m,224,1024.0,3353.29,305.361,0.36,8.19,5.01 convit_tiny,224,1024.0,3342.83,306.316,1.26,7.94,5.71 eca_botnext26ts_256,256,1024.0,3341.38,306.449,2.46,11.6,10.59 ecaresnext50t_32x4d,224,1024.0,3327.77,307.703,2.7,10.09,15.41 ecaresnext26t_32x4d,224,1024.0,3321.66,308.269,2.7,10.09,15.41 resnet34,288,1024.0,3320.08,308.416,6.07,6.18,21.8 seresnext26t_32x4d,224,1024.0,3319.26,308.491,2.7,10.09,16.81 vit_tiny_patch16_384,384,1024.0,3311.59,309.206,3.16,12.08,5.79 vit_base_patch32_plus_256,256,1024.0,3301.22,310.177,7.7,6.35,119.48 seresnext26d_32x4d,224,1024.0,3300.83,310.214,2.73,10.19,16.81 skresnet34,224,1024.0,3294.57,310.803,3.67,5.13,22.28 mobilevitv2_100,256,768.0,3290.58,233.384,1.84,16.08,4.9 vit_relpos_small_patch16_rpn_224,224,1024.0,3279.29,312.245,4.24,9.38,21.97 eca_halonext26ts,256,1024.0,3270.39,313.1,2.44,11.46,10.76 coatnet_pico_rw_224,224,1024.0,3250.74,314.993,1.96,12.91,10.85 rexnetr_200,224,768.0,3238.38,237.146,1.59,15.11,16.52 ecaresnet26t,256,1024.0,3228.23,317.19,3.35,10.53,16.01 ecaresnetlight,224,1024.0,3222.96,317.708,4.11,8.42,30.16 coatnext_nano_rw_224,224,1024.0,3218.47,318.153,2.36,10.68,14.7 cs3sedarknet_l,256,1024.0,3218.11,318.188,4.86,8.56,21.91 coat_lite_tiny,224,1024.0,3216.35,318.362,1.6,11.65,5.72 nf_regnet_b2,272,1024.0,3205.43,319.447,1.22,9.27,14.31 convnextv2_atto,288,1024.0,3199.9,319.999,0.91,6.3,3.71 vit_small_r26_s32_224,224,1024.0,3174.89,322.52,3.54,9.44,36.43 botnet26t_256,256,1024.0,3173.81,322.63,3.32,11.98,12.49 resnetv2_50,224,1024.0,3170.95,322.919,4.11,11.11,25.55 fastvit_t8,256,1024.0,3164.9,323.538,0.7,8.63,4.03 crossvit_small_240,240,1024.0,3164.86,323.541,5.09,11.34,26.86 bat_resnext26ts,256,1024.0,3139.26,326.18,2.53,12.51,10.73 seresnet34,288,1024.0,3136.77,326.439,6.07,6.18,21.96 halonet26t,256,1024.0,3132.55,326.879,3.19,11.69,12.48 lambda_resnet26t,256,1024.0,3123.88,327.786,3.02,11.87,10.96 rexnet_200,224,768.0,3120.89,246.073,1.56,14.91,16.37 vit_small_resnet26d_224,224,1024.0,3106.26,329.645,5.04,10.65,63.61 hrnet_w18_small_v2,224,1024.0,3095.42,330.8,2.62,9.65,15.6 mobileone_s2,224,1024.0,3085.91,331.82,1.34,11.55,7.88 vit_relpos_base_patch32_plus_rpn_256,256,1024.0,3081.88,332.247,7.59,6.63,119.42 tresnet_m,224,1024.0,3073.78,333.129,5.75,7.31,31.39 resnet32ts,256,1024.0,3072.91,333.224,4.63,11.58,17.96 coatnet_nano_cc_224,224,1024.0,3066.72,333.896,2.13,13.1,13.76 resnet101,176,1024.0,3047.24,336.031,4.92,10.08,44.55 resnet33ts,256,1024.0,3032.6,337.653,4.76,11.66,19.68 efficientvit_b2,224,1024.0,3030.14,337.927,1.6,14.62,24.33 resnet50,224,1024.0,3021.24,338.922,4.11,11.11,25.56 coat_lite_mini,224,1024.0,3021.22,338.925,2.0,12.25,11.01 resnet34d,288,1024.0,3013.98,339.739,6.47,7.51,21.82 cspresnet50,256,1024.0,3012.57,339.898,4.54,11.5,21.62 resnetv2_50t,224,1024.0,3011.73,339.991,4.32,11.82,25.57 dpn68b,224,1024.0,3008.58,340.347,2.35,10.47,12.61 coatnet_nano_rw_224,224,1024.0,3001.39,341.165,2.29,13.29,15.14 dpn68,224,1024.0,3001.33,341.17,2.35,10.47,12.61 resnetv2_50d,224,1024.0,2992.98,342.12,4.35,11.92,25.57 convnext_tiny,224,1024.0,2986.71,342.841,4.47,13.44,28.59 levit_512,224,1024.0,2974.0,344.305,5.64,10.22,95.17 dla60,224,1024.0,2959.44,345.999,4.26,10.16,22.04 fbnetv3_g,240,1024.0,2957.87,346.184,1.28,14.87,16.62 tf_efficientnet_b2,260,1024.0,2957.04,346.28,1.02,13.83,9.11 efficientnet_em,240,1024.0,2948.76,347.254,3.04,14.34,6.9 crossvit_15_240,240,1024.0,2948.65,347.266,5.17,12.01,27.53 eca_resnet33ts,256,1024.0,2945.18,347.676,4.76,11.66,19.68 seresnet33ts,256,1024.0,2940.4,348.24,4.76,11.66,19.78 regnetx_032,224,1024.0,2932.49,349.18,3.2,11.37,15.3 gcresnet33ts,256,1024.0,2919.42,350.744,4.76,11.68,19.88 mobileone_s0,224,1024.0,2911.68,351.675,1.09,15.48,5.29 resnet50t,224,1024.0,2893.61,353.872,4.32,11.82,25.57 resnet50c,224,1024.0,2893.38,353.9,4.35,11.92,25.58 repvit_m1_5,224,1024.0,2891.53,354.126,2.31,15.7,14.64 selecsls84,224,1024.0,2891.52,354.128,5.9,7.57,50.95 efficientnet_cc_b1_8e,240,1024.0,2883.89,355.064,0.75,15.44,39.72 haloregnetz_b,224,1024.0,2883.33,355.134,1.97,11.94,11.68 vgg11,224,1024.0,2881.16,355.4,7.61,7.44,132.86 resnet50d,224,1024.0,2872.03,356.53,4.35,11.92,25.58 resnest26d,224,1024.0,2863.53,357.59,3.64,9.97,17.07 tf_efficientnet_em,240,1024.0,2860.98,357.908,3.04,14.34,6.9 visformer_small,224,1024.0,2837.73,360.841,4.88,11.43,40.22 cspresnet50w,256,1024.0,2834.78,361.216,5.04,12.19,28.12 vovnet39a,224,1024.0,2834.5,361.252,7.09,6.73,22.6 wide_resnet50_2,176,1024.0,2833.12,361.428,7.29,8.97,68.88 cspresnet50d,256,1024.0,2828.94,361.963,4.86,12.55,21.64 resnet26,288,1024.0,2826.83,362.233,3.9,12.15,16.0 resnext26ts,288,1024.0,2826.2,362.312,3.07,13.31,10.3 efficientnet_b2,288,1024.0,2822.88,362.739,1.12,16.2,9.11 regnetv_040,224,1024.0,2785.35,367.627,4.0,12.29,20.64 levit_512d,224,1024.0,2784.75,367.707,5.85,11.3,92.5 levit_conv_512,224,1024.0,2781.3,368.162,5.64,10.22,95.17 deit3_medium_patch16_224,224,1024.0,2780.75,368.235,7.53,10.99,38.85 crossvit_15_dagger_240,240,1024.0,2776.34,368.82,5.5,12.68,28.21 regnety_040,224,1024.0,2768.62,369.849,4.0,12.29,20.65 legacy_seresnet50,224,1024.0,2766.98,370.066,3.88,10.6,28.09 eca_resnext26ts,288,1024.0,2756.51,371.473,3.07,13.32,10.3 seresnext26ts,288,1024.0,2751.54,372.144,3.07,13.32,10.39 regnety_032,224,1024.0,2744.75,373.065,3.2,11.26,19.44 convnext_tiny_hnf,224,1024.0,2744.61,373.082,4.47,13.44,28.59 convnextv2_femto,288,1024.0,2744.25,373.131,1.3,7.56,5.23 eca_vovnet39b,224,1024.0,2742.23,373.408,7.09,6.74,22.6 resnetv2_50x1_bit,224,1024.0,2741.57,373.497,4.23,11.11,25.55 gcresnext26ts,288,1024.0,2728.39,375.302,3.07,13.33,10.48 resnetaa50,224,1024.0,2728.16,375.334,5.15,11.64,25.56 densenet121,224,1024.0,2725.3,375.726,2.87,6.9,7.98 ese_vovnet39b,224,1024.0,2723.97,375.912,7.09,6.74,24.57 mixnet_l,224,1024.0,2712.93,377.44,0.58,10.84,7.33 tf_efficientnet_cc_b1_8e,240,1024.0,2710.75,377.745,0.75,15.44,39.72 mobilevit_s,256,768.0,2698.84,284.557,1.86,17.03,5.58 cs3darknet_focus_l,288,1024.0,2695.52,379.878,5.9,10.16,21.15 seresnet50,224,1024.0,2693.22,380.203,4.11,11.13,28.09 xcit_nano_12_p16_384,384,1024.0,2679.82,382.104,1.64,12.14,3.05 resnetaa34d,288,1024.0,2675.02,382.79,7.33,8.38,21.82 twins_svt_small,224,1024.0,2670.35,383.458,2.82,10.7,24.06 ecaresnet50d_pruned,288,1024.0,2662.19,384.634,4.19,10.61,19.94 convnext_nano,288,1024.0,2634.79,388.635,4.06,13.84,15.59 resnet50_gn,224,1024.0,2631.91,389.06,4.14,11.11,25.56 resnetv2_50d_gn,224,1024.0,2623.43,390.317,4.38,11.92,25.57 xcit_tiny_24_p16_224,224,1024.0,2616.39,391.368,2.34,11.82,12.12 tf_mixnet_l,224,1024.0,2615.89,391.443,0.58,10.84,7.33 res2net50_48w_2s,224,1024.0,2611.06,392.166,4.18,11.72,25.29 gcvit_xxtiny,224,1024.0,2608.34,392.574,2.14,15.36,12.0 cs3darknet_l,288,1024.0,2607.33,392.728,6.16,10.83,21.16 resnetaa50d,224,1024.0,2596.72,394.332,5.39,12.44,25.58 vgg11_bn,224,1024.0,2590.27,395.315,7.62,7.44,132.87 vit_base_resnet26d_224,224,1024.0,2580.41,396.822,6.93,12.34,101.4 vit_relpos_medium_patch16_cls_224,224,1024.0,2579.62,396.946,7.55,13.3,38.76 ecaresnet50t,224,1024.0,2579.62,396.946,4.32,11.83,25.57 coatnet_rmlp_nano_rw_224,224,1024.0,2579.38,396.984,2.51,18.21,15.15 davit_tiny,224,1024.0,2578.68,397.091,4.47,17.08,28.36 seresnet50t,224,1024.0,2574.91,397.672,4.32,11.83,28.1 resnet26d,288,1024.0,2569.96,398.438,4.29,13.48,16.01 mobilevitv2_125,256,768.0,2568.23,299.03,2.86,20.1,7.48 nf_regnet_b3,288,1024.0,2563.17,399.494,1.67,11.84,18.59 ecaresnet50d,224,1024.0,2560.76,399.87,4.35,11.93,25.58 levit_conv_512d,224,1024.0,2557.63,400.359,5.85,11.3,92.5 resnet152,160,1024.0,2531.48,404.495,5.9,11.51,60.19 efficientvit_b2,256,1024.0,2531.18,404.544,2.09,19.03,24.33 mobileone_s3,224,1024.0,2513.71,407.355,1.94,13.85,10.17 resnetrs50,224,1024.0,2512.05,407.624,4.48,12.14,35.69 twins_pcpvt_small,224,1024.0,2506.77,408.482,3.68,15.51,24.11 resnetblur50,224,1024.0,2495.43,410.338,5.16,12.02,25.56 poolformerv2_s12,224,1024.0,2489.38,411.337,1.83,5.53,11.89 convnextv2_nano,224,1024.0,2480.83,412.755,2.46,8.37,15.62 regnetx_040,224,1024.0,2478.03,413.222,3.99,12.2,22.12 eca_nfnet_l0,224,1024.0,2476.91,413.407,4.35,10.47,24.14 gcresnext50ts,256,1024.0,2473.39,413.995,3.75,15.46,15.67 nfnet_l0,224,1024.0,2472.84,414.088,4.36,10.47,35.07 tiny_vit_21m_224,224,1024.0,2468.7,414.781,4.08,15.96,33.22 cs3sedarknet_l,288,1024.0,2463.79,415.609,6.16,10.83,21.91 resnet50s,224,1024.0,2456.52,416.838,5.47,13.52,25.68 dla60x,224,1024.0,2437.95,420.012,3.54,13.8,17.35 densenetblur121d,224,1024.0,2433.6,420.765,3.11,7.9,8.0 edgenext_small,320,1024.0,2424.08,422.414,1.97,14.16,5.59 resnext50_32x4d,224,1024.0,2410.12,424.862,4.26,14.4,25.03 inception_next_tiny,224,1024.0,2404.04,425.937,4.19,11.98,28.06 convnext_nano_ols,288,1024.0,2397.01,427.188,4.38,15.5,15.65 vit_relpos_medium_patch16_224,224,1024.0,2394.54,427.629,7.5,12.13,38.75 efficientnet_lite3,300,512.0,2392.78,213.967,1.65,21.85,8.2 vit_srelpos_medium_patch16_224,224,1024.0,2386.54,429.062,7.49,11.32,38.74 regnetz_c16,256,1024.0,2383.36,429.635,2.51,16.57,13.46 resnetblur50d,224,1024.0,2382.64,429.765,5.4,12.82,25.58 vit_base_r26_s32_224,224,1024.0,2381.88,429.901,6.76,11.54,101.38 gcresnet50t,256,1024.0,2372.96,431.518,5.42,14.67,25.9 regnety_040_sgn,224,1024.0,2371.57,431.77,4.03,12.29,20.65 res2net50_26w_4s,224,1024.0,2359.62,433.957,4.28,12.61,25.7 vovnet57a,224,1024.0,2357.12,434.416,8.95,7.52,36.64 resmlp_24_224,224,1024.0,2350.19,435.697,5.96,10.91,30.02 maxvit_pico_rw_256,256,768.0,2346.84,327.238,1.68,18.77,7.46 inception_v3,299,1024.0,2346.46,436.391,5.73,8.97,23.83 maxvit_rmlp_pico_rw_256,256,768.0,2343.0,327.774,1.69,21.32,7.52 seresnetaa50d,224,1024.0,2333.21,438.87,5.4,12.46,28.11 focalnet_tiny_srf,224,1024.0,2331.81,439.132,4.42,16.32,28.43 cspresnext50,256,1024.0,2330.62,439.358,4.05,15.86,20.57 res2net50_14w_8s,224,1024.0,2327.89,439.871,4.21,13.28,25.06 dla60_res2net,224,1024.0,2327.26,439.99,4.15,12.34,20.85 coatnet_0_rw_224,224,1024.0,2319.62,441.438,4.23,15.1,27.44 regnetz_b16,288,1024.0,2318.51,441.651,2.39,16.43,9.72 gmixer_24_224,224,1024.0,2315.73,442.182,5.28,14.45,24.72 resnext50d_32x4d,224,1024.0,2305.65,444.116,4.5,15.2,25.05 lambda_resnet26rpt_256,256,768.0,2282.36,336.484,3.16,11.87,10.99 ese_vovnet57b,224,1024.0,2279.9,449.132,8.95,7.52,38.61 resnest50d_1s4x24d,224,1024.0,2278.75,449.357,4.43,13.57,25.68 dla60_res2next,224,1024.0,2268.77,451.333,3.49,13.17,17.03 sehalonet33ts,256,1024.0,2262.52,452.582,3.55,14.7,13.69 res2net50d,224,1024.0,2256.17,453.855,4.52,13.41,25.72 vit_medium_patch16_gap_240,240,1024.0,2253.27,454.439,8.6,12.57,44.4 res2next50,224,1024.0,2251.4,454.817,4.2,13.71,24.67 resnet32ts,288,1024.0,2244.87,456.139,5.86,14.65,17.96 edgenext_base,256,1024.0,2239.63,457.204,3.85,15.58,18.51 efficientvit_l1,224,1024.0,2235.54,458.043,5.27,15.85,52.65 skresnet50,224,1024.0,2226.66,459.87,4.11,12.5,25.8 nfnet_f0,192,1024.0,2226.44,459.916,7.21,10.16,71.49 tf_efficientnetv2_b3,300,1024.0,2226.35,459.935,3.04,15.74,14.36 efficientnetv2_rw_t,288,1024.0,2225.5,460.11,3.19,16.42,13.65 nf_ecaresnet50,224,1024.0,2219.3,461.395,4.21,11.13,25.56 darknetaa53,256,1024.0,2219.0,461.459,7.97,12.39,36.02 densenet169,224,1024.0,2218.3,461.604,3.4,7.3,14.15 nf_seresnet50,224,1024.0,2217.49,461.772,4.21,11.13,28.09 edgenext_small_rw,320,1024.0,2214.15,462.468,2.46,14.85,7.83 resnet33ts,288,1024.0,2214.09,462.482,6.02,14.75,19.68 xcit_small_12_p16_224,224,1024.0,2207.67,463.826,4.82,12.57,26.25 focalnet_tiny_lrf,224,1024.0,2205.41,464.301,4.49,17.76,28.65 resnet51q,256,1024.0,2195.84,466.325,6.38,16.55,35.7 repvgg_b1g4,224,1024.0,2195.75,466.344,8.15,10.64,39.97 seresnext50_32x4d,224,1024.0,2188.04,467.986,4.26,14.42,27.56 vit_relpos_medium_patch16_rpn_224,224,1024.0,2187.29,468.147,7.5,12.13,38.73 cs3darknet_focus_x,256,1024.0,2185.7,468.489,8.03,10.69,35.02 legacy_seresnext50_32x4d,224,1024.0,2184.4,468.766,4.26,14.42,27.56 tf_efficientnet_lite3,300,512.0,2178.27,235.039,1.65,21.85,8.2 resnet26t,320,1024.0,2173.03,471.22,5.24,16.44,16.01 gc_efficientnetv2_rw_t,288,1024.0,2170.84,471.696,3.2,16.45,13.68 gmlp_s16_224,224,1024.0,2161.42,473.752,4.42,15.1,19.42 seresnet33ts,288,1024.0,2156.33,474.868,6.02,14.76,19.78 eca_resnet33ts,288,1024.0,2152.27,475.765,6.02,14.76,19.68 fastvit_t12,256,1024.0,2151.9,475.846,1.42,12.42,7.55 nf_regnet_b3,320,1024.0,2148.66,476.564,2.05,14.61,18.59 eva02_small_patch14_224,224,1024.0,2144.78,477.426,5.53,12.34,21.62 resnet152,176,1024.0,2139.0,478.716,7.22,13.99,60.19 vit_medium_patch16_reg4_gap_256,256,1024.0,2137.51,479.051,9.93,14.51,38.87 gcresnet33ts,288,1024.0,2134.49,479.728,6.02,14.78,19.88 skresnet50d,224,1024.0,2133.34,479.986,4.36,13.31,25.82 ecaresnet101d_pruned,288,1024.0,2128.45,481.09,5.75,12.71,24.88 fbnetv3_g,288,1024.0,2127.74,481.25,1.77,21.09,16.62 vit_medium_patch16_reg4_256,256,1024.0,2119.83,483.047,9.97,14.56,38.87 eva02_tiny_patch14_336,336,1024.0,2106.54,486.094,3.14,13.85,5.76 convnextv2_pico,288,1024.0,2101.04,487.367,2.27,10.08,9.07 nf_resnet50,256,1024.0,2100.31,487.536,5.46,14.52,25.56 resnetrs101,192,1024.0,2100.21,487.558,6.04,12.7,63.62 poolformer_s24,224,1024.0,2099.97,487.615,3.41,10.68,21.39 pvt_v2_b2,224,1024.0,2099.92,487.626,3.9,24.96,25.36 efficientnet_b3,288,512.0,2089.91,244.977,1.63,21.49,12.23 cs3sedarknet_xdw,256,1024.0,2078.01,492.768,5.97,17.18,21.6 darknet53,256,1024.0,2077.03,493.0,9.31,12.39,41.61 ecaresnet50t,256,1024.0,2076.41,493.149,5.64,15.45,25.57 cs3darknet_x,256,1024.0,2060.02,497.071,8.38,11.35,35.05 xcit_nano_12_p8_224,224,1024.0,2059.06,497.302,2.16,15.71,3.05 mobilevitv2_150,256,512.0,2058.61,248.702,4.09,24.11,10.59 rexnetr_300,224,1024.0,2042.01,501.455,3.39,22.16,34.81 lambda_resnet50ts,256,1024.0,2041.61,501.552,5.07,17.48,21.54 fastvit_s12,256,1024.0,2028.81,504.718,1.82,13.67,9.47 coatnet_rmlp_0_rw_224,224,1024.0,2024.25,505.855,4.52,21.26,27.45 gcvit_xtiny,224,1024.0,2023.42,506.063,2.93,20.26,19.98 fastvit_sa12,256,1024.0,2022.28,506.347,1.96,13.83,11.58 crossvit_18_240,240,1024.0,2014.44,508.318,8.21,16.14,43.27 vit_medium_patch16_gap_256,256,1024.0,1996.45,512.899,9.78,14.29,38.86 resnet61q,256,1024.0,1996.22,512.958,7.8,17.01,36.85 coatnet_bn_0_rw_224,224,1024.0,1985.64,515.69,4.48,18.41,27.44 vit_base_patch32_384,384,1024.0,1984.44,516.005,12.67,12.14,88.3 vit_base_patch32_clip_384,384,1024.0,1981.44,516.784,12.67,12.14,88.3 cspdarknet53,256,1024.0,1981.04,516.888,6.57,16.81,27.64 sebotnet33ts_256,256,512.0,1977.98,258.841,3.89,17.46,13.7 ecaresnet26t,320,1024.0,1973.79,518.786,5.24,16.44,16.01 vit_base_resnet50d_224,224,1024.0,1971.35,519.428,8.68,16.1,110.97 cs3sedarknet_x,256,1024.0,1962.3,521.825,8.38,11.35,35.4 regnetx_080,224,1024.0,1962.04,521.894,8.02,14.06,39.57 seresnext26t_32x4d,288,1024.0,1950.77,524.91,4.46,16.68,16.81 mixnet_xl,224,1024.0,1948.29,525.576,0.93,14.57,11.9 resnest50d,224,1024.0,1945.36,526.368,5.4,14.36,27.48 seresnext26d_32x4d,288,1024.0,1940.04,527.813,4.51,16.85,16.81 coatnet_0_224,224,512.0,1939.29,264.004,4.43,21.14,25.04 swin_tiny_patch4_window7_224,224,1024.0,1938.74,528.165,4.51,17.06,28.29 resnetv2_101,224,1024.0,1935.15,529.146,7.83,16.23,44.54 regnetx_064,224,1024.0,1933.12,529.703,6.49,16.37,26.21 dla102,224,1024.0,1924.77,531.998,7.19,14.18,33.27 crossvit_18_dagger_240,240,1024.0,1921.19,532.991,8.65,16.91,44.27 rexnetr_200,288,512.0,1914.7,267.396,2.62,24.96,16.52 rexnet_300,224,1024.0,1911.46,535.706,3.44,22.4,34.71 nest_tiny,224,1024.0,1908.27,536.601,5.24,14.75,17.06 dm_nfnet_f0,192,1024.0,1907.3,536.873,7.21,10.16,71.49 ecaresnetlight,288,1024.0,1897.75,539.574,6.79,13.91,30.16 maxxvit_rmlp_nano_rw_256,256,768.0,1897.05,404.83,4.17,21.53,16.78 resnet101,224,1024.0,1885.15,543.183,7.83,16.23,44.55 nest_tiny_jx,224,1024.0,1884.26,543.437,5.24,14.75,17.06 pvt_v2_b2_li,224,1024.0,1882.78,543.863,3.77,25.04,22.55 vit_large_patch32_224,224,1024.0,1869.82,547.632,15.27,11.11,305.51 vgg13,224,1024.0,1868.34,548.068,11.31,12.25,133.05 resnetv2_101d,224,1024.0,1865.75,548.827,8.07,17.04,44.56 efficientformer_l3,224,1024.0,1865.63,548.865,3.93,12.01,31.41 resnetv2_50,288,1024.0,1863.99,549.347,6.79,18.37,25.55 mobileone_s4,224,1024.0,1856.33,551.615,3.04,17.74,14.95 res2net50_26w_6s,224,1024.0,1853.01,552.603,6.33,15.28,37.05 efficientvit_b2,288,1024.0,1851.14,553.16,2.64,24.03,24.33 lamhalobotnet50ts_256,256,1024.0,1841.89,555.938,5.02,18.44,22.57 maxvit_nano_rw_256,256,768.0,1833.65,418.827,4.26,25.76,15.45 maxvit_rmlp_nano_rw_256,256,768.0,1832.13,419.175,4.28,27.4,15.5 convnext_small,224,1024.0,1829.72,559.636,8.71,21.56,50.22 resnet101c,224,1024.0,1824.57,561.217,8.08,17.04,44.57 convnext_tiny,288,1024.0,1817.02,563.549,7.39,22.21,28.59 resnet101d,224,1024.0,1816.61,563.677,8.08,17.04,44.57 gcresnext50ts,288,1024.0,1802.21,568.181,4.75,19.57,15.67 efficientnetv2_s,288,1024.0,1800.9,568.595,4.75,20.13,21.46 pit_b_distilled_224,224,1024.0,1798.47,569.363,10.63,16.67,74.79 resnet50,288,1024.0,1790.94,571.757,6.8,18.37,25.56 twins_pcpvt_base,224,1024.0,1774.55,577.037,6.46,21.35,43.83 halonet50ts,256,1024.0,1772.89,577.576,5.3,19.2,22.73 dpn68b,288,1024.0,1770.85,578.24,3.89,17.3,12.61 pit_b_224,224,1024.0,1769.93,578.542,10.56,16.6,73.76 hrnet_w18_ssld,224,1024.0,1769.77,578.594,4.32,16.31,21.3 swin_s3_tiny_224,224,1024.0,1768.18,579.114,4.64,19.13,28.33 efficientvit_l2,224,1024.0,1765.89,579.866,6.97,19.58,63.71 hrnet_w18,224,1024.0,1763.75,580.57,4.32,16.31,21.3 coat_lite_small,224,1024.0,1746.27,586.38,3.96,22.09,19.84 repvgg_b1,224,1024.0,1745.5,586.64,13.16,10.64,57.42 wide_resnet50_2,224,1024.0,1744.59,586.947,11.43,14.4,68.88 efficientnet_b3,320,512.0,1740.17,294.213,2.01,26.52,12.23 gcresnet50t,288,1024.0,1734.6,590.328,6.86,18.57,25.9 densenet201,224,1024.0,1731.46,591.397,4.34,7.85,20.01 tresnet_v2_l,224,1024.0,1730.52,591.717,8.85,16.34,46.17 tf_efficientnet_b3,300,512.0,1724.68,296.856,1.87,23.83,12.23 efficientnetv2_rw_s,288,1024.0,1722.48,594.481,4.91,21.41,23.94 darknetaa53,288,1024.0,1719.51,595.509,10.08,15.68,36.02 maxxvitv2_nano_rw_256,256,768.0,1706.28,450.091,6.12,19.66,23.7 resnetaa101d,224,1024.0,1701.55,601.792,9.12,17.56,44.57 xcit_tiny_12_p16_384,384,1024.0,1700.55,602.144,3.64,18.25,6.72 cait_xxs24_224,224,1024.0,1698.66,602.815,2.53,20.29,11.96 resnet50t,288,1024.0,1694.77,604.2,7.14,19.53,25.57 legacy_seresnet101,224,1024.0,1693.62,604.611,7.61,15.74,49.33 cs3edgenet_x,256,1024.0,1692.79,604.907,11.53,12.92,47.82 resnet50d,288,1024.0,1684.01,608.061,7.19,19.7,25.58 mobilevitv2_175,256,512.0,1675.38,305.592,5.54,28.13,14.25 regnetv_064,224,1024.0,1674.09,611.663,6.39,16.41,30.58 resnetv2_101x1_bit,224,1024.0,1672.61,612.204,8.04,16.23,44.54 efficientnet_b3_gn,288,512.0,1669.75,306.623,1.74,23.35,11.73 ese_vovnet39b,288,768.0,1667.87,460.459,11.71,11.13,24.57 regnety_032,288,1024.0,1666.89,614.307,5.29,18.61,19.44 seresnet101,224,1024.0,1666.33,614.509,7.84,16.27,49.33 regnety_064,224,1024.0,1666.11,614.593,6.39,16.41,30.58 convnext_tiny_hnf,288,1024.0,1663.94,615.393,7.39,22.21,28.59 regnetv_040,288,1024.0,1658.56,617.391,6.6,20.3,20.64 regnety_040,288,1024.0,1648.75,621.064,6.61,20.3,20.65 regnety_080,224,1024.0,1645.74,622.202,8.0,17.97,39.18 resnet101s,224,1024.0,1640.53,624.176,9.19,18.64,44.67 mixer_b16_224,224,1024.0,1627.76,629.075,12.62,14.53,59.88 dla102x,224,1024.0,1623.56,630.698,5.89,19.42,26.31 nf_resnet101,224,1024.0,1622.48,631.12,8.01,16.23,44.55 swinv2_cr_tiny_224,224,1024.0,1621.28,631.59,4.66,28.45,28.33 ecaresnet101d,224,1024.0,1619.0,632.477,8.08,17.07,44.57 convnextv2_tiny,224,1024.0,1618.49,632.676,4.47,13.44,28.64 darknet53,288,1024.0,1615.64,633.795,11.78,15.68,41.61 wide_resnet101_2,176,1024.0,1615.25,633.945,14.31,13.18,126.89 repvit_m2_3,224,1024.0,1614.73,634.149,4.57,26.21,23.69 resnetaa50,288,1024.0,1610.23,635.923,8.52,19.24,25.56 resnetblur101d,224,1024.0,1609.76,636.109,9.12,17.94,44.57 efficientvit_b3,224,1024.0,1609.54,636.196,3.99,26.9,48.65 regnetz_d32,256,1024.0,1603.03,638.779,5.98,23.74,27.58 regnetz_b16_evos,224,1024.0,1602.47,639.001,1.43,9.95,9.74 ese_vovnet39b_evos,224,1024.0,1599.88,640.036,7.07,6.74,24.58 davit_small,224,1024.0,1599.81,640.066,8.69,27.54,49.75 seresnet50,288,1024.0,1595.89,641.637,6.8,18.39,28.09 cs3se_edgenet_x,256,1024.0,1593.53,642.587,11.53,12.94,50.72 nf_regnet_b4,320,1024.0,1592.57,642.975,3.29,19.88,30.21 swinv2_cr_tiny_ns_224,224,1024.0,1590.7,643.731,4.66,28.45,28.33 sequencer2d_s,224,1024.0,1586.65,645.372,4.96,11.31,27.65 tf_efficientnetv2_s,300,1024.0,1583.75,646.555,5.35,22.73,21.46 densenet121,288,1024.0,1581.16,647.615,4.74,11.41,7.98 resnet51q,288,1024.0,1581.05,647.659,8.07,20.94,35.7 regnetz_d8,256,1024.0,1580.57,647.855,3.97,23.74,23.37 resmlp_36_224,224,1024.0,1577.5,649.116,8.91,16.33,44.69 mixer_l32_224,224,1024.0,1577.26,649.215,11.27,19.86,206.94 regnetz_040,256,1024.0,1574.58,650.32,4.06,24.19,27.12 vit_base_patch16_224_miil,224,1024.0,1574.06,650.535,16.88,16.5,94.4 botnet50ts_256,256,512.0,1573.5,325.38,5.54,22.23,22.74 resnet50_gn,288,1024.0,1570.23,652.122,6.85,18.37,25.56 vit_base_patch16_clip_224,224,1024.0,1569.93,652.248,16.87,16.49,86.57 cs3darknet_x,288,1024.0,1569.68,652.352,10.6,14.36,35.05 deit_base_distilled_patch16_224,224,1024.0,1568.26,652.942,16.95,16.58,87.34 vit_base_patch16_224,224,1024.0,1568.03,653.038,16.87,16.49,86.57 deit_base_patch16_224,224,1024.0,1567.8,653.131,16.87,16.49,86.57 regnetz_040_h,256,1024.0,1564.2,654.638,4.12,24.29,28.94 resnetv2_50d_gn,288,1024.0,1555.81,658.164,7.24,19.7,25.57 resnetv2_50d_frn,224,1024.0,1553.07,659.326,4.33,11.92,25.59 tresnet_l,224,1024.0,1528.92,669.739,10.9,11.9,55.99 regnety_080_tv,224,1024.0,1528.54,669.91,8.51,19.73,39.38 resnetaa50d,288,1024.0,1524.48,671.692,8.92,20.57,25.58 nf_resnet50,288,1024.0,1524.41,671.724,6.88,18.37,25.56 caformer_s18,224,1024.0,1522.76,672.449,3.9,15.18,26.34 resnext101_32x8d,176,1024.0,1521.82,672.868,10.33,19.37,88.79 seresnet50t,288,1024.0,1518.59,674.299,7.14,19.55,28.1 ecaresnet50t,288,1024.0,1518.21,674.465,7.14,19.55,25.57 mvitv2_tiny,224,1024.0,1518.01,674.556,4.7,21.16,24.17 resnet101d,256,1024.0,1517.18,674.926,10.55,22.25,44.57 pvt_v2_b3,224,1024.0,1516.27,675.326,6.71,33.8,45.24 maxvit_tiny_rw_224,224,768.0,1513.7,507.357,4.93,28.54,29.06 ecaresnet50d,288,1024.0,1510.36,677.975,7.19,19.72,25.58 convnextv2_nano,288,768.0,1503.98,510.637,4.06,13.84,15.62 halo2botnet50ts_256,256,1024.0,1499.3,682.975,5.02,21.78,22.64 cs3sedarknet_x,288,1024.0,1498.9,683.158,10.6,14.37,35.4 res2net50_26w_8s,224,1024.0,1498.8,683.201,8.37,17.95,48.4 resnext101_32x4d,224,1024.0,1496.35,684.32,8.01,21.23,44.18 deit3_base_patch16_224,224,1024.0,1488.08,688.122,16.87,16.49,86.59 regnetz_c16,320,1024.0,1478.43,692.615,3.92,25.88,13.46 resnest50d_4s2x40d,224,1024.0,1478.06,692.785,4.4,17.94,30.42 resnetblur50,288,1024.0,1477.0,693.285,8.52,19.87,25.56 skresnext50_32x4d,224,1024.0,1470.18,696.502,4.5,17.18,27.48 efficientvit_l2,256,1024.0,1466.16,698.41,9.09,25.49,63.71 eca_nfnet_l0,288,1024.0,1463.28,699.787,7.12,17.29,24.14 mobilevitv2_200,256,768.0,1462.66,525.062,7.22,32.15,18.45 nfnet_l0,288,1024.0,1461.21,700.775,7.13,17.29,35.07 resnet61q,288,1024.0,1460.17,701.277,9.87,21.52,36.85 vit_base_patch32_clip_448,448,1024.0,1456.81,702.892,17.21,16.49,88.34 vit_small_patch16_36x1_224,224,1024.0,1454.45,704.036,12.63,24.59,64.67 vit_small_resnet50d_s16_224,224,1024.0,1451.55,705.439,13.0,21.12,57.53 beit_base_patch16_224,224,1024.0,1443.54,709.354,16.87,16.49,86.53 res2net101_26w_4s,224,1024.0,1442.54,709.848,8.1,18.45,45.21 vit_base_patch16_siglip_224,224,1024.0,1439.5,711.343,17.02,16.71,92.88 vit_base_patch16_gap_224,224,1024.0,1436.45,712.857,16.78,16.41,86.57 regnety_040_sgn,288,1024.0,1436.16,712.999,6.67,20.3,20.65 beitv2_base_patch16_224,224,1024.0,1436.01,713.075,16.87,16.49,86.53 convit_small,224,1024.0,1431.38,715.383,5.76,17.87,27.78 edgenext_base,320,1024.0,1423.6,719.289,6.01,24.32,18.51 convformer_s18,224,1024.0,1421.81,720.197,3.96,15.82,26.77 focalnet_small_srf,224,1024.0,1419.82,721.204,8.62,26.26,49.89 densenetblur121d,288,1024.0,1416.47,722.914,5.14,13.06,8.0 poolformer_s36,224,1024.0,1415.39,723.463,5.0,15.82,30.86 resnetv2_50d_evos,224,1024.0,1415.09,723.614,4.33,11.92,25.59 coatnet_rmlp_1_rw_224,224,1024.0,1413.05,724.664,7.44,28.08,41.69 res2net101d,224,1024.0,1406.68,727.943,8.35,19.25,45.23 legacy_xception,299,1024.0,1405.99,728.302,8.4,35.83,22.86 vit_small_patch16_18x2_224,224,1024.0,1405.24,728.689,12.63,24.59,64.67 resnetblur50d,288,1024.0,1403.3,729.695,8.92,21.19,25.58 resnext50_32x4d,288,1024.0,1402.5,730.115,7.04,23.81,25.03 inception_next_small,224,1024.0,1397.1,732.931,8.36,19.27,49.37 repvgg_b2g4,224,1024.0,1392.83,735.183,12.63,12.9,61.76 gcvit_tiny,224,1024.0,1390.57,736.376,4.79,29.82,28.22 vit_relpos_base_patch16_clsgap_224,224,1024.0,1386.7,738.433,16.88,17.72,86.43 vit_base_patch16_clip_quickgelu_224,224,1024.0,1384.47,739.621,16.87,16.49,86.19 vit_relpos_base_patch16_cls_224,224,1024.0,1384.18,739.775,16.88,17.72,86.43 dpn92,224,1024.0,1380.04,741.995,6.54,18.21,37.67 seresnetaa50d,288,1024.0,1379.8,742.125,8.92,20.59,28.11 vit_small_patch16_384,384,1024.0,1379.23,742.429,12.45,24.15,22.2 nf_ecaresnet101,224,1024.0,1375.27,744.569,8.01,16.27,44.55 nf_seresnet101,224,1024.0,1370.83,746.983,8.02,16.27,49.33 efficientnet_b3_gn,320,384.0,1366.12,281.077,2.14,28.83,11.73 vgg16_bn,224,1024.0,1361.56,752.067,15.5,13.56,138.37 flexivit_base,240,1024.0,1360.19,752.822,19.35,18.92,86.59 efficientformerv2_s0,224,1024.0,1357.83,754.133,0.41,5.3,3.6 resnetv2_152,224,1024.0,1356.74,754.735,11.55,22.56,60.19 seresnext101_32x4d,224,1024.0,1356.08,755.105,8.02,21.26,48.96 legacy_seresnext101_32x4d,224,1024.0,1355.29,755.543,8.02,21.26,48.96 efficientnet_b3_g8_gn,288,768.0,1342.01,572.264,2.59,23.35,14.25 efficientvit_b3,256,768.0,1340.35,572.972,5.2,35.01,48.65 efficientnet_b4,320,512.0,1338.46,382.52,3.13,34.76,19.34 nfnet_f0,256,1024.0,1336.25,766.311,12.62,18.05,71.49 resnext50d_32x4d,288,1024.0,1335.71,766.62,7.44,25.13,25.05 focalnet_small_lrf,224,1024.0,1333.55,767.863,8.74,28.61,50.34 resnet152,224,1024.0,1331.42,769.094,11.56,22.56,60.19 ese_vovnet99b,224,1024.0,1328.91,770.544,16.51,11.27,63.2 resnetv2_152d,224,1024.0,1322.45,774.307,11.8,23.36,60.2 regnetx_120,224,1024.0,1317.68,777.11,12.13,21.37,46.11 hrnet_w32,224,1024.0,1308.75,782.414,8.97,22.02,41.23 xception41p,299,512.0,1308.08,391.403,9.25,39.86,26.91 vit_relpos_base_patch16_224,224,1024.0,1306.59,783.71,16.8,17.63,86.43 xcit_tiny_12_p8_224,224,1024.0,1306.3,783.883,4.81,23.6,6.71 coatnet_1_rw_224,224,1024.0,1303.02,785.857,7.63,27.22,41.72 resnet152c,224,1024.0,1301.97,786.489,11.8,23.36,60.21 coatnet_rmlp_1_rw2_224,224,1024.0,1300.63,787.299,7.71,32.74,41.72 twins_pcpvt_large,224,1024.0,1297.56,789.162,9.53,30.21,60.99 maxvit_tiny_tf_224,224,768.0,1297.26,592.007,5.42,31.21,30.92 resnet152d,224,1024.0,1296.94,789.538,11.8,23.36,60.21 cs3edgenet_x,288,1024.0,1296.8,789.626,14.59,16.36,47.82 vit_base_patch16_xp_224,224,1024.0,1295.7,790.295,16.85,16.49,86.51 poolformerv2_s24,224,1024.0,1287.82,795.129,3.42,10.68,21.34 dla169,224,1024.0,1280.41,799.732,11.6,20.2,53.39 efficientnet_el_pruned,300,1024.0,1280.32,799.789,8.0,30.7,10.59 efficientnet_el,300,1024.0,1279.02,800.603,8.0,30.7,10.59 seresnext50_32x4d,288,1024.0,1276.82,801.978,7.04,23.82,27.56 hrnet_w30,224,1024.0,1276.63,802.098,8.15,21.21,37.71 deit3_small_patch16_384,384,1024.0,1274.41,803.494,12.45,24.15,22.21 ecaresnet50t,320,1024.0,1274.01,803.751,8.82,24.13,25.57 maxxvit_rmlp_tiny_rw_256,256,768.0,1269.37,605.011,6.36,32.69,29.64 volo_d1_224,224,1024.0,1269.05,806.894,6.94,24.43,26.63 vgg19,224,1024.0,1264.63,809.714,19.63,14.86,143.67 convnext_base,224,1024.0,1259.04,813.306,15.38,28.75,88.59 rexnetr_300,288,512.0,1257.05,407.293,5.59,36.61,34.81 vit_base_patch16_rpn_224,224,1024.0,1255.24,815.771,16.78,16.41,86.54 densenet161,224,1024.0,1254.96,815.95,7.79,11.06,28.68 efficientformerv2_s1,224,1024.0,1251.09,818.477,0.67,7.66,6.19 regnety_120,224,1024.0,1250.69,818.739,12.14,21.38,51.82 twins_svt_base,224,1024.0,1249.89,819.258,8.36,20.42,56.07 tf_efficientnet_el,300,1024.0,1249.79,819.323,8.0,30.7,10.59 sequencer2d_m,224,1024.0,1238.3,826.927,6.55,14.26,38.31 nest_small,224,1024.0,1229.99,832.512,9.41,22.88,38.35 maxvit_tiny_rw_256,256,768.0,1229.06,624.855,6.44,37.27,29.07 maxvit_rmlp_tiny_rw_256,256,768.0,1228.3,625.245,6.47,39.84,29.15 repvgg_b2,224,1024.0,1219.54,839.651,20.45,12.9,89.02 nest_small_jx,224,1024.0,1219.36,839.775,9.41,22.88,38.35 mixnet_xxl,224,768.0,1211.88,633.716,2.04,23.43,23.96 resnet152s,224,1024.0,1205.05,849.747,12.92,24.96,60.32 swin_small_patch4_window7_224,224,1024.0,1202.25,851.724,8.77,27.47,49.61 inception_v4,299,1024.0,1191.21,859.617,12.28,15.09,42.68 swinv2_tiny_window8_256,256,1024.0,1191.2,859.622,5.96,24.57,28.35 legacy_seresnet152,224,1024.0,1187.19,862.527,11.33,22.08,66.82 coatnet_1_224,224,512.0,1184.08,432.392,8.28,31.3,42.23 xcit_small_24_p16_224,224,1024.0,1178.16,869.138,9.1,23.63,47.67 vit_relpos_base_patch16_rpn_224,224,1024.0,1177.44,869.665,16.8,17.63,86.41 eca_nfnet_l1,256,1024.0,1175.13,871.38,9.62,22.04,41.41 seresnet152,224,1024.0,1173.43,872.64,11.57,22.61,66.82 maxvit_tiny_pm_256,256,768.0,1169.83,656.496,6.31,40.82,30.09 crossvit_base_240,240,1024.0,1165.77,878.374,20.13,22.67,105.03 efficientnet_lite4,380,384.0,1155.38,332.349,4.04,45.66,13.01 xception41,299,512.0,1153.48,443.864,9.28,39.86,26.97 regnetx_160,224,1024.0,1153.37,887.82,15.99,25.52,54.28 vgg19_bn,224,1024.0,1151.34,889.391,19.66,14.86,143.68 cait_xxs36_224,224,1024.0,1139.1,898.942,3.77,30.34,17.3 tresnet_xl,224,1024.0,1138.98,899.04,15.2,15.34,78.44 tnt_s_patch16_224,224,1024.0,1134.46,902.62,5.24,24.37,23.76 davit_base,224,1024.0,1133.31,903.534,15.36,36.72,87.95 dm_nfnet_f0,256,1024.0,1132.28,904.361,12.62,18.05,71.49 resnetv2_101,288,1024.0,1131.44,905.029,12.94,26.83,44.54 mvitv2_small_cls,224,1024.0,1129.19,906.833,7.04,28.17,34.87 mvitv2_small,224,1024.0,1128.19,907.64,7.0,28.08,34.87 coat_tiny,224,1024.0,1126.07,909.345,4.35,27.2,5.5 convmixer_1024_20_ks9_p14,224,1024.0,1123.31,911.577,5.55,5.51,24.38 vit_base_patch16_reg8_gap_256,256,1024.0,1115.77,917.744,22.6,22.09,86.62 fastvit_sa24,256,1024.0,1114.43,918.841,3.79,23.92,21.55 repvgg_b3g4,224,1024.0,1113.37,919.717,17.89,15.1,83.83 convnext_small,288,1024.0,1110.94,921.731,14.39,35.65,50.22 vit_base_patch16_siglip_256,256,1024.0,1108.01,924.168,22.23,21.83,92.93 resnet101,288,1024.0,1104.31,927.267,12.95,26.83,44.55 dla102x2,224,1024.0,1104.21,927.342,9.34,29.91,41.28 pvt_v2_b4,224,1024.0,1101.67,929.481,9.83,48.14,62.56 vit_large_r50_s32_224,224,1024.0,1091.33,938.289,19.45,22.22,328.99 eva02_base_patch16_clip_224,224,1024.0,1090.31,939.167,16.9,18.91,86.26 vgg13_bn,224,1024.0,1090.15,939.306,11.33,12.25,133.05 resnet152d,256,1024.0,1089.57,939.806,15.41,30.51,60.21 nf_regnet_b4,384,1024.0,1089.51,939.86,4.7,28.61,30.21 efficientnet_b3_g8_gn,320,768.0,1085.43,707.541,3.2,28.83,14.25 vit_small_r26_s32_384,384,1024.0,1083.82,944.797,10.24,27.67,36.47 efficientvit_l2,288,1024.0,1083.69,944.906,11.51,32.19,63.71 efficientnetv2_s,384,1024.0,1081.44,946.869,8.44,35.77,21.46 tf_efficientnet_lite4,380,384.0,1073.72,357.628,4.04,45.66,13.01 pvt_v2_b5,224,1024.0,1068.28,958.536,11.39,44.23,81.96 hrnet_w18_ssld,288,1024.0,1066.01,960.575,7.14,26.96,21.3 tf_efficientnetv2_s,384,1024.0,1054.1,971.431,8.44,35.77,21.46 regnety_160,224,1024.0,1046.76,978.242,15.96,23.04,83.59 samvit_base_patch16_224,224,1024.0,1027.37,996.713,16.83,17.2,86.46 convnext_tiny,384,768.0,1026.31,748.299,13.14,39.48,28.59 wide_resnet50_2,288,1024.0,1025.91,998.129,18.89,23.81,68.88 efficientnetv2_rw_s,384,1024.0,1024.66,999.343,8.72,38.03,23.94 vgg16,224,1024.0,1020.44,1003.475,15.47,13.56,138.36 cs3se_edgenet_x,320,1024.0,1009.45,1014.397,18.01,20.21,50.72 vit_base_patch16_plus_240,240,1024.0,1002.7,1021.234,26.31,22.07,117.56 swinv2_cr_small_224,224,1024.0,1001.72,1022.232,9.07,50.27,49.7 dpn98,224,1024.0,998.61,1025.406,11.73,25.2,61.57 efficientvit_b3,288,768.0,996.43,770.744,6.58,44.2,48.65 resnetaa101d,288,1024.0,996.18,1027.911,15.07,29.03,44.57 wide_resnet101_2,224,1024.0,994.0,1030.164,22.8,21.23,126.89 regnetz_d32,320,1024.0,994.0,1030.165,9.33,37.08,27.58 swinv2_cr_small_ns_224,224,1024.0,991.13,1033.149,9.08,50.27,49.7 focalnet_base_srf,224,1024.0,990.91,1033.385,15.28,35.01,88.15 convnextv2_small,224,1024.0,989.67,1034.674,8.71,21.56,50.32 resnet200,224,1024.0,987.28,1037.18,15.07,32.19,64.67 convnextv2_tiny,288,768.0,983.87,780.578,7.39,22.21,28.64 seresnet101,288,1024.0,983.64,1041.016,12.95,26.87,49.33 vit_small_patch8_224,224,1024.0,981.8,1042.968,16.76,32.86,21.67 regnetz_d8,320,1024.0,980.9,1043.922,6.19,37.08,23.37 regnety_080,288,1024.0,977.86,1047.177,13.22,29.69,39.18 inception_next_base,224,1024.0,977.1,1047.988,14.85,25.69,86.67 vit_base_r50_s16_224,224,1024.0,974.47,1050.816,20.94,27.88,97.89 resnest101e,256,1024.0,968.0,1057.838,13.38,28.66,48.28 convnext_base,256,1024.0,965.93,1060.101,20.09,37.55,88.59 regnetz_c16_evos,256,768.0,965.5,795.429,2.48,16.57,13.49 regnetz_040,320,512.0,964.02,531.096,6.35,37.78,27.12 poolformer_m36,224,1024.0,963.9,1062.337,8.8,22.02,56.17 regnetz_b16_evos,288,768.0,961.28,798.923,2.36,16.43,9.74 inception_resnet_v2,299,1024.0,958.82,1067.962,13.18,25.06,55.84 regnetz_040_h,320,512.0,958.46,534.182,6.43,37.94,28.94 seresnet152d,256,1024.0,956.44,1070.629,15.42,30.56,66.84 ecaresnet101d,288,1024.0,951.62,1076.05,13.35,28.19,44.57 regnety_064,288,1024.0,949.24,1078.741,10.56,27.11,30.58 resnetrs152,256,1024.0,948.32,1079.798,15.59,30.83,86.62 resnext101_64x4d,224,1024.0,947.79,1080.397,15.52,31.21,83.46 regnetv_064,288,1024.0,947.23,1081.038,10.55,27.11,30.58 xception65p,299,512.0,944.43,542.118,13.91,52.48,39.82 resnetblur101d,288,1024.0,942.52,1086.438,15.07,29.65,44.57 resnetrs101,288,1024.0,941.79,1087.277,13.56,28.53,63.62 focalnet_base_lrf,224,1024.0,941.31,1087.831,15.43,38.13,88.75 resnext101_32x8d,224,1024.0,939.44,1090.002,16.48,31.21,88.79 repvgg_b3,224,1024.0,933.91,1096.448,29.16,15.1,123.09 hrnet_w40,224,1024.0,931.96,1098.75,12.75,25.29,57.56 nfnet_f1,224,1024.0,924.88,1107.159,17.87,22.94,132.63 eva02_small_patch14_336,336,1024.0,923.99,1108.223,12.41,27.7,22.13 resnet101d,320,1024.0,923.18,1109.193,16.48,34.77,44.57 xcit_tiny_24_p16_384,384,1024.0,910.96,1124.082,6.87,34.29,12.12 efficientnet_b4,384,384.0,908.88,422.486,4.51,50.04,19.34 cait_s24_224,224,1024.0,904.24,1132.424,9.35,40.58,46.92 mobilevitv2_150,384,256.0,899.17,284.697,9.2,54.25,10.59 maxvit_rmlp_small_rw_224,224,768.0,898.81,854.449,10.48,42.44,64.9 coat_mini,224,1024.0,894.78,1144.406,6.82,33.68,10.34 coat_lite_medium,224,1024.0,892.4,1147.459,9.81,40.06,44.57 efficientnetv2_m,320,1024.0,889.26,1151.505,11.01,39.97,54.14 seresnext101_64x4d,224,1024.0,888.73,1152.196,15.53,31.25,88.23 gmlp_b16_224,224,1024.0,884.5,1157.706,15.78,30.21,73.08 seresnext101_32x8d,224,1024.0,883.56,1158.934,16.48,31.25,93.57 swin_s3_small_224,224,768.0,879.87,872.841,9.43,37.84,49.74 vit_relpos_base_patch16_plus_240,240,1024.0,875.04,1170.215,26.21,23.41,117.38 efficientformer_l7,224,1024.0,873.11,1172.808,10.17,24.45,82.23 nest_base,224,1024.0,870.02,1176.974,16.71,30.51,67.72 poolformerv2_s36,224,1024.0,869.16,1178.141,5.01,15.82,30.79 maxvit_small_tf_224,224,512.0,868.0,589.85,11.39,46.31,68.93 seresnext101d_32x8d,224,1024.0,866.35,1181.949,16.72,32.05,93.59 nest_base_jx,224,1024.0,862.67,1187.001,16.71,30.51,67.72 levit_384_s8,224,512.0,854.68,599.045,9.98,35.86,39.12 regnetz_e8,256,1024.0,853.36,1199.952,9.91,40.94,57.7 swin_base_patch4_window7_224,224,1024.0,852.78,1200.762,15.47,36.63,87.77 coatnet_2_rw_224,224,512.0,852.23,600.767,14.55,39.37,73.87 tf_efficientnet_b4,380,384.0,851.5,450.956,4.49,49.49,19.34 gcvit_small,224,1024.0,841.82,1216.401,8.57,41.61,51.09 convnextv2_nano,384,512.0,841.68,608.3,7.22,24.61,15.62 resnetv2_50d_evos,288,1024.0,840.21,1218.735,7.15,19.7,25.59 levit_conv_384_s8,224,512.0,839.77,609.68,9.98,35.86,39.12 xception65,299,512.0,839.39,609.953,13.96,52.48,39.92 hrnet_w44,224,1024.0,835.38,1225.779,14.94,26.92,67.06 crossvit_15_dagger_408,408,1024.0,833.7,1228.252,16.07,37.0,28.5 tiny_vit_21m_384,384,512.0,827.46,618.747,11.94,46.84,21.23 twins_svt_large,224,1024.0,824.23,1242.353,14.84,27.23,99.27 seresnextaa101d_32x8d,224,1024.0,820.77,1247.602,17.25,34.16,93.59 xcit_medium_24_p16_224,224,1024.0,820.51,1247.988,16.13,31.71,84.4 eva02_base_patch14_224,224,1024.0,819.51,1249.51,22.0,24.67,85.76 coatnet_rmlp_2_rw_224,224,512.0,814.13,628.885,14.64,44.94,73.88 hrnet_w48_ssld,224,1024.0,812.33,1260.551,17.34,28.56,77.47 hrnet_w48,224,1024.0,811.26,1262.228,17.34,28.56,77.47 caformer_s36,224,1024.0,810.13,1263.986,7.55,29.29,39.3 tresnet_m,448,1024.0,809.9,1264.343,22.99,29.21,31.39 resnet200d,256,1024.0,803.17,1274.938,20.0,43.09,64.69 sequencer2d_l,224,1024.0,802.78,1275.557,9.74,22.12,54.3 maxxvit_rmlp_small_rw_256,256,768.0,801.57,958.106,14.21,47.76,66.01 swinv2_base_window12_192,192,1024.0,799.54,1280.724,11.9,39.72,109.28 dm_nfnet_f1,224,1024.0,798.67,1282.118,17.87,22.94,132.63 coatnet_2_224,224,512.0,796.89,642.486,15.94,42.41,74.68 vit_medium_patch16_gap_384,384,1024.0,795.07,1287.922,22.01,32.15,39.03 mvitv2_base_cls,224,1024.0,791.15,1294.298,10.23,40.65,65.44 mvitv2_base,224,1024.0,785.87,1303.007,10.16,40.5,51.47 efficientnetv2_rw_m,320,1024.0,785.27,1303.997,12.72,47.14,53.24 resnet152,288,1024.0,781.77,1309.827,19.11,37.28,60.19 swinv2_tiny_window16_256,256,512.0,775.64,660.087,6.68,39.02,28.35 fastvit_sa36,256,1024.0,768.44,1332.545,5.62,34.02,31.53 xcit_small_12_p16_384,384,1024.0,764.7,1339.074,14.14,36.5,26.25 convnext_base,288,1024.0,763.36,1341.427,25.43,47.53,88.59 convformer_s36,224,1024.0,754.92,1356.424,7.67,30.5,40.01 regnety_120,288,768.0,738.36,1040.13,20.06,35.34,51.82 swinv2_small_window8_256,256,1024.0,737.99,1387.548,11.58,40.14,49.73 dpn131,224,1024.0,732.6,1397.744,16.09,32.97,79.25 swinv2_cr_small_ns_256,256,1024.0,731.79,1399.291,12.07,76.21,49.7 mobilevitv2_175,384,256.0,731.75,349.838,12.47,63.29,14.25 convit_base,224,1024.0,730.43,1401.91,17.52,31.77,86.54 resnetv2_50x1_bit,448,512.0,729.61,701.734,16.62,44.46,25.55 poolformer_m48,224,1024.0,727.01,1408.491,11.59,29.17,73.47 maxvit_rmlp_small_rw_256,256,768.0,724.69,1059.745,13.69,55.48,64.9 tnt_b_patch16_224,224,1024.0,721.67,1418.912,14.09,39.01,65.41 eca_nfnet_l1,320,1024.0,720.22,1421.77,14.92,34.42,41.41 swinv2_cr_base_224,224,1024.0,716.89,1428.383,15.86,59.66,87.88 swin_s3_base_224,224,1024.0,715.81,1430.534,13.69,48.26,71.13 volo_d2_224,224,1024.0,711.4,1439.408,14.34,41.34,58.68 swinv2_cr_base_ns_224,224,1024.0,711.07,1440.068,15.86,59.66,87.88 convnextv2_base,224,768.0,708.71,1083.64,15.38,28.75,88.72 densenet264d,224,1024.0,697.85,1467.348,13.57,14.0,72.74 ecaresnet200d,256,1024.0,697.3,1468.506,20.0,43.15,64.69 seresnet200d,256,1024.0,696.92,1469.301,20.01,43.15,71.86 nf_regnet_b5,384,1024.0,694.76,1473.879,7.95,42.9,49.74 seresnet152,288,1024.0,693.47,1476.616,19.11,37.34,66.82 resnetrs200,256,1024.0,693.26,1477.057,20.18,43.42,93.21 coat_small,224,1024.0,689.68,1484.732,12.61,44.25,21.69 convnext_large,224,1024.0,686.69,1491.207,34.4,43.13,197.77 xcit_tiny_24_p8_224,224,1024.0,684.2,1496.615,9.21,45.38,12.11 efficientvit_l3,224,1024.0,667.4,1534.307,27.62,39.16,246.04 dpn107,224,1024.0,666.43,1536.527,18.38,33.46,86.92 resnet152d,320,1024.0,664.6,1540.768,24.08,47.67,60.21 senet154,224,1024.0,664.59,1540.791,20.77,38.69,115.09 legacy_senet154,224,1024.0,663.62,1543.045,20.77,38.69,115.09 efficientformerv2_s2,224,1024.0,658.11,1555.962,1.27,11.77,12.71 maxxvitv2_rmlp_base_rw_224,224,768.0,650.48,1180.654,23.88,54.39,116.09 xcit_nano_12_p8_384,384,1024.0,649.92,1575.56,6.34,46.06,3.05 xception71,299,512.0,649.47,788.325,18.09,69.92,42.34 vit_large_patch32_384,384,1024.0,643.51,1591.268,44.28,32.22,306.63 mobilevitv2_200,384,256.0,640.82,399.48,16.24,72.34,18.45 davit_large,224,1024.0,630.01,1625.361,34.37,55.08,196.81 hrnet_w64,224,1024.0,629.26,1627.299,28.97,35.09,128.06 convnext_small,384,768.0,628.81,1221.341,25.58,63.37,50.22 regnetz_d8_evos,256,1024.0,626.83,1633.604,4.5,24.92,23.46 regnety_160,288,768.0,626.54,1225.759,26.37,38.07,83.59 convnext_base,320,768.0,617.04,1244.641,31.39,58.68,88.59 fastvit_ma36,256,1024.0,615.75,1662.995,7.85,40.39,44.07 tf_efficientnetv2_m,384,1024.0,614.24,1667.09,15.85,57.52,54.14 gcvit_base,224,1024.0,612.92,1670.669,14.87,55.48,90.32 regnety_320,224,1024.0,612.34,1672.272,32.34,30.26,145.05 efficientvit_l2,384,768.0,610.03,1258.949,20.45,57.01,63.71 poolformerv2_m36,224,1024.0,609.2,1680.886,8.81,22.02,56.08 regnetz_c16_evos,320,512.0,608.23,841.78,3.86,25.88,13.49 resnetv2_50x3_bit,224,768.0,585.49,1311.719,37.06,33.34,217.32 seresnet152d,320,1024.0,585.32,1749.453,24.09,47.72,66.84 xcit_small_12_p8_224,224,1024.0,584.75,1751.159,18.69,47.19,26.21 resnet200,288,1024.0,584.49,1751.952,24.91,53.21,64.67 resnetrs152,320,1024.0,580.71,1763.336,24.34,48.14,86.62 caformer_m36,224,1024.0,580.7,1763.373,12.75,40.61,56.2 resnext101_64x4d,288,1024.0,579.65,1766.578,25.66,51.59,83.46 levit_conv_512_s8,224,256.0,579.33,441.879,21.82,52.28,74.05 crossvit_18_dagger_408,408,1024.0,578.67,1769.56,25.31,49.38,44.61 levit_512_s8,224,256.0,564.15,453.77,21.82,52.28,74.05 convnextv2_tiny,384,384.0,553.95,693.189,13.14,39.48,28.64 convformer_m36,224,1024.0,546.86,1872.507,12.89,42.05,57.05 efficientnet_b5,416,256.0,546.68,468.268,8.27,80.68,30.39 seresnet269d,256,1024.0,545.35,1877.679,26.59,53.6,113.67 efficientvit_l3,256,768.0,542.99,1414.373,36.06,50.98,246.04 seresnext101_32x8d,288,1024.0,537.9,1903.669,27.24,51.63,93.57 efficientnetv2_m,416,1024.0,531.24,1927.549,18.6,67.5,54.14 resnetrs270,256,1024.0,529.33,1934.515,27.06,55.84,129.86 maxvit_rmlp_base_rw_224,224,768.0,529.1,1451.502,22.63,79.3,116.14 swinv2_base_window8_256,256,1024.0,528.71,1936.775,20.37,52.59,87.92 regnetz_e8,320,768.0,528.46,1453.264,15.46,63.94,57.7 seresnext101d_32x8d,288,1024.0,527.36,1941.726,27.64,52.95,93.59 convnext_large_mlp,256,768.0,525.72,1460.834,44.94,56.33,200.13 nfnet_f2,256,1024.0,524.14,1953.657,33.76,41.85,193.78 halonet_h1,256,256.0,522.84,489.621,3.0,51.17,8.1 regnetx_320,224,1024.0,522.6,1959.408,31.81,36.3,107.81 mixer_l16_224,224,1024.0,520.22,1968.376,44.6,41.69,208.2 resnext101_32x16d,224,1024.0,519.8,1969.975,36.27,51.18,194.03 eca_nfnet_l2,320,1024.0,509.51,2009.758,20.95,47.43,56.72 ecaresnet200d,288,1024.0,503.74,2032.793,25.31,54.59,64.69 seresnet200d,288,1024.0,503.36,2034.329,25.32,54.6,71.86 caformer_s18,384,512.0,501.38,1021.162,11.45,44.61,26.34 volo_d3_224,224,1024.0,497.87,2056.757,20.78,60.09,86.33 resnet200d,320,1024.0,493.82,2073.621,31.25,67.33,64.69 swin_large_patch4_window7_224,224,768.0,492.35,1559.852,34.53,54.94,196.53 vit_base_patch16_18x2_224,224,1024.0,492.32,2079.918,50.37,49.17,256.73 deit_base_patch16_384,384,1024.0,491.82,2082.046,49.4,48.3,86.86 vit_base_patch16_clip_384,384,1024.0,491.74,2082.405,49.41,48.3,86.86 vit_base_patch16_384,384,1024.0,491.42,2083.727,49.4,48.3,86.86 deit_base_distilled_patch16_384,384,1024.0,491.32,2084.164,49.49,48.39,87.63 hrnet_w48_ssld,288,1024.0,490.92,2085.876,28.66,47.21,77.47 eva_large_patch14_196,196,1024.0,490.45,2087.863,59.66,43.77,304.14 maxvit_base_tf_224,224,512.0,488.88,1047.285,23.52,81.67,119.47 efficientnet_b5,448,256.0,488.83,523.691,9.59,93.56,30.39 vit_large_patch16_224,224,1024.0,488.5,2096.219,59.7,43.77,304.33 swinv2_small_window16_256,256,512.0,486.59,1052.215,12.82,66.29,49.73 swinv2_large_window12_192,192,768.0,485.58,1581.6,26.17,56.53,228.77 convformer_s18,384,512.0,484.08,1057.663,11.63,46.49,26.77 seresnextaa101d_32x8d,288,1024.0,479.96,2133.497,28.51,56.44,93.59 coatnet_3_rw_224,224,256.0,478.44,535.067,32.63,59.07,181.81 coatnet_rmlp_3_rw_224,224,256.0,477.75,535.833,32.75,64.7,165.15 xcit_large_24_p16_224,224,1024.0,472.07,2169.166,35.86,47.26,189.1 vit_small_patch14_dinov2,518,1024.0,469.29,2181.987,29.46,57.34,22.06 deit3_base_patch16_384,384,1024.0,466.88,2193.286,49.4,48.3,86.88 deit3_large_patch16_224,224,1024.0,466.56,2194.777,59.7,43.77,304.37 efficientnetv2_rw_m,416,768.0,466.5,1646.281,21.49,79.62,53.24 nfnet_f1,320,1024.0,466.35,2195.774,35.97,46.77,132.63 nf_regnet_b5,456,768.0,464.5,1653.385,11.7,61.95,49.74 coatnet_3_224,224,256.0,464.1,551.594,35.72,63.61,166.97 vit_small_patch14_reg4_dinov2,518,1024.0,460.4,2224.119,29.55,57.51,22.06 poolformerv2_m48,224,1024.0,459.37,2229.113,11.59,29.17,73.35 beitv2_large_patch16_224,224,1024.0,452.16,2264.697,59.7,43.77,304.43 beit_large_patch16_224,224,1024.0,452.15,2264.716,59.7,43.77,304.43 resnetv2_101x1_bit,448,512.0,451.35,1134.365,31.65,64.93,44.54 dm_nfnet_f2,256,1024.0,451.22,2269.395,33.76,41.85,193.78 vit_base_patch16_siglip_384,384,1024.0,448.34,2283.991,50.0,49.11,93.18 resnetv2_152x2_bit,224,1024.0,441.5,2319.35,46.95,45.11,236.34 convnext_xlarge,224,768.0,435.62,1762.988,60.98,57.5,350.2 maxvit_tiny_tf_384,384,256.0,434.99,588.503,16.0,94.22,30.98 efficientformerv2_l,224,1024.0,431.02,2375.769,2.59,18.54,26.32 convnext_base,384,512.0,430.72,1188.698,45.21,84.49,88.59 convnextv2_base,288,512.0,429.59,1191.832,25.43,47.53,88.72 resnetrs200,320,1024.0,428.05,2392.217,31.51,67.81,93.21 flexivit_large,240,1024.0,424.67,2411.279,68.48,50.22,304.36 convnextv2_large,224,512.0,423.49,1208.977,34.4,43.13,197.96 xcit_tiny_12_p8_384,384,1024.0,423.2,2419.661,14.12,69.12,6.71 swinv2_cr_large_224,224,768.0,422.05,1819.675,35.1,78.42,196.68 caformer_b36,224,768.0,419.19,1832.111,22.5,54.14,98.75 swinv2_cr_tiny_384,384,256.0,419.04,610.909,15.34,161.01,28.33 tf_efficientnet_b5,456,256.0,418.1,612.278,10.46,98.86,30.39 convnext_large,288,512.0,415.42,1232.482,56.87,71.29,197.77 davit_huge,224,512.0,410.45,1247.402,60.93,73.44,348.92 maxxvitv2_rmlp_large_rw_224,224,768.0,409.41,1875.861,43.69,75.4,215.42 tiny_vit_21m_512,512,384.0,408.26,940.575,21.23,83.26,21.27 xcit_small_24_p16_384,384,1024.0,408.08,2509.308,26.72,68.57,47.67 tf_efficientnetv2_m,480,768.0,405.02,1896.185,24.76,89.84,54.14 tresnet_l,448,1024.0,403.56,2537.407,43.59,47.56,55.99 beit_base_patch16_384,384,1024.0,401.76,2548.786,49.4,48.3,86.74 convformer_b36,224,768.0,396.81,1935.431,22.69,56.06,99.88 regnetz_d8_evos,320,768.0,395.82,1940.285,7.03,38.92,23.46 seresnextaa101d_32x8d,320,1024.0,395.0,2592.386,35.19,69.67,93.59 seresnet269d,288,1024.0,393.84,2600.059,33.65,67.81,113.67 dm_nfnet_f1,320,1024.0,393.6,2601.642,35.97,46.77,132.63 regnety_160,384,384.0,378.47,1014.589,46.87,67.67,83.59 vit_large_r50_s32_384,384,1024.0,372.96,2745.589,56.4,64.88,329.09 regnety_640,224,768.0,362.45,2118.906,64.16,42.5,281.38 eca_nfnet_l2,384,768.0,361.66,2123.504,30.05,68.28,56.72 vit_large_patch14_224,224,1024.0,359.79,2846.069,77.83,57.11,304.2 vit_large_patch14_clip_224,224,1024.0,359.08,2851.744,77.83,57.11,304.2 swinv2_base_window12to16_192to256,256,384.0,358.35,1071.569,22.02,84.71,87.92 swinv2_base_window16_256,256,384.0,358.25,1071.869,22.02,84.71,87.92 vit_large_patch16_siglip_256,256,1024.0,351.53,2912.942,78.12,57.42,315.96 vit_base_patch8_224,224,1024.0,350.95,2917.813,66.87,65.71,86.58 efficientvit_l3,320,512.0,346.1,1479.341,56.32,79.34,246.04 efficientnetv2_l,384,1024.0,342.83,2986.92,36.1,101.16,118.52 tf_efficientnetv2_l,384,1024.0,338.97,3020.897,36.1,101.16,118.52 ecaresnet269d,320,1024.0,337.13,3037.39,41.53,83.69,102.09 resnest200e,320,1024.0,336.33,3044.627,35.69,82.78,70.2 maxvit_large_tf_224,224,384.0,336.26,1141.954,42.99,109.57,211.79 convnext_large_mlp,320,512.0,336.03,1523.669,70.21,88.02,200.13 inception_next_base,384,512.0,335.9,1524.27,43.64,75.48,86.67 resnetv2_101x3_bit,224,768.0,334.56,2295.509,71.23,48.7,387.93 eca_nfnet_l3,352,768.0,328.62,2337.043,32.57,73.12,72.04 vit_large_patch14_clip_quickgelu_224,224,1024.0,324.15,3159.023,77.83,57.11,303.97 repvgg_d2se,320,1024.0,320.2,3197.943,74.57,46.82,133.33 vit_base_r50_s16_384,384,1024.0,317.01,3230.175,61.29,81.77,98.95 volo_d4_224,224,1024.0,317.0,3230.22,44.34,80.22,192.96 volo_d1_384,384,512.0,314.1,1630.023,22.75,108.55,26.78 vit_large_patch14_xp_224,224,1024.0,309.84,3304.92,77.77,57.11,304.06 convmixer_768_32,224,1024.0,308.6,3318.227,19.55,25.95,21.11 xcit_small_24_p8_224,224,1024.0,305.72,3349.464,35.81,90.77,47.63 resnetrs350,288,1024.0,304.48,3363.098,43.67,87.09,163.96 nasnetalarge,331,384.0,300.79,1276.642,23.89,90.56,88.75 coat_lite_medium_384,384,512.0,299.62,1708.831,28.73,116.7,44.57 tresnet_xl,448,768.0,296.15,2593.304,60.77,61.31,78.44 maxvit_small_tf_384,384,192.0,288.16,666.295,33.58,139.86,69.02 pnasnet5large,331,384.0,287.26,1336.778,25.04,92.89,86.06 xcit_medium_24_p16_384,384,1024.0,282.76,3621.451,47.39,91.63,84.4 ecaresnet269d,352,1024.0,281.17,3641.867,50.25,101.25,102.09 coatnet_4_224,224,256.0,280.04,914.128,60.81,98.85,275.43 cait_xxs24_384,384,1024.0,277.04,3696.16,9.63,122.65,12.03 coatnet_rmlp_2_rw_384,384,192.0,273.87,701.059,43.04,132.57,73.88 resnetrs270,352,1024.0,271.91,3765.914,51.13,105.48,129.86 nfnet_f2,352,768.0,270.88,2835.244,63.22,79.06,193.78 caformer_s36,384,512.0,266.29,1922.686,22.2,86.08,39.3 convnext_xlarge,288,512.0,263.75,1941.25,100.8,95.05,350.2 swinv2_cr_small_384,384,256.0,258.42,990.618,29.7,298.03,49.7 efficientnet_b6,528,128.0,257.57,496.944,19.4,167.39,43.04 convformer_s36,384,512.0,257.36,1989.401,22.54,89.62,40.01 convnextv2_large,288,256.0,256.91,996.448,56.87,71.29,197.96 eva02_large_patch14_224,224,1024.0,256.79,3987.739,77.9,65.52,303.27 eva02_large_patch14_clip_224,224,1024.0,253.51,4039.312,77.93,65.52,304.11 resnext101_32x32d,224,512.0,253.0,2023.672,87.29,91.12,468.53 maxvit_tiny_tf_512,512,192.0,249.39,769.864,28.66,172.66,31.05 tf_efficientnet_b6,528,128.0,247.44,517.29,19.4,167.39,43.04 nfnet_f3,320,1024.0,247.37,4139.575,68.77,83.93,254.92 mvitv2_large_cls,224,768.0,246.55,3114.926,42.17,111.69,234.58 vit_so400m_patch14_siglip_224,224,1024.0,246.49,4154.292,106.18,70.45,427.68 efficientnetv2_xl,384,1024.0,244.46,4188.739,52.81,139.2,208.12 mvitv2_large,224,512.0,242.6,2110.485,43.87,112.02,217.99 convnextv2_base,384,256.0,242.26,1056.699,45.21,84.49,88.72 vit_base_patch16_siglip_512,512,512.0,241.2,2122.705,88.89,87.3,93.52 convnext_large,384,384.0,234.69,1636.209,101.1,126.74,197.77 convnext_large_mlp,384,384.0,234.65,1636.476,101.11,126.74,200.13 dm_nfnet_f2,352,768.0,234.38,3276.685,63.22,79.06,193.78 tf_efficientnetv2_xl,384,1024.0,230.18,4448.679,52.81,139.2,208.12 efficientnetv2_l,480,512.0,229.94,2226.68,56.4,157.99,118.52 tf_efficientnetv2_l,480,512.0,227.38,2251.742,56.4,157.99,118.52 swin_base_patch4_window12_384,384,256.0,226.65,1129.483,47.19,134.78,87.9 regnety_320,384,384.0,225.95,1699.504,95.0,88.87,145.05 resnetrs420,320,1024.0,221.8,4616.729,64.2,126.56,191.89 xcit_tiny_24_p8_384,384,1024.0,221.03,4632.753,27.05,132.94,12.11 efficientvit_l3,384,384.0,220.15,1744.25,81.08,114.02,246.04 swinv2_large_window12to16_192to256,256,256.0,218.91,1169.41,47.81,121.53,196.74 maxxvitv2_rmlp_base_rw_384,384,384.0,215.87,1778.825,70.18,160.22,116.09 resmlp_big_24_224,224,1024.0,214.65,4770.604,100.23,87.31,129.14 dm_nfnet_f3,320,1024.0,212.33,4822.62,68.77,83.93,254.92 volo_d5_224,224,1024.0,212.3,4823.349,72.4,118.11,295.46 xcit_medium_24_p8_224,224,1024.0,210.35,4868.038,63.52,121.22,84.32 seresnextaa201d_32x8d,320,1024.0,207.05,4945.752,70.22,138.71,149.39 eca_nfnet_l3,448,512.0,204.74,2500.737,52.55,118.4,72.04 xcit_small_12_p8_384,384,512.0,195.78,2615.134,54.92,138.25,26.21 cait_xs24_384,384,768.0,193.45,3970.037,19.28,183.98,26.67 caformer_m36,384,256.0,191.51,1336.728,37.45,119.33,56.2 focalnet_huge_fl3,224,384.0,190.45,2016.221,118.26,104.8,745.28 eva02_base_patch14_448,448,512.0,189.13,2707.053,87.74,98.4,87.12 maxvit_xlarge_tf_224,224,256.0,188.97,1354.682,96.49,164.37,506.99 convformer_m36,384,384.0,186.96,2053.847,37.87,123.56,57.05 cait_xxs36_384,384,1024.0,185.14,5531.038,14.35,183.7,17.37 swinv2_cr_base_384,384,256.0,184.66,1386.338,50.57,333.68,87.88 resnetrs350,384,1024.0,184.39,5553.562,77.59,154.74,163.96 regnety_1280,224,512.0,182.89,2799.45,127.66,71.58,644.81 swinv2_cr_huge_224,224,384.0,181.27,2118.357,115.97,121.08,657.83 vit_huge_patch14_clip_224,224,1024.0,179.25,5712.71,161.99,95.07,632.05 vit_huge_patch14_224,224,1024.0,179.24,5713.082,161.99,95.07,630.76 volo_d2_384,384,384.0,177.67,2161.247,46.17,184.51,58.87 maxvit_rmlp_base_rw_384,384,384.0,177.21,2166.875,66.51,233.79,116.14 vit_base_patch14_dinov2,518,512.0,175.93,2910.275,117.11,114.68,86.58 vit_huge_patch14_gap_224,224,1024.0,175.35,5839.715,161.36,94.7,630.76 vit_base_patch14_reg4_dinov2,518,512.0,175.34,2920.066,117.45,115.02,86.58 convnextv2_huge,224,256.0,174.19,1469.676,115.0,79.07,660.29 deit3_huge_patch14_224,224,1024.0,172.49,5936.531,161.99,95.07,632.13 convmixer_1536_20,224,1024.0,172.27,5944.074,48.68,33.03,51.63 vit_huge_patch14_clip_quickgelu_224,224,1024.0,165.12,6201.386,161.99,95.07,632.08 maxvit_small_tf_512,512,96.0,163.95,585.546,60.02,256.36,69.13 maxvit_base_tf_384,384,192.0,162.75,1179.72,69.34,247.75,119.65 xcit_large_24_p16_384,384,1024.0,162.01,6320.659,105.34,137.15,189.1 resnetv2_152x2_bit,384,384.0,160.06,2399.153,136.16,132.56,236.34 vit_huge_patch14_xp_224,224,1024.0,159.21,6431.544,161.88,95.07,631.8 resnest269e,416,512.0,159.04,3219.278,77.69,171.98,110.93 eva_large_patch14_336,336,768.0,155.41,4941.906,174.74,128.21,304.53 vit_large_patch14_clip_336,336,768.0,155.09,4951.819,174.74,128.21,304.53 vit_large_patch16_384,384,768.0,154.94,4956.737,174.85,128.21,304.72 convnext_xxlarge,256,384.0,152.35,2520.42,198.09,124.45,846.47 davit_giant,224,384.0,151.56,2533.626,192.34,138.2,1406.47 resnetv2_50x3_bit,448,192.0,150.44,1276.251,145.7,133.37,217.32 coatnet_5_224,224,192.0,149.61,1283.336,142.72,143.69,687.47 efficientnetv2_xl,512,512.0,149.15,3432.877,93.85,247.32,208.12 cait_s24_384,384,512.0,148.91,3438.219,32.17,245.3,47.06 convnext_xlarge,384,256.0,148.61,1722.573,179.2,168.99,350.2 tf_efficientnetv2_xl,512,512.0,148.0,3459.525,93.85,247.32,208.12 efficientnet_b7,600,96.0,147.91,649.053,38.33,289.94,66.35 deit3_large_patch16_384,384,1024.0,147.79,6928.856,174.85,128.21,304.76 seresnextaa201d_32x8d,384,768.0,147.05,5222.537,101.11,199.72,149.39 nfnet_f3,416,512.0,146.71,3489.974,115.58,141.78,254.92 vit_giant_patch16_gap_224,224,1024.0,145.38,7043.632,198.14,103.64,1011.37 convnextv2_large,384,192.0,144.92,1324.86,101.1,126.74,197.96 resnetv2_152x4_bit,224,512.0,144.91,3533.266,186.9,90.22,936.53 vit_large_patch16_siglip_384,384,768.0,144.23,5324.878,175.76,129.18,316.28 tf_efficientnet_b7,600,96.0,143.48,669.058,38.33,289.94,66.35 nfnet_f4,384,768.0,142.67,5383.101,122.14,147.57,316.07 vit_large_patch14_clip_quickgelu_336,336,768.0,140.95,5448.604,174.74,128.21,304.29 caformer_b36,384,256.0,138.42,1849.458,66.12,159.11,98.75 swin_large_patch4_window12_384,384,128.0,135.49,944.717,104.08,202.16,196.74 convformer_b36,384,256.0,135.29,1892.221,66.67,164.75,99.88 resnetrs420,416,1024.0,130.11,7870.213,108.45,213.79,191.89 beit_large_patch16_384,384,768.0,129.31,5939.365,174.84,128.21,305.0 dm_nfnet_f3,416,512.0,127.57,4013.328,115.58,141.78,254.92 regnety_640,384,256.0,126.8,2018.836,188.47,124.83,281.38 dm_nfnet_f4,384,768.0,123.05,6241.189,122.14,147.57,316.07 focalnet_huge_fl4,224,512.0,122.81,4169.023,118.9,113.34,686.46 xcit_large_24_p8_224,224,512.0,120.1,4263.036,141.22,181.53,188.93 resnetv2_152x2_bit,448,256.0,117.91,2171.109,184.99,180.43,236.34 eva_giant_patch14_224,224,1024.0,116.71,8773.739,259.74,135.89,1012.56 eva_giant_patch14_clip_224,224,1024.0,116.64,8779.464,259.74,135.89,1012.59 vit_giant_patch14_224,224,1024.0,114.18,8968.21,259.74,135.89,1012.61 vit_giant_patch14_clip_224,224,1024.0,114.09,8975.383,259.74,135.89,1012.65 swinv2_cr_large_384,384,128.0,112.81,1134.666,108.96,404.96,196.68 maxvit_large_tf_384,384,128.0,111.17,1151.411,126.61,332.3,212.03 eva02_large_patch14_clip_336,336,1024.0,110.28,9285.405,174.97,147.1,304.43 mvitv2_huge_cls,224,384.0,107.61,3568.518,120.67,243.63,694.8 convnextv2_huge,288,128.0,105.35,1214.957,190.1,130.7,660.29 xcit_small_24_p8_384,384,512.0,102.73,4983.926,105.23,265.87,47.63 nfnet_f5,416,512.0,100.11,5114.164,170.71,204.56,377.21 cait_s36_384,384,512.0,99.61,5140.29,47.99,367.39,68.37 swinv2_base_window12to24_192to384,384,96.0,96.35,996.364,55.25,280.36,87.92 efficientnet_b8,672,96.0,95.78,1002.248,63.48,442.89,87.41 focalnet_large_fl3,384,384.0,94.47,4064.948,105.06,168.04,239.13 tf_efficientnet_b8,672,96.0,93.18,1030.252,63.48,442.89,87.41 maxvit_base_tf_512,512,96.0,92.2,1041.169,123.93,456.26,119.88 focalnet_large_fl4,384,256.0,90.17,2839.222,105.2,181.78,239.32 resnetv2_101x3_bit,448,192.0,87.88,2184.819,280.33,194.78,387.93 dm_nfnet_f5,416,512.0,86.64,5909.833,170.71,204.56,377.21 nfnet_f4,512,384.0,81.51,4711.211,216.26,262.26,316.07 volo_d3_448,448,192.0,76.74,2501.831,96.33,446.83,86.63 vit_so400m_patch14_siglip_384,384,512.0,75.92,6743.556,302.34,200.62,428.23 nfnet_f6,448,512.0,75.59,6773.482,229.7,273.62,438.36 vit_huge_patch14_clip_336,336,768.0,75.49,10173.683,363.7,213.44,632.46 xcit_medium_24_p8_384,384,384.0,71.15,5396.903,186.67,354.69,84.32 dm_nfnet_f4,512,384.0,69.56,5520.408,216.26,262.26,316.07 vit_gigantic_patch14_224,224,512.0,66.18,7736.423,473.4,204.12,1844.44 vit_gigantic_patch14_clip_224,224,512.0,66.18,7735.92,473.41,204.12,1844.91 focalnet_xlarge_fl3,384,256.0,66.07,3874.786,185.61,223.99,408.79 dm_nfnet_f6,448,512.0,65.28,7842.994,229.7,273.62,438.36 maxvit_large_tf_512,512,64.0,63.68,1005.087,225.96,611.85,212.33 focalnet_xlarge_fl4,384,192.0,63.39,3028.979,185.79,242.31,409.03 maxvit_xlarge_tf_384,384,96.0,63.2,1518.995,283.86,498.45,475.32 regnety_1280,384,128.0,62.14,2059.919,374.99,210.2,644.81 beit_large_patch16_512,512,256.0,61.47,4164.41,310.6,227.76,305.67 convnextv2_huge,384,96.0,60.73,1580.79,337.96,232.35,660.29 swinv2_large_window12to24_192to384,384,48.0,60.6,792.119,116.15,407.83,196.74 eva02_large_patch14_448,448,512.0,59.6,8591.147,310.69,261.32,305.08 tf_efficientnet_l2,475,128.0,59.14,2164.439,172.11,609.89,480.31 nfnet_f5,544,384.0,58.55,6558.595,290.97,349.71,377.21 vit_huge_patch14_clip_378,378,512.0,58.17,8801.788,460.13,270.04,632.68 volo_d4_448,448,192.0,57.2,3356.883,197.13,527.35,193.41 nfnet_f7,480,384.0,57.05,6730.663,300.08,355.86,499.5 vit_large_patch14_dinov2,518,384.0,56.81,6759.458,414.89,304.42,304.37 vit_large_patch14_reg4_dinov2,518,384.0,56.51,6795.142,416.1,305.31,304.37 vit_huge_patch14_clip_quickgelu_378,378,384.0,53.9,7123.722,460.13,270.04,632.68 swinv2_cr_giant_224,224,192.0,52.42,3662.593,483.85,309.15,2598.76 dm_nfnet_f5,544,384.0,50.82,7555.977,290.97,349.71,377.21 eva_giant_patch14_336,336,512.0,49.6,10322.486,583.14,305.1,1013.01 swinv2_cr_huge_384,384,64.0,48.85,1310.056,352.04,583.18,657.94 nfnet_f6,576,256.0,45.99,5566.397,378.69,452.2,438.36 xcit_large_24_p8_384,384,256.0,40.54,6315.135,415.0,531.74,188.93 volo_d5_448,448,192.0,39.97,4803.918,315.06,737.92,295.91 dm_nfnet_f6,576,256.0,39.68,6452.4,378.69,452.2,438.36 nfnet_f7,608,256.0,35.92,7127.91,480.39,570.85,499.5 maxvit_xlarge_tf_512,512,48.0,35.73,1343.449,505.95,917.77,475.77 regnety_2560,384,96.0,35.19,2728.299,747.83,296.49,1282.6 convnextv2_huge,512,48.0,34.07,1408.989,600.81,413.07,660.29 cait_m36_384,384,256.0,32.53,7868.895,173.11,734.79,271.22 resnetv2_152x4_bit,480,128.0,32.31,3961.512,844.84,414.26,936.53 volo_d5_512,512,96.0,27.94,3435.72,425.09,1105.37,296.09 samvit_base_patch16,1024,12.0,23.01,521.487,371.55,403.08,89.67 efficientnet_l2,800,32.0,22.53,1420.616,479.12,1707.39,480.31 tf_efficientnet_l2,800,32.0,22.12,1446.454,479.12,1707.39,480.31 vit_giant_patch14_dinov2,518,192.0,17.14,11200.639,1553.56,871.89,1136.48 vit_giant_patch14_reg4_dinov2,518,128.0,17.05,7505.847,1558.09,874.43,1136.48 swinv2_cr_giant_384,384,32.0,15.01,2131.256,1450.71,1394.86,2598.76 eva_giant_patch14_560,560,192.0,15.01,12792.976,1618.04,846.56,1014.45 cait_m48_448,448,128.0,13.76,9299.464,329.4,1708.21,356.46 samvit_large_patch16,1024,8.0,10.25,780.237,1317.08,1055.58,308.28 samvit_huge_patch16,1024,6.0,6.31,950.475,2741.59,1727.57,637.03 eva02_enormous_patch14_clip_224,224,,,,1132.46,497.58,4350.56 vit_huge_patch16_gap_448,448,,,,544.7,636.83,631.67
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-sketch.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation,top1_diff,top5_diff,rank_diff eva_giant_patch14_336.clip_ft_in1k,71.177,28.823,90.299,9.701,"1,013.01",336,1.000,bicubic,-18.289,-8.527,+6 eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,70.662,29.338,89.856,10.144,305.08,448,1.000,bicubic,-19.390,-9.192,-1 eva02_large_patch14_448.mim_m38m_ft_in1k,70.546,29.454,89.843,10.157,305.08,448,1.000,bicubic,-19.028,-9.081,+2 convnext_xxlarge.clip_laion2b_soup_ft_in1k,70.039,29.961,90.334,9.666,846.47,256,1.000,bicubic,-18.565,-8.374,+10 eva_giant_patch14_224.clip_ft_in1k,70.021,29.979,89.768,10.232,"1,012.56",224,0.900,bicubic,-18.859,-8.912,+4 eva_giant_patch14_336.m30m_ft_in22k_in1k,68.052,31.948,87.819,12.181,"1,013.01",336,1.000,bicubic,-21.514,-11.133,0 eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,67.533,32.467,87.506,12.494,305.08,448,1.000,bicubic,-22.437,-11.506,-5 eva_giant_patch14_560.m30m_ft_in22k_in1k,67.486,32.514,87.473,12.527,"1,014.45",560,1.000,bicubic,-22.300,-11.519,-5 vit_huge_patch14_clip_224.laion2b_ft_in1k,67.396,32.604,87.882,12.118,632.05,224,1.000,bicubic,-20.192,-10.337,+39 eva02_large_patch14_448.mim_in22k_ft_in1k,66.987,33.013,87.443,12.557,305.08,448,1.000,bicubic,-22.635,-11.507,-6 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,66.435,33.565,87.349,12.651,200.13,384,1.000,bicubic,-21.413,-11.097,+31 vit_large_patch14_clip_336.laion2b_ft_in1k,65.741,34.259,86.909,13.091,304.53,336,1.000,bicubic,-22.115,-11.459,+28 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,65.731,34.269,87.017,12.983,200.13,384,1.000,bicubic,-22.575,-11.565,+10 vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,65.323,34.677,86.826,13.174,632.05,224,1.000,bicubic,-22.933,-11.726,+11 vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,65.260,34.740,86.757,13.242,632.46,336,1.000,bicubic,-23.332,-11.905,+1 convnext_large_mlp.clip_laion2b_augreg_ft_in1k,65.091,34.909,86.284,13.716,200.13,256,1.000,bicubic,-22.245,-11.934,+42 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,64.918,35.082,86.649,13.351,200.13,320,1.000,bicubic,-23.040,-11.827,+19 vit_large_patch14_clip_224.laion2b_ft_in1k,64.820,35.181,86.575,13.425,304.20,224,1.000,bicubic,-22.466,-11.669,+43 regnety_1280.swag_ft_in1k,64.106,35.894,86.034,13.966,644.81,384,1.000,bicubic,-24.124,-12.652,+9 vit_large_patch14_clip_336.openai_ft_in12k_in1k,64.065,35.935,85.912,14.088,304.53,336,1.000,bicubic,-24.203,-12.614,+4 eva_large_patch14_336.in22k_ft_in1k,63.096,36.904,84.382,15.618,304.53,336,1.000,bicubic,-25.574,-14.340,-8 vit_large_patch14_clip_224.openai_ft_in1k,62.629,37.371,85.109,14.891,304.20,224,1.000,bicubic,-25.225,-13.317,+19 vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,62.065,37.935,84.313,15.687,304.20,224,1.000,bicubic,-25.830,-14.095,+16 vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,61.611,38.389,83.651,16.349,304.53,336,1.000,bicubic,-26.569,-14.921,+8 vit_large_patch14_clip_224.openai_ft_in12k_in1k,61.402,38.598,83.362,16.638,304.20,224,1.000,bicubic,-26.772,-15.184,+8 eva_large_patch14_196.in22k_ft_in1k,61.113,38.887,82.776,17.224,304.14,196,1.000,bicubic,-26.819,-15.722,+11 eva_large_patch14_336.in22k_ft_in22k_in1k,60.944,39.056,82.136,17.864,304.53,336,1.000,bicubic,-28.262,-16.718,-19 convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,60.795,39.205,83.220,16.780,88.59,384,1.000,bicubic,-26.339,-15.002,+36 convnext_base.clip_laion2b_augreg_ft_in1k,60.276,39.724,82.678,17.322,88.59,256,1.000,bicubic,-25.882,-15.002,+90 regnety_1280.swag_lc_in1k,59.913,40.087,83.161,16.839,644.81,224,0.965,bicubic,-26.069,-14.689,+105 eva_large_patch14_196.in22k_ft_in22k_in1k,59.883,40.117,81.143,18.857,304.14,196,1.000,bicubic,-28.691,-17.515,-14 convnext_base.clip_laion2b_augreg_ft_in12k_in1k,59.836,40.164,82.810,17.190,88.59,256,1.000,bicubic,-26.534,-15.174,+74 convnext_base.clip_laiona_augreg_ft_in1k_384,59.392,40.608,82.242,17.758,88.59,384,1.000,bicubic,-27.110,-15.726,+63 eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,58.512,41.488,80.797,19.203,87.12,448,1.000,bicubic,-30.178,-17.927,-23 resnext101_32x32d.fb_wsl_ig1b_ft_in1k,58.376,41.624,80.398,19.602,468.53,224,0.875,bilinear,-26.722,-17.040,+163 beitv2_large_patch16_224.in1k_ft_in22k_in1k,58.366,41.634,80.226,19.774,304.43,224,0.950,bicubic,-30.028,-18.372,-16 eva02_base_patch14_448.mim_in22k_ft_in1k,58.036,41.964,80.768,19.232,87.12,448,1.000,bicubic,-30.216,-17.796,-11 regnety_320.swag_ft_in1k,57.906,42.094,81.456,18.544,145.05,384,1.000,bicubic,-28.928,-16.906,+42 convnextv2_huge.fcmae_ft_in22k_in1k_384,57.865,42.135,79.671,20.329,660.29,384,1.000,bicubic,-30.805,-19.067,-27 convnextv2_huge.fcmae_ft_in22k_in1k_512,57.851,42.149,79.497,20.503,660.29,512,1.000,bicubic,-31.007,-19.251,-30 resnext101_32x16d.fb_wsl_ig1b_ft_in1k,57.696,42.304,79.907,20.093,194.03,224,0.875,bilinear,-26.470,-17.291,+242 resnext101_32x16d.fb_swsl_ig1b_ft_in1k,57.478,42.522,80.373,19.627,194.03,224,0.875,bilinear,-25.858,-16.473,+333 vit_base_patch16_clip_384.laion2b_ft_in1k,56.879,43.121,80.004,19.997,86.86,384,1.000,bicubic,-29.739,-18.004,+45 beit_large_patch16_384.in22k_ft_in22k_in1k,56.879,43.121,79.221,20.779,305.00,384,1.000,bicubic,-31.523,-19.387,-24 beit_large_patch16_512.in22k_ft_in22k_in1k,56.757,43.243,78.911,21.089,305.67,512,1.000,bicubic,-31.839,-19.745,-30 resnext101_32x8d.fb_swsl_ig1b_ft_in1k,56.438,43.562,78.931,21.069,88.79,224,0.875,bilinear,-27.864,-18.245,+223 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,56.327,43.673,77.305,22.695,116.14,384,1.000,bicubic,-31.502,-21.067,-4 maxvit_xlarge_tf_384.in21k_ft_in1k,56.212,43.788,78.742,21.258,475.32,384,1.000,bicubic,-32.101,-19.802,-26 maxvit_xlarge_tf_512.in21k_ft_in1k,56.156,43.844,78.636,21.364,475.77,512,1.000,bicubic,-32.382,-20.008,-31 maxvit_base_tf_512.in21k_ft_in1k,56.083,43.917,78.606,21.394,119.88,512,1.000,bicubic,-32.137,-19.924,-20 deit3_huge_patch14_224.fb_in22k_ft_in1k,55.767,44.233,77.626,22.374,632.13,224,1.000,bicubic,-31.420,-20.634,+12 maxvit_base_tf_384.in21k_ft_in1k,55.639,44.361,78.078,21.922,119.65,384,1.000,bicubic,-32.283,-20.466,-14 vit_base_patch16_clip_224.laion2b_ft_in1k,55.405,44.595,79.050,20.950,86.57,224,1.000,bicubic,-30.065,-18.525,+111 regnety_320.swag_lc_in1k,55.354,44.646,79.703,20.297,145.05,224,0.965,bicubic,-29.194,-17.739,+184 regnety_160.swag_ft_in1k,55.177,44.823,79.316,20.684,83.59,384,1.000,bicubic,-30.843,-18.736,+74 maxvit_large_tf_512.in21k_ft_in1k,55.171,44.829,77.276,22.724,212.33,512,1.000,bicubic,-33.053,-21.322,-27 maxvit_large_tf_384.in21k_ft_in1k,55.077,44.923,77.142,22.858,212.03,384,1.000,bicubic,-32.909,-21.426,-22 beit_large_patch16_224.in22k_ft_in22k_in1k,54.965,45.035,77.608,22.392,304.43,224,0.900,bicubic,-32.513,-20.696,-8 convnext_xlarge.fb_in22k_ft_in1k_384,54.961,45.039,76.824,23.176,350.20,384,1.000,bicubic,-32.791,-21.732,-15 resnext101_32x8d.fb_wsl_ig1b_ft_in1k,54.908,45.092,77.541,22.459,88.79,224,0.875,bilinear,-27.790,-18.603,+374 deit3_large_patch16_384.fb_in22k_ft_in1k,54.886,45.114,77.372,22.628,304.76,384,1.000,bicubic,-32.834,-21.140,-16 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,54.747,45.253,76.848,23.152,116.09,384,1.000,bicubic,-32.717,-21.526,-10 caformer_b36.sail_in22k_ft_in1k_384,54.440,45.560,76.830,23.170,98.75,384,1.000,bicubic,-33.618,-21.752,-29 deit3_large_patch16_224.fb_in22k_ft_in1k,54.359,45.641,76.563,23.437,304.37,224,1.000,bicubic,-32.623,-21.673,+9 beitv2_large_patch16_224.in1k_ft_in1k,54.161,45.839,75.562,24.438,304.43,224,0.950,bicubic,-33.251,-22.671,-9 convnextv2_large.fcmae_ft_in22k_in1k_384,53.947,46.053,76.007,23.993,197.96,384,1.000,bicubic,-34.251,-22.521,-35 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,53.731,46.269,75.140,24.860,116.14,224,0.950,bicubic,-33.163,-22.874,+9 resnext101_32x4d.fb_swsl_ig1b_ft_in1k,53.587,46.413,76.337,23.663,44.18,224,0.875,bilinear,-29.639,-20.423,+316 vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,53.493,46.507,75.653,24.347,86.86,384,1.000,bicubic,-33.713,-22.381,-7 vit_base_patch16_clip_384.openai_ft_in1k,53.074,46.926,76.655,23.345,86.86,384,1.000,bicubic,-33.132,-21.221,+44 regnety_160.swag_lc_in1k,53.043,46.957,78.090,21.910,83.59,224,0.965,bicubic,-30.739,-19.190,+253 convnextv2_base.fcmae_ft_in22k_in1k_384,52.907,47.093,75.083,24.917,88.72,384,1.000,bicubic,-34.737,-23.333,-26 convformer_b36.sail_in22k_ft_in1k_384,52.874,47.126,74.979,25.021,99.88,384,1.000,bicubic,-34.728,-23.455,-26 convnext_large.fb_in22k_ft_in1k_384,52.774,47.226,74.700,25.300,197.77,384,1.000,bicubic,-34.698,-23.686,-23 vit_large_patch16_384.augreg_in21k_ft_in1k,52.760,47.240,74.706,25.294,304.72,384,1.000,bicubic,-34.324,-23.596,-8 caformer_b36.sail_in22k_ft_in1k,52.756,47.244,75.309,24.691,98.75,224,1.000,bicubic,-34.664,-23.019,-21 convformer_b36.sail_in22k_ft_in1k,52.746,47.254,74.896,25.104,99.88,224,1.000,bicubic,-34.252,-23.276,-6 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,52.389,47.611,73.802,26.198,73.88,384,1.000,bicubic,-34.994,-24.510,-21 swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,52.304,47.696,74.415,25.585,196.74,384,1.000,bicubic,-35.160,-23.835,-26 convnext_xlarge.fb_in22k_ft_in1k,52.216,47.784,73.955,26.045,350.20,288,1.000,bicubic,-35.114,-24.373,-21 vit_large_r50_s32_384.augreg_in21k_ft_in1k,52.041,47.959,73.570,26.430,329.09,384,1.000,bicubic,-34.141,-24.352,+35 vit_large_patch16_224.augreg_in21k_ft_in1k,51.819,48.181,73.690,26.310,304.33,224,0.900,bicubic,-34.017,-23.974,+57 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,51.785,48.215,74.637,25.363,86.57,224,0.950,bicubic,-34.385,-23.119,+34 convnext_base.fb_in22k_ft_in1k_384,51.565,48.435,74.543,25.457,88.59,384,1.000,bicubic,-35.231,-23.721,-1 tf_efficientnet_l2.ns_jft_in1k_475,51.496,48.504,73.931,26.069,480.31,475,0.936,bicubic,-36.738,-24.615,-58 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,51.190,48.810,73.126,26.874,116.09,224,0.950,bicubic,-35.452,-24.894,+2 vit_base_patch16_clip_384.openai_ft_in12k_in1k,51.153,48.847,74.323,25.677,86.86,384,0.950,bicubic,-35.873,-23.859,-17 caformer_m36.sail_in22k_ft_in1k_384,51.048,48.952,73.442,26.558,56.20,384,1.000,bicubic,-36.398,-24.866,-34 swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,50.976,49.024,73.295,26.705,87.92,384,1.000,bicubic,-36.120,-24.939,-23 vit_base_patch16_clip_224.openai_ft_in1k,50.936,49.064,74.841,25.159,86.57,224,0.900,bicubic,-34.356,-22.595,+88 seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,50.710,49.290,73.666,26.334,149.39,384,1.000,bicubic,-36.578,-24.668,-31 resnext50_32x4d.fb_swsl_ig1b_ft_in1k,50.465,49.535,73.366,26.634,25.03,224,0.875,bilinear,-31.707,-22.858,+420 swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,50.433,49.567,72.735,27.265,196.74,256,0.900,bicubic,-36.519,-25.371,-19 swin_large_patch4_window12_384.ms_in22k_ft_in1k,50.394,49.606,72.538,27.462,196.74,384,1.000,bicubic,-36.738,-25.696,-29 convnextv2_large.fcmae_ft_in22k_in1k,50.160,49.840,72.399,27.601,197.96,288,1.000,bicubic,-37.324,-25.957,-46 convnext_large.fb_in22k_ft_in1k,49.999,50.001,72.267,27.733,197.77,288,1.000,bicubic,-37.027,-25.937,-27 tf_efficientnetv2_xl.in21k_ft_in1k,49.722,50.278,72.124,27.876,208.12,512,1.000,bicubic,-37.026,-25.890,-12 vit_base_patch16_clip_224.openai_ft_in12k_in1k,49.700,50.300,72.868,27.132,86.57,224,0.950,bicubic,-36.242,-24.860,+37 caformer_m36.sail_in22k_ft_in1k,49.700,50.300,72.141,27.859,56.20,224,1.000,bicubic,-36.894,-25.883,-7 resnet50.fb_swsl_ig1b_ft_in1k,49.531,50.469,72.338,27.662,25.56,224,0.875,bilinear,-31.641,-23.648,+508 beitv2_base_patch16_224.in1k_ft_in22k_in1k,49.516,50.484,72.391,27.609,86.53,224,0.900,bicubic,-36.958,-25.661,-1 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,49.394,50.606,70.848,29.152,73.88,224,0.950,bicubic,-37.110,-27.046,-7 convnextv2_base.fcmae_ft_in22k_in1k,49.142,50.858,71.230,28.770,88.72,288,1.000,bicubic,-37.856,-26.939,-31 convformer_m36.sail_in22k_ft_in1k_384,49.132,50.868,71.387,28.613,57.05,384,1.000,bicubic,-37.760,-26.729,-27 convformer_m36.sail_in22k_ft_in1k,49.091,50.909,71.471,28.529,57.05,224,1.000,bicubic,-37.057,-26.379,+15 vit_base_patch32_clip_224.laion2b_ft_in1k,49.062,50.938,72.584,27.416,88.22,224,0.900,bicubic,-33.520,-23.617,+350 swin_large_patch4_window7_224.ms_in22k_ft_in1k,48.993,51.007,71.387,28.613,196.53,224,0.900,bicubic,-37.319,-26.515,+1 convnext_base.fb_in22k_ft_in1k,48.938,51.062,71.748,28.252,88.59,288,1.000,bicubic,-37.336,-26.344,+2 swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,48.781,51.219,71.410,28.590,87.92,256,0.900,bicubic,-37.487,-26.472,+2 tf_efficientnetv2_l.in21k_ft_in1k,48.739,51.261,71.992,28.008,118.52,480,1.000,bicubic,-38.063,-26.144,-29 coatnet_2_rw_224.sw_in12k_ft_in1k,48.678,51.322,70.123,29.877,73.87,224,0.950,bicubic,-37.885,-27.773,-18 beit_base_patch16_384.in22k_ft_in22k_in1k,48.669,51.331,72.102,27.898,86.74,384,1.000,bicubic,-38.131,-26.034,-30 swin_base_patch4_window12_384.ms_in22k_ft_in1k,48.545,51.455,71.819,28.181,87.90,384,1.000,bicubic,-37.893,-26.247,-10 caformer_s36.sail_in22k_ft_in1k_384,48.486,51.514,71.518,28.482,39.30,384,1.000,bicubic,-38.372,-26.694,-36 maxvit_base_tf_512.in1k,48.240,51.760,70.793,29.207,119.88,512,1.000,bicubic,-38.362,-27.125,-25 vit_large_r50_s32_224.augreg_in21k_ft_in1k,48.185,51.815,70.866,29.134,328.99,224,0.900,bicubic,-36.233,-26.306,+144 vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,47.934,52.066,70.923,29.077,88.30,384,1.000,bicubic,-37.432,-26.737,+58 tf_efficientnet_b7.ns_jft_in1k,47.798,52.202,69.638,30.362,66.35,600,0.949,bicubic,-39.042,-28.454,-39 tf_efficientnet_b6.ns_jft_in1k,47.761,52.239,69.956,30.044,43.04,528,0.942,bicubic,-38.697,-27.934,-17 vit_base_patch8_224.augreg_in21k_ft_in1k,47.727,52.273,70.933,29.067,86.58,224,0.900,bicubic,-38.071,-26.857,+23 deit3_base_patch16_384.fb_in22k_ft_in1k,47.676,52.324,69.752,30.248,86.88,384,1.000,bicubic,-39.064,-28.364,-35 tf_efficientnet_l2.ns_jft_in1k,47.574,52.426,70.019,29.981,480.31,800,0.960,bicubic,-40.778,-28.629,-101 vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,47.570,52.430,70.047,29.953,88.34,448,1.000,bicubic,-38.210,-27.591,+22 vit_base_patch8_224.augreg2_in21k_ft_in1k,47.507,52.493,70.326,29.674,86.58,224,0.900,bicubic,-38.711,-27.506,-11 tf_efficientnetv2_m.in21k_ft_in1k,47.456,52.544,70.945,29.055,54.14,480,1.000,bicubic,-38.536,-26.999,+7 deit3_base_patch16_224.fb_in22k_ft_in1k,47.378,52.622,69.769,30.230,86.59,224,1.000,bicubic,-38.322,-27.977,+25 tiny_vit_21m_512.dist_in22k_ft_in1k,47.254,52.746,70.062,29.938,21.27,512,1.000,bicubic,-39.204,-27.822,-26 convformer_s36.sail_in22k_ft_in1k_384,47.152,52.848,69.498,30.502,40.01,384,1.000,bicubic,-39.226,-28.486,-23 maxvit_large_tf_512.in1k,47.022,52.978,69.506,30.494,212.33,512,1.000,bicubic,-39.504,-28.374,-35 convnext_small.fb_in22k_ft_in1k_384,46.882,53.118,69.528,30.472,50.22,384,1.000,bicubic,-38.896,-28.362,+16 convnextv2_huge.fcmae_ft_in1k,46.880,53.120,67.785,32.215,660.29,288,1.000,bicubic,-39.700,-30.187,-39 convformer_s36.sail_in22k_ft_in1k,46.863,53.137,69.528,30.472,40.01,224,1.000,bicubic,-38.551,-28.040,+37 caformer_s36.sail_in22k_ft_in1k,46.708,53.292,69.744,30.256,39.30,224,1.000,bicubic,-39.083,-28.082,+11 tiny_vit_21m_384.dist_in22k_ft_in1k,46.256,53.744,69.231,30.769,21.23,384,1.000,bicubic,-39.852,-28.479,-12 beit_base_patch16_224.in22k_ft_in22k_in1k,46.254,53.746,69.885,30.115,86.53,224,0.900,bicubic,-38.958,-27.773,+52 vit_base_patch32_clip_384.openai_ft_in12k_in1k,46.234,53.766,69.288,30.712,88.30,384,0.950,bicubic,-38.980,-28.116,+49 maxvit_base_tf_384.in1k,46.234,53.766,68.531,31.468,119.65,384,1.000,bicubic,-40.068,-29.267,-27 hrnet_w48_ssld.paddle_in1k,46.177,53.823,68.056,31.944,77.47,288,1.000,bilinear,-38.303,-29.178,+110 beitv2_base_patch16_224.in1k_ft_in1k,46.002,53.998,67.859,32.141,86.53,224,0.900,bicubic,-39.592,-29.647,+17 vit_base_patch16_384.augreg_in21k_ft_in1k,45.894,54.106,68.557,31.443,86.86,384,1.000,bicubic,-40.100,-29.445,-9 seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,45.863,54.137,68.608,31.392,93.59,320,1.000,bicubic,-40.861,-29.568,-54 tf_efficientnet_b8.ap_in1k,45.780,54.220,67.907,32.093,87.41,672,0.954,bicubic,-39.584,-29.385,+34 maxvit_large_tf_384.in1k,45.760,54.240,68.160,31.840,212.03,384,1.000,bicubic,-40.470,-29.528,-31 vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,45.758,54.242,68.881,31.119,88.22,224,0.900,bicubic,-37.538,-27.647,+236 convnext_small.in12k_ft_in1k_384,45.721,54.279,67.818,32.182,50.22,384,1.000,bicubic,-40.461,-30.104,-30 tf_efficientnet_b5.ns_jft_in1k,45.611,54.389,67.850,32.150,30.39,456,0.934,bicubic,-40.477,-29.906,-22 swin_base_patch4_window7_224.ms_in22k_ft_in1k,45.532,54.468,68.504,31.496,87.77,224,0.900,bicubic,-39.740,-29.060,+33 mvitv2_large.fb_in1k,45.277,54.723,65.183,34.817,217.99,224,0.900,bicubic,-39.967,-32.031,+35 vit_base_patch16_224.augreg2_in21k_ft_in1k,45.114,54.886,67.394,32.606,86.57,224,0.900,bicubic,-39.980,-30.136,+50 vit_base_patch32_clip_224.openai_ft_in1k,45.031,54.969,68.453,31.547,88.22,224,0.900,bicubic,-36.899,-27.513,+388 tiny_vit_21m_224.dist_in22k_ft_in1k,44.851,55.149,67.590,32.410,21.20,224,0.950,bicubic,-40.235,-29.776,+50 seresnextaa101d_32x8d.sw_in12k_ft_in1k,44.801,55.199,67.372,32.628,93.59,288,1.000,bicubic,-41.683,-30.658,-53 convnextv2_large.fcmae_ft_in1k,44.797,55.203,65.853,34.147,197.96,288,1.000,bicubic,-41.320,-31.969,-32 volo_d5_512.sail_in1k,44.577,55.423,65.765,34.235,296.09,512,1.150,bicubic,-42.481,-32.205,-86 convnextv2_tiny.fcmae_ft_in22k_in1k_384,44.322,55.678,66.655,33.345,28.64,384,1.000,bicubic,-40.784,-30.973,+41 cait_m48_448.fb_dist_in1k,44.212,55.788,64.674,35.326,356.46,448,1.000,bicubic,-42.280,-33.078,-58 deit3_large_patch16_384.fb_in1k,44.182,55.818,64.845,35.155,304.76,384,1.000,bicubic,-41.630,-32.753,-15 volo_d5_448.sail_in1k,44.100,55.900,65.065,34.935,295.91,448,1.150,bicubic,-42.852,-32.873,-83 eva02_small_patch14_336.mim_in22k_ft_in1k,43.960,56.040,65.942,34.058,22.13,336,1.000,bicubic,-41.758,-31.692,-9 deit3_huge_patch14_224.fb_in1k,43.807,56.193,64.350,35.650,632.13,224,0.900,bicubic,-41.417,-33.010,+25 convnext_small.fb_in22k_ft_in1k,43.620,56.380,66.464,33.536,50.22,288,1.000,bicubic,-41.642,-31.218,+20 deit3_large_patch16_224.fb_in1k,43.516,56.484,63.572,36.428,304.37,224,0.900,bicubic,-41.258,-33.464,+63 vit_base_r50_s16_384.orig_in21k_ft_in1k,43.501,56.499,66.781,33.219,98.95,384,1.000,bicubic,-41.475,-30.509,+47 tf_efficientnet_b4.ns_jft_in1k,43.447,56.553,65.513,34.487,19.34,380,0.922,bicubic,-41.712,-31.955,+28 deit3_medium_patch16_224.fb_in22k_ft_in1k,43.276,56.724,64.888,35.112,38.85,224,1.000,bicubic,-41.273,-32.300,+72 volo_d5_224.sail_in1k,43.243,56.757,64.079,35.921,295.46,224,0.960,bicubic,-42.827,-33.497,-40 vit_base_patch16_224.augreg_in21k_ft_in1k,43.221,56.779,65.722,34.279,86.57,224,0.900,bicubic,-41.310,-31.572,+73 volo_d4_448.sail_in1k,43.133,56.867,64.108,35.892,193.41,448,1.150,bicubic,-43.659,-33.776,-84 efficientnet_b5.sw_in12k_ft_in1k,42.872,57.128,65.415,34.585,30.39,448,1.000,bicubic,-43.024,-32.321,-32 xcit_large_24_p8_384.fb_dist_in1k,42.838,57.162,63.418,36.582,188.93,384,1.000,bicubic,-43.158,-34.272,-40 regnety_160.lion_in12k_ft_in1k,42.748,57.252,64.203,35.797,83.59,288,1.000,bicubic,-43.240,-33.632,-38 regnety_160.sw_in12k_ft_in1k,42.683,57.317,64.338,35.662,83.59,288,1.000,bicubic,-43.303,-33.496,-38 maxvit_small_tf_512.in1k,42.681,57.319,64.537,35.464,69.13,512,1.000,bicubic,-43.403,-33.227,-48 convnext_small.in12k_ft_in1k,42.669,57.331,64.342,35.658,50.22,288,1.000,bicubic,-42.661,-33.204,+3 xcit_large_24_p8_224.fb_dist_in1k,42.557,57.443,63.098,36.902,188.93,224,1.000,bicubic,-42.845,-34.304,-4 tf_efficientnet_b8.ra_in1k,42.498,57.502,64.873,35.127,87.41,672,0.954,bicubic,-42.870,-32.521,-2 caformer_b36.sail_in1k,42.465,57.535,62.849,37.151,98.75,224,1.000,bicubic,-43.039,-34.461,-15 caformer_b36.sail_in1k_384,42.457,57.543,62.856,37.144,98.75,384,1.000,bicubic,-43.951,-34.958,-74 maxvit_large_tf_224.in1k,42.414,57.586,63.399,36.601,211.79,224,0.950,bicubic,-42.528,-33.571,+33 cait_m36_384.fb_dist_in1k,42.410,57.590,63.324,36.676,271.22,384,1.000,bicubic,-43.648,-34.406,-53 volo_d4_224.sail_in1k,42.304,57.696,63.002,36.998,192.96,224,0.960,bicubic,-43.568,-34.470,-43 caformer_s18.sail_in22k_ft_in1k_384,42.054,57.946,64.774,35.226,26.34,384,1.000,bicubic,-43.360,-32.928,-14 deit3_small_patch16_384.fb_in22k_ft_in1k,41.954,58.046,64.564,35.436,22.21,384,1.000,bicubic,-42.870,-32.922,+38 vit_medium_patch16_gap_384.sw_in12k_ft_in1k,41.891,58.109,63.701,36.299,39.03,384,0.950,bicubic,-43.639,-33.935,-23 maxvit_tiny_tf_512.in1k,41.842,58.158,63.576,36.424,31.05,512,1.000,bicubic,-43.822,-34.008,-32 caformer_s36.sail_in1k_384,41.738,58.262,62.762,37.238,39.30,384,1.000,bicubic,-44.004,-34.910,-38 swin_small_patch4_window7_224.ms_in22k_ft_in1k,41.590,58.410,64.542,35.458,49.61,224,0.900,bicubic,-41.708,-32.422,+192 convformer_s18.sail_in22k_ft_in1k_384,41.573,58.427,63.348,36.652,26.77,384,1.000,bicubic,-43.425,-34.222,+21 regnety_2560.seer_ft_in1k,41.524,58.476,64.896,35.104,"1,282.60",384,1.000,bicubic,-43.626,-32.542,+4 caformer_m36.sail_in1k_384,41.498,58.502,61.524,38.476,56.20,384,1.000,bicubic,-44.668,-36.296,-72 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,41.486,58.514,61.485,38.515,41.72,224,0.950,bicubic,-43.424,-35.473,+25 tf_efficientnet_b7.ra_in1k,41.437,58.563,63.027,36.973,66.35,600,0.949,bicubic,-43.495,-34.181,+21 tf_efficientnet_b7.ap_in1k,41.433,58.567,62.880,37.120,66.35,600,0.949,bicubic,-43.691,-34.372,+1 tf_efficientnet_b5.ap_in1k,41.418,58.582,62.074,37.926,30.39,456,0.934,bicubic,-42.840,-34.900,+79 regnety_120.sw_in12k_ft_in1k,41.331,58.669,63.187,36.813,51.82,288,1.000,bicubic,-44.069,-34.395,-23 dm_nfnet_f3.dm_in1k,41.323,58.677,62.110,37.890,254.92,416,0.940,bicubic,-44.363,-35.460,-44 resnetv2_152x4_bit.goog_in21k_ft_in1k,41.306,58.694,64.311,35.689,936.53,480,1.000,bilinear,-43.610,-33.127,+17 dm_nfnet_f5.dm_in1k,41.290,58.710,62.013,37.987,377.21,544,0.954,bicubic,-44.810,-35.675,-75 caformer_s18.sail_in22k_ft_in1k,41.217,58.783,63.831,36.169,26.34,224,1.000,bicubic,-42.857,-33.367,+92 dm_nfnet_f6.dm_in1k,41.170,58.830,62.843,37.157,438.36,576,0.956,bicubic,-45.192,-35.053,-93 convnext_tiny.in12k_ft_in1k_384,41.113,58.887,62.825,37.175,28.59,384,1.000,bicubic,-44.009,-34.781,-6 tf_efficientnet_b6.ap_in1k,41.095,58.905,62.365,37.635,43.04,528,0.942,bicubic,-43.693,-34.773,+22 xcit_large_24_p16_384.fb_dist_in1k,41.036,58.964,61.237,38.763,189.10,384,1.000,bicubic,-44.718,-36.301,-56 xcit_large_24_p16_224.fb_dist_in1k,40.942,59.058,61.326,38.674,189.10,224,1.000,bicubic,-43.974,-35.802,+11 tf_efficientnetv2_l.in1k,40.928,59.072,62.011,37.989,118.52,480,1.000,bicubic,-44.736,-35.463,-51 tf_efficientnetv2_s.in21k_ft_in1k,40.922,59.078,63.849,36.151,21.46,384,1.000,bicubic,-43.364,-33.403,+64 maxvit_small_tf_384.in1k,40.844,59.156,61.972,38.028,69.02,384,1.000,bicubic,-44.696,-35.490,-47 edgenext_base.in21k_ft_in1k,40.836,59.164,61.776,38.224,18.51,320,1.000,bicubic,-43.218,-35.420,+86 maxvit_base_tf_224.in1k,40.789,59.211,61.196,38.804,119.47,224,0.950,bicubic,-44.071,-35.792,+10 xcit_medium_24_p8_224.fb_dist_in1k,40.498,59.502,60.502,39.498,84.32,224,1.000,bicubic,-44.576,-36.748,-7 vit_small_r26_s32_384.augreg_in21k_ft_in1k,40.474,59.526,62.731,37.269,36.47,384,1.000,bicubic,-43.574,-34.597,+85 tf_efficientnet_b4.ap_in1k,40.474,59.526,61.713,38.287,19.34,380,0.922,bicubic,-42.776,-34.683,+171 deit3_base_patch16_224.fb_in1k,40.382,59.618,60.164,39.836,86.59,224,0.900,bicubic,-43.404,-36.422,+110 inception_next_base.sail_in1k_384,40.333,59.667,60.781,39.219,86.67,384,1.000,bicubic,-44.869,-36.633,-25 convformer_s18.sail_in22k_ft_in1k,40.301,59.699,61.719,38.281,26.77,224,1.000,bicubic,-43.437,-35.329,+117 vit_medium_patch16_gap_256.sw_in12k_ft_in1k,40.278,59.722,61.664,38.336,38.86,256,0.950,bicubic,-44.168,-35.546,+36 flexivit_large.600ep_in1k,40.268,59.732,60.365,39.635,304.36,240,0.950,bicubic,-45.272,-37.123,-58 vit_base_patch16_224_miil.in21k_ft_in1k,40.164,59.836,60.883,39.117,86.54,224,0.875,bilinear,-44.102,-35.921,+54 deit3_small_patch16_224.fb_in22k_ft_in1k,40.152,59.848,61.864,38.136,22.06,224,1.000,bicubic,-42.924,-34.912,+183 regnetz_e8.ra3_in1k,40.136,59.864,61.316,38.684,57.70,320,1.000,bicubic,-44.898,-35.956,-14 maxvit_rmlp_small_rw_224.sw_in1k,40.105,59.895,59.514,40.486,64.90,224,0.900,bicubic,-44.387,-37.496,+26 flexivit_large.1200ep_in1k,40.097,59.903,60.650,39.350,304.36,240,0.950,bicubic,-45.547,-36.890,-67 xcit_medium_24_p8_384.fb_dist_in1k,40.050,59.950,60.451,39.549,84.32,384,1.000,bicubic,-45.766,-37.141,-82 flexivit_large.300ep_in1k,39.991,60.009,59.987,40.013,304.36,240,0.950,bicubic,-45.297,-37.413,-45 maxvit_tiny_tf_384.in1k,39.971,60.029,60.909,39.091,30.98,384,1.000,bicubic,-45.129,-36.469,-28 convnextv2_tiny.fcmae_ft_in22k_in1k,39.938,60.062,61.835,38.165,28.64,288,1.000,bicubic,-44.478,-35.425,+35 dm_nfnet_f4.dm_in1k,39.926,60.074,60.449,39.551,316.07,512,0.951,bicubic,-45.910,-37.369,-87 xcit_medium_24_p16_384.fb_dist_in1k,39.897,60.103,60.097,39.903,84.40,384,1.000,bicubic,-45.527,-37.233,-62 convnext_tiny.fb_in22k_ft_in1k_384,39.787,60.213,61.536,38.464,28.59,384,1.000,bicubic,-44.301,-35.608,+61 cait_s36_384.fb_dist_in1k,39.767,60.233,60.469,39.531,68.37,384,1.000,bicubic,-45.687,-37.009,-65 convnextv2_base.fcmae_ft_in1k,39.755,60.245,59.875,40.125,88.72,288,1.000,bicubic,-45.719,-37.509,-68 volo_d3_448.sail_in1k,39.702,60.298,59.760,40.240,86.63,448,1.000,bicubic,-46.800,-37.950,-135 efficientnetv2_rw_m.agc_in1k,39.675,60.325,59.679,40.321,53.24,416,1.000,bicubic,-45.135,-37.473,-10 xception65.ra3_in1k,39.623,60.377,60.919,39.081,39.92,299,0.940,bicubic,-43.557,-35.673,+153 ecaresnet269d.ra2_in1k,39.604,60.396,60.345,39.655,102.09,352,1.000,bicubic,-45.364,-36.877,-24 tf_efficientnet_b3.ns_jft_in1k,39.586,60.414,61.475,38.525,12.23,300,0.904,bicubic,-44.466,-35.443,+60 caformer_m36.sail_in1k,39.576,60.424,58.692,41.308,56.20,224,1.000,bicubic,-45.656,-38.508,-53 convformer_b36.sail_in1k,39.525,60.475,58.081,41.919,99.88,224,1.000,bicubic,-45.293,-38.865,-16 caformer_s36.sail_in1k,39.519,60.481,59.760,40.240,39.30,224,1.000,bicubic,-44.987,-37.236,+5 volo_d3_224.sail_in1k,39.482,60.518,59.858,40.142,86.33,224,0.960,bicubic,-45.932,-37.418,-70 convnext_large.fb_in1k,39.460,60.540,59.188,40.812,197.77,288,1.000,bicubic,-45.386,-38.026,-21 deit3_base_patch16_384.fb_in1k,39.409,60.591,58.930,41.070,86.88,384,1.000,bicubic,-45.665,-38.344,-38 xcit_small_24_p8_224.fb_dist_in1k,39.327,60.673,59.402,40.598,47.63,224,1.000,bicubic,-45.541,-37.788,-25 inception_next_base.sail_in1k,39.295,60.705,59.245,40.755,86.67,224,0.950,bicubic,-44.797,-37.551,+45 xcit_medium_24_p16_224.fb_dist_in1k,39.270,60.730,59.461,40.539,84.40,224,1.000,bicubic,-45.016,-37.471,+26 convformer_m36.sail_in1k,39.234,60.766,57.631,42.369,57.05,224,1.000,bicubic,-45.260,-39.235,-1 coat_lite_medium_384.in1k,39.175,60.825,59.280,40.720,44.57,384,1.000,bicubic,-45.703,-38.092,-30 tiny_vit_11m_224.dist_in22k_ft_in1k,39.124,60.876,61.035,38.965,11.00,224,0.950,bicubic,-44.104,-35.595,+135 efficientnet_b4.ra2_in1k,39.087,60.913,59.618,40.382,19.34,384,1.000,bicubic,-44.327,-36.980,+115 hrnet_w18_ssld.paddle_in1k,39.067,60.933,60.650,39.350,21.30,288,1.000,bilinear,-42.981,-35.600,+275 tresnet_v2_l.miil_in21k_ft_in1k,39.010,60.990,59.477,40.523,46.17,224,0.875,bilinear,-44.884,-37.013,+57 xcit_small_24_p8_384.fb_dist_in1k,39.010,60.990,59.166,40.834,47.63,384,1.000,bicubic,-46.544,-38.404,-94 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,38.979,61.021,62.428,37.572,236.34,384,1.000,bicubic,-44.857,-34.698,+63 convformer_b36.sail_in1k_384,38.930,61.070,58.413,41.587,99.88,384,1.000,bicubic,-46.810,-39.111,-105 convnext_tiny.in12k_ft_in1k,38.912,61.088,59.862,40.138,28.59,288,1.000,bicubic,-45.538,-37.478,-5 maxvit_small_tf_224.in1k,38.871,61.129,59.162,40.838,68.93,224,0.950,bicubic,-45.555,-37.662,+3 coatnet_rmlp_2_rw_224.sw_in1k,38.869,61.131,58.018,41.982,73.88,224,0.950,bicubic,-45.739,-38.722,-24 vit_base_patch32_384.augreg_in21k_ft_in1k,38.796,61.204,60.329,39.671,88.30,384,1.000,bicubic,-44.556,-36.511,+115 tf_efficientnetv2_m.in1k,38.714,61.286,59.791,40.209,54.14,480,1.000,bicubic,-46.490,-37.573,-71 efficientvit_b3.r288_in1k,38.659,61.341,58.364,41.636,48.65,288,1.000,bicubic,-45.495,-38.372,+25 eca_nfnet_l2.ra3_in1k,38.655,61.345,59.445,40.555,56.72,384,1.000,bicubic,-46.045,-37.821,-32 davit_small.msft_in1k,38.631,61.369,58.203,41.797,49.75,224,0.950,bicubic,-45.621,-38.737,+12 efficientvit_b3.r256_in1k,38.621,61.379,58.641,41.359,48.65,256,1.000,bicubic,-45.181,-37.875,+59 mvitv2_small.fb_in1k,38.578,61.422,58.130,41.870,34.87,224,0.900,bicubic,-45.192,-38.446,+61 xcit_small_12_p8_384.fb_dist_in1k,38.547,61.453,58.795,41.205,26.21,384,1.000,bicubic,-46.531,-38.487,-63 convformer_m36.sail_in1k_384,38.531,61.469,57.736,42.264,57.05,384,1.000,bicubic,-47.049,-39.806,-109 xcit_small_24_p16_384.fb_dist_in1k,38.499,61.501,58.396,41.604,47.67,384,1.000,bicubic,-46.591,-38.916,-67 davit_base.msft_in1k,38.490,61.510,57.535,42.465,87.95,224,0.950,bicubic,-46.152,-39.485,-37 mvitv2_base.fb_in1k,38.458,61.542,57.934,42.066,51.47,224,0.900,bicubic,-45.992,-38.924,-18 rexnetr_300.sw_in12k_ft_in1k,38.431,61.569,60.612,39.388,34.81,288,1.000,bicubic,-46.115,-36.644,-31 convformer_s36.sail_in1k,38.405,61.595,57.710,42.290,40.01,224,1.000,bicubic,-45.655,-39.036,+22 xcit_small_12_p8_224.fb_dist_in1k,38.360,61.640,58.832,41.168,26.21,224,1.000,bicubic,-45.876,-38.038,+5 tf_efficientnet_b5.ra_in1k,38.331,61.669,59.928,40.072,30.39,456,0.934,bicubic,-45.483,-36.823,+46 fastvit_ma36.apple_dist_in1k,38.323,61.677,58.461,41.539,44.07,256,0.950,bicubic,-46.275,-38.541,-39 deit_base_distilled_patch16_384.fb_in1k,38.244,61.756,57.785,42.215,87.63,384,1.000,bicubic,-47.180,-39.621,-108 xcit_large_24_p8_224.fb_in1k,38.106,61.894,57.873,42.127,188.93,224,1.000,bicubic,-46.288,-38.791,-10 vit_base_patch16_384.orig_in21k_ft_in1k,38.105,61.895,60.426,39.574,86.86,384,1.000,bicubic,-46.096,-36.792,+4 resnetv2_152x2_bit.goog_in21k_ft_in1k,38.000,62.000,61.137,38.863,236.34,448,1.000,bilinear,-46.510,-36.297,-36 repvit_m2_3.dist_450e_in1k,37.996,62.004,58.154,41.846,23.69,224,0.950,bicubic,-45.746,-38.490,+51 pvt_v2_b4.in1k,37.953,62.047,58.217,41.783,62.56,224,0.900,bicubic,-45.759,-38.453,+55 coat_lite_medium.in1k,37.880,62.120,57.792,42.208,44.57,224,0.900,bicubic,-45.719,-38.935,+64 cait_s24_384.fb_dist_in1k,37.879,62.121,58.069,41.931,47.06,384,1.000,bicubic,-47.169,-39.277,-77 convnextv2_nano.fcmae_ft_in22k_in1k_384,37.875,62.125,59.443,40.557,15.62,384,1.000,bicubic,-45.499,-37.301,+88 resnet152d.ra2_in1k,37.853,62.147,58.362,41.638,60.21,320,1.000,bicubic,-45.831,-38.376,+56 convformer_s36.sail_in1k_384,37.812,62.188,57.488,42.512,40.01,384,1.000,bicubic,-47.566,-39.988,-112 resnetrs420.tf_in1k,37.745,62.255,58.209,41.791,191.89,416,1.000,bicubic,-47.259,-38.915,-78 deit3_medium_patch16_224.fb_in1k,37.709,62.291,57.087,42.913,38.85,224,0.900,bicubic,-45.377,-39.207,+114 xcit_small_24_p16_224.fb_dist_in1k,37.700,62.300,57.374,42.626,47.67,224,1.000,bicubic,-46.174,-39.362,+23 resnetrs350.tf_in1k,37.664,62.336,58.097,41.903,163.96,384,1.000,bicubic,-47.050,-38.895,-63 caformer_s18.sail_in1k_384,37.660,62.340,57.612,42.388,26.34,384,1.000,bicubic,-47.366,-39.746,-83 regnety_640.seer_ft_in1k,37.584,62.416,59.864,40.136,281.38,384,1.000,bicubic,-46.324,-37.058,+15 xcit_small_12_p16_384.fb_dist_in1k,37.582,62.418,57.761,42.239,26.25,384,1.000,bicubic,-47.130,-39.357,-65 pvt_v2_b5.in1k,37.548,62.452,57.301,42.699,81.96,224,0.900,bicubic,-46.192,-39.335,+38 resnet200d.ra2_in1k,37.503,62.497,58.301,41.699,64.69,320,1.000,bicubic,-46.461,-38.525,+8 maxvit_rmlp_tiny_rw_256.sw_in1k,37.381,62.619,57.193,42.807,29.15,256,0.950,bicubic,-46.843,-39.675,-16 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,37.342,62.658,59.404,40.596,236.34,224,0.875,bicubic,-45.534,-37.178,+122 efficientvit_b3.r224_in1k,37.340,62.660,57.122,42.878,48.65,224,0.950,bicubic,-46.120,-39.208,+62 regnety_1280.seer_ft_in1k,37.332,62.668,59.133,40.867,644.81,384,1.000,bicubic,-47.100,-37.959,-42 resnest269e.in1k,37.309,62.691,57.488,42.512,110.93,416,0.928,bicubic,-47.199,-39.502,-56 convnext_base.fb_in1k,37.307,62.693,57.319,42.681,88.59,288,1.000,bicubic,-47.121,-39.649,-43 resmlp_big_24_224.fb_in22k_ft_in1k,37.242,62.758,58.191,41.809,129.14,224,0.875,bicubic,-47.156,-38.921,-36 vit_small_r26_s32_224.augreg_in21k_ft_in1k,37.232,62.768,59.072,40.928,36.43,224,0.900,bicubic,-44.632,-36.950,+239 repvit_m2_3.dist_300e_in1k,37.210,62.790,57.234,42.766,23.69,224,0.950,bicubic,-46.294,-39.270,+49 pit_b_distilled_224.in1k,37.195,62.805,56.507,43.493,74.79,224,0.900,bicubic,-46.571,-39.961,+22 cait_s24_224.fb_dist_in1k,37.153,62.847,56.724,43.276,46.92,224,1.000,bicubic,-46.289,-39.850,+56 dm_nfnet_f2.dm_in1k,37.128,62.872,56.981,43.019,193.78,352,0.920,bicubic,-48.064,-40.365,-115 resnetaa101d.sw_in12k_ft_in1k,37.116,62.884,57.853,42.147,44.57,288,1.000,bicubic,-47.008,-39.253,-20 tiny_vit_21m_224.in1k,37.114,62.886,57.380,42.620,21.20,224,0.950,bicubic,-46.140,-39.212,+73 efficientformer_l7.snap_dist_in1k,37.112,62.888,56.900,43.100,82.23,224,0.950,bicubic,-46.270,-39.636,+61 pvt_v2_b3.in1k,37.108,62.892,57.335,42.665,45.24,224,0.900,bicubic,-46.010,-39.221,+87 fastvit_sa36.apple_dist_in1k,37.106,62.894,57.144,42.856,31.53,256,0.900,bicubic,-46.920,-39.710,-13 vit_base_patch32_224.augreg_in21k_ft_in1k,37.073,62.927,59.307,40.693,88.22,224,0.900,bicubic,-43.643,-36.259,+347 volo_d1_384.sail_in1k,37.069,62.931,57.138,42.862,26.78,384,1.000,bicubic,-48.175,-40.056,-131 efficientnetv2_rw_s.ra2_in1k,37.057,62.943,56.814,43.186,23.94,384,1.000,bicubic,-46.749,-39.918,+6 tf_efficientnet_b3.ap_in1k,37.051,62.949,57.238,42.762,12.23,300,0.904,bicubic,-44.769,-38.388,+230 maxvit_tiny_tf_224.in1k,37.020,62.980,56.904,43.096,30.92,224,0.950,bicubic,-46.382,-39.686,+49 swinv2_base_window16_256.ms_in1k,36.990,63.010,56.140,43.860,87.92,256,0.900,bicubic,-47.610,-40.950,-83 xcit_small_12_p16_224.fb_dist_in1k,36.975,63.025,56.725,43.275,26.25,224,1.000,bicubic,-46.353,-39.691,+60 regnetz_040_h.ra3_in1k,36.973,63.027,57.276,42.724,28.94,320,1.000,bicubic,-47.519,-39.482,-73 inception_next_small.sail_in1k,36.914,63.086,56.749,43.251,49.37,224,0.875,bicubic,-46.664,-39.849,+28 volo_d1_224.sail_in1k,36.888,63.112,56.635,43.365,26.63,224,0.960,bicubic,-47.274,-40.141,-37 seresnet152d.ra2_in1k,36.784,63.216,56.727,43.273,66.84,320,1.000,bicubic,-47.576,-40.313,-55 efficientformerv2_l.snap_dist_in1k,36.764,63.236,56.627,43.373,26.32,224,0.950,bicubic,-46.868,-39.931,+20 maxxvit_rmlp_small_rw_256.sw_in1k,36.707,63.293,56.012,43.988,66.01,256,0.950,bicubic,-47.917,-41.056,-92 seresnext101d_32x8d.ah_in1k,36.633,63.367,56.325,43.675,93.59,288,1.000,bicubic,-47.725,-40.596,-57 volo_d2_224.sail_in1k,36.627,63.373,56.470,43.530,58.68,224,0.960,bicubic,-48.575,-40.720,-136 caformer_s18.sail_in1k,36.578,63.422,55.831,44.169,26.34,224,1.000,bicubic,-47.076,-40.687,+15 xception65p.ra3_in1k,36.570,63.430,56.438,43.562,39.82,299,0.940,bicubic,-46.556,-40.044,+66 fastvit_ma36.apple_in1k,36.568,63.432,56.564,43.436,44.07,256,0.950,bicubic,-47.314,-40.178,-19 fastvit_sa36.apple_in1k,36.556,63.444,56.004,43.996,31.53,256,0.900,bicubic,-46.944,-40.626,+24 seresnextaa101d_32x8d.ah_in1k,36.532,63.468,56.409,43.591,93.59,288,1.000,bicubic,-48.034,-40.667,-95 focalnet_base_srf.ms_in1k,36.460,63.540,56.217,43.783,88.15,224,0.900,bicubic,-47.360,-40.464,-14 regnetz_d32.ra3_in1k,36.452,63.548,57.366,42.634,27.58,320,0.950,bicubic,-47.570,-39.502,-34 cait_xs24_384.fb_dist_in1k,36.416,63.584,56.944,43.056,26.67,384,1.000,bicubic,-47.645,-39.941,-42 efficientnet_b3.ra2_in1k,36.414,63.586,56.830,43.170,12.23,320,1.000,bicubic,-45.831,-39.288,+166 deit_base_distilled_patch16_224.fb_in1k,36.407,63.593,56.615,43.385,87.34,224,0.900,bicubic,-46.983,-39.873,+32 volo_d2_384.sail_in1k,36.407,63.593,56.323,43.677,58.87,384,1.000,bicubic,-49.635,-41.251,-209 resnetv2_101x3_bit.goog_in21k_ft_in1k,36.383,63.617,59.068,40.932,387.93,448,1.000,bilinear,-48.055,-38.314,-83 gcvit_base.in1k,36.381,63.619,55.880,44.120,90.32,224,0.875,bicubic,-48.063,-41.202,-85 dm_nfnet_f1.dm_in1k,36.326,63.674,55.747,44.253,132.63,320,0.910,bicubic,-48.376,-41.435,-112 resnetrs270.tf_in1k,36.310,63.690,56.566,43.434,129.86,352,1.000,bicubic,-48.118,-40.402,-83 tresnet_m.miil_in21k_ft_in1k,36.289,63.711,55.792,44.208,31.39,224,0.875,bilinear,-46.781,-40.318,+61 mixer_b16_224.miil_in21k_ft_in1k,36.267,63.733,55.965,44.035,59.88,224,0.875,bilinear,-46.039,-39.755,+152 convnext_small.fb_in1k,36.248,63.752,55.912,44.088,50.22,288,1.000,bicubic,-47.453,-40.896,-7 convformer_s18.sail_in1k_384,36.204,63.796,56.059,43.941,26.77,384,1.000,bicubic,-48.198,-41.053,-81 deit3_small_patch16_384.fb_in1k,36.193,63.807,55.558,44.442,22.21,384,1.000,bicubic,-47.235,-41.116,+16 tf_efficientnet_b2.ns_jft_in1k,36.167,63.833,57.559,42.441,9.11,260,0.890,bicubic,-46.211,-38.695,+133 mvitv2_tiny.fb_in1k,36.167,63.833,55.132,44.868,24.17,224,0.900,bicubic,-46.243,-41.020,+129 focalnet_base_lrf.ms_in1k,36.118,63.882,55.810,44.190,88.75,224,0.900,bicubic,-47.720,-40.798,-34 regnety_320.seer_ft_in1k,36.069,63.931,58.484,41.516,145.05,384,1.000,bicubic,-47.259,-38.224,+27 regnetz_040.ra3_in1k,36.053,63.947,55.735,44.265,27.12,320,1.000,bicubic,-48.187,-41.197,-75 resnest200e.in1k,35.929,64.071,55.847,44.153,70.20,320,0.909,bicubic,-47.915,-41.037,-39 resnet18.fb_swsl_ig1b_ft_in1k,35.874,64.126,58.447,41.553,11.69,224,0.875,bilinear,-37.414,-33.283,+666 sequencer2d_l.in1k,35.831,64.169,55.715,44.285,54.30,224,0.875,bicubic,-47.563,-40.781,+13 eca_nfnet_l1.ra2_in1k,35.815,64.185,55.953,44.047,41.41,320,1.000,bicubic,-48.197,-41.073,-54 gcvit_small.in1k,35.760,64.240,54.790,45.210,51.09,224,0.875,bicubic,-48.132,-41.868,-47 vit_base_patch16_224.orig_in21k_ft_in1k,35.754,64.246,57.401,42.599,86.57,224,0.900,bicubic,-46.036,-38.725,+191 vit_relpos_medium_patch16_cls_224.sw_in1k,35.725,64.275,54.919,45.081,38.76,224,0.900,bicubic,-46.847,-41.148,+101 xcit_small_24_p8_224.fb_in1k,35.556,64.444,54.780,45.220,47.63,224,1.000,bicubic,-48.278,-41.852,-42 xcit_small_12_p8_224.fb_in1k,35.522,64.478,55.507,44.493,26.21,224,1.000,bicubic,-47.812,-40.975,+15 xcit_large_24_p16_224.fb_in1k,35.522,64.478,54.741,45.259,189.10,224,1.000,bicubic,-47.380,-41.143,+56 coat_small.in1k,35.520,64.480,55.157,44.843,21.69,224,0.900,bicubic,-46.842,-41.051,+121 flexivit_base.1200ep_in1k,35.519,64.481,53.837,46.163,86.59,240,0.950,bicubic,-49.157,-43.157,-133 vit_small_patch16_384.augreg_in21k_ft_in1k,35.467,64.533,57.543,42.457,22.20,384,1.000,bicubic,-48.337,-39.557,-43 regnetz_d8_evos.ch_in1k,35.454,64.546,55.751,44.249,23.46,320,1.000,bicubic,-48.672,-41.261,-79 xcit_medium_24_p8_224.fb_in1k,35.452,64.548,54.823,45.177,84.32,224,1.000,bicubic,-48.294,-41.887,-37 swinv2_base_window8_256.ms_in1k,35.450,64.550,54.607,45.393,87.92,256,0.900,bicubic,-48.800,-42.317,-92 swinv2_small_window16_256.ms_in1k,35.428,64.572,54.623,45.377,49.73,256,0.900,bicubic,-48.796,-42.155,-90 dm_nfnet_f0.dm_in1k,35.407,64.594,55.525,44.475,71.49,256,0.900,bicubic,-48.080,-41.043,-12 resnest101e.in1k,35.373,64.627,55.790,44.210,48.28,256,0.875,bilinear,-47.511,-40.532,+47 resnet152.a1h_in1k,35.357,64.643,54.627,45.373,60.19,288,1.000,bicubic,-48.093,-41.911,-11 tf_efficientnet_b5.aa_in1k,35.316,64.684,56.038,43.962,30.39,456,0.934,bicubic,-48.372,-40.674,-33 convit_base.fb_in1k,35.302,64.698,54.939,45.061,86.54,224,0.875,bicubic,-46.988,-40.997,+123 focalnet_small_lrf.ms_in1k,35.277,64.723,54.888,45.112,50.34,224,0.900,bicubic,-48.217,-41.692,-18 efficientformer_l3.snap_dist_in1k,35.253,64.747,54.501,45.499,31.41,224,0.950,bicubic,-47.295,-41.749,+88 xcit_tiny_24_p8_224.fb_dist_in1k,35.241,64.759,55.267,44.733,12.11,224,1.000,bicubic,-47.325,-40.791,+85 edgenext_base.usi_in1k,35.216,64.784,55.126,44.874,18.51,320,1.000,bicubic,-48.742,-41.644,-74 fastvit_sa24.apple_dist_in1k,35.214,64.786,54.674,45.326,21.55,256,0.900,bicubic,-48.128,-41.878,-4 convformer_s18.sail_in1k,35.208,64.792,54.629,45.371,26.77,224,1.000,bicubic,-47.778,-41.621,+32 flexivit_base.600ep_in1k,35.137,64.863,53.652,46.348,86.59,240,0.950,bicubic,-49.387,-43.284,-139 twins_svt_large.in1k,35.084,64.916,54.719,45.281,99.27,224,0.900,bicubic,-48.594,-41.869,-40 repvgg_b3.rvgg_in1k,35.057,64.943,54.548,45.452,123.09,224,0.875,bilinear,-45.449,-40.706,+294 repvgg_b3g4.rvgg_in1k,35.049,64.951,54.788,45.212,83.83,224,0.875,bilinear,-45.167,-40.304,+327 convnextv2_tiny.fcmae_ft_in1k,35.045,64.955,54.224,45.776,28.64,288,1.000,bicubic,-48.419,-42.494,-26 repvit_m1_5.dist_450e_in1k,35.021,64.979,54.477,45.523,14.64,224,0.950,bicubic,-47.491,-41.635,+82 regnetz_d8.ra3_in1k,35.008,64.992,55.930,44.070,23.37,320,1.000,bicubic,-49.044,-41.066,-91 xcit_tiny_24_p8_384.fb_dist_in1k,34.915,65.085,55.148,44.852,12.11,384,1.000,bicubic,-48.831,-41.253,-59 resnet101d.ra2_in1k,34.876,65.124,54.210,45.790,44.57,320,1.000,bicubic,-48.144,-42.242,+19 rexnetr_200.sw_in12k_ft_in1k,34.870,65.130,55.857,44.143,16.52,288,1.000,bicubic,-48.268,-40.779,+2 repvit_m1_5.dist_300e_in1k,34.868,65.132,54.375,45.625,14.64,224,0.950,bicubic,-47.508,-41.655,+92 coatnet_1_rw_224.sw_in1k,34.850,65.150,53.442,46.558,41.72,224,0.950,bicubic,-48.746,-42.940,-45 coatnet_rmlp_1_rw_224.sw_in1k,34.803,65.197,53.953,46.047,41.69,224,0.950,bicubic,-48.559,-42.497,-20 swin_s3_base_224.ms_in1k,34.803,65.197,53.703,46.297,71.13,224,0.900,bicubic,-49.117,-42.969,-88 flexivit_base.300ep_in1k,34.799,65.201,53.161,46.839,86.59,240,0.950,bicubic,-49.607,-43.723,-131 seresnext101_32x8d.ah_in1k,34.789,65.211,53.452,46.548,93.57,288,1.000,bicubic,-49.397,-43.422,-113 resmlp_big_24_224.fb_distilled_in1k,34.788,65.213,54.642,45.358,129.14,224,0.875,bicubic,-48.804,-42.008,-49 maxvit_tiny_rw_224.sw_in1k,34.780,65.220,53.351,46.649,29.06,224,0.950,bicubic,-48.724,-43.163,-44 repvgg_d2se.rvgg_in1k,34.740,65.260,53.200,46.800,133.33,320,1.000,bilinear,-48.820,-43.458,-49 vit_relpos_base_patch16_clsgap_224.sw_in1k,34.725,65.275,54.214,45.786,86.43,224,0.900,bicubic,-48.035,-41.958,+29 vit_base_patch16_rpn_224.sw_in1k,34.715,65.285,54.658,45.342,86.54,224,0.900,bicubic,-47.487,-41.338,+108 sequencer2d_m.in1k,34.703,65.297,53.996,46.004,38.31,224,0.875,bicubic,-48.109,-42.278,+21 deit3_small_patch16_224.fb_in1k,34.685,65.315,53.173,46.827,22.06,224,0.900,bicubic,-46.685,-42.283,+188 davit_tiny.msft_in1k,34.673,65.326,54.344,45.656,28.36,224,0.950,bicubic,-48.023,-41.930,+33 vit_large_patch32_384.orig_in21k_ft_in1k,34.672,65.329,55.733,44.267,306.63,384,1.000,bicubic,-46.839,-40.357,+168 focalnet_small_srf.ms_in1k,34.670,65.330,54.420,45.580,49.89,224,0.900,bicubic,-48.746,-42.018,-42 ecaresnet101d.miil_in1k,34.644,65.356,54.499,45.501,44.57,288,0.950,bicubic,-48.340,-42.043,+6 resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,34.615,65.385,55.937,44.063,194.03,224,0.875,bilinear,-47.223,-40.155,+136 vit_relpos_base_patch16_224.sw_in1k,34.607,65.393,54.291,45.709,86.43,224,0.900,bicubic,-47.889,-41.847,+61 repvgg_b2g4.rvgg_in1k,34.593,65.407,54.768,45.232,61.76,224,0.875,bilinear,-44.789,-39.908,+359 gcvit_tiny.in1k,34.554,65.446,53.249,46.751,28.22,224,0.875,bicubic,-48.830,-43.149,-41 resnetrs200.tf_in1k,34.502,65.498,54.281,45.719,93.21,320,1.000,bicubic,-49.942,-42.561,-158 poolformerv2_m48.sail_in1k,34.485,65.515,54.027,45.973,73.35,224,1.000,bicubic,-48.133,-42.045,+35 efficientvit_b2.r256_in1k,34.430,65.570,53.593,46.407,24.33,256,1.000,bicubic,-48.260,-42.501,+24 convnextv2_nano.fcmae_ft_in22k_in1k,34.379,65.621,55.014,44.986,15.62,288,1.000,bicubic,-48.285,-41.506,+26 resnest50d_4s2x40d.in1k,34.369,65.631,54.725,45.275,30.42,224,0.875,bicubic,-46.751,-40.835,+199 resnetrs152.tf_in1k,34.351,65.649,53.564,46.436,86.62,320,1.000,bicubic,-49.351,-43.048,-80 pvt_v2_b2_li.in1k,34.318,65.682,54.104,45.896,22.55,224,0.900,bicubic,-47.876,-41.988,+93 crossvit_18_dagger_408.in1k,34.247,65.753,53.106,46.894,44.61,408,1.000,bicubic,-49.955,-43.712,-138 xcit_medium_24_p16_224.fb_in1k,34.241,65.759,53.157,46.843,84.40,224,1.000,bicubic,-48.399,-42.825,+24 efficientvit_b2.r288_in1k,34.224,65.776,53.546,46.454,24.33,288,1.000,bicubic,-48.876,-42.758,-20 pit_s_distilled_224.in1k,34.161,65.839,53.361,46.639,24.04,224,0.900,bicubic,-47.653,-42.369,+125 efficientnetv2_rw_t.ra2_in1k,34.159,65.841,53.135,46.865,13.65,288,1.000,bicubic,-48.191,-43.057,+65 tf_efficientnet_b1.ns_jft_in1k,34.151,65.849,55.503,44.497,7.79,240,0.882,bicubic,-47.237,-40.235,+164 twins_pcpvt_large.in1k,34.119,65.881,54.136,45.864,60.99,224,0.900,bicubic,-49.011,-42.468,-31 fastvit_sa24.apple_in1k,34.098,65.902,53.782,46.218,21.55,256,0.900,bicubic,-48.580,-42.490,+13 tf_efficientnet_b4.aa_in1k,34.058,65.942,54.212,45.788,19.34,380,0.922,bicubic,-48.960,-42.088,-18 efficientformerv2_s2.snap_dist_in1k,34.056,65.944,53.473,46.527,12.71,224,0.950,bicubic,-48.109,-42.437,+86 resnetv2_101.a1h_in1k,34.056,65.944,52.308,47.692,44.54,288,1.000,bicubic,-48.944,-44.146,-19 resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,34.033,65.967,55.596,44.404,88.79,224,0.875,bilinear,-47.573,-40.445,+131 xcit_small_24_p16_224.fb_in1k,34.005,65.995,53.281,46.719,47.67,224,1.000,bicubic,-48.571,-42.731,+28 tf_efficientnet_b6.aa_in1k,34.002,65.999,54.542,45.458,43.04,528,0.942,bicubic,-50.110,-42.342,-144 nfnet_l0.ra2_in1k,34.002,65.999,54.377,45.623,35.07,288,1.000,bicubic,-48.748,-42.139,-2 efficientnet_b3_pruned.in1k,33.992,66.008,54.110,45.890,9.86,300,0.904,bicubic,-46.860,-41.134,+213 regnety_160.deit_in1k,33.980,66.020,53.552,46.448,83.59,288,1.000,bicubic,-49.710,-43.228,-96 resnext101_64x4d.tv_in1k,33.966,66.034,52.530,47.470,83.46,224,0.875,bilinear,-49.026,-43.714,-25 gc_efficientnetv2_rw_t.agc_in1k,33.962,66.038,53.228,46.772,13.68,288,1.000,bicubic,-48.494,-43.068,+38 swinv2_cr_small_ns_224.sw_in1k,33.846,66.154,52.640,47.360,49.70,224,0.900,bicubic,-49.652,-43.844,-82 resnext101_64x4d.c1_in1k,33.842,66.158,52.161,47.839,83.46,288,1.000,bicubic,-49.314,-44.213,-48 poolformerv2_s36.sail_in1k,33.825,66.175,53.685,46.315,30.79,224,1.000,bicubic,-47.741,-42.005,+124 repvit_m3.dist_in1k,33.791,66.209,53.123,46.877,10.68,224,0.950,bicubic,-47.711,-42.444,+133 resnet101.a1h_in1k,33.781,66.219,53.104,46.896,44.55,288,1.000,bicubic,-48.997,-43.206,-15 xcit_small_12_p16_224.fb_in1k,33.756,66.244,53.228,46.772,26.25,224,1.000,bicubic,-48.214,-42.584,+91 swin_s3_small_224.ms_in1k,33.697,66.303,52.365,47.635,49.74,224,0.900,bicubic,-50.059,-44.087,-116 resnetv2_50x3_bit.goog_in21k_ft_in1k,33.671,66.329,55.888,44.112,217.32,448,1.000,bilinear,-50.349,-41.238,-144 swinv2_small_window8_256.ms_in1k,33.634,66.366,52.827,47.173,49.73,256,0.900,bicubic,-50.220,-43.817,-133 resnet152.tv2_in1k,33.622,66.378,51.656,48.344,60.19,224,0.965,bilinear,-48.664,-44.348,+51 inception_next_tiny.sail_in1k,33.583,66.417,52.978,47.022,28.06,224,0.875,bicubic,-48.895,-43.044,+25 resnet51q.ra2_in1k,33.555,66.445,53.023,46.977,35.70,288,1.000,bilinear,-48.805,-43.163,+37 xcit_tiny_24_p16_384.fb_dist_in1k,33.508,66.492,52.768,47.232,12.12,384,1.000,bicubic,-49.062,-43.508,+11 vit_relpos_medium_patch16_224.sw_in1k,33.498,66.502,52.620,47.380,38.75,224,0.900,bicubic,-48.964,-43.462,+23 regnety_080.ra3_in1k,33.455,66.545,52.939,47.061,39.18,288,1.000,bicubic,-50.471,-43.951,-148 cs3edgenet_x.c2_in1k,33.455,66.545,52.925,47.075,47.82,288,1.000,bicubic,-49.253,-43.445,-18 convmixer_1536_20.in1k,33.432,66.568,53.029,46.971,51.63,224,0.960,bicubic,-47.930,-42.585,+138 sequencer2d_s.in1k,33.430,66.570,52.383,47.617,27.65,224,0.875,bicubic,-48.910,-43.645,+35 regnety_032.ra_in1k,33.412,66.588,52.770,47.230,19.44,288,1.000,bicubic,-49.314,-43.646,-24 crossvit_18_240.in1k,33.392,66.608,52.245,47.755,43.27,240,0.875,bicubic,-49.008,-43.815,+22 vit_srelpos_medium_patch16_224.sw_in1k,33.373,66.627,52.459,47.541,38.74,224,0.900,bicubic,-48.867,-43.483,+45 gernet_l.idstcv_in1k,33.371,66.629,51.911,48.089,31.08,256,0.875,bilinear,-47.983,-43.619,+135 tf_efficientnetv2_b3.in21k_ft_in1k,33.353,66.647,54.922,45.078,14.36,300,0.900,bicubic,-49.317,-41.705,-20 regnetz_c16.ra3_in1k,33.337,66.663,54.242,45.758,13.46,320,1.000,bicubic,-49.295,-42.076,-15 crossvit_15_dagger_408.in1k,33.335,66.665,52.200,47.800,28.50,408,1.000,bicubic,-50.505,-44.578,-147 tiny_vit_5m_224.dist_in22k_ft_in1k,33.306,66.694,55.028,44.972,5.39,224,0.950,bicubic,-47.570,-40.636,+180 crossvit_18_dagger_240.in1k,33.284,66.716,52.190,47.810,44.27,240,0.875,bicubic,-49.234,-43.878,+3 swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,33.257,66.743,55.295,44.705,28.29,224,0.900,bicubic,-47.711,-40.719,+167 wide_resnet101_2.tv2_in1k,33.257,66.743,51.430,48.570,126.89,224,0.965,bilinear,-49.245,-44.586,+3 tresnet_xl.miil_in1k,33.251,66.749,52.298,47.702,78.44,224,0.875,bilinear,-48.823,-43.630,+56 nest_base_jx.goog_in1k,33.215,66.785,51.825,48.175,67.72,224,0.875,bicubic,-50.319,-44.549,-116 convnext_tiny.fb_in1k,33.168,66.832,52.677,47.323,28.59,288,1.000,bicubic,-49.530,-43.955,-33 resnest50d_1s4x24d.in1k,33.145,66.855,52.840,47.160,25.68,224,0.875,bicubic,-47.843,-42.485,+159 convnext_nano.in12k_ft_in1k,33.119,66.881,53.988,46.012,15.59,288,1.000,bicubic,-49.743,-42.568,-51 vit_relpos_medium_patch16_rpn_224.sw_in1k,33.092,66.908,52.363,47.637,38.73,224,0.900,bicubic,-49.218,-43.609,+23 resnet61q.ra2_in1k,33.090,66.910,51.746,48.254,36.85,288,1.000,bicubic,-49.434,-44.384,-7 maxxvit_rmlp_nano_rw_256.sw_in1k,33.074,66.926,51.852,48.148,16.78,256,0.950,bicubic,-49.968,-44.498,-67 nest_small_jx.goog_in1k,33.052,66.948,51.064,48.936,38.35,224,0.875,bicubic,-50.072,-45.256,-79 rexnet_300.nav_in1k,33.048,66.952,52.365,47.635,34.71,224,0.875,bicubic,-49.726,-43.873,-48 crossvit_base_240.in1k,33.035,66.965,51.390,48.610,105.03,240,0.875,bicubic,-49.179,-44.444,+30 poolformerv2_m36.sail_in1k,33.033,66.967,51.860,48.140,56.08,224,1.000,bicubic,-49.183,-44.064,+28 twins_pcpvt_base.in1k,33.021,66.979,52.502,47.498,43.83,224,0.900,bicubic,-49.693,-43.844,-46 pvt_v2_b2.in1k,33.017,66.983,52.001,47.999,25.36,224,0.900,bicubic,-49.067,-43.955,+42 xcit_tiny_24_p16_224.fb_dist_in1k,32.999,67.001,52.074,47.926,12.12,224,1.000,bicubic,-47.455,-43.144,+206 resnest50d.in1k,32.966,67.034,52.707,47.293,27.48,224,0.875,bilinear,-47.994,-42.675,+151 rexnet_200.nav_in1k,32.962,67.038,52.921,47.079,16.37,224,0.875,bicubic,-48.674,-42.745,+76 crossvit_15_dagger_240.in1k,32.925,67.075,51.807,48.193,28.21,240,0.875,bicubic,-49.405,-44.149,+8 convit_small.fb_in1k,32.923,67.077,52.115,47.885,27.78,224,0.875,bicubic,-48.497,-43.629,+100 tf_efficientnetv2_s.in1k,32.913,67.087,51.728,48.272,21.46,384,1.000,bicubic,-50.985,-44.968,-178 swin_base_patch4_window12_384.ms_in1k,32.905,67.095,51.750,48.250,87.90,384,1.000,bicubic,-51.571,-45.142,-237 vit_small_patch16_224.augreg_in21k_ft_in1k,32.885,67.115,53.923,46.077,22.05,224,0.900,bicubic,-48.501,-42.213,+101 convnext_tiny_hnf.a2h_in1k,32.881,67.119,51.194,48.806,28.59,288,1.000,bicubic,-49.703,-44.814,-33 tf_efficientnet_b3.aa_in1k,32.864,67.136,52.964,47.036,12.23,300,0.904,bicubic,-48.776,-42.758,+68 pnasnet5large.tf_in1k,32.862,67.138,50.516,49.484,86.06,331,0.911,bicubic,-49.920,-45.524,-65 twins_svt_base.in1k,32.832,67.168,51.565,48.435,56.07,224,0.900,bicubic,-50.288,-44.849,-95 regnetv_064.ra3_in1k,32.830,67.170,52.864,47.136,30.58,288,1.000,bicubic,-50.886,-43.878,-158 convnextv2_nano.fcmae_ft_in1k,32.815,67.185,52.656,47.344,15.62,288,1.000,bicubic,-49.671,-43.570,-23 nasnetalarge.tf_in1k,32.781,67.219,50.141,49.859,88.75,331,0.911,bicubic,-49.845,-45.901,-48 gernet_m.idstcv_in1k,32.758,67.242,51.899,48.101,21.14,224,0.875,bilinear,-47.978,-43.291,+162 inception_resnet_v2.tf_in1k,32.734,67.266,50.640,49.360,55.84,299,0.897,bicubic,-47.724,-44.550,+187 resnet152d.gluon_in1k,32.730,67.270,51.080,48.920,60.21,224,0.875,bicubic,-47.746,-44.122,+183 repvit_m1_1.dist_450e_in1k,32.726,67.274,52.687,47.313,8.80,224,0.950,bicubic,-48.586,-42.849,+96 pit_b_224.in1k,32.722,67.278,49.854,50.146,73.76,224,0.900,bicubic,-49.716,-45.860,-24 tf_efficientnet_b2.ap_in1k,32.685,67.315,52.237,47.763,9.11,260,0.890,bicubic,-47.625,-42.789,+199 swin_base_patch4_window7_224.ms_in1k,32.644,67.356,51.573,48.427,87.77,224,0.900,bicubic,-50.962,-44.879,-157 fbnetv3_g.ra2_in1k,32.624,67.376,52.886,47.114,16.62,288,0.950,bilinear,-49.416,-43.174,+24 regnety_320.tv2_in1k,32.616,67.384,50.296,49.704,145.05,224,0.965,bicubic,-50.546,-46.118,-114 tresnet_l.miil_in1k,32.561,67.439,51.137,48.863,55.99,224,0.875,bilinear,-48.919,-44.487,+73 cait_xxs36_384.fb_dist_in1k,32.553,67.447,52.221,47.779,17.37,384,1.000,bicubic,-49.651,-43.923,+2 resnext101_32x8d.tv2_in1k,32.549,67.451,50.164,49.836,88.79,224,0.965,bilinear,-50.283,-46.068,-86 regnetz_c16_evos.ch_in1k,32.539,67.461,52.921,47.079,13.49,320,0.950,bicubic,-50.097,-43.553,-63 gmlp_s16_224.ra3_in1k,32.420,67.580,51.817,48.183,19.42,224,0.875,bicubic,-47.224,-42.805,+242 inception_resnet_v2.tf_ens_adv_in1k,32.368,67.632,50.429,49.571,55.84,299,0.897,bicubic,-47.609,-44.519,+211 deit_base_patch16_224.fb_in1k,32.363,67.637,50.991,49.009,86.57,224,0.900,bicubic,-49.629,-44.745,+20 maxvit_nano_rw_256.sw_in1k,32.355,67.645,50.622,49.378,15.45,256,0.950,bicubic,-50.573,-45.598,-96 swin_small_patch4_window7_224.ms_in1k,32.347,67.653,50.903,49.097,49.61,224,0.900,bicubic,-50.861,-45.413,-127 resnet152s.gluon_in1k,32.333,67.667,50.541,49.459,60.32,224,0.875,bicubic,-48.675,-44.875,+114 xcit_tiny_24_p8_224.fb_in1k,32.292,67.708,51.895,48.105,12.11,224,1.000,bicubic,-49.600,-44.075,+25 deit_small_distilled_patch16_224.fb_in1k,32.270,67.730,52.109,47.891,22.44,224,0.900,bicubic,-48.946,-43.514,+89 poolformerv2_s24.sail_in1k,32.266,67.734,51.492,48.508,21.34,224,1.000,bicubic,-48.482,-43.818,+140 repvit_m1_1.dist_300e_in1k,32.243,67.757,51.917,48.083,8.80,224,0.950,bicubic,-48.583,-43.253,+132 seresnext101_64x4d.gluon_in1k,32.192,67.808,50.313,49.687,88.23,224,0.875,bicubic,-48.702,-44.983,+121 regnetx_320.tv2_in1k,32.174,67.826,49.349,50.651,107.81,224,0.965,bicubic,-50.636,-46.859,-96 efficientvit_b2.r224_in1k,32.148,67.852,51.001,48.999,24.33,224,0.950,bicubic,-50.000,-44.705,-5 seresnext101_32x4d.gluon_in1k,32.121,67.879,51.243,48.757,48.96,224,0.875,bicubic,-48.771,-44.053,+119 coat_lite_small.in1k,32.113,67.887,49.928,50.072,19.84,224,0.900,bicubic,-50.199,-45.922,-29 flexivit_small.1200ep_in1k,32.095,67.905,50.323,49.677,22.06,240,0.950,bicubic,-50.431,-45.803,-59 tiny_vit_11m_224.in1k,32.072,67.928,51.278,48.722,11.00,224,0.950,bicubic,-49.420,-44.584,+50 coatnext_nano_rw_224.sw_in1k,32.070,67.930,51.017,48.983,14.70,224,0.900,bicubic,-49.872,-44.899,+11 maxxvitv2_nano_rw_256.sw_in1k,32.068,67.932,50.345,49.655,23.70,256,0.950,bicubic,-51.042,-45.979,-128 focalnet_tiny_lrf.ms_in1k,32.052,67.948,51.451,48.549,28.65,224,0.900,bicubic,-50.102,-44.497,-13 gcvit_xtiny.in1k,32.044,67.956,50.991,49.009,19.98,224,0.875,bicubic,-49.910,-44.975,+7 deit_base_patch16_384.fb_in1k,31.991,68.009,50.559,49.441,86.86,384,1.000,bicubic,-51.113,-45.809,-130 maxvit_rmlp_nano_rw_256.sw_in1k,31.976,68.025,50.618,49.382,15.50,256,0.950,bicubic,-50.978,-45.648,-117 xcit_tiny_12_p8_224.fb_dist_in1k,31.940,68.060,51.402,48.598,6.71,224,1.000,bicubic,-49.272,-44.200,+75 coatnet_bn_0_rw_224.sw_in1k,31.905,68.095,51.015,48.985,27.44,224,0.950,bicubic,-50.495,-45.171,-55 tf_efficientnet_b7.aa_in1k,31.877,68.123,51.909,48.091,66.35,600,0.949,bicubic,-52.539,-44.999,-271 levit_384.fb_dist_in1k,31.875,68.125,50.594,49.406,39.13,224,0.900,bicubic,-50.721,-45.424,-83 levit_conv_384.fb_dist_in1k,31.871,68.129,50.596,49.404,39.13,224,0.900,bicubic,-50.719,-45.420,-82 resnetrs101.tf_in1k,31.858,68.142,51.023,48.977,63.62,288,0.940,bicubic,-50.426,-44.991,-38 cs3se_edgenet_x.c2ns_in1k,31.808,68.192,50.769,49.231,50.72,320,1.000,bicubic,-51.738,-45.901,-187 vit_relpos_small_patch16_224.sw_in1k,31.781,68.219,50.620,49.380,21.98,224,0.900,bicubic,-49.681,-45.200,+41 convnext_tiny.fb_in22k_ft_in1k,31.667,68.333,51.785,48.215,28.59,288,1.000,bicubic,-47.231,-42.889,+268 poolformer_m48.sail_in1k,31.665,68.335,49.800,50.200,73.47,224,0.950,bicubic,-50.817,-46.165,-69 flexivit_small.600ep_in1k,31.647,68.353,49.384,50.616,22.06,240,0.950,bicubic,-50.715,-46.700,-57 tnt_s_patch16_224,31.634,68.366,51.153,48.847,23.76,224,0.900,bicubic,-49.902,-44.537,+25 eca_nfnet_l0.ra2_in1k,31.616,68.384,51.587,48.413,24.14,288,1.000,bicubic,-50.962,-44.905,-86 focalnet_tiny_srf.ms_in1k,31.606,68.394,50.864,49.136,28.43,224,0.900,bicubic,-50.532,-45.104,-27 resnetv2_50x1_bit.goog_distilled_in1k,31.581,68.419,51.267,48.733,25.55,224,0.875,bicubic,-51.243,-45.252,-124 coatnet_rmlp_nano_rw_224.sw_in1k,31.549,68.451,50.178,49.822,15.15,224,0.900,bicubic,-50.501,-45.700,-22 mobilevitv2_200.cvnets_in22k_ft_in1k,31.521,68.478,51.777,48.223,18.45,256,0.888,bicubic,-50.810,-44.165,-57 wide_resnet50_2.racm_in1k,31.521,68.478,50.388,49.612,68.88,288,0.950,bicubic,-50.758,-45.676,-49 xception41p.ra3_in1k,31.504,68.496,50.380,49.620,26.91,299,0.940,bicubic,-50.468,-45.404,-18 regnety_064.ra3_in1k,31.463,68.537,50.520,49.480,30.58,288,1.000,bicubic,-52.257,-46.202,-217 poolformer_m36.sail_in1k,31.447,68.553,50.017,49.983,56.17,224,0.950,bicubic,-50.655,-45.681,-31 flexivit_small.300ep_in1k,31.437,68.563,49.215,50.785,22.06,240,0.950,bicubic,-50.741,-46.823,-41 resnet152.a1_in1k,31.433,68.567,48.653,51.347,60.19,288,1.000,bicubic,-51.299,-47.067,-123 resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,31.429,68.571,52.127,47.873,44.18,224,0.875,bilinear,-49.495,-43.607,+82 repvit_m1_0.dist_450e_in1k,31.413,68.587,50.653,49.347,7.30,224,0.950,bicubic,-49.020,-44.265,+132 inception_v4.tf_in1k,31.386,68.614,49.235,50.765,42.68,299,0.875,bicubic,-48.770,-45.735,+159 rexnet_150.nav_in1k,31.376,68.624,51.284,48.716,9.73,224,0.875,bicubic,-48.948,-43.706,+140 efficientformer_l1.snap_dist_in1k,31.341,68.659,50.441,49.559,12.29,224,0.950,bicubic,-49.157,-44.547,+119 regnety_032.tv2_in1k,31.341,68.659,50.127,49.873,19.44,224,0.965,bicubic,-50.415,-45.717,-9 pit_s_224.in1k,31.339,68.661,49.677,50.323,23.46,224,0.900,bicubic,-49.747,-45.653,+62 resnet101.tv2_in1k,31.339,68.661,49.673,50.327,44.55,224,0.965,bilinear,-50.549,-46.095,-21 crossvit_15_240.in1k,31.319,68.681,50.182,49.818,27.53,240,0.875,bicubic,-50.217,-45.554,+6 swinv2_tiny_window16_256.ms_in1k,31.305,68.695,49.667,50.333,28.35,256,0.900,bicubic,-51.499,-46.569,-139 repvit_m1_0.dist_300e_in1k,31.274,68.726,50.801,49.199,7.30,224,0.950,bicubic,-48.852,-43.943,+152 cspresnet50.ra_in1k,31.272,68.728,51.225,48.775,21.62,256,0.887,bilinear,-48.310,-43.485,+188 cait_xxs36_224.fb_dist_in1k,31.272,68.728,50.614,49.386,17.30,224,1.000,bicubic,-48.474,-44.260,+174 crossvit_small_240.in1k,31.270,68.730,50.192,49.808,26.86,240,0.875,bicubic,-49.748,-45.264,+59 vit_srelpos_small_patch16_224.sw_in1k,31.260,68.740,50.233,49.767,21.97,224,0.900,bicubic,-49.832,-45.337,+52 swinv2_cr_small_224.sw_in1k,31.254,68.746,48.745,51.255,49.70,224,0.900,bicubic,-51.882,-47.363,-177 coatnet_0_rw_224.sw_in1k,31.252,68.748,48.633,51.367,27.44,224,0.950,bicubic,-51.138,-47.203,-91 swin_s3_tiny_224.ms_in1k,31.248,68.752,49.728,50.272,28.33,224,0.900,bicubic,-50.896,-46.226,-55 repvit_m2.dist_in1k,31.239,68.761,50.626,49.374,8.80,224,0.950,bicubic,-49.221,-44.542,+110 cspresnext50.ra_in1k,31.227,68.773,50.871,49.129,20.57,256,0.887,bilinear,-49.327,-44.454,+98 regnetv_040.ra3_in1k,31.225,68.775,50.115,49.885,20.64,288,1.000,bicubic,-51.965,-46.543,-188 convmixer_768_32.in1k,31.219,68.781,50.928,49.072,21.11,224,0.960,bicubic,-48.949,-44.145,+138 coat_mini.in1k,31.191,68.809,49.761,50.239,10.34,224,0.900,bicubic,-50.079,-45.621,+23 xcit_tiny_12_p8_384.fb_dist_in1k,31.182,68.818,50.508,49.492,6.71,384,1.000,bicubic,-51.206,-45.712,-97 fastvit_sa12.apple_dist_in1k,31.138,68.862,49.958,50.042,11.58,256,0.900,bicubic,-50.716,-45.752,-36 resnet101s.gluon_in1k,31.107,68.893,49.791,50.209,44.67,224,0.875,bicubic,-49.197,-45.361,+121 edgenext_small.usi_in1k,31.101,68.899,50.135,49.865,5.59,320,1.000,bicubic,-50.463,-45.577,-16 coatnet_nano_rw_224.sw_in1k,31.099,68.901,49.581,50.419,15.14,224,0.900,bicubic,-50.597,-46.066,-29 tf_efficientnet_cc_b0_8e.in1k,31.091,68.909,50.781,49.219,24.01,224,0.875,bicubic,-46.813,-42.881,+302 resmlp_36_224.fb_distilled_in1k,31.062,68.938,49.696,50.304,44.69,224,0.875,bicubic,-50.086,-45.782,+29 ecaresnet50t.ra2_in1k,31.050,68.950,50.573,49.427,25.57,320,0.950,bicubic,-51.302,-45.567,-98 repvit_m0_9.dist_300e_in1k,31.046,68.954,50.681,49.319,5.49,224,0.950,bicubic,-47.612,-43.435,+244 resnet152c.gluon_in1k,31.018,68.981,48.936,51.064,60.21,224,0.875,bicubic,-48.894,-45.910,+139 cs3sedarknet_x.c2ns_in1k,31.017,68.984,50.131,49.869,35.40,288,1.000,bicubic,-51.642,-46.219,-146 cspdarknet53.ra_in1k,31.001,68.999,50.412,49.588,27.64,256,0.887,bilinear,-49.067,-44.666,+130 resnext101_64x4d.gluon_in1k,30.993,69.007,48.549,51.451,83.46,224,0.875,bicubic,-49.607,-46.443,+81 tresnet_m.miil_in1k,30.987,69.013,48.686,51.314,31.39,224,0.875,bilinear,-49.811,-46.170,+61 twins_svt_small.in1k,30.983,69.017,49.219,50.781,24.06,224,0.900,bicubic,-50.693,-46.439,-38 regnety_160.tv2_in1k,30.942,69.058,49.060,50.940,83.59,224,0.965,bicubic,-51.704,-47.154,-150 gcresnet50t.ra2_in1k,30.936,69.064,50.034,49.966,25.90,288,1.000,bicubic,-50.520,-45.684,-13 tf_efficientnet_cc_b1_8e.in1k,30.903,69.097,50.078,49.922,39.72,240,0.882,bicubic,-48.399,-44.296,+183 resmlp_24_224.fb_distilled_in1k,30.901,69.099,50.174,49.826,30.02,224,0.875,bicubic,-49.855,-45.050,+60 regnety_080_tv.tv2_in1k,30.891,69.109,48.724,51.276,39.38,224,0.965,bicubic,-51.703,-47.524,-144 resnext101_32x4d.gluon_in1k,30.891,69.109,48.539,51.461,44.18,224,0.875,bicubic,-49.449,-46.391,+98 tf_efficientnetv2_b3.in1k,30.853,69.147,49.808,50.192,14.36,300,0.904,bicubic,-51.119,-45.994,-66 repvit_m0_9.dist_450e_in1k,30.846,69.154,50.119,49.881,5.49,224,0.950,bicubic,-48.220,-44.261,+200 tf_efficientnet_lite4.in1k,30.830,69.170,50.390,49.610,13.01,380,0.920,bilinear,-50.700,-45.274,-31 resnetaa50d.sw_in12k_ft_in1k,30.802,69.198,50.569,49.431,25.58,288,1.000,bicubic,-51.798,-45.929,-151 efficientvit_b1.r288_in1k,30.791,69.210,50.009,49.991,9.10,288,1.000,bicubic,-49.533,-45.167,+96 nf_resnet50.ra2_in1k,30.698,69.302,49.944,50.056,25.56,288,0.940,bicubic,-49.942,-45.390,+63 poolformer_s36.sail_in1k,30.690,69.310,49.445,50.555,30.86,224,0.900,bicubic,-50.740,-45.999,-22 xcit_tiny_24_p16_224.fb_in1k,30.671,69.329,50.416,49.584,12.12,224,1.000,bicubic,-48.777,-44.462,+158 resnet50.a1h_in1k,30.631,69.369,49.415,50.585,25.56,224,1.000,bicubic,-50.047,-45.891,+56 dpn107.mx_in1k,30.625,69.374,48.739,51.261,86.92,224,0.875,bicubic,-49.544,-46.203,+105 tresnet_xl.miil_in1k_448,30.622,69.379,49.077,50.923,78.44,448,0.875,bilinear,-52.437,-47.095,-204 resnet152.gluon_in1k,30.614,69.386,48.515,51.485,60.19,224,0.875,bicubic,-49.082,-46.215,+135 resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,30.602,69.398,50.667,49.333,25.03,224,0.875,bilinear,-49.732,-44.733,+86 haloregnetz_b.ra3_in1k,30.594,69.406,48.987,51.013,11.68,224,0.940,bicubic,-50.452,-46.213,+13 pit_xs_distilled_224.in1k,30.543,69.457,50.180,49.820,11.00,224,0.900,bicubic,-48.637,-44.186,+177 regnetx_080.tv2_in1k,30.521,69.479,48.030,51.970,39.57,224,0.965,bicubic,-51.019,-47.512,-47 resnet101d.gluon_in1k,30.506,69.494,47.973,52.027,44.57,224,0.875,bicubic,-49.920,-47.051,+74 resnest26d.gluon_in1k,30.490,69.510,50.663,49.337,17.07,224,0.875,bilinear,-47.992,-43.631,+223 mobilevitv2_200.cvnets_in22k_ft_in1k_384,30.490,69.510,50.575,49.425,18.45,384,1.000,bicubic,-52.910,-46.007,-249 resnet50.ram_in1k,30.451,69.549,48.997,51.003,25.56,288,0.950,bicubic,-49.525,-46.055,+104 efficientformerv2_s1.snap_dist_in1k,30.445,69.555,49.582,50.418,6.19,224,0.950,bicubic,-49.247,-45.134,+127 efficientnet_b2.ra_in1k,30.427,69.573,49.688,50.312,9.11,288,1.000,bicubic,-50.183,-45.625,+49 tf_efficientnet_b1.ap_in1k,30.423,69.577,49.555,50.445,7.79,240,0.882,bicubic,-48.853,-44.757,+158 cs3darknet_x.c2ns_in1k,30.409,69.591,49.197,50.803,35.05,288,1.000,bicubic,-51.813,-47.033,-117 xcit_tiny_12_p16_384.fb_dist_in1k,30.403,69.597,50.131,49.869,6.72,384,1.000,bicubic,-50.535,-45.283,+12 twins_pcpvt_small.in1k,30.396,69.604,49.384,50.616,24.11,224,0.900,bicubic,-50.696,-46.264,-4 ecaresnetlight.miil_in1k,30.382,69.618,49.146,50.854,30.16,288,0.950,bicubic,-51.026,-46.670,-39 resnet50d.ra2_in1k,30.376,69.624,48.794,51.206,25.58,288,0.950,bicubic,-50.980,-46.944,-33 ecaresnet101d_pruned.miil_in1k,30.356,69.644,48.810,51.190,24.88,288,0.950,bicubic,-51.642,-47.350,-97 visformer_small.in1k,30.339,69.661,48.285,51.715,40.22,224,0.900,bicubic,-51.767,-47.593,-108 resnet101.a1_in1k,30.297,69.703,46.584,53.416,44.55,288,1.000,bicubic,-52.025,-49.048,-136 tf_efficientnet_b5.in1k,30.295,69.705,49.753,50.247,30.39,456,0.934,bicubic,-52.881,-46.783,-241 regnety_040.ra3_in1k,30.266,69.734,48.930,51.070,20.65,288,1.000,bicubic,-52.778,-47.572,-225 regnetx_160.tv2_in1k,30.217,69.783,47.055,52.945,54.28,224,0.965,bicubic,-52.349,-49.117,-169 mobilevitv2_175.cvnets_in22k_ft_in1k,30.209,69.791,49.056,50.944,14.25,256,0.888,bicubic,-51.729,-46.734,-95 vit_relpos_base_patch32_plus_rpn_256.sw_in1k,30.201,69.799,48.688,51.312,119.42,256,0.900,bicubic,-49.283,-45.450,+127 resnet50.b1k_in1k,30.197,69.803,49.187,50.813,25.56,288,1.000,bicubic,-50.509,-46.245,+26 fastvit_s12.apple_dist_in1k,30.187,69.813,48.962,51.038,9.47,256,0.900,bicubic,-50.883,-46.323,-12 seresnext50_32x4d.racm_in1k,30.168,69.832,49.093,50.907,27.56,288,0.950,bicubic,-52.028,-47.055,-127 resnet50.b2k_in1k,30.152,69.848,48.244,51.756,25.56,288,1.000,bicubic,-50.302,-47.074,+48 regnety_016.tv2_in1k,30.138,69.862,49.231,50.769,11.20,224,0.965,bicubic,-50.528,-46.099,+26 wide_resnet50_2.tv2_in1k,30.116,69.883,48.362,51.638,68.88,224,0.965,bilinear,-51.489,-47.398,-78 dpn68b.ra_in1k,30.109,69.891,48.164,51.836,12.61,288,1.000,bicubic,-49.251,-46.272,+130 convmixer_1024_20_ks9_p14.in1k,30.093,69.907,49.934,50.066,24.38,224,0.960,bicubic,-46.843,-43.416,+294 efficientnet_el.ra_in1k,30.028,69.972,48.849,51.151,10.59,300,0.904,bicubic,-51.284,-46.640,-47 tf_efficientnet_b2.aa_in1k,30.012,69.988,49.590,50.410,9.11,260,0.890,bicubic,-50.072,-45.316,+74 xcit_tiny_12_p16_224.fb_dist_in1k,30.010,69.990,49.651,50.349,6.72,224,1.000,bicubic,-48.564,-44.547,+186 legacy_senet154.in1k,29.993,70.007,48.038,51.962,115.09,224,0.875,bilinear,-51.319,-47.522,-49 halo2botnet50ts_256.a1h_in1k,29.987,70.013,48.380,51.620,22.64,256,0.950,bicubic,-52.073,-47.254,-123 dpn98.mx_in1k,29.981,70.019,48.146,51.854,61.57,224,0.875,bicubic,-49.689,-46.508,+102 mobilevitv2_150.cvnets_in22k_ft_in1k,29.971,70.029,49.217,50.783,10.59,256,0.888,bicubic,-51.517,-46.451,-73 resnetv2_50d_gn.ah_in1k,29.957,70.043,48.195,51.805,25.57,288,1.000,bicubic,-52.001,-47.733,-115 dpn92.mx_in1k,29.946,70.054,49.113,50.887,37.67,224,0.875,bicubic,-50.092,-45.747,+69 resnext50_32x4d.a1h_in1k,29.942,70.058,48.234,51.766,25.03,288,1.000,bicubic,-52.072,-47.700,-124 convnextv2_pico.fcmae_ft_in1k,29.940,70.060,48.853,51.147,9.07,288,0.950,bicubic,-51.146,-46.627,-31 dpn131.mx_in1k,29.934,70.066,48.034,51.966,79.25,224,0.875,bicubic,-49.880,-46.666,+82 resnetv2_101x1_bit.goog_in21k_ft_in1k,29.898,70.102,51.109,48.891,44.54,448,1.000,bilinear,-52.444,-45.411,-166 senet154.gluon_in1k,29.887,70.113,47.879,52.121,115.09,224,0.875,bicubic,-51.339,-47.479,-54 tf_efficientnet_b4.in1k,29.861,70.139,49.014,50.986,19.34,380,0.922,bicubic,-52.747,-46.737,-208 legacy_xception.tf_in1k,29.855,70.145,48.684,51.316,22.86,299,0.897,bicubic,-49.185,-45.698,+143 resnet50.tv2_in1k,29.837,70.162,48.012,51.988,25.56,224,0.965,bilinear,-51.011,-47.422,-11 cs3sedarknet_l.c2ns_in1k,29.832,70.168,49.009,50.991,21.91,288,0.950,bicubic,-51.952,-46.955,-110 resnet152.a2_in1k,29.826,70.174,45.961,54.039,60.19,288,1.000,bicubic,-52.782,-50.167,-211 efficientvit_b1.r224_in1k,29.822,70.178,48.289,51.711,9.10,224,0.950,bicubic,-49.430,-46.015,+122 inception_v3.tf_adv_in1k,29.818,70.182,47.843,52.157,23.83,299,0.875,bicubic,-47.774,-45.887,+236 vit_base_patch16_384.augreg_in1k,29.792,70.208,48.327,51.673,86.86,384,1.000,bicubic,-51.310,-46.793,-46 resnetaa50.a1h_in1k,29.790,70.210,48.014,51.986,25.56,288,1.000,bicubic,-51.824,-47.788,-105 lamhalobotnet50ts_256.a1h_in1k,29.755,70.245,48.335,51.665,22.57,256,0.950,bicubic,-51.797,-47.157,-100 fbnetv3_d.ra2_in1k,29.739,70.261,49.472,50.528,10.31,256,0.950,bilinear,-49.943,-45.472,+81 ese_vovnet39b.ra_in1k,29.733,70.267,49.046,50.954,24.57,288,0.950,bicubic,-50.617,-46.320,+26 fastvit_sa12.apple_in1k,29.731,70.269,48.610,51.390,11.58,256,0.900,bicubic,-51.113,-46.730,-20 resmlp_36_224.fb_in1k,29.698,70.302,48.958,51.042,44.69,224,0.875,bicubic,-50.074,-45.926,+69 fastvit_t12.apple_dist_in1k,29.686,70.314,48.517,51.483,7.55,256,0.900,bicubic,-50.666,-46.525,+22 convnext_nano.d1h_in1k,29.684,70.316,47.920,52.080,15.59,288,1.000,bicubic,-51.798,-47.738,-95 resnet50.c1_in1k,29.672,70.328,48.458,51.542,25.56,288,1.000,bicubic,-51.240,-47.094,-35 vit_base_patch32_384.augreg_in1k,29.645,70.355,48.987,51.013,88.30,384,1.000,bicubic,-49.111,-45.239,+146 efficientvit_b1.r256_in1k,29.621,70.379,48.209,51.791,9.10,256,1.000,bicubic,-50.113,-46.571,+66 ecaresnet50d.miil_in1k,29.562,70.438,48.967,51.033,25.58,288,0.950,bicubic,-52.088,-46.915,-119 nest_tiny_jx.goog_in1k,29.558,70.442,46.983,53.017,17.06,224,0.875,bicubic,-51.868,-48.635,-93 resnet152.a3_in1k,29.525,70.475,47.038,52.962,60.19,224,0.950,bicubic,-51.021,-47.962,-5 gcresnext50ts.ch_in1k,29.517,70.483,47.851,52.149,15.67,288,1.000,bicubic,-51.713,-47.691,-78 resnext50_32x4d.tv2_in1k,29.480,70.520,47.232,52.768,25.03,224,0.965,bilinear,-51.702,-48.108,-72 cs3darknet_l.c2ns_in1k,29.466,70.534,48.234,51.766,21.16,288,0.950,bicubic,-51.430,-47.428,-42 efficientnet_em.ra2_in1k,29.464,70.536,48.922,51.078,6.90,240,0.882,bicubic,-49.780,-45.872,+103 resnext101_32x8d.tv_in1k,29.437,70.563,48.488,51.512,88.79,224,0.875,bilinear,-49.873,-46.032,+92 resnet50.fb_ssl_yfcc100m_ft_in1k,29.435,70.565,49.791,50.209,25.56,224,0.875,bilinear,-49.795,-45.035,+101 coat_lite_mini.in1k,29.435,70.565,47.718,52.282,11.01,224,0.900,bicubic,-49.667,-46.890,+111 resnetv2_50.a1h_in1k,29.435,70.565,47.441,52.559,25.55,288,1.000,bicubic,-51.963,-48.285,-99 deit_small_patch16_224.fb_in1k,29.425,70.575,48.250,51.750,22.05,224,0.900,bicubic,-50.423,-46.794,+45 sebotnet33ts_256.a1h_in1k,29.423,70.577,47.160,52.840,13.70,256,0.940,bicubic,-51.745,-48.009,-78 nf_regnet_b1.ra2_in1k,29.411,70.589,49.427,50.573,10.22,288,0.900,bicubic,-49.897,-45.313,+87 repvit_m1.dist_in1k,29.407,70.593,48.541,51.459,5.49,224,0.950,bicubic,-49.131,-45.529,+144 mobileone_s4.apple_in1k,29.405,70.595,47.967,52.033,14.95,224,0.900,bilinear,-50.021,-46.513,+76 cait_xxs24_384.fb_dist_in1k,29.391,70.609,48.751,51.249,12.03,384,1.000,bicubic,-51.581,-46.889,-62 resnetv2_50d_evos.ah_in1k,29.382,70.618,47.226,52.774,25.59,288,1.000,bicubic,-52.620,-48.674,-164 edgenext_small_rw.sw_in1k,29.346,70.654,48.722,51.278,7.83,320,1.000,bicubic,-51.112,-46.586,-9 convnext_nano_ols.d1h_in1k,29.325,70.675,47.478,52.522,15.65,288,1.000,bicubic,-52.275,-48.158,-132 regnetz_b16.ra3_in1k,29.321,70.679,47.885,52.115,9.72,288,1.000,bicubic,-51.407,-47.633,-37 swin_tiny_patch4_window7_224.ms_in1k,29.321,70.679,47.609,52.391,28.29,224,0.900,bicubic,-52.055,-47.934,-107 cait_xxs24_224.fb_dist_in1k,29.295,70.705,48.537,51.463,11.96,224,1.000,bicubic,-49.089,-45.779,+153 eca_resnet33ts.ra2_in1k,29.277,70.723,48.928,51.072,19.68,288,1.000,bicubic,-51.395,-46.436,-35 resnet50.d_in1k,29.250,70.750,47.213,52.787,25.56,288,1.000,bicubic,-51.722,-48.217,-69 resnet50.c2_in1k,29.244,70.756,47.165,52.835,25.56,288,1.000,bicubic,-51.626,-48.369,-56 pvt_v2_b1.in1k,29.242,70.758,48.962,51.038,14.01,224,0.900,bicubic,-49.462,-45.540,+124 maxvit_rmlp_pico_rw_256.sw_in1k,29.238,70.762,47.719,52.281,7.52,256,0.950,bicubic,-51.276,-47.495,-28 gcvit_xxtiny.in1k,29.218,70.781,48.348,51.652,12.00,224,0.875,bicubic,-50.508,-46.732,+38 poolformer_s24.sail_in1k,29.205,70.795,48.079,51.921,21.39,224,0.900,bicubic,-51.089,-46.995,-1 tresnet_l.miil_in1k_448,29.162,70.838,47.224,52.776,55.99,448,0.875,bilinear,-53.114,-48.754,-205 seresnet50.ra2_in1k,29.146,70.854,47.749,52.251,28.09,288,0.950,bicubic,-52.138,-47.903,-108 inception_v3.gluon_in1k,29.112,70.888,46.943,53.057,23.83,299,0.875,bicubic,-49.690,-47.433,+108 lambda_resnet50ts.a1h_in1k,29.108,70.891,46.961,53.039,21.54,256,0.950,bicubic,-52.050,-48.137,-97 resnet101.a2_in1k,29.091,70.909,45.762,54.238,44.55,288,1.000,bicubic,-53.145,-49.968,-206 xception71.tf_in1k,29.030,70.970,47.391,52.609,42.34,299,0.903,bicubic,-50.844,-47.537,+17 resnet34d.ra2_in1k,29.020,70.980,48.052,51.948,21.82,288,0.950,bicubic,-49.416,-46.292,+133 hrnet_w64.ms_in1k,28.987,71.013,47.138,52.862,128.06,224,0.875,bilinear,-50.489,-47.514,+49 xcit_tiny_12_p8_224.fb_in1k,28.979,71.021,47.501,52.499,6.71,224,1.000,bicubic,-50.709,-47.553,+33 regnetx_032.tv2_in1k,28.975,71.025,47.069,52.931,15.30,224,0.965,bicubic,-51.951,-48.209,-79 cs3darknet_focus_l.c2ns_in1k,28.939,71.061,47.639,52.361,21.15,288,0.950,bicubic,-51.937,-48.043,-74 tf_efficientnet_b0.ns_jft_in1k,28.902,71.098,49.007,50.993,5.29,224,0.875,bicubic,-49.766,-45.365,+110 xception65.tf_in1k,28.894,71.106,47.154,52.846,39.92,299,0.903,bicubic,-50.662,-47.504,+38 tf_efficientnet_b1.aa_in1k,28.886,71.114,47.523,52.477,7.79,240,0.882,bicubic,-49.942,-46.677,+94 vit_small_patch32_384.augreg_in21k_ft_in1k,28.875,71.125,48.889,51.111,22.92,384,1.000,bicubic,-51.611,-46.711,-41 mobilevitv2_150.cvnets_in22k_ft_in1k_384,28.871,71.129,47.932,52.068,10.59,384,1.000,bicubic,-53.715,-48.382,-266 resnet101.gluon_in1k,28.853,71.147,46.381,53.619,44.55,224,0.875,bicubic,-50.457,-48.141,+52 skresnext50_32x4d.ra_in1k,28.810,71.190,46.507,53.493,27.48,224,0.875,bicubic,-51.354,-48.133,-8 sehalonet33ts.ra2_in1k,28.780,71.220,46.574,53.426,13.69,256,0.940,bicubic,-52.178,-48.698,-90 levit_256.fb_dist_in1k,28.743,71.257,46.729,53.271,18.89,224,0.900,bicubic,-52.781,-48.765,-154 levit_conv_256.fb_dist_in1k,28.739,71.261,46.723,53.277,18.89,224,0.900,bicubic,-52.783,-48.767,-154 resnet50.ra_in1k,28.694,71.306,47.366,52.634,25.56,288,0.950,bicubic,-51.142,-47.600,+8 mobileone_s3.apple_in1k,28.676,71.324,47.582,52.418,10.17,224,0.900,bilinear,-49.316,-46.332,+151 resnetblur50.bt_in1k,28.662,71.338,46.908,53.092,25.56,288,0.950,bicubic,-51.572,-48.326,-20 tf_efficientnet_lite3.in1k,28.651,71.349,47.360,52.640,8.20,300,0.904,bilinear,-51.155,-47.554,+8 darknetaa53.c2ns_in1k,28.647,71.353,46.949,53.051,36.02,288,1.000,bilinear,-51.859,-48.373,-55 hrnet_w40.ms_in1k,28.645,71.355,47.452,52.548,57.56,224,0.875,bilinear,-50.287,-47.012,+74 skresnet34.ra_in1k,28.631,71.369,47.961,52.039,22.28,224,0.875,bicubic,-48.279,-45.183,+205 swinv2_tiny_window8_256.ms_in1k,28.627,71.373,46.189,53.811,28.35,256,0.900,bicubic,-53.193,-49.805,-189 seresnext50_32x4d.gluon_in1k,28.619,71.381,46.438,53.562,27.56,224,0.875,bicubic,-51.305,-48.386,-11 mobilevitv2_175.cvnets_in22k_ft_in1k_384,28.598,71.403,47.118,52.882,14.25,384,1.000,bicubic,-54.341,-49.308,-321 tf_efficientnet_b3.in1k,28.582,71.418,47.981,52.019,12.23,300,0.904,bicubic,-52.292,-47.319,-93 halonet50ts.a1h_in1k,28.580,71.420,46.183,53.817,22.73,256,0.940,bicubic,-53.082,-49.427,-183 tf_efficientnetv2_b0.in1k,28.570,71.430,47.077,52.923,7.14,224,0.875,bicubic,-49.788,-46.937,+114 poolformerv2_s12.sail_in1k,28.556,71.444,47.399,52.601,11.89,224,1.000,bicubic,-49.446,-46.465,+137 resnet152.tv_in1k,28.543,71.457,47.106,52.894,60.19,224,0.875,bilinear,-49.779,-46.940,+114 xcit_tiny_12_p16_224.fb_in1k,28.515,71.485,47.403,52.597,6.72,224,1.000,bicubic,-48.625,-46.313,+184 eva02_tiny_patch14_336.mim_in22k_ft_in1k,28.507,71.493,47.539,52.461,5.76,336,1.000,bicubic,-52.123,-47.987,-75 ecaresnet50t.a1_in1k,28.456,71.544,45.576,54.424,25.57,288,1.000,bicubic,-53.672,-50.066,-225 repvgg_b2.rvgg_in1k,28.421,71.579,47.044,52.956,89.02,224,0.875,bilinear,-50.371,-47.376,+73 hrnet_w48.ms_in1k,28.409,71.591,47.576,52.424,77.47,224,0.875,bilinear,-50.897,-46.940,+31 swinv2_cr_tiny_ns_224.sw_in1k,28.379,71.621,45.902,54.098,28.33,224,0.900,bicubic,-53.423,-49.916,-199 resnext50_32x4d.gluon_in1k,28.372,71.628,45.332,54.668,25.03,224,0.875,bicubic,-50.988,-49.098,+24 efficientnet_b2_pruned.in1k,28.360,71.640,47.057,52.943,8.31,260,0.890,bicubic,-51.560,-47.795,-24 tf_efficientnet_b0.ap_in1k,28.354,71.646,47.535,52.465,5.29,224,0.875,bicubic,-48.736,-45.727,+178 darknet53.c2ns_in1k,28.328,71.672,46.880,53.120,41.61,288,1.000,bicubic,-52.204,-48.552,-77 dla169.in1k,28.320,71.680,47.388,52.612,53.39,224,0.875,bilinear,-50.388,-46.956,+73 tf_efficientnet_cc_b0_4e.in1k,28.313,71.687,47.360,52.640,13.31,224,0.875,bicubic,-48.989,-45.976,+162 dla102x2.in1k,28.313,71.687,46.774,53.226,41.28,224,0.875,bilinear,-51.133,-47.858,+12 resnext50_32x4d.ra_in1k,28.303,71.697,46.081,53.919,25.03,288,0.950,bicubic,-52.395,-49.311,-93 mixnet_xl.ra_in1k,28.291,71.709,46.708,53.292,11.90,224,0.875,bicubic,-52.191,-48.229,-76 seresnet33ts.ra2_in1k,28.236,71.764,47.578,52.422,19.78,288,1.000,bicubic,-52.548,-47.784,-103 resnet50d.gluon_in1k,28.234,71.766,45.880,54.120,25.58,224,0.875,bicubic,-50.844,-48.586,+39 resnet50.a1_in1k,28.220,71.780,44.937,55.063,25.56,288,1.000,bicubic,-52.994,-50.165,-153 fastvit_s12.apple_in1k,28.126,71.874,46.649,53.351,9.47,256,0.900,bicubic,-51.816,-48.145,-37 densenet161.tv_in1k,28.108,71.892,46.653,53.347,28.68,224,0.875,bicubic,-49.250,-46.989,+151 resnet101c.gluon_in1k,28.104,71.896,45.953,54.047,44.57,224,0.875,bicubic,-51.434,-48.631,-4 resnet34.a1_in1k,28.100,71.900,45.707,54.293,21.80,288,1.000,bicubic,-49.818,-48.057,+121 wide_resnet101_2.tv_in1k,28.095,71.906,46.426,53.574,126.89,224,0.875,bilinear,-50.748,-47.855,+48 regnetx_320.pycls_in1k,28.079,71.921,45.118,54.882,107.81,224,0.875,bicubic,-52.167,-49.904,-58 regnety_320.pycls_in1k,28.075,71.925,45.460,54.540,145.05,224,0.875,bicubic,-52.735,-49.778,-115 resnext50_32x4d.a1_in1k,28.075,71.925,44.815,55.185,25.03,288,1.000,bicubic,-53.391,-50.359,-188 gernet_s.idstcv_in1k,28.051,71.949,46.727,53.273,8.17,224,0.875,bilinear,-48.859,-46.589,+171 ecaresnet50d_pruned.miil_in1k,28.043,71.957,47.038,52.962,19.94,288,0.950,bicubic,-52.747,-48.532,-116 levit_conv_192.fb_dist_in1k,28.032,71.968,45.874,54.126,10.95,224,0.900,bicubic,-51.806,-48.904,-37 mobilevitv2_175.cvnets_in1k,28.028,71.972,46.098,53.902,14.25,256,0.888,bicubic,-52.832,-49.158,-126 levit_192.fb_dist_in1k,28.028,71.972,45.870,54.130,10.95,224,0.900,bicubic,-51.810,-48.914,-37 efficientnet_el_pruned.in1k,28.004,71.996,46.804,53.196,10.59,300,0.904,bicubic,-52.294,-48.418,-71 vit_base_patch16_224.augreg_in1k,27.971,72.029,45.737,54.263,86.57,224,0.900,bicubic,-51.183,-48.353,+18 fastvit_t12.apple_in1k,27.935,72.065,46.393,53.607,7.55,256,0.900,bicubic,-51.329,-48.169,+7 resnet101.a3_in1k,27.925,72.075,45.014,54.986,44.55,224,0.950,bicubic,-51.888,-49.600,-39 resnet50_gn.a1h_in1k,27.916,72.084,46.075,53.925,25.56,288,0.950,bicubic,-53.300,-49.309,-173 xception41.tf_in1k,27.880,72.120,45.888,54.112,26.97,299,0.903,bicubic,-50.624,-48.388,+58 regnetx_160.pycls_in1k,27.827,72.173,45.631,54.369,54.28,224,0.875,bicubic,-52.039,-49.197,-49 dpn68b.mx_in1k,27.814,72.186,47.415,52.585,12.61,224,0.875,bicubic,-49.704,-46.437,+123 resnet50d.a1_in1k,27.790,72.210,44.377,55.623,25.58,288,1.000,bicubic,-53.660,-50.841,-199 inception_v3.tf_in1k,27.780,72.220,45.727,54.273,23.83,299,0.875,bicubic,-50.076,-48.139,+106 res2net101_26w_4s.in1k,27.778,72.222,45.159,54.841,45.21,224,0.875,bilinear,-51.422,-49.277,+5 tf_efficientnetv2_b1.in1k,27.745,72.255,46.580,53.420,8.14,240,0.882,bicubic,-51.715,-48.142,-21 repghostnet_200.in1k,27.719,72.281,46.322,53.678,9.80,224,0.875,bicubic,-51.087,-48.008,+30 vit_base_patch16_224.sam_in1k,27.703,72.297,45.100,54.900,86.57,224,0.900,bicubic,-52.535,-49.656,-78 fbnetv3_b.ra2_in1k,27.670,72.330,46.987,53.013,8.60,256,0.950,bilinear,-51.476,-47.757,+6 regnety_160.pycls_in1k,27.641,72.359,45.531,54.469,83.59,224,0.875,bicubic,-52.657,-49.433,-85 mobilevitv2_200.cvnets_in1k,27.637,72.363,45.784,54.216,18.45,256,0.888,bicubic,-53.497,-49.578,-175 repvgg_b1.rvgg_in1k,27.631,72.369,46.533,53.467,57.42,224,0.875,bilinear,-50.737,-47.563,+62 hrnet_w44.ms_in1k,27.627,72.373,45.837,54.163,67.06,224,0.875,bilinear,-51.267,-48.527,+18 resnet50.am_in1k,27.574,72.426,45.369,54.631,25.56,224,0.875,bicubic,-51.428,-49.029,+10 inception_v3.tv_in1k,27.556,72.444,45.265,54.735,23.83,299,0.875,bicubic,-49.878,-48.209,+116 resmlp_24_224.fb_in1k,27.517,72.483,45.690,54.310,30.02,224,0.875,bicubic,-51.857,-48.856,-24 pit_xs_224.in1k,27.485,72.515,45.910,54.090,10.62,224,0.900,bicubic,-50.691,-48.252,+69 tiny_vit_5m_224.in1k,27.483,72.517,45.855,54.145,5.39,224,0.950,bicubic,-51.687,-48.939,-5 gcresnet33ts.ra2_in1k,27.401,72.599,46.155,53.845,19.88,288,1.000,bicubic,-53.199,-49.167,-127 regnetx_080.pycls_in1k,27.397,72.603,45.012,54.988,39.57,224,0.875,bicubic,-51.801,-49.542,-9 hrnet_w30.ms_in1k,27.389,72.611,46.554,53.446,37.71,224,0.875,bilinear,-50.807,-47.668,+63 hrnet_w32.ms_in1k,27.381,72.619,46.006,53.994,41.23,224,0.875,bilinear,-51.061,-48.184,+43 convnext_pico.d1_in1k,27.358,72.642,45.660,54.340,9.05,288,0.950,bicubic,-53.058,-49.388,-111 vit_small_patch16_384.augreg_in1k,27.328,72.672,46.118,53.882,22.20,384,1.000,bicubic,-53.788,-49.456,-186 resnet50s.gluon_in1k,27.324,72.676,45.214,54.786,25.68,224,0.875,bicubic,-51.390,-49.028,+21 res2net50_26w_8s.in1k,27.306,72.694,44.815,55.185,48.40,224,0.875,bilinear,-51.635,-49.479,+1 convnext_pico_ols.d1_in1k,27.297,72.703,45.644,54.356,9.06,288,1.000,bicubic,-53.165,-49.608,-123 densenet201.tv_in1k,27.271,72.729,46.210,53.790,20.01,224,0.875,bicubic,-50.015,-47.270,+111 resnet33ts.ra2_in1k,27.257,72.743,45.183,54.817,19.68,288,1.000,bicubic,-52.469,-49.645,-64 ecaresnet50t.a2_in1k,27.246,72.754,44.047,55.953,25.57,288,1.000,bicubic,-54.412,-51.503,-252 regnety_064.pycls_in1k,27.238,72.762,44.866,55.134,30.58,224,0.875,bicubic,-52.478,-49.900,-65 ghostnetv2_160.in1k,27.232,72.768,46.366,53.634,12.39,224,0.875,bicubic,-50.600,-47.574,+79 efficientnet_b1_pruned.in1k,27.196,72.804,45.861,54.139,6.33,240,0.882,bicubic,-51.044,-47.973,+49 tf_efficientnetv2_b2.in1k,27.163,72.837,44.568,55.432,10.10,260,0.890,bicubic,-53.033,-50.474,-100 vit_base_patch32_224.augreg_in1k,27.140,72.861,45.175,54.825,88.22,224,0.900,bicubic,-47.755,-46.603,+178 seresnet50.a1_in1k,27.124,72.876,43.563,56.437,28.09,288,1.000,bicubic,-53.978,-51.765,-195 resnet50d.a2_in1k,27.120,72.880,43.811,56.189,25.58,288,1.000,bicubic,-54.044,-51.269,-204 resnetrs50.tf_in1k,27.098,72.902,45.027,54.973,35.69,224,0.910,bicubic,-52.796,-49.947,-89 rexnet_130.nav_in1k,27.081,72.919,45.957,54.043,7.56,224,0.875,bicubic,-52.425,-48.721,-58 gmixer_24_224.ra3_in1k,27.031,72.969,44.353,55.647,24.72,224,0.875,bicubic,-50.995,-49.315,+56 dla102x.in1k,27.022,72.978,45.505,54.495,26.31,224,0.875,bilinear,-51.490,-48.731,+16 resnet101.tv_in1k,26.963,73.037,45.234,54.766,44.55,224,0.875,bilinear,-50.417,-48.312,+91 regnetx_120.pycls_in1k,26.866,73.134,44.688,55.312,46.11,224,0.875,bicubic,-52.722,-50.055,-67 resnet32ts.ra2_in1k,26.849,73.151,45.041,54.959,17.96,288,1.000,bicubic,-52.539,-49.611,-54 rexnet_100.nav_in1k,26.841,73.159,45.379,54.621,4.80,224,0.875,bicubic,-51.015,-48.261,+64 legacy_seresnext101_32x4d.in1k,26.821,73.179,43.505,56.495,48.96,224,0.875,bilinear,-53.411,-51.515,-114 densenet169.tv_in1k,26.819,73.181,45.381,54.619,14.15,224,0.875,bicubic,-49.081,-47.647,+142 tinynet_a.in1k,26.815,73.185,45.082,54.918,6.19,192,0.875,bicubic,-50.833,-48.458,+69 regnetx_064.pycls_in1k,26.803,73.197,44.913,55.087,26.21,224,0.875,bicubic,-52.263,-49.547,-28 regnety_120.pycls_in1k,26.780,73.220,44.442,55.558,51.82,224,0.875,bicubic,-53.600,-50.684,-137 regnetx_032.pycls_in1k,26.717,73.283,45.230,54.770,15.30,224,0.875,bicubic,-51.451,-48.852,+36 res2net101d.in1k,26.711,73.289,44.336,55.664,45.23,224,0.875,bilinear,-54.507,-51.014,-227 resnext50_32x4d.a2_in1k,26.682,73.318,42.768,57.232,25.03,288,1.000,bicubic,-54.622,-52.328,-233 efficientvit_m5.r224_in1k,26.674,73.326,44.923,55.077,12.47,224,0.875,bicubic,-50.384,-48.261,+98 legacy_seresnet152.in1k,26.666,73.334,43.949,56.051,66.82,224,0.875,bilinear,-51.994,-50.421,-4 efficientnet_es.ra_in1k,26.619,73.381,45.096,54.904,5.44,224,0.875,bicubic,-51.439,-48.830,+38 res2net50_26w_6s.in1k,26.591,73.409,44.004,55.996,37.05,224,0.875,bilinear,-51.977,-50.118,-3 repvgg_b1g4.rvgg_in1k,26.579,73.421,45.100,54.900,39.97,224,0.875,bilinear,-51.009,-48.736,+64 dla60x.in1k,26.566,73.434,45.031,54.969,17.35,224,0.875,bilinear,-51.670,-48.995,+24 coat_lite_tiny.in1k,26.517,73.484,44.646,55.354,5.72,224,0.900,bicubic,-51.003,-49.276,+64 regnety_080.pycls_in1k,26.515,73.485,44.351,55.649,39.18,224,0.875,bicubic,-53.353,-50.481,-110 mobilenetv3_large_100.miil_in21k_ft_in1k,26.493,73.507,44.491,55.509,5.48,224,0.875,bilinear,-51.427,-48.423,+43 tf_efficientnet_b0.aa_in1k,26.483,73.517,45.642,54.358,5.29,224,0.875,bicubic,-50.361,-47.576,+99 res2net50_14w_8s.in1k,26.477,73.523,44.371,55.629,25.06,224,0.875,bilinear,-51.681,-49.475,+25 tf_efficientnet_b2.in1k,26.462,73.538,44.788,55.212,9.11,260,0.890,bicubic,-53.147,-49.926,-90 mobileone_s2.apple_in1k,26.456,73.544,44.566,55.434,7.88,224,0.900,bilinear,-51.060,-49.102,+60 resnet50.gluon_in1k,26.428,73.572,44.039,55.961,25.56,224,0.875,bicubic,-51.154,-49.681,+56 ecaresnet50t.a3_in1k,26.420,73.580,43.507,56.493,25.57,224,0.950,bicubic,-53.132,-51.188,-89 tf_efficientnet_el.in1k,26.353,73.647,44.173,55.827,10.59,300,0.904,bicubic,-53.895,-50.947,-141 levit_conv_128.fb_dist_in1k,26.330,73.670,44.120,55.880,9.21,224,0.900,bicubic,-52.164,-49.888,-11 levit_128.fb_dist_in1k,26.328,73.672,44.116,55.884,9.21,224,0.900,bicubic,-52.162,-49.896,-10 lambda_resnet26t.c1_in1k,26.326,73.674,44.430,55.570,10.96,256,0.940,bicubic,-52.762,-50.160,-54 resmlp_big_24_224.fb_in1k,26.318,73.682,43.554,56.446,129.14,224,0.875,bicubic,-54.718,-51.464,-225 resmlp_12_224.fb_distilled_in1k,26.316,73.684,44.874,55.126,15.35,224,0.875,bicubic,-51.638,-48.686,+29 visformer_tiny.in1k,26.257,73.743,44.182,55.818,10.32,224,0.900,bicubic,-51.903,-49.984,+13 regnetx_040.pycls_in1k,26.243,73.757,44.424,55.576,22.12,224,0.875,bicubic,-52.249,-49.818,-16 mobilevitv2_150.cvnets_in1k,26.178,73.822,43.762,56.238,10.59,256,0.888,bicubic,-54.192,-51.312,-163 crossvit_9_dagger_240.in1k,26.177,73.823,44.542,55.458,8.78,240,0.875,bicubic,-50.801,-49.076,+78 vit_small_patch32_224.augreg_in21k_ft_in1k,26.165,73.835,45.106,54.894,22.88,224,0.900,bicubic,-49.829,-47.694,+105 seresnet50.a2_in1k,26.165,73.835,42.675,57.325,28.09,288,1.000,bicubic,-54.941,-52.547,-240 densenetblur121d.ra_in1k,26.135,73.865,45.037,54.963,8.00,288,0.950,bicubic,-51.187,-48.751,+54 resnet50.a2_in1k,26.094,73.906,42.583,57.417,25.56,288,1.000,bicubic,-54.678,-52.405,-205 resnet50d.a3_in1k,26.090,73.910,42.970,57.030,25.58,224,0.950,bicubic,-52.630,-51.262,-39 resnext50_32x4d.a3_in1k,26.082,73.918,42.946,57.054,25.03,224,0.950,bicubic,-53.186,-51.360,-81 resnet34.a2_in1k,26.080,73.920,43.109,56.891,21.80,288,1.000,bicubic,-51.078,-50.165,+62 efficientnet_b1.ft_in1k,26.055,73.945,44.080,55.920,7.79,256,1.000,bicubic,-52.745,-50.262,-47 convnextv2_femto.fcmae_ft_in1k,26.039,73.961,44.302,55.698,5.23,288,0.950,bicubic,-53.299,-50.258,-92 fastvit_t8.apple_dist_in1k,26.033,73.967,44.397,55.603,4.03,256,0.900,bicubic,-51.143,-48.901,+57 lambda_resnet26rpt_256.c1_in1k,26.033,73.967,44.190,55.810,10.99,256,0.940,bicubic,-52.931,-50.246,-63 mobilevitv2_125.cvnets_in1k,26.021,73.979,43.668,56.332,7.48,256,0.888,bicubic,-53.659,-51.190,-119 dpn68.mx_in1k,26.006,73.994,44.084,55.916,12.61,224,0.875,bicubic,-50.340,-48.924,+88 hrnet_w18.ms_in1k,25.982,74.018,44.803,55.197,21.30,224,0.875,bilinear,-50.770,-48.641,+72 hardcorenas_f.miil_green_in1k,25.939,74.061,44.204,55.796,8.20,224,0.875,bilinear,-52.157,-49.598,-1 vit_small_patch16_224.augreg_in1k,25.935,74.065,43.964,56.036,22.05,224,0.900,bicubic,-52.913,-50.324,-61 repghostnet_150.in1k,25.923,74.077,44.328,55.672,6.58,224,0.875,bicubic,-51.537,-49.182,+34 regnety_040.pycls_in1k,25.909,74.091,43.854,56.146,20.65,224,0.875,bicubic,-53.311,-50.802,-87 hrnet_w18_small_v2.gluon_in1k,25.884,74.116,43.815,56.185,15.60,224,0.875,bicubic,-52.306,-50.087,-12 regnetx_016.tv2_in1k,25.878,74.122,43.353,56.647,9.19,224,0.965,bicubic,-53.558,-51.415,-110 fastvit_t8.apple_in1k,25.876,74.124,44.153,55.847,4.03,256,0.900,bicubic,-50.298,-48.899,+83 resnext50d_32x4d.bt_in1k,25.876,74.124,42.956,57.044,25.05,288,0.950,bicubic,-54.788,-52.464,-212 res2net50_26w_4s.in1k,25.872,74.128,43.163,56.837,25.70,224,0.875,bilinear,-52.078,-50.689,+3 tresnet_m.miil_in1k_448,25.860,74.140,42.868,57.132,31.39,448,0.875,bilinear,-55.850,-52.706,-328 coat_tiny.in1k,25.858,74.142,43.275,56.725,5.50,224,0.900,bicubic,-52.568,-50.773,-35 hardcorenas_c.miil_green_in1k,25.821,74.179,44.764,55.236,5.52,224,0.875,bilinear,-51.245,-48.398,+47 densenet121.ra_in1k,25.815,74.185,44.866,55.134,7.98,288,0.950,bicubic,-50.685,-48.502,+69 resnet50c.gluon_in1k,25.793,74.207,43.019,56.981,25.58,224,0.875,bicubic,-52.213,-50.973,-8 halonet26t.a1h_in1k,25.776,74.224,43.220,56.780,12.48,256,0.950,bicubic,-53.330,-51.086,-91 selecsls60.in1k,25.729,74.272,44.065,55.935,30.67,224,0.875,bicubic,-52.260,-49.765,-6 hardcorenas_e.miil_green_in1k,25.658,74.342,43.408,56.592,8.07,224,0.875,bilinear,-52.132,-50.292,+4 poolformer_s12.sail_in1k,25.654,74.346,44.167,55.833,11.92,224,0.900,bicubic,-51.586,-49.365,+31 dla60_res2next.in1k,25.654,74.346,43.675,56.325,17.03,224,0.875,bilinear,-52.786,-50.469,-44 dla60_res2net.in1k,25.648,74.352,43.583,56.417,20.85,224,0.875,bilinear,-52.816,-50.615,-48 ecaresnet26t.ra2_in1k,25.538,74.462,43.660,56.340,16.01,320,0.950,bicubic,-54.312,-51.430,-160 resmlp_12_224.fb_in1k,25.528,74.472,44.330,55.670,15.35,224,0.875,bicubic,-51.120,-48.848,+51 mixnet_l.ft_in1k,25.520,74.480,43.471,56.529,7.33,224,0.875,bicubic,-53.446,-50.711,-90 convnext_femto.d1_in1k,25.510,74.490,43.672,56.328,5.22,288,0.950,bicubic,-53.206,-50.759,-71 tf_efficientnet_lite1.in1k,25.509,74.492,43.573,56.427,5.42,240,0.882,bicubic,-51.136,-49.651,+49 res2net50d.in1k,25.497,74.503,43.041,56.959,25.72,224,0.875,bilinear,-54.757,-51.995,-191 cs3darknet_focus_m.c2ns_in1k,25.493,74.507,43.762,56.238,9.30,288,0.950,bicubic,-51.791,-50.204,+21 resnext50_32x4d.tv_in1k,25.467,74.533,42.787,57.213,25.03,224,0.875,bilinear,-52.155,-50.909,0 bat_resnext26ts.ch_in1k,25.455,74.545,43.194,56.806,10.73,256,0.900,bicubic,-52.797,-50.904,-41 botnet26t_256.c1_in1k,25.451,74.549,42.660,57.340,12.49,256,0.950,bicubic,-53.806,-51.872,-117 eca_halonext26ts.c1_in1k,25.442,74.558,43.182,56.818,10.76,256,0.940,bicubic,-54.044,-51.418,-141 repvgg_a2.rvgg_in1k,25.436,74.564,43.945,56.055,28.21,224,0.875,bilinear,-51.022,-49.057,+52 tf_mixnet_l.in1k,25.414,74.586,42.538,57.462,7.33,224,0.875,bicubic,-53.362,-51.464,-84 regnety_008_tv.tv2_in1k,25.406,74.594,43.434,56.566,6.43,224,0.965,bicubic,-53.260,-50.956,-76 hardcorenas_b.miil_green_in1k,25.396,74.603,44.188,55.812,5.18,224,0.875,bilinear,-51.151,-48.574,+42 res2next50.in1k,25.392,74.608,42.492,57.508,24.67,224,0.875,bilinear,-52.850,-51.399,-47 convnext_femto_ols.d1_in1k,25.387,74.613,43.137,56.863,5.23,288,0.950,bicubic,-53.537,-51.389,-100 efficientformerv2_s0.snap_dist_in1k,25.349,74.651,43.929,56.071,3.60,224,0.950,bicubic,-50.765,-48.929,+54 legacy_seresnet101.in1k,25.332,74.668,42.832,57.168,49.33,224,0.875,bilinear,-53.054,-51.430,-59 selecsls60b.in1k,25.326,74.674,43.556,56.444,32.77,224,0.875,bicubic,-53.086,-50.612,-62 hardcorenas_d.miil_green_in1k,25.326,74.674,43.137,56.863,7.50,224,0.875,bilinear,-52.108,-50.353,-2 resnetv2_50x1_bit.goog_in21k_ft_in1k,25.322,74.678,45.348,54.652,25.55,448,1.000,bilinear,-55.020,-50.334,-217 regnety_032.pycls_in1k,25.318,74.682,42.923,57.077,19.44,224,0.875,bicubic,-53.558,-51.485,-103 wide_resnet50_2.tv_in1k,25.310,74.690,42.182,57.818,68.88,224,0.875,bilinear,-53.166,-51.906,-73 dla102.in1k,25.294,74.706,43.846,56.154,33.27,224,0.875,bilinear,-52.730,-50.088,-40 resnest14d.gluon_in1k,25.280,74.719,44.106,55.894,10.61,224,0.875,bilinear,-50.227,-48.402,+60 legacy_seresnext50_32x4d.in1k,25.212,74.788,41.950,58.050,27.56,224,0.875,bilinear,-53.864,-52.482,-119 ghostnetv2_130.in1k,25.149,74.851,43.271,56.729,8.96,224,0.875,bicubic,-51.607,-50.091,+23 mixer_b16_224.goog_in21k_ft_in1k,25.111,74.888,41.225,58.775,59.88,224,0.875,bicubic,-51.491,-50.999,+26 res2net50_48w_2s.in1k,25.025,74.975,42.206,57.794,25.29,224,0.875,bilinear,-52.489,-51.344,-15 efficientnet_b0.ra_in1k,25.015,74.985,42.797,57.203,5.29,224,0.875,bicubic,-52.679,-50.735,-27 resnet50.a3_in1k,25.000,75.001,41.889,58.111,25.56,224,0.950,bicubic,-53.049,-51.891,-49 dla60.in1k,24.937,75.063,43.322,56.678,22.04,224,0.875,bilinear,-52.109,-49.996,+8 resnet34.gluon_in1k,24.937,75.063,42.237,57.763,21.80,224,0.875,bicubic,-49.643,-49.745,+75 mobilenetv2_120d.ra_in1k,24.915,75.085,43.039,56.961,5.83,224,0.875,bicubic,-52.393,-50.463,-11 convnextv2_atto.fcmae_ft_in1k,24.890,75.111,42.469,57.531,3.71,288,0.950,bicubic,-52.871,-51.257,-34 eca_botnext26ts_256.c1_in1k,24.868,75.132,42.943,57.057,10.59,256,0.950,bicubic,-54.400,-51.663,-147 resnet34.bt_in1k,24.828,75.171,42.080,57.920,21.80,288,0.950,bicubic,-51.652,-51.274,+25 regnety_016.pycls_in1k,24.823,75.177,42.610,57.390,11.20,224,0.875,bicubic,-53.045,-51.108,-43 xcit_nano_12_p8_224.fb_dist_in1k,24.801,75.199,43.072,56.928,3.05,224,1.000,bicubic,-51.531,-50.026,+28 seresnet50.a3_in1k,24.793,75.207,42.094,57.906,28.09,224,0.950,bicubic,-52.233,-50.978,+1 pit_ti_distilled_224.in1k,24.711,75.289,43.225,56.775,5.10,224,0.900,bicubic,-49.545,-48.727,+71 cs3darknet_m.c2ns_in1k,24.626,75.374,42.970,57.030,9.31,288,0.950,bicubic,-53.008,-51.046,-36 eca_resnext26ts.ch_in1k,24.559,75.441,42.536,57.464,10.30,288,1.000,bicubic,-53.441,-51.390,-56 resnet50.bt_in1k,24.559,75.441,41.445,58.555,25.56,288,0.950,bicubic,-55.081,-53.447,-183 mobilevitv2_100.cvnets_in1k,24.553,75.447,42.919,57.081,4.90,256,0.888,bicubic,-53.527,-51.251,-65 tf_efficientnet_lite2.in1k,24.532,75.468,42.290,57.710,6.09,260,0.890,bicubic,-52.930,-51.462,-31 seresnext26ts.ch_in1k,24.506,75.494,42.665,57.335,10.39,288,1.000,bicubic,-53.764,-51.427,-81 skresnet18.ra_in1k,24.497,75.504,42.534,57.466,11.96,224,0.875,bicubic,-48.538,-48.638,+84 regnetx_016.pycls_in1k,24.477,75.523,42.490,57.510,9.19,224,0.875,bicubic,-52.447,-50.925,-3 tf_efficientnet_lite0.in1k,24.373,75.627,42.510,57.490,4.65,224,0.875,bicubic,-50.459,-49.660,+51 hardcorenas_a.miil_green_in1k,24.367,75.633,43.316,56.684,5.26,224,0.875,bilinear,-51.571,-49.192,+24 hrnet_w18.ms_aug_in1k,24.341,75.659,42.897,57.103,21.30,224,0.950,bilinear,-53.781,-51.157,-74 efficientvit_m4.r224_in1k,24.286,75.714,41.758,58.242,8.80,224,0.875,bicubic,-50.082,-50.222,+58 gcresnext26ts.ch_in1k,24.154,75.846,41.306,58.694,10.48,288,1.000,bicubic,-54.260,-52.730,-97 resnet50.tv_in1k,24.096,75.904,41.323,58.677,25.56,224,0.875,bilinear,-52.032,-51.535,+15 tf_efficientnet_b1.in1k,24.070,75.930,41.512,58.488,7.79,240,0.882,bicubic,-54.492,-52.582,-114 levit_128s.fb_dist_in1k,24.060,75.940,41.001,58.999,7.78,224,0.900,bicubic,-52.466,-51.871,+1 levit_conv_128s.fb_dist_in1k,24.052,75.948,41.003,58.997,7.78,224,0.900,bicubic,-52.468,-51.863,+1 legacy_seresnet34.in1k,24.021,75.979,41.901,58.099,21.96,224,0.875,bilinear,-50.781,-50.225,+43 xcit_nano_12_p16_384.fb_dist_in1k,24.005,75.995,42.306,57.694,3.05,384,1.000,bicubic,-51.453,-50.392,+28 xcit_nano_12_p8_384.fb_dist_in1k,23.956,76.044,41.954,58.046,3.05,384,1.000,bicubic,-53.864,-52.086,-62 efficientnet_lite0.ra_in1k,23.905,76.095,42.109,57.891,4.65,224,0.875,bicubic,-51.577,-50.411,+24 repghostnet_130.in1k,23.852,76.148,41.569,58.431,5.48,224,0.875,bicubic,-52.524,-51.323,+1 densenet121.tv_in1k,23.840,76.160,41.928,58.072,7.98,224,0.875,bicubic,-50.924,-50.225,+39 efficientnet_es_pruned.in1k,23.815,76.185,41.991,58.009,5.44,224,0.875,bicubic,-51.191,-50.453,+33 regnetx_008.tv2_in1k,23.779,76.221,40.698,59.302,7.26,224,0.965,bicubic,-53.527,-52.966,-42 mixnet_m.ft_in1k,23.716,76.284,41.146,58.854,5.01,224,0.875,bicubic,-53.544,-52.272,-39 resnet26t.ra2_in1k,23.712,76.288,41.321,58.679,16.01,320,1.000,bicubic,-54.616,-52.803,-105 mobilenetv2_140.ra_in1k,23.695,76.305,41.469,58.531,6.11,224,0.875,bicubic,-52.821,-51.519,-9 dla34.in1k,23.685,76.315,41.538,58.462,15.74,224,0.875,bilinear,-50.955,-50.529,+35 legacy_seresnet50.in1k,23.640,76.360,40.079,59.921,28.09,224,0.875,bilinear,-54.004,-53.679,-66 convnext_atto.d2_in1k,23.589,76.411,41.087,58.913,3.70,288,0.950,bicubic,-53.419,-52.614,-30 resnext26ts.ra2_in1k,23.589,76.411,40.891,59.109,10.30,288,1.000,bicubic,-53.589,-52.573,-42 tf_mixnet_m.in1k,23.484,76.516,40.997,59.003,5.01,224,0.875,bicubic,-53.470,-52.157,-30 resnet34.tv_in1k,23.473,76.527,41.361,58.639,21.80,224,0.875,bilinear,-49.833,-50.059,+53 efficientvit_m3.r224_in1k,23.412,76.588,40.531,59.469,6.90,224,0.875,bicubic,-49.962,-50.817,+49 selecsls42b.in1k,23.369,76.632,40.681,59.319,32.46,224,0.875,bicubic,-53.802,-52.711,-44 tf_efficientnet_em.in1k,23.369,76.632,40.398,59.602,6.90,240,0.882,bicubic,-54.758,-53.650,-101 resnet34.a3_in1k,23.366,76.633,40.068,59.932,21.80,224,0.950,bicubic,-49.603,-51.038,+55 repvgg_b0.rvgg_in1k,23.319,76.681,41.164,58.836,15.82,224,0.875,bilinear,-51.825,-51.252,+12 regnety_004.tv2_in1k,23.292,76.708,40.987,59.013,4.34,224,0.965,bicubic,-52.302,-51.713,+2 xcit_nano_12_p16_224.fb_dist_in1k,23.249,76.751,41.368,58.632,3.05,224,1.000,bicubic,-49.061,-49.492,+61 convnext_atto_ols.a2_in1k,23.129,76.871,40.881,59.119,3.70,288,0.950,bicubic,-54.087,-52.795,-53 mobilenetv2_110d.ra_in1k,23.070,76.930,40.749,59.251,4.52,224,0.875,bicubic,-51.984,-51.434,+12 resnet18.a1_in1k,23.056,76.944,39.551,60.449,11.69,288,1.000,bicubic,-50.102,-51.475,+45 vit_base_patch32_224.sam_in1k,23.046,76.954,39.565,60.435,88.22,224,0.900,bicubic,-50.648,-51.449,+37 tinynet_b.in1k,23.017,76.983,40.979,59.021,3.73,188,0.875,bicubic,-51.961,-51.207,+12 resnet18d.ra2_in1k,23.001,76.999,41.197,58.803,11.71,288,0.950,bicubic,-50.793,-50.640,+34 repghostnet_111.in1k,22.881,77.119,40.439,59.561,4.54,224,0.875,bicubic,-52.175,-51.753,+6 mobileone_s1.apple_in1k,22.803,77.197,39.851,60.149,4.83,224,0.900,bilinear,-52.983,-52.941,-13 deit_tiny_distilled_patch16_224.fb_in1k,22.722,77.278,40.777,59.223,5.91,224,0.900,bicubic,-51.782,-51.113,+18 mobilenetv3_large_100.ra_in1k,22.657,77.343,40.763,59.237,5.48,224,0.875,bicubic,-53.109,-51.775,-14 repvgg_a1.rvgg_in1k,22.640,77.361,39.869,60.131,14.09,224,0.875,bilinear,-51.823,-51.987,+17 mobilenetv3_rw.rmsp_in1k,22.630,77.370,40.362,59.638,5.48,224,0.875,bicubic,-52.990,-52.342,-13 ghostnetv2_100.in1k,22.604,77.396,40.022,59.978,6.16,224,0.875,bicubic,-52.562,-52.332,-4 edgenext_x_small.in1k,22.590,77.410,39.500,60.500,2.34,288,1.000,bicubic,-53.098,-53.266,-17 tf_mobilenetv3_large_100.in1k,22.579,77.421,39.777,60.223,5.48,224,0.875,bilinear,-52.937,-52.817,-13 tf_efficientnet_b0.in1k,22.559,77.441,39.570,60.430,5.29,224,0.875,bicubic,-53.971,-53.438,-41 mobilevit_s.cvnets_in1k,22.478,77.522,38.657,61.343,5.58,256,0.900,bicubic,-55.834,-55.491,-134 xcit_nano_12_p8_224.fb_in1k,22.408,77.592,40.626,59.374,3.05,224,1.000,bicubic,-51.502,-51.542,+20 tf_efficientnet_es.in1k,22.406,77.594,39.089,60.911,5.44,224,0.875,bicubic,-54.192,-54.113,-46 hrnet_w18_small_v2.ms_in1k,22.341,77.659,39.857,60.143,15.60,224,0.875,bilinear,-52.769,-52.559,-8 convit_tiny.fb_in1k,22.268,77.732,39.675,60.325,5.71,224,0.875,bicubic,-50.844,-52.037,+28 regnetx_004_tv.tv2_in1k,22.213,77.787,39.126,60.874,5.50,224,0.965,bicubic,-52.387,-53.044,+3 regnety_008.pycls_in1k,22.109,77.891,38.902,61.098,6.26,224,0.875,bicubic,-54.193,-54.160,-37 ese_vovnet19b_dw.ra_in1k,22.072,77.928,39.464,60.536,6.54,288,0.950,bicubic,-55.672,-54.320,-104 regnety_006.pycls_in1k,21.981,78.019,38.959,61.041,6.06,224,0.875,bicubic,-53.287,-53.567,-17 vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,21.948,78.052,39.405,60.595,6.36,384,1.000,bicubic,-54.012,-53.857,-35 regnetx_008.pycls_in1k,21.948,78.052,38.928,61.072,7.26,224,0.875,bicubic,-53.080,-53.410,-11 semnasnet_100.rmsp_in1k,21.889,78.111,38.604,61.396,3.89,224,0.875,bicubic,-53.561,-53.994,-21 pit_ti_224.in1k,21.871,78.129,39.537,60.463,4.85,224,0.900,bicubic,-51.039,-51.867,+25 pvt_v2_b0.in1k,21.836,78.164,40.152,59.848,3.67,224,0.900,bicubic,-48.824,-50.044,+48 regnetx_006.pycls_in1k,21.747,78.253,38.914,61.086,6.20,224,0.875,bicubic,-52.121,-52.764,+8 vit_tiny_patch16_384.augreg_in21k_ft_in1k,21.720,78.280,39.319,60.681,5.79,384,1.000,bicubic,-56.704,-55.223,-158 crossvit_9_240.in1k,21.696,78.304,39.268,60.732,8.55,240,0.875,bicubic,-52.264,-52.694,+2 vgg19_bn.tv_in1k,21.623,78.376,39.276,60.724,143.68,224,0.875,bilinear,-52.592,-52.568,-3 semnasnet_075.rmsp_in1k,21.582,78.418,38.918,61.082,2.91,224,0.875,bicubic,-51.422,-52.222,+16 resnet18.gluon_in1k,21.545,78.455,38.875,61.125,11.69,224,0.875,bicubic,-49.289,-50.881,+40 mobilevitv2_075.cvnets_in1k,21.535,78.465,38.631,61.369,2.87,256,0.888,bicubic,-54.073,-54.113,-37 fbnetc_100.rmsp_in1k,21.492,78.508,38.179,61.821,5.57,224,0.875,bilinear,-53.638,-54.209,-27 repghostnet_100.in1k,21.459,78.541,38.682,61.318,4.07,224,0.875,bicubic,-52.748,-52.860,-7 xcit_nano_12_p16_224.fb_in1k,21.437,78.563,39.791,60.209,3.05,224,1.000,bicubic,-48.525,-49.971,+42 ghostnet_100.in1k,21.384,78.616,38.158,61.842,5.18,224,0.875,bicubic,-52.574,-53.374,-5 mnasnet_100.rmsp_in1k,21.346,78.653,37.709,62.291,4.38,224,0.875,bicubic,-53.306,-54.413,-20 resnet18.fb_ssl_yfcc100m_ft_in1k,21.293,78.707,39.114,60.886,11.69,224,0.875,bilinear,-51.305,-52.301,+11 lcnet_100.ra2_in1k,21.293,78.707,38.867,61.133,2.95,224,0.875,bicubic,-50.809,-51.487,+23 mixnet_s.ft_in1k,21.276,78.724,38.199,61.801,4.13,224,0.875,bicubic,-54.718,-55.071,-54 legacy_seresnext26_32x4d.in1k,21.089,78.911,37.627,62.373,16.79,224,0.875,bicubic,-56.019,-55.687,-92 efficientvit_m2.r224_in1k,21.081,78.919,37.690,62.310,4.19,224,0.875,bicubic,-49.733,-52.452,+30 crossvit_tiny_240.in1k,21.048,78.952,38.061,61.939,7.01,240,0.875,bicubic,-52.292,-53.847,-3 resnet18.a2_in1k,20.944,79.056,36.851,63.149,11.69,288,1.000,bicubic,-51.428,-53.745,+10 repvgg_a0.rvgg_in1k,20.922,79.078,37.539,62.461,9.11,224,0.875,bilinear,-51.486,-52.953,+6 regnetx_004.pycls_in1k,20.887,79.113,37.541,62.459,5.16,224,0.875,bicubic,-51.515,-53.285,+6 spnasnet_100.rmsp_in1k,20.867,79.133,37.896,62.104,4.42,224,0.875,bilinear,-53.227,-53.924,-19 seresnext26t_32x4d.bt_in1k,20.847,79.153,36.344,63.656,16.81,288,0.950,bicubic,-57.897,-57.968,-205 legacy_seresnet18.in1k,20.835,79.165,37.639,62.361,11.78,224,0.875,bicubic,-50.925,-52.693,+16 mobilenetv2_100.ra_in1k,20.761,79.239,37.757,62.243,3.50,224,0.875,bicubic,-52.207,-53.259,-2 tf_mixnet_s.in1k,20.474,79.526,36.621,63.379,4.13,224,0.875,bicubic,-55.178,-56.019,-58 vit_tiny_patch16_224.augreg_in21k_ft_in1k,20.460,79.540,37.601,62.399,5.72,224,0.900,bicubic,-55.002,-55.243,-52 regnety_004.pycls_in1k,20.411,79.589,37.014,62.986,4.34,224,0.875,bicubic,-53.615,-54.734,-24 tf_mobilenetv3_large_075.in1k,20.378,79.622,36.782,63.218,3.99,224,0.875,bilinear,-53.052,-54.570,-17 hrnet_w18_small.ms_in1k,20.364,79.636,37.093,62.907,13.19,224,0.875,bilinear,-51.972,-53.588,0 hrnet_w18_small.gluon_in1k,20.362,79.638,36.973,63.027,13.19,224,0.875,bicubic,-53.558,-54.221,-24 resnet26d.bt_in1k,20.266,79.734,36.348,63.652,16.01,288,0.950,bicubic,-57.142,-57.290,-125 resnet18.tv_in1k,20.230,79.770,37.258,62.742,11.69,224,0.875,bilinear,-49.530,-51.812,+21 mixer_l16_224.goog_in21k_ft_in1k,20.175,79.825,32.938,67.062,208.20,224,0.875,bicubic,-51.879,-54.736,+3 deit_tiny_patch16_224.fb_in1k,20.148,79.852,37.537,62.463,5.72,224,0.900,bicubic,-52.022,-53.579,0 tf_mobilenetv3_large_minimal_100.in1k,20.103,79.897,36.894,63.106,3.92,224,0.875,bilinear,-52.161,-53.746,-4 seresnext26d_32x4d.bt_in1k,20.067,79.933,35.233,64.766,16.81,288,0.950,bicubic,-58.747,-59.006,-226 vgg16_bn.tv_in1k,19.945,80.055,36.314,63.686,138.37,224,0.875,bilinear,-53.425,-55.200,-24 efficientvit_m1.r224_in1k,19.938,80.062,36.403,63.597,2.98,224,0.875,bicubic,-48.368,-52.267,+22 resnet26.bt_in1k,19.739,80.261,35.839,64.161,16.00,288,0.950,bicubic,-56.627,-57.341,-87 repghostnet_080.in1k,19.454,80.546,35.953,64.047,3.28,224,0.875,bicubic,-52.758,-54.531,-7 vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,19.334,80.666,36.059,63.941,6.34,224,0.900,bicubic,-52.464,-54.765,-3 mobileone_s0.apple_in1k,19.309,80.691,35.342,64.658,5.29,224,0.875,bilinear,-52.093,-54.500,0 tinynet_c.in1k,19.258,80.742,35.982,64.018,2.46,184,0.875,bicubic,-51.984,-53.750,+1 edgenext_xx_small.in1k,18.863,81.137,35.159,64.841,1.33,288,1.000,bicubic,-53.015,-55.393,-7 efficientvit_b0.r224_in1k,18.464,81.536,33.190,66.810,3.41,224,0.950,bicubic,-52.934,-56.238,-2 resnet18.a3_in1k,18.442,81.558,33.487,66.513,11.69,224,0.950,bicubic,-49.810,-54.685,+15 mobilevit_xs.cvnets_in1k,18.312,81.688,33.206,66.794,2.32,256,0.900,bicubic,-56.322,-59.142,-54 lcnet_075.ra2_in1k,18.128,81.872,34.371,65.629,2.36,224,0.875,bicubic,-50.654,-53.989,+9 vgg19.tv_in1k,17.941,82.059,33.058,66.942,143.67,224,0.875,bilinear,-54.437,-57.816,-22 vgg13_bn.tv_in1k,17.798,82.202,34.043,65.957,133.05,224,0.875,bilinear,-53.790,-56.335,-9 vgg16.tv_in1k,17.538,82.462,32.779,67.221,138.36,224,0.875,bilinear,-54.054,-57.605,-11 regnety_002.pycls_in1k,17.456,82.544,32.435,67.565,3.16,224,0.875,bicubic,-52.824,-57.095,-3 vgg11_bn.tv_in1k,17.397,82.603,33.001,66.999,132.87,224,0.875,bilinear,-52.985,-56.807,-5 mobilevitv2_050.cvnets_in1k,17.306,82.694,33.007,66.993,1.37,256,0.888,bicubic,-52.842,-56.911,-4 repghostnet_058.in1k,17.161,82.839,32.596,67.404,2.55,224,0.875,bicubic,-51.753,-55.824,+1 regnetx_002.pycls_in1k,16.959,83.041,32.225,67.775,2.68,224,0.875,bicubic,-51.793,-56.317,+2 mobilenetv3_small_100.lamb_in1k,16.803,83.197,32.518,67.482,2.54,224,0.875,bicubic,-50.855,-55.118,+7 resnet10t.c3_in1k,16.699,83.301,32.123,67.877,5.44,224,0.950,bicubic,-51.665,-55.913,+1 efficientvit_m0.r224_in1k,16.670,83.330,31.948,68.052,2.35,224,0.875,bicubic,-46.600,-53.228,+14 mobilenetv2_050.lamb_in1k,16.668,83.332,31.950,68.050,1.97,224,0.875,bicubic,-49.280,-54.134,+9 tinynet_d.in1k,16.658,83.342,32.449,67.551,2.34,152,0.875,bicubic,-50.314,-54.617,+4 mnasnet_small.lamb_in1k,16.638,83.362,31.909,68.091,2.03,224,0.875,bicubic,-49.558,-54.595,+5 dla60x_c.in1k,16.336,83.664,31.757,68.243,1.32,224,0.875,bilinear,-51.576,-56.675,0 tf_mobilenetv3_small_100.in1k,16.216,83.784,31.205,68.795,2.54,224,0.875,bilinear,-51.706,-56.467,-2 vgg13.tv_in1k,16.096,83.904,30.985,69.015,133.05,224,0.875,bilinear,-53.836,-58.265,-13 resnet14t.c3_in1k,15.925,84.075,30.003,69.997,10.08,224,0.950,bicubic,-56.329,-60.303,-34 vgg11.tv_in1k,15.723,84.278,30.451,69.549,132.86,224,0.875,bilinear,-53.300,-58.173,-13 repghostnet_050.in1k,15.589,84.411,30.189,69.811,2.31,224,0.875,bicubic,-51.377,-56.731,-2 mobilenetv3_small_075.lamb_in1k,14.948,85.052,29.733,70.267,2.04,224,0.875,bicubic,-50.288,-55.713,+2 tf_mobilenetv3_small_075.in1k,14.932,85.067,29.562,70.438,2.04,224,0.875,bilinear,-50.794,-56.570,0 dla46_c.in1k,14.665,85.335,29.397,70.603,1.30,224,0.875,bilinear,-50.207,-56.901,+1 mobilevit_xxs.cvnets_in1k,14.490,85.510,28.654,71.346,1.27,256,0.900,bicubic,-54.428,-60.291,-17 dla46x_c.in1k,14.380,85.620,29.197,70.803,1.07,224,0.875,bilinear,-51.612,-57.777,-5 lcnet_050.ra2_in1k,14.290,85.710,28.659,71.341,1.88,224,0.875,bicubic,-48.848,-55.724,0 tf_mobilenetv3_small_minimal_100.in1k,13.962,86.038,27.990,72.010,2.04,224,0.875,bilinear,-48.932,-56.248,0 tinynet_e.in1k,12.671,87.329,26.383,73.617,2.04,106,0.875,bicubic,-47.195,-55.379,0 mobilenetv3_small_050.lamb_in1k,11.038,88.962,23.477,76.523,1.59,224,0.875,bicubic,-46.878,-56.703,0
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet-r.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation,top1_diff,top5_diff,rank_diff convnext_xxlarge.clip_laion2b_soup_ft_in1k,90.623,9.377,97.913,2.087,846.47,256,1.000,bicubic,-7.127,-1.897,+18 eva_giant_patch14_336.clip_ft_in1k,90.550,9.450,97.230,2.770,"1,013.01",336,1.000,bicubic,-7.310,-2.650,+6 eva02_large_patch14_448.mim_m38m_ft_in1k,90.457,9.543,97.267,2.733,305.08,448,1.000,bicubic,-7.373,-2.553,+6 eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,90.293,9.707,97.170,2.830,305.08,448,1.000,bicubic,-7.737,-2.720,-2 eva_giant_patch14_224.clip_ft_in1k,89.843,10.157,97.023,2.977,"1,012.56",224,0.900,bicubic,-7.727,-2.687,+29 eva_giant_patch14_336.m30m_ft_in22k_in1k,88.590,11.410,95.920,4.080,"1,013.01",336,1.000,bicubic,-9.400,-3.980,-2 eva_giant_patch14_560.m30m_ft_in22k_in1k,88.397,11.603,95.610,4.390,"1,014.45",560,1.000,bicubic,-9.603,-4.250,-4 regnety_1280.swag_ft_in1k,88.257,11.743,96.477,3.523,644.81,384,1.000,bicubic,-9.523,-3.383,+6 eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,87.980,12.020,95.610,4.390,305.08,448,1.000,bicubic,-10.170,-4.270,-8 eva02_large_patch14_448.mim_in22k_ft_in1k,87.587,12.413,95.730,4.270,305.08,448,1.000,bicubic,-10.273,-4.060,-3 regnety_1280.swag_lc_in1k,86.943,13.057,95.737,4.263,644.81,224,0.965,bicubic,-10.447,-4.003,+36 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,84.437,15.563,94.297,5.703,200.13,384,1.000,bicubic,-12.953,-5.433,+34 vit_large_patch14_clip_336.openai_ft_in12k_in1k,83.923,16.077,93.873,6.127,304.53,336,1.000,bicubic,-13.677,-5.857,+18 vit_large_patch14_clip_336.laion2b_ft_in1k,83.610,16.390,93.510,6.490,304.53,336,1.000,bicubic,-13.620,-6.210,+63 eva_large_patch14_336.in22k_ft_in1k,83.520,16.480,93.103,6.897,304.53,336,1.000,bicubic,-14.290,-6.757,-4 vit_huge_patch14_clip_224.laion2b_ft_in1k,83.263,16.737,93.133,6.867,632.05,224,1.000,bicubic,-13.837,-6.557,+80 vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,83.047,16.953,92.837,7.163,632.46,336,1.000,bicubic,-14.563,-6.943,+12 vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,82.797,17.203,92.613,7.387,632.05,224,1.000,bicubic,-14.563,-7.187,+36 vit_large_patch14_clip_224.openai_ft_in1k,82.323,17.677,92.907,7.093,304.20,224,1.000,bicubic,-15.117,-6.773,+24 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,82.217,17.783,92.433,7.567,200.13,384,1.000,bicubic,-15.253,-7.327,+19 vit_large_patch14_clip_224.laion2b_ft_in1k,81.700,18.300,92.263,7.737,304.20,224,1.000,bicubic,-15.320,-7.407,+90 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,81.347,18.653,91.963,8.037,200.13,320,1.000,bicubic,-15.913,-7.747,+48 regnety_320.swag_lc_in1k,81.317,18.683,93.153,6.847,145.05,224,0.965,bicubic,-15.463,-6.467,+123 eva_large_patch14_196.in22k_ft_in1k,81.300,18.700,91.533,8.467,304.14,196,1.000,bicubic,-16.220,-8.257,+12 regnety_320.swag_ft_in1k,81.203,18.797,92.707,7.293,145.05,384,1.000,bicubic,-16.177,-7.013,+23 convnext_large_mlp.clip_laion2b_augreg_ft_in1k,80.870,19.130,91.917,8.083,200.13,256,1.000,bicubic,-16.260,-7.863,+65 eva_large_patch14_336.in22k_ft_in22k_in1k,80.087,19.913,89.357,10.643,304.53,336,1.000,bicubic,-17.773,-10.443,-21 resnext101_32x32d.fb_wsl_ig1b_ft_in1k,79.467,20.533,89.197,10.803,468.53,224,0.875,bilinear,-17.303,-10.423,+124 resnext101_32x16d.fb_wsl_ig1b_ft_in1k,78.830,21.170,88.473,11.527,194.03,224,0.875,bilinear,-17.600,-11.157,+183 vit_large_patch14_clip_224.openai_ft_in12k_in1k,78.677,21.323,88.920,11.080,304.20,224,1.000,bicubic,-18.933,-10.810,0 eva_large_patch14_196.in22k_ft_in22k_in1k,78.500,21.500,88.330,11.670,304.14,196,1.000,bicubic,-19.110,-11.480,-3 vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,78.433,21.567,88.500,11.500,304.53,336,1.000,bicubic,-19.027,-11.280,+8 vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,78.267,21.733,88.673,11.327,304.20,224,1.000,bicubic,-19.123,-11.057,+12 regnety_160.swag_lc_in1k,78.187,21.813,91.663,8.337,83.59,224,0.965,bicubic,-18.263,-7.947,+172 regnety_160.swag_ft_in1k,77.683,22.317,90.737,9.263,83.59,384,1.000,bicubic,-19.487,-8.903,+50 eva02_base_patch14_448.mim_in22k_ft_in1k,77.610,22.390,89.307,10.693,87.12,448,1.000,bicubic,-20.110,-10.453,-14 eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,77.497,22.503,88.490,11.510,87.12,448,1.000,bicubic,-20.113,-11.330,-10 tf_efficientnet_l2.ns_jft_in1k_475,76.490,23.510,88.640,11.360,480.31,475,0.936,bicubic,-21.260,-11.150,-20 beitv2_large_patch16_224.in1k_ft_in22k_in1k,76.353,23.647,87.090,12.910,304.43,224,0.950,bicubic,-21.397,-12.730,-19 resnext101_32x16d.fb_swsl_ig1b_ft_in1k,76.300,23.700,87.743,12.257,194.03,224,0.875,bilinear,-19.970,-11.757,+206 convnextv2_huge.fcmae_ft_in22k_in1k_384,75.953,24.047,86.637,13.363,660.29,384,1.000,bicubic,-21.917,-13.273,-36 convnextv2_huge.fcmae_ft_in22k_in1k_512,75.823,24.177,86.943,13.057,660.29,512,1.000,bicubic,-21.987,-12.847,-32 resnext101_32x8d.fb_wsl_ig1b_ft_in1k,75.797,24.203,86.197,13.803,88.79,224,0.875,bilinear,-20.143,-13.183,+277 resnext101_32x8d.fb_swsl_ig1b_ft_in1k,75.600,24.400,86.943,13.057,88.79,224,0.875,bilinear,-20.650,-12.597,+203 convnext_base.clip_laiona_augreg_ft_in1k_384,75.210,24.790,88.580,11.420,88.59,384,1.000,bicubic,-21.650,-11.110,+88 convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,75.173,24.827,88.460,11.540,88.59,384,1.000,bicubic,-21.867,-11.210,+58 tf_efficientnet_l2.ns_jft_in1k,74.657,25.343,87.557,12.443,480.31,800,0.960,bicubic,-23.123,-12.263,-34 convnext_base.clip_laion2b_augreg_ft_in12k_in1k,73.733,26.267,87.343,12.657,88.59,256,1.000,bicubic,-23.057,-12.337,+97 convnext_base.clip_laion2b_augreg_ft_in1k,73.400,26.600,87.147,12.853,88.59,256,1.000,bicubic,-23.160,-12.503,+134 beit_large_patch16_384.in22k_ft_in22k_in1k,73.277,26.723,85.030,14.970,305.00,384,1.000,bicubic,-24.533,-14.810,-38 beit_large_patch16_512.in22k_ft_in22k_in1k,73.160,26.840,85.090,14.910,305.67,512,1.000,bicubic,-24.620,-14.800,-36 resnext101_32x4d.fb_swsl_ig1b_ft_in1k,72.657,27.343,85.160,14.840,44.18,224,0.875,bilinear,-23.383,-14.250,+242 maxvit_xlarge_tf_512.in21k_ft_in1k,71.873,28.127,82.927,17.073,475.77,512,1.000,bicubic,-25.887,-16.893,-36 maxvit_xlarge_tf_384.in21k_ft_in1k,71.703,28.297,82.713,17.287,475.32,384,1.000,bicubic,-26.037,-17.137,-33 beit_large_patch16_224.in22k_ft_in22k_in1k,71.040,28.960,83.430,16.570,304.43,224,0.900,bicubic,-26.440,-16.260,-17 deit3_huge_patch14_224.fb_in22k_ft_in1k,70.817,29.183,82.200,17.800,632.13,224,1.000,bicubic,-26.433,-17.520,+17 vit_base_patch16_clip_384.laion2b_ft_in1k,70.777,29.223,83.820,16.180,86.86,384,1.000,bicubic,-26.123,-15.850,+69 caformer_b36.sail_in22k_ft_in1k_384,70.750,29.250,82.650,17.350,98.75,384,1.000,bicubic,-26.910,-17.210,-34 deit3_large_patch16_384.fb_in22k_ft_in1k,70.580,29.420,82.437,17.563,304.76,384,1.000,bicubic,-27.000,-17.273,-26 beitv2_large_patch16_224.in1k_ft_in1k,70.403,29.597,83.373,16.627,304.43,224,0.950,bicubic,-26.907,-16.387,0 maxvit_base_tf_512.in21k_ft_in1k,70.383,29.617,81.600,18.400,119.88,512,1.000,bicubic,-27.377,-18.260,-45 maxvit_large_tf_512.in21k_ft_in1k,70.380,29.620,81.650,18.350,212.33,512,1.000,bicubic,-27.290,-18.080,-39 maxvit_large_tf_384.in21k_ft_in1k,70.010,29.990,81.037,18.963,212.03,384,1.000,bicubic,-27.650,-18.783,-38 deit3_large_patch16_224.fb_in22k_ft_in1k,69.710,30.290,81.197,18.803,304.37,224,1.000,bicubic,-27.600,-18.483,-3 maxvit_base_tf_384.in21k_ft_in1k,69.557,30.443,80.730,19.270,119.65,384,1.000,bicubic,-28.003,-19.030,-30 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,69.130,30.870,80.060,19.940,116.14,384,1.000,bicubic,-28.210,-19.630,-11 resnext50_32x4d.fb_swsl_ig1b_ft_in1k,68.970,31.030,82.803,17.197,25.03,224,0.875,bilinear,-26.660,-16.607,+317 vit_base_patch16_clip_224.laion2b_ft_in1k,68.780,31.220,82.503,17.497,86.57,224,1.000,bicubic,-27.540,-17.017,+165 convnextv2_large.fcmae_ft_in22k_in1k_384,68.653,31.347,81.070,18.930,197.96,384,1.000,bicubic,-28.977,-18.730,-43 caformer_b36.sail_in22k_ft_in1k,68.603,31.397,80.857,19.143,98.75,224,1.000,bicubic,-28.757,-18.973,-17 resnet50.fb_swsl_ig1b_ft_in1k,68.287,31.713,83.313,16.687,25.56,224,0.875,bilinear,-26.913,-16.077,+404 convnext_xlarge.fb_in22k_ft_in1k_384,68.157,31.843,80.453,19.547,350.20,384,1.000,bicubic,-29.433,-19.317,-40 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,68.077,31.923,80.740,19.260,116.09,384,1.000,bicubic,-29.373,-19.020,-31 swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,67.667,32.333,80.100,19.900,196.74,384,1.000,bicubic,-29.613,-19.680,-7 tf_efficientnet_b7.ns_jft_in1k,67.507,32.493,81.383,18.617,66.35,600,0.949,bicubic,-29.683,-18.317,+8 vit_base_patch16_clip_384.openai_ft_in1k,67.350,32.650,81.687,18.313,86.86,384,1.000,bicubic,-29.460,-18.023,+65 vit_large_patch16_384.augreg_in21k_ft_in1k,67.057,32.943,78.697,21.303,304.72,384,1.000,bicubic,-30.353,-21.083,-33 convnextv2_base.fcmae_ft_in22k_in1k_384,67.030,32.970,79.800,20.200,88.72,384,1.000,bicubic,-30.350,-19.960,-29 convformer_b36.sail_in22k_ft_in1k_384,66.823,33.177,79.443,20.557,99.88,384,1.000,bicubic,-30.667,-20.317,-42 convnext_large.fb_in22k_ft_in1k_384,66.673,33.327,79.797,20.203,197.77,384,1.000,bicubic,-30.627,-19.963,-18 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,66.580,33.420,78.413,21.587,73.88,384,1.000,bicubic,-30.790,-21.287,-30 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,66.530,33.470,78.027,21.973,116.14,224,0.950,bicubic,-30.580,-21.573,+13 swin_large_patch4_window12_384.ms_in22k_ft_in1k,66.287,33.713,79.747,20.253,196.74,384,1.000,bicubic,-30.883,-19.993,+4 vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,66.147,33.853,78.883,21.117,86.86,384,1.000,bicubic,-31.073,-20.817,-5 vit_base_patch16_clip_224.openai_ft_in1k,66.027,33.973,80.980,19.020,86.57,224,0.900,bicubic,-30.283,-18.520,+151 beitv2_base_patch16_224.in1k_ft_in22k_in1k,65.757,34.243,78.893,21.107,86.53,224,0.900,bicubic,-31.153,-20.837,+38 swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,65.733,34.267,79.317,20.683,87.92,384,1.000,bicubic,-31.537,-20.473,-19 swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,65.640,34.360,78.480,21.520,196.74,256,0.900,bicubic,-31.600,-21.230,-13 tf_efficientnet_b6.ns_jft_in1k,65.583,34.417,79.557,20.443,43.04,528,0.942,bicubic,-31.437,-20.153,+20 caformer_m36.sail_in22k_ft_in1k_384,65.580,34.420,78.703,21.297,56.20,384,1.000,bicubic,-31.790,-21.087,-40 convformer_b36.sail_in22k_ft_in1k,65.513,34.487,78.140,21.860,99.88,224,1.000,bicubic,-31.747,-21.610,-22 convnext_xlarge.fb_in22k_ft_in1k,65.373,34.627,78.350,21.650,350.20,288,1.000,bicubic,-32.077,-21.470,-51 vit_base_patch16_clip_384.openai_ft_in12k_in1k,65.353,34.647,78.957,21.043,86.86,384,0.950,bicubic,-31.767,-20.613,-1 convnext_base.fb_in22k_ft_in1k_384,64.903,35.097,78.387,21.613,88.59,384,1.000,bicubic,-32.357,-21.353,-23 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,64.767,35.233,77.770,22.230,86.57,224,0.950,bicubic,-31.853,-21.790,+79 convnextv2_large.fcmae_ft_in22k_in1k,64.710,35.290,78.157,21.843,197.96,288,1.000,bicubic,-32.600,-21.583,-37 vit_large_patch16_224.augreg_in21k_ft_in1k,64.360,35.640,76.180,23.820,304.33,224,0.900,bicubic,-32.340,-23.390,+64 convnext_large.fb_in22k_ft_in1k,64.263,35.737,77.773,22.227,197.77,288,1.000,bicubic,-32.957,-21.957,-20 vit_large_r50_s32_384.augreg_in21k_ft_in1k,64.103,35.897,75.847,24.153,329.09,384,1.000,bicubic,-32.847,-23.783,+18 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,64.010,35.990,77.513,22.487,116.09,224,0.950,bicubic,-33.080,-22.167,-3 swin_large_patch4_window7_224.ms_in22k_ft_in1k,63.887,36.113,78.187,21.813,196.53,224,0.900,bicubic,-33.053,-21.483,+20 seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,63.653,36.347,76.623,23.377,149.39,384,1.000,bicubic,-33.637,-23.157,-37 beit_base_patch16_384.in22k_ft_in22k_in1k,63.623,36.377,78.103,21.897,86.74,384,1.000,bicubic,-33.697,-21.617,-46 caformer_m36.sail_in22k_ft_in1k,63.493,36.507,76.920,23.080,56.20,224,1.000,bicubic,-33.527,-22.810,+4 swin_base_patch4_window12_384.ms_in22k_ft_in1k,63.483,36.517,78.050,21.950,87.90,384,1.000,bicubic,-33.647,-21.670,-15 convnextv2_base.fcmae_ft_in22k_in1k,63.307,36.693,77.163,22.837,88.72,288,1.000,bicubic,-33.893,-22.597,-25 caformer_s36.sail_in22k_ft_in1k_384,63.263,36.737,77.460,22.540,39.30,384,1.000,bicubic,-34.027,-22.290,-41 swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,63.183,36.817,77.093,22.907,87.92,256,0.900,bicubic,-33.867,-22.497,-6 tf_efficientnet_b5.ns_jft_in1k,63.053,36.947,77.787,22.213,30.39,456,0.934,bicubic,-33.817,-21.853,+23 vit_base_patch16_clip_224.openai_ft_in12k_in1k,62.943,37.057,76.597,23.403,86.57,224,0.950,bicubic,-33.567,-22.953,+87 deit3_base_patch16_384.fb_in22k_ft_in1k,62.637,37.363,75.550,24.450,86.88,384,1.000,bicubic,-34.603,-24.190,-35 convnext_base.fb_in22k_ft_in1k,62.537,37.463,76.550,23.450,88.59,288,1.000,bicubic,-34.663,-23.210,-32 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,62.417,37.583,75.130,24.870,73.88,224,0.950,bicubic,-34.763,-24.520,-29 vit_base_patch8_224.augreg2_in21k_ft_in1k,62.400,37.600,76.600,23.400,86.58,224,0.900,bicubic,-34.550,-23.010,+4 tf_efficientnetv2_l.in21k_ft_in1k,62.363,37.637,76.757,23.243,118.52,480,1.000,bicubic,-34.957,-22.883,-57 vit_base_patch8_224.augreg_in21k_ft_in1k,62.177,37.823,75.627,24.373,86.58,224,0.900,bicubic,-34.913,-23.983,-18 convformer_m36.sail_in22k_ft_in1k_384,62.103,37.897,75.540,24.460,57.05,384,1.000,bicubic,-35.267,-24.140,-65 tf_efficientnetv2_xl.in21k_ft_in1k,62.083,37.917,75.653,24.347,208.12,512,1.000,bicubic,-35.247,-23.947,-62 hrnet_w48_ssld.paddle_in1k,61.923,38.077,75.163,24.837,77.47,288,1.000,bilinear,-34.617,-24.477,+70 deit3_base_patch16_224.fb_in22k_ft_in1k,61.803,38.197,74.717,25.283,86.59,224,1.000,bicubic,-35.057,-24.903,+14 beitv2_base_patch16_224.in1k_ft_in1k,61.427,38.573,75.930,24.070,86.53,224,0.900,bicubic,-35.323,-23.670,+34 coatnet_2_rw_224.sw_in12k_ft_in1k,61.277,38.723,73.967,26.033,73.87,224,0.950,bicubic,-35.713,-25.693,-8 convformer_m36.sail_in22k_ft_in1k,61.257,38.743,74.620,25.380,57.05,224,1.000,bicubic,-35.813,-25.130,-23 tf_efficientnet_b4.ns_jft_in1k,61.233,38.767,76.160,23.840,19.34,380,0.922,bicubic,-35.477,-23.480,+35 convnextv2_huge.fcmae_ft_in1k,61.197,38.803,74.500,25.500,660.29,288,1.000,bicubic,-36.053,-25.220,-53 maxvit_base_tf_512.in1k,61.103,38.897,74.050,25.950,119.88,512,1.000,bicubic,-36.067,-25.630,-38 caformer_s36.sail_in22k_ft_in1k,60.767,39.233,75.167,24.833,39.30,224,1.000,bicubic,-36.053,-24.523,+12 vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,60.357,39.643,73.797,26.203,88.30,384,1.000,bicubic,-36.253,-25.683,+47 beit_base_patch16_224.in22k_ft_in22k_in1k,60.317,39.683,75.593,24.407,86.53,224,0.900,bicubic,-36.343,-24.067,+40 tf_efficientnetv2_m.in21k_ft_in1k,60.267,39.733,75.070,24.930,54.14,480,1.000,bicubic,-36.733,-24.560,-18 vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,60.230,39.770,73.550,26.450,88.34,448,1.000,bicubic,-36.330,-25.970,+54 vit_base_patch16_384.augreg_in21k_ft_in1k,60.183,39.817,73.843,26.157,86.86,384,1.000,bicubic,-36.837,-25.867,-22 convformer_s36.sail_in22k_ft_in1k_384,60.070,39.930,74.127,25.873,40.01,384,1.000,bicubic,-36.990,-25.583,-32 convnext_small.fb_in22k_ft_in1k_384,59.923,40.077,74.487,25.513,50.22,384,1.000,bicubic,-37.187,-25.153,-40 maxvit_large_tf_512.in1k,59.887,40.113,72.847,27.153,212.33,512,1.000,bicubic,-37.163,-26.813,-32 tiny_vit_21m_512.dist_in22k_ft_in1k,59.580,40.420,74.757,25.243,21.27,512,1.000,bicubic,-37.320,-24.933,-11 swin_base_patch4_window7_224.ms_in22k_ft_in1k,59.527,40.473,74.247,25.753,87.77,224,0.900,bicubic,-37.153,-25.423,+30 vit_base_patch32_clip_224.laion2b_ft_in1k,59.163,40.837,73.883,26.117,88.22,224,0.900,bicubic,-35.587,-25.187,+436 maxvit_base_tf_384.in1k,59.073,40.927,71.687,28.313,119.65,384,1.000,bicubic,-38.047,-27.953,-46 vit_base_patch16_224.augreg2_in21k_ft_in1k,59.060,40.940,73.603,26.397,86.57,224,0.900,bicubic,-37.450,-25.957,+56 seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,59.030,40.970,72.837,27.163,93.59,320,1.000,bicubic,-38.260,-26.883,-77 tiny_vit_21m_384.dist_in22k_ft_in1k,59.017,40.983,74.100,25.900,21.23,384,1.000,bicubic,-37.933,-25.610,-22 volo_d5_512.sail_in1k,58.927,41.073,73.210,26.790,296.09,512,1.150,bicubic,-38.373,-26.550,-80 convformer_s36.sail_in22k_ft_in1k,58.913,41.087,72.943,27.057,40.01,224,1.000,bicubic,-37.587,-26.517,+54 convnext_small.in12k_ft_in1k_384,58.807,41.193,72.797,27.203,50.22,384,1.000,bicubic,-38.183,-26.853,-32 volo_d5_448.sail_in1k,58.800,41.200,73.063,26.937,295.91,448,1.150,bicubic,-38.440,-26.607,-72 vit_large_r50_s32_224.augreg_in21k_ft_in1k,58.667,41.333,71.733,28.267,328.99,224,0.900,bicubic,-37.513,-27.777,+117 vit_base_patch32_clip_384.openai_ft_in12k_in1k,58.587,41.413,73.150,26.850,88.30,384,0.950,bicubic,-37.833,-26.350,+66 maxvit_large_tf_384.in1k,58.427,41.573,71.177,28.823,212.03,384,1.000,bicubic,-38.503,-28.393,-26 eva02_small_patch14_336.mim_in22k_ft_in1k,58.363,41.637,72.877,27.123,22.13,336,1.000,bicubic,-38.327,-26.733,+15 deit3_large_patch16_384.fb_in1k,58.357,41.643,72.950,27.050,304.76,384,1.000,bicubic,-38.493,-26.670,-16 deit3_huge_patch14_224.fb_in1k,58.137,41.863,72.143,27.857,632.13,224,0.900,bicubic,-38.443,-27.377,+27 convnextv2_large.fcmae_ft_in1k,58.103,41.897,72.627,27.373,197.96,288,1.000,bicubic,-38.727,-27.133,-16 tf_efficientnet_b8.ap_in1k,57.837,42.163,72.960,27.040,87.41,672,0.954,bicubic,-38.713,-26.600,+34 convnext_small.fb_in22k_ft_in1k,57.743,42.257,72.773,27.227,50.22,288,1.000,bicubic,-39.067,-26.857,-12 seresnextaa101d_32x8d.sw_in12k_ft_in1k,57.643,42.357,71.357,28.643,93.59,288,1.000,bicubic,-39.527,-28.423,-70 mvitv2_large.fb_in1k,57.497,42.503,70.750,29.250,217.99,224,0.900,bicubic,-38.903,-28.790,+62 cait_m48_448.fb_dist_in1k,57.477,42.523,71.857,28.143,356.46,448,1.000,bicubic,-39.403,-27.813,-28 cait_m36_384.fb_dist_in1k,57.473,42.527,72.307,27.693,271.22,384,1.000,bicubic,-39.367,-27.353,-23 tf_efficientnet_b3.ns_jft_in1k,57.417,42.583,72.370,27.630,12.23,300,0.904,bicubic,-38.683,-27.110,+119 volo_d4_448.sail_in1k,57.287,42.713,71.540,28.460,193.41,448,1.150,bicubic,-39.783,-28.090,-62 tiny_vit_21m_224.dist_in22k_ft_in1k,57.143,42.857,72.573,27.427,21.20,224,0.950,bicubic,-39.237,-26.847,+58 maxvit_small_tf_512.in1k,57.077,42.923,70.957,29.043,69.13,512,1.000,bicubic,-40.123,-28.663,-81 vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,57.070,42.930,71.267,28.733,88.22,224,0.900,bicubic,-38.160,-27.973,+302 vit_base_patch16_224.augreg_in21k_ft_in1k,56.833,43.167,70.633,29.367,86.57,224,0.900,bicubic,-39.467,-28.897,+75 deit3_medium_patch16_224.fb_in22k_ft_in1k,56.653,43.347,69.740,30.260,38.85,224,1.000,bicubic,-39.487,-29.550,+104 volo_d5_224.sail_in1k,56.507,43.493,70.660,29.340,295.46,224,0.960,bicubic,-40.373,-28.960,-39 deit3_large_patch16_224.fb_in1k,56.453,43.547,70.473,29.527,304.37,224,0.900,bicubic,-39.737,-29.027,+95 xcit_large_24_p8_384.fb_dist_in1k,56.360,43.640,71.307,28.693,188.93,384,1.000,bicubic,-40.400,-28.253,-16 flexivit_large.1200ep_in1k,56.290,43.710,71.560,28.440,304.36,240,0.950,bicubic,-40.490,-28.110,-21 convnextv2_tiny.fcmae_ft_in22k_in1k_384,56.100,43.900,71.897,28.103,28.64,384,1.000,bicubic,-40.520,-27.733,+2 flexivit_large.600ep_in1k,56.077,43.923,71.170,28.830,304.36,240,0.950,bicubic,-40.653,-28.390,-15 xcit_large_24_p8_224.fb_dist_in1k,56.020,43.980,70.670,29.330,188.93,224,1.000,bicubic,-40.610,-28.790,-2 caformer_s18.sail_in22k_ft_in1k_384,56.010,43.990,71.380,28.620,26.34,384,1.000,bicubic,-40.520,-28.200,+16 vit_base_patch32_clip_224.openai_ft_in1k,55.913,44.087,72.157,27.843,88.22,224,0.900,bicubic,-38.527,-26.953,+468 vit_medium_patch16_gap_384.sw_in12k_ft_in1k,55.783,44.217,70.997,29.003,39.03,384,0.950,bicubic,-40.707,-28.623,+24 flexivit_large.300ep_in1k,55.703,44.297,70.703,29.297,304.36,240,0.950,bicubic,-40.997,-28.877,-15 convnext_small.in12k_ft_in1k,55.700,44.300,70.727,29.273,50.22,288,1.000,bicubic,-40.900,-28.833,-1 caformer_b36.sail_in1k_384,55.193,44.807,68.070,31.930,98.75,384,1.000,bicubic,-41.967,-31.540,-90 convformer_s18.sail_in22k_ft_in1k_384,55.123,44.877,70.127,29.873,26.77,384,1.000,bicubic,-41.667,-29.583,-36 caformer_m36.sail_in1k_384,55.083,44.917,68.470,31.530,56.20,384,1.000,bicubic,-41.947,-31.240,-76 swin_small_patch4_window7_224.ms_in22k_ft_in1k,54.977,45.023,71.023,28.977,49.61,224,0.900,bicubic,-41.083,-28.387,+110 xcit_large_24_p16_384.fb_dist_in1k,54.907,45.093,69.850,30.150,189.10,384,1.000,bicubic,-42.033,-29.660,-61 volo_d4_224.sail_in1k,54.757,45.243,68.847,31.153,192.96,224,0.960,bicubic,-42.023,-30.763,-37 maxvit_tiny_tf_512.in1k,54.747,45.253,68.937,31.063,31.05,512,1.000,bicubic,-42.223,-30.733,-69 dm_nfnet_f5.dm_in1k,54.610,45.390,68.673,31.327,377.21,544,0.954,bicubic,-42.420,-31.007,-79 caformer_s36.sail_in1k_384,54.573,45.427,68.740,31.260,39.30,384,1.000,bicubic,-42.307,-30.930,-60 deit3_small_patch16_384.fb_in22k_ft_in1k,54.480,45.520,68.317,31.683,22.21,384,1.000,bicubic,-42.190,-31.323,-20 efficientnet_b5.sw_in12k_ft_in1k,54.413,45.587,69.873,30.127,30.39,448,1.000,bicubic,-42.357,-29.657,-38 vit_base_r50_s16_384.orig_in21k_ft_in1k,54.407,45.593,69.563,30.437,98.95,384,1.000,bicubic,-42.043,-30.047,+17 inception_next_base.sail_in1k_384,54.360,45.640,68.570,31.430,86.67,384,1.000,bicubic,-42.360,-31.040,-33 maxvit_small_tf_384.in1k,54.337,45.663,68.190,31.810,69.02,384,1.000,bicubic,-42.413,-31.350,-38 regnety_160.sw_in12k_ft_in1k,54.330,45.670,69.047,30.953,83.59,288,1.000,bicubic,-42.490,-30.573,-55 resnetv2_152x4_bit.goog_in21k_ft_in1k,54.317,45.683,70.170,29.830,936.53,480,1.000,bilinear,-42.563,-29.490,-65 xcit_large_24_p16_224.fb_dist_in1k,54.250,45.750,68.967,31.033,189.10,224,1.000,bicubic,-42.070,-30.533,+40 regnety_160.lion_in12k_ft_in1k,54.203,45.797,68.990,31.010,83.59,288,1.000,bicubic,-42.607,-30.520,-56 vit_small_r26_s32_384.augreg_in21k_ft_in1k,54.187,45.813,68.760,31.240,36.47,384,1.000,bicubic,-41.873,-30.740,+92 caformer_s18.sail_in22k_ft_in1k,54.113,45.887,69.713,30.287,26.34,224,1.000,bicubic,-41.897,-29.837,+102 volo_d3_448.sail_in1k,53.977,46.023,68.040,31.960,86.63,448,1.000,bicubic,-43.053,-31.630,-94 caformer_b36.sail_in1k,53.977,46.023,66.687,33.313,98.75,224,1.000,bicubic,-42.523,-32.943,0 tf_efficientnet_b5.ap_in1k,53.887,46.113,69.170,30.830,30.39,456,0.934,bicubic,-42.203,-30.370,+80 dm_nfnet_f6.dm_in1k,53.843,46.157,68.413,31.587,438.36,576,0.956,bicubic,-43.127,-31.347,-87 xcit_medium_24_p8_224.fb_dist_in1k,53.650,46.350,68.403,31.597,84.32,224,1.000,bicubic,-42.880,-31.107,-11 tf_efficientnet_b2.ns_jft_in1k,53.600,46.400,70.270,29.730,9.11,260,0.890,bicubic,-41.920,-29.070,+204 cait_s36_384.fb_dist_in1k,53.560,46.440,68.003,31.997,68.37,384,1.000,bicubic,-43.070,-31.607,-35 tf_efficientnet_b6.ap_in1k,53.553,46.447,68.563,31.437,43.04,528,0.942,bicubic,-42.817,-30.987,+16 vit_medium_patch16_gap_256.sw_in12k_ft_in1k,53.537,46.463,69.093,30.907,38.86,256,0.950,bicubic,-42.463,-30.327,+95 dm_nfnet_f3.dm_in1k,53.523,46.477,67.743,32.257,254.92,416,0.940,bicubic,-43.097,-31.837,-36 deit3_base_patch16_384.fb_in1k,53.483,46.517,67.623,32.377,86.88,384,1.000,bicubic,-42.747,-31.817,+47 deit3_base_patch16_224.fb_in1k,53.470,46.530,67.597,32.403,86.59,224,0.900,bicubic,-42.300,-31.673,+145 convformer_s18.sail_in22k_ft_in1k,53.437,46.563,68.680,31.320,26.77,224,1.000,bicubic,-42.663,-30.810,+67 tf_efficientnet_b8.ra_in1k,53.417,46.583,69.093,30.907,87.41,672,0.954,bicubic,-43.283,-30.557,-49 convnextv2_base.fcmae_ft_in1k,53.417,46.583,67.750,32.250,88.72,288,1.000,bicubic,-43.063,-31.800,-9 xcit_medium_24_p8_384.fb_dist_in1k,53.397,46.603,68.130,31.870,84.32,384,1.000,bicubic,-43.373,-31.470,-64 vit_base_patch32_384.augreg_in21k_ft_in1k,53.300,46.700,68.057,31.943,88.30,384,1.000,bicubic,-42.600,-31.283,+110 tf_efficientnet_b7.ap_in1k,53.257,46.743,68.870,31.130,66.35,600,0.949,bicubic,-43.093,-30.650,+9 convnext_large.fb_in1k,53.247,46.753,67.887,32.113,197.77,288,1.000,bicubic,-43.153,-31.563,+1 xcit_medium_24_p16_384.fb_dist_in1k,53.237,46.763,68.043,31.957,84.40,384,1.000,bicubic,-43.453,-31.557,-52 hrnet_w18_ssld.paddle_in1k,53.233,46.767,68.183,31.817,21.30,288,1.000,bilinear,-42.477,-31.107,+150 maxvit_base_tf_224.in1k,53.233,46.767,66.133,33.867,119.47,224,0.950,bicubic,-43.107,-33.447,+11 tf_efficientnetv2_l.in1k,53.160,46.840,67.827,32.173,118.52,480,1.000,bicubic,-43.580,-31.723,-65 tf_efficientnetv2_s.in21k_ft_in1k,53.127,46.873,69.000,31.000,21.46,384,1.000,bicubic,-43.343,-30.570,-18 tf_efficientnet_b4.ap_in1k,53.087,46.913,68.223,31.777,19.34,380,0.922,bicubic,-42.403,-31.197,+188 convnext_tiny.in12k_ft_in1k_384,53.063,46.937,68.503,31.497,28.59,384,1.000,bicubic,-43.497,-31.127,-40 regnetz_e8.ra3_in1k,53.003,46.997,67.147,32.853,57.70,320,1.000,bicubic,-43.597,-32.433,-50 maxvit_large_tf_224.in1k,53.003,46.997,65.337,34.663,211.79,224,0.950,bicubic,-43.327,-34.073,+7 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,52.873,47.127,66.460,33.540,41.72,224,0.950,bicubic,-43.257,-32.880,+46 volo_d3_224.sail_in1k,52.697,47.303,66.307,33.693,86.33,224,0.960,bicubic,-43.733,-33.233,-17 deit3_small_patch16_224.fb_in22k_ft_in1k,52.690,47.310,66.867,33.133,22.06,224,1.000,bicubic,-43.140,-32.473,+110 regnety_120.sw_in12k_ft_in1k,52.637,47.363,67.637,32.363,51.82,288,1.000,bicubic,-43.913,-32.043,-44 dm_nfnet_f4.dm_in1k,52.460,47.540,67.117,32.883,316.07,512,0.951,bicubic,-44.490,-32.523,-112 maxvit_tiny_tf_384.in1k,52.457,47.543,66.777,33.223,30.98,384,1.000,bicubic,-44.143,-32.843,-54 tf_efficientnet_b7.ra_in1k,52.410,47.590,68.220,31.780,66.35,600,0.949,bicubic,-44.160,-31.250,-52 xcit_small_24_p8_384.fb_dist_in1k,52.377,47.623,66.847,33.153,47.63,384,1.000,bicubic,-44.433,-32.813,-92 efficientnetv2_rw_m.agc_in1k,52.343,47.657,67.223,32.777,53.24,416,1.000,bicubic,-43.927,-32.407,+10 resnet18.fb_swsl_ig1b_ft_in1k,52.323,47.677,70.483,29.517,11.69,224,0.875,bilinear,-38.777,-27.717,+762 convformer_b36.sail_in1k_384,52.300,47.700,66.543,33.457,99.88,384,1.000,bicubic,-44.570,-33.107,-106 convformer_m36.sail_in1k_384,52.283,47.717,66.150,33.850,57.05,384,1.000,bicubic,-44.497,-33.580,-90 inception_next_base.sail_in1k,52.273,47.727,65.930,34.070,86.67,224,0.950,bicubic,-43.647,-33.430,+84 deit_base_distilled_patch16_384.fb_in1k,52.260,47.740,67.747,32.253,87.63,384,1.000,bicubic,-44.250,-31.843,-45 xcit_medium_24_p16_224.fb_dist_in1k,52.197,47.803,66.917,33.083,84.40,224,1.000,bicubic,-44.053,-32.493,+10 xcit_small_24_p8_224.fb_dist_in1k,52.183,47.817,66.767,33.233,47.63,224,1.000,bicubic,-44.367,-32.773,-55 convnext_tiny.fb_in22k_ft_in1k_384,52.180,47.820,66.923,33.077,28.59,384,1.000,bicubic,-43.990,-32.577,+23 convformer_s36.sail_in1k_384,51.987,48.013,66.197,33.803,40.01,384,1.000,bicubic,-44.713,-33.333,-81 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,51.937,48.063,68.660,31.340,236.34,384,1.000,bicubic,-44.253,-30.640,+17 fastvit_ma36.apple_dist_in1k,51.923,48.077,67.013,32.987,44.07,256,0.950,bicubic,-44.377,-32.547,-3 convnextv2_tiny.fcmae_ft_in22k_in1k,51.903,48.097,67.800,32.200,28.64,288,1.000,bicubic,-44.437,-31.570,-18 resmlp_big_24_224.fb_in22k_ft_in1k,51.893,48.107,68.463,31.537,129.14,224,0.875,bicubic,-44.457,-31.127,-21 xcit_small_24_p16_384.fb_dist_in1k,51.883,48.117,66.367,33.633,47.67,384,1.000,bicubic,-44.457,-33.183,-21 cait_s24_384.fb_dist_in1k,51.787,48.213,66.307,33.693,47.06,384,1.000,bicubic,-44.783,-33.243,-70 resnetv2_152x2_bit.goog_in21k_ft_in1k,51.763,48.237,69.263,30.737,236.34,448,1.000,bilinear,-44.757,-30.307,-58 caformer_m36.sail_in1k,51.693,48.307,64.497,35.503,56.20,224,1.000,bicubic,-44.717,-35.063,-36 ecaresnet269d.ra2_in1k,51.677,48.323,66.040,33.960,102.09,352,1.000,bicubic,-44.773,-33.620,-44 regnety_2560.seer_ft_in1k,51.650,48.350,68.193,31.807,"1,282.60",384,1.000,bicubic,-44.880,-31.327,-63 rexnetr_300.sw_in12k_ft_in1k,51.627,48.373,68.020,31.980,34.81,288,1.000,bicubic,-44.463,-31.520,+25 caformer_s36.sail_in1k,51.593,48.407,64.907,35.093,39.30,224,1.000,bicubic,-44.487,-34.603,+27 coat_lite_medium_384.in1k,51.570,48.430,65.740,34.260,44.57,384,1.000,bicubic,-45.000,-33.780,-75 mvitv2_base.fb_in1k,51.550,48.450,65.633,34.367,51.47,224,0.900,bicubic,-44.430,-33.957,+50 vit_base_patch16_224_miil.in21k_ft_in1k,51.543,48.457,65.207,34.793,86.54,224,0.875,bilinear,-44.497,-34.143,+38 davit_small.msft_in1k,51.523,48.477,66.440,33.560,49.75,224,0.950,bicubic,-44.507,-32.960,+38 convnext_tiny.in12k_ft_in1k,51.440,48.560,67.063,32.937,28.59,288,1.000,bicubic,-44.800,-32.227,-9 maxvit_rmlp_small_rw_224.sw_in1k,51.430,48.570,65.190,34.810,64.90,224,0.900,bicubic,-44.530,-34.240,+54 tf_efficientnetv2_m.in1k,51.423,48.577,66.623,33.377,54.14,480,1.000,bicubic,-45.057,-32.897,-62 repvit_m2_3.dist_450e_in1k,51.383,48.617,66.737,33.263,23.69,224,0.950,bicubic,-44.607,-32.663,+42 caformer_s18.sail_in1k_384,51.353,48.647,65.657,34.343,26.34,384,1.000,bicubic,-45.057,-33.873,-50 edgenext_base.in21k_ft_in1k,51.283,48.717,65.657,34.343,18.51,320,1.000,bicubic,-44.917,-33.803,-6 davit_base.msft_in1k,51.267,48.733,65.223,34.777,87.95,224,0.950,bicubic,-44.973,-34.417,-14 convformer_b36.sail_in1k,51.203,48.797,64.280,35.720,99.88,224,1.000,bicubic,-45.037,-35.130,-14 maxvit_small_tf_224.in1k,51.190,48.810,65.260,34.740,68.93,224,0.950,bicubic,-45.010,-34.270,-8 xcit_small_12_p8_384.fb_dist_in1k,51.107,48.893,65.840,34.160,26.21,384,1.000,bicubic,-45.363,-33.650,-65 convnext_base.fb_in1k,51.057,48.943,65.880,34.120,88.59,288,1.000,bicubic,-45.253,-33.630,-33 convformer_m36.sail_in1k,51.020,48.980,63.653,36.347,57.05,224,1.000,bicubic,-45.060,-35.737,+13 volo_d2_384.sail_in1k,50.900,49.100,65.623,34.377,58.87,384,1.000,bicubic,-45.810,-33.977,-113 tf_efficientnet_b1.ns_jft_in1k,50.887,49.113,67.910,32.090,7.79,240,0.882,bicubic,-43.973,-31.340,+281 vit_base_patch16_384.orig_in21k_ft_in1k,50.880,49.120,65.277,34.723,86.86,384,1.000,bicubic,-45.320,-34.193,-16 convformer_s36.sail_in1k,50.863,49.137,64.083,35.917,40.01,224,1.000,bicubic,-45.247,-35.377,+1 tiny_vit_11m_224.dist_in22k_ft_in1k,50.830,49.170,66.870,33.130,11.00,224,0.950,bicubic,-44.880,-32.390,+95 xcit_small_24_p16_224.fb_dist_in1k,50.743,49.257,65.047,34.953,47.67,224,1.000,bicubic,-45.047,-34.243,+73 repvit_m2_3.dist_300e_in1k,50.737,49.263,66.743,33.257,23.69,224,0.950,bicubic,-44.853,-32.647,+113 convformer_s18.sail_in1k_384,50.687,49.313,65.637,34.363,26.77,384,1.000,bicubic,-45.563,-33.943,-31 flexivit_base.1200ep_in1k,50.687,49.313,65.133,34.867,86.59,240,0.950,bicubic,-45.433,-34.277,-7 coatnet_rmlp_2_rw_224.sw_in1k,50.603,49.397,63.363,36.637,73.88,224,0.950,bicubic,-45.607,-36.117,-24 xcit_small_12_p16_384.fb_dist_in1k,50.527,49.473,65.300,34.700,26.25,384,1.000,bicubic,-45.813,-34.190,-53 efficientnet_b4.ra2_in1k,50.500,49.500,65.730,34.270,19.34,384,1.000,bicubic,-45.030,-33.670,+122 volo_d1_384.sail_in1k,50.477,49.523,64.913,35.087,26.78,384,1.000,bicubic,-46.003,-34.697,-84 efficientvit_b3.r256_in1k,50.477,49.523,64.180,35.820,48.65,256,1.000,bicubic,-45.353,-35.040,+56 xcit_small_12_p8_224.fb_dist_in1k,50.437,49.563,65.420,34.580,26.21,224,1.000,bicubic,-45.523,-33.950,+25 fastvit_sa36.apple_dist_in1k,50.427,49.573,65.803,34.197,31.53,256,0.900,bicubic,-45.533,-33.577,+27 resnetv2_101x3_bit.goog_in21k_ft_in1k,50.393,49.607,67.783,32.217,387.93,448,1.000,bilinear,-45.857,-31.687,-41 flexivit_base.600ep_in1k,50.353,49.647,64.627,35.373,86.59,240,0.950,bicubic,-45.607,-34.793,+23 efficientvit_b3.r288_in1k,50.340,49.660,64.063,35.937,48.65,288,1.000,bicubic,-45.800,-35.297,-19 regnetz_040_h.ra3_in1k,50.317,49.683,65.623,34.377,28.94,320,1.000,bicubic,-46.003,-33.917,-58 inception_next_small.sail_in1k,50.273,49.727,65.097,34.903,49.37,224,0.875,bicubic,-45.407,-34.153,+84 mvitv2_small.fb_in1k,50.260,49.740,64.893,35.107,34.87,224,0.900,bicubic,-45.630,-34.467,+35 cait_s24_224.fb_dist_in1k,50.250,49.750,65.020,34.980,46.92,224,1.000,bicubic,-45.410,-34.370,+83 resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,50.230,49.770,66.033,33.967,194.03,224,0.875,bilinear,-45.170,-33.127,+134 pit_b_distilled_224.in1k,50.220,49.780,64.997,35.003,74.79,224,0.900,bicubic,-45.600,-34.293,+50 eca_nfnet_l2.ra3_in1k,50.203,49.797,65.440,34.560,56.72,384,1.000,bicubic,-46.247,-34.310,-90 resnest269e.in1k,50.187,49.813,64.680,35.320,110.93,416,0.928,bicubic,-45.923,-34.630,-24 vit_small_patch16_384.augreg_in21k_ft_in1k,50.173,49.827,65.790,34.210,22.20,384,1.000,bicubic,-45.807,-33.540,+7 tresnet_v2_l.miil_in21k_ft_in1k,50.163,49.837,65.123,34.877,46.17,224,0.875,bilinear,-45.657,-34.197,+45 pvt_v2_b5.in1k,50.147,49.853,65.027,34.973,81.96,224,0.900,bicubic,-45.793,-34.363,+17 deit3_medium_patch16_224.fb_in1k,50.140,49.860,64.710,35.290,38.85,224,0.900,bicubic,-45.240,-34.640,+133 deit_base_distilled_patch16_224.fb_in1k,50.077,49.923,66.230,33.770,87.34,224,0.900,bicubic,-45.673,-33.200,+55 tf_efficientnet_b3.ap_in1k,50.047,49.953,65.210,34.790,12.23,300,0.904,bicubic,-44.923,-33.900,+228 pvt_v2_b4.in1k,50.023,49.977,65.127,34.873,62.56,224,0.900,bicubic,-45.897,-34.093,+16 flexivit_base.300ep_in1k,50.003,49.997,64.103,35.897,86.59,240,0.950,bicubic,-45.947,-35.367,+11 coat_lite_medium.in1k,49.983,50.017,64.857,35.143,44.57,224,0.900,bicubic,-46.017,-34.643,-3 resnest200e.in1k,49.873,50.127,64.717,35.283,70.20,320,0.909,bicubic,-46.197,-34.763,-23 efficientformer_l7.snap_dist_in1k,49.837,50.163,66.033,33.967,82.23,224,0.950,bicubic,-45.763,-33.357,+79 volo_d2_224.sail_in1k,49.820,50.180,64.580,35.420,58.68,224,0.960,bicubic,-46.600,-34.880,-98 xception65.ra3_in1k,49.780,50.220,63.523,36.477,39.92,299,0.940,bicubic,-45.910,-35.797,+63 seresnextaa101d_32x8d.ah_in1k,49.747,50.253,64.443,35.557,93.59,288,1.000,bicubic,-46.693,-35.067,-103 swinv2_base_window16_256.ms_in1k,49.667,50.333,63.800,36.200,87.92,256,0.900,bicubic,-46.503,-35.590,-47 pvt_v2_b3.in1k,49.613,50.387,64.793,35.207,45.24,224,0.900,bicubic,-45.857,-34.517,+101 convnextv2_nano.fcmae_ft_in22k_in1k_384,49.603,50.397,65.657,34.343,15.62,384,1.000,bicubic,-46.187,-33.733,+36 cait_xs24_384.fb_dist_in1k,49.537,50.463,64.900,35.100,26.67,384,1.000,bicubic,-46.463,-34.530,-13 maxvit_rmlp_tiny_rw_256.sw_in1k,49.530,50.470,63.823,36.177,29.15,256,0.950,bicubic,-46.510,-35.717,-23 tf_efficientnet_b5.ra_in1k,49.523,50.477,65.653,34.347,30.39,456,0.934,bicubic,-46.447,-33.777,-10 fastvit_ma36.apple_in1k,49.500,50.500,63.620,36.380,44.07,256,0.950,bicubic,-46.470,-35.840,-9 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,49.480,50.520,65.623,34.377,236.34,224,0.875,bicubic,-46.270,-33.807,+37 resnet200d.ra2_in1k,49.463,50.537,64.330,35.670,64.69,320,1.000,bicubic,-46.647,-35.190,-46 efficientformerv2_l.snap_dist_in1k,49.457,50.543,64.920,35.080,26.32,224,0.950,bicubic,-46.303,-34.450,+33 xcit_small_12_p16_224.fb_dist_in1k,49.413,50.587,63.847,36.153,26.25,224,1.000,bicubic,-46.317,-35.453,+41 resnest101e.in1k,49.367,50.633,65.583,34.417,48.28,256,0.875,bilinear,-46.203,-33.787,+73 dm_nfnet_f2.dm_in1k,49.350,50.650,63.950,36.050,193.78,352,0.920,bicubic,-47.170,-35.640,-132 regnetz_040.ra3_in1k,49.297,50.703,64.060,35.940,27.12,320,1.000,bicubic,-46.883,-35.470,-62 vit_base_patch32_224.augreg_in21k_ft_in1k,49.267,50.733,64.340,35.660,88.22,224,0.900,bicubic,-45.133,-34.700,+324 tiny_vit_21m_224.in1k,49.267,50.733,64.303,35.697,21.20,224,0.950,bicubic,-46.383,-34.947,+53 resnet152d.ra2_in1k,49.263,50.737,64.413,35.587,60.21,320,1.000,bicubic,-46.607,-35.057,+6 seresnet152d.ra2_in1k,49.237,50.763,64.167,35.833,66.84,320,1.000,bicubic,-47.073,-35.243,-94 xcit_large_24_p8_224.fb_in1k,49.237,50.763,62.840,37.160,188.93,224,1.000,bicubic,-46.853,-36.300,-50 gcvit_base.in1k,49.153,50.847,63.950,36.050,90.32,224,0.875,bicubic,-46.927,-35.300,-49 maxxvit_rmlp_small_rw_256.sw_in1k,49.150,50.850,63.343,36.657,66.01,256,0.950,bicubic,-47.060,-35.937,-77 resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,49.093,50.907,65.490,34.510,88.79,224,0.875,bilinear,-46.227,-33.830,+110 resmlp_big_24_224.fb_distilled_in1k,49.093,50.907,65.473,34.527,129.14,224,0.875,bicubic,-46.777,-33.967,-1 convnext_small.fb_in1k,49.067,50.933,64.830,35.170,50.22,288,1.000,bicubic,-46.903,-34.530,-27 resnetaa101d.sw_in12k_ft_in1k,49.013,50.987,64.237,35.763,44.57,288,1.000,bicubic,-47.347,-35.233,-114 resnext101_64x4d.tv_in1k,48.990,51.010,63.510,36.490,83.46,224,0.875,bilinear,-46.830,-35.800,+5 volo_d1_224.sail_in1k,48.973,51.027,63.187,36.813,26.63,224,0.960,bicubic,-47.057,-36.203,-41 repvgg_b3.rvgg_in1k,48.913,51.087,64.880,35.120,123.09,224,0.875,bilinear,-45.657,-33.770,+275 efficientvit_b3.r224_in1k,48.877,51.123,62.947,37.053,48.65,224,0.950,bicubic,-46.663,-36.373,+63 resnetrs420.tf_in1k,48.863,51.137,63.433,36.567,191.89,416,1.000,bicubic,-47.537,-36.097,-126 maxvit_tiny_tf_224.in1k,48.807,51.193,62.933,37.067,30.92,224,0.950,bicubic,-47.003,-36.327,+4 convformer_s18.sail_in1k,48.787,51.213,62.930,37.070,26.77,224,1.000,bicubic,-46.543,-36.370,+99 caformer_s18.sail_in1k,48.753,51.247,62.870,37.130,26.34,224,1.000,bicubic,-46.927,-36.420,+30 deit3_small_patch16_384.fb_in1k,48.667,51.333,62.800,37.200,22.21,384,1.000,bicubic,-46.933,-36.640,+43 seresnext101d_32x8d.ah_in1k,48.603,51.397,62.960,37.040,93.59,288,1.000,bicubic,-47.757,-36.480,-125 swinv2_small_window16_256.ms_in1k,48.593,51.407,62.747,37.253,49.73,256,0.900,bicubic,-47.477,-36.703,-61 regnetz_d32.ra3_in1k,48.583,51.417,65.167,34.833,27.58,320,0.950,bicubic,-47.287,-34.263,-15 efficientnetv2_rw_s.ra2_in1k,48.577,51.423,63.837,36.163,23.94,384,1.000,bicubic,-47.133,-35.503,+17 efficientnet_b3.ra2_in1k,48.567,51.433,64.250,35.750,12.23,320,1.000,bicubic,-46.573,-35.050,+138 edgenext_base.usi_in1k,48.457,51.543,64.317,35.683,18.51,320,1.000,bicubic,-47.333,-34.983,-4 focalnet_base_lrf.ms_in1k,48.440,51.560,63.120,36.880,88.75,224,0.900,bicubic,-47.390,-36.080,-11 focalnet_base_srf.ms_in1k,48.423,51.577,63.103,36.897,88.15,224,0.900,bicubic,-47.477,-36.207,-29 vit_small_r26_s32_224.augreg_in21k_ft_in1k,48.377,51.623,63.800,36.200,36.43,224,0.900,bicubic,-46.743,-35.400,+139 swinv2_base_window8_256.ms_in1k,48.333,51.667,63.610,36.390,87.92,256,0.900,bicubic,-47.727,-35.940,-64 fastvit_sa36.apple_in1k,48.320,51.680,62.793,37.207,31.53,256,0.900,bicubic,-47.290,-36.527,+30 repvgg_b3g4.rvgg_in1k,48.310,51.690,64.780,35.220,83.83,224,0.875,bilinear,-46.190,-34.240,+275 vit_large_patch32_384.orig_in21k_ft_in1k,48.240,51.760,61.827,38.173,306.63,384,1.000,bicubic,-47.000,-37.403,+103 convit_base.fb_in1k,48.210,51.790,63.000,37.000,86.54,224,0.875,bicubic,-46.890,-36.150,+139 swin_s3_base_224.ms_in1k,48.153,51.847,62.243,37.757,71.13,224,0.900,bicubic,-47.887,-37.107,-66 sequencer2d_l.in1k,48.107,51.893,62.353,37.647,54.30,224,0.875,bicubic,-47.763,-37.207,-31 resnext101_32x8d.tv2_in1k,48.093,51.907,62.723,37.277,88.79,224,0.965,bilinear,-47.207,-36.507,+84 resnetrs350.tf_in1k,48.057,51.943,62.667,37.333,163.96,384,1.000,bicubic,-48.193,-36.923,-115 tf_efficientnetv2_b3.in21k_ft_in1k,48.030,51.970,64.747,35.253,14.36,300,0.900,bicubic,-47.570,-34.533,+24 gcvit_small.in1k,48.030,51.970,62.713,37.287,51.09,224,0.875,bicubic,-47.880,-36.567,-42 focalnet_small_lrf.ms_in1k,48.027,51.973,63.130,36.870,50.34,224,0.900,bicubic,-47.713,-36.030,-7 regnetz_d8.ra3_in1k,48.010,51.990,64.423,35.577,23.37,320,1.000,bicubic,-48.000,-35.097,-68 regnety_1280.seer_ft_in1k,47.990,52.010,64.230,35.770,644.81,384,1.000,bicubic,-48.320,-35.320,-131 twins_svt_large.in1k,47.963,52.037,62.907,37.093,99.27,224,0.900,bicubic,-47.737,-36.463,+2 fastvit_sa24.apple_dist_in1k,47.960,52.040,62.797,37.203,21.55,256,0.900,bicubic,-47.590,-36.513,+29 repvit_m1_5.dist_450e_in1k,47.950,52.050,63.643,36.357,14.64,224,0.950,bicubic,-47.330,-35.587,+83 vit_relpos_base_patch16_224.sw_in1k,47.923,52.077,62.840,37.160,86.43,224,0.900,bicubic,-47.207,-36.240,+117 repvgg_b2g4.rvgg_in1k,47.810,52.190,64.397,35.603,61.76,224,0.875,bilinear,-46.020,-34.533,+377 mixer_b16_224.miil_in21k_ft_in1k,47.793,52.207,63.403,36.597,59.88,224,0.875,bilinear,-47.087,-35.677,+175 repvgg_d2se.rvgg_in1k,47.780,52.220,62.770,37.230,133.33,320,1.000,bilinear,-48.170,-36.600,-60 vit_relpos_base_patch16_clsgap_224.sw_in1k,47.760,52.240,62.410,37.590,86.43,224,0.900,bicubic,-47.490,-36.800,+82 tf_efficientnet_b5.aa_in1k,47.737,52.263,63.910,36.090,30.39,456,0.934,bicubic,-48.143,-35.440,-49 repvit_m1_5.dist_300e_in1k,47.697,52.303,63.763,36.237,14.64,224,0.950,bicubic,-47.453,-35.387,+105 mvitv2_tiny.fb_in1k,47.667,52.333,62.830,37.170,24.17,224,0.900,bicubic,-47.733,-36.470,+51 eca_nfnet_l1.ra2_in1k,47.653,52.347,62.767,37.233,41.41,320,1.000,bicubic,-48.277,-36.723,-61 vit_relpos_medium_patch16_cls_224.sw_in1k,47.653,52.347,61.783,38.217,38.76,224,0.900,bicubic,-47.647,-37.317,+67 seresnext101_32x8d.ah_in1k,47.650,52.350,61.477,38.523,93.57,288,1.000,bicubic,-48.490,-38.013,-113 ecaresnet101d.miil_in1k,47.630,52.370,63.540,36.460,44.57,288,0.950,bicubic,-48.000,-35.750,0 regnetz_d8_evos.ch_in1k,47.623,52.377,63.807,36.193,23.46,320,1.000,bicubic,-48.517,-35.673,-117 resnetv2_50x3_bit.goog_in21k_ft_in1k,47.593,52.407,65.603,34.397,217.32,448,1.000,bilinear,-48.677,-33.957,-143 focalnet_small_srf.ms_in1k,47.547,52.453,62.510,37.490,49.89,224,0.900,bicubic,-48.083,-36.930,-2 pit_s_distilled_224.in1k,47.533,52.467,63.173,36.827,24.04,224,0.900,bicubic,-47.157,-35.977,+199 resnest50d_4s2x40d.in1k,47.483,52.517,63.803,36.197,30.42,224,0.875,bicubic,-47.217,-35.327,+194 dm_nfnet_f1.dm_in1k,47.457,52.543,62.083,37.917,132.63,320,0.910,bicubic,-48.843,-37.417,-150 efficientnet_b3_pruned.in1k,47.447,52.553,62.803,37.197,9.86,300,0.904,bicubic,-47.153,-36.287,+217 davit_tiny.msft_in1k,47.410,52.590,63.360,36.640,28.36,224,0.950,bicubic,-47.670,-35.900,+114 crossvit_18_dagger_408.in1k,47.390,52.610,60.927,39.073,44.61,408,1.000,bicubic,-48.760,-38.543,-126 poolformerv2_m48.sail_in1k,47.380,52.620,63.960,36.040,73.35,224,1.000,bicubic,-47.800,-35.160,+87 coatnet_rmlp_1_rw_224.sw_in1k,47.370,52.630,61.437,38.563,41.69,224,0.950,bicubic,-48.120,-37.923,+17 vit_base_patch16_224.orig_in21k_ft_in1k,47.347,52.653,61.617,38.383,86.57,224,0.900,bicubic,-47.853,-37.613,+80 xcit_small_24_p8_224.fb_in1k,47.290,52.710,60.990,39.010,47.63,224,1.000,bicubic,-48.610,-38.190,-70 efficientformer_l3.snap_dist_in1k,47.247,52.753,63.420,36.580,31.41,224,0.950,bicubic,-47.963,-35.890,+72 tresnet_m.miil_in21k_ft_in1k,47.233,52.767,62.003,37.997,31.39,224,0.875,bilinear,-48.147,-37.147,+37 tf_efficientnet_b6.aa_in1k,47.207,52.793,63.110,36.890,43.04,528,0.942,bicubic,-49.093,-36.420,-160 wide_resnet101_2.tv2_in1k,47.207,52.793,61.877,38.123,126.89,224,0.965,bilinear,-48.033,-37.323,+62 efficientvit_b2.r256_in1k,47.207,52.793,61.670,38.330,24.33,256,1.000,bicubic,-48.013,-37.590,+67 resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,47.187,52.813,63.387,36.613,44.18,224,0.875,bilinear,-47.953,-35.833,+84 swin_base_patch4_window12_384.ms_in1k,47.183,52.817,62.027,37.973,87.90,384,1.000,bicubic,-49.197,-37.473,-184 repvit_m3.dist_in1k,47.153,52.847,63.347,36.653,10.68,224,0.950,bicubic,-47.567,-35.483,+173 resnetrs270.tf_in1k,47.127,52.873,61.997,38.003,129.86,352,1.000,bicubic,-48.933,-37.483,-116 efficientvit_b2.r288_in1k,47.110,52.890,61.560,38.440,24.33,288,1.000,bicubic,-48.470,-37.710,-12 tf_efficientnet_b4.aa_in1k,47.083,52.917,62.860,37.140,19.34,380,0.922,bicubic,-48.507,-36.470,-16 regnety_320.tv2_in1k,47.073,52.927,62.050,37.950,145.05,224,0.965,bicubic,-48.487,-37.340,-11 vit_base_patch16_rpn_224.sw_in1k,47.063,52.937,62.397,37.603,86.54,224,0.900,bicubic,-47.757,-36.693,+150 rexnetr_200.sw_in12k_ft_in1k,47.053,52.947,63.973,36.027,16.52,288,1.000,bicubic,-48.257,-35.497,+35 convnextv2_tiny.fcmae_ft_in1k,47.043,52.957,62.503,37.497,28.64,288,1.000,bicubic,-48.787,-36.887,-73 swinv2_small_window8_256.ms_in1k,47.020,52.980,62.300,37.700,49.73,256,0.900,bicubic,-48.710,-37.060,-50 inception_next_tiny.sail_in1k,46.983,53.017,62.893,37.107,28.06,224,0.875,bicubic,-48.117,-36.247,+86 xcit_small_12_p8_224.fb_in1k,46.977,53.023,60.523,39.477,26.21,224,1.000,bicubic,-48.443,-38.667,+10 xcit_large_24_p16_224.fb_in1k,46.940,53.060,60.657,39.343,189.10,224,1.000,bicubic,-48.020,-38.173,+118 coat_small.in1k,46.937,53.063,61.307,38.693,21.69,224,0.900,bicubic,-48.253,-37.973,+60 xception65p.ra3_in1k,46.923,53.077,61.087,38.913,39.82,299,0.940,bicubic,-48.737,-38.183,-39 maxvit_tiny_rw_224.sw_in1k,46.907,53.093,60.897,39.103,29.06,224,0.950,bicubic,-48.833,-38.543,-58 resnet101d.ra2_in1k,46.890,53.110,62.340,37.660,44.57,320,1.000,bicubic,-48.850,-36.870,-61 swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,46.837,53.163,64.117,35.883,28.29,224,0.900,bicubic,-47.963,-35.173,+145 pvt_v2_b2_li.in1k,46.813,53.187,62.490,37.510,22.55,224,0.900,bicubic,-48.407,-36.640,+44 resnet152.tv2_in1k,46.803,53.197,61.070,38.930,60.19,224,0.965,bilinear,-48.237,-38.100,+95 regnety_640.seer_ft_in1k,46.707,53.293,63.233,36.767,281.38,384,1.000,bicubic,-49.353,-36.247,-135 fastvit_sa24.apple_in1k,46.653,53.347,61.710,38.290,21.55,256,0.900,bicubic,-48.627,-37.580,+27 seresnext101_64x4d.gluon_in1k,46.650,53.350,61.283,38.717,88.23,224,0.875,bicubic,-48.000,-37.687,+173 twins_pcpvt_large.in1k,46.613,53.387,62.263,37.737,60.99,224,0.900,bicubic,-49.107,-37.227,-62 convnextv2_nano.fcmae_ft_in22k_in1k,46.607,53.393,62.957,37.043,15.62,288,1.000,bicubic,-48.813,-36.353,-4 convnext_tiny.fb_in1k,46.587,53.413,63.187,36.813,28.59,288,1.000,bicubic,-48.623,-36.123,+40 swin_base_patch4_window7_224.ms_in1k,46.543,53.457,61.580,38.420,87.77,224,0.900,bicubic,-49.357,-37.860,-104 resnet152.a1h_in1k,46.540,53.460,60.403,39.597,60.19,288,1.000,bicubic,-49.210,-38.877,-75 efficientformerv2_s2.snap_dist_in1k,46.537,53.463,61.717,38.283,12.71,224,0.950,bicubic,-48.573,-37.403,+66 regnetv_064.ra3_in1k,46.480,53.520,62.250,37.750,30.58,288,1.000,bicubic,-49.300,-37.170,-80 crossvit_15_dagger_408.in1k,46.467,53.533,60.490,39.510,28.50,408,1.000,bicubic,-49.353,-38.720,-90 xcit_medium_24_p8_224.fb_in1k,46.467,53.533,59.653,40.347,84.32,224,1.000,bicubic,-49.393,-39.427,-98 resnetrs200.tf_in1k,46.440,53.560,61.067,38.933,93.21,320,1.000,bicubic,-49.910,-38.483,-211 swin_s3_small_224.ms_in1k,46.400,53.600,60.893,39.107,49.74,224,0.900,bicubic,-49.430,-38.287,-96 coatnet_1_rw_224.sw_in1k,46.393,53.607,60.063,39.937,41.72,224,0.950,bicubic,-49.227,-39.157,-52 gcvit_tiny.in1k,46.367,53.633,61.630,38.370,28.22,224,0.875,bicubic,-49.293,-37.700,-61 rexnet_300.nav_in1k,46.360,53.640,62.690,37.310,34.71,224,0.875,bicubic,-49.180,-36.500,-39 fbnetv3_g.ra2_in1k,46.340,53.660,62.387,37.613,16.62,288,0.950,bilinear,-48.780,-36.813,+54 sequencer2d_m.in1k,46.297,53.703,60.920,39.080,38.31,224,0.875,bicubic,-49.283,-38.300,-49 tresnet_xl.miil_in1k,46.290,53.710,61.943,38.057,78.44,224,0.875,bilinear,-48.790,-37.347,+62 xcit_tiny_24_p8_224.fb_dist_in1k,46.283,53.717,60.590,39.410,12.11,224,1.000,bicubic,-49.167,-38.770,-23 xcit_tiny_24_p8_384.fb_dist_in1k,46.260,53.740,60.730,39.270,12.11,384,1.000,bicubic,-49.970,-38.670,-191 deit_small_distilled_patch16_224.fb_in1k,46.173,53.827,62.423,37.577,22.44,224,0.900,bicubic,-48.427,-36.647,+160 regnety_160.deit_in1k,46.170,53.830,61.823,38.177,83.59,288,1.000,bicubic,-49.700,-37.617,-117 gernet_m.idstcv_in1k,46.163,53.837,62.687,37.313,21.14,224,0.875,bilinear,-48.377,-36.233,+174 repvit_m1_1.dist_450e_in1k,46.130,53.870,63.287,36.713,8.80,224,0.950,bicubic,-48.420,-35.863,+172 crossvit_base_240.in1k,46.120,53.880,60.207,39.793,105.03,240,0.875,bicubic,-48.950,-38.773,+59 resnest50d_1s4x24d.in1k,46.100,53.900,62.373,37.627,25.68,224,0.875,bicubic,-48.280,-36.697,+207 swinv2_cr_small_ns_224.sw_in1k,46.100,53.900,60.800,39.200,49.70,224,0.900,bicubic,-49.610,-38.600,-82 poolformerv2_m36.sail_in1k,46.050,53.950,62.247,37.753,56.08,224,1.000,bicubic,-49.000,-36.833,+61 tf_efficientnet_b0.ns_jft_in1k,46.043,53.957,63.277,36.723,5.29,224,0.875,bicubic,-47.707,-35.653,+307 poolformerv2_s36.sail_in1k,46.027,53.973,62.253,37.747,30.79,224,1.000,bicubic,-48.673,-36.977,+126 nest_base_jx.goog_in1k,46.027,53.973,60.100,39.900,67.72,224,0.875,bicubic,-49.513,-39.190,-53 vit_small_patch16_224.augreg_in21k_ft_in1k,46.020,53.980,61.830,38.170,22.05,224,0.900,bicubic,-48.870,-37.240,+89 resnet51q.ra2_in1k,46.020,53.980,60.903,39.097,35.70,288,1.000,bilinear,-49.180,-38.377,+18 vit_relpos_medium_patch16_224.sw_in1k,45.980,54.020,61.033,38.967,38.75,224,0.900,bicubic,-49.210,-38.187,+19 regnety_080.ra3_in1k,45.980,54.020,60.853,39.147,39.18,288,1.000,bicubic,-49.890,-38.577,-127 deit3_small_patch16_224.fb_in1k,45.943,54.057,58.883,41.117,22.06,224,0.900,bicubic,-48.747,-40.297,+127 resnest50d.in1k,45.933,54.067,62.620,37.380,27.48,224,0.875,bilinear,-48.667,-36.530,+147 convnext_nano.in12k_ft_in1k,45.900,54.100,62.693,37.307,15.59,288,1.000,bicubic,-49.450,-36.757,-25 crossvit_18_240.in1k,45.900,54.100,60.350,39.650,43.27,240,0.875,bicubic,-49.170,-38.680,+43 levit_384.fb_dist_in1k,45.877,54.123,61.683,38.317,39.13,224,0.900,bicubic,-49.333,-37.477,+7 regnety_032.ra_in1k,45.877,54.123,61.540,38.460,19.44,288,1.000,bicubic,-49.583,-37.850,-48 levit_conv_384.fb_dist_in1k,45.870,54.130,61.690,38.310,39.13,224,0.900,bicubic,-49.340,-37.590,+6 twins_svt_base.in1k,45.870,54.130,60.973,39.027,56.07,224,0.900,bicubic,-49.690,-38.257,-69 twins_pcpvt_base.in1k,45.857,54.143,61.330,38.670,43.83,224,0.900,bicubic,-49.613,-37.790,-55 convnext_tiny_hnf.a2h_in1k,45.853,54.147,60.180,39.820,28.59,288,1.000,bicubic,-49.397,-39.020,-10 crossvit_18_dagger_240.in1k,45.853,54.147,59.920,40.080,44.27,240,0.875,bicubic,-49.327,-39.240,+11 regnetz_c16.ra3_in1k,45.790,54.210,62.733,37.267,13.46,320,1.000,bicubic,-49.590,-36.687,-38 vit_relpos_medium_patch16_rpn_224.sw_in1k,45.743,54.257,60.983,39.017,38.73,224,0.900,bicubic,-49.317,-38.217,+38 vit_srelpos_medium_patch16_224.sw_in1k,45.723,54.277,61.073,38.927,38.74,224,0.900,bicubic,-49.217,-37.967,+62 crossvit_15_dagger_240.in1k,45.703,54.297,60.073,39.927,28.21,240,0.875,bicubic,-49.287,-39.117,+53 regnetx_320.tv2_in1k,45.673,54.327,60.233,39.767,107.81,224,0.965,bicubic,-49.607,-39.057,-22 convmixer_1536_20.in1k,45.663,54.337,61.743,38.257,51.63,224,0.960,bicubic,-49.307,-37.327,+54 gc_efficientnetv2_rw_t.agc_in1k,45.653,54.347,60.193,39.807,13.68,288,1.000,bicubic,-49.637,-39.187,-27 dm_nfnet_f0.dm_in1k,45.617,54.383,61.277,38.723,71.49,256,0.900,bicubic,-50.073,-38.073,-106 flexivit_small.1200ep_in1k,45.617,54.383,59.887,40.113,22.06,240,0.950,bicubic,-49.573,-39.333,0 efficientnetv2_rw_t.ra2_in1k,45.603,54.397,60.183,39.817,13.65,288,1.000,bicubic,-49.457,-39.037,+29 seresnext101_32x4d.gluon_in1k,45.600,54.400,61.160,38.840,48.96,224,0.875,bicubic,-48.830,-37.870,+164 xcit_tiny_24_p16_384.fb_dist_in1k,45.580,54.420,60.507,39.493,12.12,384,1.000,bicubic,-49.910,-38.883,-72 xcit_medium_24_p16_224.fb_in1k,45.537,54.463,59.007,40.993,84.40,224,1.000,bicubic,-49.593,-39.933,+9 repvit_m1_1.dist_300e_in1k,45.530,54.470,62.647,37.353,8.80,224,0.950,bicubic,-48.650,-36.433,+213 xcit_small_24_p16_224.fb_in1k,45.513,54.487,58.880,41.120,47.67,224,1.000,bicubic,-49.547,-40.190,+26 resnext101_64x4d.c1_in1k,45.450,54.550,59.033,40.967,83.46,288,1.000,bicubic,-50.080,-40.257,-81 resnet152d.gluon_in1k,45.427,54.573,60.080,39.920,60.21,224,0.875,bicubic,-49.003,-39.010,+160 regnety_320.seer_ft_in1k,45.420,54.580,62.227,37.773,145.05,384,1.000,bicubic,-50.370,-37.343,-140 nfnet_l0.ra2_in1k,45.417,54.583,62.087,37.913,35.07,288,1.000,bicubic,-49.963,-37.123,-57 resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,45.413,54.587,62.023,37.977,25.03,224,0.875,bilinear,-49.287,-37.057,+90 xcit_small_12_p16_224.fb_in1k,45.413,54.587,59.403,40.597,26.25,224,1.000,bicubic,-49.407,-39.657,+69 resnetv2_50x1_bit.goog_distilled_in1k,45.407,54.593,62.297,37.703,25.55,224,0.875,bicubic,-50.003,-37.023,-67 cs3se_edgenet_x.c2ns_in1k,45.393,54.607,60.447,39.553,50.72,320,1.000,bicubic,-50.607,-38.903,-192 resnet101.tv2_in1k,45.363,54.637,60.060,39.940,44.55,224,0.965,bilinear,-49.477,-38.970,+63 nest_small_jx.goog_in1k,45.350,54.650,59.040,40.960,38.35,224,0.875,bicubic,-50.190,-40.180,-93 tf_efficientnet_b7.aa_in1k,45.307,54.693,61.730,38.270,66.35,600,0.949,bicubic,-50.763,-37.610,-211 resnet61q.ra2_in1k,45.280,54.720,59.407,40.593,36.85,288,1.000,bicubic,-49.850,-39.853,-6 pvt_v2_b2.in1k,45.277,54.723,60.613,39.387,25.36,224,0.900,bicubic,-49.733,-38.437,+24 cs3edgenet_x.c2_in1k,45.257,54.743,60.260,39.740,47.82,288,1.000,bicubic,-50.203,-39.060,-81 nasnetalarge.tf_in1k,45.223,54.777,57.893,42.107,88.75,331,0.911,bicubic,-49.927,-41.377,-15 focalnet_tiny_lrf.ms_in1k,45.217,54.783,61.300,38.700,28.65,224,0.900,bicubic,-49.973,-37.880,-24 tresnet_xl.miil_in1k_448,45.213,54.787,61.447,38.553,78.44,448,0.875,bilinear,-50.297,-37.893,-95 flexivit_small.600ep_in1k,45.203,54.797,59.420,40.580,22.06,240,0.950,bicubic,-50.057,-39.960,-47 convit_small.fb_in1k,45.200,54.800,60.487,39.513,27.78,224,0.875,bicubic,-49.720,-38.693,+36 efficientvit_b2.r224_in1k,45.193,54.807,59.150,40.850,24.33,224,0.950,bicubic,-49.657,-39.970,+51 swin_small_patch4_window7_224.ms_in1k,45.183,54.817,60.357,39.643,49.61,224,0.900,bicubic,-50.527,-38.933,-138 sequencer2d_s.in1k,45.113,54.887,60.067,39.933,27.65,224,0.875,bicubic,-50.347,-39.193,-88 tf_efficientnet_b3.aa_in1k,45.110,54.890,60.637,39.363,12.23,300,0.904,bicubic,-49.800,-38.473,+34 rexnet_200.nav_in1k,45.063,54.937,62.323,37.677,16.37,224,0.875,bicubic,-49.607,-36.767,+87 maxxvit_rmlp_nano_rw_256.sw_in1k,45.050,54.950,59.663,40.337,16.78,256,0.950,bicubic,-50.290,-39.677,-70 resnetrs152.tf_in1k,44.950,55.050,59.690,40.310,86.62,320,1.000,bicubic,-51.010,-39.660,-199 deit_base_patch16_224.fb_in1k,44.867,55.133,59.170,40.830,86.57,224,0.900,bicubic,-50.153,-40.000,+9 flexivit_small.300ep_in1k,44.850,55.150,59.360,40.640,22.06,240,0.950,bicubic,-50.300,-39.770,-29 focalnet_tiny_srf.ms_in1k,44.833,55.167,61.040,38.960,28.43,224,0.900,bicubic,-50.207,-38.240,+2 coatnet_bn_0_rw_224.sw_in1k,44.803,55.197,60.913,39.087,27.44,224,0.950,bicubic,-50.177,-38.317,+13 tiny_vit_11m_224.in1k,44.803,55.197,60.097,39.903,11.00,224,0.950,bicubic,-50.437,-39.223,-54 deit_base_patch16_384.fb_in1k,44.770,55.230,59.600,40.400,86.86,384,1.000,bicubic,-50.870,-39.820,-136 resmlp_36_224.fb_distilled_in1k,44.763,55.237,61.073,38.927,44.69,224,0.875,bicubic,-49.797,-38.087,+99 cait_xxs36_384.fb_dist_in1k,44.760,55.240,59.387,40.613,17.37,384,1.000,bicubic,-50.480,-39.933,-59 resnet101.a1h_in1k,44.727,55.273,59.120,40.880,44.55,288,1.000,bicubic,-50.853,-40.130,-127 gernet_l.idstcv_in1k,44.720,55.280,58.950,41.050,31.08,256,0.875,bilinear,-50.210,-40.250,+16 tf_efficientnet_b2.ap_in1k,44.710,55.290,60.687,39.313,9.11,260,0.890,bicubic,-49.560,-38.353,+158 resmlp_24_224.fb_distilled_in1k,44.707,55.293,61.463,38.537,30.02,224,0.875,bicubic,-49.623,-37.627,+145 xcit_tiny_24_p16_224.fb_dist_in1k,44.707,55.293,59.417,40.583,12.12,224,1.000,bicubic,-49.533,-39.543,+162 repvit_m2.dist_in1k,44.673,55.327,61.730,38.270,8.80,224,0.950,bicubic,-49.727,-37.320,+128 regnety_032.tv2_in1k,44.650,55.350,60.897,39.103,19.44,224,0.965,bicubic,-50.220,-38.243,+24 ecaresnetlight.miil_in1k,44.580,55.420,60.383,39.617,30.16,288,0.950,bicubic,-49.950,-38.797,+95 swinv2_tiny_window16_256.ms_in1k,44.570,55.430,59.573,40.427,28.35,256,0.900,bicubic,-50.760,-39.577,-87 vit_relpos_small_patch16_224.sw_in1k,44.553,55.447,60.210,39.790,21.98,224,0.900,bicubic,-50.127,-38.890,+59 gmlp_s16_224.ra3_in1k,44.470,55.530,58.617,41.383,19.42,224,0.875,bicubic,-49.030,-40.223,+274 tiny_vit_5m_224.dist_in22k_ft_in1k,44.460,55.540,60.940,39.060,5.39,224,0.950,bicubic,-50.170,-38.200,+68 regnety_160.tv2_in1k,44.427,55.573,59.227,40.773,83.59,224,0.965,bicubic,-50.733,-40.023,-50 resnetv2_101.a1h_in1k,44.423,55.577,58.697,41.303,44.54,288,1.000,bicubic,-51.147,-40.573,-138 inception_resnet_v2.tf_ens_adv_in1k,44.393,55.607,58.113,41.887,55.84,299,0.897,bicubic,-49.727,-40.737,+175 tresnet_l.miil_in1k,44.387,55.613,59.947,40.053,55.99,224,0.875,bilinear,-50.513,-39.083,+9 repvit_m1_0.dist_450e_in1k,44.373,55.627,61.417,38.583,7.30,224,0.950,bicubic,-49.897,-37.623,+141 maxxvitv2_nano_rw_256.sw_in1k,44.373,55.627,58.830,41.170,23.70,256,0.950,bicubic,-51.057,-40.360,-114 repvit_m1_0.dist_300e_in1k,44.367,55.633,61.453,38.547,7.30,224,0.950,bicubic,-49.393,-37.467,+220 resnext101_32x4d.gluon_in1k,44.280,55.720,59.057,40.943,44.18,224,0.875,bicubic,-49.850,-39.883,+167 gcvit_xtiny.in1k,44.247,55.753,59.973,40.027,19.98,224,0.875,bicubic,-50.773,-39.187,-20 regnety_080_tv.tv2_in1k,44.183,55.817,58.787,41.213,39.38,224,0.965,bicubic,-51.117,-40.573,-94 maxvit_rmlp_nano_rw_256.sw_in1k,44.180,55.820,58.243,41.757,15.50,256,0.950,bicubic,-51.260,-40.817,-121 poolformer_m48.sail_in1k,44.160,55.840,59.153,40.847,73.47,224,0.950,bicubic,-50.940,-39.947,-43 regnetz_c16_evos.ch_in1k,44.143,55.857,61.067,38.933,13.49,320,0.950,bicubic,-51.497,-38.173,-164 vit_srelpos_small_patch16_224.sw_in1k,44.130,55.870,59.693,40.307,21.97,224,0.900,bicubic,-50.420,-39.397,+74 resnetv2_101x1_bit.goog_in21k_ft_in1k,44.127,55.873,61.950,38.050,44.54,448,1.000,bilinear,-51.193,-37.420,-103 crossvit_15_240.in1k,44.110,55.890,59.143,40.857,27.53,240,0.875,bicubic,-50.590,-40.097,+36 fastvit_sa12.apple_dist_in1k,44.103,55.897,59.110,40.890,11.58,256,0.900,bicubic,-50.577,-39.810,+41 convnextv2_nano.fcmae_ft_in1k,44.100,55.900,60.167,39.833,15.62,288,1.000,bicubic,-51.040,-39.043,-62 pit_b_224.in1k,44.080,55.920,58.023,41.977,73.76,224,0.900,bicubic,-50.730,-41.237,+14 resnet152s.gluon_in1k,44.060,55.940,58.710,41.290,60.32,224,0.875,bicubic,-50.650,-40.350,+28 resnet50.fb_ssl_yfcc100m_ft_in1k,44.023,55.977,61.890,38.110,25.56,224,0.875,bilinear,-50.287,-37.260,+118 poolformer_m36.sail_in1k,44.007,55.993,59.033,40.967,56.17,224,0.950,bicubic,-51.023,-40.067,-36 inception_resnet_v2.tf_in1k,44.007,55.993,57.920,42.080,55.84,299,0.897,bicubic,-50.353,-40.880,+110 pnasnet5large.tf_in1k,43.943,56.057,56.740,43.260,86.06,331,0.911,bicubic,-51.417,-42.390,-119 resnext101_64x4d.gluon_in1k,43.913,56.087,58.707,41.293,83.46,224,0.875,bicubic,-50.437,-40.363,+111 wide_resnet50_2.tv2_in1k,43.907,56.093,59.630,40.370,68.88,224,0.965,bilinear,-50.903,-39.350,+2 coatnext_nano_rw_224.sw_in1k,43.907,56.093,58.663,41.337,14.70,224,0.900,bicubic,-50.943,-40.537,-3 pit_s_224.in1k,43.907,56.093,58.640,41.360,23.46,224,0.900,bicubic,-50.683,-40.500,+52 coat_lite_small.in1k,43.817,56.183,57.127,42.873,19.84,224,0.900,bicubic,-51.253,-41.993,-53 mobilevitv2_200.cvnets_in22k_ft_in1k,43.810,56.190,59.490,40.510,18.45,256,0.888,bicubic,-51.240,-39.670,-46 tnt_s_patch16_224,43.777,56.223,59.220,40.780,23.76,224,0.900,bicubic,-50.783,-39.920,+53 regnetv_040.ra3_in1k,43.777,56.223,58.443,41.557,20.64,288,1.000,bicubic,-51.953,-40.937,-201 swinv2_cr_small_224.sw_in1k,43.767,56.233,57.717,42.283,49.70,224,0.900,bicubic,-51.643,-41.343,-137 cspresnext50.ra_in1k,43.763,56.237,60.147,39.853,20.57,256,0.887,bilinear,-50.477,-38.903,+120 cait_xxs36_224.fb_dist_in1k,43.757,56.243,58.740,41.260,17.30,224,1.000,bicubic,-50.153,-40.350,+172 pit_xs_distilled_224.in1k,43.723,56.277,60.657,39.343,11.00,224,0.900,bicubic,-49.567,-38.133,+271 swin_s3_tiny_224.ms_in1k,43.717,56.283,59.507,40.493,28.33,224,0.900,bicubic,-51.203,-39.593,-29 tf_efficientnetv2_s.in1k,43.710,56.290,58.593,41.407,21.46,384,1.000,bicubic,-52.000,-40.787,-204 rexnet_150.nav_in1k,43.693,56.307,60.923,39.077,9.73,224,0.875,bicubic,-50.587,-38.057,+105 xcit_tiny_12_p8_224.fb_dist_in1k,43.643,56.357,58.477,41.523,6.71,224,1.000,bicubic,-51.047,-40.283,+14 edgenext_small.usi_in1k,43.637,56.363,59.893,40.107,5.59,320,1.000,bicubic,-51.193,-39.517,-14 tf_efficientnet_b5.in1k,43.623,56.377,60.133,39.867,30.39,456,0.934,bicubic,-52.247,-39.257,-238 efficientformer_l1.snap_dist_in1k,43.593,56.407,59.957,40.043,12.29,224,0.950,bicubic,-50.347,-38.973,+158 maxvit_nano_rw_256.sw_in1k,43.523,56.477,57.610,42.390,15.45,256,0.950,bicubic,-51.947,-41.780,-160 wide_resnet50_2.racm_in1k,43.503,56.497,59.053,40.947,68.88,288,0.950,bicubic,-51.627,-40.237,-88 cs3sedarknet_x.c2ns_in1k,43.503,56.497,58.770,41.230,35.40,288,1.000,bicubic,-51.907,-40.660,-151 coatnet_rmlp_nano_rw_224.sw_in1k,43.503,56.497,58.610,41.390,15.15,224,0.900,bicubic,-51.587,-40.560,-75 crossvit_small_240.in1k,43.473,56.527,58.950,41.050,26.86,240,0.875,bicubic,-51.107,-40.100,+32 regnety_016.tv2_in1k,43.433,56.567,59.540,40.460,11.20,224,0.965,bicubic,-50.977,-39.500,+68 resnet101d.gluon_in1k,43.430,56.570,58.627,41.373,44.57,224,0.875,bicubic,-50.750,-40.383,+118 ecaresnet50t.ra2_in1k,43.417,56.583,59.313,40.687,25.57,320,0.950,bicubic,-51.663,-39.827,-79 resnet101s.gluon_in1k,43.370,56.630,58.517,41.483,44.67,224,0.875,bicubic,-50.810,-40.423,+115 efficientvit_b1.r288_in1k,43.367,56.633,57.850,42.150,9.10,288,1.000,bicubic,-50.863,-40.970,+104 cspdarknet53.ra_in1k,43.360,56.640,59.420,40.580,27.64,256,0.887,bilinear,-50.740,-39.560,+125 tf_efficientnet_b4.in1k,43.330,56.670,59.447,40.553,19.34,380,0.922,bicubic,-52.150,-39.823,-174 xcit_tiny_24_p8_224.fb_in1k,43.323,56.677,57.277,42.723,12.11,224,1.000,bicubic,-51.577,-41.743,-44 xcit_tiny_12_p8_384.fb_dist_in1k,43.317,56.683,58.177,41.823,6.71,384,1.000,bicubic,-52.023,-41.133,-149 visformer_small.in1k,43.273,56.727,57.977,42.023,40.22,224,0.900,bicubic,-51.697,-41.193,-60 convmixer_768_32.in1k,43.270,56.730,59.383,40.617,21.11,224,0.960,bicubic,-51.170,-39.497,+52 repvit_m0_9.dist_300e_in1k,43.243,56.757,60.377,39.623,5.49,224,0.950,bicubic,-50.217,-38.573,+222 eca_nfnet_l0.ra2_in1k,43.227,56.773,59.930,40.070,24.14,288,1.000,bicubic,-52.233,-39.350,-176 ecaresnet101d_pruned.miil_in1k,43.220,56.780,58.967,41.033,24.88,288,0.950,bicubic,-51.780,-40.263,-69 regnety_064.ra3_in1k,43.213,56.787,57.253,42.747,30.58,288,1.000,bicubic,-52.577,-42.097,-243 poolformerv2_s24.sail_in1k,43.190,56.810,60.430,39.570,21.34,224,1.000,bicubic,-51.280,-38.580,+40 regnetx_160.tv2_in1k,43.187,56.813,57.480,42.520,54.28,224,0.965,bicubic,-52.023,-41.680,-126 vit_relpos_base_patch32_plus_rpn_256.sw_in1k,43.183,56.817,58.403,41.597,119.42,256,0.900,bicubic,-49.957,-39.907,+258 vit_small_patch32_384.augreg_in21k_ft_in1k,43.150,56.850,59.313,40.687,22.92,384,1.000,bicubic,-51.440,-39.617,+11 resnest26d.gluon_in1k,43.140,56.860,60.637,39.363,17.07,224,0.875,bilinear,-50.080,-38.213,+246 twins_pcpvt_small.in1k,43.120,56.880,58.890,41.110,24.11,224,0.900,bicubic,-51.480,-40.210,+4 regnetx_080.tv2_in1k,43.090,56.910,57.923,42.077,39.57,224,0.965,bicubic,-51.640,-41.107,-25 repvit_m0_9.dist_450e_in1k,43.073,56.927,60.200,39.800,5.49,224,0.950,bicubic,-50.367,-38.450,+215 resmlp_36_224.fb_in1k,43.060,56.940,59.300,40.700,44.69,224,0.875,bicubic,-50.590,-39.350,+174 cspresnet50.ra_in1k,43.050,56.950,59.157,40.843,21.62,256,0.887,bilinear,-50.820,-39.733,+139 coatnet_nano_rw_224.sw_in1k,43.030,56.970,57.927,42.073,15.14,224,0.900,bicubic,-52.020,-41.223,-91 ecaresnet50d.miil_in1k,43.020,56.980,59.417,40.583,25.58,288,0.950,bicubic,-51.650,-39.813,-14 tf_efficientnet_lite4.in1k,42.990,57.010,57.630,42.370,13.01,380,0.920,bilinear,-51.880,-41.470,-55 twins_svt_small.in1k,42.917,57.083,58.460,41.540,24.06,224,0.900,bicubic,-51.843,-40.490,-39 dpn131.mx_in1k,42.917,57.083,57.130,42.870,79.25,224,0.875,bicubic,-50.863,-41.830,+149 mobilevitv2_200.cvnets_in22k_ft_in1k_384,42.913,57.087,58.973,41.027,18.45,384,1.000,bicubic,-52.477,-40.307,-179 resnet152.gluon_in1k,42.900,57.100,57.747,42.253,60.19,224,0.875,bicubic,-51.130,-41.103,+110 fastvit_sa12.apple_in1k,42.880,57.120,58.800,41.200,11.58,256,0.900,bicubic,-51.550,-40.200,+34 fbnetv3_d.ra2_in1k,42.850,57.150,59.677,40.323,10.31,256,0.950,bilinear,-51.020,-39.193,+129 levit_conv_256.fb_dist_in1k,42.823,57.177,57.897,42.103,18.89,224,0.900,bicubic,-51.577,-41.163,+36 resnet50.tv2_in1k,42.820,57.180,58.570,41.430,25.56,224,0.965,bilinear,-51.780,-40.460,-9 resnet152c.gluon_in1k,42.813,57.187,57.720,42.280,60.21,224,0.875,bicubic,-51.057,-41.080,+128 levit_256.fb_dist_in1k,42.810,57.190,57.897,42.103,18.89,224,0.900,bicubic,-51.590,-41.163,+32 tf_efficientnet_b1.ap_in1k,42.800,57.200,58.820,41.180,7.79,240,0.882,bicubic,-50.830,-39.980,+165 resnext50_32x4d.tv2_in1k,42.780,57.220,57.567,42.433,25.03,224,0.965,bilinear,-51.680,-41.333,+18 gcresnet50t.ra2_in1k,42.767,57.233,59.033,40.967,25.90,288,1.000,bicubic,-52.013,-40.087,-53 coatnet_0_rw_224.sw_in1k,42.753,57.247,56.233,43.767,27.44,224,0.950,bicubic,-52.147,-42.957,-76 tresnet_l.miil_in1k_448,42.740,57.260,58.943,41.057,55.99,448,0.875,bilinear,-52.660,-40.457,-193 cs3darknet_x.c2ns_in1k,42.727,57.273,58.190,41.810,35.05,288,1.000,bicubic,-52.553,-41.120,-171 dpn107.mx_in1k,42.710,57.290,57.160,42.840,86.92,224,0.875,bicubic,-51.300,-41.870,+102 seresnext50_32x4d.gluon_in1k,42.683,57.317,58.707,41.293,27.56,224,0.875,bicubic,-51.487,-40.213,+76 convnext_nano.d1h_in1k,42.677,57.323,57.577,42.423,15.59,288,1.000,bicubic,-52.193,-41.653,-75 tresnet_m.miil_in1k,42.670,57.330,58.160,41.840,31.39,224,0.875,bilinear,-51.410,-40.670,+88 fastvit_s12.apple_dist_in1k,42.643,57.357,58.160,41.840,9.47,256,0.900,bicubic,-51.637,-40.700,+48 resnetaa50d.sw_in12k_ft_in1k,42.610,57.390,58.490,41.510,25.58,288,1.000,bicubic,-52.680,-40.730,-180 xcit_tiny_12_p16_384.fb_dist_in1k,42.593,57.407,58.083,41.917,6.72,384,1.000,bicubic,-51.927,-40.887,-6 regnety_040.ra3_in1k,42.577,57.423,57.010,42.990,20.65,288,1.000,bicubic,-52.913,-42.240,-223 resnext101_32x8d.tv_in1k,42.563,57.437,58.303,41.697,88.79,224,0.875,bilinear,-51.217,-40.547,+124 efficientvit_b1.r256_in1k,42.527,57.473,57.427,42.573,9.10,256,1.000,bicubic,-51.183,-41.363,+136 nf_resnet50.ra2_in1k,42.517,57.483,59.530,40.470,25.56,288,0.940,bicubic,-51.863,-39.290,+21 mobilevitv2_175.cvnets_in22k_ft_in1k,42.517,57.483,58.117,41.883,14.25,256,0.888,bicubic,-52.263,-40.973,-66 seresnext50_32x4d.racm_in1k,42.433,57.567,58.093,41.907,27.56,288,0.950,bicubic,-52.567,-41.097,-111 resnetrs101.tf_in1k,42.417,57.583,57.283,42.717,63.62,288,0.940,bicubic,-52.833,-41.697,-180 poolformer_s36.sail_in1k,42.383,57.617,58.827,41.173,30.86,224,0.900,bicubic,-52.237,-40.293,-36 repvit_m1.dist_in1k,42.350,57.650,59.677,40.323,5.49,224,0.950,bicubic,-51.030,-38.973,+191 nest_tiny_jx.goog_in1k,42.320,57.680,57.067,42.933,17.06,224,0.875,bicubic,-52.600,-42.103,-99 mobileone_s4.apple_in1k,42.317,57.683,58.033,41.967,14.95,224,0.900,bilinear,-51.333,-40.917,+137 tf_efficientnetv2_b3.in1k,42.313,57.687,57.943,42.057,14.36,300,0.904,bicubic,-52.807,-41.277,-147 xcit_tiny_24_p16_224.fb_in1k,42.277,57.723,56.837,43.163,12.12,224,1.000,bicubic,-51.573,-41.913,+104 resnet152.a1_in1k,42.273,57.727,55.530,44.470,60.19,288,1.000,bicubic,-52.817,-43.460,-142 convmixer_1024_20_ks9_p14.in1k,42.267,57.733,59.723,40.277,24.38,224,0.960,bicubic,-50.063,-38.707,+292 deit_small_patch16_224.fb_in1k,42.263,57.737,58.030,41.970,22.05,224,0.900,bicubic,-51.727,-41.010,+83 mobileone_s3.apple_in1k,42.257,57.743,59.270,40.730,10.17,224,0.900,bilinear,-50.723,-39.350,+228 tf_efficientnet_cc_b1_8e.in1k,42.247,57.753,58.430,41.570,39.72,240,0.882,bicubic,-51.333,-40.260,+144 legacy_senet154.in1k,42.230,57.770,56.620,43.380,115.09,224,0.875,bilinear,-52.500,-42.480,-74 cait_xxs24_384.fb_dist_in1k,42.183,57.817,57.473,42.527,12.03,384,1.000,bicubic,-52.767,-41.657,-116 dpn98.mx_in1k,42.180,57.820,56.597,43.403,61.57,224,0.875,bicubic,-51.750,-42.313,+83 xception41p.ra3_in1k,42.160,57.840,56.883,43.117,26.91,299,0.940,bicubic,-52.890,-42.257,-140 tf_efficientnet_b2.aa_in1k,42.123,57.877,58.197,41.803,9.11,260,0.890,bicubic,-52.097,-40.733,+38 resnet50.b1k_in1k,42.080,57.920,58.153,41.847,25.56,288,1.000,bicubic,-52.430,-40.917,-24 resnext50_32x4d.gluon_in1k,42.050,57.950,57.673,42.327,25.03,224,0.875,bicubic,-51.620,-41.017,+121 convnext_nano_ols.d1h_in1k,42.023,57.977,56.867,43.133,15.65,288,1.000,bicubic,-52.557,-42.253,-44 pvt_v2_b1.in1k,41.953,58.047,59.593,40.407,14.01,224,0.900,bicubic,-51.537,-39.117,+148 xcit_tiny_12_p16_224.fb_dist_in1k,41.940,58.060,57.247,42.753,6.72,224,1.000,bicubic,-51.410,-41.443,+174 efficientnet_b2.ra_in1k,41.937,58.063,58.297,41.703,9.11,288,1.000,bicubic,-52.423,-40.743,+2 mobilevitv2_150.cvnets_in22k_ft_in1k,41.937,58.063,57.913,42.087,10.59,256,0.888,bicubic,-52.743,-41.197,-69 resnet50.b2k_in1k,41.910,58.090,57.673,42.327,25.56,288,1.000,bicubic,-52.390,-41.257,+12 efficientformerv2_s1.snap_dist_in1k,41.870,58.130,57.973,42.027,6.19,224,0.950,bicubic,-51.970,-40.917,+86 gcvit_xxtiny.in1k,41.837,58.163,58.440,41.560,12.00,224,0.875,bicubic,-52.213,-40.640,+54 fastvit_t12.apple_dist_in1k,41.817,58.183,57.597,42.403,7.55,256,0.900,bicubic,-52.283,-41.353,+47 tf_efficientnet_b3.in1k,41.803,58.197,58.057,41.943,12.23,300,0.904,bicubic,-52.487,-41.043,+9 mobilevitv2_150.cvnets_in22k_ft_in1k_384,41.790,58.210,57.807,42.193,10.59,384,1.000,bicubic,-53.560,-41.313,-228 resnet50d.ra2_in1k,41.787,58.213,58.023,41.977,25.58,288,0.950,bicubic,-53.023,-40.797,-105 resnext50_32x4d.a1h_in1k,41.753,58.247,56.443,43.557,25.03,288,1.000,bicubic,-53.237,-42.717,-142 gcresnext50ts.ch_in1k,41.707,58.293,57.403,42.597,15.67,288,1.000,bicubic,-52.783,-41.607,-36 efficientvit_b1.r224_in1k,41.703,58.297,56.600,43.400,9.10,224,0.950,bicubic,-51.627,-41.970,+166 poolformer_s24.sail_in1k,41.700,58.300,58.470,41.530,21.39,224,0.900,bicubic,-52.690,-40.590,-16 edgenext_small_rw.sw_in1k,41.677,58.323,58.517,41.483,7.83,320,1.000,bicubic,-52.683,-40.533,-10 mobilevitv2_175.cvnets_in22k_ft_in1k_384,41.673,58.327,58.010,41.990,14.25,384,1.000,bicubic,-53.587,-41.150,-218 hrnet_w64.ms_in1k,41.643,58.357,57.113,42.887,128.06,224,0.875,bilinear,-52.187,-41.827,+75 dla102x2.in1k,41.637,58.363,57.970,42.030,41.28,224,0.875,bilinear,-52.353,-40.990,+53 senet154.gluon_in1k,41.627,58.373,56.353,43.647,115.09,224,0.875,bicubic,-53.073,-42.617,-92 seresnet50.ra2_in1k,41.593,58.407,57.987,42.013,28.09,288,0.950,bicubic,-53.147,-41.123,-103 inception_v4.tf_in1k,41.557,58.443,55.380,44.620,42.68,299,0.875,bicubic,-52.823,-43.690,-20 cs3sedarknet_l.c2ns_in1k,41.553,58.447,57.350,42.650,21.91,288,0.950,bicubic,-53.557,-41.860,-183 convnext_tiny.fb_in22k_ft_in1k,41.533,58.467,55.470,44.530,28.59,288,1.000,bicubic,-51.997,-43.130,+121 haloregnetz_b.ra3_in1k,41.527,58.473,57.087,42.913,11.68,224,0.940,bicubic,-52.993,-41.893,-54 swinv2_cr_tiny_ns_224.sw_in1k,41.523,58.477,57.183,42.817,28.33,224,0.900,bicubic,-53.247,-41.927,-113 efficientnet_em.ra2_in1k,41.490,58.510,58.873,41.127,6.90,240,0.882,bicubic,-52.240,-40.057,+79 efficientnet_el.ra_in1k,41.490,58.510,58.293,41.707,10.59,300,0.904,bicubic,-53.180,-40.837,-89 tf_efficientnet_cc_b0_8e.in1k,41.483,58.517,57.370,42.630,24.01,224,0.875,bicubic,-51.387,-41.090,+209 convnextv2_pico.fcmae_ft_in1k,41.477,58.523,58.050,41.950,9.07,288,0.950,bicubic,-53.083,-41.120,-68 halo2botnet50ts_256.a1h_in1k,41.460,58.540,56.190,43.810,22.64,256,0.950,bicubic,-53.550,-42.950,-164 swin_tiny_patch4_window7_224.ms_in1k,41.453,58.547,57.303,42.697,28.29,224,0.900,bicubic,-53.167,-41.847,-87 resnetv2_50d_evos.ah_in1k,41.407,58.593,56.500,43.500,25.59,288,1.000,bicubic,-53.513,-42.600,-151 resnet50.a1h_in1k,41.387,58.613,56.677,43.323,25.56,224,1.000,bicubic,-52.813,-42.243,+6 cait_xxs24_224.fb_dist_in1k,41.370,58.630,57.520,42.480,11.96,224,1.000,bicubic,-52.080,-41.280,+124 swinv2_tiny_window8_256.ms_in1k,41.370,58.630,57.150,42.850,28.35,256,0.900,bicubic,-53.650,-41.820,-173 resnet152.tv_in1k,41.330,58.670,57.513,42.487,60.19,224,0.875,bilinear,-51.910,-41.187,+149 dpn68b.ra_in1k,41.297,58.703,55.077,44.923,12.61,288,1.000,bicubic,-52.493,-43.863,+61 resnet50.ram_in1k,41.297,58.703,55.033,44.967,25.56,288,0.950,bicubic,-52.703,-43.847,+32 cs3darknet_l.c2ns_in1k,41.277,58.723,57.377,42.623,21.16,288,0.950,bicubic,-53.393,-41.883,-103 xception71.tf_in1k,41.273,58.727,55.890,44.110,42.34,299,0.903,bicubic,-52.647,-43.060,+39 gernet_s.idstcv_in1k,41.260,58.740,58.823,41.177,8.17,224,0.875,bilinear,-51.180,-39.677,+232 inception_v3.tf_adv_in1k,41.253,58.747,56.327,43.673,23.83,299,0.875,bicubic,-51.757,-42.493,+171 resnet101.a1_in1k,41.207,58.793,54.273,45.727,44.55,288,1.000,bicubic,-53.733,-44.927,-164 dpn92.mx_in1k,41.203,58.797,56.217,43.783,37.67,224,0.875,bicubic,-52.947,-42.733,+2 resnetv2_50d_gn.ah_in1k,41.113,58.887,56.520,43.480,25.57,288,1.000,bicubic,-54.107,-42.510,-235 resnet50.c1_in1k,41.090,58.910,56.453,43.547,25.56,288,1.000,bicubic,-53.420,-42.547,-74 nf_regnet_b1.ra2_in1k,41.010,58.990,58.133,41.867,10.22,288,0.900,bicubic,-52.880,-40.757,+36 resnet50d.gluon_in1k,40.963,59.037,57.130,42.870,25.58,224,0.875,bicubic,-52.577,-41.580,+94 fbnetv3_b.ra2_in1k,40.960,59.040,58.650,41.350,8.60,256,0.950,bilinear,-52.670,-40.300,+76 resnet152.a3_in1k,40.940,59.060,55.030,44.970,60.19,224,0.950,bicubic,-53.500,-44.150,-63 inception_v3.gluon_in1k,40.910,59.090,55.623,44.377,23.83,299,0.875,bicubic,-52.650,-43.217,+86 ecaresnet50d_pruned.miil_in1k,40.907,59.093,57.633,42.367,19.94,288,0.950,bicubic,-53.393,-41.567,-37 cs3darknet_focus_l.c2ns_in1k,40.893,59.107,56.630,43.370,21.15,288,0.950,bicubic,-53.897,-42.530,-144 resnetv2_50.a1h_in1k,40.890,59.110,56.383,43.617,25.55,288,1.000,bicubic,-53.790,-42.707,-121 levit_conv_192.fb_dist_in1k,40.840,59.160,56.707,43.293,10.95,224,0.900,bicubic,-52.870,-42.113,+59 levit_192.fb_dist_in1k,40.837,59.163,56.710,43.290,10.95,224,0.900,bicubic,-52.873,-42.220,+57 tiny_vit_5m_224.in1k,40.827,59.173,57.257,42.743,5.39,224,0.950,bicubic,-52.963,-41.283,+39 regnety_320.pycls_in1k,40.810,59.190,56.110,43.890,145.05,224,0.875,bicubic,-53.710,-42.850,-92 regnetx_032.tv2_in1k,40.790,59.210,56.627,43.373,15.30,224,0.965,bicubic,-53.730,-42.543,-88 eva02_tiny_patch14_336.mim_in22k_ft_in1k,40.767,59.233,56.067,43.933,5.76,336,1.000,bicubic,-53.683,-43.033,-78 maxvit_rmlp_pico_rw_256.sw_in1k,40.757,59.243,55.203,44.797,7.52,256,0.950,bicubic,-53.453,-43.747,-24 legacy_xception.tf_in1k,40.753,59.247,56.397,43.603,22.86,299,0.897,bicubic,-52.867,-42.373,+65 lamhalobotnet50ts_256.a1h_in1k,40.753,59.247,56.103,43.897,22.57,256,0.950,bicubic,-54.057,-43.127,-156 resnet152.a2_in1k,40.737,59.263,54.280,45.720,60.19,288,1.000,bicubic,-54.233,-44.930,-189 vit_base_patch32_384.augreg_in1k,40.710,59.290,55.197,44.803,88.30,384,1.000,bicubic,-52.450,-43.413,+128 skresnext50_32x4d.ra_in1k,40.703,59.297,56.023,43.977,27.48,224,0.875,bicubic,-53.267,-42.807,+7 resnet101.gluon_in1k,40.693,59.307,56.137,43.863,44.55,224,0.875,bicubic,-53.067,-42.563,+35 hrnet_w40.ms_in1k,40.660,59.340,56.757,43.243,57.56,224,0.875,bilinear,-53.070,-42.043,+39 resmlp_24_224.fb_in1k,40.657,59.343,56.557,43.443,30.02,224,0.875,bicubic,-52.763,-42.273,+98 resnext50_32x4d.ra_in1k,40.627,59.373,56.340,43.660,25.03,288,0.950,bicubic,-53.703,-42.690,-58 resnet50.am_in1k,40.610,59.390,57.377,42.623,25.56,224,0.875,bicubic,-53.030,-41.493,+52 repvgg_b1.rvgg_in1k,40.607,59.393,57.843,42.157,57.42,224,0.875,bilinear,-52.833,-40.947,+90 ese_vovnet39b.ra_in1k,40.590,59.410,56.600,43.400,24.57,288,0.950,bicubic,-53.890,-42.460,-96 halonet50ts.a1h_in1k,40.577,59.423,55.193,44.807,22.73,256,0.940,bicubic,-54.143,-43.867,-153 tf_efficientnet_lite3.in1k,40.560,59.440,56.467,43.533,8.20,300,0.904,bilinear,-53.530,-42.373,-19 mobilevitv2_175.cvnets_in1k,40.537,59.463,56.273,43.727,14.25,256,0.888,bicubic,-53.693,-42.657,-44 xcit_tiny_12_p8_224.fb_in1k,40.537,59.463,55.647,44.353,6.71,224,1.000,bicubic,-53.813,-43.233,-69 dla169.in1k,40.523,59.477,57.240,42.760,53.39,224,0.875,bilinear,-53.277,-41.670,+17 tresnet_m.miil_in1k_448,40.520,59.480,56.687,43.313,31.39,448,0.875,bilinear,-54.140,-42.463,-139 regnetz_b16.ra3_in1k,40.507,59.493,56.003,43.997,9.72,288,1.000,bicubic,-54.163,-43.127,-142 pit_xs_224.in1k,40.493,59.507,56.540,43.460,10.62,224,0.900,bicubic,-52.397,-42.240,+152 resnetaa50.a1h_in1k,40.483,59.517,55.987,44.013,25.56,288,1.000,bicubic,-54.367,-42.983,-184 regnetx_320.pycls_in1k,40.470,59.530,55.653,44.347,107.81,224,0.875,bicubic,-53.760,-43.297,-53 vit_base_patch16_384.augreg_in1k,40.470,59.530,53.250,46.750,86.86,384,1.000,bicubic,-53.970,-45.780,-98 repvgg_b2.rvgg_in1k,40.467,59.533,57.780,42.220,89.02,224,0.875,bilinear,-53.113,-41.010,+48 coat_mini.in1k,40.420,59.580,55.200,44.800,10.34,224,0.900,bicubic,-54.340,-43.890,-172 eca_resnet33ts.ra2_in1k,40.400,59.600,57.340,42.660,19.68,288,1.000,bicubic,-53.850,-41.690,-60 resnet34d.ra2_in1k,40.400,59.600,56.170,43.830,21.82,288,0.950,bicubic,-53.200,-42.590,+41 skresnet34.ra_in1k,40.393,59.607,56.730,43.270,22.28,224,0.875,bicubic,-52.177,-41.790,+175 efficientnet_el_pruned.in1k,40.383,59.617,56.907,43.093,10.59,300,0.904,bicubic,-53.707,-42.113,-35 efficientnet_b2_pruned.in1k,40.373,59.627,56.520,43.480,8.31,260,0.890,bicubic,-53.427,-42.340,+3 wide_resnet101_2.tv_in1k,40.363,59.637,55.790,44.210,126.89,224,0.875,bilinear,-53.357,-43.010,+16 coat_lite_mini.in1k,40.357,59.643,55.697,44.303,11.01,224,0.900,bicubic,-53.113,-43.073,+60 sebotnet33ts_256.a1h_in1k,40.353,59.647,53.223,46.777,13.70,256,0.940,bicubic,-53.957,-45.377,-80 legacy_seresnext101_32x4d.in1k,40.347,59.653,54.817,45.183,48.96,224,0.875,bilinear,-53.773,-43.973,-45 tf_efficientnet_b0.ap_in1k,40.343,59.657,56.803,43.197,5.29,224,0.875,bicubic,-52.277,-41.567,+161 densenet201.tv_in1k,40.283,59.717,56.713,43.287,20.01,224,0.875,bicubic,-52.417,-41.887,+153 mobileone_s2.apple_in1k,40.263,59.737,57.967,42.033,7.88,224,0.900,bilinear,-52.397,-40.683,+156 regnetx_160.pycls_in1k,40.253,59.747,56.050,43.950,54.28,224,0.875,bicubic,-53.657,-42.840,-19 xception65.tf_in1k,40.253,59.747,55.263,44.737,39.92,299,0.903,bicubic,-53.497,-43.607,+5 resnet101.a2_in1k,40.190,59.810,54.223,45.777,44.55,288,1.000,bicubic,-54.700,-45.047,-210 resnet50.c2_in1k,40.187,59.813,55.247,44.753,25.56,288,1.000,bicubic,-54.083,-43.573,-80 resnet50.ra_in1k,40.180,59.820,56.197,43.803,25.56,288,0.950,bicubic,-53.910,-42.763,-46 resnetblur50.bt_in1k,40.163,59.837,56.190,43.810,25.56,288,0.950,bicubic,-54.007,-42.820,-61 poolformerv2_s12.sail_in1k,40.160,59.840,57.447,42.553,11.89,224,1.000,bicubic,-52.730,-41.083,+129 mobilevitv2_200.cvnets_in1k,40.140,59.860,55.517,44.483,18.45,256,0.888,bicubic,-54.380,-43.653,-137 fastvit_t12.apple_in1k,40.127,59.873,55.243,44.757,7.55,256,0.900,bicubic,-53.363,-43.617,+42 darknetaa53.c2ns_in1k,40.120,59.880,55.787,44.213,36.02,288,1.000,bilinear,-54.090,-43.213,-70 hrnet_w48.ms_in1k,40.110,59.890,56.633,43.367,77.47,224,0.875,bilinear,-53.900,-42.297,-43 vit_base_patch16_224.sam_in1k,40.100,59.900,55.423,44.577,86.57,224,0.900,bicubic,-53.790,-43.317,-28 resnet50_gn.a1h_in1k,40.057,59.943,54.853,45.147,25.56,288,0.950,bicubic,-54.563,-44.197,-168 legacy_seresnet152.in1k,40.050,59.950,55.837,44.163,66.82,224,0.875,bilinear,-53.360,-42.993,+56 resnet50.d_in1k,40.050,59.950,54.713,45.287,25.56,288,1.000,bicubic,-54.420,-44.287,-134 hrnet_w30.ms_in1k,40.043,59.957,57.110,42.890,37.71,224,0.875,bilinear,-53.367,-41.740,+55 seresnet33ts.ra2_in1k,39.990,60.010,56.403,43.597,19.78,288,1.000,bicubic,-54.270,-42.597,-90 regnetx_080.pycls_in1k,39.990,60.010,55.950,44.050,39.57,224,0.875,bicubic,-53.800,-42.960,-18 tf_efficientnet_b1.aa_in1k,39.970,60.030,56.127,43.873,7.79,240,0.882,bicubic,-53.750,-42.683,-8 resnet101c.gluon_in1k,39.953,60.047,55.287,44.713,44.57,224,0.875,bicubic,-53.747,-43.433,-3 fastvit_s12.apple_in1k,39.927,60.073,54.840,45.160,9.47,256,0.900,bicubic,-53.773,-43.920,-3 convnext_pico_ols.d1_in1k,39.887,60.113,55.617,44.383,9.06,288,1.000,bicubic,-54.123,-43.413,-52 resmlp_12_224.fb_distilled_in1k,39.833,60.167,57.430,42.570,15.35,224,0.875,bicubic,-53.037,-41.190,+115 tf_efficientnetv2_b0.in1k,39.800,60.200,56.287,43.713,7.14,224,0.875,bicubic,-53.260,-42.413,+80 res2net50_26w_8s.in1k,39.800,60.200,54.900,45.100,48.40,224,0.875,bilinear,-53.610,-43.850,+49 darknet53.c2ns_in1k,39.737,60.263,55.287,44.713,41.61,288,1.000,bicubic,-54.623,-43.763,-121 res2net101_26w_4s.in1k,39.720,60.280,54.550,45.450,45.21,224,0.875,bilinear,-53.810,-44.020,+17 lambda_resnet50ts.a1h_in1k,39.720,60.280,54.373,45.627,21.54,256,0.950,bicubic,-54.850,-44.537,-167 regnetx_120.pycls_in1k,39.687,60.313,55.643,44.357,46.11,224,0.875,bicubic,-54.573,-43.527,-103 hrnet_w44.ms_in1k,39.687,60.313,55.330,44.670,67.06,224,0.875,bilinear,-53.933,-43.630,0 vit_small_patch32_224.augreg_in21k_ft_in1k,39.677,60.323,55.253,44.747,22.88,224,0.900,bicubic,-52.463,-43.267,+162 resmlp_big_24_224.fb_in1k,39.637,60.363,54.830,45.170,129.14,224,0.875,bicubic,-54.633,-44.120,-106 vit_small_patch16_384.augreg_in1k,39.623,60.377,54.243,45.757,22.20,384,1.000,bicubic,-54.987,-44.897,-185 mixnet_xl.ra_in1k,39.620,60.380,55.870,44.130,11.90,224,0.875,bicubic,-54.610,-43.180,-99 xception41.tf_in1k,39.607,60.393,55.013,44.987,26.97,299,0.903,bicubic,-53.873,-43.737,+19 densenet161.tv_in1k,39.603,60.397,56.130,43.870,28.68,224,0.875,bicubic,-53.287,-42.660,+98 tf_efficientnetv2_b1.in1k,39.573,60.427,55.327,44.673,8.14,240,0.882,bicubic,-54.137,-43.463,-24 dla102x.in1k,39.567,60.433,56.320,43.680,26.31,224,0.875,bilinear,-53.973,-42.530,+5 xcit_tiny_12_p16_224.fb_in1k,39.540,60.460,55.050,44.950,6.72,224,1.000,bicubic,-52.940,-43.380,+133 sehalonet33ts.ra2_in1k,39.540,60.460,54.023,45.977,13.69,256,0.940,bicubic,-54.970,-44.737,-163 convnext_pico.d1_in1k,39.517,60.483,55.317,44.683,9.05,288,0.950,bicubic,-54.513,-43.693,-77 tf_efficientnet_b2.in1k,39.513,60.487,56.107,43.893,9.11,260,0.890,bicubic,-54.197,-42.703,-30 rexnet_130.nav_in1k,39.480,60.520,56.637,43.363,7.56,224,0.875,bicubic,-54.200,-42.063,-23 hrnet_w32.ms_in1k,39.467,60.533,56.120,43.880,41.23,224,0.875,bilinear,-53.483,-42.730,+79 levit_128.fb_dist_in1k,39.447,60.553,55.350,44.650,9.21,224,0.900,bicubic,-53.583,-43.360,+62 levit_conv_128.fb_dist_in1k,39.447,60.553,55.337,44.663,9.21,224,0.900,bicubic,-53.583,-43.363,+62 resnetv2_50x1_bit.goog_in21k_ft_in1k,39.433,60.567,57.853,42.147,25.55,448,1.000,bilinear,-55.307,-41.327,-229 ecaresnet50t.a1_in1k,39.417,60.583,53.680,46.320,25.57,288,1.000,bicubic,-55.473,-45.380,-256 regnety_064.pycls_in1k,39.387,60.613,55.770,44.230,30.58,224,0.875,bicubic,-54.743,-43.260,-100 regnety_120.pycls_in1k,39.343,60.657,55.277,44.723,51.82,224,0.875,bicubic,-54.667,-43.543,-81 gcresnet33ts.ra2_in1k,39.333,60.667,55.880,44.120,19.88,288,1.000,bicubic,-55.017,-43.220,-140 mobilevitv2_150.cvnets_in1k,39.323,60.677,55.230,44.770,10.59,256,0.888,bicubic,-54.727,-43.670,-89 resnet101.tv_in1k,39.290,60.710,55.787,44.213,44.55,224,0.875,bilinear,-53.590,-42.873,+84 tf_efficientnet_el.in1k,39.287,60.713,55.377,44.623,10.59,300,0.904,bicubic,-55.063,-43.583,-145 resnet50s.gluon_in1k,39.260,60.740,55.020,44.980,25.68,224,0.875,bicubic,-54.310,-43.820,-17 resnet101.a3_in1k,39.253,60.747,53.710,46.290,44.55,224,0.950,bicubic,-54.607,-45.050,-65 regnety_160.pycls_in1k,39.250,60.750,55.447,44.553,83.59,224,0.875,bicubic,-54.880,-43.573,-107 repghostnet_200.in1k,39.243,60.757,56.423,43.577,9.80,224,0.875,bicubic,-54.307,-42.397,-16 inception_v3.tf_in1k,39.223,60.777,54.300,45.700,23.83,299,0.875,bicubic,-53.967,-44.360,+34 resnext50_32x4d.a1_in1k,39.190,60.810,53.350,46.650,25.03,288,1.000,bicubic,-55.190,-45.430,-156 densenet169.tv_in1k,39.170,60.830,55.860,44.140,14.15,224,0.875,bicubic,-53.130,-42.750,+123 tf_efficientnetv2_b2.in1k,39.167,60.833,54.563,45.437,10.10,260,0.890,bicubic,-54.893,-44.367,-101 resnext50d_32x4d.bt_in1k,39.100,60.900,54.343,45.657,25.05,288,0.950,bicubic,-55.300,-44.447,-166 legacy_seresnet101.in1k,39.043,60.957,55.003,44.997,49.33,224,0.875,bilinear,-54.227,-43.737,+22 efficientnet_b1_pruned.in1k,39.003,60.997,55.630,44.370,6.33,240,0.882,bicubic,-53.977,-43.100,+57 repvgg_b1g4.rvgg_in1k,38.977,61.023,56.350,43.650,39.97,224,0.875,bilinear,-54.053,-42.250,+40 crossvit_9_dagger_240.in1k,38.970,61.030,54.867,45.133,8.78,240,0.875,bicubic,-53.800,-43.793,+81 resnet50.a1_in1k,38.967,61.033,53.243,46.757,25.56,288,1.000,bicubic,-55.253,-45.507,-131 inception_v3.tv_in1k,38.943,61.057,53.877,46.123,23.83,299,0.875,bicubic,-53.957,-44.853,+64 regnety_080.pycls_in1k,38.910,61.090,55.190,44.810,39.18,224,0.875,bicubic,-54.970,-43.810,-84 res2net101d.in1k,38.903,61.097,53.057,46.943,45.23,224,0.875,bilinear,-55.617,-45.853,-201 legacy_seresnext50_32x4d.in1k,38.890,61.110,54.577,45.423,27.56,224,0.875,bilinear,-54.560,-44.203,-13 dla102.in1k,38.840,61.160,55.317,44.683,33.27,224,0.875,bilinear,-54.430,-43.473,+12 visformer_tiny.in1k,38.830,61.170,55.023,44.977,10.32,224,0.900,bicubic,-54.150,-43.647,+44 regnety_040.pycls_in1k,38.823,61.177,55.580,44.420,20.65,224,0.875,bicubic,-54.807,-43.330,-49 efficientvit_m5.r224_in1k,38.820,61.180,54.980,45.020,12.47,224,0.875,bicubic,-53.330,-43.540,+116 regnetx_040.pycls_in1k,38.710,61.290,55.357,44.643,22.12,224,0.875,bicubic,-54.980,-43.573,-58 res2net50_14w_8s.in1k,38.710,61.290,54.073,45.927,25.06,224,0.875,bilinear,-54.320,-44.747,+31 dpn68.mx_in1k,38.687,61.313,54.687,45.313,12.61,224,0.875,bicubic,-53.613,-43.903,+104 regnetx_032.pycls_in1k,38.680,61.320,55.160,44.840,15.30,224,0.875,bicubic,-54.560,-43.560,+8 res2net50_26w_6s.in1k,38.680,61.320,53.773,46.227,37.05,224,0.875,bilinear,-54.910,-44.857,-49 resnet33ts.ra2_in1k,38.667,61.333,55.173,44.827,19.68,288,1.000,bicubic,-55.263,-43.707,-102 wide_resnet50_2.tv_in1k,38.650,61.350,54.467,45.533,68.88,224,0.875,bilinear,-54.810,-44.353,-26 selecsls60.in1k,38.620,61.380,55.617,44.383,30.67,224,0.875,bicubic,-54.390,-42.873,+28 regnetx_016.tv2_in1k,38.620,61.380,54.733,45.267,9.19,224,0.965,bicubic,-55.400,-44.197,-117 dla60x.in1k,38.610,61.390,55.403,44.597,17.35,224,0.875,bilinear,-54.580,-43.317,+5 tf_efficientnet_b0.aa_in1k,38.597,61.403,55.970,44.030,5.29,224,0.875,bicubic,-53.803,-42.500,+90 densenetblur121d.ra_in1k,38.593,61.407,55.637,44.363,8.00,288,0.950,bicubic,-54.437,-43.063,+22 dla60_res2net.in1k,38.593,61.407,54.563,45.437,20.85,224,0.875,bilinear,-54.777,-44.277,-13 repvgg_a2.rvgg_in1k,38.553,61.447,55.767,44.233,28.21,224,0.875,bilinear,-54.127,-42.513,+64 selecsls60b.in1k,38.550,61.450,55.310,44.690,32.77,224,0.875,bicubic,-54.950,-43.470,-43 seresnet50.a1_in1k,38.537,61.463,53.413,46.587,28.09,288,1.000,bicubic,-55.623,-45.437,-145 dpn68b.mx_in1k,38.530,61.470,55.183,44.817,12.61,224,0.875,bicubic,-54.250,-43.337,+51 resnet32ts.ra2_in1k,38.510,61.490,55.507,44.493,17.96,288,1.000,bicubic,-55.080,-43.233,-61 hardcorenas_f.miil_green_in1k,38.507,61.493,55.653,44.347,8.20,224,0.875,bilinear,-54.473,-42.977,+26 hrnet_w18_small_v2.gluon_in1k,38.460,61.540,56.180,43.820,15.60,224,0.875,bicubic,-54.540,-42.580,+20 resmlp_12_224.fb_in1k,38.440,61.560,56.327,43.673,15.35,224,0.875,bicubic,-53.680,-42.243,+98 tf_efficientnet_cc_b0_4e.in1k,38.430,61.570,55.177,44.823,13.31,224,0.875,bicubic,-54.390,-43.263,+44 dla60_res2next.in1k,38.423,61.577,54.930,45.070,17.03,224,0.875,bilinear,-55.157,-44.140,-63 regnetx_064.pycls_in1k,38.420,61.580,54.993,45.007,26.21,224,0.875,bicubic,-55.220,-44.047,-76 ghostnetv2_160.in1k,38.410,61.590,55.530,44.470,12.39,224,0.875,bicubic,-54.680,-43.210,+2 resnet50.gluon_in1k,38.410,61.590,54.830,45.170,25.56,224,0.875,bicubic,-54.150,-43.720,+65 resnet50d.a1_in1k,38.403,61.597,52.860,47.140,25.58,288,1.000,bicubic,-55.997,-46.200,-204 regnety_008_tv.tv2_in1k,38.337,61.663,54.270,45.730,6.43,224,0.965,bicubic,-54.813,-44.410,-7 hrnet_w18.ms_in1k,38.263,61.737,55.660,44.340,21.30,224,0.875,bilinear,-54.507,-42.960,+41 tinynet_a.in1k,38.230,61.770,55.193,44.807,6.19,192,0.875,bicubic,-54.580,-43.367,+37 ecaresnet50t.a3_in1k,38.227,61.773,53.650,46.350,25.57,224,0.950,bicubic,-55.633,-45.200,-117 resnet34.a1_in1k,38.220,61.780,52.373,47.627,21.80,288,1.000,bicubic,-54.780,-46.257,+9 densenet121.ra_in1k,38.180,61.820,55.137,44.863,7.98,288,0.950,bicubic,-54.520,-43.503,+44 mixnet_l.ft_in1k,38.173,61.827,54.797,45.203,7.33,224,0.875,bicubic,-55.067,-43.953,-21 regnety_032.pycls_in1k,38.167,61.833,54.363,45.637,19.44,224,0.875,bicubic,-55.293,-44.587,-55 poolformer_s12.sail_in1k,38.157,61.843,56.213,43.787,11.92,224,0.900,bicubic,-54.343,-42.177,+58 hardcorenas_e.miil_green_in1k,38.150,61.850,55.177,44.823,8.07,224,0.875,bilinear,-54.790,-43.333,+12 efficientnet_b1.ft_in1k,38.080,61.920,54.000,46.000,7.79,256,1.000,bicubic,-54.940,-44.710,-2 ecaresnet50t.a2_in1k,38.053,61.947,52.967,47.033,25.57,288,1.000,bicubic,-56.517,-46.073,-257 gmixer_24_224.ra3_in1k,38.050,61.950,52.077,47.923,24.72,224,0.875,bicubic,-54.630,-46.453,+39 vit_base_patch16_224.augreg_in1k,38.037,61.963,50.710,49.290,86.57,224,0.900,bicubic,-55.313,-48.050,-37 coat_lite_tiny.in1k,38.033,61.967,53.463,46.537,5.72,224,0.900,bicubic,-54.827,-45.177,+22 resnetrs50.tf_in1k,37.977,62.023,53.303,46.697,35.69,224,0.910,bicubic,-56.053,-45.437,-154 resnext50_32x4d.a2_in1k,37.933,62.067,52.353,47.647,25.03,288,1.000,bicubic,-56.287,-46.687,-182 mobilevitv2_125.cvnets_in1k,37.893,62.107,54.067,45.933,7.48,256,0.888,bicubic,-55.587,-44.773,-68 resnet50c.gluon_in1k,37.873,62.127,54.117,45.883,25.58,224,0.875,bicubic,-55.037,-44.573,+7 hardcorenas_c.miil_green_in1k,37.860,62.140,55.727,44.273,5.52,224,0.875,bilinear,-54.490,-42.613,+58 efficientformerv2_s0.snap_dist_in1k,37.823,62.177,54.053,45.947,3.60,224,0.950,bicubic,-54.037,-44.317,+82 res2net50_26w_4s.in1k,37.810,62.190,53.080,46.920,25.70,224,0.875,bilinear,-55.370,-45.580,-31 efficientnet_es.ra_in1k,37.787,62.213,54.960,45.040,5.44,224,0.875,bicubic,-55.123,-43.720,+4 resnest14d.gluon_in1k,37.777,62.223,56.480,43.520,10.61,224,0.875,bilinear,-53.373,-41.850,+109 convnext_femto.d1_in1k,37.733,62.267,54.100,45.900,5.22,288,0.950,bicubic,-55.707,-44.720,-65 resnext50_32x4d.tv_in1k,37.727,62.273,54.103,45.897,25.03,224,0.875,bilinear,-55.173,-44.217,+3 pit_ti_distilled_224.in1k,37.710,62.290,55.647,44.353,5.10,224,0.900,bicubic,-53.020,-42.603,+121 ecaresnet26t.ra2_in1k,37.667,62.333,54.357,45.643,16.01,320,0.950,bicubic,-56.273,-44.673,-153 seresnet50.a2_in1k,37.667,62.333,52.373,47.627,28.09,288,1.000,bicubic,-56.783,-46.517,-247 vit_base_patch32_224.augreg_in1k,37.563,62.437,51.810,48.190,88.22,224,0.900,bicubic,-53.027,-45.910,+122 fastvit_t8.apple_dist_in1k,37.557,62.443,53.830,46.170,4.03,256,0.900,bicubic,-55.033,-44.710,+30 hardcorenas_d.miil_green_in1k,37.543,62.457,54.720,45.280,7.50,224,0.875,bilinear,-55.067,-43.790,+26 res2next50.in1k,37.483,62.517,52.853,47.147,24.67,224,0.875,bilinear,-55.667,-45.787,-38 convnextv2_femto.fcmae_ft_in1k,37.477,62.523,53.507,46.493,5.23,288,0.950,bicubic,-56.273,-45.463,-131 resnet50.bt_in1k,37.420,62.580,53.860,46.140,25.56,288,0.950,bicubic,-56.540,-45.070,-162 hrnet_w18.ms_aug_in1k,37.337,62.663,54.123,45.877,21.30,224,0.950,bilinear,-56.143,-44.857,-87 lambda_resnet26t.c1_in1k,37.300,62.700,53.563,46.437,10.96,256,0.940,bicubic,-56.130,-45.167,-73 convnext_femto_ols.d1_in1k,37.253,62.747,53.047,46.953,5.23,288,0.950,bicubic,-56.137,-45.863,-67 mobilenetv3_large_100.miil_in21k_ft_in1k,37.243,62.757,53.543,46.457,5.48,224,0.875,bilinear,-55.017,-44.697,+47 hardcorenas_b.miil_green_in1k,37.233,62.767,55.033,44.967,5.18,224,0.875,bilinear,-54.687,-43.377,+60 resnet50d.a2_in1k,37.227,62.773,51.743,48.257,25.58,288,1.000,bicubic,-57.233,-47.287,-261 res2net50d.in1k,37.223,62.777,51.387,48.613,25.72,224,0.875,bilinear,-57.057,-47.703,-223 fastvit_t8.apple_in1k,37.217,62.783,53.133,46.867,4.03,256,0.900,bicubic,-54.713,-45.247,+56 eca_halonext26ts.c1_in1k,37.170,62.830,53.103,46.897,10.76,256,0.940,bicubic,-56.380,-45.497,-106 cs3darknet_focus_m.c2ns_in1k,37.140,62.860,53.910,46.090,9.30,288,0.950,bicubic,-55.960,-44.840,-46 res2net50_48w_2s.in1k,37.120,62.880,53.327,46.673,25.29,224,0.875,bilinear,-55.660,-45.143,-4 lambda_resnet26rpt_256.c1_in1k,37.103,62.897,53.860,46.140,10.99,256,0.940,bicubic,-56.327,-45.020,-84 vit_small_patch16_224.augreg_in1k,37.080,62.920,51.553,48.447,22.05,224,0.900,bicubic,-56.370,-47.227,-90 rexnet_100.nav_in1k,37.057,62.943,54.050,45.950,4.80,224,0.875,bicubic,-55.773,-44.550,-12 bat_resnext26ts.ch_in1k,37.057,62.943,53.743,46.257,10.73,256,0.900,bicubic,-56.063,-44.987,-51 resnet50.a2_in1k,37.050,62.950,51.347,48.653,25.56,288,1.000,bicubic,-57.070,-47.623,-201 dla60.in1k,37.040,62.960,54.220,45.780,22.04,224,0.875,bilinear,-55.610,-44.410,+3 tf_efficientnet_b1.in1k,37.017,62.983,53.417,46.583,7.79,240,0.882,bicubic,-55.913,-45.243,-29 regnety_016.pycls_in1k,37.013,62.987,54.083,45.917,11.20,224,0.875,bicubic,-55.997,-44.587,-43 botnet26t_256.c1_in1k,36.963,63.037,53.053,46.947,12.49,256,0.950,bicubic,-56.477,-45.857,-93 tf_mixnet_l.in1k,36.960,63.040,52.597,47.403,7.33,224,0.875,bicubic,-56.070,-45.933,-48 resnet34.a2_in1k,36.953,63.047,51.433,48.567,21.80,288,1.000,bicubic,-55.617,-47.137,+5 mobileone_s1.apple_in1k,36.930,63.070,54.603,45.397,4.83,224,0.900,bilinear,-54.860,-43.857,+46 ghostnetv2_130.in1k,36.887,63.113,54.137,45.863,8.96,224,0.875,bicubic,-55.353,-44.243,+28 legacy_seresnet50.in1k,36.863,63.137,53.473,46.527,28.09,224,0.875,bilinear,-55.797,-45.207,-6 halonet26t.a1h_in1k,36.843,63.157,52.270,47.730,12.48,256,0.950,bicubic,-56.747,-46.470,-130 densenet121.tv_in1k,36.807,63.193,54.030,45.970,7.98,224,0.875,bicubic,-54.593,-44.220,+60 tf_efficientnet_lite2.in1k,36.800,63.200,53.313,46.687,6.09,260,0.890,bicubic,-55.790,-45.117,-3 mobilenetv2_120d.ra_in1k,36.790,63.210,54.047,45.953,5.83,224,0.875,bicubic,-55.820,-44.383,-7 tf_efficientnet_lite1.in1k,36.730,63.270,53.583,46.417,5.42,240,0.882,bicubic,-55.560,-44.917,+17 regnetx_016.pycls_in1k,36.693,63.307,53.307,46.693,9.19,224,0.875,bicubic,-55.837,-45.243,0 eca_botnext26ts_256.c1_in1k,36.690,63.310,52.493,47.507,10.59,256,0.950,bicubic,-56.660,-46.197,-92 hardcorenas_a.miil_green_in1k,36.687,63.313,54.923,45.077,5.26,224,0.875,bilinear,-54.933,-43.357,+45 levit_conv_128s.fb_dist_in1k,36.623,63.377,53.137,46.863,7.78,224,0.900,bicubic,-54.877,-45.263,+48 levit_128s.fb_dist_in1k,36.623,63.377,53.130,46.870,7.78,224,0.900,bicubic,-54.887,-45.270,+48 repghostnet_150.in1k,36.617,63.383,54.110,45.890,6.58,224,0.875,bicubic,-55.763,-44.420,+4 efficientnet_b0.ra_in1k,36.593,63.407,53.477,46.523,5.29,224,0.875,bicubic,-55.887,-45.203,-3 efficientvit_m4.r224_in1k,36.587,63.413,53.267,46.733,8.80,224,0.875,bicubic,-54.153,-44.773,+74 resnext50_32x4d.a3_in1k,36.553,63.447,51.143,48.857,25.03,224,0.950,bicubic,-56.997,-47.537,-137 vit_base_patch32_224.sam_in1k,36.543,63.457,53.043,46.957,88.22,224,0.900,bicubic,-53.327,-44.557,+94 xcit_nano_12_p8_224.fb_dist_in1k,36.510,63.490,52.873,47.127,3.05,224,1.000,bicubic,-55.920,-45.667,-3 cs3darknet_m.c2ns_in1k,36.480,63.520,53.230,46.770,9.31,288,0.950,bicubic,-56.800,-45.490,-96 repvgg_a1.rvgg_in1k,36.450,63.550,53.770,46.230,14.09,224,0.875,bilinear,-54.670,-44.390,+57 tf_efficientnet_em.in1k,36.393,63.607,52.853,47.147,6.90,240,0.882,bicubic,-56.797,-45.637,-90 mobilevitv2_100.cvnets_in1k,36.387,63.613,53.083,46.917,4.90,256,0.888,bicubic,-56.753,-45.677,-84 resnet50d.a3_in1k,36.330,63.670,51.320,48.680,25.58,224,0.950,bicubic,-57.080,-47.370,-112 skresnet18.ra_in1k,36.313,63.687,54.187,45.813,11.96,224,0.875,bicubic,-53.867,-43.593,+83 repvgg_b0.rvgg_in1k,36.290,63.710,54.057,45.943,15.82,224,0.875,bilinear,-55.390,-44.393,+25 resnet34.bt_in1k,36.257,63.743,52.757,47.243,21.80,288,0.950,bicubic,-56.023,-45.843,-1 resnet50.tv_in1k,36.180,63.820,52.793,47.207,25.56,224,0.875,bilinear,-55.940,-45.617,+8 xcit_nano_12_p16_384.fb_dist_in1k,36.150,63.850,53.260,46.740,3.05,384,1.000,bicubic,-55.980,-45.250,+4 legacy_seresnet34.in1k,36.150,63.850,52.567,47.433,21.96,224,0.875,bilinear,-55.340,-45.633,+33 coat_tiny.in1k,36.117,63.883,51.047,48.953,5.50,224,0.900,bicubic,-57.393,-47.633,-144 efficientvit_m3.r224_in1k,36.090,63.910,52.453,47.547,6.90,224,0.875,bicubic,-53.910,-45.377,+77 resnet34.tv_in1k,36.070,63.930,53.537,46.463,21.80,224,0.875,bilinear,-54.230,-44.433,+70 deit_tiny_distilled_patch16_224.fb_in1k,36.023,63.977,54.243,45.757,5.91,224,0.900,bicubic,-55.057,-44.027,+50 mobilenetv2_140.ra_in1k,35.997,64.003,53.963,46.037,6.11,224,0.875,bicubic,-56.053,-44.287,+4 convnextv2_atto.fcmae_ft_in1k,35.990,64.010,51.187,48.813,3.71,288,0.950,bicubic,-56.930,-47.373,-68 resnet50.a3_in1k,35.957,64.043,50.483,49.517,25.56,224,0.950,bicubic,-56.983,-48.187,-71 tf_efficientnet_lite0.in1k,35.937,64.063,53.477,46.523,4.65,224,0.875,bicubic,-55.343,-44.363,+29 selecsls42b.in1k,35.813,64.187,52.473,47.527,32.46,224,0.875,bicubic,-56.667,-46.157,-25 xcit_nano_12_p8_384.fb_dist_in1k,35.797,64.203,52.300,47.700,3.05,384,1.000,bicubic,-57.503,-46.560,-118 seresnext26ts.ch_in1k,35.780,64.220,53.460,46.540,10.39,288,1.000,bicubic,-57.160,-45.120,-78 resnet34.gluon_in1k,35.780,64.220,52.183,47.817,21.80,224,0.875,bicubic,-55.310,-45.997,+42 convnext_atto.d2_in1k,35.777,64.223,52.323,47.677,3.70,288,0.950,bicubic,-56.993,-46.167,-56 seresnet50.a3_in1k,35.757,64.243,51.163,48.837,28.09,224,0.950,bicubic,-56.603,-47.167,-24 resnet26t.ra2_in1k,35.727,64.273,53.587,46.413,16.01,320,1.000,bicubic,-57.183,-45.113,-74 dla34.in1k,35.657,64.343,52.803,47.197,15.74,224,0.875,bilinear,-55.563,-45.367,+24 efficientnet_lite0.ra_in1k,35.640,64.360,53.663,46.337,4.65,224,0.875,bicubic,-55.610,-44.577,+22 mixnet_m.ft_in1k,35.633,64.367,52.423,47.577,5.01,224,0.875,bicubic,-56.637,-45.937,-20 resnet18.fb_ssl_yfcc100m_ft_in1k,35.613,64.387,53.753,46.247,11.69,224,0.875,bilinear,-55.087,-44.267,+43 mobilenetv3_rw.rmsp_in1k,35.543,64.457,53.707,46.293,5.48,224,0.875,bicubic,-56.007,-44.573,+9 regnetx_008.tv2_in1k,35.527,64.473,51.480,48.520,7.26,224,0.965,bicubic,-56.963,-46.950,-40 convnext_atto_ols.a2_in1k,35.403,64.597,51.390,48.610,3.70,288,0.950,bicubic,-57.577,-47.150,-93 efficientnet_es_pruned.in1k,35.393,64.607,52.840,47.160,5.44,224,0.875,bicubic,-56.307,-45.570,-3 mobilenetv2_110d.ra_in1k,35.313,64.687,52.870,47.130,4.52,224,0.875,bicubic,-56.017,-45.320,+12 repghostnet_130.in1k,35.263,64.737,52.567,47.433,5.48,224,0.875,bicubic,-56.677,-45.823,-14 tf_mixnet_m.in1k,35.193,64.807,50.987,49.013,5.01,224,0.875,bicubic,-57.017,-47.433,-25 hrnet_w18_small_v2.ms_in1k,35.163,64.837,52.420,47.580,15.60,224,0.875,bilinear,-55.997,-45.920,+17 xcit_nano_12_p16_224.fb_dist_in1k,35.120,64.880,52.543,47.457,3.05,224,1.000,bicubic,-55.070,-45.207,+49 resnet34.a3_in1k,35.033,64.967,50.503,49.497,21.80,224,0.950,bicubic,-55.207,-47.377,+45 convit_tiny.fb_in1k,35.027,64.973,51.777,48.223,5.71,224,0.875,bicubic,-55.523,-46.413,+36 gcresnext26ts.ch_in1k,35.017,64.983,51.493,48.507,10.48,288,1.000,bicubic,-57.723,-47.117,-70 eca_resnext26ts.ch_in1k,34.927,65.073,52.370,47.630,10.30,288,1.000,bicubic,-57.823,-46.340,-72 regnety_004.tv2_in1k,34.923,65.077,51.263,48.737,4.34,224,0.965,bicubic,-56.697,-46.907,-8 tinynet_b.in1k,34.867,65.133,51.997,48.003,3.73,188,0.875,bicubic,-56.243,-46.063,+15 resnext26ts.ra2_in1k,34.837,65.163,52.710,47.290,10.30,288,1.000,bicubic,-57.543,-45.680,-46 regnety_008.pycls_in1k,34.780,65.220,51.743,48.257,6.26,224,0.875,bicubic,-57.120,-46.667,-21 pit_ti_224.in1k,34.670,65.330,52.160,47.840,4.85,224,0.900,bicubic,-55.750,-45.850,+33 tf_efficientnet_b0.in1k,34.623,65.377,51.143,48.857,5.29,224,0.875,bicubic,-57.657,-47.407,-41 crossvit_9_240.in1k,34.613,65.387,51.767,48.233,8.55,240,0.875,bicubic,-56.437,-46.553,+16 mobilenetv3_large_100.ra_in1k,34.600,65.400,52.843,47.157,5.48,224,0.875,bicubic,-56.870,-45.477,-7 mixer_b16_224.goog_in21k_ft_in1k,34.427,65.573,48.107,51.893,59.88,224,0.875,bicubic,-56.713,-49.293,+6 pvt_v2_b0.in1k,34.400,65.600,53.103,46.897,3.67,224,0.900,bicubic,-54.570,-44.587,+55 tf_efficientnet_es.in1k,34.260,65.740,51.353,48.647,5.44,224,0.875,bicubic,-57.850,-47.077,-35 fbnetc_100.rmsp_in1k,34.243,65.757,51.190,48.810,5.57,224,0.875,bilinear,-57.037,-46.890,-6 resnet18d.ra2_in1k,34.213,65.787,51.763,48.237,11.71,288,0.950,bicubic,-56.587,-46.397,+12 regnety_006.pycls_in1k,34.153,65.847,51.253,48.747,6.06,224,0.875,bicubic,-57.407,-47.177,-18 repvgg_a0.rvgg_in1k,34.070,65.930,51.967,48.033,9.11,224,0.875,bilinear,-55.610,-45.793,+37 ghostnetv2_100.in1k,34.037,65.963,51.973,48.027,6.16,224,0.875,bicubic,-57.593,-46.317,-24 resnet18.a1_in1k,33.973,66.027,49.410,50.590,11.69,288,1.000,bicubic,-56.227,-48.350,+27 tf_mobilenetv3_large_100.in1k,33.963,66.037,51.470,48.530,5.48,224,0.875,bilinear,-57.457,-46.790,-16 regnetx_008.pycls_in1k,33.803,66.197,50.543,49.457,7.26,224,0.875,bicubic,-57.367,-47.827,-8 repghostnet_111.in1k,33.790,66.210,51.543,48.457,4.54,224,0.875,bicubic,-57.310,-46.687,0 mnasnet_100.rmsp_in1k,33.777,66.223,51.150,48.850,4.38,224,0.875,bicubic,-57.433,-47.070,-11 semnasnet_075.rmsp_in1k,33.773,66.227,52.403,47.597,2.91,224,0.875,bicubic,-56.447,-45.547,+21 lcnet_100.ra2_in1k,33.767,66.233,52.090,47.910,2.95,224,0.875,bicubic,-55.143,-45.290,+45 ese_vovnet19b_dw.ra_in1k,33.753,66.247,50.920,49.080,6.54,288,0.950,bicubic,-59.007,-47.730,-97 regnetx_004_tv.tv2_in1k,33.717,66.283,49.803,50.197,5.50,224,0.965,bicubic,-57.443,-48.297,-12 vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,33.633,66.367,50.687,49.313,6.36,384,1.000,bicubic,-58.097,-47.743,-40 mobilevit_s.cvnets_in1k,33.633,66.367,49.287,50.713,5.58,256,0.900,bicubic,-59.517,-49.493,-152 xcit_nano_12_p8_224.fb_in1k,33.580,66.420,50.233,49.767,3.05,224,1.000,bicubic,-57.520,-47.817,-10 vit_tiny_patch16_384.augreg_in21k_ft_in1k,33.550,66.450,51.077,48.923,5.79,384,1.000,bicubic,-59.870,-47.733,-183 semnasnet_100.rmsp_in1k,33.507,66.493,50.803,49.197,3.89,224,0.875,bicubic,-58.163,-47.487,-39 spnasnet_100.rmsp_in1k,33.490,66.510,51.287,48.713,4.42,224,0.875,bilinear,-57.100,-46.663,+1 mixnet_s.ft_in1k,33.467,66.533,51.007,48.993,4.13,224,0.875,bicubic,-58.313,-47.293,-46 crossvit_tiny_240.in1k,33.347,66.653,49.900,50.100,7.01,240,0.875,bicubic,-57.183,-48.050,+3 mobilevitv2_075.cvnets_in1k,33.340,66.660,50.110,49.890,2.87,256,0.888,bicubic,-58.630,-48.190,-56 efficientvit_m2.r224_in1k,33.293,66.707,49.810,50.190,4.19,224,0.875,bicubic,-55.617,-47.580,+32 vgg19_bn.tv_in1k,33.240,66.760,50.777,49.223,143.68,224,0.875,bilinear,-57.750,-47.323,-12 regnetx_006.pycls_in1k,33.147,66.853,50.243,49.757,6.20,224,0.875,bicubic,-57.643,-47.847,-11 repghostnet_100.in1k,33.140,66.860,50.770,49.230,4.07,224,0.875,bicubic,-57.550,-47.350,-7 edgenext_x_small.in1k,33.110,66.890,49.003,50.997,2.34,288,1.000,bicubic,-58.470,-49.187,-44 seresnext26t_32x4d.bt_in1k,33.083,66.917,50.270,49.730,16.81,288,0.950,bicubic,-60.267,-48.390,-183 resnet18.tv_in1k,33.057,66.943,51.173,48.827,11.69,224,0.875,bilinear,-55.093,-45.947,+34 seresnext26d_32x4d.bt_in1k,32.973,67.027,49.823,50.177,16.81,288,0.950,bicubic,-60.087,-48.887,-160 xcit_nano_12_p16_224.fb_in1k,32.953,67.047,49.977,50.023,3.05,224,1.000,bicubic,-56.017,-47.433,+23 mobileone_s0.apple_in1k,32.853,67.147,51.063,48.937,5.29,224,0.875,bilinear,-55.957,-46.157,+25 hrnet_w18_small.gluon_in1k,32.827,67.173,50.380,49.620,13.19,224,0.875,bicubic,-57.483,-47.370,-5 legacy_seresnext26_32x4d.in1k,32.773,67.227,49.217,50.783,16.79,224,0.875,bicubic,-59.827,-49.193,-106 hrnet_w18_small.ms_in1k,32.653,67.347,50.587,49.413,13.19,224,0.875,bilinear,-57.217,-47.303,+1 deit_tiny_patch16_224.fb_in1k,32.650,67.350,50.263,49.737,5.72,224,0.900,bicubic,-56.960,-47.697,+6 legacy_seresnet18.in1k,32.600,67.400,50.317,49.683,11.78,224,0.875,bicubic,-56.660,-47.373,+11 ghostnet_100.in1k,32.550,67.450,50.410,49.590,5.18,224,0.875,bicubic,-57.910,-47.500,-13 mobilenetv2_100.ra_in1k,32.513,67.487,50.790,49.210,3.50,224,0.875,bicubic,-57.357,-47.040,-2 regnetx_004.pycls_in1k,32.493,67.507,49.323,50.677,5.16,224,0.875,bicubic,-56.977,-48.437,+3 resnet26d.bt_in1k,32.420,67.580,49.997,50.003,16.01,288,0.950,bicubic,-60.130,-48.653,-107 resnet18.gluon_in1k,32.417,67.583,49.737,50.263,11.69,224,0.875,bicubic,-56.243,-47.363,+16 regnety_004.pycls_in1k,32.313,67.687,49.463,50.537,4.34,224,0.875,bicubic,-58.457,-48.607,-28 resnet18.a2_in1k,32.223,67.777,47.890,52.110,11.69,288,1.000,bicubic,-57.247,-49.520,0 tf_mixnet_s.in1k,32.200,67.800,48.523,51.477,4.13,224,0.875,bicubic,-59.480,-49.717,-67 resnet26.bt_in1k,32.173,67.827,49.443,50.557,16.00,288,0.950,bicubic,-59.937,-49.107,-83 vit_tiny_patch16_224.augreg_in21k_ft_in1k,32.020,67.980,49.017,50.983,5.72,224,0.900,bicubic,-59.900,-49.323,-77 tf_mobilenetv3_large_075.in1k,31.847,68.153,49.130,50.870,3.99,224,0.875,bilinear,-58.483,-48.740,-21 tf_mobilenetv3_large_minimal_100.in1k,31.600,68.400,49.353,50.647,3.92,224,0.875,bilinear,-57.560,-47.957,+2 efficientvit_m1.r224_in1k,31.297,68.703,48.197,51.803,2.98,224,0.875,bicubic,-55.923,-48.823,+18 repghostnet_080.in1k,30.873,69.127,48.797,51.203,3.28,224,0.875,bicubic,-58.597,-48.833,-6 vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,30.790,69.210,47.663,52.337,6.34,224,0.900,bicubic,-58.550,-50.037,-5 tinynet_c.in1k,30.517,69.483,48.477,51.523,2.46,184,0.875,bicubic,-57.883,-48.783,+6 lcnet_075.ra2_in1k,30.373,69.627,48.770,51.230,2.36,224,0.875,bicubic,-56.587,-47.780,+19 vgg16_bn.tv_in1k,30.357,69.643,47.280,52.720,138.37,224,0.875,bilinear,-60.183,-50.710,-32 resnet18.a3_in1k,30.093,69.907,46.333,53.667,11.69,224,0.950,bicubic,-56.977,-50.327,+15 efficientvit_b0.r224_in1k,30.060,69.940,46.603,53.397,3.41,224,0.950,bicubic,-58.240,-50.277,+4 edgenext_xx_small.in1k,29.750,70.250,46.487,53.513,1.33,288,1.000,bicubic,-60.050,-51.013,-19 regnety_002.pycls_in1k,29.707,70.293,46.827,53.173,3.16,224,0.875,bicubic,-58.463,-50.613,+3 mobilevit_xs.cvnets_in1k,29.587,70.413,46.037,53.963,2.32,256,0.900,bicubic,-61.623,-52.013,-63 mobilenetv3_small_100.lamb_in1k,29.050,70.950,47.200,52.800,2.54,224,0.875,bicubic,-57.130,-49.250,+14 mnasnet_small.lamb_in1k,28.953,71.047,47.287,52.713,2.03,224,0.875,bicubic,-56.527,-48.713,+15 vgg13_bn.tv_in1k,28.863,71.137,46.730,53.270,133.05,224,0.875,bilinear,-60.337,-50.800,-13 resnet10t.c3_in1k,28.857,71.143,46.903,53.097,5.44,224,0.950,bicubic,-57.823,-49.827,+10 regnetx_002.pycls_in1k,28.837,71.163,45.453,54.547,2.68,224,0.875,bicubic,-58.533,-51.547,+1 efficientvit_m0.r224_in1k,28.797,71.203,45.777,54.223,2.35,224,0.875,bicubic,-54.423,-49.923,+19 mobilenetv2_050.lamb_in1k,28.657,71.343,46.597,53.403,1.97,224,0.875,bicubic,-56.333,-49.023,+14 vgg19.tv_in1k,28.580,71.420,45.167,54.833,143.67,224,0.875,bilinear,-61.100,-52.383,-27 mobilevitv2_050.cvnets_in1k,28.560,71.440,45.203,54.797,1.37,256,0.888,bicubic,-60.470,-52.397,-17 dla60x_c.in1k,28.443,71.557,46.220,53.780,1.32,224,0.875,bilinear,-58.667,-50.920,0 vgg11_bn.tv_in1k,28.430,71.570,46.460,53.540,132.87,224,0.875,bilinear,-59.970,-50.790,-11 repghostnet_058.in1k,28.400,71.600,46.587,53.413,2.55,224,0.875,bicubic,-58.750,-50.193,-3 tinynet_d.in1k,27.960,72.040,45.877,54.123,2.34,152,0.875,bicubic,-57.480,-50.143,+7 vgg16.tv_in1k,27.877,72.123,44.680,55.320,138.36,224,0.875,bilinear,-61.493,-52.840,-28 resnet14t.c3_in1k,27.553,72.447,44.683,55.317,10.08,224,0.950,bicubic,-61.697,-52.757,-26 tf_mobilenetv3_small_100.in1k,27.293,72.707,44.410,55.590,2.54,224,0.875,bilinear,-58.657,-51.990,0 repghostnet_050.in1k,27.060,72.940,44.977,55.023,2.31,224,0.875,bicubic,-58.390,-51.173,+1 mixer_l16_224.goog_in21k_ft_in1k,26.860,73.140,37.913,62.087,208.20,224,0.875,bicubic,-60.130,-56.157,-6 vgg11.tv_in1k,26.537,73.463,43.470,56.530,132.86,224,0.875,bilinear,-60.813,-53.630,-12 mobilenetv3_small_075.lamb_in1k,26.533,73.467,43.877,56.123,2.04,224,0.875,bicubic,-57.587,-51.643,+4 mobilevit_xxs.cvnets_in1k,26.353,73.647,43.060,56.940,1.27,256,0.900,bicubic,-61.587,-54.130,-17 vgg13.tv_in1k,26.273,73.727,43.353,56.647,133.05,224,0.875,bilinear,-61.297,-53.757,-17 dla46x_c.in1k,26.207,73.793,43.777,56.223,1.07,224,0.875,bilinear,-59.233,-52.643,-4 lcnet_050.ra2_in1k,26.197,73.803,44.577,55.423,1.88,224,0.875,bicubic,-56.843,-50.443,+2 tf_mobilenetv3_small_075.in1k,26.197,73.803,43.617,56.383,2.04,224,0.875,bilinear,-58.303,-52.263,-2 dla46_c.in1k,25.507,74.493,43.777,56.223,1.30,224,0.875,bilinear,-59.193,-52.433,-4 tf_mobilenetv3_small_minimal_100.in1k,25.123,74.877,42.950,57.050,2.04,224,0.875,bilinear,-57.537,-52.080,0 tinynet_e.in1k,23.353,76.647,41.067,58.933,2.04,106,0.875,bicubic,-56.457,-52.903,0 mobilenetv3_small_050.lamb_in1k,21.737,78.263,38.757,61.243,1.59,224,0.875,bicubic,-56.343,-54.253,0
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nchw-pt113-cu117-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,infer_gmacs,infer_macts,param_count tinynet_e,49277.65,20.77,1024,106,0.03,0.69,2.04 mobilenetv3_small_050,45562.75,22.464,1024,224,0.03,0.92,1.59 lcnet_035,41026.68,24.949,1024,224,0.03,1.04,1.64 lcnet_050,37575.13,27.242,1024,224,0.05,1.26,1.88 mobilenetv3_small_075,33062.39,30.961,1024,224,0.05,1.3,2.04 mobilenetv3_small_100,30012.26,34.109,1024,224,0.06,1.42,2.54 tf_mobilenetv3_small_minimal_100,28698.14,35.672,1024,224,0.06,1.41,2.04 tf_mobilenetv3_small_075,27407.51,37.352,1024,224,0.05,1.3,2.04 tinynet_d,27236.47,37.585,1024,152,0.05,1.42,2.34 tf_mobilenetv3_small_100,25103.65,40.781,1024,224,0.06,1.42,2.54 lcnet_075,24140.95,42.406,1024,224,0.1,1.99,2.36 mnasnet_small,20706.43,49.443,1024,224,0.07,2.16,2.03 levit_128s,20595.72,49.709,1024,224,0.31,1.88,7.78 lcnet_100,19684.75,52.01,1024,224,0.16,2.52,2.95 mobilenetv2_035,18358.82,55.767,1024,224,0.07,2.86,1.68 regnetx_002,18244.04,56.117,1024,224,0.2,2.16,2.68 ghostnet_050,17564.96,58.287,1024,224,0.05,1.77,2.59 regnety_002,17006.07,60.202,1024,224,0.2,2.17,3.16 mnasnet_050,15925.32,64.29,1024,224,0.11,3.07,2.22 vit_tiny_r_s16_p8_224,15068.38,67.946,1024,224,0.44,2.06,6.34 mobilenetv2_050,14843.74,68.974,1024,224,0.1,3.64,1.97 tinynet_c,14634.69,69.959,1024,184,0.11,2.87,2.46 semnasnet_050,14248.78,71.855,1024,224,0.11,3.44,2.08 levit_128,14164.26,72.284,1024,224,0.41,2.71,9.21 vit_small_patch32_224,13811.36,74.131,1024,224,1.15,2.5,22.88 mixer_s32_224,13352.85,76.677,1024,224,1.0,2.28,19.1 cs3darknet_focus_s,12798.44,79.999,1024,256,0.69,2.7,3.27 lcnet_150,12783.12,80.094,1024,224,0.34,3.79,4.5 cs3darknet_s,12395.11,82.602,1024,256,0.72,2.97,3.28 regnetx_004,12366.39,82.791,1024,224,0.4,3.14,5.16 mobilenetv3_large_075,12001.32,85.313,1024,224,0.16,4.0,3.99 levit_192,11882.81,86.163,1024,224,0.66,3.2,10.95 resnet10t,11615.84,88.145,1024,224,1.1,2.43,5.44 ese_vovnet19b_slim_dw,11539.4,88.729,1024,224,0.4,5.28,1.9 gernet_s,11496.77,89.058,1024,224,0.75,2.65,8.17 mobilenetv3_rw,10873.77,94.16,1024,224,0.23,4.41,5.48 mobilenetv3_large_100,10705.06,95.645,1024,224,0.23,4.41,5.48 hardcorenas_a,10554.34,97.012,1024,224,0.23,4.38,5.26 tf_mobilenetv3_large_075,10511.12,97.41,1024,224,0.16,4.0,3.99 tf_mobilenetv3_large_minimal_100,10371.16,98.725,1024,224,0.22,4.4,3.92 mnasnet_075,10345.17,98.972,1024,224,0.23,4.77,3.17 hardcorenas_b,9695.74,105.601,1024,224,0.26,5.09,5.18 regnety_004,9655.22,106.046,1024,224,0.41,3.89,4.34 ghostnet_100,9483.99,107.96,1024,224,0.15,3.55,5.18 hardcorenas_c,9481.05,107.994,1024,224,0.28,5.01,5.52 tf_mobilenetv3_large_100,9456.79,108.271,1024,224,0.23,4.41,5.48 regnetx_006,9408.22,108.83,1024,224,0.61,3.98,6.2 mobilenetv2_075,9313.88,109.932,1024,224,0.22,5.86,2.64 tinynet_b,9291.99,110.191,1024,188,0.21,4.44,3.73 mnasnet_b1,9286.4,110.258,1024,224,0.33,5.46,4.38 mnasnet_100,9263.52,110.53,1024,224,0.33,5.46,4.38 gluon_resnet18_v1b,9078.31,112.785,1024,224,1.82,2.48,11.69 semnasnet_075,9069.42,112.895,1024,224,0.23,5.54,2.91 resnet18,9045.63,113.192,1024,224,1.82,2.48,11.69 ssl_resnet18,9045.4,113.196,1024,224,1.82,2.48,11.69 swsl_resnet18,9040.4,113.258,1024,224,1.82,2.48,11.69 levit_256,8921.47,114.768,1024,224,1.13,4.23,18.89 hardcorenas_d,8879.46,115.311,1024,224,0.3,4.93,7.5 regnety_006,8666.48,118.144,1024,224,0.61,4.33,6.06 seresnet18,8542.99,119.851,1024,224,1.82,2.49,11.78 mobilenetv2_100,8507.29,120.356,1024,224,0.31,6.68,3.5 spnasnet_100,8342.04,122.741,1024,224,0.35,6.03,4.42 legacy_seresnet18,8310.8,123.202,1024,224,1.82,2.49,11.78 semnasnet_100,8284.16,123.599,1024,224,0.32,6.23,3.89 mnasnet_a1,8283.57,123.607,1024,224,0.32,6.23,3.89 regnetx_008,7852.75,130.39,1024,224,0.81,5.15,7.26 hardcorenas_f,7809.07,131.117,1024,224,0.35,5.57,8.2 hardcorenas_e,7730.97,132.444,1024,224,0.35,5.65,8.07 efficientnet_lite0,7722.75,132.584,1024,224,0.4,6.74,4.65 levit_256d,7689.03,133.165,1024,224,1.4,4.93,26.21 xcit_nano_12_p16_224_dist,7674.8,133.413,1024,224,0.56,4.17,3.05 xcit_nano_12_p16_224,7670.11,133.492,1024,224,0.56,4.17,3.05 resnet18d,7636.48,134.082,1024,224,2.06,3.29,11.71 ghostnet_130,7625.58,134.274,1024,224,0.24,4.6,7.36 tf_efficientnetv2_b0,7614.25,134.473,1024,224,0.73,4.77,7.14 ese_vovnet19b_slim,7588.4,134.932,1024,224,1.69,3.52,3.17 deit_tiny_distilled_patch16_224,7449.3,137.451,1024,224,1.27,6.01,5.91 deit_tiny_patch16_224,7398.73,138.391,1024,224,1.26,5.97,5.72 vit_tiny_patch16_224,7390.78,138.538,1024,224,1.26,5.97,5.72 regnety_008,7366.88,138.989,1024,224,0.81,5.25,6.26 tinynet_a,7358.6,139.145,1024,192,0.35,5.41,6.19 dla46_c,7311.64,140.038,1024,224,0.58,4.5,1.3 fbnetc_100,7303.94,140.187,1024,224,0.4,6.51,5.57 mobilevitv2_050,7248.37,141.262,1024,256,0.48,8.04,1.37 tf_efficientnet_lite0,6816.26,150.218,1024,224,0.4,6.74,4.65 pit_ti_distilled_224,6788.49,150.832,1024,224,0.71,6.23,5.1 pit_ti_224,6762.99,151.401,1024,224,0.7,6.19,4.85 efficientnet_b0,6687.26,153.115,1024,224,0.4,6.75,5.29 visformer_tiny,6618.81,154.698,1024,224,1.27,5.72,10.32 rexnet_100,6608.65,154.937,1024,224,0.41,7.44,4.8 mnasnet_140,6580.58,155.597,1024,224,0.6,7.71,7.12 efficientnet_b1_pruned,6513.48,157.201,1024,240,0.4,6.21,6.33 rexnetr_100,6491.35,157.737,1024,224,0.43,7.72,4.88 mobilenetv2_110d,6395.98,160.089,1024,224,0.45,8.71,4.52 resnet14t,6341.58,161.462,1024,224,1.69,5.8,10.08 regnetz_005,6208.75,164.916,1024,224,0.52,5.86,7.12 dla46x_c,6145.64,166.61,1024,224,0.54,5.66,1.07 nf_regnet_b0,6055.0,169.104,1024,256,0.64,5.58,8.76 tf_efficientnet_b0,5992.76,170.862,1024,224,0.4,6.75,5.29 hrnet_w18_small,5908.15,173.308,1024,224,1.61,5.72,13.19 edgenext_xx_small,5886.07,173.957,1024,288,0.33,4.21,1.33 semnasnet_140,5856.63,174.833,1024,224,0.6,8.87,6.11 resnetblur18,5839.81,175.336,1024,224,2.34,3.39,11.69 ese_vovnet19b_dw,5825.11,175.779,1024,224,1.34,8.25,6.54 dla60x_c,5790.89,176.817,1024,224,0.59,6.01,1.32 mobilenetv2_140,5780.41,177.139,1024,224,0.6,9.57,6.11 skresnet18,5648.81,181.265,1024,224,1.82,3.24,11.96 mobilevit_xxs,5528.18,185.22,1024,256,0.42,8.34,1.27 efficientnet_b0_gn,5401.88,189.551,1024,224,0.42,6.75,5.29 convnext_atto,5364.13,190.886,1024,288,0.91,6.3,3.7 gluon_resnet34_v1b,5344.34,191.593,1024,224,3.67,3.74,21.8 resnet34,5335.05,191.926,1024,224,3.67,3.74,21.8 efficientnet_lite1,5334.12,191.959,1024,240,0.62,10.14,5.42 tv_resnet34,5332.7,192.011,1024,224,3.67,3.74,21.8 vit_base_patch32_224,5287.0,193.67,1024,224,4.41,5.01,88.22 vit_base_patch32_clip_224,5281.4,193.877,1024,224,4.41,5.01,88.22 levit_384,5276.74,194.047,1024,224,2.36,6.26,39.13 pit_xs_distilled_224,5241.4,195.357,1024,224,1.41,7.76,11.0 pit_xs_224,5237.09,195.517,1024,224,1.4,7.71,10.62 selecsls42,5225.99,195.932,1024,224,2.94,4.62,30.35 selecsls42b,5201.55,196.853,1024,224,2.98,4.62,32.46 gernet_m,5124.67,199.807,1024,224,3.02,5.24,21.14 pvt_v2_b0,5122.72,199.882,1024,224,0.57,7.99,3.67 tf_efficientnetv2_b1,5122.21,199.903,1024,240,1.21,7.34,8.14 mixnet_s,5079.84,201.57,1024,224,0.25,6.25,4.13 convnext_atto_ols,5062.64,202.255,1024,288,0.96,6.8,3.7 seresnet34,5028.88,203.611,1024,224,3.67,3.74,21.96 rexnetr_130,5003.96,204.626,1024,224,0.68,9.81,7.61 fbnetv3_b,5003.0,204.666,1024,256,0.55,9.1,8.6 mixer_b32_224,4982.51,205.508,1024,224,3.24,6.29,60.29 xcit_tiny_12_p16_224_dist,4879.26,209.853,1024,224,1.24,6.29,6.72 legacy_seresnet34,4875.12,210.034,1024,224,3.67,3.74,21.96 xcit_tiny_12_p16_224,4870.16,210.244,1024,224,1.24,6.29,6.72 resnet34d,4834.78,211.786,1024,224,3.91,4.54,21.82 tf_efficientnet_lite1,4822.03,212.348,1024,240,0.62,10.14,5.42 resnet26,4794.98,213.545,1024,224,2.36,7.35,16.0 mobilenetv2_120d,4786.27,213.934,1024,224,0.69,11.97,5.83 rexnet_130,4770.1,214.659,1024,224,0.68,9.71,7.56 efficientnet_b0_g16_evos,4743.69,215.854,1024,224,1.01,7.42,8.11 efficientnet_es,4736.89,216.163,1024,224,1.81,8.73,5.44 efficientnet_es_pruned,4735.25,216.239,1024,224,1.81,8.73,5.44 tf_mixnet_s,4735.17,216.242,1024,224,0.25,6.25,4.13 gmlp_ti16_224,4709.0,217.445,1024,224,1.34,7.55,5.87 convnext_femto,4672.08,219.162,1024,288,1.3,7.56,5.22 mobilevitv2_075,4638.17,220.764,1024,256,1.05,12.06,2.87 resmlp_12_224,4601.92,222.504,1024,224,3.01,5.5,15.35 resmlp_12_distilled_224,4597.97,222.695,1024,224,3.01,5.5,15.35 gmixer_12_224,4543.02,225.388,1024,224,2.67,7.26,12.7 fbnetv3_d,4532.2,225.927,1024,256,0.68,11.1,10.31 tf_efficientnet_es,4518.93,226.591,1024,224,1.81,8.73,5.44 selecsls60,4510.1,227.034,1024,224,3.59,5.52,30.67 mixer_s16_224,4509.29,227.075,1024,224,3.79,5.97,18.53 regnetx_016,4507.02,227.189,1024,224,1.62,7.93,9.19 selecsls60b,4490.35,228.033,1024,224,3.63,5.52,32.77 cs3darknet_focus_m,4487.64,228.171,1024,288,2.51,6.19,9.3 dla34,4481.03,228.505,1024,224,3.07,5.02,15.74 crossvit_tiny_240,4476.83,228.722,1024,240,1.57,9.08,7.01 convnext_femto_ols,4473.25,228.904,1024,288,1.35,8.06,5.23 vit_tiny_r_s16_p8_384,4463.13,229.423,1024,384,1.34,6.49,6.36 cs3darknet_m,4452.94,229.949,1024,288,2.63,6.69,9.31 repvgg_b0,4433.11,230.978,1024,224,3.41,6.15,15.82 resnet26d,4354.59,235.143,1024,224,2.6,8.15,16.01 rexnetr_150,4349.97,235.392,1024,224,0.89,11.13,9.78 resnetaa34d,4309.77,237.588,1024,224,4.43,5.07,21.82 efficientnet_b2_pruned,4309.58,237.598,1024,260,0.73,9.13,8.31 darknet17,4296.61,238.316,1024,256,3.26,7.18,14.3 vit_small_patch32_384,4250.58,240.897,1024,384,3.45,8.25,22.92 crossvit_9_240,4201.98,243.683,1024,240,1.85,9.52,8.55 nf_resnet26,4197.39,243.949,1024,224,2.41,7.35,16.0 efficientnet_b0_g8_gn,4190.39,244.357,1024,224,0.66,6.75,6.56 rexnet_150,4186.31,244.594,1024,224,0.9,11.21,9.73 ecaresnet50d_pruned,4182.62,244.81,1024,224,2.53,6.43,19.94 efficientformer_l1,4075.83,251.225,1024,224,1.3,5.53,12.29 poolformer_s12,4050.19,252.815,1024,224,1.82,5.53,11.92 regnety_016,4035.9,253.712,1024,224,1.63,8.04,11.2 efficientnet_lite2,4013.48,255.128,1024,260,0.89,12.9,6.09 crossvit_9_dagger_240,3992.98,256.437,1024,240,1.99,9.97,8.78 efficientnet_cc_b0_8e,3929.29,260.595,1024,224,0.42,9.42,24.01 efficientnet_cc_b0_4e,3918.01,261.346,1024,224,0.41,9.42,13.31 darknet21,3914.26,261.596,1024,256,3.93,7.47,20.86 efficientnet_b1,3876.9,264.116,1024,256,0.77,12.22,7.79 tf_efficientnet_b1,3834.3,267.052,1024,240,0.71,10.88,7.79 resnest14d,3793.21,269.944,1024,224,2.76,7.33,10.61 sedarknet21,3784.73,270.549,1024,256,3.93,7.47,20.95 resnext26ts,3775.5,271.211,1024,256,2.43,10.52,10.3 tf_efficientnetv2_b2,3727.06,274.735,1024,260,1.72,9.84,10.1 convnext_pico,3702.78,276.537,1024,288,2.27,10.08,9.05 edgenext_x_small,3692.42,277.311,1024,288,0.68,7.5,2.34 tf_efficientnet_cc_b0_8e,3691.33,277.395,1024,224,0.42,9.42,24.01 dpn48b,3689.99,277.494,1024,224,1.69,8.92,9.13 eca_resnext26ts,3675.59,278.583,1024,256,2.43,10.52,10.3 seresnext26ts,3670.33,278.98,1024,256,2.43,10.52,10.39 tf_efficientnet_cc_b0_4e,3665.41,279.357,1024,224,0.41,9.42,13.31 tf_efficientnet_lite2,3662.0,279.618,1024,260,0.89,12.9,6.09 nf_ecaresnet26,3619.99,282.862,1024,224,2.41,7.36,16.0 nf_seresnet26,3618.8,282.955,1024,224,2.41,7.36,17.4 gcresnext26ts,3594.7,284.852,1024,256,2.43,10.53,10.48 mobilevitv2_100,3589.19,213.964,768,256,1.84,16.08,4.9 gernet_l,3556.24,287.933,1024,256,4.57,8.0,31.08 legacy_seresnext26_32x4d,3545.88,288.774,1024,224,2.49,9.39,16.79 convnext_pico_ols,3532.27,289.886,1024,288,2.37,10.74,9.06 resnet26t,3503.33,292.28,1024,256,3.35,10.52,16.01 repvgg_a2,3454.82,296.386,1024,224,5.7,6.26,28.21 mixnet_m,3418.52,299.526,1024,224,0.36,8.19,5.01 efficientnet_b3_pruned,3356.7,305.049,1024,300,1.04,11.86,9.86 nf_regnet_b1,3352.23,305.456,1024,288,1.02,9.2,10.22 ecaresnext50t_32x4d,3339.2,306.649,1024,224,2.7,10.09,15.41 ecaresnext26t_32x4d,3337.18,306.833,1024,224,2.7,10.09,15.41 seresnext26tn_32x4d,3327.66,307.711,1024,224,2.7,10.09,16.81 seresnext26t_32x4d,3327.23,307.751,1024,224,2.7,10.09,16.81 seresnext26d_32x4d,3303.57,309.954,1024,224,2.73,10.19,16.81 tf_mixnet_m,3301.19,310.17,1024,224,0.36,8.19,5.01 convit_tiny,3286.62,311.554,1024,224,1.26,7.94,5.71 mobilevit_xs,3278.19,234.265,768,256,1.05,16.33,2.32 pit_s_224,3268.88,313.245,1024,224,2.88,11.56,23.46 pit_s_distilled_224,3266.72,313.452,1024,224,2.9,11.64,24.04 skresnet34,3242.45,315.8,1024,224,3.67,5.13,22.28 eca_botnext26ts_256,3224.24,317.583,1024,256,2.46,11.6,10.59 ecaresnet101d_pruned,3223.88,317.616,1024,224,3.48,7.69,24.88 deit_small_distilled_patch16_224,3220.79,317.922,1024,224,4.63,12.02,22.44 ecaresnetlight,3215.57,318.439,1024,224,4.11,8.42,30.16 deit_small_patch16_224,3209.05,319.085,1024,224,4.61,11.95,22.05 vit_small_patch16_224,3199.98,319.99,1024,224,4.61,11.95,22.05 eca_halonext26ts,3173.71,322.639,1024,256,2.44,11.46,10.76 convnextv2_atto,3162.98,323.733,1024,288,0.91,6.3,3.71 resnetv2_50,3158.28,324.214,1024,224,4.11,11.11,25.55 nf_regnet_b2,3133.63,326.765,1024,272,1.22,9.27,14.31 rexnetr_200,3133.12,245.111,768,224,1.59,15.11,16.52 botnet26t_256,3123.98,327.772,1024,256,3.32,11.98,12.49 coat_lite_tiny,3113.54,328.874,1024,224,1.6,11.65,5.72 vit_small_r26_s32_224,3112.34,329.001,1024,224,3.56,9.85,36.43 bat_resnext26ts,3103.95,329.89,1024,256,2.53,12.51,10.73 halonet26t,3103.39,329.95,1024,256,3.19,11.69,12.48 pvt_v2_b1,3095.14,330.828,1024,224,2.12,15.39,14.01 cspresnet50,3063.22,334.278,1024,256,4.54,11.5,21.62 resnet32ts,3055.79,335.09,1024,256,4.63,11.58,17.96 rexnet_200,3051.5,251.668,768,224,1.56,14.91,16.37 lambda_resnet26t,3046.2,336.144,1024,256,3.02,11.87,10.96 ssl_resnet50,3030.48,337.887,1024,224,4.11,11.11,25.56 gluon_resnet50_v1b,3027.43,338.23,1024,224,4.11,11.11,25.56 tv_resnet50,3027.39,338.232,1024,224,4.11,11.11,25.56 swsl_resnet50,3027.07,338.268,1024,224,4.11,11.11,25.56 resnet50,3025.4,338.455,1024,224,4.11,11.11,25.56 deit3_small_patch16_224_in21ft1k,3023.02,338.721,1024,224,4.61,11.95,22.06 deit3_small_patch16_224,3017.77,339.312,1024,224,4.61,11.95,22.06 tresnet_m,3006.54,340.578,1024,224,5.74,7.31,31.39 resnet33ts,3005.78,340.665,1024,256,4.76,11.66,19.68 vit_small_resnet26d_224,2994.08,341.995,1024,224,5.07,11.12,63.61 resnetv2_50t,2989.06,342.569,1024,224,4.32,11.82,25.57 regnetx_032,2988.15,342.675,1024,224,3.2,11.37,15.3 dpn68b,2981.13,343.481,1024,224,2.35,10.47,12.61 hrnet_w18_small_v2,2978.67,343.765,1024,224,2.62,9.65,15.6 dpn68,2975.29,344.155,1024,224,2.35,10.47,12.61 resnetv2_50d,2971.15,344.633,1024,224,4.35,11.92,25.57 efficientnet_em,2938.12,348.51,1024,240,3.04,14.34,6.9 vit_base_patch32_plus_256,2934.64,348.925,1024,256,7.79,7.76,119.48 coat_lite_mini,2921.75,350.462,1024,224,2.0,12.25,11.01 tf_efficientnet_b2,2919.63,350.718,1024,260,1.02,13.83,9.11 seresnet33ts,2919.51,350.732,1024,256,4.76,11.66,19.78 eca_resnet33ts,2917.21,351.008,1024,256,4.76,11.66,19.68 haloregnetz_b,2890.29,354.276,1024,224,1.97,11.94,11.68 coatnet_pico_rw_224,2884.58,354.98,1024,224,2.05,14.62,10.85 dla60,2883.99,355.049,1024,224,4.26,10.16,22.04 gluon_resnet50_v1c,2872.58,356.463,1024,224,4.35,11.92,25.58 resnet50t,2869.49,356.844,1024,224,4.32,11.82,25.57 gcresnet33ts,2863.36,357.609,1024,256,4.76,11.68,19.88 gluon_resnet50_v1d,2853.24,358.879,1024,224,4.35,11.92,25.58 cspresnet50d,2852.98,358.911,1024,256,4.86,12.55,21.64 resnet50d,2850.55,359.218,1024,224,4.35,11.92,25.58 vovnet39a,2845.31,359.878,1024,224,7.09,6.73,22.6 cspresnet50w,2835.31,361.148,1024,256,5.04,12.19,28.12 vgg11,2827.53,362.143,1024,224,7.61,7.44,132.86 tf_efficientnet_em,2826.28,362.303,1024,240,3.04,14.34,6.9 visformer_small,2818.88,363.251,1024,224,4.88,11.43,40.22 vit_relpos_small_patch16_224,2792.87,366.637,1024,224,4.59,13.05,21.98 vit_relpos_base_patch32_plus_rpn_256,2784.26,367.771,1024,256,7.68,8.01,119.42 vit_srelpos_small_patch16_224,2781.72,368.106,1024,224,4.59,12.16,21.97 resnest26d,2772.97,369.267,1024,224,3.64,9.97,17.07 cs3darknet_focus_l,2770.5,369.596,1024,288,5.9,10.16,21.15 efficientnet_b2a,2767.64,369.979,1024,288,1.12,16.2,9.11 efficientnet_b2,2766.98,370.065,1024,288,1.12,16.2,9.11 ese_vovnet39b,2760.12,370.986,1024,224,7.09,6.74,24.57 legacy_seresnet50,2753.49,371.881,1024,224,3.88,10.6,28.09 densenet121,2749.79,372.378,1024,224,2.87,6.9,7.98 tv_densenet121,2747.16,372.735,1024,224,2.87,6.9,7.98 eca_vovnet39b,2736.53,374.185,1024,224,7.09,6.74,22.6 coatnet_nano_cc_224,2716.19,376.986,1024,224,2.24,15.02,13.76 convnextv2_femto,2710.95,377.714,1024,288,1.3,7.56,5.23 resnetv2_50x1_bit_distilled,2704.93,378.554,1024,224,4.23,11.11,25.55 selecsls84,2697.2,379.64,1024,224,5.9,7.57,50.95 flexivit_small,2693.55,380.153,1024,240,5.35,14.18,22.06 twins_svt_small,2691.25,380.48,1024,224,2.94,13.75,24.06 mixnet_l,2678.25,382.327,1024,224,0.58,10.84,7.33 seresnet50,2674.61,382.848,1024,224,4.11,11.13,28.09 xcit_nano_12_p16_384_dist,2668.39,383.74,1024,384,1.64,12.15,3.05 cs3darknet_l,2649.93,386.412,1024,288,6.16,10.83,21.16 coatnet_nano_rw_224,2633.36,388.844,1024,224,2.41,15.41,15.14 coatnext_nano_rw_224,2627.24,389.75,1024,224,2.47,12.8,14.7 xcit_tiny_24_p16_224_dist,2617.14,391.253,1024,224,2.34,11.82,12.12 densenet121d,2616.98,391.278,1024,224,3.11,7.7,8.0 xcit_tiny_24_p16_224,2614.91,391.584,1024,224,2.34,11.82,12.12 resnet50_gn,2599.07,393.975,1024,224,4.14,11.11,25.56 vit_relpos_small_patch16_rpn_224,2596.73,394.33,1024,224,4.59,13.05,21.97 res2net50_48w_2s,2593.21,394.865,1024,224,4.18,11.72,25.29 mobilevit_s,2587.93,296.749,768,256,2.03,19.94,5.58 convnext_nano,2579.36,396.983,1024,288,4.06,13.84,15.59 tf_mixnet_l,2577.4,397.288,1024,224,0.58,10.84,7.33 resnetaa50d,2573.35,397.912,1024,224,5.39,12.44,25.58 vgg11_bn,2556.04,400.607,1024,224,7.62,7.44,132.87 seresnet50t,2550.33,401.504,1024,224,4.32,11.83,28.1 ecaresnet50d,2544.16,402.478,1024,224,4.35,11.93,25.58 gcvit_xxtiny,2518.13,406.639,1024,224,2.14,15.36,12.0 cs3sedarknet_l,2502.51,409.176,1024,288,6.16,10.83,21.91 resnetrs50,2497.73,409.96,1024,224,4.48,12.14,35.69 mobilevitv2_125,2489.87,308.438,768,256,2.86,20.1,7.48 resnetblur50,2484.87,412.08,1024,224,5.16,12.02,25.56 cspresnext50,2483.24,412.352,1024,256,4.05,15.86,20.57 gluon_resnet50_v1s,2459.02,416.413,1024,224,5.47,13.52,25.68 efficientnet_cc_b1_8e,2458.85,416.443,1024,240,0.75,15.44,39.72 vit_base_resnet26d_224,2458.01,416.584,1024,224,6.97,13.16,101.4 densenetblur121d,2444.58,418.873,1024,224,3.11,7.9,8.0 tv_resnext50_32x4d,2431.41,421.143,1024,224,4.26,14.4,25.03 ssl_resnext50_32x4d,2431.35,421.155,1024,224,4.26,14.4,25.03 swsl_resnext50_32x4d,2430.87,421.236,1024,224,4.26,14.4,25.03 resnext50_32x4d,2429.56,421.462,1024,224,4.26,14.4,25.03 gluon_resnext50_32x4d,2428.35,421.674,1024,224,4.26,14.4,25.03 dla60x,2414.82,424.035,1024,224,3.54,13.8,17.35 efficientnet_lite3,2407.43,212.664,512,300,1.65,21.85,8.2 regnetx_040,2406.98,425.416,1024,224,3.99,12.2,22.12 semobilevit_s,2404.63,319.371,768,256,2.03,19.95,5.74 gcresnext50ts,2402.57,426.196,1024,256,3.75,15.46,15.67 regnety_040s_gn,2385.11,429.317,1024,224,4.03,12.29,20.65 resnetblur50d,2367.52,432.507,1024,224,5.4,12.82,25.58 vovnet57a,2360.79,433.737,1024,224,8.95,7.52,36.64 tf_efficientnet_cc_b1_8e,2357.71,434.307,1024,240,0.75,15.44,39.72 resmlp_24_distilled_224,2351.85,435.39,1024,224,5.96,10.91,30.02 resmlp_24_224,2345.81,436.509,1024,224,5.96,10.91,30.02 res2net50_14w_8s,2341.48,437.317,1024,224,4.21,13.28,25.06 coatnet_rmlp_nano_rw_224,2340.53,437.494,1024,224,2.62,20.34,15.15 sehalonet33ts,2339.44,328.271,768,256,3.55,14.7,13.69 res2net50_26w_4s,2338.49,437.876,1024,224,4.28,12.61,25.7 convnext_nano_ols,2328.37,439.779,1024,288,4.38,15.5,15.65 lambda_resnet26rpt_256,2324.88,165.158,384,256,3.16,11.87,10.99 gmixer_24_224,2324.82,440.451,1024,224,5.28,14.45,24.72 gcresnet50t,2321.78,441.028,1024,256,5.42,14.67,25.9 resnext50d_32x4d,2317.05,441.929,1024,224,4.5,15.2,25.05 resnest50d_1s4x24d,2309.9,443.296,1024,224,4.43,13.57,25.68 seresnetaa50d,2309.78,443.319,1024,224,5.4,12.46,28.11 dla60_res2net,2301.91,444.834,1024,224,4.15,12.34,20.85 vit_base_r26_s32_224,2301.77,444.864,1024,224,6.81,12.36,101.38 twins_pcpvt_small,2290.09,447.132,1024,224,3.83,18.08,24.11 regnetz_b16,2286.62,447.81,1024,288,2.39,16.43,9.72 ese_vovnet57b,2267.23,451.64,1024,224,8.95,7.52,38.61 gluon_inception_v3,2265.31,452.024,1024,299,5.73,8.97,23.83 inception_v3,2260.97,452.888,1024,299,5.73,8.97,23.83 adv_inception_v3,2258.89,453.305,1024,299,5.73,8.97,23.83 tf_inception_v3,2255.73,453.943,1024,299,5.73,8.97,23.83 densenet169,2232.91,458.582,1024,224,3.4,7.3,14.15 tf_efficientnetv2_b3,2223.64,460.493,1024,300,3.04,15.74,14.36 nf_ecaresnet50,2211.52,463.019,1024,224,4.21,11.13,25.56 nf_seresnet50,2207.21,463.921,1024,224,4.21,11.13,28.09 skresnet50,2206.75,464.017,1024,224,4.11,12.5,25.8 edgenext_small,2206.31,464.109,1024,320,1.97,14.16,5.59 seresnext50_32x4d,2197.09,466.058,1024,224,4.26,14.42,27.56 gluon_seresnext50_32x4d,2196.94,466.091,1024,224,4.26,14.42,27.56 xcit_small_12_p16_224_dist,2195.81,466.33,1024,224,4.82,12.58,26.25 legacy_seresnext50_32x4d,2193.34,466.856,1024,224,4.26,14.42,27.56 xcit_small_12_p16_224,2190.16,467.534,1024,224,4.82,12.58,26.25 repvgg_b1g4,2188.83,467.817,1024,224,8.15,10.64,39.97 tf_efficientnet_lite3,2188.37,233.953,512,300,1.65,21.85,8.2 efficientnetv2_rw_t,2170.03,471.87,1024,288,3.19,16.42,13.65 gmlp_s16_224,2164.56,473.061,1024,224,4.42,15.1,19.42 dla60_res2next,2126.26,481.583,1024,224,3.49,13.17,17.03 gc_efficientnetv2_rw_t,2126.09,481.621,1024,288,3.2,16.45,13.68 skresnet50d,2112.57,484.703,1024,224,4.36,13.31,25.82 mobilevitv2_150,2105.0,243.219,512,256,4.09,24.11,10.59 mobilevitv2_150_in22ft1k,2104.51,243.274,512,256,4.09,24.11,10.59 convnextv2_pico,2092.16,489.434,1024,288,2.27,10.08,9.07 poolformer_s24,2090.38,489.851,1024,224,3.41,10.68,21.39 cs3sedarknet_xdw,2090.04,489.929,1024,256,5.97,17.18,21.6 res2next50,2085.23,491.055,1024,224,4.2,13.71,24.67 cspdarknet53,2084.51,491.231,1024,256,6.57,16.81,27.64 fbnetv3_g,2084.48,491.238,1024,288,1.77,21.09,16.62 crossvit_small_240,2074.04,493.709,1024,240,5.63,18.17,26.86 deit3_medium_patch16_224_in21ft1k,2064.27,496.046,1024,224,8.0,15.93,38.85 deit3_medium_patch16_224,2063.34,496.268,1024,224,8.0,15.93,38.85 xcit_nano_12_p8_224_dist,2049.01,499.742,1024,224,2.16,15.71,3.05 xcit_nano_12_p8_224,2044.48,500.848,1024,224,2.16,15.71,3.05 nf_regnet_b3,2035.39,503.085,1024,320,2.05,14.61,18.59 cs3darknet_focus_x,2017.73,507.488,1024,256,8.03,10.69,35.02 vit_relpos_medium_patch16_cls_224,2000.38,511.89,1024,224,8.03,18.24,38.76 lambda_resnet50ts,1991.21,514.246,1024,256,5.07,17.48,21.54 swin_tiny_patch4_window7_224,1978.72,517.495,1024,224,4.51,17.06,28.29 sebotnet33ts_256,1959.75,195.932,384,256,3.89,17.46,13.7 coatnet_0_rw_224,1957.32,523.148,1024,224,4.43,18.73,27.44 ecaresnet26t,1953.32,524.224,1024,320,5.24,16.44,16.01 regnetx_080,1942.5,527.144,1024,224,8.02,14.06,39.57 gcvit_xtiny,1941.57,527.393,1024,224,2.93,20.26,19.98 resnetv2_101,1925.46,531.806,1024,224,7.83,16.23,44.54 regnetx_064,1920.06,533.303,1024,224,6.49,16.37,26.21 mixnet_xl,1918.85,533.64,1024,224,0.93,14.57,11.9 edgenext_small_rw,1912.9,535.3,1024,320,2.46,14.85,7.83 vit_relpos_medium_patch16_224,1907.96,536.687,1024,224,7.97,17.02,38.75 vit_srelpos_medium_patch16_224,1900.57,538.773,1024,224,7.96,16.21,38.74 resnest50d,1896.74,539.858,1024,224,5.4,14.36,27.48 crossvit_15_240,1894.86,540.397,1024,240,5.81,19.77,27.53 vit_base_resnet50d_224,1892.78,540.989,1024,224,8.73,16.92,110.97 gluon_resnet101_v1b,1879.26,544.883,1024,224,7.83,16.23,44.55 tv_resnet101,1878.26,545.172,1024,224,7.83,16.23,44.55 resnet101,1875.25,546.047,1024,224,7.83,16.23,44.55 dla102,1873.79,546.472,1024,224,7.19,14.18,33.27 efficientformer_l3,1868.08,548.142,1024,224,3.93,12.01,31.41 maxvit_rmlp_pico_rw_256,1866.73,411.402,768,256,1.85,24.86,7.52 resnetv2_101d,1855.94,551.727,1024,224,8.07,17.04,44.56 pvt_v2_b2,1835.92,557.745,1024,224,4.05,27.53,25.36 maxvit_pico_rw_256,1829.44,419.787,768,256,1.83,22.3,7.46 vgg13,1820.36,562.512,1024,224,11.31,12.25,133.05 lamhalobotnet50ts_256,1818.57,563.067,1024,256,5.02,18.44,22.57 crossvit_15_dagger_240,1817.96,563.255,1024,240,6.13,20.43,28.21 gluon_resnet101_v1c,1816.14,563.82,1024,224,8.08,17.04,44.57 res2net50_26w_6s,1811.81,565.168,1024,224,6.33,15.28,37.05 gluon_resnet101_v1d,1808.21,566.295,1024,224,8.08,17.04,44.57 swin_s3_tiny_224,1803.67,567.72,1024,224,4.64,19.13,28.33 coatnet_rmlp_0_rw_224,1803.63,567.733,1024,224,4.72,24.89,27.45 vit_relpos_medium_patch16_rpn_224,1770.72,578.284,1024,224,7.97,17.02,38.73 halonet50ts,1765.73,579.917,1024,256,5.3,19.2,22.73 repvgg_b1,1760.92,581.5,1024,224,13.16,10.64,57.42 coatnet_bn_0_rw_224,1753.99,583.799,1024,224,4.67,22.04,27.44 wide_resnet50_2,1747.87,585.844,1024,224,11.43,14.4,68.88 efficientnet_b3,1741.21,294.036,512,320,2.01,26.52,12.23 efficientnet_b3a,1740.84,294.1,512,320,2.01,26.52,12.23 densenet201,1738.22,589.096,1024,224,4.34,7.85,20.01 coatnet_0_224,1727.45,296.376,512,224,4.58,24.01,25.04 darknetaa53,1721.33,594.876,1024,288,10.08,15.68,36.02 tf_efficientnet_b3,1720.61,297.558,512,300,1.87,23.83,12.23 cait_xxs24_224,1720.1,595.301,1024,224,2.53,20.29,11.96 vit_large_patch32_224,1718.53,595.845,1024,224,15.41,13.32,327.9 mobilevitv2_175,1697.71,301.572,512,256,5.54,28.13,14.25 mobilevitv2_175_in22ft1k,1697.51,301.606,512,256,5.54,28.13,14.25 xcit_tiny_12_p16_384_dist,1694.92,604.145,1024,384,3.64,18.26,6.72 pvt_v2_b2_li,1694.45,604.311,1024,224,3.91,27.6,22.55 coat_lite_small,1694.41,604.328,1024,224,3.96,22.09,19.84 resnetaa101d,1692.59,604.976,1024,224,9.12,17.56,44.57 legacy_seresnet101,1686.93,607.005,1024,224,7.61,15.74,49.33 tresnet_v2_l,1685.52,607.515,1024,224,8.81,16.34,46.17 hrnet_w18,1679.12,609.832,1024,224,4.32,16.31,21.3 vit_medium_patch16_gap_240,1667.0,614.264,1024,240,9.22,18.81,44.4 vit_tiny_patch16_384,1660.88,616.528,1024,384,4.7,25.39,5.79 regnetv_040,1659.81,616.926,1024,288,6.6,20.3,20.64 convnext_tiny_hnf,1659.73,616.951,1024,288,7.39,22.21,28.59 seresnet101,1655.13,618.666,1024,224,7.84,16.27,49.33 vit_base_patch32_384,1651.29,620.109,1024,384,13.06,16.5,88.3 vit_base_patch32_clip_384,1649.72,620.7,1024,384,13.06,16.5,88.3 regnety_040,1647.66,621.47,1024,288,6.61,20.3,20.65 regnety_032,1645.25,622.383,1024,288,5.29,18.61,19.44 gluon_resnet101_v1s,1642.29,623.505,1024,224,9.19,18.64,44.67 vgg13_bn,1634.19,626.596,1024,224,11.33,12.25,133.05 resnetaa50,1631.05,627.803,1024,288,8.52,19.24,25.56 mixer_b16_224_miil,1628.71,628.706,1024,224,12.62,14.53,59.88 mixer_b16_224,1627.79,629.061,1024,224,12.62,14.53,59.88 convnext_tiny,1626.95,629.384,1024,288,7.39,22.21,28.59 nf_resnet101,1620.77,631.785,1024,224,8.01,16.23,44.55 swinv2_cr_tiny_224,1618.15,632.807,1024,224,4.66,28.45,28.33 ecaresnet101d,1609.33,636.276,1024,224,8.08,17.07,44.57 twins_pcpvt_base,1605.41,637.831,1024,224,6.68,25.25,43.83 dla102x,1601.78,639.274,1024,224,5.89,19.42,26.31 ese_vovnet39b_evos,1601.47,639.4,1024,224,7.07,6.74,24.58 darknet53,1597.03,641.177,1024,288,11.78,15.68,41.61 resnetblur101d,1596.24,641.494,1024,224,9.12,17.94,44.57 resnet51q,1592.08,643.172,1024,288,8.07,20.94,35.7 swinv2_cr_tiny_ns_224,1591.39,643.448,1024,224,4.66,28.45,28.33 mixer_l32_224,1583.03,646.85,1024,224,11.27,19.86,206.94 resmlp_36_distilled_224,1577.86,648.967,1024,224,8.91,16.33,44.69 resmlp_36_224,1577.4,649.158,1024,224,8.91,16.33,44.69 resnetv2_50d_gn,1561.87,655.61,1024,288,7.24,19.7,25.57 botnet50ts_256,1556.81,246.643,384,256,5.54,22.23,22.74 nf_resnet50,1548.83,661.132,1024,288,6.88,18.37,25.56 resnetv2_50d_frn,1547.35,661.764,1024,224,4.33,11.92,25.59 halo2botnet50ts_256,1546.64,496.545,768,256,5.02,21.78,22.64 mvitv2_tiny,1534.63,667.247,1024,224,4.7,21.16,24.17 gluon_resnext101_32x4d,1505.04,680.366,1024,224,8.01,21.23,44.18 swsl_resnext101_32x4d,1504.46,680.63,1024,224,8.01,21.23,44.18 cs3darknet_x,1504.38,680.665,1024,288,10.6,14.36,35.05 ssl_resnext101_32x4d,1503.93,680.869,1024,224,8.01,21.23,44.18 resnext101_32x4d,1503.63,681.005,1024,224,8.01,21.23,44.18 resnest50d_4s2x40d,1497.58,683.755,1024,224,4.4,17.94,30.42 convnextv2_nano,1488.75,515.858,768,288,4.06,13.84,15.62 skresnext50_32x4d,1478.83,692.427,1024,224,4.5,17.18,27.48 mobilevitv2_200,1478.44,519.454,768,256,7.22,32.15,18.45 tresnet_l,1477.44,693.076,1024,224,10.88,11.9,55.99 mobilevitv2_200_in22ft1k,1477.37,519.83,768,256,7.22,32.15,18.45 vgg16,1475.59,693.946,1024,224,15.47,13.56,138.36 regnetz_c16,1475.58,693.953,1024,320,3.92,25.88,13.46 resnetv2_50d_evob,1468.61,697.244,1024,224,4.33,11.92,25.59 vit_medium_patch16_gap_256,1467.03,697.996,1024,256,10.59,22.15,38.86 res2net50_26w_8s,1466.52,698.239,1024,224,8.37,17.95,48.4 sequencer2d_s,1465.84,698.562,1024,224,4.96,11.31,27.65 eca_nfnet_l0,1461.61,700.586,1024,288,7.12,17.29,24.14 nfnet_l0,1460.27,701.228,1024,288,7.13,17.29,35.07 cs3sedarknet_x,1435.72,713.217,1024,288,10.6,14.37,35.4 resnet61q,1434.01,714.068,1024,288,9.87,21.52,36.85 res2net101_26w_4s,1424.71,718.728,1024,224,8.1,18.45,45.21 repvgg_b2g4,1415.15,723.581,1024,224,12.63,12.9,61.76 nest_tiny,1413.2,543.434,768,224,5.83,25.48,17.06 poolformer_s36,1408.65,726.922,1024,224,5.0,15.82,30.86 maxvit_rmlp_nano_rw_256,1404.06,546.971,768,256,4.47,31.92,15.5 convit_small,1397.72,732.608,1024,224,5.76,17.87,27.78 jx_nest_tiny,1387.89,553.347,768,224,5.83,25.48,17.06 maxvit_nano_rw_256,1378.18,557.246,768,256,4.46,30.28,15.45 nf_ecaresnet101,1373.28,745.649,1024,224,8.01,16.27,44.55 nf_seresnet101,1369.04,747.958,1024,224,8.02,16.27,49.33 gluon_seresnext101_32x4d,1358.35,753.84,1024,224,8.02,21.26,48.96 legacy_seresnext101_32x4d,1357.27,754.442,1024,224,8.02,21.26,48.96 efficientnet_b3_gn,1357.0,282.964,384,320,2.14,28.83,11.73 nfnet_f0,1356.65,754.786,1024,256,12.62,18.05,71.49 seresnext101_32x4d,1356.0,755.148,1024,224,8.02,21.26,48.96 resnetv2_152,1353.28,756.668,1024,224,11.55,22.56,60.19 xception,1353.17,567.542,768,299,8.4,35.83,22.86 twins_svt_base,1350.54,758.199,1024,224,8.59,26.33,56.07 crossvit_18_240,1343.82,761.996,1024,240,9.05,26.26,43.27 ese_vovnet99b_iabn,1343.72,762.049,1024,224,16.49,11.27,63.2 maxxvit_rmlp_nano_rw_256,1341.45,763.341,1024,256,4.37,26.05,16.78 regnetx_120,1339.05,764.708,1024,224,12.13,21.37,46.11 vgg16_bn,1336.79,765.998,1024,224,15.5,13.56,138.37 dpn92,1330.6,769.562,1024,224,6.54,18.21,37.67 tv_resnet152,1329.75,770.054,1024,224,11.56,22.56,60.19 gcvit_tiny,1328.61,770.718,1024,224,4.79,29.82,28.22 gluon_resnet152_v1b,1328.2,770.954,1024,224,11.56,22.56,60.19 resnet152,1327.13,771.578,1024,224,11.56,22.56,60.19 ese_vovnet99b,1316.93,777.554,1024,224,16.51,11.27,63.2 pvt_v2_b3,1316.31,777.917,1024,224,6.92,37.7,45.24 xcit_tiny_12_p8_224_dist,1300.55,787.348,1024,224,4.81,23.6,6.71 xcit_tiny_12_p8_224,1299.96,787.704,1024,224,4.81,23.6,6.71 crossvit_18_dagger_240,1298.96,788.312,1024,240,9.5,27.03,44.27 hrnet_w32,1297.82,789.002,1024,224,8.97,22.02,41.23 gluon_resnet152_v1c,1296.47,789.825,1024,224,11.8,23.36,60.21 resnetv2_152d,1296.37,789.881,1024,224,11.8,23.36,60.2 gluon_resnet152_v1d,1293.21,791.811,1024,224,11.8,23.36,60.21 vit_small_resnet50d_s16_224,1288.35,794.801,1024,224,13.48,24.82,57.53 cs3edgenet_x,1281.15,799.266,1024,288,14.59,16.36,47.82 edgenext_base,1272.74,804.548,1024,320,6.01,24.32,18.51 regnety_120,1268.38,807.318,1024,224,12.14,21.38,51.82 dla169,1258.34,813.753,1024,224,11.6,20.2,53.39 hrnet_w30,1252.2,817.74,1024,224,8.15,21.21,37.71 xception41p,1249.06,409.896,512,299,9.25,39.86,26.91 maxxvitv2_nano_rw_256,1248.81,819.967,1024,256,6.26,23.05,23.7 ecaresnet50t,1243.91,823.198,1024,320,8.82,24.13,25.57 vgg19,1237.03,827.774,1024,224,19.63,14.86,143.67 swin_small_patch4_window7_224,1228.67,833.406,1024,224,8.77,27.47,49.61 efficientnet_el_pruned,1220.93,838.69,1024,300,8.0,30.7,10.59 densenet161,1220.41,839.05,1024,224,7.79,11.06,28.68 efficientnet_el,1218.76,840.187,1024,300,8.0,30.7,10.59 deit_base_distilled_patch16_224,1211.4,845.292,1024,224,17.68,24.05,87.34 vit_base_patch16_224,1209.0,846.969,1024,224,17.58,23.9,86.57 vit_base_patch16_224_miil,1208.72,847.163,1024,224,17.59,23.91,94.4 deit_base_patch16_224,1208.56,847.275,1024,224,17.58,23.9,86.57 vit_base_patch16_clip_224,1205.77,849.236,1024,224,17.58,23.9,86.57 gluon_resnet152_v1s,1205.41,849.488,1024,224,12.92,24.96,60.32 coatnet_rmlp_1_rw_224,1201.89,851.979,1024,224,7.85,35.47,41.69 maxvit_tiny_rw_224,1200.3,853.107,1024,224,5.11,33.11,29.06 mixnet_xxl,1193.04,643.721,768,224,2.04,23.43,23.96 tf_efficientnet_el,1192.11,858.967,1024,300,8.0,30.7,10.59 swinv2_tiny_window8_256,1191.01,859.761,1024,256,5.96,24.57,28.35 volo_d1_224,1190.57,860.079,1024,224,6.94,24.43,26.63 repvgg_b2,1183.91,864.916,1024,224,20.45,12.9,89.02 legacy_seresnet152,1181.09,866.978,1024,224,11.33,22.08,66.82 xcit_small_24_p16_224_dist,1175.31,871.245,1024,224,9.1,23.64,47.67 xcit_small_24_p16_224,1174.76,871.656,1024,224,9.1,23.64,47.67 inception_v4,1168.76,876.127,1024,299,12.28,15.09,42.68 seresnet152,1166.02,878.19,1024,224,11.57,22.61,66.82 twins_pcpvt_large,1163.18,880.331,1024,224,9.84,35.82,60.99 deit3_base_patch16_224,1159.4,883.201,1024,224,17.58,23.9,86.59 deit3_base_patch16_224_in21ft1k,1159.14,883.404,1024,224,17.58,23.9,86.59 cait_xxs36_224,1156.4,885.493,1024,224,3.77,30.34,17.3 vit_base_patch32_clip_448,1154.9,886.645,1024,448,17.93,23.9,88.34 regnetx_160,1153.07,888.048,1024,224,15.99,25.52,54.28 dm_nfnet_f0,1152.75,888.293,1024,256,12.62,18.05,71.49 sequencer2d_m,1147.71,892.201,1024,224,6.55,14.26,38.31 repvgg_b3g4,1145.87,893.631,1024,224,17.89,15.1,83.83 mvitv2_small_cls,1144.7,894.542,1024,224,7.04,28.17,34.87 mvitv2_small,1143.83,895.224,1024,224,7.0,28.08,34.87 efficientnet_lite4,1139.64,336.935,384,380,4.04,45.66,13.01 tnt_s_patch16_224,1135.12,902.091,1024,224,5.24,24.37,23.76 convmixer_1024_20_ks9_p14,1130.85,905.497,1024,224,5.55,5.51,24.38 vgg19_bn,1127.16,908.464,1024,224,19.66,14.86,143.68 vit_relpos_base_patch16_clsgap_224,1124.58,910.547,1024,224,17.6,25.12,86.43 vit_relpos_base_patch16_cls_224,1122.76,912.026,1024,224,17.6,25.12,86.43 coatnet_rmlp_1_rw2_224,1119.61,914.591,1024,224,8.11,40.13,41.72 beit_base_patch16_224,1109.32,923.073,1024,224,17.58,23.9,86.53 xception41,1107.6,462.251,512,299,9.28,39.86,26.97 tresnet_xl,1106.51,925.423,1024,224,15.17,15.34,78.44 beitv2_base_patch16_224,1106.05,925.798,1024,224,17.58,23.9,86.53 coat_tiny,1099.16,931.604,1024,224,4.35,27.2,5.5 vit_base_patch16_gap_224,1085.51,943.323,1024,224,17.49,25.59,86.57 maxvit_tiny_tf_224,1081.57,710.062,768,224,5.6,35.78,30.92 vit_relpos_base_patch16_224,1078.21,949.713,1024,224,17.51,24.97,86.43 nf_regnet_b4,1075.82,951.823,1024,384,4.7,28.61,30.21 coatnet_1_rw_224,1074.48,953.005,1024,224,8.04,34.6,41.72 dla102x2,1070.83,956.252,1024,224,9.34,29.91,41.28 pit_b_224,1066.8,479.928,512,224,12.42,32.94,73.76 pit_b_distilled_224,1063.31,481.504,512,224,12.5,33.07,74.79 tf_efficientnet_lite4,1058.68,362.703,384,380,4.04,45.66,13.01 efficientnetv2_s,1057.28,968.508,1024,384,8.44,35.77,21.46 vit_large_r50_s32_224,1034.79,989.556,1024,224,19.58,24.41,328.99 vit_small_patch16_36x1_224,1032.1,992.142,1024,224,13.71,35.69,64.67 efficientnet_b3_g8_gn,1031.26,496.465,512,320,3.2,28.83,14.25 tf_efficientnetv2_s,1029.13,995.002,1024,384,8.44,35.77,21.46 flexivit_base,1028.55,995.558,1024,240,20.29,28.36,86.59 vit_base_patch16_rpn_224,1016.66,1007.208,1024,224,17.49,23.75,86.54 vit_small_r26_s32_384,1011.11,1012.73,1024,384,10.43,29.85,36.47 vit_small_patch16_18x2_224,1005.34,1018.547,1024,224,13.71,35.69,64.67 swinv2_cr_small_224,1000.71,1023.259,1024,224,9.07,50.27,49.7 efficientnetv2_rw_s,995.91,1028.19,1024,384,8.72,38.03,23.94 wide_resnet101_2,995.32,1028.801,1024,224,22.8,21.23,126.89 swinv2_cr_small_ns_224,989.25,1035.114,1024,224,9.08,50.27,49.7 vit_relpos_base_patch16_rpn_224,986.84,1037.641,1024,224,17.51,24.97,86.41 coatnet_1_224,984.69,519.944,512,224,8.7,39.0,42.23 resnet200,983.36,1041.314,1024,224,15.07,32.19,64.67 dpn98,982.09,1042.657,1024,224,11.73,25.2,61.57 convnext_small,981.97,1042.782,1024,288,14.39,35.65,50.22 cs3se_edgenet_x,975.89,1049.279,1024,320,18.01,20.21,50.72 regnety_080,969.67,1056.01,1024,288,13.22,29.69,39.18 poolformer_m36,966.97,1058.965,1024,224,8.8,22.02,56.17 resnest101e,963.69,1062.57,1024,256,13.38,28.66,48.28 regnetz_b16_evos,955.65,803.632,768,288,2.36,16.43,9.74 twins_svt_large,954.95,1072.291,1024,224,15.15,35.1,99.27 pvt_v2_b4,952.02,1075.594,1024,224,10.14,53.74,62.56 gluon_resnext101_64x4d,944.48,1084.183,1024,224,15.52,31.21,83.46 regnetv_064,944.32,1084.367,1024,288,10.55,27.11,30.58 regnety_064,944.18,1084.526,1024,288,10.56,27.11,30.58 maxvit_rmlp_tiny_rw_256,941.64,815.588,768,256,6.77,46.92,29.15 regnetz_d8,936.16,1093.814,1024,320,6.19,37.08,23.37 resnetrs101,936.12,1093.858,1024,288,13.56,28.53,63.62 regnetz_d32,933.58,1096.833,1024,320,9.33,37.08,27.58 ig_resnext101_32x8d,930.9,1099.997,1024,224,16.48,31.21,88.79 swsl_resnext101_32x8d,930.28,1100.725,1024,224,16.48,31.21,88.79 resnext101_32x8d,929.98,1101.084,1024,224,16.48,31.21,88.79 ssl_resnext101_32x8d,929.0,1102.24,1024,224,16.48,31.21,88.79 convnextv2_tiny,925.13,553.423,512,288,7.39,22.21,28.64 convnextv2_small,924.53,1107.57,1024,224,8.71,21.56,50.32 maxvit_tiny_rw_256,921.72,833.209,768,256,6.74,44.35,29.07 inception_resnet_v2,917.69,1115.834,1024,299,13.18,25.06,55.84 ens_adv_inception_resnet_v2,917.66,1115.871,1024,299,13.18,25.06,55.84 maxxvit_rmlp_tiny_rw_256,914.74,1119.428,1024,256,6.66,39.76,29.64 xcit_tiny_24_p16_384_dist,912.61,1122.045,1024,384,6.87,34.29,12.12 cait_s24_224,908.65,1126.929,1024,224,9.35,40.58,46.92 pvt_v2_b5,904.89,1131.615,1024,224,11.76,50.92,81.96 nest_small,902.63,850.834,768,224,10.35,40.04,38.35 repvgg_b3,901.73,1135.583,1024,224,29.16,15.1,123.09 maxvit_tiny_pm_256,896.67,1141.994,1024,256,6.61,47.9,30.09 xception65p,896.53,571.079,512,299,13.91,52.48,39.82 swin_s3_small_224,896.35,856.792,768,224,9.43,37.84,49.74 jx_nest_small,892.32,860.663,768,224,10.35,40.04,38.35 efficientnet_b4,890.89,431.018,384,384,4.51,50.04,19.34 gmlp_b16_224,885.75,1156.072,1024,224,15.78,30.21,73.08 gluon_seresnext101_64x4d,885.23,1156.747,1024,224,15.53,31.25,88.23 hrnet_w40,881.9,1161.12,1024,224,12.75,25.29,57.56 efficientformer_l7,877.43,1167.027,1024,224,10.17,24.45,82.23 coat_mini,874.29,1171.227,1024,224,6.82,33.68,10.34 resnet101d,871.81,1174.559,1024,320,16.48,34.77,44.57 swin_base_patch4_window7_224,870.1,1176.867,1024,224,15.47,36.63,87.77 regnetz_040,868.17,884.605,768,320,6.35,37.78,27.12 regnetz_040h,862.76,890.151,768,320,6.43,37.94,28.94 mobilevitv2_150_384_in22ft1k,848.7,301.627,256,384,9.2,54.25,10.59 resnetv2_50d_evos,844.34,909.573,768,288,7.15,19.7,25.59 tf_efficientnet_b4,838.16,458.136,384,380,4.49,49.49,19.34 crossvit_base_240,835.31,919.411,768,240,21.22,36.33,105.03 vit_base_r50_s16_224,821.15,1247.01,1024,224,21.67,35.31,114.69 xcit_medium_24_p16_224_dist,819.59,1249.397,1024,224,16.13,31.71,84.4 xcit_medium_24_p16_224,818.73,1250.697,1024,224,16.13,31.71,84.4 gcvit_small,807.46,1268.151,1024,224,8.57,41.61,51.09 gluon_xception65,806.21,635.055,512,299,13.96,52.48,39.92 xception65,800.01,639.983,512,299,13.96,52.48,39.92 mvitv2_base,799.31,1281.092,1024,224,10.16,40.5,51.47 hrnet_w44,789.29,1297.348,1024,224,14.94,26.92,67.06 vit_base_patch16_plus_240,780.68,1311.665,1024,240,27.41,33.08,117.56 hrnet_w48,780.39,1312.147,1024,224,17.34,28.56,77.47 swinv2_tiny_window16_256,778.19,657.926,512,256,6.68,39.02,28.35 tresnet_m_448,775.99,1319.596,1024,448,22.94,29.21,31.39 xcit_small_12_p16_384_dist,760.88,1345.804,1024,384,14.14,36.51,26.25 vit_small_patch16_384,750.95,1022.685,768,384,15.52,50.78,22.2 maxvit_rmlp_small_rw_224,745.49,1373.585,1024,224,10.75,49.3,64.9 sequencer2d_l,742.48,1379.149,1024,224,9.74,22.12,54.3 swinv2_small_window8_256,738.39,1386.788,1024,256,11.58,40.14,49.73 swin_s3_base_224,730.45,1401.854,1024,224,13.69,48.26,71.13 poolformer_m48,729.44,1403.808,1024,224,11.59,29.17,73.47 densenet264d_iabn,727.43,1407.671,1024,224,13.47,14.0,72.74 vit_relpos_base_patch16_plus_240,723.43,1415.468,1024,240,27.3,34.33,117.38 dpn131,722.72,1416.854,1024,224,16.09,32.97,79.25 tnt_b_patch16_224,722.12,1418.026,1024,224,14.09,39.01,65.41 deit3_small_patch16_384,717.36,1070.572,768,384,15.52,50.78,22.21 deit3_small_patch16_384_in21ft1k,716.76,1071.477,768,384,15.52,50.78,22.21 swinv2_cr_base_224,715.64,1430.874,1024,224,15.86,59.66,87.88 eca_nfnet_l1,713.15,1435.867,1024,320,14.92,34.42,41.41 coatnet_2_rw_224,709.88,721.237,512,224,15.09,49.22,73.87 swinv2_cr_base_ns_224,709.69,1442.871,1024,224,15.86,59.66,87.88 coatnet_rmlp_2_rw_224,708.85,722.285,512,224,15.18,54.78,73.88 convit_base,706.65,1449.076,1024,224,17.52,31.77,86.54 mobilevitv2_175_384_in22ft1k,703.41,363.928,256,384,12.47,63.29,14.25 maxvit_small_tf_224,701.58,729.767,512,224,11.66,53.17,68.93 densenet264,701.03,1460.686,1024,224,12.95,12.8,72.69 ecaresnet200d,694.19,1475.094,1024,256,20.0,43.15,64.69 resnetv2_50x1_bitm,691.29,740.624,512,448,16.62,44.46,25.55 seresnet200d,691.25,1481.355,1024,256,20.01,43.15,71.86 xcit_tiny_24_p8_224,684.73,1495.467,1024,224,9.21,45.39,12.11 xcit_tiny_24_p8_224_dist,684.22,1496.573,1024,224,9.21,45.39,12.11 convnext_base,682.42,1500.518,1024,288,25.43,47.53,88.59 volo_d2_224,663.51,1543.3,1024,224,14.34,41.34,58.68 coatnet_2_224,660.84,581.062,384,224,16.5,52.67,74.68 legacy_senet154,654.15,1565.387,1024,224,20.77,38.69,115.09 gluon_senet154,654.04,1565.641,1024,224,20.77,38.69,115.09 senet154,653.94,1565.866,1024,224,20.77,38.69,115.09 xcit_nano_12_p8_384_dist,646.53,1583.823,1024,384,6.34,46.08,3.05 dpn107,646.38,1584.202,1024,224,18.38,33.46,86.92 nest_base,640.55,799.298,512,224,17.96,53.39,67.72 jx_nest_base,633.53,808.151,512,224,17.96,53.39,67.72 mobilevitv2_200_384_in22ft1k,626.31,408.731,256,384,16.24,72.34,18.45 xception71,619.72,826.163,512,299,18.09,69.92,42.34 hrnet_w64,618.15,1656.539,1024,224,28.97,35.09,128.06 resnet152d,618.09,1656.699,1024,320,24.08,47.67,60.21 regnetz_c16_evos,604.19,847.399,512,320,3.86,25.88,13.49 gcvit_base,594.61,1722.135,1024,224,14.87,55.48,90.32 regnety_160,594.3,1292.258,768,288,26.37,38.07,83.59 maxxvit_rmlp_small_rw_256,588.15,1741.023,1024,256,14.67,58.38,66.01 xcit_small_12_p8_224,582.04,1759.324,1024,224,18.69,47.21,26.21 xcit_small_12_p8_224_dist,581.74,1760.224,1024,224,18.69,47.21,26.21 maxvit_rmlp_small_rw_256,575.72,1333.976,768,256,14.15,66.09,64.9 regnetx_320,551.07,1393.631,768,224,31.81,36.3,107.81 seresnet152d,547.51,1870.27,1024,320,24.09,47.72,66.84 resnetrs152,544.33,1881.196,1024,320,24.34,48.14,86.62 vit_large_patch32_384,543.23,1884.997,1024,384,45.31,43.86,306.63 halonet_h1,540.47,473.65,256,256,3.0,51.17,8.1 seresnet269d,540.42,1894.818,1024,256,26.59,53.6,113.67 swinv2_base_window8_256,529.22,1451.182,768,256,20.37,52.59,87.92 maxxvitv2_rmlp_base_rw_224,523.43,1956.308,1024,224,24.2,62.77,116.09 resnext101_64x4d,521.77,1962.525,1024,288,25.66,51.59,83.46 regnetz_e8,521.5,1472.647,768,320,15.46,63.94,57.7 mixer_l16_224,518.26,1975.807,1024,224,44.6,41.69,208.2 vit_medium_patch16_gap_384,508.63,1006.611,512,384,26.08,67.54,39.03 swin_large_patch4_window7_224,501.11,1532.586,768,224,34.53,54.94,196.53 regnety_320,490.98,2085.591,1024,224,32.34,30.26,145.05 swinv2_small_window16_256,487.64,1049.932,512,256,12.82,66.29,49.73 seresnext101_32x8d,483.23,2119.074,1024,288,27.24,51.63,93.57 vit_small_patch8_224,478.05,1071.009,512,224,22.44,80.84,21.67 ig_resnext101_32x16d,477.64,2143.862,1024,224,36.27,51.18,194.03 swsl_resnext101_32x16d,476.69,2148.145,1024,224,36.27,51.18,194.03 ssl_resnext101_32x16d,476.06,2150.954,1024,224,36.27,51.18,194.03 seresnext101d_32x8d,475.05,2155.547,1024,288,27.64,52.95,93.59 nf_regnet_b5,470.14,1089.029,512,456,11.7,61.95,49.74 xcit_large_24_p16_224_dist,468.86,2184.017,1024,224,35.86,47.27,189.1 xcit_large_24_p16_224,468.75,2184.529,1024,224,35.86,47.27,189.1 volo_d3_224,463.72,2208.199,1024,224,20.78,60.09,86.33 nfnet_f1,463.52,2209.163,1024,320,35.97,46.77,132.63 efficientnet_b5,460.91,555.412,256,448,9.59,93.56,30.39 resnet200d,453.15,2259.739,1024,320,31.25,67.33,64.69 efficientnetv2_m,451.89,2266.018,1024,416,18.6,67.5,54.14 seresnextaa101d_32x8d,447.26,2289.498,1024,288,28.51,56.44,93.59 efficientnetv2_rw_m,437.1,1757.005,768,416,21.49,79.62,53.24 swinv2_cr_large_224,422.08,1819.551,768,224,35.1,78.42,196.68 coatnet_rmlp_3_rw_224,421.87,910.226,384,224,33.56,79.47,165.15 xcit_tiny_12_p8_384_dist,421.04,2432.044,1024,384,14.13,69.14,6.71 swinv2_cr_tiny_384,419.77,609.847,256,384,15.34,161.01,28.33 maxvit_rmlp_base_rw_224,419.03,1832.808,768,224,23.15,92.64,116.14 resnetv2_152x2_bit_teacher,418.89,2444.553,1024,224,46.95,45.11,236.34 resnetv2_101x1_bitm,418.36,1223.813,512,448,31.65,64.93,44.54 dm_nfnet_f1,409.02,1877.643,768,320,35.97,46.77,132.63 xcit_small_24_p16_384_dist,407.47,2513.062,1024,384,26.72,68.58,47.67 coatnet_3_rw_224,404.39,633.033,256,224,33.44,73.83,181.81 tf_efficientnet_b5,403.59,634.298,256,456,10.46,98.86,30.39 convnextv2_base,402.92,1270.715,512,288,25.43,47.53,88.72 resnetrs200,396.11,2585.123,1024,320,31.51,67.81,93.21 tresnet_l_448,395.6,2588.481,1024,448,43.5,47.56,55.99 eva_large_patch14_196,391.22,2617.408,1024,196,61.57,63.52,304.14 vit_large_patch16_224,389.92,2626.132,1024,224,61.6,63.52,304.33 regnetz_d8_evos,389.86,1969.937,768,320,7.03,38.92,23.46 maxvit_base_tf_224,387.71,1320.545,512,224,24.04,95.01,119.47 coatnet_3_224,387.35,660.882,256,224,36.56,79.01,166.97 crossvit_15_dagger_408,386.57,662.227,256,408,21.45,95.05,28.5 vit_base_patch16_18x2_224,384.3,2664.545,1024,224,52.51,71.38,256.73 deit3_large_patch16_224,376.93,2716.643,1024,224,61.6,63.52,304.37 deit3_large_patch16_224_in21ft1k,376.54,2719.504,1024,224,61.6,63.52,304.37 tf_efficientnetv2_m,374.38,2051.373,768,480,24.76,89.84,54.14 convnext_large,371.39,1378.579,512,288,56.87,71.29,197.77 beitv2_large_patch16_224,360.12,2843.465,1024,224,61.6,63.52,304.43 beit_large_patch16_224,359.86,2845.558,1024,224,61.6,63.52,304.43 swinv2_base_window12to16_192to256_22kft1k,359.31,1068.705,384,256,22.02,84.71,87.92 swinv2_base_window16_256,359.09,1069.342,384,256,22.02,84.71,87.92 eca_nfnet_l2,347.1,2212.621,768,384,30.05,68.28,56.72 flexivit_large,333.31,3072.173,1024,240,70.99,75.39,304.36 vit_large_r50_s32_384,332.86,3076.333,1024,384,57.43,76.52,329.09 maxxvitv2_rmlp_large_rw_224,330.79,3095.576,1024,224,44.14,87.15,215.42 resnest200e,317.25,3227.754,1024,320,35.69,82.78,70.2 maxvit_tiny_tf_384,317.22,807.002,256,384,17.53,123.42,30.98 convmixer_768_32,309.28,3310.892,1024,224,19.55,25.95,21.11 deit_base_patch16_384,306.13,1254.335,384,384,55.54,101.56,86.86 vit_base_patch16_384,306.13,1254.349,384,384,55.54,101.56,86.86 vit_base_patch16_clip_384,305.56,1256.673,384,384,55.54,101.56,86.86 xcit_small_24_p8_224_dist,305.18,3355.41,1024,224,35.81,90.78,47.63 deit_base_distilled_patch16_384,304.96,1259.16,384,384,55.65,101.82,87.63 xcit_small_24_p8_224,304.86,3358.887,1024,224,35.81,90.78,47.63 nasnetalarge,300.31,1278.679,384,331,23.89,90.56,88.75 volo_d1_384,299.05,1712.072,512,384,22.75,108.55,26.78 volo_d4_224,295.86,3461.069,1024,224,44.34,80.22,192.96 deit3_base_patch16_384,294.03,1305.985,384,384,55.54,101.56,86.88 deit3_base_patch16_384_in21ft1k,293.78,1307.085,384,384,55.54,101.56,86.88 tresnet_xl_448,292.43,2626.294,768,448,60.65,61.31,78.44 pnasnet5large,285.95,1342.894,384,331,25.04,92.89,86.06 vit_large_patch14_224,285.66,3584.705,1024,224,81.08,88.79,304.2 vit_large_patch14_clip_224,285.43,3587.599,1024,224,81.08,88.79,304.2 crossvit_18_dagger_408,283.82,901.967,256,408,32.47,124.87,44.61 xcit_medium_24_p16_384_dist,282.22,3628.317,1024,384,47.39,91.64,84.4 cait_xxs24_384,275.38,3718.492,1024,384,9.63,122.66,12.03 regnety_640,271.79,2825.663,768,224,64.16,42.5,281.38 maxvit_large_tf_224,268.97,1427.67,384,224,43.68,127.35,211.79 nfnet_f2,263.0,3893.59,1024,352,63.22,79.06,193.78 beit_base_patch16_384,260.66,1473.146,384,384,55.54,101.56,86.74 swinv2_cr_small_384,258.79,989.214,256,384,29.7,298.03,49.7 ecaresnet269d,257.79,3972.16,1024,352,50.25,101.25,102.09 resnetrs270,249.11,4110.633,1024,352,51.13,105.48,129.86 mvitv2_large,248.64,2059.181,512,224,43.87,112.02,217.99 efficientnet_b6,246.42,519.432,128,528,19.4,167.39,43.04 convnext_xlarge,241.35,2121.412,512,288,100.8,95.05,350.2 convnextv2_large,238.64,1072.708,256,288,56.87,71.29,197.96 tf_efficientnet_b6,236.4,541.434,128,528,19.4,167.39,43.04 swin_base_patch4_window12_384,235.04,816.885,192,384,47.19,134.78,87.9 dm_nfnet_f2,234.34,3277.279,768,352,63.22,79.06,193.78 coatnet_4_224,228.52,1120.23,256,224,62.48,129.26,275.43 vit_base_r50_s16_384,227.31,1689.303,384,384,67.43,135.03,98.95 efficientnetv2_l,221.97,2306.653,512,480,56.4,157.99,118.52 xcit_tiny_24_p8_384_dist,221.23,4628.611,1024,384,27.05,132.95,12.11 ig_resnext101_32x32d,220.61,2320.857,512,224,87.29,91.12,468.53 swinv2_large_window12to16_192to256_22kft1k,219.46,1166.485,256,256,47.81,121.53,196.74 tf_efficientnetv2_l,219.35,2334.183,512,480,56.4,157.99,118.52 resmlp_big_24_224,214.31,4778.166,1024,224,100.23,87.31,129.14 resmlp_big_24_224_in22ft1k,214.13,4782.043,1024,224,100.23,87.31,129.14 resmlp_big_24_distilled_224,214.04,4784.169,1024,224,100.23,87.31,129.14 xcit_medium_24_p8_224_dist,210.1,4873.763,1024,224,63.53,121.23,84.32 xcit_medium_24_p8_224,210.01,4875.864,1024,224,63.53,121.23,84.32 maxvit_small_tf_384,208.79,919.556,192,384,35.87,183.65,69.02 vit_base_patch8_224,199.59,1282.637,256,224,78.22,161.69,86.58 eca_nfnet_l3,199.58,2565.434,512,448,52.55,118.4,72.04 volo_d5_224,196.25,5217.924,1024,224,72.4,118.11,295.46 xcit_small_12_p8_384_dist,194.27,2635.521,512,384,54.92,138.29,26.21 cait_xs24_384,192.73,3984.863,768,384,19.28,183.98,26.67 swinv2_cr_base_384,184.92,1384.392,256,384,50.57,333.68,87.88 cait_xxs36_384,184.35,5554.56,1024,384,14.35,183.7,17.37 swinv2_cr_huge_224,183.61,2091.395,384,224,115.97,121.08,657.83 convnext_xxlarge,183.01,2098.268,384,224,151.66,95.29,846.47 coatnet_rmlp_2_rw_384,178.88,715.532,128,384,47.69,209.43,73.88 convmixer_1536_20,173.51,5901.752,1024,224,48.68,33.03,51.63 volo_d2_384,168.46,1519.603,256,384,46.17,184.51,58.87 resnetrs350,168.28,6085.136,1024,384,77.59,154.74,163.96 xcit_large_24_p16_384_dist,160.71,4778.847,768,384,105.35,137.17,189.1 resnetv2_152x2_bit_teacher_384,159.55,1604.488,256,384,136.16,132.56,236.34 maxvit_xlarge_tf_224,155.79,1643.178,256,224,97.49,191.02,474.95 maxvit_tiny_tf_512,155.64,822.373,128,512,33.49,257.59,31.05 regnety_1280,155.18,2474.502,384,224,127.66,71.58,644.81 vit_huge_patch14_224,154.03,6647.897,1024,224,167.43,139.43,658.75 vit_huge_patch14_clip_224,153.92,6652.944,1024,224,167.4,139.41,632.05 maxxvitv2_rmlp_base_rw_384,153.34,1669.502,256,384,72.98,213.74,116.09 efficientnetv2_xl,152.49,3357.61,512,512,93.85,247.32,208.12 tf_efficientnetv2_xl,151.4,2536.254,384,512,93.85,247.32,208.12 deit3_huge_patch14_224_in21ft1k,149.08,6868.834,1024,224,167.4,139.41,632.13 deit3_huge_patch14_224,149.01,6871.974,1024,224,167.4,139.41,632.13 cait_s24_384,148.46,3448.684,512,384,32.17,245.31,47.06 resnest269e,147.61,3468.584,512,416,77.69,171.98,110.93 nfnet_f3,147.43,3472.717,512,416,115.58,141.78,254.92 efficientnet_b7,142.41,674.084,96,600,38.33,289.94,66.35 resnetv2_50x3_bitm,138.27,1388.564,192,448,145.7,133.37,217.32 tf_efficientnet_b7,137.89,696.181,96,600,38.33,289.94,66.35 swin_large_patch4_window12_384,137.6,930.229,128,384,104.08,202.16,196.74 ig_resnext101_32x48d,132.29,2902.628,384,224,153.57,131.06,828.41 dm_nfnet_f3,127.59,4012.898,512,416,115.58,141.78,254.92 coatnet_5_224,125.18,1022.512,128,224,145.49,194.24,687.47 maxvit_rmlp_base_rw_384,121.26,2111.079,256,384,70.97,318.95,116.14 xcit_large_24_p8_224,119.97,6401.598,768,224,141.23,181.56,188.93 xcit_large_24_p8_224_dist,119.94,6403.17,768,224,141.23,181.56,188.93 resnetrs420,119.93,6403.598,768,416,108.45,213.79,191.89 resnetv2_152x2_bitm,117.33,2181.801,256,448,184.99,180.43,236.34 maxvit_base_tf_384,113.69,1688.826,192,384,73.8,332.9,119.65 swinv2_cr_large_384,113.07,1132.03,128,384,108.95,404.96,196.68 eva_large_patch14_336,102.65,2493.904,256,336,191.1,270.24,304.53 vit_large_patch14_clip_336,102.47,2498.286,256,336,191.11,270.24,304.53 vit_large_patch16_384,102.37,2500.639,256,384,191.21,270.24,304.72 xcit_small_24_p8_384_dist,102.36,5001.728,512,384,105.24,265.91,47.63 eva_giant_patch14_224,101.75,10063.521,1024,224,267.18,192.64,1012.56 vit_giant_patch14_224,100.42,7648.057,768,224,267.18,192.64,1012.61 vit_giant_patch14_clip_224,100.32,7655.265,768,224,267.18,192.64,1012.65 cait_s36_384,99.37,5152.338,512,384,47.99,367.4,68.37 deit3_large_patch16_384,99.34,2577.037,256,384,191.21,270.24,304.76 deit3_large_patch16_384_in21ft1k,99.27,2578.907,256,384,191.21,270.24,304.76 regnety_2560,97.99,2612.623,256,224,257.07,87.48,826.14 maxvit_small_tf_512,97.85,981.11,96,512,67.26,383.77,69.13 swinv2_base_window12to24_192to384_22kft1k,95.95,666.98,64,384,55.25,280.36,87.92 efficientnet_b8,95.3,1007.298,96,672,63.48,442.89,87.41 tf_efficientnet_b8,92.65,1036.1,96,672,63.48,442.89,87.41 beit_large_patch16_384,88.55,2890.891,256,384,191.21,270.24,305.0 resnetv2_101x3_bitm,83.1,2310.491,192,448,280.33,194.78,387.93 maxvit_large_tf_384,80.34,1593.284,128,384,132.55,445.84,212.03 nfnet_f4,79.54,4827.723,384,512,216.26,262.26,316.07 volo_d3_448,73.5,2612.274,192,448,96.33,446.83,86.63 dm_nfnet_f4,71.41,3584.699,256,512,216.26,262.26,316.07 xcit_medium_24_p8_384_dist,70.91,5415.294,384,384,186.67,354.73,84.32 swinv2_large_window12to24_192to384_22kft1k,60.84,788.97,48,384,116.15,407.83,196.74 vit_gigantic_patch14_clip_224,60.15,8511.823,512,224,483.96,275.37,1844.91 vit_gigantic_patch14_224,60.11,8517.291,512,224,483.95,275.37,1844.44 nfnet_f5,58.02,4412.387,256,544,290.97,349.71,377.21 vit_huge_patch14_clip_336,57.29,4468.831,256,336,390.97,407.54,632.46 convnextv2_huge,56.06,1712.576,96,384,337.96,232.35,660.29 volo_d4_448,54.47,2349.801,128,448,197.13,527.35,193.41 tf_efficientnet_l2,54.12,1182.593,64,475,172.11,609.89,480.31 maxvit_base_tf_512,52.65,1823.292,96,512,138.02,703.99,119.88 swinv2_cr_giant_224,52.12,2455.882,128,224,483.85,309.15,2598.76 dm_nfnet_f5,50.7,5049.339,256,544,290.97,349.71,377.21 swinv2_cr_huge_384,48.86,1309.971,64,384,352.04,583.18,657.94 maxvit_xlarge_tf_384,46.24,2076.289,96,384,292.78,668.76,475.32 nfnet_f6,44.3,5778.548,256,576,378.69,452.2,438.36 xcit_large_24_p8_384_dist,40.2,6368.127,256,384,415.0,531.82,188.93 eva_giant_patch14_336,39.77,6436.237,256,336,620.64,550.67,1013.01 dm_nfnet_f6,39.62,6461.626,256,576,378.69,452.2,438.36 maxvit_large_tf_512,38.67,1654.908,64,512,244.75,942.15,212.33 volo_d5_448,37.56,3408.043,128,448,315.06,737.92,295.91 beit_large_patch16_512,35.36,2715.28,96,512,362.24,656.39,305.67 nfnet_f7,34.74,7370.0,256,608,480.39,570.85,499.5 cait_m36_384,32.36,7912.123,256,384,173.11,734.81,271.22 resnetv2_152x4_bitm,30.0,4266.89,128,480,844.84,414.26,936.53 volo_d5_512,26.35,4857.602,128,512,425.09,1105.37,296.09 maxvit_xlarge_tf_512,23.12,2076.455,48,512,534.14,1413.22,475.77 efficientnet_l2,21.26,1505.032,32,800,479.12,1707.39,480.31 swinv2_cr_giant_384,15.03,2129.6,32,384,1450.71,1394.86,2598.76 cait_m48_448,13.69,9353.048,128,448,329.41,1708.23,356.46 eva_giant_patch14_560,10.36,4631.037,48,560,1906.76,2577.17,1014.45
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/benchmark-infer-amp-nhwc-pt111-cu113-rtx3090.csv
model,infer_samples_per_sec,infer_step_time,infer_batch_size,infer_img_size,param_count tinynet_e,68298.73,14.982,1024,106,2.04 mobilenetv3_small_050,48773.32,20.985,1024,224,1.59 lcnet_035,47045.94,21.755,1024,224,1.64 lcnet_050,41541.83,24.639,1024,224,1.88 mobilenetv3_small_075,37803.23,27.076,1024,224,2.04 mobilenetv3_small_100,34839.31,29.381,1024,224,2.54 tinynet_d,34615.54,29.571,1024,152,2.34 tf_mobilenetv3_small_minimal_100,31097.5,32.918,1024,224,2.04 tf_mobilenetv3_small_075,30498.6,33.564,1024,224,2.04 tf_mobilenetv3_small_100,28466.28,35.962,1024,224,2.54 lcnet_075,26999.4,37.915,1024,224,2.36 mnasnet_small,23228.74,44.072,1024,224,2.03 lcnet_100,22774.77,44.951,1024,224,2.95 levit_128s,21485.8,47.648,1024,224,7.78 mobilenetv2_035,20032.08,51.106,1024,224,1.68 ghostnet_050,18639.82,54.925,1024,224,2.59 mnasnet_050,18244.9,56.115,1024,224,2.22 regnetx_002,17821.98,57.446,1024,224,2.68 tinynet_c,17586.87,58.214,1024,184,2.46 regnety_002,16673.08,61.405,1024,224,3.16 mobilenetv2_050,16415.14,62.371,1024,224,1.97 semnasnet_050,16295.23,62.83,1024,224,2.08 lcnet_150,15040.68,68.071,1024,224,4.5 levit_128,14657.83,69.849,1024,224,9.21 regnetx_004,14440.03,70.903,1024,224,5.16 gernet_s,14051.59,72.863,1024,224,8.17 mobilenetv3_large_075,13658.47,74.961,1024,224,3.99 levit_192,12892.86,79.412,1024,224,10.95 mnasnet_075,12457.54,82.188,1024,224,3.17 mobilenetv3_rw,12442.0,82.291,1024,224,5.48 hardcorenas_a,12441.72,82.293,1024,224,5.26 mixer_s32_224,12325.03,83.072,1024,224,19.1 mobilenetv3_large_100,12253.83,83.554,1024,224,5.48 mobilenetv3_large_100_miil,12253.15,83.559,1024,224,5.48 vit_small_patch32_224,12098.59,84.625,1024,224,22.88 tf_mobilenetv3_large_075,11757.16,87.085,1024,224,3.99 tinynet_b,11714.84,87.399,1024,188,3.73 hardcorenas_b,11307.89,90.545,1024,224,5.18 hardcorenas_c,11295.65,90.643,1024,224,5.52 ese_vovnet19b_slim_dw,11295.18,90.646,1024,224,1.9 tf_mobilenetv3_large_minimal_100,11279.9,90.77,1024,224,3.92 mnasnet_b1,10903.65,93.902,1024,224,4.38 mnasnet_100,10903.28,93.906,1024,224,4.38 swsl_resnet18,10835.46,94.49,1024,224,11.69 ssl_resnet18,10829.31,94.547,1024,224,11.69 resnet18,10826.05,94.576,1024,224,11.69 gluon_resnet18_v1b,10791.4,94.879,1024,224,11.69 tf_mobilenetv3_large_100,10638.58,96.242,1024,224,5.48 hardcorenas_d,10551.44,97.037,1024,224,7.5 semnasnet_075,10519.79,97.329,1024,224,2.91 ghostnet_100,10434.77,98.122,1024,224,5.18 mobilenetv2_075,10372.86,98.708,1024,224,2.64 seresnet18,10183.7,100.541,1024,224,11.78 regnety_006,9982.58,102.567,1024,224,6.06 vit_tiny_r_s16_p8_224,9895.77,103.465,1024,224,6.34 spnasnet_100,9875.93,103.675,1024,224,4.42 legacy_seresnet18,9845.25,103.999,1024,224,11.78 regnety_004,9552.58,107.183,1024,224,4.34 levit_256,9434.24,108.53,1024,224,18.89 tinynet_a,9412.38,108.782,1024,192,6.19 hardcorenas_f,9390.96,109.029,1024,224,8.2 semnasnet_100,9334.36,109.69,1024,224,3.89 mnasnet_a1,9318.68,109.875,1024,224,3.89 mobilenetv2_100,9260.72,110.564,1024,224,3.5 hardcorenas_e,9255.53,110.624,1024,224,8.07 tf_efficientnetv2_b0,9250.71,110.683,1024,224,7.14 fbnetc_100,9032.97,113.35,1024,224,5.57 efficientnet_lite0,8999.14,113.778,1024,224,4.65 resnet18d,8913.81,114.867,1024,224,11.71 ese_vovnet19b_slim,8715.26,117.484,1024,224,3.17 regnetx_008,8458.52,121.05,1024,224,7.26 levit_256d,8024.27,127.602,1024,224,26.21 regnetx_006,7937.85,128.991,1024,224,6.2 regnety_008,7871.11,130.085,1024,224,6.26 tf_efficientnet_lite0,7813.92,131.036,1024,224,4.65 efficientnet_b0,7681.79,133.291,1024,224,5.29 ghostnet_130,7655.04,133.756,1024,224,7.36 mnasnet_140,7500.9,136.506,1024,224,7.12 xcit_nano_12_p16_224_dist,7406.15,138.252,1024,224,3.05 xcit_nano_12_p16_224,7390.69,138.541,1024,224,3.05 rexnetr_100,7266.82,140.903,1024,224,4.88 mobilenetv2_110d,7027.38,145.704,1024,224,4.52 tf_efficientnet_b0_ap,6815.39,150.235,1024,224,5.29 tf_efficientnet_b0,6815.06,150.243,1024,224,5.29 tf_efficientnet_b0_ns,6813.82,150.27,1024,224,5.29 regnetz_005,6657.81,153.793,1024,224,7.12 hrnet_w18_small,6626.19,154.526,1024,224,13.19 gernet_m,6452.0,158.699,1024,224,21.14 semnasnet_140,6407.4,159.804,1024,224,6.11 tv_resnet34,6289.18,162.807,1024,224,21.8 gluon_resnet34_v1b,6283.02,162.967,1024,224,21.8 resnet34,6262.0,163.515,1024,224,21.8 vit_tiny_patch16_224,6224.71,164.493,1024,224,5.72 mobilenetv2_140,6223.01,164.539,1024,224,6.11 deit_tiny_patch16_224,6218.5,164.657,1024,224,5.72 ese_vovnet19b_dw,6178.2,165.733,1024,224,6.54 deit_tiny_distilled_patch16_224,6117.9,167.365,1024,224,5.91 efficientnet_b1_pruned,6023.92,169.977,1024,240,6.33 efficientnet_lite1,5983.27,171.132,1024,240,5.42 tf_efficientnetv2_b1,5921.06,172.93,1024,240,8.14 selecsls42,5908.85,173.287,1024,224,30.35 fbnetv3_b,5903.05,173.458,1024,256,8.6 seresnet34,5898.43,173.594,1024,224,21.96 selecsls42b,5885.09,173.988,1024,224,32.46 rexnet_100,5871.63,174.387,1024,224,4.8 pit_ti_distilled_224,5837.73,175.397,1024,224,5.1 pit_ti_224,5807.14,176.321,1024,224,4.85 efficientnet_es,5711.75,179.268,1024,224,5.44 efficientnet_es_pruned,5710.76,179.298,1024,224,5.44 resnet26,5694.28,179.817,1024,224,16.0 legacy_seresnet34,5670.37,180.577,1024,224,21.96 levit_384,5643.3,181.443,1024,224,39.13 resnet34d,5571.88,183.768,1024,224,21.82 resnetblur18,5507.37,185.919,1024,224,11.69 rexnetr_130,5484.64,186.691,1024,224,7.61 nf_regnet_b0,5429.0,188.605,1024,256,8.76 tf_efficientnet_es,5424.57,188.76,1024,224,5.44 tf_efficientnet_lite1,5360.34,191.021,1024,240,5.42 skresnet18,5350.54,191.371,1024,224,11.96 selecsls60,5263.66,194.53,1024,224,30.67 selecsls60b,5251.8,194.969,1024,224,32.77 mobilenetv2_120d,5160.96,198.401,1024,224,5.83 mobilevit_xxs,5125.56,199.771,1024,256,1.27 repvgg_b0,5049.08,202.797,1024,224,15.82 resnet26d,4891.07,209.349,1024,224,16.01 fbnetv3_d,4812.34,212.774,1024,256,10.31 rexnetr_150,4791.0,213.722,1024,224,9.78 xcit_tiny_12_p16_224_dist,4778.77,214.269,1024,224,6.72 xcit_tiny_12_p16_224,4774.3,214.469,1024,224,6.72 visformer_tiny,4714.23,217.203,1024,224,10.32 nf_resnet26,4639.54,220.7,1024,224,16.0 efficientnet_lite2,4604.04,222.402,1024,260,6.09 pit_xs_224,4582.73,223.434,1024,224,10.62 pit_xs_distilled_224,4539.81,225.546,1024,224,11.0 resmlp_12_distilled_224,4519.92,226.541,1024,224,15.35 resmlp_12_224,4518.97,226.589,1024,224,15.35 tf_efficientnetv2_b2,4403.08,232.553,1024,260,10.1 vit_base_patch32_224_sam,4330.12,236.472,1024,224,88.22 vit_base_patch32_224,4316.0,237.246,1024,224,88.22 mixer_b32_224,4294.72,238.421,1024,224,60.29 tf_efficientnet_b1_ns,4267.56,239.936,1024,240,7.79 tf_efficientnet_b1_ap,4266.36,240.004,1024,240,7.79 tf_efficientnet_b1,4266.12,240.017,1024,240,7.79 efficientnet_b0_g16_evos,4260.91,240.312,1024,224,8.11 legacy_seresnext26_32x4d,4210.62,243.183,1024,224,16.79 mixer_s16_224,4210.38,243.197,1024,224,18.53 gernet_l,4176.68,245.159,1024,256,31.08 tf_efficientnet_lite2,4154.51,246.467,1024,260,6.09 gmixer_12_224,4127.0,248.109,1024,224,12.7 efficientnet_b1,4101.97,249.625,1024,256,7.79 resnext26ts,4091.38,250.27,1024,256,10.3 rexnet_130,4013.83,255.106,1024,224,7.56 seresnext26ts,3966.87,258.123,1024,256,10.39 nf_seresnet26,3954.94,258.905,1024,224,17.4 eca_resnext26ts,3953.54,258.996,1024,256,10.3 nf_ecaresnet26,3938.91,259.956,1024,224,16.0 repvgg_a2,3868.66,264.68,1024,224,28.21 gmlp_ti16_224,3865.39,264.903,1024,224,5.87 crossvit_tiny_240,3854.54,265.648,1024,240,7.01 efficientnet_b2_pruned,3821.39,267.953,1024,260,8.31 vit_small_patch32_384,3802.4,269.289,1024,384,22.92 resnet26t,3789.73,270.19,1024,256,16.01 regnetx_016,3776.49,271.139,1024,224,9.19 rexnet_150,3774.39,271.29,1024,224,9.73 seresnext26t_32x4d,3769.71,271.627,1024,224,16.81 seresnext26tn_32x4d,3769.68,271.629,1024,224,16.81 gcresnext26ts,3763.59,272.069,1024,256,10.48 seresnext26d_32x4d,3760.94,272.26,1024,224,16.81 ecaresnext50t_32x4d,3751.71,272.931,1024,224,15.41 ecaresnext26t_32x4d,3745.62,273.373,1024,224,15.41 ecaresnet50d_pruned,3714.28,275.68,1024,224,19.94 resnetv2_50,3703.17,276.505,1024,224,25.55 eca_botnext26ts_256,3685.99,277.797,1024,256,10.59 crossvit_9_240,3640.93,281.235,1024,240,8.55 ecaresnetlight,3588.5,285.344,1024,224,30.16 eca_halonext26ts,3573.18,286.568,1024,256,10.76 crossvit_9_dagger_240,3562.28,287.444,1024,240,8.78 poolformer_s12,3555.09,288.026,1024,224,11.92 swsl_resnet50,3536.6,289.53,1024,224,25.56 gluon_resnet50_v1b,3534.52,289.702,1024,224,25.56 tv_resnet50,3534.18,289.73,1024,224,25.56 resnet50,3528.73,290.177,1024,224,25.56 ssl_resnet50,3522.22,290.713,1024,224,25.56 rexnetr_200,3521.98,145.362,512,224,16.52 dla46_c,3494.33,293.033,1024,224,1.3 botnet26t_256,3447.34,297.026,1024,256,12.49 efficientnet_em,3434.61,298.129,1024,240,6.9 dpn68,3423.83,299.067,1024,224,12.61 resnet32ts,3414.56,299.879,1024,256,17.96 dpn68b,3412.63,300.049,1024,224,12.61 regnety_016,3408.85,300.382,1024,224,11.2 halonet26t,3379.19,303.017,1024,256,12.48 resnetv2_50t,3374.73,303.416,1024,224,25.57 resnetv2_50d,3370.34,303.812,1024,224,25.57 resnet33ts,3369.92,303.852,1024,256,19.68 nf_regnet_b1,3357.92,304.938,1024,288,10.22 gluon_resnet50_v1c,3339.61,306.611,1024,224,25.58 nf_regnet_b2,3329.81,307.512,1024,272,14.31 tf_efficientnet_b2_ap,3315.4,308.848,1024,260,9.11 tf_efficientnet_b2_ns,3314.91,308.894,1024,260,9.11 tf_efficientnet_em,3313.67,309.011,1024,240,6.9 tf_efficientnet_b2,3313.08,309.063,1024,260,9.11 seresnet33ts,3285.4,311.671,1024,256,19.78 eca_resnet33ts,3264.82,313.634,1024,256,19.68 resnet50t,3209.81,319.009,1024,224,25.57 bat_resnext26ts,3208.41,319.147,1024,256,10.73 legacy_seresnet50,3208.39,319.15,1024,224,28.09 gluon_resnet50_v1d,3207.43,319.246,1024,224,25.58 convnext_nano_hnf,3203.44,319.644,1024,224,15.59 resnet50d,3201.53,319.835,1024,224,25.58 convit_tiny,3182.1,321.788,1024,224,5.71 gcresnet33ts,3115.24,328.694,1024,256,19.88 vit_small_resnet26d_224,3114.54,328.764,1024,224,63.61 efficientnet_b2,3113.3,328.898,1024,288,9.11 efficientnet_b2a,3112.75,328.957,1024,288,9.11 efficientnet_b3_pruned,3098.33,330.489,1024,300,9.86 mobilevit_xs,3098.23,165.245,512,256,2.32 vovnet39a,3094.91,330.85,1024,224,22.6 seresnet50,3084.99,331.918,1024,224,28.09 haloregnetz_b,3050.82,335.635,1024,224,11.68 skresnet34,3016.36,339.47,1024,224,22.28 ese_vovnet39b,2991.04,342.343,1024,224,24.57 eca_vovnet39b,2984.95,343.042,1024,224,22.6 cspresnext50,2981.83,343.401,1024,224,20.57 selecsls84,2979.47,343.673,1024,224,50.95 res2net50_48w_2s,2961.27,345.783,1024,224,25.29 ssl_resnext50_32x4d,2883.39,355.125,1024,224,25.03 resnext50_32x4d,2879.89,355.557,1024,224,25.03 swsl_resnext50_32x4d,2879.83,355.563,1024,224,25.03 tv_resnext50_32x4d,2876.25,356.006,1024,224,25.03 gluon_resnext50_32x4d,2870.17,356.762,1024,224,25.03 resnetaa50d,2869.21,356.878,1024,224,25.58 tv_densenet121,2861.74,357.812,1024,224,7.98 densenet121,2859.4,358.103,1024,224,7.98 mixnet_s,2849.57,359.34,1024,224,4.13 seresnet50t,2844.85,359.936,1024,224,28.1 resnetrs50,2844.33,360.0,1024,224,35.69 deit_small_patch16_224,2839.86,360.568,1024,224,22.05 vit_small_patch16_224,2838.21,360.777,1024,224,22.05 ecaresnet101d_pruned,2833.47,361.381,1024,224,24.88 coat_lite_tiny,2832.3,361.531,1024,224,5.72 gluon_resnet50_v1s,2824.57,362.521,1024,224,25.68 pit_s_224,2821.07,362.969,1024,224,23.46 ecaresnet50d,2815.88,363.64,1024,224,25.58 rexnet_200,2812.74,182.018,512,224,16.37 pit_s_distilled_224,2802.25,365.406,1024,224,24.04 deit_small_distilled_patch16_224,2791.58,366.805,1024,224,22.44 dla34,2790.34,366.966,1024,224,15.74 dla46x_c,2773.06,369.253,1024,224,1.07 cspresnet50,2754.0,371.811,1024,256,21.62 hrnet_w18_small_v2,2736.24,374.217,1024,224,15.6 densenet121d,2731.76,374.837,1024,224,8.0 tf_mixnet_s,2728.68,375.26,1024,224,4.13 efficientnet_lite3,2718.45,188.332,512,300,8.2 regnetz_b16,2715.55,377.076,1024,288,9.72 dla60x_c,2712.17,377.543,1024,224,1.32 vit_tiny_r_s16_p8_384,2700.75,189.562,512,384,6.36 coat_lite_mini,2663.5,384.444,1024,224,11.01 resnext50d_32x4d,2662.22,384.629,1024,224,25.05 resnetblur50,2619.08,390.962,1024,224,25.56 cspresnet50d,2596.32,394.393,1024,256,21.64 vgg11_bn,2593.2,197.428,512,224,132.87 vit_base2_patch32_256,2576.99,397.35,1024,256,119.46 seresnetaa50d,2576.43,397.436,1024,224,28.11 cspresnet50w,2574.64,397.712,1024,256,28.12 seresnext50_32x4d,2574.54,397.729,1024,224,27.56 lambda_resnet26rpt_256,2573.59,397.876,1024,256,10.99 legacy_seresnext50_32x4d,2571.71,398.166,1024,224,27.56 xcit_nano_12_p16_384_dist,2569.25,398.547,1024,384,3.05 gluon_seresnext50_32x4d,2564.07,399.352,1024,224,27.56 xcit_tiny_24_p16_224_dist,2557.0,400.456,1024,224,12.12 xcit_tiny_24_p16_224,2556.28,400.571,1024,224,12.12 efficientnetv2_rw_t,2545.32,402.294,1024,288,13.65 vovnet57a,2538.22,403.418,1024,224,36.64 fbnetv3_g,2530.36,404.673,1024,288,16.62 gcresnet50t,2514.25,407.265,1024,256,25.9 res2net50_26w_4s,2505.47,408.693,1024,224,25.7 tf_efficientnetv2_b3,2496.85,410.104,1024,300,14.36 twins_svt_small,2488.33,411.508,1024,224,24.06 vit_base_resnet26d_224,2472.64,414.118,1024,224,101.4 ese_vovnet57b,2446.54,418.537,1024,224,38.61 densenetblur121d,2445.52,418.711,1024,224,8.0 tf_efficientnet_lite3,2442.63,209.598,512,300,8.2 resnetblur50d,2422.6,422.672,1024,224,25.58 mobilevit_s,2415.06,211.991,512,256,5.58 resnest14d,2409.35,424.998,1024,224,10.61 tf_inception_v3,2400.27,426.605,1024,299,23.83 gluon_inception_v3,2398.26,426.963,1024,299,23.83 nf_seresnet50,2397.62,427.078,1024,224,28.09 inception_v3,2397.12,427.166,1024,299,23.83 nf_ecaresnet50,2388.81,428.654,1024,224,25.56 adv_inception_v3,2388.59,428.689,1024,299,23.83 densenet169,2362.23,433.477,1024,224,14.15 sehalonet33ts,2337.63,219.014,512,256,13.69 resmlp_24_224,2312.09,442.876,1024,224,30.02 gc_efficientnetv2_rw_t,2311.11,443.065,1024,288,13.68 resmlp_24_distilled_224,2308.78,443.512,1024,224,30.02 convnext_tiny,2275.45,450.007,1024,224,28.59 gcresnext50ts,2263.71,452.341,1024,256,15.67 res2net50_14w_8s,2252.88,454.515,1024,224,25.06 semobilevit_s,2250.59,227.485,512,256,5.74 darknet53,2248.73,227.672,512,256,41.61 resnetv2_101,2235.55,458.038,1024,224,44.54 xcit_small_12_p16_224_dist,2216.94,461.885,1024,224,26.25 xcit_small_12_p16_224,2212.11,462.891,1024,224,26.25 skresnet50,2193.01,466.925,1024,224,25.8 resnet101,2170.93,471.673,1024,224,44.55 tv_resnet101,2164.75,473.02,1024,224,44.55 gluon_resnet101_v1b,2163.02,473.399,1024,224,44.55 res2next50,2156.68,474.791,1024,224,24.67 ecaresnet26t,2145.15,477.343,1024,320,16.01 nf_regnet_b3,2126.07,481.627,1024,320,18.59 gmixer_24_224,2110.93,485.081,1024,224,24.72 resnetv2_101d,2090.05,489.925,1024,224,44.56 gluon_resnet101_v1c,2088.96,490.184,1024,224,44.57 dla60,2087.19,490.597,1024,224,22.04 convnext_tiny_hnf,2073.34,493.877,1024,224,28.59 skresnet50d,2063.75,496.172,1024,224,25.82 twins_pcpvt_small,2048.61,499.837,1024,224,24.11 gluon_resnet101_v1d,2036.64,502.777,1024,224,44.57 vgg13,2019.99,506.92,1024,224,133.05 efficientnet_b0_gn,2017.66,253.748,512,224,5.29 wide_resnet50_2,2001.07,511.71,1024,224,68.88 sebotnet33ts_256,1999.77,192.009,384,256,13.7 xcit_nano_12_p8_224,1978.07,517.663,1024,224,3.05 xcit_nano_12_p8_224_dist,1977.13,517.91,1024,224,3.05 vit_base_resnet50d_224,1950.99,524.848,1024,224,110.97 repvgg_b1,1936.11,528.882,1024,224,57.42 legacy_seresnet101,1932.53,529.863,1024,224,49.33 dla60x,1896.77,539.852,1024,224,17.35 resnetaa101d,1893.61,540.751,1024,224,44.57 tf_efficientnet_b3_ns,1893.08,270.444,512,300,12.23 tf_efficientnet_b3_ap,1892.83,270.481,512,300,12.23 tf_efficientnet_b3,1892.52,270.524,512,300,12.23 seresnet101,1891.69,541.301,1024,224,49.33 gluon_resnet101_v1s,1874.89,546.152,1024,224,44.67 resnet51q,1869.52,547.722,1024,288,35.7 efficientnet_b3,1853.06,276.288,512,320,12.23 efficientnet_b3a,1852.72,276.339,512,320,12.23 crossvit_small_240,1844.12,555.265,1024,240,26.86 poolformer_s24,1843.54,555.44,1024,224,21.39 swin_tiny_patch4_window7_224,1831.44,559.111,1024,224,28.29 halonet50ts,1826.61,560.589,1024,256,22.73 densenet201,1818.74,563.014,1024,224,20.01 gmlp_s16_224,1810.78,565.489,1024,224,19.42 ssl_resnext101_32x4d,1796.49,569.986,1024,224,44.18 resnext101_32x4d,1794.8,570.526,1024,224,44.18 swsl_resnext101_32x4d,1794.2,570.714,1024,224,44.18 convnext_tiny_hnfd,1793.87,570.819,1024,224,28.63 gluon_resnext101_32x4d,1791.38,571.613,1024,224,44.18 cspdarknet53,1782.45,287.233,512,256,27.64 nf_resnet101,1778.39,575.79,1024,224,44.55 vit_small_r26_s32_224,1778.32,575.808,1024,224,36.43 ecaresnet101d,1778.2,575.85,1024,224,44.57 regnetz_c16,1772.58,288.833,512,320,13.46 res2net50_26w_6s,1761.45,581.325,1024,224,37.05 resnest26d,1761.21,581.405,1024,224,17.07 dla60_res2net,1720.09,595.302,1024,224,20.85 nf_resnet50,1719.27,595.589,1024,288,25.56 crossvit_15_240,1700.36,602.213,1024,240,27.53 resnetblur101d,1688.41,606.472,1024,224,44.57 resnet61q,1677.9,610.274,1024,288,36.85 swin_s3_tiny_224,1668.56,613.692,1024,224,28.33 xcit_tiny_12_p16_384_dist,1651.99,619.843,1024,384,6.72 crossvit_15_dagger_240,1651.71,619.951,1024,240,28.21 resnetv2_50d_frn,1650.73,620.316,1024,224,25.59 vgg13_bn,1642.03,311.797,512,224,133.05 efficientnet_b0_g8_gn,1637.47,312.665,512,224,6.56 vgg16,1632.03,627.428,1024,224,138.36 cait_xxs24_224,1630.9,627.86,1024,224,11.96 repvgg_b1g4,1614.79,634.126,1024,224,39.97 regnetx_032,1605.58,637.76,1024,224,15.3 seresnext101_32x4d,1600.47,639.797,1024,224,48.96 gluon_seresnext101_32x4d,1597.12,641.141,1024,224,48.96 legacy_seresnext101_32x4d,1596.46,641.406,1024,224,48.96 botnet50ts_256,1594.64,321.062,512,256,22.74 res2net101_26w_4s,1591.38,643.454,1024,224,45.21 regnetx_040,1586.28,645.521,1024,224,22.12 ese_vovnet39b_evos,1584.69,646.169,1024,224,24.58 resnetv2_50d_evob,1578.15,648.842,1024,224,25.59 resnetv2_50x1_bit_distilled,1562.05,655.535,1024,224,25.55 visformer_small,1557.14,657.604,1024,224,40.22 xception41p,1555.03,329.24,512,299,26.91 resnetv2_152,1552.32,659.642,1024,224,60.19 dla102,1552.08,659.747,1024,224,33.27 resmlp_36_224,1551.92,659.816,1024,224,44.69 dla60_res2next,1551.9,659.821,1024,224,17.03 resmlp_36_distilled_224,1551.61,659.949,1024,224,44.69 resnest50d_1s4x24d,1548.62,661.22,1024,224,25.68 xception,1546.37,331.084,512,299,22.86 hrnet_w32,1543.69,663.332,1024,224,41.23 halo2botnet50ts_256,1528.74,669.82,1024,256,22.64 tv_resnet152,1516.25,675.334,1024,224,60.19 coat_lite_small,1515.55,675.647,1024,224,19.84 mixer_b16_224,1515.3,675.76,1024,224,59.88 mixer_b16_224_miil,1514.28,676.214,1024,224,59.88 gluon_resnet152_v1b,1512.22,677.139,1024,224,60.19 resnet152,1507.31,679.341,1024,224,60.19 efficientnet_el,1505.49,340.076,512,300,10.59 efficientnet_el_pruned,1505.01,340.185,512,300,10.59 vit_large_patch32_224,1500.0,682.653,1024,224,306.54 swin_v2_cr_tiny_224,1497.15,683.946,1024,224,28.33 res2net50_26w_8s,1487.1,688.575,1024,224,48.4 nf_seresnet101,1486.78,688.723,1024,224,49.33 resnetv2_152d,1485.01,689.541,1024,224,60.2 nf_ecaresnet101,1477.89,692.868,1024,224,44.55 gluon_resnet152_v1c,1474.38,694.516,1024,224,60.21 swin_v2_cr_tiny_ns_224,1472.66,695.323,1024,224,28.33 tf_efficientnet_el,1464.69,349.551,512,300,10.59 vit_tiny_patch16_384,1460.68,701.028,1024,384,5.79 vit_base_r26_s32_224,1452.81,704.825,1024,224,101.38 gluon_resnet152_v1d,1447.4,707.462,1024,224,60.21 hrnet_w18,1432.55,714.792,1024,224,21.3 mixnet_m,1431.87,715.134,1024,224,5.01 mixer_l32_224,1426.61,717.775,1024,224,206.94 dla102x,1416.93,722.674,1024,224,26.31 tf_mixnet_m,1413.24,724.561,1024,224,5.01 convnext_small,1410.61,725.911,1024,224,50.22 twins_pcpvt_base,1405.32,728.645,1024,224,43.83 ecaresnet50t,1382.49,740.677,1024,320,25.57 nest_tiny,1378.24,371.475,512,224,17.06 vit_base_patch32_384,1377.87,743.165,1024,384,88.3 convit_small,1368.52,748.238,1024,224,27.78 regnety_032,1367.75,748.662,1024,288,19.44 vgg19,1367.17,748.977,1024,224,143.67 gluon_resnet152_v1s,1363.8,750.829,1024,224,60.32 vgg16_bn,1363.24,375.563,512,224,138.37 jx_nest_tiny,1354.35,378.027,512,224,17.06 ese_vovnet99b,1351.66,757.57,1024,224,63.2 xception41,1337.66,382.745,512,299,26.97 legacy_seresnet152,1335.99,766.462,1024,224,66.82 seresnet152,1317.5,777.213,1024,224,66.82 dpn92,1303.11,785.8,1024,224,37.67 efficientnet_lite4,1287.19,298.314,384,380,13.01 tresnet_m,1283.27,797.947,1024,224,31.39 inception_v4,1282.29,798.555,1024,299,42.68 densenet161,1276.9,801.927,1024,224,28.68 xcit_tiny_12_p8_224_dist,1263.32,810.55,1024,224,6.71 xcit_tiny_12_p8_224,1260.86,812.129,1024,224,6.71 regnetx_080,1259.62,812.931,1024,224,39.57 skresnext50_32x4d,1255.24,815.767,1024,224,27.48 vit_small_resnet50d_s16_224,1252.87,817.305,1024,224,57.53 twins_svt_base,1249.6,819.445,1024,224,56.07 poolformer_s36,1245.02,822.461,1024,224,30.86 repvgg_b2,1243.81,823.263,1024,224,89.02 volo_d1_224,1232.57,830.769,1024,224,26.63 hrnet_w30,1221.32,838.421,1024,224,37.71 crossvit_18_240,1205.55,849.387,1024,240,43.27 resnest50d,1199.06,853.99,1024,224,27.48 tf_efficientnet_lite4,1182.46,324.733,384,380,13.01 xcit_small_24_p16_224_dist,1182.35,866.056,1024,224,47.67 xcit_small_24_p16_224,1181.92,866.371,1024,224,47.67 crossvit_18_dagger_240,1172.17,873.578,1024,240,44.27 regnetx_064,1166.56,438.885,512,224,26.21 vgg19_bn,1163.98,439.857,512,224,143.68 nf_regnet_b4,1158.13,884.17,1024,384,30.21 efficientnetv2_s,1149.66,890.683,1024,384,21.46 regnetz_d8,1143.01,895.867,1024,320,23.37 resnet50_gn,1132.8,903.934,1024,224,25.56 dla169,1130.6,905.699,1024,224,53.39 wide_resnet101_2,1125.72,909.622,1024,224,126.89 swin_small_patch4_window7_224,1123.67,911.288,1024,224,49.61 tf_efficientnetv2_s,1123.66,911.292,1024,384,21.46 tf_efficientnetv2_s_in21ft1k,1121.7,912.889,1024,384,21.46 gluon_resnext101_64x4d,1118.73,915.313,1024,224,83.46 mixnet_l,1117.6,458.111,512,224,7.33 xception65p,1115.45,458.995,512,299,39.82 vit_base_patch16_224_miil,1108.89,923.433,1024,224,86.54 nfnet_l0,1101.58,929.561,1024,288,35.07 eca_nfnet_l0,1100.75,930.261,1024,288,24.14 tf_mixnet_l,1100.74,465.128,512,224,7.33 dpn98,1097.38,933.115,1024,224,61.57 resnet200,1096.34,934.004,1024,224,64.67 resnetrs101,1095.82,934.443,1024,288,63.62 cait_xxs36_224,1095.14,935.023,1024,224,17.3 efficientnetv2_rw_s,1089.64,939.747,1024,384,23.94 vit_base_patch16_224_sam,1073.62,953.767,1024,224,86.57 vit_base_patch16_224,1073.46,953.912,1024,224,86.57 deit_base_patch16_224,1071.76,955.424,1024,224,86.57 inception_resnet_v2,1061.78,964.405,1024,299,55.84 ens_adv_inception_resnet_v2,1058.32,967.554,1024,299,55.84 deit_base_distilled_patch16_224,1057.89,967.952,1024,224,87.34 tnt_s_patch16_224,1053.73,971.773,1024,224,23.76 dla102x2,1044.22,490.307,512,224,41.28 regnetz_040,1039.59,369.364,384,320,27.12 gluon_seresnext101_64x4d,1039.37,985.196,1024,224,88.23 regnetz_040h,1034.17,371.302,384,320,28.94 resnext101_32x8d,1033.81,990.5,1024,224,88.79 ssl_resnext101_32x8d,1033.7,990.597,1024,224,88.79 swsl_resnext101_32x8d,1033.38,990.91,1024,224,88.79 ig_resnext101_32x8d,1028.15,995.947,1024,224,88.79 regnetz_d32,1009.91,1013.934,1024,320,27.58 resnest50d_4s2x40d,1008.21,1015.647,1024,224,30.42 repvgg_b3,1001.81,1022.132,1024,224,123.09 twins_pcpvt_large,999.56,1024.437,1024,224,60.99 resnet101d,999.12,1024.886,1024,320,44.57 beit_base_patch16_224,993.76,1030.414,1024,224,86.53 convnext_base,982.94,1041.763,1024,224,88.59 convnext_base_in22ft1k,982.23,1042.511,1024,224,88.59 hrnet_w40,980.59,1044.254,1024,224,57.56 coat_tiny,977.86,1047.174,1024,224,5.5 efficientnet_b4,974.19,394.16,384,384,19.34 gluon_xception65,972.42,526.509,512,299,39.92 xception65,965.78,530.126,512,299,39.92 pit_b_224,946.3,541.042,512,224,73.76 regnetz_b16_evos,945.35,541.586,512,288,9.74 pit_b_distilled_224,942.16,543.418,512,224,74.79 tf_efficientnet_b4,925.87,414.732,384,380,19.34 tf_efficientnet_b4_ap,925.37,414.955,384,380,19.34 tf_efficientnet_b4_ns,925.29,414.99,384,380,19.34 vit_small_patch16_36x1_224,920.52,1112.401,1024,224,64.67 swin_v2_cr_small_224,915.78,1118.157,1024,224,49.7 vit_small_patch16_18x2_224,899.5,1138.389,1024,224,64.67 xcit_tiny_24_p16_384_dist,885.13,1156.874,1024,384,12.12 twins_svt_large,884.59,1157.58,1024,224,99.27 nest_small,880.02,581.79,512,224,38.35 hrnet_w48,878.91,1165.063,1024,224,77.47 cait_s24_224,871.81,1174.556,1024,224,46.92 jx_nest_small,870.35,588.255,512,224,38.35 poolformer_m36,860.43,1190.082,1024,224,56.17 regnety_040,849.33,602.817,512,288,20.65 regnetv_040,849.16,602.939,512,288,20.64 nfnet_f0,843.53,1213.933,1024,256,71.49 resnetv2_50d_evos,834.99,1226.346,1024,288,25.59 swin_s3_small_224,821.03,623.593,512,224,49.74 repvgg_b2g4,812.87,1259.724,1024,224,61.76 xcit_medium_24_p16_224_dist,811.19,1262.323,1024,224,84.4 xcit_medium_24_p16_224,810.62,1263.211,1024,224,84.4 dpn131,808.5,1266.522,1024,224,79.25 swin_base_patch4_window7_224,797.2,1284.488,1024,224,87.77 hrnet_w44,791.54,1293.66,1024,224,67.06 coat_mini,786.27,1302.337,1024,224,10.34 regnetx_120,777.95,658.124,512,224,46.11 gmlp_b16_224,772.78,1325.073,1024,224,73.08 dm_nfnet_f0,761.49,1344.713,1024,256,71.49 regnety_120,754.35,678.713,512,224,51.82 densenet264,750.52,1364.368,1024,224,72.69 mixnet_xl,748.42,684.091,512,224,11.9 crossvit_base_240,747.2,685.212,512,240,105.03 xcit_small_12_p16_384_dist,744.87,1374.713,1024,384,26.25 resnetv2_50d_gn,742.22,689.806,512,288,25.57 xception71,741.19,690.762,512,299,42.34 hrnet_w64,723.1,1416.105,1024,224,128.06 vit_large_r50_s32_224,721.71,1418.838,1024,224,328.99 regnety_040s_gn,714.09,716.982,512,224,20.65 seresnet200d,712.88,1436.411,1024,256,71.86 resnet152d,711.54,1439.114,1024,320,60.21 ecaresnet200d,707.4,1447.533,1024,256,64.69 dpn107,701.19,1460.351,1024,224,86.92 cspresnext50_iabn,693.03,1477.558,1024,256,20.57 senet154,692.07,1479.599,1024,224,115.09 legacy_senet154,691.5,1480.826,1024,224,115.09 gluon_senet154,689.56,1484.981,1024,224,115.09 convit_base,687.54,1489.363,1024,224,86.54 vit_small_patch16_384,683.58,748.981,512,384,22.2 volo_d2_224,677.6,1511.204,1024,224,58.68 tnt_b_patch16_224,675.63,1515.603,1024,224,65.41 xcit_nano_12_p8_384_dist,672.93,1521.688,1024,384,3.05 resnext101_64x4d,667.5,767.03,512,288,83.46 xcit_tiny_24_p8_224,665.57,1538.51,1024,224,12.11 swin_s3_base_224,665.44,1538.819,1024,224,71.13 xcit_tiny_24_p8_224_dist,665.24,1539.279,1024,224,12.11 swin_v2_cr_base_224,655.51,1562.118,1024,224,87.88 poolformer_m48,648.5,1579.004,1024,224,73.47 repvgg_b3g4,644.06,1589.905,1024,224,83.83 tresnet_l,638.84,1602.889,1024,224,55.99 resnetrs152,628.07,1630.372,1024,320,86.62 nest_base,626.36,817.402,512,224,67.72 seresnet152d,626.17,1635.31,1024,320,66.84 regnetx_160,623.38,821.322,512,224,54.28 jx_nest_base,620.6,824.996,512,224,67.72 regnetz_e8,607.41,842.906,512,320,57.7 ese_vovnet99b_iabn,606.83,1687.442,1024,224,63.2 regnetz_c16_evos,598.38,855.63,512,320,13.49 vit_base_r50_s16_224,595.98,1718.162,1024,224,98.66 resnest101e,584.85,875.416,512,256,48.28 vit_small_r26_s32_384,582.99,878.207,512,384,36.47 convmixer_768_32,574.69,1781.818,1024,224,21.11 seresnext101_32x8d,574.1,891.822,512,288,93.57 cspdarknet53_iabn,571.87,1790.614,1024,256,27.64 xcit_small_12_p8_224,568.57,1800.991,1024,224,26.21 xcit_small_12_p8_224_dist,567.71,1803.708,1024,224,26.21 seresnet269d,558.78,1832.551,1024,256,113.67 convnext_large_in22ft1k,544.26,940.706,512,224,197.77 convnext_large,544.24,940.754,512,224,197.77 regnety_080,536.38,954.53,512,288,39.18 resnet200d,524.48,1952.377,1024,320,64.69 mixnet_xxl,489.07,785.144,384,224,23.96 halonet_h1,488.76,523.759,256,256,8.1 eca_nfnet_l1,486.84,2103.345,1024,320,41.41 mixer_l16_224,485.71,2108.232,1024,224,208.2 efficientnetv2_m,483.16,2119.353,1024,416,54.14 vit_large_patch32_384,479.45,2135.754,1024,384,306.63 volo_d3_224,473.36,2163.252,1024,224,86.33 tresnet_xl,471.89,2169.959,1024,224,78.44 regnety_064,471.86,1085.046,512,288,30.58 regnetv_064,468.27,1093.376,512,288,30.58 efficientnet_b5,467.72,547.327,256,456,30.39 xcit_large_24_p16_224_dist,464.03,2206.748,1024,224,189.1 xcit_large_24_p16_224,463.92,2207.253,1024,224,189.1 efficientnet_b3_gn,459.87,417.496,192,320,11.73 swin_large_patch4_window7_224,457.64,1118.756,512,224,196.53 resnetrs200,456.26,2244.305,1024,320,93.21 tf_efficientnet_b5_ap,447.29,572.321,256,456,30.39 tf_efficientnet_b5,447.21,572.425,256,456,30.39 tf_efficientnet_b5_ns,446.89,572.83,256,456,30.39 xcit_tiny_12_p8_384_dist,429.76,2382.721,1024,384,6.71 regnety_320,415.34,1232.707,512,224,145.05 regnety_160,414.45,926.515,384,288,83.59 xcit_small_24_p16_384_dist,397.04,2579.039,1024,384,47.67 efficientnetv2_rw_m,393.18,1302.2,512,416,53.24 regnetz_d8_evos,387.65,1320.76,512,320,23.46 swin_v2_cr_large_224,386.59,1324.379,512,224,196.68 efficientnet_b3_g8_gn,385.43,498.136,192,320,14.25 swin_v2_cr_tiny_384,366.25,698.968,256,384,28.33 convnext_xlarge_in22ft1k,359.4,1424.579,512,224,350.2 tf_efficientnetv2_m,359.31,1424.935,512,480,54.14 tf_efficientnetv2_m_in21ft1k,358.34,1428.804,512,480,54.14 vit_large_patch16_224,354.58,2887.929,1024,224,304.33 crossvit_15_dagger_408,354.15,722.849,256,408,28.5 ssl_resnext101_32x16d,347.17,1474.787,512,224,194.03 swsl_resnext101_32x16d,346.95,1475.72,512,224,194.03 vit_base_patch16_18x2_224,346.41,2956.033,1024,224,256.73 ig_resnext101_32x16d,345.97,1479.87,512,224,194.03 convnext_base_384_in22ft1k,335.81,1143.488,384,384,88.59 beit_large_patch16_224,328.45,3117.61,1024,224,304.43 tresnet_m_448,321.84,3181.675,1024,448,31.39 volo_d1_384,310.06,1651.255,512,384,26.78 volo_d4_224,303.03,3379.23,1024,224,192.96 pnasnet5large,299.35,1282.762,384,331,86.06 xcit_small_24_p8_224,297.54,3441.571,1024,224,47.63 xcit_small_24_p8_224_dist,297.52,3441.791,1024,224,47.63 ecaresnet269d,293.49,3489.006,1024,352,102.09 nasnetalarge,291.8,1315.945,384,331,88.75 resnetrs270,287.51,3561.559,1024,352,129.86 nfnet_f1,286.44,3574.909,1024,320,132.63 resnetv2_152x2_bit_teacher,280.03,1828.366,512,224,236.34 xcit_medium_24_p16_384_dist,278.67,1837.25,512,384,84.4 vit_base_patch16_384,277.57,1383.439,384,384,86.86 deit_base_patch16_384,277.28,1384.877,384,384,86.86 deit_base_distilled_patch16_384,273.16,1405.736,384,384,87.63 cait_xxs24_384,268.69,3811.003,1024,384,12.03 efficientnet_b6,268.02,477.57,128,528,43.04 regnetx_320,262.23,1464.357,384,224,107.81 dm_nfnet_f1,261.81,3911.156,1024,320,132.63 vit_large_patch14_224,261.02,3923.008,1024,224,304.2 crossvit_18_dagger_408,259.11,740.985,192,408,44.61 tf_efficientnet_b6_ns,257.39,497.28,128,528,43.04 tf_efficientnet_b6_ap,257.15,497.757,128,528,43.04 tf_efficientnet_b6,257.08,497.876,128,528,43.04 beit_base_patch16_384,239.23,1605.166,384,384,86.74 vit_large_r50_s32_384,236.31,1624.94,384,384,329.09 eca_nfnet_l2,232.83,2198.978,512,384,56.72 xcit_tiny_24_p8_384_dist,226.12,4528.604,1024,384,12.11 swin_v2_cr_small_384,224.11,1142.266,256,384,49.7 swin_base_patch4_window12_384,212.75,902.462,192,384,87.9 resmlp_big_24_distilled_224,209.1,4897.073,1024,224,129.14 resmlp_big_24_224,208.19,4918.549,1024,224,129.14 resmlp_big_24_224_in22ft1k,208.06,4921.598,1024,224,129.14 xcit_medium_24_p8_224,208.01,4922.91,1024,224,84.32 xcit_medium_24_p8_224_dist,207.93,4924.607,1024,224,84.32 resnest200e,201.92,2535.671,512,320,70.2 volo_d5_224,199.55,5131.435,1024,224,295.46 xcit_small_12_p8_384_dist,193.71,2643.156,512,384,26.21 resnetrs350,188.78,2712.164,512,384,163.96 cait_xs24_384,188.52,2715.867,512,384,26.67 efficientnetv2_l,186.87,2739.852,512,480,118.52 convnext_large_384_in22ft1k,186.32,1373.958,256,384,197.77 tf_efficientnetv2_l,185.75,2756.36,512,480,118.52 tf_efficientnetv2_l_in21ft1k,185.69,2757.265,512,480,118.52 vit_base_patch8_224,182.98,1399.048,256,224,86.58 cait_xxs36_384,179.96,5689.985,1024,384,17.37 volo_d2_384,173.85,1472.545,256,384,58.87 vit_base_r50_s16_384,171.75,2235.786,384,384,98.95 vit_base_resnet50_384,171.74,2235.946,384,384,98.95 swin_v2_cr_huge_224,170.46,2252.707,384,224,657.83 densenet264d_iabn,163.84,6249.837,1024,224,72.74 efficientnet_b7,161.28,595.212,96,600,66.35 nfnet_f2,161.05,6358.083,1024,352,193.78 swin_v2_cr_base_384,160.58,1195.67,192,384,87.88 xcit_large_24_p16_384_dist,158.84,3223.264,512,384,189.1 tf_efficientnet_b7,155.96,615.536,96,600,66.35 tf_efficientnet_b7_ap,155.94,615.594,96,600,66.35 tf_efficientnet_b7_ns,155.94,615.59,96,600,66.35 tresnet_l_448,152.84,6699.593,1024,448,55.99 dm_nfnet_f2,147.62,3468.342,512,352,193.78 cait_s24_384,145.6,3516.436,512,384,47.06 efficientnetv2_xl,141.55,2712.868,384,512,208.12 vit_huge_patch14_224,141.3,7246.972,1024,224,632.05 tf_efficientnetv2_xl_in21ft1k,141.27,2718.106,384,512,208.12 resnetrs420,134.22,3814.641,512,416,191.89 swin_large_patch4_window12_384,125.78,1017.629,128,384,196.74 eca_nfnet_l3,122.95,4164.413,512,448,72.04 convnext_xlarge_384_in22ft1k,122.83,1563.128,192,384,350.2 xcit_large_24_p8_224,118.58,4317.779,512,224,188.93 xcit_large_24_p8_224_dist,118.55,4318.826,512,224,188.93 tresnet_xl_448,113.53,9019.968,1024,448,78.44 efficientnet_cc_b0_8e,109.15,9.151,1,224,24.01 efficientnet_cc_b0_4e,106.25,9.403,1,224,13.31 tf_efficientnet_cc_b0_4e,105.28,9.489,1,224,13.31 tf_efficientnet_cc_b0_8e,105.02,9.512,1,224,24.01 xcit_small_24_p8_384_dist,101.44,5047.074,512,384,47.63 efficientnet_b8,98.72,972.467,96,672,87.41 swin_v2_cr_large_384,98.1,1304.769,128,384,196.68 cait_s36_384,97.37,5258.401,512,384,68.37 resnetv2_152x2_bit_teacher_384,96.99,2639.495,256,384,236.34 tf_efficientnet_b8,96.21,997.82,96,672,87.41 tf_efficientnet_b8_ap,96.12,998.706,96,672,87.41 resnest269e,94.82,4049.739,384,416,110.93 vit_large_patch16_384,94.39,2712.048,256,384,304.72 resnetv2_50x3_bitm,92.92,1377.53,128,448,217.32 vit_giant_patch14_224,92.83,5515.228,512,224,1012.61 nfnet_f3,83.35,6142.681,512,416,254.92 convmixer_1024_20_ks9_p14,82.56,12403.804,1024,224,24.38 beit_large_patch16_384,82.25,3112.33,256,384,305.0 efficientnet_cc_b1_8e,77.14,12.953,1,240,39.72 dm_nfnet_f3,76.92,6655.946,512,416,254.92 volo_d3_448,75.82,2532.146,192,448,86.63 tf_efficientnet_cc_b1_8e,73.25,13.64,1,240,39.72 xcit_medium_24_p8_384_dist,70.98,3606.847,256,384,84.32 resnetv2_152x2_bitm,70.34,2729.533,192,448,236.34 resnetv2_101x3_bitm,57.82,2213.862,128,448,387.93 vit_gigantic_patch14_224,56.06,9133.289,512,224,1844.44 volo_d4_448,55.8,3441.115,192,448,193.41 swin_v2_cr_giant_224,49.27,2597.97,128,224,2598.76 nfnet_f4,44.93,8547.007,384,512,316.07 swin_v2_cr_huge_384,43.72,1463.762,64,384,657.94 dm_nfnet_f4,41.24,9312.061,384,512,316.07 xcit_large_24_p8_384_dist,40.33,4760.775,192,384,188.93 volo_d5_448,38.49,3325.731,128,448,295.91 beit_large_patch16_512,33.13,2897.67,96,512,305.67 nfnet_f5,33.1,11599.778,384,544,377.21 cait_m36_384,31.8,8050.244,256,384,271.22 dm_nfnet_f5,31.5,8127.503,256,544,377.21 volo_d5_512,26.9,4758.532,128,512,296.09 nfnet_f6,25.41,10073.116,256,576,438.36 dm_nfnet_f6,23.41,10936.755,256,576,438.36 nfnet_f7,20.63,9307.125,192,608,499.5 resnetv2_152x4_bitm,18.31,3496.111,64,480,936.53 swin_v2_cr_giant_384,13.76,2325.078,32,384,2598.76 cait_m48_448,13.51,9473.095,128,448,356.46 convmixer_1536_20,13.51,75823.541,1024,224,51.63
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/model_metadata-in1k.csv
model,pretrain adv_inception_v3,in1k-adv bat_resnext26ts,in1k beit_base_patch16_224,in21k-selfsl beit_base_patch16_384,in21k-selfsl beit_large_patch16_224,in21k-selfsl beit_large_patch16_384,in21k-selfsl beit_large_patch16_512,in21k-selfsl botnet26t_256,in1k cait_m36_384,in1k-dist cait_m48_448,in1k-dist cait_s24_224,in1k-dist cait_s24_384,in1k-dist cait_s36_384,in1k-dist cait_xs24_384,in1k-dist cait_xxs24_224,in1k-dist cait_xxs24_384,in1k-dist cait_xxs36_224,in1k-dist cait_xxs36_384,in1k-dist coat_lite_mini,in1k coat_lite_small,in1k coat_lite_tiny,in1k coat_mini,in1k coat_tiny,in1k convit_base,in1k convit_small,in1k convit_tiny,in1k convmixer_1024_20_ks9_p14,in1k convmixer_1536_20,in1k convmixer_768_32,in1k crossvit_15_240,in1k crossvit_15_dagger_240,in1k crossvit_15_dagger_408,in1k crossvit_18_240,in1k crossvit_18_dagger_240,in1k crossvit_18_dagger_408,in1k crossvit_9_240,in1k crossvit_9_dagger_240,in1k crossvit_base_240,in1k crossvit_small_240,in1k crossvit_tiny_240,in1k cspdarknet53,in1k cspresnet50,in1k cspresnext50,in1k deit_base_distilled_patch16_224,in1k-dist deit_base_distilled_patch16_384,in1k-dist deit_base_patch16_224,in1k deit_base_patch16_384,in1k deit_small_distilled_patch16_224,in1k-dist deit_small_patch16_224,in1k deit_tiny_distilled_patch16_224,in1k-dist deit_tiny_patch16_224,in1k densenet121,in1k densenet161,in1k densenet169,in1k densenet201,in1k densenetblur121d,in1k dla102,in1k dla102x,in1k dla102x2,in1k dla169,in1k dla34,in1k dla46_c,in1k dla46x_c,in1k dla60,in1k dla60_res2net,in1k dla60_res2next,in1k dla60x,in1k dla60x_c,in1k dm_nfnet_f0,in1k dm_nfnet_f1,in1k dm_nfnet_f2,in1k dm_nfnet_f3,in1k dm_nfnet_f4,in1k dm_nfnet_f5,in1k dm_nfnet_f6,in1k dpn107,in1k dpn131,in1k dpn68,in1k dpn68b,in1k dpn92,in1k dpn98,in1k eca_botnext26ts_256,in1k eca_halonext26ts,in1k eca_nfnet_l0,in1k eca_nfnet_l1,in1k eca_nfnet_l2,in1k eca_resnet33ts,in1k eca_resnext26ts,in1k ecaresnet101d,in1k ecaresnet101d_pruned,in1k ecaresnet269d,in1k ecaresnet26t,in1k ecaresnet50d,in1k ecaresnet50d_pruned,in1k ecaresnet50t,in1k ecaresnetlight,in1k efficientnet_b0,in1k efficientnet_b1,in1k efficientnet_b1_pruned,in1k efficientnet_b2,in1k efficientnet_b2_pruned,in1k efficientnet_b3,in1k efficientnet_b3_pruned,in1k efficientnet_b4,in1k efficientnet_el,in1k efficientnet_el_pruned,in1k efficientnet_em,in1k efficientnet_es,in1k efficientnet_es_pruned,in1k efficientnet_lite0,in1k efficientnetv2_rw_m,in1k efficientnetv2_rw_s,in1k efficientnetv2_rw_t,in1k ens_adv_inception_resnet_v2,in1k-adv ese_vovnet19b_dw,in1k ese_vovnet39b,in1k fbnetc_100,in1k gc_efficientnetv2_rw_t,in1k gcresnet33ts,in1k gcresnet50t,in1k gcresnext26ts,in1k gcresnext50ts,in1k gernet_l,in1k gernet_m,in1k gernet_s,in1k ghostnet_100,in1k gluon_inception_v3,in1k gluon_resnet101_v1b,in1k gluon_resnet101_v1c,in1k gluon_resnet101_v1d,in1k gluon_resnet101_v1s,in1k gluon_resnet152_v1b,in1k gluon_resnet152_v1c,in1k gluon_resnet152_v1d,in1k gluon_resnet152_v1s,in1k gluon_resnet18_v1b,in1k gluon_resnet34_v1b,in1k gluon_resnet50_v1b,in1k gluon_resnet50_v1c,in1k gluon_resnet50_v1d,in1k gluon_resnet50_v1s,in1k gluon_resnext101_32x4d,in1k gluon_resnext101_64x4d,in1k gluon_resnext50_32x4d,in1k gluon_senet154,in1k gluon_seresnext101_32x4d,in1k gluon_seresnext101_64x4d,in1k gluon_seresnext50_32x4d,in1k gluon_xception65,in1k gmixer_24_224,in1k gmlp_s16_224,in1k halo2botnet50ts_256,in1k halonet26t,in1k halonet50ts,in1k haloregnetz_b,in1k hardcorenas_a,in1k hardcorenas_b,in1k hardcorenas_c,in1k hardcorenas_d,in1k hardcorenas_e,in1k hardcorenas_f,in1k hrnet_w18,in1k hrnet_w18_small,in1k hrnet_w18_small_v2,in1k hrnet_w30,in1k hrnet_w32,in1k hrnet_w40,in1k hrnet_w44,in1k hrnet_w48,in1k hrnet_w64,in1k ig_resnext101_32x16d,ig1b-wsl ig_resnext101_32x32d,ig1b-wsl ig_resnext101_32x48d,ig1b-wsl ig_resnext101_32x8d,ig1b-wsl inception_resnet_v2,in1k inception_v3,in1k inception_v4,in1k jx_nest_base,in1k jx_nest_small,in1k jx_nest_tiny,in1k lambda_resnet26rpt_256,in1k lambda_resnet26t,in1k lambda_resnet50ts,in1k lamhalobotnet50ts_256,in1k legacy_senet154,in1k legacy_seresnet101,in1k legacy_seresnet152,in1k legacy_seresnet18,in1k legacy_seresnet34,in1k legacy_seresnet50,in1k legacy_seresnext101_32x4d,in1k legacy_seresnext26_32x4d,in1k legacy_seresnext50_32x4d,in1k levit_128,in1k-dist levit_128s,in1k-dist levit_192,in1k-dist levit_256,in1k-dist levit_384,in1k-dist mixer_b16_224,in1k mixer_b16_224_miil,in21k mixer_l16_224,in1k mixnet_l,in1k mixnet_m,in1k mixnet_s,in1k mixnet_xl,in1k mnasnet_100,in1k mobilenetv2_100,in1k mobilenetv2_110d,in1k mobilenetv2_120d,in1k mobilenetv2_140,in1k mobilenetv3_large_100,in1k mobilenetv3_large_100_miil,in21k mobilenetv3_rw,in1k nasnetalarge,in1k nf_regnet_b1,in1k nf_resnet50,in1k nfnet_l0,in1k pit_b_224,in1k pit_b_distilled_224,in1k-dist pit_s_224,in1k pit_s_distilled_224,in1k-dist pit_ti_224,in1k pit_ti_distilled_224,in1k-dist pit_xs_224,in1k pit_xs_distilled_224,in1k-dist pnasnet5large,in1k regnetx_002,in1k regnetx_004,in1k regnetx_006,in1k regnetx_008,in1k regnetx_016,in1k regnetx_032,in1k regnetx_040,in1k regnetx_064,in1k regnetx_080,in1k regnetx_120,in1k regnetx_160,in1k regnetx_320,in1k regnety_002,in1k regnety_004,in1k regnety_006,in1k regnety_008,in1k regnety_016,in1k regnety_032,in1k regnety_040,in1k regnety_064,in1k regnety_080,in1k regnety_120,in1k regnety_160,in1k regnety_320,in1k regnetz_b,in1k regnetz_c,in1k regnetz_d,in1k repvgg_a2,in1k repvgg_b0,in1k repvgg_b1,in1k repvgg_b1g4,in1k repvgg_b2,in1k repvgg_b2g4,in1k repvgg_b3,in1k repvgg_b3g4,in1k res2net101_26w_4s,in1k res2net50_14w_8s,in1k res2net50_26w_4s,in1k res2net50_26w_6s,in1k res2net50_26w_8s,in1k res2net50_48w_2s,in1k res2next50,in1k resmlp_12_224,in1k resmlp_12_distilled_224,in1k-dist resmlp_24_224,in1k resmlp_24_distilled_224,in1k-dist resmlp_36_224,in1k resmlp_36_distilled_224,in1k-dist resmlp_big_24_224,in1k resmlp_big_24_224_in22ft1k,in21k resmlp_big_24_distilled_224,in1k-dist resnest101e,in1k resnest14d,in1k resnest200e,in1k resnest269e,in1k resnest26d,in1k resnest50d,in1k resnest50d_1s4x24d,in1k resnest50d_4s2x40d,in1k resnet101d,in1k resnet152d,in1k resnet18,in1k resnet18d,in1k resnet200d,in1k resnet26,in1k resnet26d,in1k resnet26t,in1k resnet32ts,in1k resnet33ts,in1k resnet34,in1k resnet34d,in1k resnet50,in1k resnet50d,in1k resnet51q,in1k resnet61q,in1k resnetblur50,in1k resnetrs101,in1k resnetrs152,in1k resnetrs200,in1k resnetrs270,in1k resnetrs350,in1k resnetrs420,in1k resnetrs50,in1k resnetv2_101,in1k resnetv2_101x1_bitm,in21k resnetv2_101x3_bitm,in21k resnetv2_152x2_bit_teacher,in21k resnetv2_152x2_bit_teacher_384,in21k resnetv2_152x2_bitm,in21k resnetv2_152x4_bitm,in21k resnetv2_50,in1k resnetv2_50x1_bit_distilled,in1k-dist resnetv2_50x1_bitm,in21k resnetv2_50x3_bitm,in21k resnext101_32x8d,in1k resnext26ts,in1k resnext50_32x4d,in1k resnext50d_32x4d,in1k rexnet_100,in1k rexnet_130,in1k rexnet_150,in1k rexnet_200,in1k sehalonet33ts,in1k selecsls42b,in1k selecsls60,in1k selecsls60b,in1k semnasnet_100,in1k seresnet152d,in1k seresnet33ts,in1k seresnet50,in1k seresnext26d_32x4d,in1k seresnext26t_32x4d,in1k seresnext26ts,in1k seresnext50_32x4d,in1k skresnet18,in1k skresnet34,in1k skresnext50_32x4d,in1k spnasnet_100,in1k ssl_resnet18,yfc-semisl ssl_resnet50,yfc-semisl ssl_resnext101_32x16d,yfc-semisl ssl_resnext101_32x4d,yfc-semisl ssl_resnext101_32x8d,yfc-semisl ssl_resnext50_32x4d,yfc-semisl swin_base_patch4_window12_384,in21k swin_base_patch4_window7_224,in21k swin_large_patch4_window12_384,in21k swin_large_patch4_window7_224,in21k swin_small_patch4_window7_224,in1k swin_tiny_patch4_window7_224,in1k swsl_resnet18,ig1b-swsl swsl_resnet50,ig1b-swsl swsl_resnext101_32x16d,ig1b-swsl swsl_resnext101_32x4d,ig1b-swsl swsl_resnext101_32x8d,ig1b-swsl swsl_resnext50_32x4d,ig1b-swsl tf_efficientnet_b0,in1k tf_efficientnet_b0_ap,in1k-ap tf_efficientnet_b0_ns,jft300m-ns tf_efficientnet_b1,in1k tf_efficientnet_b1_ap,in1k-ap tf_efficientnet_b1_ns,jft300m-ns tf_efficientnet_b2,in1k tf_efficientnet_b2_ap,in1k-ap tf_efficientnet_b2_ns,jft300m-ns tf_efficientnet_b3,in1k tf_efficientnet_b3_ap,in1k-ap tf_efficientnet_b3_ns,jft300m-ns tf_efficientnet_b4,in1k tf_efficientnet_b4_ap,in1k-ap tf_efficientnet_b4_ns,jft300m-ns tf_efficientnet_b5,in1k tf_efficientnet_b5_ap,in1k-ap tf_efficientnet_b5_ns,jft300m-ns tf_efficientnet_b6,in1k tf_efficientnet_b6_ap,in1k-ap tf_efficientnet_b6_ns,jft300m-ns tf_efficientnet_b7,in1k tf_efficientnet_b7_ap,in1k-ap tf_efficientnet_b7_ns,jft300m-ns tf_efficientnet_b8,in1k tf_efficientnet_b8_ap,in1k-ap tf_efficientnet_cc_b0_4e,in1k tf_efficientnet_cc_b0_8e,in1k tf_efficientnet_cc_b1_8e,in1k tf_efficientnet_el,in1k tf_efficientnet_em,in1k tf_efficientnet_es,in1k tf_efficientnet_l2_ns,jft300m-ns tf_efficientnet_l2_ns_475,jft300m-ns tf_efficientnet_lite0,in1k tf_efficientnet_lite1,in1k tf_efficientnet_lite2,in1k tf_efficientnet_lite3,in1k tf_efficientnet_lite4,in1k tf_efficientnetv2_b0,in1k tf_efficientnetv2_b1,in1k tf_efficientnetv2_b2,in1k tf_efficientnetv2_b3,in1k tf_efficientnetv2_l,in1k tf_efficientnetv2_l_in21ft1k,in21k tf_efficientnetv2_m,in1k tf_efficientnetv2_m_in21ft1k,in21k tf_efficientnetv2_s,in1k tf_efficientnetv2_s_in21ft1k,in21k tf_efficientnetv2_xl_in21ft1k,in21k tf_inception_v3,in1k tf_mixnet_l,in1k tf_mixnet_m,in1k tf_mixnet_s,in1k tf_mobilenetv3_large_075,in1k tf_mobilenetv3_large_100,in1k tf_mobilenetv3_large_minimal_100,in1k tf_mobilenetv3_small_075,in1k tf_mobilenetv3_small_100,in1k tf_mobilenetv3_small_minimal_100,in1k tnt_s_patch16_224,in1k tresnet_l,in1k tresnet_l_448,in1k tresnet_m,in21k tresnet_m_448,in1k tresnet_xl,in1k tresnet_xl_448,in1k tv_densenet121,in1k tv_resnet101,in1k tv_resnet152,in1k tv_resnet34,in1k tv_resnet50,in1k tv_resnext50_32x4d,in1k twins_pcpvt_base,in1k twins_pcpvt_large,in1k twins_pcpvt_small,in1k twins_svt_base,in1k twins_svt_large,in1k twins_svt_small,in1k vgg11,in1k vgg11_bn,in1k vgg13,in1k vgg13_bn,in1k vgg16,in1k vgg16_bn,in1k vgg19,in1k vgg19_bn,in1k visformer_small,in1k vit_base_patch16_224,in21k vit_base_patch16_224_miil,in21k vit_base_patch16_384,in21k vit_base_patch16_224_sam,in1k vit_base_patch32_224,in21k vit_base_patch32_384,in21k vit_base_patch32_224_sam,in1k vit_base_r50_s16_384,in21k vit_large_patch16_224,in21k vit_large_patch16_384,in21k vit_large_patch32_384,in21k vit_large_r50_s32_224,in21k vit_large_r50_s32_384,in21k vit_small_patch16_224,in21k vit_small_patch16_384,in21k vit_small_patch32_224,in21k vit_small_patch32_384,in21k vit_small_r26_s32_224,in21k vit_small_r26_s32_384,in21k vit_tiny_patch16_224,in21k vit_tiny_patch16_384,in21k vit_tiny_r_s16_p8_224,in21k vit_tiny_r_s16_p8_384,in21k wide_resnet101_2,in1k wide_resnet50_2,in1k xception,in1k xception41,in1k xception65,in1k xception71,in1k xcit_large_24_p16_224,in1k xcit_large_24_p16_224_dist,in1k-dist xcit_large_24_p16_384_dist,in1k-dist xcit_large_24_p8_224,in1k xcit_large_24_p8_224_dist,in1k-dist xcit_large_24_p8_384_dist,in1k-dist xcit_medium_24_p16_224,in1k xcit_medium_24_p16_224_dist,in1k-dist xcit_medium_24_p16_384_dist,in1k-dist xcit_medium_24_p8_224,in1k xcit_medium_24_p8_224_dist,in1k-dist xcit_medium_24_p8_384_dist,in1k-dist xcit_nano_12_p16_224,in1k xcit_nano_12_p16_224_dist,in1k-dist xcit_nano_12_p16_384_dist,in1k-dist xcit_nano_12_p8_224,in1k xcit_nano_12_p8_224_dist,in1k-dist xcit_nano_12_p8_384_dist,in1k-dist xcit_small_12_p16_224,in1k xcit_small_12_p16_224_dist,in1k-dist xcit_small_12_p16_384_dist,in1k-dist xcit_small_12_p8_224,in1k xcit_small_12_p8_224_dist,in1k-dist xcit_small_12_p8_384_dist,in1k-dist xcit_small_24_p16_224,in1k xcit_small_24_p16_224_dist,in1k-dist xcit_small_24_p16_384_dist,in1k-dist xcit_small_24_p8_224,in1k xcit_small_24_p8_224_dist,in1k-dist xcit_small_24_p8_384_dist,in1k-dist xcit_tiny_12_p16_224,in1k xcit_tiny_12_p16_224_dist,in1k-dist xcit_tiny_12_p16_384_dist,in1k-dist xcit_tiny_12_p8_224,in1k xcit_tiny_12_p8_224_dist,in1k-dist xcit_tiny_12_p8_384_dist,in1k-dist xcit_tiny_24_p16_224,in1k xcit_tiny_24_p16_224_dist,in1k-dist xcit_tiny_24_p16_384_dist,in1k-dist xcit_tiny_24_p8_224,in1k xcit_tiny_24_p8_224_dist,in1k-dist xcit_tiny_24_p8_384_dist,in1k-dist
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/results/results-imagenet-real.csv
model,top1,top1_err,top5,top5_err,param_count,img_size,crop_pct,interpolation,top1_diff,top5_diff,rank_diff eva02_large_patch14_448.mim_m38m_ft_in22k_in1k,91.129,8.871,98.713,1.287,305.08,448,1.000,bicubic,+1.077,-0.335,0 eva_giant_patch14_336.clip_ft_in1k,91.058,8.942,98.602,1.399,"1,013.01",336,1.000,bicubic,+1.592,-0.224,+5 eva02_large_patch14_448.mim_in22k_ft_in22k_in1k,91.022,8.978,98.683,1.317,305.08,448,1.000,bicubic,+1.052,-0.329,-1 eva_giant_patch14_560.m30m_ft_in22k_in1k,90.969,9.031,98.672,1.328,"1,014.45",560,1.000,bicubic,+1.183,-0.320,-1 eva02_large_patch14_448.mim_in22k_ft_in1k,90.920,9.080,98.685,1.315,305.08,448,1.000,bicubic,+1.298,-0.265,-1 eva_giant_patch14_336.m30m_ft_in22k_in1k,90.907,9.093,98.661,1.339,"1,013.01",336,1.000,bicubic,+1.341,-0.291,0 eva_large_patch14_336.in22k_ft_in1k,90.905,9.095,98.785,1.215,304.53,336,1.000,bicubic,+2.235,+0.063,+6 eva_giant_patch14_224.clip_ft_in1k,90.900,9.100,98.680,1.319,"1,012.56",224,0.900,bicubic,+2.020,+0.000,+1 eva02_base_patch14_448.mim_in22k_ft_in22k_in1k,90.896,9.104,98.802,1.198,87.12,448,1.000,bicubic,+2.206,+0.078,+2 eva02_large_patch14_448.mim_m38m_ft_in1k,90.890,9.110,98.653,1.347,305.08,448,1.000,bicubic,+1.316,-0.271,-5 eva_large_patch14_336.in22k_ft_in22k_in1k,90.862,9.138,98.715,1.285,304.53,336,1.000,bicubic,+1.656,-0.139,-3 eva02_base_patch14_448.mim_in22k_ft_in1k,90.800,9.200,98.742,1.258,87.12,448,1.000,bicubic,+2.548,+0.178,+14 caformer_b36.sail_in22k_ft_in1k_384,90.781,9.219,98.860,1.140,98.75,384,1.000,bicubic,+2.723,+0.278,+21 beit_large_patch16_512.in22k_ft_in22k_in1k,90.687,9.313,98.753,1.247,305.67,512,1.000,bicubic,+2.091,+0.097,+1 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384,90.678,9.322,98.813,1.187,200.13,384,1.000,bicubic,+2.372,+0.231,+8 regnety_1280.swag_ft_in1k,90.657,9.343,98.819,1.181,644.81,384,1.000,bicubic,+2.427,+0.133,+12 convnext_xxlarge.clip_laion2b_soup_ft_in1k,90.642,9.358,98.806,1.194,846.47,256,1.000,bicubic,+2.038,+0.099,-3 convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384,90.633,9.367,98.755,1.245,200.13,384,1.000,bicubic,+2.785,+0.309,+24 volo_d5_512.sail_in1k,90.614,9.386,98.698,1.302,296.09,512,1.150,bicubic,+3.556,+0.728,+49 beit_large_patch16_384.in22k_ft_in22k_in1k,90.606,9.394,98.766,1.234,305.00,384,1.000,bicubic,+2.204,+0.158,-1 maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k,90.584,9.416,98.617,1.383,116.14,384,1.000,bicubic,+2.756,+0.245,+22 volo_d5_448.sail_in1k,90.580,9.420,98.685,1.315,295.91,448,1.150,bicubic,+3.628,+0.747,+53 tf_efficientnet_l2.ns_jft_in1k,90.561,9.439,98.775,1.226,480.31,800,0.960,bicubic,+2.209,+0.127,-3 maxvit_base_tf_512.in21k_ft_in1k,90.561,9.439,98.702,1.298,119.88,512,1.000,bicubic,+2.341,+0.172,+7 eva_large_patch14_196.in22k_ft_in22k_in1k,90.557,9.443,98.698,1.302,304.14,196,1.000,bicubic,+1.983,+0.040,-8 convnextv2_huge.fcmae_ft_in22k_in1k_512,90.542,9.458,98.710,1.290,660.29,512,1.000,bicubic,+1.684,-0.038,-16 vit_large_patch14_clip_336.openai_ft_in12k_in1k,90.542,9.458,98.687,1.313,304.53,336,1.000,bicubic,+2.274,+0.161,-3 convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320,90.540,9.460,98.806,1.194,200.13,320,1.000,bicubic,+2.582,+0.331,+8 tf_efficientnet_l2.ns_jft_in1k_475,90.537,9.463,98.710,1.290,480.31,475,0.936,bicubic,+2.303,+0.164,-2 eva_large_patch14_196.in22k_ft_in1k,90.535,9.465,98.770,1.230,304.14,196,1.000,bicubic,+2.603,+0.272,+7 volo_d4_448.sail_in1k,90.512,9.488,98.591,1.409,193.41,448,1.150,bicubic,+3.720,+0.707,+53 maxvit_xlarge_tf_512.in21k_ft_in1k,90.503,9.497,98.576,1.424,475.77,512,1.000,bicubic,+1.965,-0.068,-14 vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k,90.501,9.499,98.631,1.369,632.46,336,1.000,bicubic,+1.909,-0.031,-17 convnextv2_huge.fcmae_ft_in22k_in1k_384,90.497,9.503,98.695,1.304,660.29,384,1.000,bicubic,+1.827,-0.043,-22 convnext_xlarge.fb_in22k_ft_in1k_384,90.495,9.505,98.768,1.232,350.20,384,1.000,bicubic,+2.743,+0.212,+9 caformer_m36.sail_in22k_ft_in1k_384,90.460,9.540,98.668,1.332,56.20,384,1.000,bicubic,+3.014,+0.360,+18 convformer_b36.sail_in22k_ft_in1k_384,90.448,9.552,98.772,1.228,99.88,384,1.000,bicubic,+2.846,+0.338,+10 maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k,90.444,9.556,98.749,1.251,116.09,384,1.000,bicubic,+2.980,+0.375,+14 caformer_b36.sail_in22k_ft_in1k,90.431,9.569,98.764,1.236,98.75,224,1.000,bicubic,+3.011,+0.436,+16 vit_large_patch14_clip_336.laion2b_ft_in12k_in1k,90.428,9.572,98.642,1.358,304.53,336,1.000,bicubic,+2.248,+0.070,-8 vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k,90.418,9.582,98.644,1.356,632.05,224,1.000,bicubic,+2.162,+0.092,-16 swinv2_base_window12to24_192to384.ms_in22k_ft_in1k,90.407,9.593,98.734,1.266,87.92,384,1.000,bicubic,+3.311,+0.500,+24 vit_large_patch14_clip_224.openai_ft_in12k_in1k,90.382,9.618,98.659,1.341,304.20,224,1.000,bicubic,+2.207,+0.113,-10 maxvit_xlarge_tf_384.in21k_ft_in1k,90.379,9.621,98.582,1.418,475.32,384,1.000,bicubic,+2.065,+0.038,-22 coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k,90.377,9.623,98.648,1.351,73.88,384,1.000,bicubic,+2.995,+0.337,+12 beit_base_patch16_384.in22k_ft_in22k_in1k,90.367,9.633,98.725,1.275,86.74,384,1.000,bicubic,+3.567,+0.589,+36 convnextv2_large.fcmae_ft_in22k_in1k_384,90.367,9.633,98.663,1.337,197.96,384,1.000,bicubic,+2.169,+0.135,-16 seresnextaa201d_32x8d.sw_in12k_ft_in1k_384,90.362,9.638,98.734,1.266,149.39,384,1.000,bicubic,+3.074,+0.400,+11 maxvit_large_tf_512.in21k_ft_in1k,90.362,9.638,98.642,1.358,212.33,512,1.000,bicubic,+2.138,+0.044,-19 maxvit_base_tf_384.in21k_ft_in1k,90.360,9.640,98.683,1.317,119.65,384,1.000,bicubic,+2.438,+0.139,-13 convnextv2_base.fcmae_ft_in22k_in1k_384,90.360,9.640,98.670,1.330,88.72,384,1.000,bicubic,+2.716,+0.254,-4 beitv2_large_patch16_224.in1k_ft_in22k_in1k,90.354,9.646,98.587,1.413,304.43,224,0.950,bicubic,+1.960,-0.011,-32 vit_large_patch14_clip_336.laion2b_ft_in1k,90.332,9.668,98.597,1.403,304.53,336,1.000,bicubic,+2.476,+0.229,-13 convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384,90.330,9.670,98.770,1.230,88.59,384,1.000,bicubic,+3.196,+0.548,+10 maxvit_large_tf_384.in21k_ft_in1k,90.315,9.685,98.687,1.313,212.03,384,1.000,bicubic,+2.329,+0.119,-20 vit_large_patch14_clip_224.laion2b_ft_in12k_in1k,90.311,9.689,98.668,1.332,304.20,224,1.000,bicubic,+2.417,+0.260,-17 convnext_large_mlp.clip_laion2b_augreg_ft_in1k,90.309,9.691,98.651,1.349,200.13,256,1.000,bicubic,+2.973,+0.433,+1 vit_large_patch14_clip_224.openai_ft_in1k,90.307,9.693,98.640,1.360,304.20,224,1.000,bicubic,+2.453,+0.214,-17 caformer_s36.sail_in22k_ft_in1k_384,90.305,9.695,98.794,1.206,39.30,384,1.000,bicubic,+3.447,+0.582,+19 convnext_base.fb_in22k_ft_in1k_384,90.283,9.717,98.800,1.200,88.59,384,1.000,bicubic,+3.487,+0.536,+23 convnext_large.fb_in22k_ft_in1k_384,90.279,9.721,98.659,1.341,197.77,384,1.000,bicubic,+2.807,+0.273,-10 deit3_large_patch16_384.fb_in22k_ft_in1k,90.247,9.753,98.625,1.375,304.76,384,1.000,bicubic,+2.527,+0.113,-17 dm_nfnet_f6.dm_in1k,90.241,9.759,98.625,1.375,438.36,576,0.956,bicubic,+3.879,+0.729,+44 seresnextaa101d_32x8d.sw_in12k_ft_in1k_288,90.226,9.774,98.766,1.234,93.59,320,1.000,bicubic,+3.502,+0.590,+22 deit3_huge_patch14_224.fb_in22k_ft_in1k,90.226,9.774,98.640,1.360,632.13,224,1.000,bicubic,+3.040,+0.380,-1 regnety_320.swag_ft_in1k,90.213,9.787,98.764,1.236,145.05,384,1.000,bicubic,+3.379,+0.402,+14 vit_large_patch16_384.augreg_in21k_ft_in1k,90.213,9.787,98.661,1.339,304.72,384,1.000,bicubic,+3.129,+0.359,0 vit_base_patch16_clip_384.laion2b_ft_in1k,90.211,9.789,98.702,1.298,86.86,384,1.000,bicubic,+3.593,+0.694,+21 convformer_m36.sail_in22k_ft_in1k_384,90.204,9.796,98.651,1.349,57.05,384,1.000,bicubic,+3.312,+0.535,+8 convnextv2_huge.fcmae_ft_in1k,90.204,9.796,98.548,1.452,660.29,288,1.000,bicubic,+3.624,+0.576,+22 tf_efficientnetv2_l.in21k_ft_in1k,90.202,9.798,98.719,1.281,118.52,480,1.000,bicubic,+3.400,+0.583,+10 vit_base_patch16_clip_384.openai_ft_in12k_in1k,90.200,9.800,98.648,1.351,86.86,384,0.950,bicubic,+3.174,+0.466,-2 convformer_b36.sail_in22k_ft_in1k,90.189,9.811,98.695,1.304,99.88,224,1.000,bicubic,+3.191,+0.523,-3 vit_base_patch16_clip_384.laion2b_ft_in12k_in1k,90.189,9.811,98.585,1.415,86.86,384,1.000,bicubic,+2.983,+0.550,-13 cait_m48_448.fb_dist_in1k,90.189,9.811,98.484,1.516,356.46,448,1.000,bicubic,+3.697,+0.732,+25 vit_huge_patch14_clip_224.laion2b_ft_in1k,90.181,9.819,98.544,1.456,632.05,224,1.000,bicubic,+2.593,+0.326,-28 volo_d3_448.sail_in1k,90.177,9.823,98.550,1.450,86.63,448,1.000,bicubic,+3.675,+0.840,+20 swinv2_large_window12to24_192to384.ms_in22k_ft_in1k,90.157,9.843,98.614,1.386,196.74,384,1.000,bicubic,+2.693,+0.364,-25 beit_large_patch16_224.in22k_ft_in22k_in1k,90.149,9.851,98.725,1.275,304.43,224,0.900,bicubic,+2.671,+0.421,-29 beitv2_large_patch16_224.in1k_ft_in1k,90.100,9.900,98.439,1.561,304.43,224,0.950,bicubic,+2.688,+0.205,-24 tf_efficientnet_b7.ns_jft_in1k,90.098,9.902,98.614,1.386,66.35,600,0.949,bicubic,+3.258,+0.522,-2 vit_large_patch14_clip_224.laion2b_ft_in1k,90.095,9.905,98.555,1.445,304.20,224,1.000,bicubic,+2.809,+0.311,-21 convnextv2_base.fcmae_ft_in22k_in1k,90.068,9.932,98.676,1.324,88.72,288,1.000,bicubic,+3.070,+0.508,-11 convnext_xlarge.fb_in22k_ft_in1k,90.066,9.934,98.619,1.381,350.20,288,1.000,bicubic,+2.736,+0.291,-25 caformer_b36.sail_in1k_384,90.063,9.937,98.514,1.486,98.75,384,1.000,bicubic,+3.655,+0.700,+19 cait_m36_384.fb_dist_in1k,90.051,9.949,98.495,1.505,271.22,384,1.000,bicubic,+3.993,+0.765,+41 convnextv2_large.fcmae_ft_in22k_in1k,90.034,9.966,98.629,1.371,197.96,288,1.000,bicubic,+2.550,+0.273,-38 seresnextaa101d_32x8d.sw_in12k_ft_in1k,90.029,9.971,98.685,1.315,93.59,288,1.000,bicubic,+3.545,+0.655,+11 tiny_vit_21m_512.dist_in22k_ft_in1k,90.029,9.971,98.493,1.507,21.27,512,1.000,bicubic,+3.571,+0.609,+12 tf_efficientnetv2_m.in21k_ft_in1k,90.025,9.975,98.666,1.334,54.14,480,1.000,bicubic,+4.033,+0.722,+42 convformer_s36.sail_in22k_ft_in1k_384,90.023,9.977,98.619,1.381,40.01,384,1.000,bicubic,+3.645,+0.635,+14 swin_large_patch4_window12_384.ms_in22k_ft_in1k,90.019,9.981,98.661,1.339,196.74,384,1.000,bicubic,+2.887,+0.427,-27 deit3_large_patch16_224.fb_in22k_ft_in1k,90.008,9.992,98.659,1.341,304.37,224,1.000,bicubic,+3.026,+0.423,-20 convnext_base.clip_laiona_augreg_ft_in1k_384,90.001,9.998,98.548,1.452,88.59,384,1.000,bicubic,+3.499,+0.580,+2 swin_base_patch4_window12_384.ms_in22k_ft_in1k,89.997,10.003,98.700,1.300,87.90,384,1.000,bicubic,+3.559,+0.634,+8 vit_base_patch16_384.augreg_in21k_ft_in1k,89.989,10.011,98.678,1.322,86.86,384,1.000,bicubic,+3.995,+0.676,+35 maxvit_base_tf_512.in1k,89.974,10.026,98.433,1.567,119.88,512,1.000,bicubic,+3.372,+0.515,-7 caformer_m36.sail_in1k_384,89.933,10.067,98.454,1.546,56.20,384,1.000,bicubic,+3.767,+0.634,+20 convnextv2_large.fcmae_ft_in1k,89.931,10.069,98.559,1.441,197.96,288,1.000,bicubic,+3.813,+0.737,+22 maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k,89.927,10.073,98.414,1.586,116.14,224,0.950,bicubic,+3.033,+0.400,-24 swinv2_large_window12to16_192to256.ms_in22k_ft_in1k,89.925,10.075,98.505,1.494,196.74,256,0.900,bicubic,+2.973,+0.400,-27 regnety_160.swag_ft_in1k,89.918,10.082,98.644,1.356,83.59,384,1.000,bicubic,+3.898,+0.592,+27 convnext_small.fb_in22k_ft_in1k_384,89.916,10.084,98.685,1.315,50.22,384,1.000,bicubic,+4.138,+0.795,+43 efficientnet_b5.sw_in12k_ft_in1k,89.912,10.088,98.565,1.435,30.39,448,1.000,bicubic,+4.016,+0.829,+33 deit3_base_patch16_384.fb_in22k_ft_in1k,89.891,10.110,98.602,1.399,86.88,384,1.000,bicubic,+3.151,+0.486,-19 xcit_large_24_p8_384.fb_dist_in1k,89.886,10.114,98.384,1.616,188.93,384,1.000,bicubic,+3.890,+0.694,+24 volo_d5_224.sail_in1k,89.880,10.120,98.490,1.510,295.46,224,0.960,bicubic,+3.810,+0.915,+19 convnext_large.fb_in22k_ft_in1k,89.876,10.124,98.593,1.407,197.77,288,1.000,bicubic,+2.850,+0.389,-39 swinv2_base_window12to16_192to256.ms_in22k_ft_in1k,89.867,10.133,98.644,1.356,87.92,256,0.900,bicubic,+3.599,+0.762,+2 tiny_vit_21m_384.dist_in22k_ft_in1k,89.863,10.137,98.499,1.501,21.23,384,1.000,bicubic,+3.755,+0.789,+12 convnext_base.fb_in22k_ft_in1k,89.858,10.142,98.691,1.309,88.59,288,1.000,bicubic,+3.584,+0.599,-1 caformer_m36.sail_in22k_ft_in1k,89.852,10.148,98.585,1.415,56.20,224,1.000,bicubic,+3.258,+0.561,-21 cait_s36_384.fb_dist_in1k,89.835,10.165,98.427,1.573,68.37,384,1.000,bicubic,+4.381,+0.949,+52 coatnet_2_rw_224.sw_in12k_ft_in1k,89.831,10.169,98.527,1.473,73.87,224,0.950,bicubic,+3.267,+0.631,-21 convformer_m36.sail_in22k_ft_in1k,89.818,10.182,98.548,1.452,57.05,224,1.000,bicubic,+3.670,+0.698,+5 xcit_medium_24_p8_384.fb_dist_in1k,89.816,10.184,98.365,1.635,84.32,384,1.000,bicubic,+4.000,+0.773,+25 convnext_base.clip_laion2b_augreg_ft_in12k_in1k,89.811,10.188,98.668,1.332,88.59,256,1.000,bicubic,+3.441,+0.684,-11 volo_d4_224.sail_in1k,89.811,10.188,98.427,1.573,192.96,224,0.960,bicubic,+3.939,+0.955,+20 maxvit_large_tf_512.in1k,89.799,10.201,98.330,1.670,212.33,512,1.000,bicubic,+3.273,+0.450,-25 vit_large_r50_s32_384.augreg_in21k_ft_in1k,89.792,10.208,98.522,1.478,329.09,384,1.000,bicubic,+3.610,+0.600,-4 swin_large_patch4_window7_224.ms_in22k_ft_in1k,89.786,10.214,98.640,1.360,196.53,224,0.900,bicubic,+3.474,+0.738,-13 tf_efficientnet_b6.ns_jft_in1k,89.786,10.214,98.508,1.492,43.04,528,0.942,bicubic,+3.328,+0.618,-20 volo_d2_384.sail_in1k,89.784,10.216,98.403,1.597,58.87,384,1.000,bicubic,+3.742,+0.829,+5 coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k,89.775,10.225,98.469,1.531,73.88,224,0.950,bicubic,+3.271,+0.575,-29 tf_efficientnetv2_xl.in21k_ft_in1k,89.773,10.227,98.288,1.712,208.12,512,1.000,bicubic,+3.025,+0.274,-40 maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k,89.752,10.248,98.484,1.516,116.09,224,0.950,bicubic,+3.110,+0.464,-38 beitv2_base_patch16_224.in1k_ft_in22k_in1k,89.743,10.257,98.585,1.415,86.53,224,0.900,bicubic,+3.269,+0.532,-27 dm_nfnet_f4.dm_in1k,89.741,10.259,98.409,1.591,316.07,512,0.951,bicubic,+3.905,+0.591,+12 dm_nfnet_f5.dm_in1k,89.737,10.263,98.441,1.559,377.21,544,0.954,bicubic,+3.637,+0.753,-6 xcit_small_24_p8_384.fb_dist_in1k,89.735,10.265,98.420,1.580,47.63,384,1.000,bicubic,+4.181,+0.850,+28 regnety_160.lion_in12k_ft_in1k,89.726,10.274,98.608,1.392,83.59,288,1.000,bicubic,+3.738,+0.774,+2 caformer_s18.sail_in22k_ft_in1k_384,89.720,10.280,98.578,1.422,26.34,384,1.000,bicubic,+4.306,+0.876,+36 vit_base_patch8_224.augreg2_in21k_ft_in1k,89.718,10.283,98.510,1.490,86.58,224,0.900,bicubic,+3.499,+0.678,-21 convformer_m36.sail_in1k_384,89.718,10.283,98.435,1.565,57.05,384,1.000,bicubic,+4.138,+0.893,+24 vit_base_patch16_clip_384.openai_ft_in1k,89.707,10.293,98.508,1.492,86.86,384,1.000,bicubic,+3.501,+0.632,-21 caformer_s36.sail_in22k_ft_in1k,89.701,10.300,98.638,1.362,39.30,224,1.000,bicubic,+3.910,+0.812,+8 volo_d1_384.sail_in1k,89.698,10.302,98.290,1.710,26.78,384,1.000,bicubic,+4.454,+1.096,+45 deit3_large_patch16_384.fb_in1k,89.688,10.312,98.390,1.610,304.76,384,1.000,bicubic,+3.876,+0.792,+4 caformer_s36.sail_in1k_384,89.679,10.321,98.324,1.676,39.30,384,1.000,bicubic,+3.937,+0.652,+9 xcit_large_24_p16_384.fb_dist_in1k,89.662,10.338,98.403,1.597,189.10,384,1.000,bicubic,+3.908,+0.865,+7 convformer_b36.sail_in1k_384,89.658,10.342,98.379,1.621,99.88,384,1.000,bicubic,+3.918,+0.855,+8 tf_efficientnet_b5.ns_jft_in1k,89.651,10.349,98.486,1.514,30.39,456,0.934,bicubic,+3.563,+0.730,-18 dm_nfnet_f3.dm_in1k,89.647,10.353,98.463,1.537,254.92,416,0.940,bicubic,+3.961,+0.893,+9 convnext_base.clip_laion2b_augreg_ft_in1k,89.645,10.355,98.463,1.537,88.59,256,1.000,bicubic,+3.487,+0.783,-25 regnety_2560.seer_ft_in1k,89.632,10.368,98.399,1.601,"1,282.60",384,1.000,bicubic,+4.482,+0.961,+48 convnext_small.in12k_ft_in1k_384,89.598,10.402,98.480,1.520,50.22,384,1.000,bicubic,+3.416,+0.558,-31 maxvit_base_tf_384.in1k,89.589,10.411,98.320,1.680,119.65,384,1.000,bicubic,+3.287,+0.522,-38 tf_efficientnet_b8.ap_in1k,89.579,10.421,98.305,1.695,87.41,672,0.954,bicubic,+4.215,+1.013,+28 regnety_160.sw_in12k_ft_in1k,89.570,10.430,98.546,1.454,83.59,288,1.000,bicubic,+3.584,+0.712,-15 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k,89.566,10.434,98.420,1.580,86.57,224,0.950,bicubic,+3.396,+0.664,-33 maxvit_tiny_tf_512.in1k,89.562,10.438,98.335,1.665,31.05,512,1.000,bicubic,+3.898,+0.751,+2 convformer_s18.sail_in22k_ft_in1k_384,89.553,10.447,98.531,1.469,26.77,384,1.000,bicubic,+4.555,+0.961,+57 volo_d3_224.sail_in1k,89.553,10.447,98.373,1.627,86.33,224,0.960,bicubic,+4.139,+1.097,+16 maxvit_large_tf_384.in1k,89.553,10.447,98.185,1.815,212.03,384,1.000,bicubic,+3.323,+0.497,-41 tf_efficientnetv2_l.in1k,89.540,10.460,98.339,1.661,118.52,480,1.000,bicubic,+3.876,+0.865,-1 flexivit_large.1200ep_in1k,89.534,10.466,98.414,1.586,304.36,240,0.950,bicubic,+3.890,+0.874,-1 xcit_large_24_p8_224.fb_dist_in1k,89.517,10.483,98.217,1.783,188.93,224,1.000,bicubic,+4.115,+0.815,+14 flexivit_large.600ep_in1k,89.510,10.490,98.392,1.608,304.36,240,0.950,bicubic,+3.970,+0.904,+1 xcit_small_12_p8_384.fb_dist_in1k,89.508,10.492,98.307,1.693,26.21,384,1.000,bicubic,+4.430,+1.025,+43 cait_s24_384.fb_dist_in1k,89.504,10.496,98.362,1.638,47.06,384,1.000,bicubic,+4.456,+1.016,+45 convformer_s36.sail_in22k_ft_in1k,89.496,10.505,98.454,1.546,40.01,224,1.000,bicubic,+4.082,+0.886,+8 convnextv2_tiny.fcmae_ft_in22k_in1k_384,89.485,10.515,98.484,1.516,28.64,384,1.000,bicubic,+4.379,+0.856,+34 convformer_s36.sail_in1k_384,89.481,10.520,98.369,1.631,40.01,384,1.000,bicubic,+4.103,+0.893,+10 xcit_medium_24_p16_384.fb_dist_in1k,89.481,10.520,98.296,1.704,84.40,384,1.000,bicubic,+4.056,+0.966,+2 convnext_tiny.in12k_ft_in1k_384,89.472,10.528,98.505,1.494,28.59,384,1.000,bicubic,+4.350,+0.900,+30 inception_next_base.sail_in1k_384,89.453,10.547,98.345,1.655,86.67,384,1.000,bicubic,+4.251,+0.931,+23 regnety_120.sw_in12k_ft_in1k,89.446,10.554,98.537,1.462,51.82,288,1.000,bicubic,+4.046,+0.956,+5 vit_base_patch16_224.augreg2_in21k_ft_in1k,89.446,10.554,98.441,1.559,86.57,224,0.900,bicubic,+4.352,+0.911,+31 deit3_base_patch16_224.fb_in22k_ft_in1k,89.444,10.556,98.557,1.443,86.59,224,1.000,bicubic,+3.744,+0.811,-18 maxvit_small_tf_512.in1k,89.444,10.556,98.354,1.646,69.13,512,1.000,bicubic,+3.360,+0.590,-45 vit_base_patch8_224.augreg_in21k_ft_in1k,89.436,10.564,98.484,1.516,86.58,224,0.900,bicubic,+3.638,+0.694,-28 vit_base_patch32_clip_448.laion2b_ft_in12k_in1k,89.436,10.564,98.401,1.599,88.34,448,1.000,bicubic,+3.656,+0.763,-27 deit_base_distilled_patch16_384.fb_in1k,89.434,10.566,98.439,1.561,87.63,384,1.000,bicubic,+4.010,+1.033,-6 vit_base_patch16_clip_224.laion2b_ft_in1k,89.431,10.569,98.469,1.531,86.57,224,1.000,bicubic,+3.961,+0.893,-11 tf_efficientnet_b7.ap_in1k,89.431,10.569,98.345,1.655,66.35,600,0.949,bicubic,+4.307,+1.093,+20 convnextv2_base.fcmae_ft_in1k,89.421,10.579,98.360,1.640,88.72,288,1.000,bicubic,+3.947,+0.976,-13 caformer_b36.sail_in1k,89.408,10.592,98.222,1.778,98.75,224,1.000,bicubic,+3.904,+0.912,-15 vit_base_patch16_clip_224.openai_ft_in12k_in1k,89.404,10.596,98.394,1.606,86.57,224,0.950,bicubic,+3.462,+0.666,-42 hrnet_w48_ssld.paddle_in1k,89.401,10.598,98.382,1.618,77.47,288,1.000,bilinear,+4.921,+1.148,+69 beit_base_patch16_224.in22k_ft_in22k_in1k,89.395,10.605,98.529,1.471,86.53,224,0.900,bicubic,+4.183,+0.871,+7 regnetz_e8.ra3_in1k,89.378,10.622,98.459,1.542,57.70,320,1.000,bicubic,+4.344,+1.186,+25 deit3_small_patch16_384.fb_in22k_ft_in1k,89.363,10.637,98.386,1.614,22.21,384,1.000,bicubic,+4.539,+0.900,+39 tf_efficientnetv2_m.in1k,89.350,10.650,98.326,1.674,54.14,480,1.000,bicubic,+4.146,+0.962,+5 vit_medium_patch16_gap_384.sw_in12k_ft_in1k,89.348,10.652,98.495,1.505,39.03,384,0.950,bicubic,+3.818,+0.859,-24 tf_efficientnet_b8.ra_in1k,89.348,10.652,98.305,1.695,87.41,672,0.954,bicubic,+3.980,+0.911,-10 tf_efficientnet_b6.ap_in1k,89.344,10.656,98.283,1.717,43.04,528,0.942,bicubic,+4.556,+1.145,+38 volo_d2_224.sail_in1k,89.335,10.665,98.213,1.787,58.68,224,0.960,bicubic,+4.133,+1.023,+3 eva02_small_patch14_336.mim_in22k_ft_in1k,89.333,10.667,98.377,1.623,22.13,336,1.000,bicubic,+3.615,+0.743,-38 caformer_s18.sail_in1k_384,89.331,10.669,98.294,1.706,26.34,384,1.000,bicubic,+4.305,+0.936,+18 vit_large_patch16_224.augreg_in21k_ft_in1k,89.318,10.682,98.390,1.610,304.33,224,0.900,bicubic,+3.482,+0.726,-51 flexivit_large.300ep_in1k,89.310,10.690,98.324,1.676,304.36,240,0.950,bicubic,+4.022,+0.924,-12 tf_efficientnet_b4.ns_jft_in1k,89.301,10.699,98.345,1.655,19.34,380,0.922,bicubic,+4.141,+0.877,0 convnext_small.fb_in22k_ft_in1k,89.299,10.701,98.358,1.642,50.22,288,1.000,bicubic,+4.037,+0.676,-12 xcit_small_24_p16_384.fb_dist_in1k,89.295,10.705,98.326,1.674,47.67,384,1.000,bicubic,+4.205,+1.014,+6 xcit_medium_24_p8_224.fb_dist_in1k,89.293,10.707,98.185,1.815,84.32,224,1.000,bicubic,+4.219,+0.935,+8 beitv2_base_patch16_224.in1k_ft_in1k,89.271,10.729,98.262,1.738,86.53,224,0.900,bicubic,+3.677,+0.756,-40 deit3_huge_patch14_224.fb_in1k,89.218,10.782,98.164,1.836,632.13,224,0.900,bicubic,+3.994,+0.804,-12 coat_lite_medium_384.in1k,89.209,10.791,98.219,1.781,44.57,384,1.000,bicubic,+4.331,+0.847,+19 xcit_small_24_p8_224.fb_dist_in1k,89.199,10.801,98.243,1.757,47.63,224,1.000,bicubic,+4.331,+1.053,+19 vit_base_patch32_clip_384.laion2b_ft_in12k_in1k,89.197,10.803,98.358,1.642,88.30,384,1.000,bicubic,+3.831,+0.698,-25 dm_nfnet_f2.dm_in1k,89.194,10.806,98.228,1.772,193.78,352,0.920,bicubic,+4.002,+0.882,-10 xcit_small_12_p16_384.fb_dist_in1k,89.194,10.806,98.217,1.783,26.25,384,1.000,bicubic,+4.482,+1.099,+25 swin_base_patch4_window7_224.ms_in22k_ft_in1k,89.173,10.827,98.433,1.567,87.77,224,0.900,bicubic,+3.901,+0.869,-23 vit_base_patch16_clip_224.openai_ft_in1k,89.171,10.829,98.269,1.732,86.57,224,0.900,bicubic,+3.879,+0.832,-26 eca_nfnet_l2.ra3_in1k,89.147,10.852,98.315,1.685,56.72,384,1.000,bicubic,+4.447,+1.049,+23 cait_xs24_384.fb_dist_in1k,89.147,10.852,98.292,1.708,26.67,384,1.000,bicubic,+5.085,+1.408,+87 fastvit_ma36.apple_dist_in1k,89.124,10.876,98.142,1.857,44.07,256,0.950,bicubic,+4.526,+1.141,+27 convformer_s18.sail_in1k_384,89.124,10.876,98.130,1.870,26.77,384,1.000,bicubic,+4.722,+1.018,+57 maxvit_tiny_tf_384.in1k,89.111,10.889,98.211,1.789,30.98,384,1.000,bicubic,+4.011,+0.833,-12 maxvit_small_tf_384.in1k,89.109,10.891,98.164,1.836,69.02,384,1.000,bicubic,+3.569,+0.702,-50 resnext101_32x32d.fb_wsl_ig1b_ft_in1k,89.107,10.893,98.189,1.810,468.53,224,0.875,bilinear,+4.009,+0.751,-13 tf_efficientnet_b7.ra_in1k,89.081,10.919,98.185,1.815,66.35,600,0.949,bicubic,+4.149,+0.977,+1 tiny_vit_21m_224.dist_in22k_ft_in1k,89.077,10.923,98.236,1.764,21.20,224,0.950,bicubic,+3.991,+0.870,-12 ecaresnet269d.ra2_in1k,89.071,10.929,98.234,1.766,102.09,352,1.000,bicubic,+4.103,+1.012,-3 regnety_1280.seer_ft_in1k,89.064,10.936,98.157,1.843,644.81,384,1.000,bicubic,+4.632,+1.065,+41 vit_base_patch32_clip_384.openai_ft_in12k_in1k,89.045,10.955,98.281,1.719,88.30,384,0.950,bicubic,+3.831,+0.877,-30 xcit_large_24_p16_224.fb_dist_in1k,89.045,10.955,98.059,1.941,189.10,224,1.000,bicubic,+4.129,+0.931,-2 convnext_small.in12k_ft_in1k,89.024,10.976,98.243,1.757,50.22,288,1.000,bicubic,+3.694,+0.697,-41 resmlp_big_24_224.fb_in22k_ft_in1k,89.019,10.981,98.215,1.785,129.14,224,0.875,bicubic,+4.621,+1.103,+46 dm_nfnet_f1.dm_in1k,89.017,10.983,98.256,1.744,132.63,320,0.910,bicubic,+4.315,+1.074,+8 xcit_small_12_p8_224.fb_dist_in1k,89.009,10.991,98.076,1.924,26.21,224,1.000,bicubic,+4.773,+1.206,+56 convnext_large.fb_in1k,88.994,11.006,98.040,1.960,197.77,288,1.000,bicubic,+4.148,+0.826,-2 efficientnetv2_rw_m.agc_in1k,88.985,11.015,98.219,1.781,53.24,416,1.000,bicubic,+4.175,+1.067,-1 caformer_m36.sail_in1k,88.985,11.015,98.016,1.984,56.20,224,1.000,bicubic,+3.753,+0.816,-39 regnety_1280.swag_lc_in1k,88.955,11.045,98.228,1.772,644.81,224,0.965,bicubic,+2.973,+0.378,-90 regnetz_d8_evos.ch_in1k,88.951,11.049,98.181,1.819,23.46,320,1.000,bicubic,+4.825,+1.169,+60 regnetz_040_h.ra3_in1k,88.949,11.051,98.209,1.791,28.94,320,1.000,bicubic,+4.457,+1.451,+19 edgenext_base.in21k_ft_in1k,88.942,11.057,98.279,1.721,18.51,320,1.000,bicubic,+4.888,+1.083,+66 tf_efficientnet_b5.ap_in1k,88.942,11.057,98.166,1.834,30.39,456,0.934,bicubic,+4.684,+1.192,+44 mvitv2_large.fb_in1k,88.936,11.064,97.965,2.035,217.99,224,0.900,bicubic,+3.692,+0.751,-47 caformer_s18.sail_in22k_ft_in1k,88.932,11.068,98.311,1.689,26.34,224,1.000,bicubic,+4.858,+1.113,+60 deit3_base_patch16_384.fb_in1k,88.923,11.077,98.042,1.958,86.88,384,1.000,bicubic,+3.849,+0.768,-28 deit3_medium_patch16_224.fb_in22k_ft_in1k,88.919,11.081,98.296,1.704,38.85,224,1.000,bicubic,+4.369,+1.108,+4 volo_d1_224.sail_in1k,88.915,11.085,98.027,1.973,26.63,224,0.960,bicubic,+4.753,+1.251,+50 convnext_tiny.in12k_ft_in1k,88.906,11.094,98.309,1.691,28.59,288,1.000,bicubic,+4.456,+0.969,+15 tf_efficientnetv2_s.in21k_ft_in1k,88.898,11.102,98.275,1.725,21.46,384,1.000,bicubic,+4.612,+1.023,+34 vit_base_patch16_224.augreg_in21k_ft_in1k,88.868,11.132,98.232,1.768,86.57,224,0.900,bicubic,+4.336,+0.938,+3 convnext_tiny.fb_in22k_ft_in1k_384,88.855,11.145,98.296,1.704,28.59,384,1.000,bicubic,+4.767,+1.152,+52 regnetz_d8.ra3_in1k,88.853,11.147,98.189,1.810,23.37,320,1.000,bicubic,+4.801,+1.194,+56 convformer_b36.sail_in1k,88.851,11.149,97.878,2.122,99.88,224,1.000,bicubic,+4.033,+0.932,-18 coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k,88.842,11.158,97.869,2.131,41.72,224,0.950,bicubic,+3.932,+0.911,-25 resnetrs420.tf_in1k,88.838,11.162,98.031,1.968,191.89,416,1.000,bicubic,+3.834,+0.907,-34 resnext101_32x16d.fb_wsl_ig1b_ft_in1k,88.834,11.166,98.051,1.949,194.03,224,0.875,bilinear,+4.668,+0.853,+40 resnetrs270.tf_in1k,88.829,11.171,98.136,1.864,129.86,352,1.000,bicubic,+4.401,+1.168,+14 vit_small_r26_s32_384.augreg_in21k_ft_in1k,88.821,11.179,98.341,1.659,36.47,384,1.000,bicubic,+4.773,+1.013,+52 swin_small_patch4_window7_224.ms_in22k_ft_in1k,88.817,11.184,98.328,1.672,49.61,224,0.900,bicubic,+5.519,+1.364,+133 vit_base_r50_s16_384.orig_in21k_ft_in1k,88.806,11.194,98.232,1.768,98.95,384,1.000,bicubic,+3.830,+0.942,-37 xcit_medium_24_p16_224.fb_dist_in1k,88.806,11.194,98.038,1.962,84.40,224,1.000,bicubic,+4.520,+1.106,+23 tf_efficientnet_b7.aa_in1k,88.804,11.196,98.057,1.943,66.35,600,0.949,bicubic,+4.388,+1.149,+13 maxxvit_rmlp_small_rw_256.sw_in1k,88.795,11.205,98.064,1.937,66.01,256,0.950,bicubic,+4.171,+0.996,-18 fastvit_sa36.apple_dist_in1k,88.789,11.211,98.096,1.905,31.53,256,0.900,bicubic,+4.763,+1.242,+47 seresnet152d.ra2_in1k,88.787,11.213,98.172,1.828,66.84,320,1.000,bicubic,+4.427,+1.132,+14 xcit_tiny_24_p8_384.fb_dist_in1k,88.787,11.213,98.155,1.845,12.11,384,1.000,bicubic,+5.041,+1.755,+74 convformer_m36.sail_in1k,88.787,11.213,97.769,2.231,57.05,224,1.000,bicubic,+4.293,+0.903,-7 resnext101_32x8d.fb_swsl_ig1b_ft_in1k,88.782,11.218,98.151,1.849,88.79,224,0.875,bilinear,+4.480,+0.975,+14 resnetrs200.tf_in1k,88.763,11.237,98.115,1.885,93.21,320,1.000,bicubic,+4.319,+1.273,-5 convnext_base.fb_in1k,88.763,11.237,97.920,2.080,88.59,288,1.000,bicubic,+4.335,+0.952,+1 deit3_large_patch16_224.fb_in1k,88.763,11.237,97.920,2.080,304.37,224,0.900,bicubic,+3.989,+0.884,-32 tf_efficientnet_b6.aa_in1k,88.759,11.241,98.066,1.934,43.04,528,0.942,bicubic,+4.647,+1.182,+29 resnetrs350.tf_in1k,88.757,11.243,98.031,1.968,163.96,384,1.000,bicubic,+4.043,+1.039,-34 rexnetr_300.sw_in12k_ft_in1k,88.746,11.254,98.339,1.661,34.81,288,1.000,bicubic,+4.200,+1.083,-23 caformer_s36.sail_in1k,88.746,11.254,98.023,1.977,39.30,224,1.000,bicubic,+4.240,+1.027,-17 convnextv2_tiny.fcmae_ft_in22k_in1k,88.744,11.256,98.194,1.806,28.64,288,1.000,bicubic,+4.328,+0.934,-2 vit_base_patch16_224_miil.in21k_ft_in1k,88.742,11.258,98.027,1.973,86.54,224,0.875,bilinear,+4.476,+1.223,+8 edgenext_base.usi_in1k,88.735,11.265,98.147,1.853,18.51,320,1.000,bicubic,+4.777,+1.377,+38 regnetz_040.ra3_in1k,88.731,11.269,98.091,1.909,27.12,320,1.000,bicubic,+4.491,+1.159,+10 convformer_s18.sail_in22k_ft_in1k,88.727,11.273,98.194,1.806,26.77,224,1.000,bicubic,+4.989,+1.146,+65 resnetv2_152x2_bit.goog_in21k_ft_in1k,88.725,11.275,98.311,1.689,236.34,448,1.000,bilinear,+4.215,+0.877,-26 regnety_160.deit_in1k,88.703,11.297,98.068,1.932,83.59,288,1.000,bicubic,+5.013,+1.288,+69 davit_base.msft_in1k,88.701,11.299,97.874,2.127,87.95,224,0.950,bicubic,+4.059,+0.854,-39 regnety_640.seer_ft_in1k,88.674,11.326,98.166,1.834,281.38,384,1.000,bicubic,+4.766,+1.244,+35 regnetz_d32.ra3_in1k,88.652,11.348,98.078,1.922,27.58,320,0.950,bicubic,+4.630,+1.210,+27 vit_small_patch16_384.augreg_in21k_ft_in1k,88.648,11.352,98.230,1.770,22.20,384,1.000,bicubic,+4.844,+1.130,+47 flexivit_base.1200ep_in1k,88.648,11.352,97.935,2.065,86.59,240,0.950,bicubic,+3.972,+0.941,-43 mvitv2_base.fb_in1k,88.644,11.356,97.826,2.174,51.47,224,0.900,bicubic,+4.194,+0.968,-24 regnety_080.ra3_in1k,88.635,11.365,97.965,2.035,39.18,288,1.000,bicubic,+4.709,+1.075,+28 vit_medium_patch16_gap_256.sw_in12k_ft_in1k,88.633,11.367,98.189,1.810,38.86,256,0.950,bicubic,+4.187,+0.980,-25 davit_small.msft_in1k,88.631,11.369,97.953,2.047,49.75,224,0.950,bicubic,+4.379,+1.013,-4 eca_nfnet_l1.ra2_in1k,88.622,11.378,98.132,1.868,41.41,320,1.000,bicubic,+4.610,+1.106,+22 repvgg_d2se.rvgg_in1k,88.599,11.401,97.984,2.015,133.33,320,1.000,bilinear,+5.039,+1.326,+69 maxvit_base_tf_224.in1k,88.588,11.412,97.850,2.150,119.47,224,0.950,bicubic,+3.728,+0.862,-62 swinv2_base_window16_256.ms_in1k,88.586,11.414,97.908,2.092,87.92,256,0.900,bicubic,+3.986,+0.818,-48 resnetaa101d.sw_in12k_ft_in1k,88.573,11.427,98.076,1.924,44.57,288,1.000,bicubic,+4.449,+0.970,+4 regnety_320.seer_ft_in1k,88.571,11.429,98.106,1.894,145.05,384,1.000,bicubic,+5.243,+1.398,+93 efficientvit_b3.r288_in1k,88.562,11.438,97.707,2.293,48.65,288,1.000,bicubic,+4.409,+0.971,0 resnetv2_152x4_bit.goog_in21k_ft_in1k,88.554,11.446,98.192,1.808,936.53,480,1.000,bilinear,+3.638,+0.754,-73 resnet200d.ra2_in1k,88.554,11.446,97.961,2.039,64.69,320,1.000,bicubic,+4.590,+1.135,+16 xcit_small_24_p16_224.fb_dist_in1k,88.545,11.455,98.004,1.996,47.67,224,1.000,bicubic,+4.671,+1.268,+22 flexivit_base.600ep_in1k,88.545,11.455,97.933,2.067,86.59,240,0.950,bicubic,+4.021,+0.997,-47 seresnextaa101d_32x8d.ah_in1k,88.537,11.463,98.002,1.998,93.59,288,1.000,bicubic,+3.971,+0.926,-54 maxvit_rmlp_small_rw_224.sw_in1k,88.522,11.478,97.773,2.227,64.90,224,0.900,bicubic,+4.030,+0.763,-44 resnest269e.in1k,88.520,11.480,98.029,1.971,110.93,416,0.928,bicubic,+4.012,+1.039,-49 coatnet_rmlp_2_rw_224.sw_in1k,88.513,11.487,97.566,2.434,73.88,224,0.950,bicubic,+3.905,+0.826,-60 efficientformerv2_l.snap_dist_in1k,88.509,11.491,97.963,2.037,26.32,224,0.950,bicubic,+4.877,+1.405,+49 repvit_m2_3.dist_300e_in1k,88.503,11.497,97.942,2.058,23.69,224,0.950,bicubic,+4.999,+1.438,+57 gcvit_base.in1k,88.501,11.499,97.769,2.231,90.32,224,0.875,bicubic,+4.056,+0.687,-42 swinv2_base_window8_256.ms_in1k,88.498,11.502,97.891,2.109,87.92,256,0.900,bicubic,+4.248,+0.967,-22 seresnext101_32x8d.ah_in1k,88.494,11.506,97.884,2.116,93.57,288,1.000,bicubic,+4.308,+1.010,-16 repvit_m2_3.dist_450e_in1k,88.488,11.512,98.059,1.941,23.69,224,0.950,bicubic,+4.746,+1.415,+31 convformer_s36.sail_in1k,88.486,11.514,97.763,2.237,40.01,224,1.000,bicubic,+4.426,+1.017,-7 flexivit_base.300ep_in1k,88.479,11.521,97.846,2.154,86.59,240,0.950,bicubic,+4.073,+0.962,-38 crossvit_18_dagger_408.in1k,88.473,11.527,97.897,2.103,44.61,408,1.000,bicubic,+4.271,+1.079,-22 efficientnetv2_rw_s.ra2_in1k,88.469,11.531,97.978,2.022,23.94,384,1.000,bicubic,+4.663,+1.246,+17 resnetv2_101x3_bit.goog_in21k_ft_in1k,88.466,11.534,98.157,1.843,387.93,448,1.000,bilinear,+4.028,+0.775,-49 fastvit_sa24.apple_dist_in1k,88.460,11.540,97.957,2.043,21.55,256,0.900,bicubic,+5.118,+1.405,+69 maxvit_large_tf_224.in1k,88.460,11.540,97.809,2.191,211.79,224,0.950,bicubic,+3.518,+0.839,-94 maxvit_small_tf_224.in1k,88.456,11.544,97.880,2.120,68.93,224,0.950,bicubic,+4.030,+1.056,-48 resnetv2_50x3_bit.goog_in21k_ft_in1k,88.447,11.553,98.200,1.800,217.32,448,1.000,bilinear,+4.427,+1.074,-8 cait_s24_224.fb_dist_in1k,88.443,11.557,97.961,2.039,46.92,224,1.000,bicubic,+5.001,+1.387,+52 resmlp_big_24_224.fb_distilled_in1k,88.441,11.559,97.938,2.062,129.14,224,0.875,bicubic,+4.849,+1.287,+37 regnetv_064.ra3_in1k,88.436,11.563,98.061,1.939,30.58,288,1.000,bicubic,+4.721,+1.319,+23 resnest200e.in1k,88.434,11.566,98.040,1.960,70.20,320,0.909,bicubic,+4.590,+1.156,+1 vit_large_r50_s32_224.augreg_in21k_ft_in1k,88.432,11.568,98.083,1.917,328.99,224,0.900,bicubic,+4.014,+0.911,-54 inception_next_base.sail_in1k,88.432,11.568,97.773,2.227,86.67,224,0.950,bicubic,+4.340,+0.977,-24 tf_efficientnet_b3.ns_jft_in1k,88.428,11.572,98.031,1.968,12.23,300,0.904,bicubic,+4.376,+1.113,-20 seresnext101d_32x8d.ah_in1k,88.428,11.572,97.961,2.039,93.59,288,1.000,bicubic,+4.070,+1.041,-47 swin_base_patch4_window12_384.ms_in1k,88.426,11.574,97.803,2.197,87.90,384,1.000,bicubic,+3.950,+0.911,-68 tf_efficientnetv2_s.in1k,88.409,11.591,97.927,2.073,21.46,384,1.000,bicubic,+4.511,+1.231,-11 convnext_small.fb_in1k,88.407,11.593,98.012,1.988,50.22,288,1.000,bicubic,+4.707,+1.204,+18 tf_efficientnet_b5.aa_in1k,88.407,11.593,97.931,2.069,30.39,456,0.934,bicubic,+4.719,+1.219,+19 regnety_320.swag_lc_in1k,88.398,11.602,98.115,1.885,145.05,224,0.965,bicubic,+3.850,+0.673,-83 vit_base_patch16_384.orig_in21k_ft_in1k,88.392,11.608,98.160,1.840,86.86,384,1.000,bicubic,+4.192,+0.942,-41 regnetz_c16_evos.ch_in1k,88.381,11.619,98.040,1.960,13.49,320,0.950,bicubic,+5.745,+1.566,+121 tresnet_v2_l.miil_in21k_ft_in1k,88.375,11.625,97.925,2.075,46.17,224,0.875,bilinear,+4.481,+1.435,-16 swinv2_small_window16_256.ms_in1k,88.372,11.628,97.848,2.152,49.73,256,0.900,bicubic,+4.148,+1.070,-47 efficientnet_b4.ra2_in1k,88.366,11.634,97.961,2.039,19.34,384,1.000,bicubic,+4.952,+1.363,+38 resnet152d.ra2_in1k,88.362,11.638,97.931,2.069,60.21,320,1.000,bicubic,+4.678,+1.193,+13 fastvit_ma36.apple_in1k,88.358,11.643,97.923,2.077,44.07,256,0.950,bicubic,+4.475,+1.181,-18 maxvit_rmlp_tiny_rw_256.sw_in1k,88.355,11.645,97.820,2.180,29.15,256,0.950,bicubic,+4.131,+0.952,-50 tf_efficientnet_b4.ap_in1k,88.347,11.653,97.891,2.109,19.34,380,0.922,bicubic,+5.097,+1.495,+52 deit3_small_patch16_224.fb_in22k_ft_in1k,88.338,11.662,98.132,1.868,22.06,224,1.000,bicubic,+5.262,+1.356,+71 regnety_064.ra3_in1k,88.323,11.677,97.865,2.135,30.58,288,1.000,bicubic,+4.603,+1.143,+1 efficientvit_b3.r256_in1k,88.319,11.681,97.560,2.440,48.65,256,1.000,bicubic,+4.517,+1.044,-11 convnextv2_nano.fcmae_ft_in22k_in1k_384,88.315,11.685,97.938,2.062,15.62,384,1.000,bicubic,+4.941,+1.194,+37 tf_efficientnet_b5.ra_in1k,88.313,11.687,97.914,2.086,30.39,456,0.934,bicubic,+4.499,+1.162,-17 crossvit_15_dagger_408.in1k,88.313,11.687,97.874,2.127,28.50,408,1.000,bicubic,+4.473,+1.096,-21 cs3se_edgenet_x.c2ns_in1k,88.300,11.700,97.933,2.067,50.72,320,1.000,bicubic,+4.754,+1.263,+13 deit3_small_patch16_384.fb_in1k,88.296,11.704,97.888,2.112,22.21,384,1.000,bicubic,+4.868,+1.214,+24 pvt_v2_b4.in1k,88.285,11.715,97.816,2.184,62.56,224,0.900,bicubic,+4.573,+1.146,-4 efficientformer_l7.snap_dist_in1k,88.278,11.722,97.882,2.118,82.23,224,0.950,bicubic,+4.896,+1.346,+30 mvitv2_small.fb_in1k,88.264,11.736,97.692,2.308,34.87,224,0.900,bicubic,+4.494,+1.116,-16 inception_next_small.sail_in1k,88.253,11.747,97.816,2.184,49.37,224,0.875,bicubic,+4.675,+1.218,+6 resnetrs152.tf_in1k,88.249,11.751,97.737,2.263,86.62,320,1.000,bicubic,+4.547,+1.125,-7 deit3_base_patch16_224.fb_in1k,88.242,11.758,97.818,2.182,86.59,224,0.900,bicubic,+4.456,+1.232,-21 xcit_small_12_p16_224.fb_dist_in1k,88.240,11.760,97.841,2.159,26.25,224,1.000,bicubic,+4.912,+1.425,+33 gcvit_small.in1k,88.223,11.777,97.788,2.212,51.09,224,0.875,bicubic,+4.331,+1.130,-37 deit_base_distilled_patch16_224.fb_in1k,88.210,11.790,97.910,2.090,87.34,224,0.900,bicubic,+4.820,+1.422,+21 regnetv_040.ra3_in1k,88.208,11.792,97.972,2.028,20.64,288,1.000,bicubic,+5.018,+1.314,+38 xception65p.ra3_in1k,88.189,11.811,97.788,2.212,39.82,299,0.940,bicubic,+5.063,+1.306,+45 swinv2_small_window8_256.ms_in1k,88.172,11.828,97.777,2.223,49.73,256,0.900,bicubic,+4.318,+1.133,-38 caformer_s18.sail_in1k,88.163,11.837,97.728,2.272,26.34,224,1.000,bicubic,+4.509,+1.210,-9 xcit_tiny_24_p16_384.fb_dist_in1k,88.161,11.839,97.942,2.058,12.12,384,1.000,bicubic,+5.591,+1.666,+108 xcit_large_24_p8_224.fb_in1k,88.159,11.841,97.391,2.609,188.93,224,1.000,bicubic,+3.765,+0.727,-87 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k_384,88.148,11.852,98.051,1.949,236.34,384,1.000,bicubic,+4.312,+0.925,-38 tiny_vit_21m_224.in1k,88.146,11.854,97.850,2.150,21.20,224,0.950,bicubic,+4.892,+1.258,+26 coat_lite_medium.in1k,88.144,11.856,97.899,2.101,44.57,224,0.900,bicubic,+4.544,+1.171,-11 resnext101_32x8d.fb_wsl_ig1b_ft_in1k,88.144,11.856,97.859,2.142,88.79,224,0.875,bilinear,+5.446,+1.715,+77 cait_xxs36_384.fb_dist_in1k,88.140,11.860,97.903,2.097,17.37,384,1.000,bicubic,+5.936,+1.759,+149 dm_nfnet_f0.dm_in1k,88.133,11.867,97.903,2.097,71.49,256,0.900,bicubic,+4.647,+1.335,-2 resnext101_32x4d.fb_swsl_ig1b_ft_in1k,88.112,11.888,97.965,2.035,44.18,224,0.875,bilinear,+4.886,+1.205,+24 pit_b_distilled_224.in1k,88.110,11.890,97.654,2.346,74.79,224,0.900,bicubic,+4.344,+1.186,-35 xcit_tiny_12_p8_384.fb_dist_in1k,88.103,11.897,97.925,2.075,6.71,384,1.000,bicubic,+5.715,+1.705,+116 tiny_vit_11m_224.dist_in22k_ft_in1k,88.103,11.897,97.790,2.210,11.00,224,0.950,bicubic,+4.875,+1.160,+20 pvt_v2_b5.in1k,88.103,11.897,97.694,2.306,81.96,224,0.900,bicubic,+4.363,+1.058,-31 rexnetr_200.sw_in12k_ft_in1k,88.099,11.901,98.006,1.994,16.52,288,1.000,bicubic,+4.961,+1.370,+25 pvt_v2_b3.in1k,88.099,11.901,97.777,2.223,45.24,224,0.900,bicubic,+4.981,+1.221,+32 fastvit_sa36.apple_in1k,88.088,11.912,97.790,2.210,31.53,256,0.900,bicubic,+4.588,+1.160,-13 hrnet_w18_ssld.paddle_in1k,88.067,11.933,97.824,2.176,21.30,288,1.000,bilinear,+6.019,+1.574,+157 xception65.ra3_in1k,88.067,11.933,97.750,2.250,39.92,299,0.940,bicubic,+4.887,+1.158,+18 efficientvit_b3.r224_in1k,88.065,11.935,97.566,2.434,48.65,224,0.950,bicubic,+4.605,+1.236,-11 swin_s3_base_224.ms_in1k,88.046,11.954,97.662,2.338,71.13,224,0.900,bicubic,+4.126,+0.990,-66 xcit_tiny_24_p8_224.fb_dist_in1k,88.037,11.963,97.818,2.182,12.11,224,1.000,bicubic,+5.471,+1.760,+89 convnextv2_tiny.fcmae_ft_in1k,88.035,11.965,97.859,2.142,28.64,288,1.000,bicubic,+4.571,+1.141,-15 regnety_160.swag_lc_in1k,88.033,11.967,98.042,1.958,83.59,224,0.965,bicubic,+4.251,+0.762,-51 resnet152.a1h_in1k,88.033,11.967,97.696,2.304,60.19,288,1.000,bicubic,+4.583,+1.158,-16 focalnet_base_srf.ms_in1k,88.033,11.967,97.656,2.344,88.15,224,0.900,bicubic,+4.213,+0.976,-56 maxvit_tiny_tf_224.in1k,88.027,11.973,97.816,2.184,30.92,224,0.950,bicubic,+4.625,+1.226,-12 focalnet_base_lrf.ms_in1k,88.003,11.997,97.609,2.391,88.75,224,0.900,bicubic,+4.165,+1.001,-63 gcvit_tiny.in1k,88.001,11.999,97.722,2.278,28.22,224,0.875,bicubic,+4.617,+1.324,-10 eca_nfnet_l0.ra2_in1k,87.980,12.020,97.871,2.129,24.14,288,1.000,bicubic,+5.402,+1.379,+77 tf_efficientnet_b5.in1k,87.975,12.025,97.933,2.067,30.39,456,0.934,bicubic,+4.799,+1.397,+6 cs3sedarknet_x.c2ns_in1k,87.975,12.025,97.794,2.205,35.40,288,1.000,bicubic,+5.317,+1.445,+60 nfnet_l0.ra2_in1k,87.967,12.033,97.867,2.133,35.07,288,1.000,bicubic,+5.217,+1.351,+46 efficientformer_l3.snap_dist_in1k,87.963,12.037,97.711,2.289,31.41,224,0.950,bicubic,+5.415,+1.461,+79 tf_efficientnet_b4.aa_in1k,87.958,12.042,97.739,2.261,19.34,380,0.922,bicubic,+4.940,+1.439,+23 xcit_small_24_p8_224.fb_in1k,87.956,12.044,97.581,2.419,47.63,224,1.000,bicubic,+4.122,+0.949,-69 regnetz_c16.ra3_in1k,87.952,12.048,97.779,2.220,13.46,320,1.000,bicubic,+5.320,+1.462,+58 regnety_032.ra_in1k,87.950,12.050,97.897,2.103,19.44,288,1.000,bicubic,+5.224,+1.481,+43 coatnet_1_rw_224.sw_in1k,87.943,12.057,97.453,2.547,41.72,224,0.950,bicubic,+4.347,+1.071,-43 resnet101d.ra2_in1k,87.937,12.063,97.910,2.090,44.57,320,1.000,bicubic,+4.917,+1.458,+17 regnety_040.ra3_in1k,87.933,12.067,97.880,2.120,20.65,288,1.000,bicubic,+4.889,+1.378,+13 mobilevitv2_200.cvnets_in22k_ft_in1k_384,87.933,12.067,97.822,2.178,18.45,384,1.000,bicubic,+4.533,+1.240,-25 swinv2_cr_small_ns_224.sw_in1k,87.933,12.067,97.668,2.332,49.70,224,0.900,bicubic,+4.435,+1.184,-38 focalnet_small_lrf.ms_in1k,87.930,12.069,97.696,2.304,50.34,224,0.900,bicubic,+4.436,+1.116,-38 repvit_m1_5.dist_450e_in1k,87.928,12.072,97.703,2.297,14.64,224,0.950,bicubic,+5.416,+1.591,+72 resnetv2_101.a1h_in1k,87.924,12.076,97.651,2.349,44.54,288,1.000,bicubic,+4.924,+1.197,+13 efficientvit_b2.r288_in1k,87.920,12.080,97.600,2.400,24.33,288,1.000,bicubic,+4.820,+1.296,+3 vit_base_patch32_384.augreg_in21k_ft_in1k,87.909,12.091,98.010,1.990,88.30,384,1.000,bicubic,+4.557,+1.170,-25 sequencer2d_l.in1k,87.907,12.093,97.703,2.297,54.30,224,0.875,bicubic,+4.513,+1.207,-32 twins_svt_large.in1k,87.903,12.097,97.581,2.419,99.27,224,0.900,bicubic,+4.225,+0.993,-59 coatnet_rmlp_1_rw_224.sw_in1k,87.892,12.108,97.624,2.376,41.69,224,0.950,bicubic,+4.530,+1.174,-29 twins_pcpvt_large.in1k,87.869,12.131,97.859,2.142,60.99,224,0.900,bicubic,+4.739,+1.255,-9 swin_base_patch4_window7_224.ms_in1k,87.866,12.134,97.564,2.436,87.77,224,0.900,bicubic,+4.260,+1.112,-59 maxvit_tiny_rw_224.sw_in1k,87.856,12.144,97.643,2.357,29.06,224,0.950,bicubic,+4.352,+1.129,-51 swin_s3_small_224.ms_in1k,87.849,12.151,97.431,2.568,49.74,224,0.900,bicubic,+4.093,+0.980,-78 convformer_s18.sail_in1k,87.845,12.155,97.551,2.449,26.77,224,1.000,bicubic,+4.859,+1.301,+5 deit_base_patch16_384.fb_in1k,87.845,12.155,97.508,2.492,86.86,384,1.000,bicubic,+4.741,+1.140,-8 mobilevitv2_175.cvnets_in22k_ft_in1k_384,87.841,12.159,97.728,2.272,14.25,384,1.000,bicubic,+4.903,+1.302,+6 ecaresnet101d.miil_in1k,87.839,12.161,97.899,2.101,44.57,288,0.950,bicubic,+4.855,+1.357,+3 convnext_nano.in12k_ft_in1k,87.837,12.164,97.888,2.112,15.59,288,1.000,bicubic,+4.975,+1.332,+9 xcit_small_12_p8_224.fb_in1k,87.822,12.178,97.568,2.432,26.21,224,1.000,bicubic,+4.488,+1.086,-35 flexivit_small.600ep_in1k,87.811,12.189,97.577,2.423,22.06,240,0.950,bicubic,+5.449,+1.493,+72 vit_base_patch32_clip_224.laion2b_ft_in12k_in1k,87.809,12.191,97.756,2.244,88.22,224,0.900,bicubic,+4.513,+1.228,-35 flexivit_small.1200ep_in1k,87.809,12.191,97.613,2.387,22.06,240,0.950,bicubic,+5.283,+1.487,+51 focalnet_small_srf.ms_in1k,87.809,12.191,97.575,2.425,49.89,224,0.900,bicubic,+4.393,+1.137,-51 tf_efficientnetv2_b3.in21k_ft_in1k,87.807,12.193,97.895,2.105,14.36,300,0.900,bicubic,+5.137,+1.269,+21 maxxvit_rmlp_nano_rw_256.sw_in1k,87.807,12.193,97.752,2.248,16.78,256,0.950,bicubic,+4.765,+1.402,-11 deit3_medium_patch16_224.fb_in1k,87.807,12.193,97.654,2.346,38.85,224,0.900,bicubic,+4.721,+1.360,-15 tresnet_xl.miil_in1k_448,87.796,12.204,97.459,2.541,78.44,448,0.875,bilinear,+4.738,+1.287,-15 resnetv2_50x1_bit.goog_distilled_in1k,87.790,12.210,97.899,2.101,25.55,224,0.875,bicubic,+4.966,+1.381,+1 repvit_m1_5.dist_300e_in1k,87.772,12.227,97.649,2.351,14.64,224,0.950,bicubic,+5.396,+1.619,+61 convnext_tiny.fb_in1k,87.770,12.230,97.585,2.415,28.59,288,1.000,bicubic,+5.072,+0.953,+13 regnety_320.tv2_in1k,87.743,12.257,97.673,2.327,145.05,224,0.965,bicubic,+4.581,+1.259,-34 resnext101_64x4d.tv_in1k,87.740,12.259,97.592,2.408,83.46,224,0.875,bilinear,+4.748,+1.348,-14 convnextv2_nano.fcmae_ft_in22k_in1k,87.732,12.268,97.886,2.114,15.62,288,1.000,bicubic,+5.068,+1.366,+15 twins_pcpvt_base.in1k,87.730,12.270,97.728,2.272,43.83,224,0.900,bicubic,+5.016,+1.382,+6 tresnet_m.miil_in21k_ft_in1k,87.725,12.274,97.517,2.483,31.39,224,0.875,bilinear,+4.656,+1.407,-24 mvitv2_tiny.fb_in1k,87.719,12.281,97.553,2.447,24.17,224,0.900,bicubic,+5.309,+1.401,+48 gc_efficientnetv2_rw_t.agc_in1k,87.717,12.283,97.803,2.197,13.68,288,1.000,bicubic,+5.261,+1.507,+45 maxvit_rmlp_nano_rw_256.sw_in1k,87.715,12.285,97.577,2.423,15.50,256,0.950,bicubic,+4.761,+1.311,-17 resnetv2_101x1_bit.goog_in21k_ft_in1k,87.683,12.317,97.940,2.060,44.54,448,1.000,bilinear,+5.341,+1.420,+57 rexnet_300.nav_in1k,87.683,12.317,97.611,2.389,34.71,224,0.875,bicubic,+4.909,+1.373,-5 swin_small_patch4_window7_224.ms_in1k,87.662,12.338,97.568,2.432,49.61,224,0.900,bicubic,+4.454,+1.252,-48 efficientnetv2_rw_t.ra2_in1k,87.651,12.349,97.690,2.310,13.65,288,1.000,bicubic,+5.301,+1.498,+53 twins_svt_base.in1k,87.651,12.349,97.525,2.474,56.07,224,0.900,bicubic,+4.531,+1.111,-39 mobilevitv2_150.cvnets_in22k_ft_in1k_384,87.649,12.351,97.647,2.353,10.59,384,1.000,bicubic,+5.063,+1.333,+18 coat_small.in1k,87.647,12.354,97.530,2.470,21.69,224,0.900,bicubic,+5.285,+1.322,+46 fastvit_sa24.apple_in1k,87.638,12.362,97.726,2.274,21.55,256,0.900,bicubic,+4.960,+1.454,-1 maxxvitv2_nano_rw_256.sw_in1k,87.638,12.362,97.525,2.474,23.70,256,0.950,bicubic,+4.528,+1.201,-42 efficientvit_b2.r256_in1k,87.638,12.362,97.453,2.547,24.33,256,1.000,bicubic,+4.948,+1.359,-1 pnasnet5large.tf_in1k,87.636,12.364,97.487,2.513,86.06,331,0.911,bicubic,+4.854,+1.447,-16 resnet101.a1h_in1k,87.634,12.366,97.558,2.442,44.55,288,1.000,bicubic,+4.856,+1.248,-16 resnetaa50d.sw_in12k_ft_in1k,87.623,12.377,97.803,2.197,25.58,288,1.000,bicubic,+5.023,+1.305,+7 cs3edgenet_x.c2_in1k,87.621,12.379,97.654,2.346,47.82,288,1.000,bicubic,+4.913,+1.284,-11 flexivit_small.300ep_in1k,87.621,12.379,97.613,2.387,22.06,240,0.950,bicubic,+5.443,+1.575,+66 xcit_medium_24_p8_224.fb_in1k,87.612,12.388,97.201,2.799,84.32,224,1.000,bicubic,+3.866,+0.491,-117 swinv2_tiny_window16_256.ms_in1k,87.610,12.390,97.560,2.440,28.35,256,0.900,bicubic,+4.806,+1.324,-23 resnext101_32x16d.fb_swsl_ig1b_ft_in1k,87.606,12.394,97.816,2.184,194.03,224,0.875,bilinear,+4.270,+0.970,-73 resnext50_32x4d.fb_swsl_ig1b_ft_in1k,87.600,12.400,97.649,2.351,25.03,224,0.875,bilinear,+5.428,+1.425,+63 nest_base_jx.goog_in1k,87.597,12.403,97.521,2.479,67.72,224,0.875,bicubic,+4.063,+1.147,-99 maxvit_nano_rw_256.sw_in1k,87.595,12.405,97.519,2.481,15.45,256,0.950,bicubic,+4.667,+1.299,-36 tf_efficientnet_b4.in1k,87.585,12.415,97.602,2.398,19.34,380,0.922,bicubic,+4.977,+1.850,-4 davit_tiny.msft_in1k,87.565,12.435,97.585,2.415,28.36,224,0.950,bicubic,+4.869,+1.311,-17 levit_384.fb_dist_in1k,87.563,12.437,97.538,2.462,39.13,224,0.900,bicubic,+4.967,+1.520,-3 levit_conv_384.fb_dist_in1k,87.561,12.439,97.538,2.462,39.13,224,0.900,bicubic,+4.971,+1.522,-2 sequencer2d_m.in1k,87.559,12.441,97.581,2.419,38.31,224,0.875,bicubic,+4.747,+1.307,-34 convnextv2_nano.fcmae_ft_in1k,87.553,12.447,97.666,2.334,15.62,288,1.000,bicubic,+5.067,+1.440,+13 tf_efficientnet_b2.ns_jft_in1k,87.553,12.447,97.626,2.374,9.11,260,0.890,bicubic,+5.175,+1.372,+23 ecaresnet50t.ra2_in1k,87.544,12.456,97.649,2.351,25.57,320,0.950,bicubic,+5.192,+1.509,+27 regnetx_320.tv2_in1k,87.538,12.462,97.564,2.436,107.81,224,0.965,bicubic,+4.728,+1.356,-37 vit_base_patch32_clip_224.laion2b_ft_in1k,87.529,12.471,97.547,2.453,88.22,224,0.900,bicubic,+4.947,+1.347,-5 efficientformerv2_s2.snap_dist_in1k,87.516,12.484,97.615,2.385,12.71,224,0.950,bicubic,+5.350,+1.705,+51 inception_next_tiny.sail_in1k,87.516,12.484,97.549,2.451,28.06,224,0.875,bicubic,+5.038,+1.527,+9 coatnet_bn_0_rw_224.sw_in1k,87.508,12.492,97.551,2.449,27.44,224,0.950,bicubic,+5.108,+1.365,+13 vit_base_patch16_rpn_224.sw_in1k,87.504,12.496,97.489,2.511,86.54,224,0.900,bicubic,+5.302,+1.493,+43 pvt_v2_b2_li.in1k,87.501,12.499,97.470,2.530,22.55,224,0.900,bicubic,+5.307,+1.378,+44 resnetv2_152x2_bit.goog_teacher_in21k_ft_in1k,87.495,12.505,97.818,2.182,236.34,224,0.875,bicubic,+4.619,+1.236,-49 edgenext_small.usi_in1k,87.493,12.507,97.587,2.413,5.59,320,1.000,bicubic,+5.929,+1.875,+96 nest_small_jx.goog_in1k,87.493,12.507,97.513,2.487,38.35,224,0.875,bicubic,+4.369,+1.193,-74 vit_relpos_base_patch16_clsgap_224.sw_in1k,87.471,12.529,97.525,2.474,86.43,224,0.900,bicubic,+4.711,+1.353,-42 vit_relpos_base_patch16_224.sw_in1k,87.467,12.533,97.558,2.442,86.43,224,0.900,bicubic,+4.971,+1.419,-2 regnety_080_tv.tv2_in1k,87.465,12.535,97.636,2.364,39.38,224,0.965,bicubic,+4.871,+1.388,-20 fbnetv3_g.ra2_in1k,87.446,12.554,97.545,2.455,16.62,288,0.950,bilinear,+5.406,+1.485,+53 resnet61q.ra2_in1k,87.439,12.561,97.598,2.402,36.85,288,1.000,bicubic,+4.915,+1.468,-9 wide_resnet50_2.racm_in1k,87.437,12.563,97.543,2.458,68.88,288,0.950,bicubic,+5.157,+1.479,+24 poolformerv2_m48.sail_in1k,87.435,12.565,97.421,2.579,73.35,224,1.000,bicubic,+4.817,+1.349,-29 efficientnet_b3.ra2_in1k,87.433,12.567,97.679,2.321,12.23,320,1.000,bicubic,+5.187,+1.561,+24 regnetx_160.tv2_in1k,87.433,12.567,97.444,2.556,54.28,224,0.965,bicubic,+4.867,+1.272,-16 resnext101_64x4d.c1_in1k,87.433,12.567,97.444,2.556,83.46,288,1.000,bicubic,+4.277,+1.070,-89 cait_xxs24_384.fb_dist_in1k,87.414,12.586,97.621,2.378,12.03,384,1.000,bicubic,+6.442,+1.981,+149 resnet51q.ra2_in1k,87.397,12.603,97.583,2.417,35.70,288,1.000,bilinear,+5.037,+1.397,+4 cs3darknet_x.c2ns_in1k,87.395,12.605,97.611,2.389,35.05,288,1.000,bicubic,+5.173,+1.381,+22 cs3sedarknet_l.c2ns_in1k,87.395,12.605,97.570,2.430,21.91,288,0.950,bicubic,+5.611,+1.606,+66 coat_lite_small.in1k,87.390,12.610,97.374,2.626,19.84,224,0.900,bicubic,+5.078,+1.524,+9 pvt_v2_b2.in1k,87.382,12.618,97.519,2.481,25.36,224,0.900,bicubic,+5.298,+1.563,+36 tresnet_l.miil_in1k_448,87.382,12.618,97.487,2.513,55.99,448,0.875,bilinear,+5.106,+1.509,+14 resnetv2_50d_gn.ah_in1k,87.380,12.620,97.536,2.464,25.57,288,1.000,bicubic,+5.422,+1.608,+47 sequencer2d_s.in1k,87.377,12.623,97.387,2.613,27.65,224,0.875,bicubic,+5.037,+1.359,+1 swinv2_cr_small_224.sw_in1k,87.377,12.623,97.346,2.654,49.70,224,0.900,bicubic,+4.242,+1.238,-97 xcit_tiny_24_p8_224.fb_in1k,87.373,12.627,97.626,2.374,12.11,224,1.000,bicubic,+5.481,+1.656,+49 fastvit_sa12.apple_dist_in1k,87.363,12.637,97.493,2.507,11.58,256,0.900,bicubic,+5.509,+1.783,+51 vit_relpos_medium_patch16_cls_224.sw_in1k,87.363,12.637,97.451,2.549,38.76,224,0.900,bicubic,+4.791,+1.383,-33 nasnetalarge.tf_in1k,87.360,12.640,97.417,2.583,88.75,331,0.911,bicubic,+4.734,+1.375,-47 seresnext50_32x4d.racm_in1k,87.356,12.644,97.617,2.383,27.56,288,0.950,bicubic,+5.160,+1.469,+15 crossvit_18_dagger_240.in1k,87.350,12.650,97.453,2.547,44.27,240,0.875,bicubic,+4.832,+1.385,-29 repvit_m3.dist_in1k,87.326,12.674,97.481,2.519,10.68,224,0.950,bicubic,+5.824,+1.913,+77 ecaresnet50d.miil_in1k,87.322,12.678,97.666,2.334,25.58,288,0.950,bicubic,+5.672,+1.784,+59 wide_resnet101_2.tv2_in1k,87.322,12.678,97.404,2.596,126.89,224,0.965,bilinear,+4.820,+1.388,-30 resnext101_32x8d.tv2_in1k,87.318,12.682,97.560,2.440,88.79,224,0.965,bilinear,+4.486,+1.328,-80 crossvit_18_240.in1k,87.318,12.682,97.487,2.513,43.27,240,0.875,bicubic,+4.918,+1.427,-21 focalnet_tiny_srf.ms_in1k,87.301,12.699,97.414,2.586,28.43,224,0.900,bicubic,+5.163,+1.446,+16 resnest101e.in1k,87.288,12.712,97.562,2.438,48.28,256,0.875,bilinear,+4.404,+1.240,-85 gcvit_xtiny.in1k,87.279,12.721,97.478,2.522,19.98,224,0.875,bicubic,+5.325,+1.513,+32 tiny_vit_11m_224.in1k,87.277,12.723,97.487,2.513,11.00,224,0.950,bicubic,+5.785,+1.625,+69 coatnet_rmlp_nano_rw_224.sw_in1k,87.277,12.723,97.447,2.554,15.15,224,0.900,bicubic,+5.227,+1.569,+20 ecaresnet101d_pruned.miil_in1k,87.269,12.731,97.713,2.287,24.88,288,0.950,bicubic,+5.271,+1.553,+23 vit_relpos_medium_patch16_rpn_224.sw_in1k,87.269,12.731,97.447,2.554,38.73,224,0.900,bicubic,+4.959,+1.475,-13 swin_tiny_patch4_window7_224.ms_in22k_ft_in1k,87.249,12.751,97.782,2.218,28.29,224,0.900,bicubic,+6.281,+1.768,+123 resnetrs101.tf_in1k,87.241,12.759,97.455,2.545,63.62,288,0.940,bicubic,+4.957,+1.441,-11 coatnext_nano_rw_224.sw_in1k,87.239,12.761,97.543,2.458,14.70,224,0.900,bicubic,+5.297,+1.627,+26 poolformer_m48.sail_in1k,87.237,12.763,97.318,2.682,73.47,224,0.950,bicubic,+4.755,+1.352,-40 regnety_160.tv2_in1k,87.232,12.768,97.461,2.539,83.59,224,0.965,bicubic,+4.586,+1.247,-70 mixer_b16_224.miil_in21k_ft_in1k,87.230,12.770,97.414,2.586,59.88,224,0.875,bilinear,+4.924,+1.694,-18 tresnet_xl.miil_in1k,87.230,12.770,97.397,2.603,78.44,224,0.875,bilinear,+5.156,+1.469,+8 xcit_tiny_12_p8_224.fb_dist_in1k,87.224,12.776,97.449,2.551,6.71,224,1.000,bicubic,+6.012,+1.847,+91 xcit_tiny_12_p16_384.fb_dist_in1k,87.209,12.791,97.466,2.534,6.72,384,1.000,bicubic,+6.271,+2.052,+117 convit_base.fb_in1k,87.209,12.791,97.284,2.716,86.54,224,0.875,bicubic,+4.919,+1.348,-20 resnetv2_50d_evos.ah_in1k,87.205,12.795,97.421,2.579,25.59,288,1.000,bicubic,+5.203,+1.521,+10 resnet152.tv2_in1k,87.188,12.812,97.387,2.613,60.19,224,0.965,bilinear,+4.901,+1.383,-22 tf_efficientnet_b3.ap_in1k,87.188,12.812,97.382,2.618,12.23,300,0.904,bicubic,+5.368,+1.756,+25 vit_base_patch32_clip_224.openai_ft_in1k,87.179,12.821,97.466,2.534,88.22,224,0.900,bicubic,+5.249,+1.500,+16 visformer_small.in1k,87.179,12.821,97.323,2.677,40.22,224,0.900,bicubic,+5.073,+1.445,-2 vit_srelpos_medium_patch16_224.sw_in1k,87.177,12.823,97.310,2.690,38.74,224,0.900,bicubic,+4.937,+1.368,-21 focalnet_tiny_lrf.ms_in1k,87.175,12.825,97.370,2.630,28.65,224,0.900,bicubic,+5.021,+1.422,-10 crossvit_15_dagger_240.in1k,87.166,12.834,97.431,2.568,28.21,240,0.875,bicubic,+4.836,+1.475,-34 convnext_tiny_hnf.a2h_in1k,87.147,12.853,97.280,2.720,28.59,288,1.000,bicubic,+4.563,+1.272,-71 vit_relpos_medium_patch16_224.sw_in1k,87.145,12.855,97.500,2.500,38.75,224,0.900,bicubic,+4.683,+1.418,-54 swin_s3_tiny_224.ms_in1k,87.143,12.857,97.308,2.692,28.33,224,0.900,bicubic,+4.999,+1.354,-12 coatnet_0_rw_224.sw_in1k,87.128,12.872,97.233,2.767,27.44,224,0.950,bicubic,+4.738,+1.397,-50 xcit_small_24_p16_224.fb_in1k,87.119,12.881,97.267,2.733,47.67,224,1.000,bicubic,+4.543,+1.255,-72 repvit_m1_1.dist_450e_in1k,87.104,12.896,97.412,2.588,8.80,224,0.950,bicubic,+5.792,+1.876,+63 swinv2_tiny_window8_256.ms_in1k,87.089,12.911,97.510,2.490,28.35,256,0.900,bicubic,+5.269,+1.516,+12 pit_s_distilled_224.in1k,87.081,12.919,97.363,2.637,24.04,224,0.900,bicubic,+5.267,+1.633,+11 efficientvit_b2.r224_in1k,87.081,12.919,97.203,2.797,24.33,224,0.950,bicubic,+4.933,+1.497,-19 ecaresnet50t.a1_in1k,87.081,12.919,97.122,2.878,25.57,288,1.000,bicubic,+4.953,+1.480,-15 mobilevitv2_200.cvnets_in22k_ft_in1k,87.057,12.943,97.431,2.568,18.45,256,0.888,bicubic,+4.725,+1.490,-46 resnext50_32x4d.a1h_in1k,87.057,12.943,97.331,2.669,25.03,288,1.000,bicubic,+5.043,+1.397,-10 xception41p.ra3_in1k,87.051,12.949,97.201,2.799,26.91,299,0.940,bicubic,+5.079,+1.417,-7 regnetz_b16.ra3_in1k,87.047,12.953,97.412,2.588,9.72,288,1.000,bicubic,+6.319,+1.894,+119 crossvit_15_240.in1k,87.042,12.958,97.423,2.577,27.53,240,0.875,bicubic,+5.506,+1.687,+27 convit_small.fb_in1k,87.042,12.958,97.350,2.650,27.78,224,0.875,bicubic,+5.622,+1.606,+44 tf_efficientnetv2_b3.in1k,87.027,12.973,97.301,2.699,14.36,300,0.904,bicubic,+5.055,+1.499,-10 gcresnet50t.ra2_in1k,87.025,12.975,97.391,2.609,25.90,288,1.000,bicubic,+5.569,+1.673,+37 xcit_small_12_p16_224.fb_in1k,87.010,12.990,97.242,2.759,26.25,224,1.000,bicubic,+5.040,+1.430,-11 nest_tiny_jx.goog_in1k,87.008,12.992,97.378,2.622,17.06,224,0.875,bicubic,+5.582,+1.760,+37 poolformerv2_m36.sail_in1k,87.008,12.992,97.284,2.716,56.08,224,1.000,bicubic,+4.792,+1.360,-42 deit3_small_patch16_224.fb_in1k,87.008,12.992,97.171,2.829,22.06,224,0.900,bicubic,+5.638,+1.715,+45 deit_small_distilled_patch16_224.fb_in1k,87.004,12.996,97.323,2.677,22.44,224,0.900,bicubic,+5.788,+1.699,+56 swinv2_cr_tiny_ns_224.sw_in1k,87.002,12.998,97.280,2.720,28.33,224,0.900,bicubic,+5.200,+1.462,-2 resnet101.a1_in1k,87.000,13.000,96.960,3.040,44.55,288,1.000,bicubic,+4.678,+1.328,-58 resnet152.a2_in1k,86.995,13.005,96.923,3.077,60.19,288,1.000,bicubic,+4.387,+0.795,-102 coatnet_nano_rw_224.sw_in1k,86.993,13.007,97.248,2.752,15.14,224,0.900,bicubic,+5.297,+1.602,0 resmlp_36_224.fb_distilled_in1k,86.987,13.013,97.276,2.724,44.69,224,0.875,bicubic,+5.839,+1.798,+59 poolformer_m36.sail_in1k,86.955,13.045,97.141,2.859,56.17,224,0.950,bicubic,+4.853,+1.443,-34 mobilevitv2_175.cvnets_in22k_ft_in1k,86.951,13.050,97.335,2.665,14.25,256,0.888,bicubic,+5.013,+1.545,-18 regnety_032.tv2_in1k,86.942,13.058,97.410,2.590,19.44,224,0.965,bicubic,+5.186,+1.566,-6 resnet101.a2_in1k,86.942,13.058,96.990,3.010,44.55,288,1.000,bicubic,+4.706,+1.260,-54 xcit_large_24_p16_224.fb_in1k,86.942,13.058,96.921,3.079,189.10,224,1.000,bicubic,+4.040,+1.037,-142 resnet101.tv2_in1k,86.936,13.065,97.248,2.752,44.55,224,0.965,bilinear,+5.047,+1.480,-19 xcit_medium_24_p16_224.fb_in1k,86.933,13.067,97.103,2.897,84.40,224,1.000,bicubic,+4.293,+1.121,-117 resnetv2_50.a1h_in1k,86.929,13.071,97.340,2.660,25.55,288,1.000,bicubic,+5.531,+1.614,+25 poolformerv2_s36.sail_in1k,86.921,13.079,97.353,2.647,30.79,224,1.000,bicubic,+5.355,+1.663,+1 tnt_s_patch16_224,86.914,13.086,97.361,2.639,23.76,224,0.900,bicubic,+5.378,+1.671,+4 vit_relpos_small_patch16_224.sw_in1k,86.891,13.109,97.489,2.511,21.98,224,0.900,bicubic,+5.429,+1.669,+15 vit_small_patch16_224.augreg_in21k_ft_in1k,86.871,13.129,97.609,2.391,22.05,224,0.900,bicubic,+5.486,+1.473,+23 vit_small_r26_s32_224.augreg_in21k_ft_in1k,86.856,13.143,97.530,2.470,36.43,224,0.900,bicubic,+4.992,+1.508,-26 resnet152.a1_in1k,86.856,13.143,96.793,3.207,60.19,288,1.000,bicubic,+4.124,+1.073,-136 ecaresnetlight.miil_in1k,86.852,13.148,97.508,2.492,30.16,288,0.950,bicubic,+5.444,+1.692,+17 resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k,86.848,13.152,97.521,2.479,194.03,224,0.875,bilinear,+5.010,+1.429,-26 convmixer_1536_20.in1k,86.840,13.161,97.355,2.645,51.63,224,0.960,bicubic,+5.478,+1.741,+21 tf_efficientnet_b3.aa_in1k,86.840,13.161,97.297,2.703,12.23,300,0.904,bicubic,+5.200,+1.575,-15 rexnet_200.nav_in1k,86.840,13.161,97.276,2.724,16.37,224,0.875,bicubic,+5.204,+1.610,-13 resnet50.fb_swsl_ig1b_ft_in1k,86.827,13.173,97.493,2.507,25.56,224,0.875,bilinear,+5.655,+1.507,+33 repvit_m1_1.dist_300e_in1k,86.827,13.173,97.318,2.682,8.80,224,0.950,bicubic,+6.001,+2.148,+75 deit_base_patch16_224.fb_in1k,86.827,13.173,97.052,2.949,86.57,224,0.900,bicubic,+4.835,+1.316,-43 tresnet_m.miil_in1k_448,86.816,13.184,97.216,2.784,31.39,448,0.875,bilinear,+5.106,+1.642,-25 tf_efficientnet_lite4.in1k,86.799,13.201,97.265,2.735,13.01,380,0.920,bilinear,+5.269,+1.601,-9 coat_mini.in1k,86.799,13.201,97.156,2.844,10.34,224,0.900,bicubic,+5.529,+1.774,+22 resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k,86.795,13.205,97.472,2.528,88.79,224,0.875,bilinear,+5.189,+1.432,-19 eva02_tiny_patch14_336.mim_in22k_ft_in1k,86.784,13.216,97.269,2.731,5.76,336,1.000,bicubic,+6.154,+1.743,+87 seresnet50.ra2_in1k,86.778,13.223,97.361,2.639,28.09,288,0.950,bicubic,+5.493,+1.709,+17 vit_base_patch16_224.orig_in21k_ft_in1k,86.773,13.227,97.442,2.558,86.57,224,0.900,bicubic,+4.983,+1.316,-35 convnextv2_pico.fcmae_ft_in1k,86.773,13.227,97.331,2.669,9.07,288,0.950,bicubic,+5.687,+1.851,+39 regnetx_080.tv2_in1k,86.771,13.229,97.197,2.803,39.57,224,0.965,bicubic,+5.231,+1.655,-18 cs3darknet_l.c2ns_in1k,86.767,13.233,97.459,2.541,21.16,288,0.950,bicubic,+5.871,+1.797,+53 resnetaa50.a1h_in1k,86.765,13.235,97.391,2.609,25.56,288,1.000,bicubic,+5.151,+1.589,-27 tresnet_l.miil_in1k,86.763,13.237,97.273,2.727,55.99,224,0.875,bilinear,+5.283,+1.650,-10 resnet50d.ra2_in1k,86.760,13.239,97.372,2.628,25.58,288,0.950,bicubic,+5.404,+1.634,+4 ese_vovnet39b.ra_in1k,86.756,13.244,97.372,2.628,24.57,288,0.950,bicubic,+6.406,+2.006,+104 twins_svt_small.in1k,86.752,13.248,97.180,2.820,24.06,224,0.900,bicubic,+5.076,+1.522,-37 resnet50_gn.a1h_in1k,86.750,13.250,97.449,2.551,25.56,288,0.950,bicubic,+5.534,+2.065,+12 tiny_vit_5m_224.dist_in22k_ft_in1k,86.748,13.252,97.316,2.684,5.39,224,0.950,bicubic,+5.872,+1.652,+50 seresnet50.a1_in1k,86.746,13.255,96.951,3.049,28.09,288,1.000,bicubic,+5.644,+1.623,+25 mobilevitv2_150.cvnets_in22k_ft_in1k,86.743,13.257,97.214,2.786,10.59,256,0.888,bicubic,+5.255,+1.546,-19 fastvit_s12.apple_dist_in1k,86.741,13.259,97.207,2.793,9.47,256,0.900,bicubic,+5.671,+1.923,+28 crossvit_base_240.in1k,86.733,13.267,97.122,2.878,105.03,240,0.875,bicubic,+4.519,+1.288,-90 levit_256.fb_dist_in1k,86.731,13.269,97.254,2.746,18.89,224,0.900,bicubic,+5.207,+1.760,-27 levit_conv_256.fb_dist_in1k,86.726,13.274,97.256,2.744,18.89,224,0.900,bicubic,+5.204,+1.766,-28 ecaresnet50t.a2_in1k,86.726,13.274,97.081,2.919,25.57,288,1.000,bicubic,+5.068,+1.531,-43 cs3darknet_focus_l.c2ns_in1k,86.722,13.278,97.376,2.624,21.15,288,0.950,bicubic,+5.846,+1.694,+41 convnext_nano_ols.d1h_in1k,86.718,13.282,97.047,2.953,15.65,288,1.000,bicubic,+5.118,+1.411,-39 vit_srelpos_small_patch16_224.sw_in1k,86.707,13.293,97.252,2.748,21.97,224,0.900,bicubic,+5.615,+1.682,+18 resnet50.ram_in1k,86.699,13.301,97.199,2.801,25.56,288,0.950,bicubic,+6.723,+2.147,+118 crossvit_small_240.in1k,86.686,13.314,97.276,2.724,26.86,240,0.875,bicubic,+5.668,+1.820,+22 halo2botnet50ts_256.a1h_in1k,86.686,13.314,97.098,2.902,22.64,256,0.950,bicubic,+4.626,+1.464,-82 pit_b_224.in1k,86.686,13.314,96.894,3.107,73.76,224,0.900,bicubic,+4.248,+1.180,-131 resnet50d.a1_in1k,86.671,13.329,96.693,3.307,25.58,288,1.000,bicubic,+5.221,+1.475,-26 ecaresnet50d_pruned.miil_in1k,86.669,13.331,97.429,2.571,19.94,288,0.950,bicubic,+5.879,+1.859,+44 tf_efficientnet_b1.ns_jft_in1k,86.669,13.331,97.382,2.618,7.79,240,0.882,bicubic,+5.281,+1.644,-22 swin_tiny_patch4_window7_224.ms_in1k,86.658,13.342,97.203,2.797,28.29,224,0.900,bicubic,+5.282,+1.659,-21 poolformer_s36.sail_in1k,86.654,13.346,97.152,2.848,30.86,224,0.900,bicubic,+5.224,+1.708,-29 gernet_l.idstcv_in1k,86.643,13.357,97.188,2.812,31.08,256,0.875,bilinear,+5.289,+1.658,-19 efficientnet_el.ra_in1k,86.630,13.370,97.190,2.810,10.59,300,0.904,bicubic,+5.318,+1.700,-18 twins_pcpvt_small.in1k,86.622,13.378,97.344,2.656,24.11,224,0.900,bicubic,+5.530,+1.696,+5 repvit_m2.dist_in1k,86.615,13.385,97.207,2.793,8.80,224,0.950,bicubic,+6.155,+2.039,+67 resmlp_24_224.fb_distilled_in1k,86.615,13.385,97.137,2.863,30.02,224,0.875,bicubic,+5.859,+1.913,+39 gcresnext50ts.ch_in1k,86.609,13.391,97.188,2.812,15.67,288,1.000,bicubic,+5.379,+1.646,-17 resnet50.c2_in1k,86.605,13.395,97.338,2.662,25.56,288,1.000,bicubic,+5.735,+1.804,+26 nf_resnet50.ra2_in1k,86.592,13.408,97.295,2.705,25.56,288,0.940,bicubic,+5.952,+1.961,+47 resnest50d_4s2x40d.in1k,86.588,13.412,97.267,2.733,30.42,224,0.875,bicubic,+5.468,+1.707,-6 sebotnet33ts_256.a1h_in1k,86.585,13.415,96.793,3.207,13.70,256,0.940,bicubic,+5.417,+1.625,-12 efficientnet_b3_pruned.in1k,86.579,13.421,97.184,2.816,9.86,300,0.904,bicubic,+5.727,+1.940,+24 repvgg_b3.rvgg_in1k,86.579,13.421,97.139,2.861,123.09,224,0.875,bilinear,+6.073,+1.885,+53 wide_resnet50_2.tv2_in1k,86.566,13.434,97.248,2.752,68.88,224,0.965,bilinear,+4.960,+1.488,-64 sehalonet33ts.ra2_in1k,86.566,13.434,97.004,2.995,13.69,256,0.940,bicubic,+5.608,+1.732,+9 fastvit_sa12.apple_in1k,86.564,13.436,97.233,2.767,11.58,256,0.900,bicubic,+5.720,+1.893,+22 resnet50.a1_in1k,86.541,13.459,96.838,3.162,25.56,288,1.000,bicubic,+5.327,+1.736,-22 repvit_m1_0.dist_450e_in1k,86.538,13.462,97.098,2.902,7.30,224,0.950,bicubic,+6.104,+2.180,+59 resnet50.c1_in1k,86.536,13.464,97.235,2.765,25.56,288,1.000,bicubic,+5.624,+1.683,+7 convnext_nano.d1h_in1k,86.536,13.464,97.182,2.818,15.59,288,1.000,bicubic,+5.054,+1.524,-53 xcit_tiny_24_p16_224.fb_dist_in1k,86.534,13.466,97.218,2.782,12.12,224,1.000,bicubic,+6.080,+2.000,+55 seresnet50.a2_in1k,86.519,13.481,96.987,3.013,28.09,288,1.000,bicubic,+5.413,+1.765,-16 vit_small_patch16_384.augreg_in1k,86.496,13.504,97.182,2.818,22.20,384,1.000,bicubic,+5.380,+1.608,-18 halonet50ts.a1h_in1k,86.487,13.513,97.148,2.852,22.73,256,0.940,bicubic,+4.825,+1.538,-80 resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k,86.483,13.517,97.474,2.526,44.18,224,0.875,bilinear,+5.559,+1.740,+1 maxvit_rmlp_pico_rw_256.sw_in1k,86.481,13.519,97.201,2.799,7.52,256,0.950,bicubic,+5.967,+1.987,+38 haloregnetz_b.ra3_in1k,86.466,13.534,96.947,3.053,11.68,224,0.940,bicubic,+5.420,+1.747,-13 resnet152s.gluon_in1k,86.464,13.536,97.109,2.891,60.32,224,0.875,bicubic,+5.456,+1.693,-11 seresnet33ts.ra2_in1k,86.462,13.538,97.190,2.810,19.78,288,1.000,bicubic,+5.678,+1.828,+14 repvit_m1_0.dist_300e_in1k,86.457,13.543,97.054,2.946,7.30,224,0.950,bicubic,+6.331,+2.310,+75 mobilevitv2_200.cvnets_in1k,86.457,13.543,96.970,3.030,18.45,256,0.888,bicubic,+5.323,+1.608,-27 resnext50d_32x4d.bt_in1k,86.455,13.545,97.165,2.835,25.05,288,0.950,bicubic,+5.791,+1.745,+22 resnet50.d_in1k,86.455,13.545,97.056,2.944,25.56,288,1.000,bicubic,+5.483,+1.626,-12 resnetv2_50x1_bit.goog_in21k_ft_in1k,86.440,13.560,97.605,2.396,25.55,448,1.000,bilinear,+6.098,+1.922,+49 resnet50.tv2_in1k,86.440,13.560,97.145,2.855,25.56,224,0.965,bilinear,+5.592,+1.711,+3 resnet50.b1k_in1k,86.438,13.562,97.235,2.765,25.56,288,1.000,bicubic,+5.732,+1.803,+14 resnest50d_1s4x24d.in1k,86.432,13.568,97.152,2.848,25.68,224,0.875,bicubic,+5.444,+1.826,-19 poolformerv2_s24.sail_in1k,86.389,13.611,97.150,2.850,21.34,224,1.000,bicubic,+5.641,+1.840,+8 regnety_016.tv2_in1k,86.372,13.628,97.188,2.812,11.20,224,0.965,bicubic,+5.706,+1.858,+15 repvgg_b3g4.rvgg_in1k,86.368,13.632,97.047,2.953,83.83,224,0.875,bilinear,+6.152,+1.955,+60 darknetaa53.c2ns_in1k,86.359,13.641,97.165,2.835,36.02,288,1.000,bilinear,+5.853,+1.843,+24 efficientformer_l1.snap_dist_in1k,86.357,13.643,97.019,2.981,12.29,224,0.950,bicubic,+5.859,+2.031,+25 darknet53.c2ns_in1k,86.350,13.649,97.130,2.869,41.61,288,1.000,bicubic,+5.819,+1.698,+20 lamhalobotnet50ts_256.a1h_in1k,86.350,13.649,97.041,2.959,22.57,256,0.950,bicubic,+4.798,+1.549,-89 fastvit_t12.apple_dist_in1k,86.344,13.656,97.098,2.902,7.55,256,0.900,bicubic,+5.992,+2.056,+37 legacy_senet154.in1k,86.344,13.656,96.934,3.066,115.09,224,0.875,bilinear,+5.032,+1.374,-60 resnet50.a1h_in1k,86.340,13.660,97.060,2.940,25.56,224,1.000,bicubic,+5.662,+1.754,+5 cait_xxs36_224.fb_dist_in1k,86.329,13.671,97.118,2.882,17.30,224,1.000,bicubic,+6.583,+2.244,+81 tf_efficientnet_b3.in1k,86.325,13.675,96.964,3.036,12.23,300,0.904,bicubic,+5.451,+1.664,-16 mobilevitv2_175.cvnets_in1k,86.321,13.679,96.985,3.015,14.25,256,0.888,bicubic,+5.461,+1.729,-15 gernet_m.idstcv_in1k,86.319,13.681,97.098,2.902,21.14,224,0.875,bilinear,+5.582,+1.908,-4 resnet50d.a2_in1k,86.314,13.686,96.674,3.326,25.58,288,1.000,bicubic,+5.150,+1.594,-52 vit_small_patch32_384.augreg_in21k_ft_in1k,86.312,13.688,97.419,2.581,22.92,384,1.000,bicubic,+5.826,+1.819,+15 pit_s_224.in1k,86.308,13.692,97.049,2.951,23.46,224,0.900,bicubic,+5.222,+1.719,-42 efficientnet_b2.ra_in1k,86.306,13.694,96.987,3.013,9.11,288,1.000,bicubic,+5.696,+1.673,+3 gcresnet33ts.ra2_in1k,86.301,13.699,97.060,2.940,19.88,288,1.000,bicubic,+5.701,+1.738,+3 resnext50_32x4d.a1_in1k,86.284,13.716,96.710,3.290,25.03,288,1.000,bicubic,+4.818,+1.536,-89 resnext50_32x4d.a2_in1k,86.280,13.720,96.684,3.316,25.03,288,1.000,bicubic,+4.976,+1.588,-71 resnet50.b2k_in1k,86.272,13.729,97.071,2.929,25.56,288,1.000,bicubic,+5.818,+1.753,+16 senet154.gluon_in1k,86.272,13.729,96.957,3.042,115.09,224,0.875,bicubic,+5.046,+1.599,-69 resnext50_32x4d.tv2_in1k,86.267,13.733,97.054,2.946,25.03,224,0.965,bilinear,+5.085,+1.714,-64 eca_resnet33ts.ra2_in1k,86.257,13.743,97.150,2.850,19.68,288,1.000,bicubic,+5.585,+1.786,-9 resnest50d.in1k,86.248,13.752,97.069,2.931,27.48,224,0.875,bilinear,+5.288,+1.687,-41 gcvit_xxtiny.in1k,86.244,13.756,97.107,2.893,12.00,224,0.875,bicubic,+6.518,+2.027,+67 regnetx_032.tv2_in1k,86.244,13.756,97.092,2.908,15.30,224,0.965,bicubic,+5.318,+1.814,-40 vit_base_patch16_384.augreg_in1k,86.231,13.769,96.964,3.036,86.86,384,1.000,bicubic,+5.129,+1.844,-59 convmixer_768_32.in1k,86.220,13.780,97.037,2.963,21.11,224,0.960,bicubic,+6.052,+1.963,+36 efficientnet_el_pruned.in1k,86.192,13.807,97.028,2.972,10.59,300,0.904,bicubic,+5.894,+1.806,+23 tresnet_m.miil_in1k,86.188,13.812,96.667,3.333,31.39,224,0.875,bilinear,+5.390,+1.811,-28 cspdarknet53.ra_in1k,86.178,13.822,97.009,2.991,27.64,256,0.887,bilinear,+6.110,+1.931,+38 rexnet_150.nav_in1k,86.169,13.831,97.060,2.940,9.73,224,0.875,bicubic,+5.845,+2.070,+16 inception_v4.tf_in1k,86.163,13.837,96.919,3.081,42.68,299,0.875,bicubic,+6.007,+1.949,+33 efficientvit_b1.r288_in1k,86.154,13.846,96.932,3.068,9.10,288,1.000,bicubic,+5.830,+1.756,+15 inception_resnet_v2.tf_in1k,86.133,13.867,97.045,2.955,55.84,299,0.897,bicubic,+5.675,+1.855,-1 xcit_tiny_12_p8_224.fb_in1k,86.114,13.886,97.088,2.912,6.71,224,1.000,bicubic,+6.425,+2.034,+61 resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k,86.101,13.899,97.212,2.788,25.03,224,0.875,bilinear,+5.767,+1.812,+10 res2net101d.in1k,86.099,13.901,96.851,3.149,45.23,224,0.875,bilinear,+4.881,+1.501,-85 resnet50.a2_in1k,86.097,13.903,96.701,3.299,25.56,288,1.000,bicubic,+5.325,+1.713,-34 tf_efficientnet_el.in1k,86.082,13.918,96.955,3.045,10.59,300,0.904,bicubic,+5.834,+1.835,+15 mobilevitv2_150.cvnets_in1k,86.082,13.918,96.857,3.143,10.59,256,0.888,bicubic,+5.712,+1.783,+2 cspresnext50.ra_in1k,86.077,13.923,97.107,2.893,20.57,256,0.887,bilinear,+5.523,+1.781,-20 convnext_pico_ols.d1_in1k,86.069,13.931,97.017,2.983,9.06,288,1.000,bicubic,+5.607,+1.765,-11 resnet101s.gluon_in1k,86.067,13.933,97.030,2.970,44.67,224,0.875,bicubic,+5.763,+1.878,+7 edgenext_small_rw.sw_in1k,86.054,13.946,96.928,3.072,7.83,320,1.000,bicubic,+5.596,+1.620,-10 lambda_resnet50ts.a1h_in1k,86.049,13.950,96.742,3.258,21.54,256,0.950,bicubic,+4.891,+1.644,-84 seresnext101_32x4d.gluon_in1k,86.028,13.972,96.972,3.027,48.96,224,0.875,bicubic,+5.136,+1.676,-56 convnext_pico.d1_in1k,86.015,13.985,96.932,3.068,9.05,288,0.950,bicubic,+5.599,+1.884,-8 poolformer_s24.sail_in1k,86.013,13.987,97.030,2.970,21.39,224,0.900,bicubic,+5.719,+1.956,+5 resnetblur50.bt_in1k,85.992,14.008,96.985,3.015,25.56,288,0.950,bicubic,+5.758,+1.751,+9 resnet152.a3_in1k,85.985,14.015,96.849,3.151,60.19,224,0.950,bicubic,+5.439,+1.849,-28 ecaresnet26t.ra2_in1k,85.981,14.019,97.043,2.957,16.01,320,0.950,bicubic,+6.131,+1.953,+29 tf_efficientnet_b2.ap_in1k,85.981,14.019,96.812,3.188,9.11,260,0.890,bicubic,+5.671,+1.786,-3 seresnext101_64x4d.gluon_in1k,85.973,14.027,96.981,3.019,88.23,224,0.875,bicubic,+5.079,+1.685,-64 efficientformerv2_s1.snap_dist_in1k,85.962,14.038,96.874,3.126,6.19,224,0.950,bicubic,+6.270,+2.158,+41 vit_base_patch32_224.augreg_in21k_ft_in1k,85.956,14.044,97.128,2.872,88.22,224,0.900,bicubic,+5.240,+1.562,-46 resnext50_32x4d.ra_in1k,85.934,14.066,97.032,2.968,25.03,288,0.950,bicubic,+5.236,+1.640,-45 fbnetv3_d.ra2_in1k,85.930,14.070,97.026,2.974,10.31,256,0.950,bilinear,+6.248,+2.082,+40 vit_large_patch32_384.orig_in21k_ft_in1k,85.915,14.085,97.370,2.630,306.63,384,1.000,bicubic,+4.405,+1.280,-137 resnet152d.gluon_in1k,85.915,14.085,96.814,3.186,60.21,224,0.875,bicubic,+5.439,+1.612,-28 tf_efficientnet_b2.aa_in1k,85.896,14.104,96.864,3.136,9.11,260,0.890,bicubic,+5.812,+1.958,+7 tf_efficientnetv2_b2.in1k,85.887,14.113,96.887,3.113,10.10,260,0.890,bicubic,+5.691,+1.845,0 vit_base_patch16_224.sam_in1k,85.872,14.128,96.693,3.307,86.57,224,0.900,bicubic,+5.634,+1.937,-5 repvgg_b2g4.rvgg_in1k,85.862,14.138,96.804,3.196,61.76,224,0.875,bilinear,+6.480,+2.128,+55 resnet101d.gluon_in1k,85.862,14.138,96.674,3.326,44.57,224,0.875,bicubic,+5.436,+1.650,-26 efficientvit_b1.r256_in1k,85.830,14.170,96.782,3.217,9.10,256,1.000,bicubic,+6.096,+2.002,+25 mixnet_xl.ra_in1k,85.804,14.196,96.716,3.284,11.90,224,0.875,bicubic,+5.322,+1.780,-37 inception_resnet_v2.tf_ens_adv_in1k,85.768,14.232,96.759,3.241,55.84,299,0.897,bicubic,+5.790,+1.811,+3 repvit_m0_9.dist_450e_in1k,85.757,14.243,96.810,3.190,5.49,224,0.950,bicubic,+6.691,+2.430,+81 tf_efficientnet_lite3.in1k,85.755,14.245,96.891,3.109,8.20,300,0.904,bilinear,+5.949,+1.977,+18 resnext101_32x4d.gluon_in1k,85.753,14.247,96.637,3.363,44.18,224,0.875,bicubic,+5.413,+1.707,-25 xcit_tiny_24_p16_224.fb_in1k,85.746,14.254,96.932,3.068,12.12,224,1.000,bicubic,+6.298,+2.054,+42 legacy_seresnext101_32x4d.in1k,85.742,14.258,96.772,3.228,48.96,224,0.875,bilinear,+5.510,+1.752,-13 resnet101.a3_in1k,85.736,14.264,96.501,3.499,44.55,224,0.950,bicubic,+5.922,+1.887,+13 res2net50d.in1k,85.729,14.271,96.763,3.237,25.72,224,0.875,bilinear,+5.475,+1.727,-20 regnety_320.pycls_in1k,85.727,14.273,96.725,3.275,145.05,224,0.875,bicubic,+4.917,+1.487,-75 cspresnet50.ra_in1k,85.719,14.281,96.799,3.200,21.62,256,0.887,bilinear,+6.137,+2.090,+28 resmlp_big_24_224.fb_in1k,85.701,14.299,96.426,3.574,129.14,224,0.875,bicubic,+4.665,+1.408,-102 resnext101_64x4d.gluon_in1k,85.693,14.307,96.641,3.358,83.46,224,0.875,bicubic,+5.093,+1.649,-58 xception71.tf_in1k,85.689,14.311,96.774,3.226,42.34,299,0.903,bicubic,+5.815,+1.846,-3 resnet33ts.ra2_in1k,85.689,14.311,96.757,3.243,19.68,288,1.000,bicubic,+5.963,+1.929,+13 deit_small_patch16_224.fb_in1k,85.676,14.324,96.906,3.094,22.05,224,0.900,bicubic,+5.828,+1.862,0 resnet50.ra_in1k,85.674,14.326,96.889,3.111,25.56,288,0.950,bicubic,+5.838,+1.923,+2 efficientnet_em.ra2_in1k,85.672,14.328,96.951,3.049,6.90,240,0.882,bicubic,+6.428,+2.157,+49 dpn107.mx_in1k,85.672,14.328,96.757,3.243,86.92,224,0.875,bicubic,+5.502,+1.815,-21 ecaresnet50t.a3_in1k,85.672,14.328,96.725,3.275,25.57,224,0.950,bicubic,+6.120,+2.031,+22 efficientnet_b2_pruned.in1k,85.642,14.358,96.742,3.258,8.31,260,0.890,bicubic,+5.722,+1.890,-12 resmlp_36_224.fb_in1k,85.623,14.377,96.795,3.205,44.69,224,0.875,bicubic,+5.850,+1.911,+1 tiny_vit_5m_224.in1k,85.605,14.395,96.953,3.047,5.39,224,0.950,bicubic,+6.435,+2.159,+52 mobilevitv2_125.cvnets_in1k,85.578,14.422,96.665,3.335,7.48,256,0.888,bicubic,+5.898,+1.807,+9 resnet50.bt_in1k,85.576,14.425,96.832,3.168,25.56,288,0.950,bicubic,+5.936,+1.940,+11 levit_conv_192.fb_dist_in1k,85.571,14.429,96.742,3.258,10.95,224,0.900,bicubic,+5.733,+1.964,-9 resnet32ts.ra2_in1k,85.569,14.431,96.866,3.134,17.96,288,1.000,bicubic,+6.181,+2.214,+24 levit_192.fb_dist_in1k,85.569,14.431,96.740,3.260,10.95,224,0.900,bicubic,+5.731,+1.956,-9 resnet152c.gluon_in1k,85.569,14.431,96.644,3.356,60.21,224,0.875,bicubic,+5.657,+1.798,-19 pit_xs_distilled_224.in1k,85.561,14.439,96.686,3.314,11.00,224,0.900,bicubic,+6.381,+2.320,+44 tf_efficientnetv2_b1.in1k,85.556,14.444,96.731,3.269,8.14,240,0.882,bicubic,+6.096,+2.009,+16 regnety_120.pycls_in1k,85.554,14.446,96.774,3.226,51.82,224,0.875,bicubic,+5.174,+1.648,-57 fbnetv3_b.ra2_in1k,85.520,14.480,96.862,3.139,8.60,256,0.950,bilinear,+6.374,+2.118,+44 regnetx_320.pycls_in1k,85.520,14.480,96.671,3.329,107.81,224,0.875,bicubic,+5.274,+1.649,-43 nf_regnet_b1.ra2_in1k,85.507,14.493,96.789,3.211,10.22,288,0.900,bicubic,+6.199,+2.049,+25 convnextv2_femto.fcmae_ft_in1k,85.503,14.497,96.806,3.194,5.23,288,0.950,bicubic,+6.165,+2.246,+21 dpn92.mx_in1k,85.501,14.499,96.650,3.350,37.67,224,0.875,bicubic,+5.463,+1.790,-33 fastvit_s12.apple_in1k,85.492,14.508,96.721,3.280,9.47,256,0.900,bicubic,+5.550,+1.927,-31 regnety_160.pycls_in1k,85.486,14.514,96.616,3.384,83.59,224,0.875,bicubic,+5.188,+1.652,-52 resnet152.gluon_in1k,85.482,14.518,96.550,3.450,60.19,224,0.875,bicubic,+5.786,+1.820,-11 resnetrs50.tf_in1k,85.469,14.531,96.733,3.267,35.69,224,0.910,bicubic,+5.575,+1.759,-30 rexnet_130.nav_in1k,85.465,14.536,96.680,3.320,7.56,224,0.875,bicubic,+5.959,+2.002,+1 dpn131.mx_in1k,85.450,14.550,96.620,3.380,79.25,224,0.875,bicubic,+5.636,+1.920,-23 regnetx_160.pycls_in1k,85.396,14.604,96.650,3.350,54.28,224,0.875,bicubic,+5.530,+1.822,-30 tf_efficientnet_b2.in1k,85.396,14.604,96.586,3.414,9.11,260,0.890,bicubic,+5.788,+1.872,-8 convnext_tiny.fb_in22k_ft_in1k,85.381,14.619,96.804,3.196,28.59,288,1.000,bicubic,+6.483,+2.130,+46 dla102x2.in1k,85.375,14.625,96.629,3.371,41.28,224,0.875,bilinear,+5.929,+1.997,+2 repvit_m0_9.dist_300e_in1k,85.373,14.627,96.627,3.373,5.49,224,0.950,bicubic,+6.715,+2.511,+66 dpn98.mx_in1k,85.351,14.649,96.509,3.491,61.57,224,0.875,bicubic,+5.681,+1.855,-15 regnetx_016.tv2_in1k,85.349,14.651,96.817,3.183,9.19,224,0.965,bicubic,+5.913,+2.049,-1 gmlp_s16_224.ra3_in1k,85.349,14.651,96.644,3.356,19.42,224,0.875,bicubic,+5.705,+2.022,-15 botnet26t_256.c1_in1k,85.332,14.668,96.631,3.369,12.49,256,0.950,bicubic,+6.074,+2.099,+15 skresnext50_32x4d.ra_in1k,85.328,14.672,96.390,3.610,27.48,224,0.875,bicubic,+5.164,+1.750,-54 seresnext50_32x4d.gluon_in1k,85.321,14.679,96.674,3.326,27.56,224,0.875,bicubic,+5.397,+1.850,-46 xception65.tf_in1k,85.315,14.685,96.646,3.354,39.92,299,0.903,bicubic,+5.759,+1.988,-15 resnet101c.gluon_in1k,85.311,14.689,96.411,3.589,44.57,224,0.875,bicubic,+5.773,+1.827,-14 lambda_resnet26t.c1_in1k,85.302,14.698,96.721,3.280,10.96,256,0.940,bicubic,+6.214,+2.130,+23 resnext50_32x4d.a3_in1k,85.298,14.702,96.328,3.672,25.03,224,0.950,bicubic,+6.030,+2.022,+7 regnety_064.pycls_in1k,85.283,14.717,96.648,3.352,30.58,224,0.875,bicubic,+5.567,+1.882,-31 resnet34d.ra2_in1k,85.272,14.728,96.701,3.299,21.82,288,0.950,bicubic,+6.836,+2.357,+68 coat_lite_mini.in1k,85.272,14.728,96.686,3.314,11.01,224,0.900,bicubic,+6.170,+2.078,+19 resmlp_24_224.fb_in1k,85.264,14.736,96.490,3.510,30.02,224,0.875,bicubic,+5.890,+1.944,-8 convnext_femto_ols.d1_in1k,85.253,14.747,96.772,3.228,5.23,288,0.950,bicubic,+6.329,+2.246,+28 cait_xxs24_224.fb_dist_in1k,85.238,14.762,96.714,3.286,11.96,224,1.000,bicubic,+6.854,+2.398,+71 regnety_080.pycls_in1k,85.238,14.762,96.635,3.365,39.18,224,0.875,bicubic,+5.370,+1.803,-52 efficientvit_b1.r224_in1k,85.232,14.768,96.462,3.538,9.10,224,0.950,bicubic,+5.980,+2.158,+2 pvt_v2_b1.in1k,85.210,14.790,96.631,3.369,14.01,224,0.900,bicubic,+6.506,+2.129,+43 xcit_tiny_12_p16_224.fb_dist_in1k,85.200,14.800,96.597,3.403,6.72,224,1.000,bicubic,+6.626,+2.399,+47 halonet26t.a1h_in1k,85.191,14.809,96.454,3.546,12.48,256,0.950,bicubic,+6.085,+2.148,+9 resnext101_32x8d.tv_in1k,85.189,14.811,96.456,3.544,88.79,224,0.875,bilinear,+5.879,+1.936,-11 inception_v3.gluon_in1k,85.187,14.813,96.535,3.465,23.83,299,0.875,bicubic,+6.385,+2.159,+29 fastvit_t12.apple_in1k,85.180,14.819,96.607,3.393,7.55,256,0.900,bicubic,+5.916,+2.045,-6 convnext_femto.d1_in1k,85.163,14.837,96.704,3.296,5.22,288,0.950,bicubic,+6.447,+2.273,+34 resnet101.gluon_in1k,85.161,14.839,96.366,3.634,44.55,224,0.875,bicubic,+5.851,+1.844,-16 hrnet_w48.ms_in1k,85.159,14.841,96.490,3.510,77.47,224,0.875,bilinear,+5.853,+1.974,-14 regnetx_120.pycls_in1k,85.138,14.862,96.475,3.525,46.11,224,0.875,bicubic,+5.550,+1.733,-38 eca_halonext26ts.c1_in1k,85.131,14.869,96.580,3.420,10.76,256,0.940,bicubic,+5.645,+1.980,-33 resnet50.am_in1k,85.131,14.869,96.571,3.429,25.56,224,0.875,bicubic,+6.129,+2.173,+8 tf_efficientnet_b1.ap_in1k,85.131,14.869,96.407,3.593,7.79,240,0.882,bicubic,+5.855,+2.095,-16 repvit_m1.dist_in1k,85.121,14.879,96.597,3.403,5.49,224,0.950,bicubic,+6.583,+2.527,+36 eca_botnext26ts_256.c1_in1k,85.121,14.879,96.511,3.489,10.59,256,0.950,bicubic,+5.853,+1.905,-16 legacy_xception.tf_in1k,85.121,14.879,96.469,3.531,22.86,299,0.897,bicubic,+6.081,+2.087,+4 hrnet_w64.ms_in1k,85.114,14.886,96.738,3.262,128.06,224,0.875,bilinear,+5.638,+2.086,-37 lambda_resnet26rpt_256.c1_in1k,85.099,14.901,96.565,3.435,10.99,256,0.940,bicubic,+6.135,+2.129,+4 res2net101_26w_4s.in1k,85.097,14.903,96.381,3.619,45.21,224,0.875,bilinear,+5.897,+1.945,-13 resnet50.fb_ssl_yfcc100m_ft_in1k,85.093,14.907,96.862,3.139,25.56,224,0.875,bilinear,+5.863,+2.036,-16 mobileone_s4.apple_in1k,85.082,14.918,96.434,3.566,14.95,224,0.900,bilinear,+5.656,+1.954,-36 dpn68b.ra_in1k,85.061,14.939,96.449,3.551,12.61,288,1.000,bicubic,+5.701,+2.013,-33 tf_efficientnet_cc_b1_8e.in1k,85.061,14.939,96.430,3.570,39.72,240,0.882,bicubic,+5.759,+2.056,-27 resnest26d.gluon_in1k,85.016,14.984,96.639,3.361,17.07,224,0.875,bilinear,+6.534,+2.345,+34 xcit_nano_12_p8_384.fb_dist_in1k,85.014,14.986,96.629,3.371,3.05,384,1.000,bicubic,+7.194,+2.589,+83 resnext50_32x4d.gluon_in1k,85.005,14.995,96.428,3.572,25.03,224,0.875,bicubic,+5.645,+1.998,-36 tf_efficientnet_b0.ns_jft_in1k,84.999,15.001,96.505,3.495,5.29,224,0.875,bicubic,+6.331,+2.133,+18 coat_tiny.in1k,84.971,15.029,96.422,3.578,5.50,224,0.900,bicubic,+6.545,+2.374,+36 regnety_040.pycls_in1k,84.952,15.048,96.612,3.388,20.65,224,0.875,bicubic,+5.732,+1.956,-24 dla169.in1k,84.931,15.069,96.541,3.459,53.39,224,0.875,bilinear,+6.223,+2.197,+13 tf_efficientnet_b1.aa_in1k,84.918,15.082,96.366,3.634,7.79,240,0.882,bicubic,+6.090,+2.166,0 resnet50d.a3_in1k,84.901,15.099,96.285,3.715,25.58,224,0.950,bicubic,+6.181,+2.053,+8 legacy_seresnext50_32x4d.in1k,84.897,15.103,96.428,3.572,27.56,224,0.875,bilinear,+5.821,+1.996,-17 mobilevitv2_100.cvnets_in1k,84.894,15.106,96.388,3.612,4.90,256,0.888,bicubic,+6.814,+2.218,+55 hrnet_w44.ms_in1k,84.886,15.114,96.430,3.570,67.06,224,0.875,bilinear,+5.992,+2.066,-8 resnet50s.gluon_in1k,84.877,15.123,96.441,3.559,25.68,224,0.875,bicubic,+6.163,+2.199,+6 regnety_008_tv.tv2_in1k,84.875,15.125,96.637,3.363,6.43,224,0.965,bicubic,+6.209,+2.247,+9 regnetx_080.pycls_in1k,84.865,15.136,96.432,3.568,39.57,224,0.875,bicubic,+5.667,+1.878,-31 levit_conv_128.fb_dist_in1k,84.847,15.153,96.353,3.647,9.21,224,0.900,bicubic,+6.353,+2.345,+16 visformer_tiny.in1k,84.845,15.155,96.509,3.491,10.32,224,0.900,bicubic,+6.685,+2.343,+43 levit_128.fb_dist_in1k,84.845,15.155,96.353,3.647,9.21,224,0.900,bicubic,+6.355,+2.341,+17 res2net50_26w_8s.in1k,84.837,15.163,96.355,3.645,48.40,224,0.875,bilinear,+5.895,+2.061,-19 vit_tiny_patch16_384.augreg_in21k_ft_in1k,84.832,15.168,96.714,3.286,5.79,384,1.000,bicubic,+6.408,+2.172,+22 repghostnet_200.in1k,84.830,15.170,96.413,3.587,9.80,224,0.875,bicubic,+6.024,+2.083,-11 resnet50d.gluon_in1k,84.830,15.170,96.398,3.602,25.58,224,0.875,bicubic,+5.752,+1.932,-30 dla60_res2next.in1k,84.826,15.174,96.407,3.593,17.03,224,0.875,bilinear,+6.386,+2.263,+16 resnet152.tv_in1k,84.826,15.174,96.232,3.768,60.19,224,0.875,bilinear,+6.504,+2.186,+26 resnet26t.ra2_in1k,84.824,15.176,96.390,3.610,16.01,320,1.000,bicubic,+6.496,+2.266,+24 dla60_res2net.in1k,84.818,15.182,96.473,3.527,20.85,224,0.875,bilinear,+6.354,+2.275,+11 mixnet_l.ft_in1k,84.815,15.185,96.323,3.677,7.33,224,0.875,bicubic,+5.849,+2.141,-29 dla102x.in1k,84.807,15.193,96.552,3.448,26.31,224,0.875,bilinear,+6.295,+2.316,+2 xception41.tf_in1k,84.785,15.214,96.411,3.589,26.97,299,0.903,bicubic,+6.281,+2.135,+2 pit_xs_224.in1k,84.783,15.217,96.501,3.499,10.62,224,0.900,bicubic,+6.607,+2.339,+28 hrnet_w18.ms_aug_in1k,84.783,15.217,96.466,3.534,21.30,224,0.950,bilinear,+6.661,+2.412,+34 regnetx_064.pycls_in1k,84.773,15.227,96.494,3.506,26.21,224,0.875,bicubic,+5.707,+2.034,-38 resnet34.a1_in1k,84.762,15.238,96.230,3.771,21.80,288,1.000,bicubic,+6.844,+2.466,+46 poolformerv2_s12.sail_in1k,84.756,15.244,96.373,3.627,11.89,224,1.000,bicubic,+6.754,+2.508,+37 gcresnext26ts.ch_in1k,84.756,15.244,96.293,3.707,10.48,288,1.000,bicubic,+6.342,+2.257,+9 hrnet_w40.ms_in1k,84.745,15.255,96.552,3.448,57.56,224,0.875,bilinear,+5.813,+2.088,-35 repvgg_b2.rvgg_in1k,84.726,15.274,96.471,3.529,89.02,224,0.875,bilinear,+5.934,+2.051,-24 res2net50_26w_6s.in1k,84.726,15.274,96.281,3.719,37.05,224,0.875,bilinear,+6.158,+2.159,-11 resmlp_12_224.fb_distilled_in1k,84.719,15.281,96.225,3.775,15.35,224,0.875,bicubic,+6.765,+2.665,+37 vit_base_patch32_384.augreg_in1k,84.715,15.285,96.323,3.677,88.30,384,1.000,bicubic,+5.959,+2.097,-25 legacy_seresnet152.in1k,84.713,15.287,96.419,3.580,66.82,224,0.875,bilinear,+6.053,+2.049,-17 cs3darknet_m.c2ns_in1k,84.700,15.300,96.488,3.512,9.31,288,0.950,bicubic,+7.066,+2.472,+50 selecsls60b.in1k,84.662,15.338,96.300,3.700,32.77,224,0.875,bicubic,+6.250,+2.132,+1 bat_resnext26ts.ch_in1k,84.653,15.347,96.268,3.732,10.73,256,0.900,bicubic,+6.401,+2.170,+9 hrnet_w32.ms_in1k,84.651,15.349,96.413,3.587,41.23,224,0.875,bilinear,+6.209,+2.223,-7 seresnext26d_32x4d.bt_in1k,84.642,15.357,96.261,3.739,16.81,288,0.950,bicubic,+5.829,+2.022,-37 tf_efficientnetv2_b0.in1k,84.623,15.377,96.274,3.726,7.14,224,0.875,bicubic,+6.265,+2.260,+1 efficientnet_b1.ft_in1k,84.611,15.389,96.334,3.666,7.79,256,1.000,bicubic,+5.811,+1.992,-36 regnetx_040.pycls_in1k,84.606,15.394,96.379,3.621,22.12,224,0.875,bicubic,+6.114,+2.137,-16 vit_relpos_base_patch32_plus_rpn_256.sw_in1k,84.598,15.402,96.014,3.986,119.42,256,0.900,bicubic,+5.114,+1.876,-94 regnety_032.pycls_in1k,84.593,15.407,96.415,3.585,19.44,224,0.875,bicubic,+5.717,+2.007,-46 seresnext26t_32x4d.bt_in1k,84.589,15.411,96.381,3.619,16.81,288,0.950,bicubic,+5.845,+2.069,-36 hrnet_w30.ms_in1k,84.583,15.417,96.381,3.619,37.71,224,0.875,bilinear,+6.387,+2.159,+4 efficientnet_es.ra_in1k,84.581,15.419,96.308,3.692,5.44,224,0.875,bicubic,+6.523,+2.382,+13 tf_mixnet_l.in1k,84.578,15.422,96.244,3.756,7.33,224,0.875,bicubic,+5.802,+2.242,-41 wide_resnet101_2.tv_in1k,84.546,15.454,96.349,3.651,126.89,224,0.875,bilinear,+5.704,+2.067,-49 hrnet_w18_small_v2.gluon_in1k,84.542,15.458,96.285,3.715,15.60,224,0.875,bicubic,+6.352,+2.383,+1 vit_small_patch16_224.augreg_in1k,84.536,15.464,96.272,3.728,22.05,224,0.900,bicubic,+5.688,+1.984,-52 dla60x.in1k,84.531,15.469,96.293,3.707,17.35,224,0.875,bilinear,+6.295,+2.267,-3 legacy_seresnet101.in1k,84.497,15.503,96.326,3.674,49.33,224,0.875,bilinear,+6.111,+2.064,-15 resnet50.a3_in1k,84.484,15.515,96.003,3.997,25.56,224,0.950,bicubic,+6.436,+2.223,+7 cs3darknet_focus_m.c2ns_in1k,84.482,15.518,96.417,3.583,9.30,288,0.950,bicubic,+7.198,+2.451,+51 seresnext26ts.ch_in1k,84.480,15.520,96.321,3.679,10.39,288,1.000,bicubic,+6.210,+2.229,-11 tf_efficientnet_b1.in1k,84.472,15.528,96.074,3.926,7.79,240,0.882,bicubic,+5.910,+1.980,-36 coat_lite_tiny.in1k,84.459,15.541,96.383,3.617,5.72,224,0.900,bicubic,+6.939,+2.461,+32 tf_efficientnet_em.in1k,84.455,15.545,96.185,3.815,6.90,240,0.882,bicubic,+6.329,+2.137,-3 wide_resnet50_2.tv_in1k,84.429,15.571,96.257,3.743,68.88,224,0.875,bilinear,+5.953,+2.169,-31 repvgg_b1.rvgg_in1k,84.420,15.580,96.217,3.783,57.42,224,0.875,bilinear,+6.052,+2.121,-21 efficientnet_b1_pruned.in1k,84.397,15.603,96.140,3.860,6.33,240,0.882,bicubic,+6.157,+2.306,-14 vit_base_patch16_224.augreg_in1k,84.384,15.616,96.042,3.958,86.57,224,0.900,bicubic,+5.230,+1.952,-83 res2net50_26w_4s.in1k,84.359,15.642,96.091,3.909,25.70,224,0.875,bilinear,+6.409,+2.239,+6 hardcorenas_f.miil_green_in1k,84.324,15.676,96.025,3.975,8.20,224,0.875,bilinear,+6.228,+2.222,-7 res2net50_14w_8s.in1k,84.311,15.688,96.076,3.924,25.06,224,0.875,bilinear,+6.153,+2.230,-11 selecsls60.in1k,84.282,15.718,96.103,3.897,30.67,224,0.875,bicubic,+6.294,+2.273,+1 mobilevit_s.cvnets_in1k,84.277,15.723,96.259,3.741,5.58,256,0.900,bicubic,+5.965,+2.111,-24 regnetx_032.pycls_in1k,84.245,15.755,96.242,3.758,15.30,224,0.875,bicubic,+6.077,+2.160,-16 mobileone_s3.apple_in1k,84.233,15.767,96.135,3.865,10.17,224,0.900,bilinear,+6.241,+2.221,-3 convnextv2_atto.fcmae_ft_in1k,84.226,15.774,96.059,3.941,3.71,288,0.950,bicubic,+6.466,+2.333,+9 eca_resnext26ts.ch_in1k,84.224,15.776,96.191,3.809,10.30,288,1.000,bicubic,+6.224,+2.265,-6 ese_vovnet19b_dw.ra_in1k,84.220,15.780,96.259,3.741,6.54,288,0.950,bicubic,+6.476,+2.475,+7 convnext_atto_ols.a2_in1k,84.220,15.780,96.217,3.783,3.70,288,0.950,bicubic,+7.004,+2.541,+36 resnet50c.gluon_in1k,84.213,15.787,96.163,3.837,25.58,224,0.875,bicubic,+6.207,+2.171,-12 res2next50.in1k,84.213,15.787,96.001,3.999,24.67,224,0.875,bilinear,+5.971,+2.109,-28 mobileone_s2.apple_in1k,84.196,15.804,96.063,3.937,7.88,224,0.900,bilinear,+6.680,+2.395,+15 dla102.in1k,84.190,15.810,96.206,3.794,33.27,224,0.875,bilinear,+6.166,+2.272,-15 densenetblur121d.ra_in1k,84.168,15.832,96.240,3.760,8.00,288,0.950,bicubic,+6.846,+2.452,+22 rexnet_100.nav_in1k,84.158,15.842,96.249,3.751,4.80,224,0.875,bicubic,+6.302,+2.609,-5 fastvit_t8.apple_dist_in1k,84.143,15.857,96.078,3.922,4.03,256,0.900,bicubic,+6.967,+2.780,+30 convnext_atto.d2_in1k,84.141,15.859,96.200,3.800,3.70,288,0.950,bicubic,+7.133,+2.498,+39 inception_v3.tf_in1k,84.141,15.859,95.911,4.089,23.83,299,0.875,bicubic,+6.285,+2.045,-7 res2net50_48w_2s.in1k,84.117,15.883,95.960,4.040,25.29,224,0.875,bilinear,+6.603,+2.410,+9 xcit_tiny_12_p16_224.fb_in1k,84.111,15.889,96.236,3.764,6.72,224,1.000,bicubic,+6.971,+2.520,+29 ghostnetv2_160.in1k,84.098,15.902,96.210,3.790,12.39,224,0.875,bicubic,+6.266,+2.270,-9 tf_efficientnet_lite2.in1k,84.087,15.913,96.074,3.926,6.09,260,0.890,bicubic,+6.625,+2.322,+7 poolformer_s12.sail_in1k,84.049,15.951,96.178,3.822,11.92,224,0.900,bicubic,+6.809,+2.646,+20 resnet34.a2_in1k,84.045,15.955,95.922,4.078,21.80,288,1.000,bicubic,+6.887,+2.648,+24 efficientnet_b0.ra_in1k,84.034,15.966,95.965,4.035,5.29,224,0.875,bicubic,+6.340,+2.433,-8 crossvit_9_dagger_240.in1k,84.019,15.981,96.084,3.916,8.78,240,0.875,bicubic,+7.041,+2.466,+31 tf_efficientnet_cc_b0_8e.in1k,83.972,16.028,96.067,3.933,24.01,224,0.875,bicubic,+6.068,+2.405,-19 regnety_016.pycls_in1k,83.966,16.034,96.005,3.995,11.20,224,0.875,bicubic,+6.098,+2.287,-20 gmixer_24_224.ra3_in1k,83.966,16.034,95.854,4.146,24.72,224,0.875,bicubic,+5.940,+2.186,-31 hardcorenas_e.miil_green_in1k,83.963,16.037,95.903,4.097,8.07,224,0.875,bilinear,+6.173,+2.203,-16 resnext50_32x4d.tv_in1k,83.951,16.049,95.969,4.031,25.03,224,0.875,bilinear,+6.329,+2.273,-10 resnet50.gluon_in1k,83.940,16.060,96.020,3.980,25.56,224,0.875,bicubic,+6.358,+2.300,-8 densenet161.tv_in1k,83.910,16.090,96.022,3.978,28.68,224,0.875,bicubic,+6.552,+2.380,+2 mobilenetv2_120d.ra_in1k,83.902,16.098,95.903,4.097,5.83,224,0.875,bicubic,+6.594,+2.401,+3 inception_v3.tf_adv_in1k,83.897,16.103,95.939,4.061,23.83,299,0.875,bicubic,+6.305,+2.209,-13 resnet101.tv_in1k,83.863,16.137,95.888,4.112,44.55,224,0.875,bilinear,+6.483,+2.342,-2 tinynet_a.in1k,83.825,16.175,95.817,4.183,6.19,192,0.875,bicubic,+6.177,+2.277,-19 resnet26d.bt_in1k,83.791,16.209,95.960,4.040,16.01,288,0.950,bicubic,+6.383,+2.322,-5 dpn68b.mx_in1k,83.786,16.214,95.986,4.014,12.61,224,0.875,bicubic,+6.268,+2.134,-13 inception_v3.tv_in1k,83.756,16.244,95.886,4.114,23.83,299,0.875,bicubic,+6.322,+2.412,-9 hardcorenas_d.miil_green_in1k,83.756,16.244,95.738,4.262,7.50,224,0.875,bilinear,+6.322,+2.248,-9 xcit_nano_12_p8_224.fb_dist_in1k,83.733,16.267,95.963,4.037,3.05,224,1.000,bicubic,+7.401,+2.865,+39 dla60.in1k,83.716,16.284,95.926,4.074,22.04,224,0.875,bilinear,+6.670,+2.608,+11 resnext26ts.ra2_in1k,83.701,16.299,95.984,4.016,10.30,288,1.000,bicubic,+6.523,+2.520,+1 repvgg_b1g4.rvgg_in1k,83.699,16.301,96.027,3.973,39.97,224,0.875,bilinear,+6.111,+2.191,-22 convmixer_1024_20_ks9_p14.in1k,83.682,16.318,95.884,4.116,24.38,224,0.960,bicubic,+6.746,+2.534,+13 legacy_seresnet50.in1k,83.669,16.331,95.984,4.016,28.09,224,0.875,bilinear,+6.025,+2.226,-28 regnetx_008.tv2_in1k,83.667,16.333,95.975,4.025,7.26,224,0.965,bicubic,+6.361,+2.311,-10 tf_efficientnet_b0.ap_in1k,83.652,16.348,95.785,4.215,5.29,224,0.875,bicubic,+6.562,+2.523,+2 skresnet34.ra_in1k,83.645,16.355,95.928,4.072,22.28,224,0.875,bicubic,+6.735,+2.784,+11 tf_efficientnet_cc_b0_4e.in1k,83.641,16.359,95.740,4.260,13.31,224,0.875,bicubic,+6.339,+2.404,-12 repghostnet_150.in1k,83.630,16.369,95.920,4.080,6.58,224,0.875,bicubic,+6.171,+2.410,-22 seresnet50.a3_in1k,83.624,16.376,95.709,4.292,28.09,224,0.950,bicubic,+6.598,+2.636,+2 densenet121.ra_in1k,83.596,16.404,96.054,3.946,7.98,288,0.950,bicubic,+7.096,+2.686,+21 resmlp_12_224.fb_in1k,83.569,16.431,95.760,4.240,15.35,224,0.875,bicubic,+6.921,+2.582,+11 densenet201.tv_in1k,83.554,16.446,95.809,4.191,20.01,224,0.875,bicubic,+6.268,+2.329,-16 mobilenetv3_large_100.miil_in21k_ft_in1k,83.554,16.446,95.448,4.552,5.48,224,0.875,bilinear,+5.634,+2.534,-51 mixnet_m.ft_in1k,83.532,16.468,95.687,4.313,5.01,224,0.875,bicubic,+6.272,+2.269,-16 legacy_seresnext26_32x4d.in1k,83.522,16.478,95.709,4.292,16.79,224,0.875,bicubic,+6.414,+2.395,-9 gernet_s.idstcv_in1k,83.513,16.487,95.798,4.202,8.17,224,0.875,bilinear,+6.603,+2.482,+2 tf_efficientnet_b0.aa_in1k,83.502,16.498,95.704,4.296,5.29,224,0.875,bicubic,+6.658,+2.486,+2 hrnet_w18.ms_in1k,83.490,16.511,95.911,4.089,21.30,224,0.875,bilinear,+6.738,+2.467,+3 resnet34.bt_in1k,83.468,16.532,95.965,4.035,21.80,288,0.950,bicubic,+6.988,+2.611,+13 selecsls42b.in1k,83.451,16.549,95.736,4.264,32.46,224,0.875,bicubic,+6.281,+2.344,-17 efficientvit_m5.r224_in1k,83.449,16.551,95.813,4.187,12.47,224,0.875,bicubic,+6.391,+2.629,-12 efficientformerv2_s0.snap_dist_in1k,83.402,16.598,95.817,4.183,3.60,224,0.950,bicubic,+7.288,+2.959,+19 hardcorenas_c.miil_green_in1k,83.353,16.647,95.713,4.287,5.52,224,0.875,bilinear,+6.287,+2.551,-15 ghostnetv2_130.in1k,83.342,16.658,95.843,4.157,8.96,224,0.875,bicubic,+6.586,+2.481,-4 tf_efficientnet_lite1.in1k,83.338,16.662,95.647,4.353,5.42,240,0.882,bicubic,+6.694,+2.423,-2 fastvit_t8.apple_in1k,83.270,16.730,95.832,4.168,4.03,256,0.900,bicubic,+7.096,+2.780,+13 dpn68.mx_in1k,83.195,16.805,95.617,4.383,12.61,224,0.875,bicubic,+6.849,+2.609,+9 tf_mixnet_m.in1k,83.189,16.811,95.469,4.531,5.01,224,0.875,bicubic,+6.235,+2.315,-14 regnetx_016.pycls_in1k,83.180,16.820,95.740,4.260,9.19,224,0.875,bicubic,+6.256,+2.325,-13 tf_efficientnet_es.in1k,83.180,16.820,95.580,4.420,5.44,224,0.875,bicubic,+6.582,+2.378,-5 xcit_nano_12_p16_384.fb_dist_in1k,83.178,16.822,95.755,4.245,3.05,384,1.000,bicubic,+7.720,+3.058,+27 mobilenetv2_140.ra_in1k,83.174,16.826,95.687,4.313,6.11,224,0.875,bicubic,+6.658,+2.699,-2 levit_128s.fb_dist_in1k,83.052,16.948,95.533,4.467,7.78,224,0.900,bicubic,+6.526,+2.661,-5 levit_conv_128s.fb_dist_in1k,83.046,16.954,95.536,4.464,7.78,224,0.900,bicubic,+6.526,+2.670,-5 repvgg_a2.rvgg_in1k,82.996,17.004,95.593,4.407,28.21,224,0.875,bilinear,+6.538,+2.591,-2 resnet50.tv_in1k,82.958,17.042,95.469,4.531,25.56,224,0.875,bilinear,+6.830,+2.611,+4 repghostnet_130.in1k,82.922,17.078,95.459,4.541,5.48,224,0.875,bicubic,+6.546,+2.567,-3 resnet26.bt_in1k,82.917,17.083,95.726,4.274,16.00,288,0.950,bicubic,+6.551,+2.546,-3 hardcorenas_b.miil_green_in1k,82.864,17.136,95.395,4.605,5.18,224,0.875,bilinear,+6.316,+2.633,-13 mobileone_s1.apple_in1k,82.853,17.147,95.540,4.460,4.83,224,0.900,bilinear,+7.067,+2.748,+7 mobilevitv2_075.cvnets_in1k,82.796,17.204,95.570,4.430,2.87,256,0.888,bicubic,+7.188,+2.826,+11 densenet169.tv_in1k,82.689,17.311,95.604,4.396,14.15,224,0.875,bicubic,+6.789,+2.576,+4 vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k,82.687,17.313,95.847,4.153,6.36,384,1.000,bicubic,+6.727,+2.585,+1 regnety_004.tv2_in1k,82.640,17.360,95.499,4.501,4.34,224,0.965,bicubic,+7.046,+2.799,+9 edgenext_x_small.in1k,82.580,17.420,95.459,4.541,2.34,288,1.000,bicubic,+6.892,+2.693,+4 tf_efficientnet_b0.in1k,82.563,17.437,95.418,4.582,5.29,224,0.875,bicubic,+6.033,+2.410,-19 mixnet_s.ft_in1k,82.520,17.480,95.356,4.644,4.13,224,0.875,bicubic,+6.526,+2.086,-4 vit_small_patch32_224.augreg_in21k_ft_in1k,82.516,17.484,95.664,4.336,22.88,224,0.900,bicubic,+6.522,+2.864,-6 regnety_008.pycls_in1k,82.486,17.514,95.489,4.511,6.26,224,0.875,bicubic,+6.184,+2.427,-11 efficientnet_lite0.ra_in1k,82.371,17.629,95.294,4.706,4.65,224,0.875,bicubic,+6.889,+2.774,+6 resnest14d.gluon_in1k,82.356,17.644,95.335,4.665,10.61,224,0.875,bilinear,+6.848,+2.827,+4 hardcorenas_a.miil_green_in1k,82.322,17.678,95.288,4.712,5.26,224,0.875,bilinear,+6.384,+2.780,-7 efficientnet_es_pruned.in1k,82.294,17.706,95.301,4.699,5.44,224,0.875,bicubic,+7.288,+2.857,+15 mobilenetv3_rw.rmsp_in1k,82.264,17.736,95.234,4.766,5.48,224,0.875,bicubic,+6.644,+2.531,-3 semnasnet_100.rmsp_in1k,82.258,17.742,95.226,4.774,3.89,224,0.875,bicubic,+6.808,+2.628,+4 mobilenetv3_large_100.ra_in1k,82.179,17.821,95.192,4.808,5.48,224,0.875,bicubic,+6.413,+2.654,-8 vit_tiny_patch16_224.augreg_in21k_ft_in1k,82.080,17.920,95.476,4.524,5.72,224,0.900,bicubic,+6.618,+2.632,0 mobilenetv2_110d.ra_in1k,82.068,17.932,95.070,4.930,4.52,224,0.875,bicubic,+7.014,+2.886,+8 tf_mixnet_s.in1k,82.038,17.962,95.126,4.874,4.13,224,0.875,bicubic,+6.386,+2.486,-9 repvgg_b0.rvgg_in1k,81.999,18.001,95.104,4.896,15.82,224,0.875,bilinear,+6.855,+2.688,+2 deit_tiny_distilled_patch16_224.fb_in1k,81.993,18.007,95.134,4.866,5.91,224,0.900,bicubic,+7.489,+3.244,+18 hrnet_w18_small_v2.ms_in1k,81.976,18.024,95.160,4.840,15.60,224,0.875,bilinear,+6.866,+2.744,+2 mixer_b16_224.goog_in21k_ft_in1k,81.976,18.024,94.451,5.549,59.88,224,0.875,bicubic,+5.374,+2.227,-39 tf_efficientnet_lite0.in1k,81.950,18.050,95.160,4.840,4.65,224,0.875,bicubic,+7.118,+2.990,+7 ghostnetv2_100.in1k,81.905,18.095,95.111,4.889,6.16,224,0.875,bicubic,+6.739,+2.757,-4 tinynet_b.in1k,81.880,18.120,94.876,5.124,3.73,188,0.875,bicubic,+6.902,+2.690,+3 tf_mobilenetv3_large_100.in1k,81.848,18.152,95.059,4.941,5.48,224,0.875,bilinear,+6.332,+2.466,-13 pit_ti_distilled_224.in1k,81.779,18.221,95.098,4.902,5.10,224,0.900,bicubic,+7.523,+3.146,+14 repghostnet_111.in1k,81.743,18.257,94.842,5.158,4.54,224,0.875,bicubic,+6.687,+2.650,-4 densenet121.tv_in1k,81.732,18.268,95.036,4.964,7.98,224,0.875,bicubic,+6.968,+2.882,+3 regnety_006.pycls_in1k,81.717,18.283,95.115,4.885,6.06,224,0.875,bicubic,+6.449,+2.589,-11 regnetx_004_tv.tv2_in1k,81.694,18.306,95.057,4.943,5.50,224,0.965,bicubic,+7.094,+2.887,+5 resnet18d.ra2_in1k,81.679,18.321,95.079,4.921,11.71,288,0.950,bicubic,+7.885,+3.241,+19 dla34.in1k,81.664,18.336,94.867,5.133,15.74,224,0.875,bilinear,+7.024,+2.801,+1 xcit_nano_12_p8_224.fb_in1k,81.645,18.355,95.271,4.729,3.05,224,1.000,bicubic,+7.735,+3.103,+15 crossvit_9_240.in1k,81.613,18.387,94.981,5.019,8.55,240,0.875,bicubic,+7.653,+3.019,+11 fbnetc_100.rmsp_in1k,81.559,18.441,94.968,5.032,5.57,224,0.875,bilinear,+6.430,+2.580,-14 mobilevit_xs.cvnets_in1k,81.553,18.447,95.023,4.977,2.32,256,0.900,bicubic,+6.919,+2.675,-2 legacy_seresnet34.in1k,81.538,18.462,94.897,5.103,21.96,224,0.875,bilinear,+6.736,+2.771,-7 efficientvit_m4.r224_in1k,81.498,18.503,95.002,4.998,8.80,224,0.875,bicubic,+7.130,+3.022,+1 regnetx_008.pycls_in1k,81.487,18.513,95.053,4.947,7.26,224,0.875,bicubic,+6.459,+2.715,-14 resnet34.gluon_in1k,81.481,18.520,94.799,5.201,21.80,224,0.875,bicubic,+6.901,+2.817,-4 mnasnet_100.rmsp_in1k,81.446,18.554,94.914,5.086,4.38,224,0.875,bicubic,+6.794,+2.792,-9 vgg19_bn.tv_in1k,81.438,18.562,94.771,5.229,143.68,224,0.875,bilinear,+7.222,+2.927,-1 repvgg_a1.rvgg_in1k,81.256,18.744,94.714,5.286,14.09,224,0.875,bilinear,+6.794,+2.858,-5 vit_base_patch32_224.augreg_in1k,81.143,18.857,94.427,5.572,88.22,224,0.900,bicubic,+6.249,+2.649,-16 convit_tiny.fb_in1k,81.126,18.874,95.036,4.964,5.71,224,0.875,bicubic,+8.014,+3.324,+14 crossvit_tiny_240.in1k,81.098,18.902,94.983,5.017,7.01,240,0.875,bicubic,+7.758,+3.075,+9 resnet18.a1_in1k,81.036,18.964,94.357,5.643,11.69,288,1.000,bicubic,+7.878,+3.331,+11 repghostnet_100.in1k,80.930,19.070,94.543,5.457,4.07,224,0.875,bicubic,+6.724,+3.001,-6 spnasnet_100.rmsp_in1k,80.883,19.117,94.526,5.474,4.42,224,0.875,bilinear,+6.789,+2.706,-6 resnet34.a3_in1k,80.814,19.186,94.353,5.647,21.80,224,0.950,bicubic,+7.844,+3.247,+12 efficientvit_m3.r224_in1k,80.693,19.307,94.556,5.444,6.90,224,0.875,bicubic,+7.319,+3.208,+2 ghostnet_100.in1k,80.678,19.322,94.359,5.641,5.18,224,0.875,bicubic,+6.720,+2.827,-6 regnety_004.pycls_in1k,80.656,19.344,94.682,5.318,4.34,224,0.875,bicubic,+6.630,+2.934,-9 skresnet18.ra_in1k,80.648,19.352,94.378,5.622,11.96,224,0.875,bicubic,+7.614,+3.206,+6 regnetx_006.pycls_in1k,80.639,19.361,94.530,5.470,6.20,224,0.875,bicubic,+6.771,+2.852,-6 pit_ti_224.in1k,80.599,19.401,94.620,5.380,4.85,224,0.900,bicubic,+7.689,+3.216,+8 resnet18.fb_swsl_ig1b_ft_in1k,80.577,19.423,94.741,5.259,11.69,224,0.875,bilinear,+7.289,+3.011,0 vgg16_bn.tv_in1k,80.571,19.429,94.600,5.400,138.37,224,0.875,bilinear,+7.201,+3.086,-4 semnasnet_075.rmsp_in1k,80.481,19.519,94.319,5.681,2.91,224,0.875,bicubic,+7.477,+3.179,+2 hrnet_w18_small.gluon_in1k,80.406,19.593,94.045,5.955,13.19,224,0.875,bicubic,+6.486,+2.851,-13 resnet34.tv_in1k,80.381,19.619,94.430,5.570,21.80,224,0.875,bilinear,+7.075,+3.010,-5 resnet18.a2_in1k,80.310,19.690,94.099,5.901,11.69,288,1.000,bicubic,+7.938,+3.503,+7 mobilenetv2_100.ra_in1k,80.253,19.747,94.188,5.812,3.50,224,0.875,bicubic,+7.285,+3.172,0 xcit_nano_12_p16_224.fb_dist_in1k,80.231,19.769,94.351,5.649,3.05,224,1.000,bicubic,+7.921,+3.491,+7 vit_base_patch32_224.sam_in1k,80.214,19.786,93.823,6.177,88.22,224,0.900,bicubic,+6.520,+2.809,-14 resnet18.fb_ssl_yfcc100m_ft_in1k,80.095,19.905,94.592,5.408,11.69,224,0.875,bilinear,+7.497,+3.176,-1 tf_mobilenetv3_large_075.in1k,80.073,19.927,94.180,5.820,3.99,224,0.875,bilinear,+6.643,+2.828,-15 deit_tiny_patch16_224.fb_in1k,80.011,19.988,94.449,5.551,5.72,224,0.900,bicubic,+7.841,+3.333,+7 hrnet_w18_small.ms_in1k,79.550,20.450,93.906,6.093,13.19,224,0.875,bilinear,+7.214,+3.226,+1 repvgg_a0.rvgg_in1k,79.508,20.492,93.778,6.222,9.11,224,0.875,bilinear,+7.100,+3.286,-4 vgg19.tv_in1k,79.484,20.516,93.868,6.132,143.67,224,0.875,bilinear,+7.106,+2.994,-3 regnetx_004.pycls_in1k,79.420,20.580,93.847,6.153,5.16,224,0.875,bicubic,+7.018,+3.021,-5 tf_mobilenetv3_large_minimal_100.in1k,79.232,20.768,93.702,6.298,3.92,224,0.875,bilinear,+6.968,+3.062,-1 edgenext_xx_small.in1k,79.175,20.825,93.819,6.181,1.33,288,1.000,bicubic,+7.297,+3.267,+4 legacy_seresnet18.in1k,79.164,20.836,93.774,6.226,11.78,224,0.875,bicubic,+7.404,+3.442,+5 resnet14t.c3_in1k,79.143,20.857,93.565,6.435,10.08,224,0.950,bicubic,+6.889,+3.259,-3 repghostnet_080.in1k,79.089,20.911,93.716,6.284,3.28,224,0.875,bicubic,+6.877,+3.233,-3 vgg16.tv_in1k,79.038,20.962,93.644,6.356,138.36,224,0.875,bilinear,+7.446,+3.260,+3 vgg13_bn.tv_in1k,78.995,21.005,93.661,6.339,133.05,224,0.875,bilinear,+7.407,+3.283,+3 vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k,78.991,21.009,93.898,6.102,6.34,224,0.900,bicubic,+7.193,+3.074,-1 lcnet_100.ra2_in1k,78.899,21.101,93.550,6.450,2.95,224,0.875,bicubic,+6.797,+3.196,-5 pvt_v2_b0.in1k,78.756,21.244,93.836,6.164,3.67,224,0.900,bicubic,+8.096,+3.640,+6 efficientvit_m2.r224_in1k,78.632,21.368,93.552,6.448,4.19,224,0.875,bicubic,+7.818,+3.410,+4 mobileone_s0.apple_in1k,78.496,21.504,93.322,6.678,5.29,224,0.875,bilinear,+7.094,+3.480,-1 tinynet_c.in1k,78.449,21.551,93.125,6.875,2.46,184,0.875,bicubic,+7.207,+3.393,0 efficientvit_b0.r224_in1k,78.425,21.575,92.801,7.199,3.41,224,0.950,bicubic,+7.027,+3.373,-2 resnet18.gluon_in1k,78.376,21.624,93.129,6.871,11.69,224,0.875,bicubic,+7.542,+3.373,-1 mobilevitv2_050.cvnets_in1k,78.124,21.876,93.565,6.435,1.37,256,0.888,bicubic,+7.976,+3.647,+3 vgg11_bn.tv_in1k,77.956,22.044,93.232,6.768,132.87,224,0.875,bilinear,+7.573,+3.424,0 xcit_nano_12_p16_224.fb_in1k,77.904,22.096,93.437,6.563,3.05,224,1.000,bicubic,+7.942,+3.675,+2 regnety_002.pycls_in1k,77.422,22.578,92.905,7.095,3.16,224,0.875,bicubic,+7.142,+3.375,-1 resnet18.tv_in1k,77.285,22.715,92.756,7.244,11.69,224,0.875,bilinear,+7.525,+3.686,+2 mixer_l16_224.goog_in21k_ft_in1k,77.279,22.721,90.584,9.416,208.20,224,0.875,bicubic,+5.225,+2.910,-16 vgg13.tv_in1k,77.227,22.773,92.692,7.308,133.05,224,0.875,bilinear,+7.295,+3.442,-1 mobilevit_xxs.cvnets_in1k,76.604,23.396,92.681,7.319,1.27,256,0.900,bicubic,+7.686,+3.735,+1 resnet18.a3_in1k,76.457,23.543,92.226,7.774,11.69,224,0.950,bicubic,+8.205,+4.054,+6 efficientvit_m1.r224_in1k,76.388,23.612,92.542,7.458,2.98,224,0.875,bicubic,+8.082,+3.872,+4 vgg11.tv_in1k,76.384,23.616,92.156,7.844,132.86,224,0.875,bilinear,+7.362,+3.532,-3 repghostnet_058.in1k,76.224,23.776,92.117,7.883,2.55,224,0.875,bicubic,+7.310,+3.697,-2 resnet10t.c3_in1k,76.171,23.829,92.226,7.774,5.44,224,0.950,bicubic,+7.806,+4.190,0 regnetx_002.pycls_in1k,76.128,23.872,92.198,7.801,2.68,224,0.875,bicubic,+7.376,+3.656,-2 lcnet_075.ra2_in1k,76.036,23.964,92.060,7.940,2.36,224,0.875,bicubic,+7.254,+3.700,-4 dla60x_c.in1k,75.637,24.363,92.171,7.829,1.32,224,0.875,bilinear,+7.725,+3.739,+1 mobilenetv3_small_100.lamb_in1k,74.921,25.078,91.487,8.512,2.54,224,0.875,bicubic,+7.263,+3.852,+1 tf_mobilenetv3_small_100.in1k,74.725,25.275,91.266,8.735,2.54,224,0.875,bilinear,+6.803,+3.594,-2 tinynet_d.in1k,74.292,25.708,90.917,9.083,2.34,152,0.875,bicubic,+7.320,+3.851,0 repghostnet_050.in1k,74.236,25.764,90.808,9.191,2.31,224,0.875,bicubic,+7.270,+3.888,0 mnasnet_small.lamb_in1k,73.801,26.199,90.732,9.268,2.03,224,0.875,bicubic,+7.605,+4.228,0 dla46x_c.in1k,73.655,26.345,91.097,8.903,1.07,224,0.875,bilinear,+7.663,+4.123,0 mobilenetv2_050.lamb_in1k,73.470,26.530,90.317,9.682,1.97,224,0.875,bicubic,+7.522,+4.233,0 tf_mobilenetv3_small_075.in1k,72.814,27.186,90.051,9.949,2.04,224,0.875,bilinear,+7.088,+3.919,0 dla46_c.in1k,72.626,27.374,90.499,9.501,1.30,224,0.875,bilinear,+7.754,+4.201,+1 mobilenetv3_small_075.lamb_in1k,72.317,27.683,89.666,10.334,2.04,224,0.875,bicubic,+7.081,+4.220,-1 efficientvit_m0.r224_in1k,71.091,28.909,89.589,10.411,2.35,224,0.875,bicubic,+7.821,+4.413,0 lcnet_050.ra2_in1k,70.402,29.598,88.825,11.175,1.88,224,0.875,bicubic,+7.264,+4.443,0 tf_mobilenetv3_small_minimal_100.in1k,70.096,29.904,88.516,11.485,2.04,224,0.875,bilinear,+7.202,+4.278,0 tinynet_e.in1k,66.810,33.190,86.280,13.720,2.04,106,0.875,bicubic,+6.944,+4.518,0 mobilenetv3_small_050.lamb_in1k,64.697,35.303,84.858,15.142,1.59,224,0.875,bicubic,+6.781,+4.678,0
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/hfdocs/README.md
# Hugging Face Timm Docs ## Getting Started ``` pip install git+https://github.com/huggingface/doc-builder.git@main#egg=hf-doc-builder pip install watchdog black ``` ## Preview the Docs Locally ``` doc-builder preview timm hfdocs/source ```
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/training_script.mdx
# Scripts A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release. The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on [NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples). ## Training Script The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder. To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value: ```bash ./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4 ``` <Tip> It is recommended to use PyTorch 1.9+ w/ PyTorch native AMP and DDP instead of APEX AMP. --amp defaults to native AMP as of timm ver 0.4.3. --apex-amp will force use of APEX components if they are installed. </Tip> ## Validation / Inference Scripts Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script. To validate with the model's pretrained weights (if they exist): ```bash python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained ``` To run inference from a checkpoint: ```bash python inference.py /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/train/model_best.pth.tar ``` ## Training Examples ### EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5 These params are for dual Titan RTX cards with NVIDIA Apex installed: ```bash ./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016 ``` ### MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5 This params are for dual Titan RTX cards with NVIDIA Apex installed: ```bash ./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce ``` ### SE-ResNeXt-26-D and SE-ResNeXt-26-T These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards: ```bash ./distributed_train.sh 2 /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112 ``` ### EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5 The training of this model started with the same command line as EfficientNet-B2 w/ RA above. After almost three weeks of training the process crashed. The results weren't looking amazing so I resumed the training several times with tweaks to a few params (increase RE prob, decrease rand-aug, increase ema-decay). Nothing looked great. I ended up averaging the best checkpoints from all restarts. The result is mediocre at default res/crop but oddly performs much better with a full image test crop of 1.0. ### EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5 [Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2. ```bash ./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048 ``` ### ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5 Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths. ```bash ./distributed_train.sh 2 /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce ``` ### EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5 Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training. ```bash ./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 ``` ### MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5 ```bash ./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9 ``` ### ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5 These params will also work well for SE-ResNeXt-50 and SK-ResNeXt-50 and likely 101. I used them for the SK-ResNeXt-50 32x4d that I trained with 2 GPU using a slightly higher LR per effective batch size (lr=0.18, b=192 per GPU). The cmd line below are tuned for 8 GPU training. ```bash ./distributed_train.sh 8 /imagenet --model resnext50_32x4d --lr 0.6 --warmup-epochs 5 --epochs 240 --weight-decay 1e-4 --sched cosine --reprob 0.4 --recount 3 --remode pixel --aa rand-m7-mstd0.5-inc1 -b 192 -j 6 --amp --dist-bn reduce ```
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/installation.mdx
# Installation Before you start, you'll need to setup your environment and install the appropriate packages. `timm` is tested on **Python 3+**. ## Virtual Environment You should install `timm` in a [virtual environment](https://docs.python.org/3/library/venv.html) to keep things tidy and avoid dependency conflicts. 1. Create and navigate to your project directory: ```bash mkdir ~/my-project cd ~/my-project ``` 2. Start a virtual environment inside your directory: ```bash python -m venv .env ``` 3. Activate and deactivate the virtual environment with the following commands: ```bash # Activate the virtual environment source .env/bin/activate # Deactivate the virtual environment source .env/bin/deactivate ``` ` Once you've created your virtual environment, you can install `timm` in it. ## Using pip The most straightforward way to install `timm` is with pip: ```bash pip install timm ``` Alternatively, you can install `timm` from GitHub directly to get the latest, bleeding-edge version: ```bash pip install git+https://github.com/rwightman/pytorch-image-models.git ``` Run the following command to check if `timm` has been properly installed: ```bash python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" ``` This command lists the first five pretrained models available in `timm` (which are sorted alphebetically). You should see the following output: ```python ['adv_inception_v3', 'bat_resnext26ts', 'beit_base_patch16_224', 'beit_base_patch16_224_in22k', 'beit_base_patch16_384'] ``` ## From Source Building `timm` from source lets you make changes to the code base. To install from the source, clone the repository and install with the following commands: ```bash git clone https://github.com/rwightman/pytorch-image-models.git cd timm pip install -e . ``` Again, you can check if `timm` was properly installed with the following command: ```bash python -c "from timm import list_models; print(list_models(pretrained=True)[:5])" ```
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/hf_hub.mdx
# Sharing and Loading Models From the Hugging Face Hub The `timm` library has a built-in integration with the Hugging Face Hub, making it easy to share and load models from the 🤗 Hub. In this short guide, we'll see how to: 1. Share a `timm` model on the Hub 2. How to load that model back from the Hub ## Authenticating First, you'll need to make sure you have the `huggingface_hub` package installed. ```bash pip install huggingface_hub ``` Then, you'll need to authenticate yourself. You can do this by running the following command: ```bash huggingface-cli login ``` Or, if you're using a notebook, you can use the `notebook_login` helper: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Sharing a Model ```py >>> import timm >>> model = timm.create_model('resnet18', pretrained=True, num_classes=4) ``` Here is where you would normally train or fine-tune the model. We'll skip that for the sake of this tutorial. Let's pretend we've now fine-tuned the model. The next step would be to push it to the Hub! We can do this with the `timm.models.hub.push_to_hf_hub` function. ```py >>> model_cfg = dict(labels=['a', 'b', 'c', 'd']) >>> timm.models.hub.push_to_hf_hub(model, 'resnet18-random', model_config=model_cfg) ``` Running the above would push the model to `<your-username>/resnet18-random` on the Hub. You can now share this model with your friends, or use it in your own code! ## Loading a Model Loading a model from the Hub is as simple as calling `timm.create_model` with the `pretrained` argument set to the name of the model you want to load. In this case, we'll use [`nateraw/resnet18-random`](https://huggingface.co/nateraw/resnet18-random), which is the model we just pushed to the Hub. ```py >>> model_reloaded = timm.create_model('hf_hub:nateraw/resnet18-random', pretrained=True) ```
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/index.mdx
# timm <img class="float-left !m-0 !border-0 !dark:border-0 !shadow-none !max-w-lg w-[150px]" src="https://huggingface.co/front/thumbnails/docs/timm.png"/> `timm` is a library containing SOTA computer vision models, layers, utilities, optimizers, schedulers, data-loaders, augmentations, and training/evaluation scripts. It comes packaged with >700 pretrained models, and is designed to be flexible and easy to use. Read the [quick start guide](quickstart) to get up and running with the `timm` library. You will learn how to load, discover, and use pretrained models included in the library. <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./feature_extraction" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div> <p class="text-gray-700">Learn the basics and become familiar with timm. Start here if you are using timm for the first time!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./reference/models" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div> <p class="text-gray-700">Technical descriptions of how timm classes and methods work.</p> </a> </div> </div>
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/models.mdx
# Model Summaries The model architectures included come from a wide variety of sources. Sources, including papers, original impl ("reference code") that I rewrote / adapted, and PyTorch impl that I leveraged directly ("code") are listed below. Most included models have pretrained weights. The weights are either: 1. from their original sources 2. ported by myself from their original impl in a different framework (e.g. Tensorflow models) 3. trained from scratch using the included training script The validation results for the pretrained weights are [here](results) A more exciting view (with pretty pictures) of the models within `timm` can be found at [paperswithcode](https://paperswithcode.com/lib/timm). ## Big Transfer ResNetV2 (BiT) * Implementation: [resnetv2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnetv2.py) * Paper: `Big Transfer (BiT): General Visual Representation Learning` - https://arxiv.org/abs/1912.11370 * Reference code: https://github.com/google-research/big_transfer ## Cross-Stage Partial Networks * Implementation: [cspnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/cspnet.py) * Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 * Reference impl: https://github.com/WongKinYiu/CrossStagePartialNetworks ## DenseNet * Implementation: [densenet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/densenet.py) * Paper: `Densely Connected Convolutional Networks` - https://arxiv.org/abs/1608.06993 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## DLA * Implementation: [dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py) * Paper: https://arxiv.org/abs/1707.06484 * Code: https://github.com/ucbdrive/dla ## Dual-Path Networks * Implementation: [dpn.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dpn.py) * Paper: `Dual Path Networks` - https://arxiv.org/abs/1707.01629 * My PyTorch code: https://github.com/rwightman/pytorch-dpn-pretrained * Reference code: https://github.com/cypw/DPNs ## GPU-Efficient Networks * Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) * Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 * Reference code: https://github.com/idstcv/GPU-Efficient-Networks ## HRNet * Implementation: [hrnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hrnet.py) * Paper: `Deep High-Resolution Representation Learning for Visual Recognition` - https://arxiv.org/abs/1908.07919 * Code: https://github.com/HRNet/HRNet-Image-Classification ## Inception-V3 * Implementation: [inception_v3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v3.py) * Paper: `Rethinking the Inception Architecture for Computer Vision` - https://arxiv.org/abs/1512.00567 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## Inception-V4 * Implementation: [inception_v4.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v4.py) * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## Inception-ResNet-V2 * Implementation: [inception_resnet_v2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_resnet_v2.py) * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## NASNet-A * Implementation: [nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py) * Papers: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## PNasNet-5 * Implementation: [pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py) * Papers: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## EfficientNet * Implementation: [efficientnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py) * Papers: * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * MixNet - https://arxiv.org/abs/1907.09595 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * FBNet-C - https://arxiv.org/abs/1812.03443 * Single-Path NAS - https://arxiv.org/abs/1904.02877 * My PyTorch code: https://github.com/rwightman/gen-efficientnet-pytorch * Reference code: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## MobileNet-V3 * Implementation: [mobilenetv3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py) * Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet ## RegNet * Implementation: [regnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/regnet.py) * Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 * Reference code: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py ## RepVGG * Implementation: [byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py) * Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 * Reference code: https://github.com/DingXiaoH/RepVGG ## ResNet, ResNeXt * Implementation: [resnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py) * ResNet (V1B) * Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * ResNeXt * Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * 'Bag of Tricks' / Gluon C, D, E, S ResNet variants * Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187 * Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py * Instagram pretrained / ImageNet tuned ResNeXt101 * Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932 * Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts * Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546 * Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Squeeze-and-Excitation Networks * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated * ECAResNet (ECA-Net) * Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4 * Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet ## Res2Net * Implementation: [res2net.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py) * Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 * Code: https://github.com/gasvn/Res2Net ## ResNeSt * Implementation: [resnest.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnest.py) * Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 * Code: https://github.com/zhanghang1989/ResNeSt ## ReXNet * Implementation: [rexnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/rexnet.py) * Paper: `ReXNet: Diminishing Representational Bottleneck on CNN` - https://arxiv.org/abs/2007.00992 * Code: https://github.com/clovaai/rexnet ## Selective-Kernel Networks * Implementation: [sknet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/sknet.py) * Paper: `Selective-Kernel Networks` - https://arxiv.org/abs/1903.06586 * Code: https://github.com/implus/SKNet, https://github.com/clovaai/assembled-cnn ## SelecSLS * Implementation: [selecsls.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/selecsls.py) * Paper: `XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera` - https://arxiv.org/abs/1907.00837 * Code: https://github.com/mehtadushy/SelecSLS-Pytorch ## Squeeze-and-Excitation Networks * Implementation: [senet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/senet.py) NOTE: I am deprecating this version of the networks, the new ones are part of `resnet.py` * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: https://github.com/Cadene/pretrained-models.pytorch ## TResNet * Implementation: [tresnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tresnet.py) * Paper: `TResNet: High Performance GPU-Dedicated Architecture` - https://arxiv.org/abs/2003.13630 * Code: https://github.com/mrT23/TResNet ## VGG * Implementation: [vgg.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vgg.py) * Paper: `Very Deep Convolutional Networks For Large-Scale Image Recognition` - https://arxiv.org/pdf/1409.1556.pdf * Reference code: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py ## Vision Transformer * Implementation: [vision_transformer.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) * Paper: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 * Reference code and pretrained weights: https://github.com/google-research/vision_transformer ## VovNet V2 and V1 * Implementation: [vovnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vovnet.py) * Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 * Reference code: https://github.com/youngwanLEE/vovnet-detectron2 ## Xception * Implementation: [xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/xception.py) * Paper: `Xception: Deep Learning with Depthwise Separable Convolutions` - https://arxiv.org/abs/1610.02357 * Code: https://github.com/Cadene/pretrained-models.pytorch ## Xception (Modified Aligned, Gluon) * Implementation: [gluon_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/gluon_xception.py) * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo, https://github.com/jfzhang95/pytorch-deeplab-xception/ ## Xception (Modified Aligned, TF) * Implementation: [aligned_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/aligned_xception.py) * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/tensorflow/models/tree/master/research/deeplab
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/feature_extraction.mdx
# Feature Extraction All of the models in `timm` have consistent mechanisms for obtaining various types of features from the model for tasks besides classification. ## Penultimate Layer Features (Pre-Classifier Features) The features from the penultimate model layer can be obtained in several ways without requiring model surgery (although feel free to do surgery). One must first decide if they want pooled or un-pooled features. ### Unpooled There are three ways to obtain unpooled features. Without modifying the network, one can call `model.forward_features(input)` on any model instead of the usual `model(input)`. This will bypass the head classifier and global pooling for networks. If one wants to explicitly modify the network to return unpooled features, they can either create the model without a classifier and pooling, or remove it later. Both paths remove the parameters associated with the classifier from the network. #### forward_features() ```py >>> import torch >>> import timm >>> m = timm.create_model('xception41', pretrained=True) >>> o = m(torch.randn(2, 3, 299, 299)) >>> print(f'Original shape: {o.shape}') >>> o = m.forward_features(torch.randn(2, 3, 299, 299)) >>> print(f'Unpooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Unpooled shape: torch.Size([2, 2048, 10, 10]) ``` #### Create with no classifier and pooling ```py >>> import torch >>> import timm >>> m = timm.create_model('resnet50', pretrained=True, num_classes=0, global_pool='') >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Unpooled shape: {o.shape}') ``` Output: ```text Unpooled shape: torch.Size([2, 2048, 7, 7]) ``` #### Remove it later ```py >>> import torch >>> import timm >>> m = timm.create_model('densenet121', pretrained=True) >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Original shape: {o.shape}') >>> m.reset_classifier(0, '') >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Unpooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Unpooled shape: torch.Size([2, 1024, 7, 7]) ``` ### Pooled To modify the network to return pooled features, one can use `forward_features()` and pool/flatten the result themselves, or modify the network like above but keep pooling intact. #### Create with no classifier ```py >>> import torch >>> import timm >>> m = timm.create_model('resnet50', pretrained=True, num_classes=0) >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Pooled shape: {o.shape}') ``` Output: ```text Pooled shape: torch.Size([2, 2048]) ``` #### Remove it later ```py >>> import torch >>> import timm >>> m = timm.create_model('ese_vovnet19b_dw', pretrained=True) >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Original shape: {o.shape}') >>> m.reset_classifier(0) >>> o = m(torch.randn(2, 3, 224, 224)) >>> print(f'Pooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Pooled shape: torch.Size([2, 1024]) ``` ## Multi-scale Feature Maps (Feature Pyramid) Object detection, segmentation, keypoint, and a variety of dense pixel tasks require access to feature maps from the backbone network at multiple scales. This is often done by modifying the original classification network. Since each network varies quite a bit in structure, it's not uncommon to see only a few backbones supported in any given obj detection or segmentation library. `timm` allows a consistent interface for creating any of the included models as feature backbones that output feature maps for selected levels. A feature backbone can be created by adding the argument `features_only=True` to any `create_model` call. By default 5 strides will be output from most models (not all have that many), with the first starting at 2 (some start at 1 or 4). ### Create a feature map extraction model ```py >>> import torch >>> import timm >>> m = timm.create_model('resnest26d', features_only=True, pretrained=True) >>> o = m(torch.randn(2, 3, 224, 224)) >>> for x in o: ... print(x.shape) ``` Output: ```text torch.Size([2, 64, 112, 112]) torch.Size([2, 256, 56, 56]) torch.Size([2, 512, 28, 28]) torch.Size([2, 1024, 14, 14]) torch.Size([2, 2048, 7, 7]) ``` ### Query the feature information After a feature backbone has been created, it can be queried to provide channel or resolution reduction information to the downstream heads without requiring static config or hardcoded constants. The `.feature_info` attribute is a class encapsulating the information about the feature extraction points. ```py >>> import torch >>> import timm >>> m = timm.create_model('regnety_032', features_only=True, pretrained=True) >>> print(f'Feature channels: {m.feature_info.channels()}') >>> o = m(torch.randn(2, 3, 224, 224)) >>> for x in o: ... print(x.shape) ``` Output: ```text Feature channels: [32, 72, 216, 576, 1512] torch.Size([2, 32, 112, 112]) torch.Size([2, 72, 56, 56]) torch.Size([2, 216, 28, 28]) torch.Size([2, 576, 14, 14]) torch.Size([2, 1512, 7, 7]) ``` ### Select specific feature levels or limit the stride There are two additional creation arguments impacting the output features. * `out_indices` selects which indices to output * `output_stride` limits the feature output stride of the network (also works in classification mode BTW) `out_indices` is supported by all models, but not all models have the same index to feature stride mapping. Look at the code or check feature_info to compare. The out indices generally correspond to the `C(i+1)th` feature level (a `2^(i+1)` reduction). For most models, index 0 is the stride 2 features, and index 4 is stride 32. `output_stride` is achieved by converting layers to use dilated convolutions. Doing so is not always straightforward, some networks only support `output_stride=32`. ```py >>> import torch >>> import timm >>> m = timm.create_model('ecaresnet101d', features_only=True, output_stride=8, out_indices=(2, 4), pretrained=True) >>> print(f'Feature channels: {m.feature_info.channels()}') >>> print(f'Feature reduction: {m.feature_info.reduction()}') >>> o = m(torch.randn(2, 3, 320, 320)) >>> for x in o: ... print(x.shape) ``` Output: ```text Feature channels: [512, 2048] Feature reduction: [8, 8] torch.Size([2, 512, 40, 40]) torch.Size([2, 2048, 40, 40]) ```
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/_toctree.yml
- sections: - local: index title: Home - local: quickstart title: Quickstart - local: installation title: Installation title: Get started - sections: - local: feature_extraction title: Using Pretrained Models as Feature Extractors - local: training_script title: Training With The Official Training Script - local: hf_hub title: Share and Load Models from the 🤗 Hugging Face Hub title: Tutorials - sections: - local: models title: Model Summaries - local: results title: Results - local: models/adversarial-inception-v3 title: Adversarial Inception v3 - local: models/advprop title: AdvProp (EfficientNet) - local: models/big-transfer title: Big Transfer (BiT) - local: models/csp-darknet title: CSP-DarkNet - local: models/csp-resnet title: CSP-ResNet - local: models/csp-resnext title: CSP-ResNeXt - local: models/densenet title: DenseNet - local: models/dla title: Deep Layer Aggregation - local: models/dpn title: Dual Path Network (DPN) - local: models/ecaresnet title: ECA-ResNet - local: models/efficientnet title: EfficientNet - local: models/efficientnet-pruned title: EfficientNet (Knapsack Pruned) - local: models/ensemble-adversarial title: Ensemble Adversarial Inception ResNet v2 - local: models/ese-vovnet title: ESE-VoVNet - local: models/fbnet title: FBNet - local: models/gloun-inception-v3 title: (Gluon) Inception v3 - local: models/gloun-resnet title: (Gluon) ResNet - local: models/gloun-resnext title: (Gluon) ResNeXt - local: models/gloun-senet title: (Gluon) SENet - local: models/gloun-seresnext title: (Gluon) SE-ResNeXt - local: models/gloun-xception title: (Gluon) Xception - local: models/hrnet title: HRNet - local: models/ig-resnext title: Instagram ResNeXt WSL - local: models/inception-resnet-v2 title: Inception ResNet v2 - local: models/inception-v3 title: Inception v3 - local: models/inception-v4 title: Inception v4 - local: models/legacy-se-resnet title: (Legacy) SE-ResNet - local: models/legacy-se-resnext title: (Legacy) SE-ResNeXt - local: models/legacy-senet title: (Legacy) SENet - local: models/mixnet title: MixNet - local: models/mnasnet title: MnasNet - local: models/mobilenet-v2 title: MobileNet v2 - local: models/mobilenet-v3 title: MobileNet v3 - local: models/nasnet title: NASNet - local: models/noisy-student title: Noisy Student (EfficientNet) - local: models/pnasnet title: PNASNet - local: models/regnetx title: RegNetX - local: models/regnety title: RegNetY - local: models/res2net title: Res2Net - local: models/res2next title: Res2NeXt - local: models/resnest title: ResNeSt - local: models/resnet title: ResNet - local: models/resnet-d title: ResNet-D - local: models/resnext title: ResNeXt - local: models/rexnet title: RexNet - local: models/se-resnet title: SE-ResNet - local: models/selecsls title: SelecSLS - local: models/seresnext title: SE-ResNeXt - local: models/skresnet title: SK-ResNet - local: models/skresnext title: SK-ResNeXt - local: models/spnasnet title: SPNASNet - local: models/ssl-resnet title: SSL ResNet - local: models/swsl-resnet title: SWSL ResNet - local: models/swsl-resnext title: SWSL ResNeXt - local: models/tf-efficientnet title: (Tensorflow) EfficientNet - local: models/tf-efficientnet-condconv title: (Tensorflow) EfficientNet CondConv - local: models/tf-efficientnet-lite title: (Tensorflow) EfficientNet Lite - local: models/tf-inception-v3 title: (Tensorflow) Inception v3 - local: models/tf-mixnet title: (Tensorflow) MixNet - local: models/tf-mobilenet-v3 title: (Tensorflow) MobileNet v3 - local: models/tresnet title: TResNet - local: models/wide-resnet title: Wide ResNet - local: models/xception title: Xception title: Model Pages isExpanded: false - sections: - local: reference/models title: Models - local: reference/data title: Data - local: reference/optimizers title: Optimizers - local: reference/schedulers title: Learning Rate Schedulers title: Reference
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/results.mdx
# Results CSV files containing an ImageNet-1K and out-of-distribution (OOD) test set validation results for all models with pretrained weights is located in the repository [results folder](https://github.com/rwightman/pytorch-image-models/tree/master/results). ## Self-trained Weights The table below includes ImageNet-1k validation results of model weights that I've trained myself. It is not updated as frequently as the csv results outputs linked above. |Model | Acc@1 (Err) | Acc@5 (Err) | Param # (M) | Interpolation | Image Size | |---|---|---|---|---|---| | efficientnet_b3a | 82.242 (17.758) | 96.114 (3.886) | 12.23 | bicubic | 320 (1.0 crop) | | efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | bicubic | 300 | | regnet_32 | 82.002 (17.998) | 95.906 (4.094) | 19.44 | bicubic | 224 | | skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5 | bicubic | 288 (1.0 crop) | | seresnext50d_32x4d | 81.266 (18.734) | 95.620 (4.380) | 27.6 | bicubic | 224 | | efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11 | bicubic | 288 (1.0 crop) | | resnet50d | 80.530 (19.470) | 95.160 (4.840) | 25.6 | bicubic | 224 | | mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90 | bicubic | 224 | | efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11 | bicubic | 260 | | seresnet50 | 80.274 (19.726) | 95.070 (4.930) | 28.1 | bicubic | 224 | | skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5 | bicubic | 224 | | cspdarknet53 | 80.058 (19.942) | 95.084 (4.916) | 27.6 | bicubic | 256 | | cspresnext50 | 80.040 (19.960) | 94.944 (5.056) | 20.6 | bicubic | 224 | | resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25 | bicubic | 224 | | resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1 | bicubic | 224 | | cspresnet50 | 79.574 (20.426) | 94.712 (5.288) | 21.6 | bicubic | 256 | | ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6 | bicubic | 224 | | resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6 | bicubic | 224 | | dpn68b | 79.216 (20.784) | 94.414 (5.586) | 12.6 | bicubic | 224 | | resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6 | bicubic | 224 | | mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | bicubic | 224 | | efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79 | bicubic | 240 | | efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | bicubic | 224 | | seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8 | bicubic | 224 | | seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8 | bicubic | 224 | | efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29 | bicubic | 224 | | seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8 | bicubic | 224 | | mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | bicubic | 224 | | mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | bicubic | 224 | | resnet34d | 77.116 (22.884) | 93.382 (6.618) | 21.8 | bicubic | 224 | | seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8 | bicubic | 224 | | skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2 | bicubic | 224 | | ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5 | bicubic | 224 | | resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16 | bicubic | 224 | | densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0 | bicubic | 224 | | mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | bicubic | 224 | | mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | bicubic | 224 | | mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | bicubic | 224 | | mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | bicubic | 224 | | mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89 | bicubic | 224 | | resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16 | bicubic | 224 | | fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | bilinear | 224 | | resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22 | bilinear | 224 | | mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | bicubic | 224 | | seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22 | bilinear | 224 | | mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38 | bicubic | 224 | | spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42 | bilinear | 224 | | skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9 | bicubic | 224 | | mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | bicubic | 224 | | resnet18d | 72.260 (27.740) | 90.696 (9.304) | 11.7 | bicubic | 224 | | seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8 | bicubic | 224 | ## Ported and Other Weights For weights ported from other deep learning frameworks (Tensorflow, MXNet GluonCV) or copied from other PyTorch sources, please see the full results tables for ImageNet and various OOD test sets at in the [results tables](https://github.com/rwightman/pytorch-image-models/tree/master/results). Model code .py files contain links to original sources of models and weights.
0
hf_public_repos/pytorch-image-models/hfdocs
hf_public_repos/pytorch-image-models/hfdocs/source/quickstart.mdx
# Quickstart This quickstart is intended for developers who are ready to dive into the code and see an example of how to integrate `timm` into their model training workflow. First, you'll need to install `timm`. For more information on installation, see [Installation](installation). ```bash pip install timm ``` ## Load a Pretrained Model Pretrained models can be loaded using [`create_model`]. Here, we load the pretrained `mobilenetv3_large_100` model. ```py >>> import timm >>> m = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> m.eval() ``` <Tip> Note: The returned PyTorch model is set to train mode by default, so you must call .eval() on it if you plan to use it for inference. </Tip> ## List Models with Pretrained Weights To list models packaged with `timm`, you can use [`list_models`]. If you specify `pretrained=True`, this function will only return model names that have associated pretrained weights available. ```py >>> import timm >>> from pprint import pprint >>> model_names = timm.list_models(pretrained=True) >>> pprint(model_names) [ 'adv_inception_v3', 'cspdarknet53', 'cspresnext50', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'densenetblur121d', 'dla34', 'dla46_c', ] ``` You can also list models with a specific pattern in their name. ```py >>> import timm >>> from pprint import pprint >>> model_names = timm.list_models('*resne*t*') >>> pprint(model_names) [ 'cspresnet50', 'cspresnet50d', 'cspresnet50w', 'cspresnext50', ... ] ``` ## Fine-Tune a Pretrained Model You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To fine-tune on your own dataset, you have to write a PyTorch training loop or adapt `timm`'s [training script](training_script) to use your dataset. ## Use a Pretrained Model for Feature Extraction Without modifying the network, one can call model.forward_features(input) on any model instead of the usual model(input). This will bypass the head classifier and global pooling for networks. For a more in depth guide to using `timm` for feature extraction, see [Feature Extraction](feature_extraction). ```py >>> import timm >>> import torch >>> x = torch.randn(1, 3, 224, 224) >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> features = model.forward_features(x) >>> print(features.shape) torch.Size([1, 960, 7, 7]) ``` ## Image Augmentation To transform images into valid inputs for a model, you can use [`timm.data.create_transform`], providing the desired `input_size` that the model expects. This will return a generic transform that uses reasonable defaults. ```py >>> timm.data.create_transform((3, 224, 224)) Compose( Resize(size=256, interpolation=bilinear, max_size=None, antialias=None) CenterCrop(size=(224, 224)) ToTensor() Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) ) ``` Pretrained models have specific transforms that were applied to images fed into them while training. If you use the wrong transform on your image, the model won't understand what it's seeing! To figure out which transformations were used for a given pretrained model, we can start by taking a look at its `pretrained_cfg` ```py >>> model.pretrained_cfg {'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), 'first_conv': 'conv_stem', 'classifier': 'classifier', 'architecture': 'mobilenetv3_large_100'} ``` We can then resolve only the data related configuration by using [`timm.data.resolve_data_config`]. ```py >>> timm.data.resolve_data_config(model.pretrained_cfg) {'input_size': (3, 224, 224), 'interpolation': 'bicubic', 'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225), 'crop_pct': 0.875} ``` We can pass this data config to [`timm.data.create_transform`] to initialize the model's associated transform. ```py >>> data_cfg = timm.data.resolve_data_config(model.pretrained_cfg) >>> transform = timm.data.create_transform(**data_cfg) >>> transform Compose( Resize(size=256, interpolation=bicubic, max_size=None, antialias=None) CenterCrop(size=(224, 224)) ToTensor() Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250])) ) ``` <Tip> Note: Here, the pretrained model's config happens to be the same as the generic config we made earlier. This is not always the case. So, it's safer to use the data config to create the transform as we did here instead of using the generic transform. </Tip> ## Using Pretrained Models for Inference Here, we will put together the above sections and use a pretrained model for inference. First we'll need an image to do inference on. Here we load a picture of a leaf from the web: ```py >>> import requests >>> from PIL import Image >>> from io import BytesIO >>> url = 'https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` Here's the image we loaded: <img src="https://datasets-server.huggingface.co/assets/imagenet-1k/--/default/test/12/image/image.jpg" alt="An Image from a link" width="300"/> Now, we'll create our model and transforms again. This time, we make sure to set our model in evaluation mode. ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True).eval() >>> transform = timm.data.create_transform( **timm.data.resolve_data_config(model.pretrained_cfg) ) ``` We can prepare this image for the model by passing it to the transform. ```py >>> image_tensor = transform(image) >>> image_tensor.shape torch.Size([3, 224, 224]) ``` Now we can pass that image to the model to get the predictions. We use `unsqueeze(0)` in this case, as the model is expecting a batch dimension. ```py >>> output = model(image_tensor.unsqueeze(0)) >>> output.shape torch.Size([1, 1000]) ``` To get the predicted probabilities, we apply softmax to the output. This leaves us with a tensor of shape `(num_classes,)`. ```py >>> probabilities = torch.nn.functional.softmax(output[0], dim=0) >>> probabilities.shape torch.Size([1000]) ``` Now we'll find the top 5 predicted class indexes and values using `torch.topk`. ```py >>> values, indices = torch.topk(probabilities, 5) >>> indices tensor([162, 166, 161, 164, 167]) ``` If we check the imagenet labels for the top index, we can see what the model predicted... ```py >>> IMAGENET_1k_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt' >>> IMAGENET_1k_LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') >>> [{'label': IMAGENET_1k_LABELS[idx], 'value': val.item()} for val, idx in zip(values, indices)] [{'label': 'beagle', 'value': 0.8486220836639404}, {'label': 'Walker_hound, Walker_foxhound', 'value': 0.03753996267914772}, {'label': 'basset, basset_hound', 'value': 0.024628572165966034}, {'label': 'bluetick', 'value': 0.010317106731235981}, {'label': 'English_foxhound', 'value': 0.006958036217838526}] ```
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/reference/data.mdx
# Data [[autodoc]] timm.data.create_dataset [[autodoc]] timm.data.create_loader [[autodoc]] timm.data.create_transform [[autodoc]] timm.data.resolve_data_config
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/reference/models.mdx
# Models [[autodoc]] timm.create_model [[autodoc]] timm.list_models
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/reference/optimizers.mdx
# Optimization This page contains the API reference documentation for learning rate optimizers included in `timm`. ## Optimizers ### Factory functions [[autodoc]] timm.optim.optim_factory.create_optimizer [[autodoc]] timm.optim.optim_factory.create_optimizer_v2 ### Optimizer Classes [[autodoc]] timm.optim.adabelief.AdaBelief [[autodoc]] timm.optim.adafactor.Adafactor [[autodoc]] timm.optim.adahessian.Adahessian [[autodoc]] timm.optim.adamp.AdamP [[autodoc]] timm.optim.adamw.AdamW [[autodoc]] timm.optim.lamb.Lamb [[autodoc]] timm.optim.lars.Lars [[autodoc]] timm.optim.lookahead.Lookahead [[autodoc]] timm.optim.madgrad.MADGRAD [[autodoc]] timm.optim.nadam.Nadam [[autodoc]] timm.optim.nvnovograd.NvNovoGrad [[autodoc]] timm.optim.radam.RAdam [[autodoc]] timm.optim.rmsprop_tf.RMSpropTF [[autodoc]] timm.optim.sgdp.SGDP
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/reference/schedulers.mdx
# Learning Rate Schedulers This page contains the API reference documentation for learning rate schedulers included in `timm`. ## Schedulers ### Factory functions [[autodoc]] timm.scheduler.scheduler_factory.create_scheduler [[autodoc]] timm.scheduler.scheduler_factory.create_scheduler_v2 ### Scheduler Classes [[autodoc]] timm.scheduler.cosine_lr.CosineLRScheduler [[autodoc]] timm.scheduler.multistep_lr.MultiStepLRScheduler [[autodoc]] timm.scheduler.plateau_lr.PlateauLRScheduler [[autodoc]] timm.scheduler.poly_lr.PolyLRScheduler [[autodoc]] timm.scheduler.step_lr.StepLRScheduler [[autodoc]] timm.scheduler.tanh_lr.TanhLRScheduler
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-efficientnet.mdx
# (Tensorflow) EfficientNet **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_b0', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: tf_efficientnet_b0 In Collection: TF EfficientNet Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21383997 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_b0 LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1241 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.85% Top 5 Accuracy: 93.23% - Name: tf_efficientnet_b1 In Collection: TF EfficientNet Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31512534 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b1 LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1251 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.84% Top 5 Accuracy: 94.2% - Name: tf_efficientnet_b2 In Collection: TF EfficientNet Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36797929 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b2 LR: 0.256 Epochs: 350 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1261 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.07% Top 5 Accuracy: 94.9% - Name: tf_efficientnet_b3 In Collection: TF EfficientNet Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49381362 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b3 LR: 0.256 Epochs: 350 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1271 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.65% Top 5 Accuracy: 95.72% - Name: tf_efficientnet_b4 In Collection: TF EfficientNet Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77989689 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_b4 LR: 0.256 Epochs: 350 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1281 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.03% Top 5 Accuracy: 96.3% - Name: tf_efficientnet_b5 In Collection: TF EfficientNet Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122403150 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b5 LR: 0.256 Epochs: 350 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1291 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.81% Top 5 Accuracy: 96.75% - Name: tf_efficientnet_b6 In Collection: TF EfficientNet Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173232007 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b6 LR: 0.256 Epochs: 350 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1301 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.11% Top 5 Accuracy: 96.89% - Name: tf_efficientnet_b7 In Collection: TF EfficientNet Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266850607 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b7 LR: 0.256 Epochs: 350 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1312 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.93% Top 5 Accuracy: 97.2% - Name: tf_efficientnet_b8 In Collection: TF EfficientNet Metadata: FLOPs: 80962956270 Parameters: 87410000 File Size: 351379853 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b8 LR: 0.256 Epochs: 350 Crop Pct: '0.954' Momentum: 0.9 Batch Size: 2048 Image Size: '672' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1323 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.35% Top 5 Accuracy: 97.39% - Name: tf_efficientnet_el In Collection: TF EfficientNet Metadata: FLOPs: 9356616096 Parameters: 10590000 File Size: 42800271 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_el Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1551 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.45% Top 5 Accuracy: 95.17% - Name: tf_efficientnet_em In Collection: TF EfficientNet Metadata: FLOPs: 3636607040 Parameters: 6900000 File Size: 27933644 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_em Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1541 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.71% Top 5 Accuracy: 94.33% - Name: tf_efficientnet_es In Collection: TF EfficientNet Metadata: FLOPs: 2057577472 Parameters: 5440000 File Size: 22008479 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_es Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1531 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.28% Top 5 Accuracy: 93.6% - Name: tf_efficientnet_l2_ns_475 In Collection: TF EfficientNet Metadata: FLOPs: 217795669644 Parameters: 480310000 File Size: 1925950424 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_l2_ns_475 LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.936' Momentum: 0.9 Batch Size: 2048 Image Size: '475' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1509 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 88.24% Top 5 Accuracy: 98.55% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-senet.mdx
# (Gluon) SENet A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_senet154', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_senet154`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun SENet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: gluon_senet154 In Collection: Gloun SENet Metadata: FLOPs: 26681705136 Parameters: 115090000 File Size: 461546622 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_senet154 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L239 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.23% Top 5 Accuracy: 95.35% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/mixnet.mdx
# MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mixnet_l', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mixnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: mixnet_l In Collection: MixNet Metadata: FLOPs: 738671316 Parameters: 7330000 File Size: 29608232 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1669 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.98% Top 5 Accuracy: 94.18% - Name: mixnet_m In Collection: MixNet Metadata: FLOPs: 454543374 Parameters: 5010000 File Size: 20298347 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1660 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.27% Top 5 Accuracy: 93.42% - Name: mixnet_s In Collection: MixNet Metadata: FLOPs: 321264910 Parameters: 4130000 File Size: 16727982 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1651 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.99% Top 5 Accuracy: 92.79% - Name: mixnet_xl In Collection: MixNet Metadata: FLOPs: 1195880424 Parameters: 11900000 File Size: 48001170 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_xl Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1678 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.47% Top 5 Accuracy: 94.93% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/regnetx.mdx
# RegNetX **RegNetX** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): \\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\) For **RegNetX** we have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('regnetx_002', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetX Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnetx_002 In Collection: RegNetX Metadata: FLOPs: 255276032 Parameters: 2680000 File Size: 10862199 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 68.75% Top 5 Accuracy: 88.56% - Name: regnetx_004 In Collection: RegNetX Metadata: FLOPs: 510619136 Parameters: 5160000 File Size: 20841309 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.39% Top 5 Accuracy: 90.82% - Name: regnetx_006 In Collection: RegNetX Metadata: FLOPs: 771659136 Parameters: 6200000 File Size: 24965172 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.84% Top 5 Accuracy: 91.68% - Name: regnetx_008 In Collection: RegNetX Metadata: FLOPs: 1027038208 Parameters: 7260000 File Size: 29235944 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.34% - Name: regnetx_016 In Collection: RegNetX Metadata: FLOPs: 2059337856 Parameters: 9190000 File Size: 36988158 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.95% Top 5 Accuracy: 93.43% - Name: regnetx_032 In Collection: RegNetX Metadata: FLOPs: 4082555904 Parameters: 15300000 File Size: 61509573 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.15% Top 5 Accuracy: 94.09% - Name: regnetx_040 In Collection: RegNetX Metadata: FLOPs: 5095167744 Parameters: 22120000 File Size: 88844824 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.48% Top 5 Accuracy: 94.25% - Name: regnetx_064 In Collection: RegNetX Metadata: FLOPs: 8303405824 Parameters: 26210000 File Size: 105184854 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.47% - Name: regnetx_080 In Collection: RegNetX Metadata: FLOPs: 10276726784 Parameters: 39570000 File Size: 158720042 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.21% Top 5 Accuracy: 94.55% - Name: regnetx_120 In Collection: RegNetX Metadata: FLOPs: 15536378368 Parameters: 46110000 File Size: 184866342 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.61% Top 5 Accuracy: 94.73% - Name: regnetx_160 In Collection: RegNetX Metadata: FLOPs: 20491740672 Parameters: 54280000 File Size: 217623862 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.84% Top 5 Accuracy: 94.82% - Name: regnetx_320 In Collection: RegNetX Metadata: FLOPs: 40798958592 Parameters: 107810000 File Size: 431962133 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.25% Top 5 Accuracy: 95.03% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/efficientnet.mdx
# EfficientNet **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('efficientnet_b0', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: efficientnet_b0 In Collection: EfficientNet Metadata: FLOPs: 511241564 Parameters: 5290000 File Size: 21376743 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b0 Layers: 18 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1002 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.71% Top 5 Accuracy: 93.52% - Name: efficientnet_b1 In Collection: EfficientNet Metadata: FLOPs: 909691920 Parameters: 7790000 File Size: 31502706 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1 Crop Pct: '0.875' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1011 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.71% Top 5 Accuracy: 94.15% - Name: efficientnet_b2 In Collection: EfficientNet Metadata: FLOPs: 1265324514 Parameters: 9110000 File Size: 36788104 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2 Crop Pct: '0.875' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1020 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.08% - Name: efficientnet_b2a In Collection: EfficientNet Metadata: FLOPs: 1452041554 Parameters: 9110000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2a Crop Pct: '1.0' Image Size: '288' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1029 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.32% - Name: efficientnet_b3 In Collection: EfficientNet Metadata: FLOPs: 2327905920 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3 Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1038 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.08% Top 5 Accuracy: 96.03% - Name: efficientnet_b3a In Collection: EfficientNet Metadata: FLOPs: 2600628304 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3a Crop Pct: '1.0' Image Size: '320' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1047 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.25% Top 5 Accuracy: 96.11% - Name: efficientnet_em In Collection: EfficientNet Metadata: FLOPs: 3935516480 Parameters: 6900000 File Size: 27927309 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_em Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1118 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.26% Top 5 Accuracy: 94.79% - Name: efficientnet_es In Collection: EfficientNet Metadata: FLOPs: 2317181824 Parameters: 5440000 File Size: 22003339 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_es Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1110 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.09% Top 5 Accuracy: 93.93% - Name: efficientnet_lite0 In Collection: EfficientNet Metadata: FLOPs: 510605024 Parameters: 4650000 File Size: 18820005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_lite0 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1163 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.5% Top 5 Accuracy: 92.51% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-inception-v3.mdx
# (Tensorflow) Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_inception_v3', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: tf_inception_v3 In Collection: TF Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95549439 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Gradient Clipping - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x NVIDIA Kepler GPUs ID: tf_inception_v3 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L449 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_inception_v3-e0069de4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.65% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx
# # Ensemble Adversarial Inception ResNet v2 **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). This particular model was trained for study of adversarial examples (adversarial training). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ens_adv_inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1804-00097, author = {Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan L. Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, title = {Adversarial Attacks and Defences Competition}, journal = {CoRR}, volume = {abs/1804.00097}, year = {2018}, url = {http://arxiv.org/abs/1804.00097}, archivePrefix = {arXiv}, eprint = {1804.00097}, timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Ensemble Adversarial Paper: Title: Adversarial Attacks and Defences Competition URL: https://paperswithcode.com/paper/adversarial-attacks-and-defences-competition Models: - Name: ens_adv_inception_resnet_v2 In Collection: Ensemble Adversarial Metadata: FLOPs: 16959133120 Parameters: 55850000 File Size: 223774238 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: ens_adv_inception_resnet_v2 Crop Pct: '0.897' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L351 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ens_adv_inception_resnet_v2-2592a550.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 1.0% Top 5 Accuracy: 17.32% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/swsl-resnext.mdx
# SWSL ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `swsl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('swsl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNext Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnext101_32x16d In Collection: SWSL ResNext Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x16d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L1009 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.34% Top 5 Accuracy: 96.84% - Name: swsl_resnext101_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177341913 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x4d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L987 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.22% Top 5 Accuracy: 96.77% - Name: swsl_resnext101_32x8d In Collection: SWSL ResNext Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x8d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L998 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.27% Top 5 Accuracy: 97.17% - Name: swsl_resnext50_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100428550 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext50_32x4d LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L976 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.17% Top 5 Accuracy: 96.23% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/regnety.mdx
# RegNetY **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): \\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\) For **RegNetX** authors have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier). For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('regnety_002', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnety_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetY Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnety_002 In Collection: RegNetY Metadata: FLOPs: 255754236 Parameters: 3160000 File Size: 12782926 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L409 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.28% Top 5 Accuracy: 89.55% - Name: regnety_004 In Collection: RegNetY Metadata: FLOPs: 515664568 Parameters: 4340000 File Size: 17542753 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.02% Top 5 Accuracy: 91.76% - Name: regnety_006 In Collection: RegNetY Metadata: FLOPs: 771746928 Parameters: 6060000 File Size: 24394127 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.27% Top 5 Accuracy: 92.53% - Name: regnety_008 In Collection: RegNetY Metadata: FLOPs: 1023448952 Parameters: 6260000 File Size: 25223268 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.32% Top 5 Accuracy: 93.07% - Name: regnety_016 In Collection: RegNetY Metadata: FLOPs: 2070895094 Parameters: 11200000 File Size: 45115589 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.73% - Name: regnety_032 In Collection: RegNetY Metadata: FLOPs: 4081118714 Parameters: 19440000 File Size: 78084523 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.01% Top 5 Accuracy: 95.91% - Name: regnety_040 In Collection: RegNetY Metadata: FLOPs: 5105933432 Parameters: 20650000 File Size: 82913909 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L445 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.23% Top 5 Accuracy: 94.64% - Name: regnety_064 In Collection: RegNetY Metadata: FLOPs: 8167730444 Parameters: 30580000 File Size: 122751416 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L451 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.73% Top 5 Accuracy: 94.76% - Name: regnety_080 In Collection: RegNetY Metadata: FLOPs: 10233621420 Parameters: 39180000 File Size: 157124671 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.87% Top 5 Accuracy: 94.83% - Name: regnety_120 In Collection: RegNetY Metadata: FLOPs: 15542094856 Parameters: 51820000 File Size: 207743949 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L463 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.12% - Name: regnety_160 In Collection: RegNetY Metadata: FLOPs: 20450196852 Parameters: 83590000 File Size: 334916722 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L469 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.28% Top 5 Accuracy: 94.97% - Name: regnety_320 In Collection: RegNetY Metadata: FLOPs: 41492618394 Parameters: 145050000 File Size: 580891965 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L475 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 95.25% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/res2net.mdx
# Res2Net **Res2Net** is an image model that employs a variation on bottleneck residual blocks, [Res2Net Blocks](https://paperswithcode.com/method/res2net-block). The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('res2net101_26w_4s', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `res2net101_26w_4s`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('res2net101_26w_4s', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{Gao_2021, title={Res2Net: A New Multi-Scale Backbone Architecture}, volume={43}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, DOI={10.1109/tpami.2019.2938758}, number={2}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, year={2021}, month={Feb}, pages={652–662} } ``` <!-- Type: model-index Collections: - Name: Res2Net Paper: Title: 'Res2Net: A New Multi-scale Backbone Architecture' URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone Models: - Name: res2net101_26w_4s In Collection: Res2Net Metadata: FLOPs: 10415881200 Parameters: 45210000 File Size: 181456059 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net101_26w_4s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L152 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.19% Top 5 Accuracy: 94.43% - Name: res2net50_14w_8s In Collection: Res2Net Metadata: FLOPs: 5403546768 Parameters: 25060000 File Size: 100638543 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_14w_8s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L196 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.14% Top 5 Accuracy: 93.86% - Name: res2net50_26w_4s In Collection: Res2Net Metadata: FLOPs: 5499974064 Parameters: 25700000 File Size: 103110087 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_4s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L141 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.85% - Name: res2net50_26w_6s In Collection: Res2Net Metadata: FLOPs: 8130156528 Parameters: 37050000 File Size: 148603239 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_6s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L163 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.57% Top 5 Accuracy: 94.12% - Name: res2net50_26w_8s In Collection: Res2Net Metadata: FLOPs: 10760338992 Parameters: 48400000 File Size: 194085165 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_8s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L174 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.19% Top 5 Accuracy: 94.37% - Name: res2net50_48w_2s In Collection: Res2Net Metadata: FLOPs: 5375291520 Parameters: 25290000 File Size: 101421406 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_48w_2s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L185 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.53% Top 5 Accuracy: 93.56% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/xception.mdx
# Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution layers](https://paperswithcode.com/method/depthwise-separable-convolution). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('xception', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `xception`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('xception', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/ZagoruykoK16, @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: xception In Collection: Xception Metadata: FLOPs: 10600506792 Parameters: 22860000 File Size: 91675053 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception Crop Pct: '0.897' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception.py#L229 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.05% Top 5 Accuracy: 94.4% - Name: xception41 In Collection: Xception Metadata: FLOPs: 11681983232 Parameters: 26970000 File Size: 108422028 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception41 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L181 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_41-e6439c97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.54% Top 5 Accuracy: 94.28% - Name: xception65 In Collection: Xception Metadata: FLOPs: 17585702144 Parameters: 39920000 File Size: 160536780 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L200 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_65-c9ae96e8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.55% Top 5 Accuracy: 94.66% - Name: xception71 In Collection: Xception Metadata: FLOPs: 22817346560 Parameters: 42340000 File Size: 170295556 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception71 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L219 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_71-8eec7df1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.88% Top 5 Accuracy: 94.93% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/resnest.mdx
# ResNeSt A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: \\( V = \text{Concat} \\){\\( V^{1},V^{2},\cdots{V}^{K} \\)}. As in standard residual blocks, the final output \\( Y \\) of otheur Split-Attention block is produced using a shortcut connection: \\( Y=V+X \\), if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation \\( \mathcal{T} \\) is applied to the shortcut connection to align the output shapes: \\( Y=V+\mathcal{T}(X) \\). For example, \\( \mathcal{T} \\) can be strided convolution or combined convolution-with-pooling. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnest101e', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnest101e`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnest101e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, year={2020}, eprint={2004.08955}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ResNeSt Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://paperswithcode.com/paper/resnest-split-attention-networks Models: - Name: resnest101e In Collection: ResNeSt Metadata: FLOPs: 17423183648 Parameters: 48280000 File Size: 193782911 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest101e LR: 0.1 Epochs: 270 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '256' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L182 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.88% Top 5 Accuracy: 96.31% - Name: resnest14d In Collection: ResNeSt Metadata: FLOPs: 3548594464 Parameters: 10610000 File Size: 42562639 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest14d LR: 0.1 Epochs: 270 Layers: 14 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L148 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.51% Top 5 Accuracy: 92.52% - Name: resnest200e In Collection: ResNeSt Metadata: FLOPs: 45954387872 Parameters: 70200000 File Size: 193782911 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest200e LR: 0.1 Epochs: 270 Layers: 200 Dropout: 0.2 Crop Pct: '0.909' Momentum: 0.9 Batch Size: 2048 Image Size: '320' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L194 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.85% Top 5 Accuracy: 96.89% - Name: resnest269e In Collection: ResNeSt Metadata: FLOPs: 100830307104 Parameters: 110930000 File Size: 445402691 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest269e LR: 0.1 Epochs: 270 Layers: 269 Dropout: 0.2 Crop Pct: '0.928' Momentum: 0.9 Batch Size: 2048 Image Size: '416' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L206 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.53% Top 5 Accuracy: 96.99% - Name: resnest26d In Collection: ResNeSt Metadata: FLOPs: 4678918720 Parameters: 17070000 File Size: 68470242 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest26d LR: 0.1 Epochs: 270 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L159 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.48% Top 5 Accuracy: 94.3% - Name: resnest50d In Collection: ResNeSt Metadata: FLOPs: 6937106336 Parameters: 27480000 File Size: 110273258 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L170 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.96% Top 5 Accuracy: 95.38% - Name: resnest50d_1s4x24d In Collection: ResNeSt Metadata: FLOPs: 5686764544 Parameters: 25680000 File Size: 103045531 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d_1s4x24d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L229 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.0% Top 5 Accuracy: 95.33% - Name: resnest50d_4s2x40d In Collection: ResNeSt Metadata: FLOPs: 5657064720 Parameters: 30420000 File Size: 122133282 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d_4s2x40d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L218 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.11% Top 5 Accuracy: 95.55% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/spnasnet.mdx
# SPNASNet **Single-Path NAS** is a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('spnasnet_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `spnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('spnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{stamoulis2019singlepath, title={Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours}, author={Dimitrios Stamoulis and Ruizhou Ding and Di Wang and Dimitrios Lymberopoulos and Bodhi Priyantha and Jie Liu and Diana Marculescu}, year={2019}, eprint={1904.02877}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: SPNASNet Paper: Title: 'Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours' URL: https://paperswithcode.com/paper/single-path-nas-designing-hardware-efficient Models: - Name: spnasnet_100 In Collection: SPNASNet Metadata: FLOPs: 442385600 Parameters: 4420000 File Size: 17902337 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: spnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L995 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.08% Top 5 Accuracy: 91.82% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/dpn.mdx
# Dual Path Network (DPN) A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures. The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('dpn107', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `dpn107`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{chen2017dual, title={Dual Path Networks}, author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng}, year={2017}, eprint={1707.01629}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: DPN Paper: Title: Dual Path Networks URL: https://paperswithcode.com/paper/dual-path-networks Models: - Name: dpn107 In Collection: DPN Metadata: FLOPs: 23524280296 Parameters: 86920000 File Size: 348612331 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn107 LR: 0.316 Layers: 107 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.16% Top 5 Accuracy: 94.91% - Name: dpn131 In Collection: DPN Metadata: FLOPs: 20586274792 Parameters: 79250000 File Size: 318016207 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn131 LR: 0.316 Layers: 131 Crop Pct: '0.875' Batch Size: 960 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.83% Top 5 Accuracy: 94.71% - Name: dpn68 In Collection: DPN Metadata: FLOPs: 2990567880 Parameters: 12610000 File Size: 50761994 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn68 LR: 0.316 Layers: 68 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.31% Top 5 Accuracy: 92.97% - Name: dpn68b In Collection: DPN Metadata: FLOPs: 2990567880 Parameters: 12610000 File Size: 50781025 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn68b LR: 0.316 Layers: 68 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.21% Top 5 Accuracy: 94.42% - Name: dpn92 In Collection: DPN Metadata: FLOPs: 8357659624 Parameters: 37670000 File Size: 151248422 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn92 LR: 0.316 Layers: 92 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.99% Top 5 Accuracy: 94.84% - Name: dpn98 In Collection: DPN Metadata: FLOPs: 15003675112 Parameters: 61570000 File Size: 247021307 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn98 LR: 0.4 Layers: 98 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.65% Top 5 Accuracy: 94.61% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/swsl-resnet.mdx
# SWSL ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('swsl_resnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `swsl_resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('swsl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNet Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnet18 In Collection: SWSL ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46811375 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet18 LR: 0.0015 Epochs: 30 Layers: 18 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L954 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.28% Top 5 Accuracy: 91.76% - Name: swsl_resnet50 In Collection: SWSL ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102480594 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet50 LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L965 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.14% Top 5 Accuracy: 95.97% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/hrnet.mdx
# HRNet **HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several (\\( 4 \\) in the paper) stages and the \\( n \\)th stage contains \\( n \\) streams corresponding to \\( n \\) resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('hrnet_w18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `hrnet_w18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{sun2019highresolution, title={High-Resolution Representations for Labeling Pixels and Regions}, author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang}, year={2019}, eprint={1904.04514}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: HRNet Paper: Title: Deep High-Resolution Representation Learning for Visual Recognition URL: https://paperswithcode.com/paper/190807919 Models: - Name: hrnet_w18 In Collection: HRNet Metadata: FLOPs: 5547205500 Parameters: 21300000 File Size: 85718883 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L800 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.76% Top 5 Accuracy: 93.44% - Name: hrnet_w18_small In Collection: HRNet Metadata: FLOPs: 2071651488 Parameters: 13190000 File Size: 52934302 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.34% Top 5 Accuracy: 90.68% - Name: hrnet_w18_small_v2 In Collection: HRNet Metadata: FLOPs: 3360023160 Parameters: 15600000 File Size: 62682879 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small_v2 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L795 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.41% - Name: hrnet_w30 In Collection: HRNet Metadata: FLOPs: 10474119492 Parameters: 37710000 File Size: 151452218 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w30 Epochs: 100 Layers: 30 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L805 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.21% Top 5 Accuracy: 94.22% - Name: hrnet_w32 In Collection: HRNet Metadata: FLOPs: 11524528320 Parameters: 41230000 File Size: 165547812 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 60 hours ID: hrnet_w32 Epochs: 100 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L810 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.45% Top 5 Accuracy: 94.19% - Name: hrnet_w40 In Collection: HRNet Metadata: FLOPs: 16381182192 Parameters: 57560000 File Size: 230899236 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w40 Epochs: 100 Layers: 40 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L815 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.93% Top 5 Accuracy: 94.48% - Name: hrnet_w44 In Collection: HRNet Metadata: FLOPs: 19202520264 Parameters: 67060000 File Size: 268957432 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w44 Epochs: 100 Layers: 44 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L820 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.89% Top 5 Accuracy: 94.37% - Name: hrnet_w48 In Collection: HRNet Metadata: FLOPs: 22285865760 Parameters: 77470000 File Size: 310603710 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 80 hours ID: hrnet_w48 Epochs: 100 Layers: 48 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L825 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.32% Top 5 Accuracy: 94.51% - Name: hrnet_w64 In Collection: HRNet Metadata: FLOPs: 37239321984 Parameters: 128060000 File Size: 513071818 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w64 Epochs: 100 Layers: 64 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L830 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.46% Top 5 Accuracy: 94.65% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx
# Inception ResNet v2 **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('inception_resnet_v2', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{szegedy2016inceptionv4, title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, year={2016}, eprint={1602.07261}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Inception ResNet v2 Paper: Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact Models: - Name: inception_resnet_v2 In Collection: Inception ResNet v2 Metadata: FLOPs: 16959133120 Parameters: 55850000 File Size: 223774238 Architecture: - Average Pooling - Dropout - Inception-ResNet-v2 Reduction-B - Inception-ResNet-v2-A - Inception-ResNet-v2-B - Inception-ResNet-v2-C - Reduction-A - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 20x NVIDIA Kepler GPUs ID: inception_resnet_v2 LR: 0.045 Dropout: 0.2 Crop Pct: '0.897' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 0.95% Top 5 Accuracy: 17.29% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-mixnet.mdx
# (Tensorflow) MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_mixnet_l', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_mixnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TF MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: tf_mixnet_l In Collection: TF MixNet Metadata: FLOPs: 688674516 Parameters: 7330000 File Size: 29620756 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1720 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.78% Top 5 Accuracy: 94.0% - Name: tf_mixnet_m In Collection: TF MixNet Metadata: FLOPs: 416633502 Parameters: 5010000 File Size: 20310871 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1709 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.96% Top 5 Accuracy: 93.16% - Name: tf_mixnet_s In Collection: TF MixNet Metadata: FLOPs: 302587678 Parameters: 4130000 File Size: 16738218 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1698 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.68% Top 5 Accuracy: 92.64% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx
# ESE-VoVNet **VoVNet** is a convolutional neural network that seeks to make [DenseNet](https://paperswithcode.com/method/densenet) more efficient by concatenating all features only once in the last feature map, which makes input size constant and enables enlarging new output channel. Read about [one-shot aggregation here](https://paperswithcode.com/method/one-shot-aggregation). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ese_vovnet19b_dw', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ese_vovnet19b_dw`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ese_vovnet19b_dw', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{lee2019energy, title={An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, author={Youngwan Lee and Joong-won Hwang and Sangrok Lee and Yuseok Bae and Jongyoul Park}, year={2019}, eprint={1904.09730}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ESE VovNet Paper: Title: 'CenterMask : Real-Time Anchor-Free Instance Segmentation' URL: https://paperswithcode.com/paper/centermask-real-time-anchor-free-instance-1 Models: - Name: ese_vovnet19b_dw In Collection: ESE VovNet Metadata: FLOPs: 1711959904 Parameters: 6540000 File Size: 26243175 Architecture: - Batch Normalization - Convolution - Max Pooling - One-Shot Aggregation - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: ese_vovnet19b_dw Layers: 19 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L361 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet19b_dw-a8741004.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.82% Top 5 Accuracy: 93.28% - Name: ese_vovnet39b In Collection: ESE VovNet Metadata: FLOPs: 9089259008 Parameters: 24570000 File Size: 98397138 Architecture: - Batch Normalization - Convolution - Max Pooling - One-Shot Aggregation - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: ese_vovnet39b Layers: 39 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L371 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet39b-f912fe73.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.31% Top 5 Accuracy: 94.72% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tresnet.mdx
# TResNet A **TResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that aim to boost accuracy while maintaining GPU training and inference efficiency. They contain several design tricks including a SpaceToDepth stem, [Anti-Alias downsampling](https://paperswithcode.com/method/anti-alias-downsampling), In-Place Activated BatchNorm, Blocks selection and [squeeze-and-excitation layers](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tresnet_l', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tresnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tresnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{ridnik2020tresnet, title={TResNet: High Performance GPU-Dedicated Architecture}, author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman}, year={2020}, eprint={2003.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TResNet Paper: Title: 'TResNet: High Performance GPU-Dedicated Architecture' URL: https://paperswithcode.com/paper/tresnet-high-performance-gpu-dedicated Models: - Name: tresnet_l In Collection: TResNet Metadata: FLOPs: 10873416792 Parameters: 53456696 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_l LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L267 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.49% Top 5 Accuracy: 95.62% - Name: tresnet_l_448 In Collection: TResNet Metadata: FLOPs: 43488238584 Parameters: 53456696 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_l_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L285 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.26% Top 5 Accuracy: 95.98% - Name: tresnet_m In Collection: TResNet Metadata: FLOPs: 5733048064 Parameters: 41282200 File Size: 125861314 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs Training Time: < 24 hours ID: tresnet_m LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L261 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_80_8-dbc13962.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 94.86% - Name: tresnet_m_448 In Collection: TResNet Metadata: FLOPs: 22929743104 Parameters: 29278464 File Size: 125861314 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_m_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L279 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.72% Top 5 Accuracy: 95.57% - Name: tresnet_xl In Collection: TResNet Metadata: FLOPs: 15162534034 Parameters: 75646610 File Size: 314378965 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_xl LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L273 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.05% Top 5 Accuracy: 95.93% - Name: tresnet_xl_448 In Collection: TResNet Metadata: FLOPs: 60641712730 Parameters: 75646610 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_xl_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L291 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.06% Top 5 Accuracy: 96.19% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/seresnext.mdx
# SE-ResNeXt **SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resneXt) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('seresnext26d_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `seresnext26d_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('seresnext26d_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SEResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: seresnext26d_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3507053024 Parameters: 16810000 File Size: 67425193 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26d_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1234 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.59% Top 5 Accuracy: 93.61% - Name: seresnext26t_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3466436448 Parameters: 16820000 File Size: 67414838 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26t_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1246 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.73% - Name: seresnext50_32x4d In Collection: SEResNeXt Metadata: FLOPs: 5475179184 Parameters: 27560000 File Size: 110569859 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1267 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.27% Top 5 Accuracy: 95.62% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/advprop.mdx
# AdvProp (EfficientNet) **AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{xie2020adversarial, title={Adversarial Examples Improve Image Recognition}, author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le}, year={2020}, eprint={1911.09665}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: AdvProp Paper: Title: Adversarial Examples Improve Image Recognition URL: https://paperswithcode.com/paper/adversarial-examples-improve-image Models: - Name: tf_efficientnet_b0_ap In Collection: AdvProp Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21385973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b0_ap LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1334 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.1% Top 5 Accuracy: 93.26% - Name: tf_efficientnet_b1_ap In Collection: AdvProp Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31515350 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b1_ap LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1344 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.28% Top 5 Accuracy: 94.3% - Name: tf_efficientnet_b2_ap In Collection: AdvProp Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36800745 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b2_ap LR: 0.256 Epochs: 350 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1354 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.3% Top 5 Accuracy: 95.03% - Name: tf_efficientnet_b3_ap In Collection: AdvProp Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49384538 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b3_ap LR: 0.256 Epochs: 350 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1364 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.82% Top 5 Accuracy: 95.62% - Name: tf_efficientnet_b4_ap In Collection: AdvProp Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77993585 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b4_ap LR: 0.256 Epochs: 350 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1374 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.26% Top 5 Accuracy: 96.39% - Name: tf_efficientnet_b5_ap In Collection: AdvProp Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122403150 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b5_ap LR: 0.256 Epochs: 350 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1384 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.25% Top 5 Accuracy: 96.97% - Name: tf_efficientnet_b6_ap In Collection: AdvProp Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173237466 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b6_ap LR: 0.256 Epochs: 350 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1394 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.79% Top 5 Accuracy: 97.14% - Name: tf_efficientnet_b7_ap In Collection: AdvProp Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266850607 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b7_ap LR: 0.256 Epochs: 350 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.12% Top 5 Accuracy: 97.25% - Name: tf_efficientnet_b8_ap In Collection: AdvProp Metadata: FLOPs: 80962956270 Parameters: 87410000 File Size: 351412563 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b8_ap LR: 0.128 Epochs: 350 Crop Pct: '0.954' Momentum: 0.9 Batch Size: 2048 Image Size: '672' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1416 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.37% Top 5 Accuracy: 97.3% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/inception-v4.mdx
# Inception v4 **Inception-v4** is a convolutional neural network architecture that builds on previous iterations of the Inception family by simplifying the architecture and using more inception modules than [Inception-v3](https://paperswithcode.com/method/inception-v3). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('inception_v4', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_v4`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('inception_v4', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{szegedy2016inceptionv4, title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, year={2016}, eprint={1602.07261}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Inception v4 Paper: Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact Models: - Name: inception_v4 In Collection: Inception v4 Metadata: FLOPs: 15806527936 Parameters: 42680000 File Size: 171082495 Architecture: - Average Pooling - Dropout - Inception-A - Inception-B - Inception-C - Reduction-A - Reduction-B - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 20x NVIDIA Kepler GPUs ID: inception_v4 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v4.py#L313 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/inceptionv4-8e4777a0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 1.01% Top 5 Accuracy: 16.85% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/mnasnet.mdx
# MnasNet **MnasNet** is a type of convolutional neural network optimized for mobile devices that is discovered through mobile neural architecture search, which explicitly incorporates model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. The main building block is an [inverted residual block](https://paperswithcode.com/method/inverted-residual-block) (from [MobileNetV2](https://paperswithcode.com/method/mobilenetv2)). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mnasnet_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mnasnet, title={MnasNet: Platform-Aware Neural Architecture Search for Mobile}, author={Mingxing Tan and Bo Chen and Ruoming Pang and Vijay Vasudevan and Mark Sandler and Andrew Howard and Quoc V. Le}, year={2019}, eprint={1807.11626}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: MNASNet Paper: Title: 'MnasNet: Platform-Aware Neural Architecture Search for Mobile' URL: https://paperswithcode.com/paper/mnasnet-platform-aware-neural-architecture Models: - Name: mnasnet_100 In Collection: MNASNet Metadata: FLOPs: 416415488 Parameters: 4380000 File Size: 17731774 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet ID: mnasnet_100 Layers: 100 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4000 Image Size: '224' Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L894 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.67% Top 5 Accuracy: 92.1% - Name: semnasnet_100 In Collection: MNASNet Metadata: FLOPs: 414570766 Parameters: 3890000 File Size: 15731489 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: semnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L928 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.45% Top 5 Accuracy: 92.61% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-mobilenet-v3.mdx
# (Tensorflow) MobileNet v3 **MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_mobilenetv3_large_075`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, archivePrefix = {arXiv}, eprint = {1905.02244}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF MobileNet V3 Paper: Title: Searching for MobileNetV3 URL: https://paperswithcode.com/paper/searching-for-mobilenetv3 Models: - Name: tf_mobilenetv3_large_075 In Collection: TF MobileNet V3 Metadata: FLOPs: 194323712 Parameters: 3990000 File Size: 16097377 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_075 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L394 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.45% Top 5 Accuracy: 91.34% - Name: tf_mobilenetv3_large_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 274535288 Parameters: 5480000 File Size: 22076649 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L403 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.51% Top 5 Accuracy: 92.61% - Name: tf_mobilenetv3_large_minimal_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 267216928 Parameters: 3920000 File Size: 15836368 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_minimal_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.24% Top 5 Accuracy: 90.64% - Name: tf_mobilenetv3_small_075 In Collection: TF MobileNet V3 Metadata: FLOPs: 48457664 Parameters: 2040000 File Size: 8242701 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_075 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 65.72% Top 5 Accuracy: 86.13% - Name: tf_mobilenetv3_small_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 65450600 Parameters: 2540000 File Size: 10256398 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 67.92% Top 5 Accuracy: 87.68% - Name: tf_mobilenetv3_small_minimal_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 60827936 Parameters: 2040000 File Size: 8258083 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_minimal_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 62.91% Top 5 Accuracy: 84.24% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/densenet.mdx
# DenseNet **DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling) ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('densenet121', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `densenet121`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HuangLW16a, author = {Gao Huang and Zhuang Liu and Kilian Q. Weinberger}, title = {Densely Connected Convolutional Networks}, journal = {CoRR}, volume = {abs/1608.06993}, year = {2016}, url = {http://arxiv.org/abs/1608.06993}, archivePrefix = {arXiv}, eprint = {1608.06993}, timestamp = {Mon, 10 Sep 2018 15:49:32 +0200}, biburl = {https://dblp.org/rec/journals/corr/HuangLW16a.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ``` @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` <!-- Type: model-index Collections: - Name: DenseNet Paper: Title: Densely Connected Convolutional Networks URL: https://paperswithcode.com/paper/densely-connected-convolutional-networks Models: - Name: densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32376726 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet121 LR: 0.1 Epochs: 90 Layers: 121 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L295 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.56% Top 5 Accuracy: 92.65% - Name: densenet161 In Collection: DenseNet Metadata: FLOPs: 9931959264 Parameters: 28680000 File Size: 115730790 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet161 LR: 0.1 Epochs: 90 Layers: 161 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L347 Weights: https://download.pytorch.org/models/densenet161-8d451a50.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.36% Top 5 Accuracy: 93.63% - Name: densenet169 In Collection: DenseNet Metadata: FLOPs: 4316945792 Parameters: 14150000 File Size: 57365526 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet169 LR: 0.1 Epochs: 90 Layers: 169 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L327 Weights: https://download.pytorch.org/models/densenet169-b2777c0a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.9% Top 5 Accuracy: 93.02% - Name: densenet201 In Collection: DenseNet Metadata: FLOPs: 5514321024 Parameters: 20010000 File Size: 81131730 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet201 LR: 0.1 Epochs: 90 Layers: 201 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L337 Weights: https://download.pytorch.org/models/densenet201-c1103571.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.29% Top 5 Accuracy: 93.48% - Name: densenetblur121d In Collection: DenseNet Metadata: FLOPs: 3947812864 Parameters: 8000000 File Size: 32456500 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: densenetblur121d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L305 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.59% Top 5 Accuracy: 93.2% - Name: tv_densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32342954 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_densenet121 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L379 Weights: https://download.pytorch.org/models/densenet121-a639ec97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.74% Top 5 Accuracy: 92.15% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/skresnet.mdx
# SK-ResNet **SK ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNet are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('skresnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `skresnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('skresnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{li2019selective, title={Selective Kernel Networks}, author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, year={2019}, eprint={1903.06586}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SKResNet Paper: Title: Selective Kernel Networks URL: https://paperswithcode.com/paper/selective-kernel-networks Models: - Name: skresnet18 In Collection: SKResNet Metadata: FLOPs: 2333467136 Parameters: 11960000 File Size: 47923238 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet18 LR: 0.1 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L148 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.03% Top 5 Accuracy: 91.17% - Name: skresnet34 In Collection: SKResNet Metadata: FLOPs: 4711849952 Parameters: 22280000 File Size: 89299314 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet34 LR: 0.1 Epochs: 100 Layers: 34 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L165 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.93% Top 5 Accuracy: 93.32% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/ecaresnet.mdx
# ECA-ResNet An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ecaresnet101d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ecaresnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ecaresnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{wang2020ecanet, title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks}, author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu}, year={2020}, eprint={1910.03151}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ECAResNet Paper: Title: 'ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks' URL: https://paperswithcode.com/paper/eca-net-efficient-channel-attention-for-deep Models: - Name: ecaresnet101d In Collection: ECAResNet Metadata: FLOPs: 10377193728 Parameters: 44570000 File Size: 178815067 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet101d LR: 0.1 Epochs: 100 Layers: 101 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1087 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.18% Top 5 Accuracy: 96.06% - Name: ecaresnet101d_pruned In Collection: ECAResNet Metadata: FLOPs: 4463972081 Parameters: 24880000 File Size: 99852736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet101d_pruned Layers: 101 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1097 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.82% Top 5 Accuracy: 95.64% - Name: ecaresnet50d In Collection: ECAResNet Metadata: FLOPs: 5591090432 Parameters: 25580000 File Size: 102579290 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet50d LR: 0.1 Epochs: 100 Layers: 50 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1045 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.31% - Name: ecaresnet50d_pruned In Collection: ECAResNet Metadata: FLOPs: 3250730657 Parameters: 19940000 File Size: 79990436 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet50d_pruned Layers: 50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1055 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.71% Top 5 Accuracy: 94.88% - Name: ecaresnetlight In Collection: ECAResNet Metadata: FLOPs: 5276118784 Parameters: 30160000 File Size: 120956612 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnetlight Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1077 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNetLight_4f34b35b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.46% Top 5 Accuracy: 95.25% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/csp-resnext.mdx
# CSP-ResNeXt **CSPResNeXt** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNeXt](https://paperswithcode.com/method/resnext). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('cspresnext50', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnext50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('cspresnext50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNeXt Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnext50 In Collection: CSP ResNeXt Metadata: FLOPs: 3962945536 Parameters: 20570000 File Size: 82562887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 1x GPU ID: cspresnext50 LR: 0.1 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 128 Image Size: '224' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 94.94% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-xception.mdx
# (Gluon) Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution](https://paperswithcode.com/method/depthwise-separable-convolution) layers. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_xception65', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_xception65`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_xception65', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: gluon_xception65 In Collection: Gloun Xception Metadata: FLOPs: 17594889728 Parameters: 39920000 File Size: 160551306 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_xception.py#L241 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.7% Top 5 Accuracy: 94.87% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx
# (Legacy) SE-ResNeXt **SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnext101_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 10287698672 Parameters: 48960000 File Size: 196466866 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext101_32x4d LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L462 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.23% Top 5 Accuracy: 95.02% - Name: legacy_seresnext26_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 3187342304 Parameters: 16790000 File Size: 67346327 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext26_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L448 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.31% - Name: legacy_seresnext50_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 5459954352 Parameters: 27560000 File Size: 110559176 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L455 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.08% Top 5 Accuracy: 94.43% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/nasnet.mdx
# NASNet **NASNet** is a type of convolutional neural network discovered through neural architecture search. The building blocks consist of normal and reduction cells. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('nasnetalarge', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `nasnetalarge`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('nasnetalarge', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{zoph2018learning, title={Learning Transferable Architectures for Scalable Image Recognition}, author={Barret Zoph and Vijay Vasudevan and Jonathon Shlens and Quoc V. Le}, year={2018}, eprint={1707.07012}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: NASNet Paper: Title: Learning Transferable Architectures for Scalable Image Recognition URL: https://paperswithcode.com/paper/learning-transferable-architectures-for Models: - Name: nasnetalarge In Collection: NASNet Metadata: FLOPs: 30242402862 Parameters: 88750000 File Size: 356056626 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x Tesla K40 GPUs ID: nasnetalarge Dropout: 0.5 Crop Pct: '0.911' Momentum: 0.9 Image Size: '331' Interpolation: bicubic Label Smoothing: 0.1 RMSProp \\( \epsilon \\): 1.0 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/nasnet.py#L562 Weights: http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.63% Top 5 Accuracy: 96.05% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/csp-darknet.mdx
# CSP-DarkNet **CSPDarknet53** is a convolutional neural network and backbone for object detection that uses [DarkNet-53](https://paperswithcode.com/method/darknet-53). It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for [YOLOv4](https://paperswithcode.com/method/yolov4). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('cspdarknet53', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspdarknet53`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('cspdarknet53', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{bochkovskiy2020yolov4, title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, year={2020}, eprint={2004.10934}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP DarkNet Paper: Title: 'YOLOv4: Optimal Speed and Accuracy of Object Detection' URL: https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object Models: - Name: cspdarknet53 In Collection: CSP DarkNet Metadata: FLOPs: 8545018880 Parameters: 27640000 File Size: 110775135 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Mish - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - CutMix - Label Smoothing - Mosaic - Polynomial Learning Rate Decay - SGD with Momentum - Self-Adversarial Training - Weight Decay Training Data: - ImageNet Training Resources: 1x NVIDIA RTX 2070 GPU ID: cspdarknet53 LR: 0.1 Layers: 53 Crop Pct: '0.887' Momentum: 0.9 Batch Size: 128 Image Size: '256' Warmup Steps: 1000 Weight Decay: 0.0005 Interpolation: bilinear Training Steps: 8000000 FPS (GPU RTX 2070): 66 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L441 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 95.09% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/dla.mdx
# Deep Layer Aggregation Extending “shallow” skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('dla102', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `dla102`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('dla102', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{yu2019deep, title={Deep Layer Aggregation}, author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, year={2019}, eprint={1707.06484}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: DLA Paper: Title: Deep Layer Aggregation URL: https://paperswithcode.com/paper/deep-layer-aggregation Models: - Name: dla102 In Collection: DLA Metadata: FLOPs: 7192952808 Parameters: 33270000 File Size: 135290579 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L410 Weights: http://dl.yf.io/dla/models/imagenet/dla102-d94d9790.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.03% Top 5 Accuracy: 93.95% - Name: dla102x In Collection: DLA Metadata: FLOPs: 5886821352 Parameters: 26310000 File Size: 107552695 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L418 Weights: http://dl.yf.io/dla/models/imagenet/dla102x-ad62be81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.51% Top 5 Accuracy: 94.23% - Name: dla102x2 In Collection: DLA Metadata: FLOPs: 9343847400 Parameters: 41280000 File Size: 167645295 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x2 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L426 Weights: http://dl.yf.io/dla/models/imagenet/dla102x2-262837b6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.44% Top 5 Accuracy: 94.65% - Name: dla169 In Collection: DLA Metadata: FLOPs: 11598004200 Parameters: 53390000 File Size: 216547113 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla169 LR: 0.1 Epochs: 120 Layers: 169 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L434 Weights: http://dl.yf.io/dla/models/imagenet/dla169-0914e092.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.69% Top 5 Accuracy: 94.33% - Name: dla34 In Collection: DLA Metadata: FLOPs: 3070105576 Parameters: 15740000 File Size: 63228658 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla34 LR: 0.1 Epochs: 120 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L362 Weights: http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.62% Top 5 Accuracy: 92.06% - Name: dla46_c In Collection: DLA Metadata: FLOPs: 583277288 Parameters: 1300000 File Size: 5307963 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L369 Weights: http://dl.yf.io/dla/models/imagenet/dla46_c-2bfd52c3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 64.87% Top 5 Accuracy: 86.29% - Name: dla46x_c In Collection: DLA Metadata: FLOPs: 544052200 Parameters: 1070000 File Size: 4387641 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46x_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L378 Weights: http://dl.yf.io/dla/models/imagenet/dla46x_c-d761bae7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 65.98% Top 5 Accuracy: 86.99% - Name: dla60 In Collection: DLA Metadata: FLOPs: 4256251880 Parameters: 22040000 File Size: 89560235 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60 LR: 0.1 Epochs: 120 Layers: 60 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L394 Weights: http://dl.yf.io/dla/models/imagenet/dla60-24839fc4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.04% Top 5 Accuracy: 93.32% - Name: dla60_res2net In Collection: DLA Metadata: FLOPs: 4147578504 Parameters: 20850000 File Size: 84886593 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2net Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L346 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.46% Top 5 Accuracy: 94.21% - Name: dla60_res2next In Collection: DLA Metadata: FLOPs: 3485335272 Parameters: 17030000 File Size: 69639245 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2next Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L354 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.44% Top 5 Accuracy: 94.16% - Name: dla60x In Collection: DLA Metadata: FLOPs: 3544204264 Parameters: 17350000 File Size: 70883139 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L402 Weights: http://dl.yf.io/dla/models/imagenet/dla60x-d15cacda.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 94.02% - Name: dla60x_c In Collection: DLA Metadata: FLOPs: 593325032 Parameters: 1320000 File Size: 5454396 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x_c LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L386 Weights: http://dl.yf.io/dla/models/imagenet/dla60x_c-b870c45c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 67.91% Top 5 Accuracy: 88.42% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx
# (Gluon) ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_resnext101_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_resnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_resnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/XieGDTH16, author = {Saining Xie and Ross B. Girshick and Piotr Doll{\'{a}}r and Zhuowen Tu and Kaiming He}, title = {Aggregated Residual Transformations for Deep Neural Networks}, journal = {CoRR}, volume = {abs/1611.05431}, year = {2016}, url = {http://arxiv.org/abs/1611.05431}, archivePrefix = {arXiv}, eprint = {1611.05431}, timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun ResNeXt Paper: Title: Aggregated Residual Transformations for Deep Neural Networks URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep Models: - Name: gluon_resnext101_32x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177367414 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext101_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L193 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.33% Top 5 Accuracy: 94.91% - Name: gluon_resnext101_64x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 19954172928 Parameters: 83460000 File Size: 334737852 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext101_64x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L201 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.63% Top 5 Accuracy: 95.0% - Name: gluon_resnext50_32x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100441719 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L185 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.35% Top 5 Accuracy: 94.42% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/se-resnet.mdx
# SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('seresnet152d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `seresnet152d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('seresnet152d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: seresnet152d In Collection: SE ResNet Metadata: FLOPs: 20161904304 Parameters: 66840000 File Size: 268144497 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnet152d LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.94' Momentum: 0.9 Batch Size: 1024 Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1206 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.74% Top 5 Accuracy: 96.77% - Name: seresnet50 In Collection: SE ResNet Metadata: FLOPs: 5285062320 Parameters: 28090000 File Size: 112621903 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1180 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.26% Top 5 Accuracy: 95.07% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx
# (Gluon) SE-ResNeXt **SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun SEResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: gluon_seresnext101_32x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 10302923504 Parameters: 48960000 File Size: 196505510 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext101_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L219 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.87% Top 5 Accuracy: 95.29% - Name: gluon_seresnext101_64x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 19958950640 Parameters: 88230000 File Size: 353875948 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext101_64x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L229 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.88% Top 5 Accuracy: 95.31% - Name: gluon_seresnext50_32x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 5475179184 Parameters: 27560000 File Size: 110578827 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L209 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.92% Top 5 Accuracy: 94.82% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/rexnet.mdx
# RexNet **Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('rexnet_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `rexnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('rexnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{han2020rexnet, title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, year={2020}, eprint={2007.00992}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RexNet Paper: Title: 'ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network' URL: https://paperswithcode.com/paper/rexnet-diminishing-representational Models: - Name: rexnet_100 In Collection: RexNet Metadata: FLOPs: 509989377 Parameters: 4800000 File Size: 19417552 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_100 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L212 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.86% Top 5 Accuracy: 93.88% - Name: rexnet_130 In Collection: RexNet Metadata: FLOPs: 848364461 Parameters: 7560000 File Size: 30508197 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_130 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L218 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.49% Top 5 Accuracy: 94.67% - Name: rexnet_150 In Collection: RexNet Metadata: FLOPs: 1122374469 Parameters: 9730000 File Size: 39227315 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_150 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L224 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.31% Top 5 Accuracy: 95.16% - Name: rexnet_200 In Collection: RexNet Metadata: FLOPs: 1960224938 Parameters: 16370000 File Size: 65862221 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_200 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L230 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.63% Top 5 Accuracy: 95.67% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx
# (Legacy) SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('legacy_seresnet101', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnet101`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('legacy_seresnet101', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnet101 In Collection: Legacy SE ResNet Metadata: FLOPs: 9762614000 Parameters: 49330000 File Size: 197822624 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet101 LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L426 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.38% Top 5 Accuracy: 94.26% - Name: legacy_seresnet152 In Collection: Legacy SE ResNet Metadata: FLOPs: 14553578160 Parameters: 66819999 File Size: 268033864 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet152 LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.67% Top 5 Accuracy: 94.38% - Name: legacy_seresnet18 In Collection: Legacy SE ResNet Metadata: FLOPs: 2328876024 Parameters: 11780000 File Size: 47175663 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet18 LR: 0.6 Epochs: 100 Layers: 18 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 71.74% Top 5 Accuracy: 90.34% - Name: legacy_seresnet34 In Collection: Legacy SE ResNet Metadata: FLOPs: 4706201004 Parameters: 21960000 File Size: 87958697 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet34 LR: 0.6 Epochs: 100 Layers: 34 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.79% Top 5 Accuracy: 92.13% - Name: legacy_seresnet50 In Collection: Legacy SE ResNet Metadata: FLOPs: 4974351024 Parameters: 28090000 File Size: 112611220 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Interpolation: bilinear Minibatch Size: 1024 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L419 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.64% Top 5 Accuracy: 93.74% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx
# EfficientNet (Knapsack Pruned) **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). This collection consists of pruned EfficientNet models. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ``` @misc{aflalo2020knapsack, title={Knapsack Pruning with Inner Distillation}, author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, year={2020}, eprint={2002.08258}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Pruned Paper: Title: Knapsack Pruning with Inner Distillation URL: https://paperswithcode.com/paper/knapsack-pruning-with-inner-distillation Models: - Name: efficientnet_b1_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 489653114 Parameters: 6330000 File Size: 25595162 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1_pruned Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1208 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 93.84% - Name: efficientnet_b2_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 878133915 Parameters: 8310000 File Size: 33555005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2_pruned Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1219 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.86% - Name: efficientnet_b3_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 1239590641 Parameters: 9860000 File Size: 39770812 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3_pruned Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1230 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.86% Top 5 Accuracy: 95.24% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx
# MobileNet v2 **MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mobilenetv2_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1801-04381, author = {Mark Sandler and Andrew G. Howard and Menglong Zhu and Andrey Zhmoginov and Liang{-}Chieh Chen}, title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation}, journal = {CoRR}, volume = {abs/1801.04381}, year = {2018}, url = {http://arxiv.org/abs/1801.04381}, archivePrefix = {arXiv}, eprint = {1801.04381}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V2 Paper: Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear Models: - Name: mobilenetv2_100 In Collection: MobileNet V2 Metadata: FLOPs: 401920448 Parameters: 3500000 File Size: 14202571 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.95% Top 5 Accuracy: 91.0% - Name: mobilenetv2_110d In Collection: MobileNet V2 Metadata: FLOPs: 573958832 Parameters: 4520000 File Size: 18316431 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_110d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.19% - Name: mobilenetv2_120d In Collection: MobileNet V2 Metadata: FLOPs: 888510048 Parameters: 5830000 File Size: 23651121 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_120d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.28% Top 5 Accuracy: 93.51% - Name: mobilenetv2_140 In Collection: MobileNet V2 Metadata: FLOPs: 770196784 Parameters: 6110000 File Size: 24673555 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_140 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.51% Top 5 Accuracy: 93.0% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/resnet-d.mdx
# ResNet-D **ResNet-D** is a modification on the [ResNet](https://paperswithcode.com/method/resnet) architecture that utilises an [average pooling](https://paperswithcode.com/method/average-pooling) tweak for downsampling. The motivation is that in the unmodified ResNet, the [1×1 convolution](https://paperswithcode.com/method/1x1-convolution) for the downsampling block ignores 3/4 of input feature maps, so this is modified so no information will be ignored ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnet101d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{he2018bag, title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li}, year={2018}, eprint={1812.01187}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ResNet-D Paper: Title: Bag of Tricks for Image Classification with Convolutional Neural Networks URL: https://paperswithcode.com/paper/bag-of-tricks-for-image-classification-with Models: - Name: resnet101d In Collection: ResNet-D Metadata: FLOPs: 13805639680 Parameters: 44570000 File Size: 178791263 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet101d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L716 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.31% Top 5 Accuracy: 96.06% - Name: resnet152d In Collection: ResNet-D Metadata: FLOPs: 20155275264 Parameters: 60210000 File Size: 241596837 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet152d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L724 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.13% Top 5 Accuracy: 96.35% - Name: resnet18d In Collection: ResNet-D Metadata: FLOPs: 2645205760 Parameters: 11710000 File Size: 46893231 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L649 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.27% Top 5 Accuracy: 90.69% - Name: resnet200d In Collection: ResNet-D Metadata: FLOPs: 26034378752 Parameters: 64690000 File Size: 259662933 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet200d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L749 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.24% Top 5 Accuracy: 96.49% - Name: resnet26d In Collection: ResNet-D Metadata: FLOPs: 3335276032 Parameters: 16010000 File Size: 64209122 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L683 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.69% Top 5 Accuracy: 93.15% - Name: resnet34d In Collection: ResNet-D Metadata: FLOPs: 5026601728 Parameters: 21820000 File Size: 87369807 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L666 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.38% - Name: resnet50d In Collection: ResNet-D Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102567109 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L699 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.55% Top 5 Accuracy: 95.16% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/inception-v3.mdx
# Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('inception_v3', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: inception_v3 In Collection: Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 108857766 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Gradient Clipping - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x NVIDIA Kepler GPUs ID: inception_v3 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L442 Weights: https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.46% Top 5 Accuracy: 93.48% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/ig-resnext.mdx
# Instagram ResNeXt WSL A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. This model was trained on billions of Instagram images using thousands of distinct hashtags as labels exhibit excellent transfer learning performance. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ig_resnext101_32x16d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ig_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ig_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{mahajan2018exploring, title={Exploring the Limits of Weakly Supervised Pretraining}, author={Dhruv Mahajan and Ross Girshick and Vignesh Ramanathan and Kaiming He and Manohar Paluri and Yixuan Li and Ashwin Bharambe and Laurens van der Maaten}, year={2018}, eprint={1805.00932}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: IG ResNeXt Paper: Title: Exploring the Limits of Weakly Supervised Pretraining URL: https://paperswithcode.com/paper/exploring-the-limits-of-weakly-supervised Models: - Name: ig_resnext101_32x16d In Collection: IG ResNeXt Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x16d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L874 Weights: https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.16% Top 5 Accuracy: 97.19% - Name: ig_resnext101_32x32d In Collection: IG ResNeXt Metadata: FLOPs: 112225170432 Parameters: 468530000 File Size: 1876573776 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x32d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Minibatch Size: 8064 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L885 Weights: https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.09% Top 5 Accuracy: 97.44% - Name: ig_resnext101_32x48d In Collection: IG ResNeXt Metadata: FLOPs: 197446554624 Parameters: 828410000 File Size: 3317136976 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x48d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L896 Weights: https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.42% Top 5 Accuracy: 97.58% - Name: ig_resnext101_32x8d In Collection: IG ResNeXt Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x8d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L863 Weights: https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.7% Top 5 Accuracy: 96.64% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx
# MobileNet v3 **MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, archivePrefix = {arXiv}, eprint = {1905.02244}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V3 Paper: Title: Searching for MobileNetV3 URL: https://paperswithcode.com/paper/searching-for-mobilenetv3 Models: - Name: mobilenetv3_large_100 In Collection: MobileNet V3 Metadata: FLOPs: 287193752 Parameters: 5480000 File Size: 22076443 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_large_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L363 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.77% Top 5 Accuracy: 92.54% - Name: mobilenetv3_rw In Collection: MobileNet V3 Metadata: FLOPs: 287190638 Parameters: 5480000 File Size: 22064048 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_rw LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L384 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.62% Top 5 Accuracy: 92.71% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-efficientnet-condconv.mdx
# (Tensorflow) EfficientNet CondConv **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to squeeze-and-excitation blocks. This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions. The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_cc_b0_4e`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1904-04971, author = {Brandon Yang and Gabriel Bender and Quoc V. Le and Jiquan Ngiam}, title = {Soft Conditional Computation}, journal = {CoRR}, volume = {abs/1904.04971}, year = {2019}, url = {http://arxiv.org/abs/1904.04971}, archivePrefix = {arXiv}, eprint = {1904.04971}, timestamp = {Thu, 25 Apr 2019 13:55:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet CondConv Paper: Title: 'CondConv: Conditionally Parameterized Convolutions for Efficient Inference' URL: https://paperswithcode.com/paper/soft-conditional-computation Models: - Name: tf_efficientnet_cc_b0_4e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224153788 Parameters: 13310000 File Size: 53490940 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_4e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1561 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.32% Top 5 Accuracy: 93.32% - Name: tf_efficientnet_cc_b0_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224158524 Parameters: 24010000 File Size: 96287616 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_8e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1572 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.91% Top 5 Accuracy: 93.65% - Name: tf_efficientnet_cc_b1_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 370427824 Parameters: 39720000 File Size: 159206198 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b1_8e LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1584 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.33% Top 5 Accuracy: 94.37% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/pnasnet.mdx
# PNASNet **Progressive Neural Architecture Search**, or **PNAS**, is a method for learning the structure of convolutional neural networks (CNNs). It uses a sequential model-based optimization (SMBO) strategy, where we search the space of cell structures, starting with simple (shallow) models and progressing to complex ones, pruning out unpromising structures as we go. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('pnasnet5large', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `pnasnet5large`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('pnasnet5large', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{liu2018progressive, title={Progressive Neural Architecture Search}, author={Chenxi Liu and Barret Zoph and Maxim Neumann and Jonathon Shlens and Wei Hua and Li-Jia Li and Li Fei-Fei and Alan Yuille and Jonathan Huang and Kevin Murphy}, year={2018}, eprint={1712.00559}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: PNASNet Paper: Title: Progressive Neural Architecture Search URL: https://paperswithcode.com/paper/progressive-neural-architecture-search Models: - Name: pnasnet5large In Collection: PNASNet Metadata: FLOPs: 31458865950 Parameters: 86060000 File Size: 345153926 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 100x NVIDIA P100 GPUs ID: pnasnet5large LR: 0.015 Dropout: 0.5 Crop Pct: '0.911' Momentum: 0.9 Batch Size: 1600 Image Size: '331' Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/pnasnet.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 0.98% Top 5 Accuracy: 18.58% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/res2next.mdx
# Res2NeXt **Res2NeXt** is an image model that employs a variation on [ResNeXt](https://paperswithcode.com/method/resnext) bottleneck residual blocks. The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('res2next50', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `res2next50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('res2next50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{Gao_2021, title={Res2Net: A New Multi-Scale Backbone Architecture}, volume={43}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, DOI={10.1109/tpami.2019.2938758}, number={2}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, year={2021}, month={Feb}, pages={652–662} } ``` <!-- Type: model-index Collections: - Name: Res2NeXt Paper: Title: 'Res2Net: A New Multi-scale Backbone Architecture' URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone Models: - Name: res2next50 In Collection: Res2NeXt Metadata: FLOPs: 5396798208 Parameters: 24670000 File Size: 99019592 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2NeXt Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2next50 LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L207 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.24% Top 5 Accuracy: 93.91% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/selecsls.mdx
# SelecSLS **SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('selecsls42b', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `selecsls42b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('selecsls42b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{Mehta_2020, title={XNect}, volume={39}, ISSN={1557-7368}, url={http://dx.doi.org/10.1145/3386569.3392410}, DOI={10.1145/3386569.3392410}, number={4}, journal={ACM Transactions on Graphics}, publisher={Association for Computing Machinery (ACM)}, author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian}, year={2020}, month={Jul} } ``` <!-- Type: model-index Collections: - Name: SelecSLS Paper: Title: 'XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera' URL: https://paperswithcode.com/paper/xnect-real-time-multi-person-3d-human-pose Models: - Name: selecsls42b In Collection: SelecSLS Metadata: FLOPs: 3824022528 Parameters: 32460000 File Size: 129948954 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls42b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L335 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.18% Top 5 Accuracy: 93.39% - Name: selecsls60 In Collection: SelecSLS Metadata: FLOPs: 4610472600 Parameters: 30670000 File Size: 122839714 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L342 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.83% - Name: selecsls60b In Collection: SelecSLS Metadata: FLOPs: 4657653144 Parameters: 32770000 File Size: 131252898 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.41% Top 5 Accuracy: 94.18% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/wide-resnet.mdx
# Wide ResNet **Wide Residual Networks** are a variant on [ResNets](https://paperswithcode.com/method/resnet) where we decrease depth and increase the width of residual networks. This is achieved through the use of [wide residual blocks](https://paperswithcode.com/method/wide-residual-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('wide_resnet101_2', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `wide_resnet101_2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('wide_resnet101_2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/ZagoruykoK16, author = {Sergey Zagoruyko and Nikos Komodakis}, title = {Wide Residual Networks}, journal = {CoRR}, volume = {abs/1605.07146}, year = {2016}, url = {http://arxiv.org/abs/1605.07146}, archivePrefix = {arXiv}, eprint = {1605.07146}, timestamp = {Mon, 13 Aug 2018 16:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/ZagoruykoK16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Wide ResNet Paper: Title: Wide Residual Networks URL: https://paperswithcode.com/paper/wide-residual-networks Models: - Name: wide_resnet101_2 In Collection: Wide ResNet Metadata: FLOPs: 29304929280 Parameters: 126890000 File Size: 254695146 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Wide Residual Block Tasks: - Image Classification Training Data: - ImageNet ID: wide_resnet101_2 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L802 Weights: https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.85% Top 5 Accuracy: 94.28% - Name: wide_resnet50_2 In Collection: Wide ResNet Metadata: FLOPs: 14688058368 Parameters: 68880000 File Size: 275853271 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Wide Residual Block Tasks: - Image Classification Training Data: - ImageNet ID: wide_resnet50_2 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.45% Top 5 Accuracy: 95.52% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/skresnext.mdx
# SK-ResNeXt **SK ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNext are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('skresnext50_32x4d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `skresnext50_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('skresnext50_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{li2019selective, title={Selective Kernel Networks}, author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, year={2019}, eprint={1903.06586}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SKResNeXt Paper: Title: Selective Kernel Networks URL: https://paperswithcode.com/paper/selective-kernel-networks Models: - Name: skresnext50_32x4d In Collection: SKResNeXt Metadata: FLOPs: 5739845824 Parameters: 27480000 File Size: 110340975 Architecture: - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnext50_32x4d LR: 0.1 Epochs: 100 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L210 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.15% Top 5 Accuracy: 94.64% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/tf-efficientnet-lite.mdx
# (Tensorflow) EfficientNet Lite **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2). EfficientNet-Lite makes EfficientNet more suitable for mobile devices by introducing [ReLU6](https://paperswithcode.com/method/relu6) activation functions and removing [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_lite0', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_lite0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_lite0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet Lite Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: tf_efficientnet_lite0 In Collection: TF EfficientNet Lite Metadata: FLOPs: 488052032 Parameters: 4650000 File Size: 18820223 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite0 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1596 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.83% Top 5 Accuracy: 92.17% - Name: tf_efficientnet_lite1 In Collection: TF EfficientNet Lite Metadata: FLOPs: 773639520 Parameters: 5420000 File Size: 21939331 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite1 Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1607 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.67% Top 5 Accuracy: 93.24% - Name: tf_efficientnet_lite2 In Collection: TF EfficientNet Lite Metadata: FLOPs: 1068494432 Parameters: 6090000 File Size: 24658687 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite2 Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1618 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.48% Top 5 Accuracy: 93.75% - Name: tf_efficientnet_lite3 In Collection: TF EfficientNet Lite Metadata: FLOPs: 2011534304 Parameters: 8199999 File Size: 33161413 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite3 Crop Pct: '0.904' Image Size: '300' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1629 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.83% Top 5 Accuracy: 94.91% - Name: tf_efficientnet_lite4 In Collection: TF EfficientNet Lite Metadata: FLOPs: 5164802912 Parameters: 13010000 File Size: 52558819 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite4 Crop Pct: '0.92' Image Size: '380' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1640 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.54% Top 5 Accuracy: 95.66% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx
# Adversarial Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). This particular model was trained for study of adversarial examples (adversarial training). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('adv_inception_v3', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `adv_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('adv_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1804-00097, author = {Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan L. Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, title = {Adversarial Attacks and Defences Competition}, journal = {CoRR}, volume = {abs/1804.00097}, year = {2018}, url = {http://arxiv.org/abs/1804.00097}, archivePrefix = {arXiv}, eprint = {1804.00097}, timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Adversarial Inception v3 Paper: Title: Adversarial Attacks and Defences Competition URL: https://paperswithcode.com/paper/adversarial-attacks-and-defences-competition Models: - Name: adv_inception_v3 In Collection: Adversarial Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95549439 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: adv_inception_v3 Crop Pct: '0.875' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L456 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/adv_inception_v3-9e27bd63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.74% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/resnext.mdx
# ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) \\( C \\), as an essential factor in addition to the dimensions of depth and width. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnext101_32x8d', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnext101_32x8d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnext101_32x8d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/XieGDTH16, author = {Saining Xie and Ross B. Girshick and Piotr Doll{\'{a}}r and Zhuowen Tu and Kaiming He}, title = {Aggregated Residual Transformations for Deep Neural Networks}, journal = {CoRR}, volume = {abs/1611.05431}, year = {2016}, url = {http://arxiv.org/abs/1611.05431}, archivePrefix = {arXiv}, eprint = {1611.05431}, timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNeXt Paper: Title: Aggregated Residual Transformations for Deep Neural Networks URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep Models: - Name: resnext101_32x8d In Collection: ResNeXt Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356082095 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext101_32x8d Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L877 Weights: https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100435887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L851 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.79% Top 5 Accuracy: 94.61% - Name: resnext50d_32x4d In Collection: ResNeXt Metadata: FLOPs: 5781119488 Parameters: 25050000 File Size: 100515304 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50d_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L869 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.67% Top 5 Accuracy: 94.87% - Name: tv_resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100441675 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnext50_32x4d LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L842 Weights: https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.61% Top 5 Accuracy: 93.68% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx
# (Gluon) ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_resnet101_v1b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: gluon_resnet101_v1b In Collection: Gloun ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178723172 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L89 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: gluon_resnet101_v1c In Collection: Gloun ResNet Metadata: FLOPs: 10376567296 Parameters: 44570000 File Size: 178802575 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L113 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.53% Top 5 Accuracy: 94.59% - Name: gluon_resnet101_v1d In Collection: Gloun ResNet Metadata: FLOPs: 10377018880 Parameters: 44570000 File Size: 178802755 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L138 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.4% Top 5 Accuracy: 95.02% - Name: gluon_resnet101_v1s In Collection: Gloun ResNet Metadata: FLOPs: 11805511680 Parameters: 44670000 File Size: 179221777 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L166 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.29% Top 5 Accuracy: 95.16% - Name: gluon_resnet152_v1b In Collection: Gloun ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241534001 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L97 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.69% Top 5 Accuracy: 94.73% - Name: gluon_resnet152_v1c In Collection: Gloun ResNet Metadata: FLOPs: 15165680128 Parameters: 60210000 File Size: 241613404 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L121 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.85% - Name: gluon_resnet152_v1d In Collection: Gloun ResNet Metadata: FLOPs: 15166131712 Parameters: 60210000 File Size: 241613584 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L147 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.48% Top 5 Accuracy: 95.2% - Name: gluon_resnet152_v1s In Collection: Gloun ResNet Metadata: FLOPs: 16594624512 Parameters: 60320000 File Size: 242032606 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L175 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.02% Top 5 Accuracy: 95.42% - Name: gluon_resnet18_v1b In Collection: Gloun ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46816736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet18_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L65 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.84% Top 5 Accuracy: 89.76% - Name: gluon_resnet34_v1b In Collection: Gloun ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87295112 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet34_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L73 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.59% Top 5 Accuracy: 92.0% - Name: gluon_resnet50_v1b In Collection: Gloun ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102493763 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L81 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.72% - Name: gluon_resnet50_v1c In Collection: Gloun ResNet Metadata: FLOPs: 5590551040 Parameters: 25580000 File Size: 102573166 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L105 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.01% Top 5 Accuracy: 93.99% - Name: gluon_resnet50_v1d In Collection: Gloun ResNet Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102573346 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L129 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.46% - Name: gluon_resnet50_v1s In Collection: Gloun ResNet Metadata: FLOPs: 7019495424 Parameters: 25680000 File Size: 102992368 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L156 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.7% Top 5 Accuracy: 94.25% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/legacy-senet.mdx
# (Legacy) SENet A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from Gluon. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('legacy_senet154', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_senet154`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('legacy_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SENet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_senet154 In Collection: Legacy SENet Metadata: FLOPs: 26659556016 Parameters: 115090000 File Size: 461488402 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_senet154 LR: 0.6 Epochs: 100 Layers: 154 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L440 Weights: http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.33% Top 5 Accuracy: 95.51% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/fbnet.mdx
# FBNet **FBNet** is a type of convolutional neural architectures discovered through [DNAS](https://paperswithcode.com/method/dnas) neural architecture search. It utilises a basic type of image model block inspired by [MobileNetv2](https://paperswithcode.com/method/mobilenetv2) that utilises depthwise convolutions and an inverted residual structure (see components). The principal building block is the [FBNet Block](https://paperswithcode.com/method/fbnet-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('fbnetc_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `fbnetc_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('fbnetc_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{wu2019fbnet, title={FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search}, author={Bichen Wu and Xiaoliang Dai and Peizhao Zhang and Yanghan Wang and Fei Sun and Yiming Wu and Yuandong Tian and Peter Vajda and Yangqing Jia and Kurt Keutzer}, year={2019}, eprint={1812.03443}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: FBNet Paper: Title: 'FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search' URL: https://paperswithcode.com/paper/fbnet-hardware-aware-efficient-convnet-design Models: - Name: fbnetc_100 In Collection: FBNet Metadata: FLOPs: 508940064 Parameters: 5570000 File Size: 22525094 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Dropout - FBNet Block - Global Average Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: fbnetc_100 LR: 0.1 Epochs: 360 Layers: 22 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0005 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L985 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.12% Top 5 Accuracy: 92.37% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/resnet.mdx
# ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: resnet18 In Collection: ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46827520 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641 Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 69.74% Top 5 Accuracy: 89.09% - Name: resnet26 In Collection: ResNet Metadata: FLOPs: 3026804736 Parameters: 16000000 File Size: 64129972 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.29% Top 5 Accuracy: 92.57% - Name: resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87290831 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.28% - Name: resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.04% Top 5 Accuracy: 94.39% - Name: resnetblur50 In Collection: ResNet Metadata: FLOPs: 6621606912 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnetblur50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.29% Top 5 Accuracy: 94.64% - Name: tv_resnet101 In Collection: ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178728960 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet101 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761 Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.37% Top 5 Accuracy: 93.56% - Name: tv_resnet152 In Collection: ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241530880 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet152 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769 Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.32% Top 5 Accuracy: 94.05% - Name: tv_resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87306240 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet34 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745 Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.3% Top 5 Accuracy: 91.42% - Name: tv_resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102502400 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet50 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753 Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.16% Top 5 Accuracy: 92.88% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/noisy-student.mdx
# Noisy Student (EfficientNet) **Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps: 1. train a teacher model on labeled images 2. use the teacher to generate pseudo labels on unlabeled images 3. train a student model on the combination of labeled images and pseudo labeled images. The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student. Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ns`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{xie2020selftraining, title={Self-training with Noisy Student improves ImageNet classification}, author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le}, year={2020}, eprint={1911.04252}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: Noisy Student Paper: Title: Self-training with Noisy Student improves ImageNet classification URL: https://paperswithcode.com/paper/self-training-with-noisy-student-improves Models: - Name: tf_efficientnet_b0_ns In Collection: Noisy Student Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21386709 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b0_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.66% Top 5 Accuracy: 94.37% - Name: tf_efficientnet_b1_ns In Collection: Noisy Student Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31516408 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b1_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1437 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.39% Top 5 Accuracy: 95.74% - Name: tf_efficientnet_b2_ns In Collection: Noisy Student Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36801803 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b2_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1447 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.39% Top 5 Accuracy: 96.24% - Name: tf_efficientnet_b3_ns In Collection: Noisy Student Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49385734 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b3_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.04% Top 5 Accuracy: 96.91% - Name: tf_efficientnet_b4_ns In Collection: Noisy Student Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77995057 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b4_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1467 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.15% Top 5 Accuracy: 97.47% - Name: tf_efficientnet_b5_ns In Collection: Noisy Student Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122404944 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b5_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1477 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.08% Top 5 Accuracy: 97.75% - Name: tf_efficientnet_b6_ns In Collection: Noisy Student Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173239537 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b6_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1487 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.45% Top 5 Accuracy: 97.88% - Name: tf_efficientnet_b7_ns In Collection: Noisy Student Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266853140 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b7_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1498 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.83% Top 5 Accuracy: 98.08% - Name: tf_efficientnet_l2_ns In Collection: Noisy Student Metadata: FLOPs: 611646113804 Parameters: 480310000 File Size: 1925950424 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod Training Time: 6 days ID: tf_efficientnet_l2_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.96' Momentum: 0.9 Batch Size: 2048 Image Size: '800' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1520 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 88.35% Top 5 Accuracy: 98.66% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/csp-resnet.mdx
# CSP-ResNet **CSPResNet** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNet](https://paperswithcode.com/method/resnet). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('cspresnet50', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnet50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('cspresnet50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNet Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnet50 In Collection: CSP ResNet Metadata: FLOPs: 5924992000 Parameters: 21620000 File Size: 86679303 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: cspresnet50 LR: 0.1 Layers: 50 Crop Pct: '0.887' Momentum: 0.9 Batch Size: 128 Image Size: '256' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.57% Top 5 Accuracy: 94.71% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/big-transfer.mdx
# Big Transfer (BiT) **Big Transfer (BiT)** is a type of pretraining recipe that pre-trains on a large supervised source dataset, and fine-tunes the weights on the target task. Models are trained on the JFT-300M dataset. The finetuned models contained in this collection are finetuned on ImageNet. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnetv2_101x1_bitm`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('resnetv2_101x1_bitm', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @misc{kolesnikov2020big, title={Big Transfer (BiT): General Visual Representation Learning}, author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, year={2020}, eprint={1912.11370}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Big Transfer Paper: Title: 'Big Transfer (BiT): General Visual Representation Learning' URL: https://paperswithcode.com/paper/large-scale-learning-of-general-visual Models: - Name: resnetv2_101x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 44540000 File Size: 178256468 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x1_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L444 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.21% Top 5 Accuracy: 96.47% - Name: resnetv2_101x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 387930000 File Size: 1551830100 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x3_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L451 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.38% Top 5 Accuracy: 97.37% - Name: resnetv2_152x2_bitm In Collection: Big Transfer Metadata: FLOPs: 10659792 Parameters: 236340000 File Size: 945476668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M ID: resnetv2_152x2_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L458 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.4% Top 5 Accuracy: 97.43% - Name: resnetv2_152x4_bitm In Collection: Big Transfer Metadata: FLOPs: 21317584 Parameters: 936530000 File Size: 3746270104 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_152x4_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L465 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.95% Top 5 Accuracy: 97.45% - Name: resnetv2_50x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 25550000 File Size: 102242668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x1_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L430 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.19% Top 5 Accuracy: 95.63% - Name: resnetv2_50x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 217320000 File Size: 869321580 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x3_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L437 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.75% Top 5 Accuracy: 97.12% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/ssl-resnet.mdx
# SSL ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('ssl_resnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ssl_resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('ssl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SSL ResNet Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: ssl_resnet18 In Collection: SSL ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46811375 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnet18 LR: 0.0015 Epochs: 30 Layers: 18 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L894 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.62% Top 5 Accuracy: 91.42% - Name: ssl_resnet50 In Collection: SSL ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102480594 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnet50 LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L904 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.24% Top 5 Accuracy: 94.83% -->
0
hf_public_repos/pytorch-image-models/hfdocs/source
hf_public_repos/pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx
# (Gluon) Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_inception_v3', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../scripts) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: gluon_inception_v3 In Collection: Gloun Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95567055 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_inception_v3 Crop Pct: '0.875' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L464 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_inception_v3-9f746940.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.8% Top 5 Accuracy: 94.38% -->
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/timm/__init__.py
from .version import __version__ from .layers import is_scriptable, is_exportable, set_scriptable, set_exportable from .models import create_model, list_models, list_pretrained, is_model, list_modules, model_entrypoint, \ is_model_pretrained, get_pretrained_cfg, get_pretrained_cfg_value
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/timm/version.py
__version__ = '0.9.14dev0'
0
hf_public_repos/pytorch-image-models/timm
hf_public_repos/pytorch-image-models/timm/scheduler/poly_lr.py
""" Polynomial Scheduler Polynomial LR schedule with warmup, noise. Hacked together by / Copyright 2021 Ross Wightman """ import math import logging import torch from .scheduler import Scheduler _logger = logging.getLogger(__name__) class PolyLRScheduler(Scheduler): """ Polynomial LR Scheduler w/ warmup, noise, and k-decay k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909 """ def __init__( self, optimizer: torch.optim.Optimizer, t_initial: int, power: float = 0.5, lr_min: float = 0., cycle_mul: float = 1., cycle_decay: float = 1., cycle_limit: int = 1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, k_decay=1.0, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize ) assert t_initial > 0 assert lr_min >= 0 if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1: _logger.warning("Cosine annealing scheduler will have no effect on the learning " "rate since t_initial = t_mul = eta_mul = 1.") self.t_initial = t_initial self.power = power self.lr_min = lr_min self.cycle_mul = cycle_mul self.cycle_decay = cycle_decay self.cycle_limit = cycle_limit self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix self.k_decay = k_decay if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t if self.cycle_mul != 1: i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) t_i = self.cycle_mul ** i * self.t_initial t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial else: i = t // self.t_initial t_i = self.t_initial t_curr = t - (self.t_initial * i) gamma = self.cycle_decay ** i lr_max_values = [v * gamma for v in self.base_values] k = self.k_decay if i < self.cycle_limit: lrs = [ self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power for lr_max in lr_max_values ] else: lrs = [self.lr_min for _ in self.base_values] return lrs def get_cycle_length(self, cycles=0): cycles = max(1, cycles or self.cycle_limit) if self.cycle_mul == 1.0: return self.t_initial * cycles else: return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul)))
0
hf_public_repos/pytorch-image-models/timm
hf_public_repos/pytorch-image-models/timm/scheduler/scheduler_factory.py
""" Scheduler Factory Hacked together by / Copyright 2021 Ross Wightman """ from typing import List, Optional, Union from torch.optim import Optimizer from .cosine_lr import CosineLRScheduler from .multistep_lr import MultiStepLRScheduler from .plateau_lr import PlateauLRScheduler from .poly_lr import PolyLRScheduler from .step_lr import StepLRScheduler from .tanh_lr import TanhLRScheduler def scheduler_kwargs(cfg, decreasing_metric: Optional[bool] = None): """ cfg/argparse to kwargs helper Convert scheduler args in argparse args or cfg (.dot) like object to keyword args. """ eval_metric = getattr(cfg, 'eval_metric', 'top1') if decreasing_metric is not None: plateau_mode = 'min' if decreasing_metric else 'max' else: plateau_mode = 'min' if 'loss' in eval_metric else 'max' kwargs = dict( sched=cfg.sched, num_epochs=getattr(cfg, 'epochs', 100), decay_epochs=getattr(cfg, 'decay_epochs', 30), decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]), warmup_epochs=getattr(cfg, 'warmup_epochs', 5), cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0), patience_epochs=getattr(cfg, 'patience_epochs', 10), decay_rate=getattr(cfg, 'decay_rate', 0.1), min_lr=getattr(cfg, 'min_lr', 0.), warmup_lr=getattr(cfg, 'warmup_lr', 1e-5), warmup_prefix=getattr(cfg, 'warmup_prefix', False), noise=getattr(cfg, 'lr_noise', None), noise_pct=getattr(cfg, 'lr_noise_pct', 0.67), noise_std=getattr(cfg, 'lr_noise_std', 1.), noise_seed=getattr(cfg, 'seed', 42), cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.), cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1), cycle_limit=getattr(cfg, 'lr_cycle_limit', 1), k_decay=getattr(cfg, 'lr_k_decay', 1.0), plateau_mode=plateau_mode, step_on_epochs=not getattr(cfg, 'sched_on_updates', False), ) return kwargs def create_scheduler( args, optimizer: Optimizer, updates_per_epoch: int = 0, ): return create_scheduler_v2( optimizer=optimizer, **scheduler_kwargs(args), updates_per_epoch=updates_per_epoch, ) def create_scheduler_v2( optimizer: Optimizer, sched: str = 'cosine', num_epochs: int = 300, decay_epochs: int = 90, decay_milestones: List[int] = (90, 180, 270), cooldown_epochs: int = 0, patience_epochs: int = 10, decay_rate: float = 0.1, min_lr: float = 0, warmup_lr: float = 1e-5, warmup_epochs: int = 0, warmup_prefix: bool = False, noise: Union[float, List[float]] = None, noise_pct: float = 0.67, noise_std: float = 1., noise_seed: int = 42, cycle_mul: float = 1., cycle_decay: float = 0.1, cycle_limit: int = 1, k_decay: float = 1.0, plateau_mode: str = 'max', step_on_epochs: bool = True, updates_per_epoch: int = 0, ): t_initial = num_epochs warmup_t = warmup_epochs decay_t = decay_epochs cooldown_t = cooldown_epochs if not step_on_epochs: assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches' t_initial = t_initial * updates_per_epoch warmup_t = warmup_t * updates_per_epoch decay_t = decay_t * updates_per_epoch decay_milestones = [d * updates_per_epoch for d in decay_milestones] cooldown_t = cooldown_t * updates_per_epoch # warmup args warmup_args = dict( warmup_lr_init=warmup_lr, warmup_t=warmup_t, warmup_prefix=warmup_prefix, ) # setup noise args for supporting schedulers if noise is not None: if isinstance(noise, (list, tuple)): noise_range = [n * t_initial for n in noise] if len(noise_range) == 1: noise_range = noise_range[0] else: noise_range = noise * t_initial else: noise_range = None noise_args = dict( noise_range_t=noise_range, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, ) # setup cycle args for supporting schedulers cycle_args = dict( cycle_mul=cycle_mul, cycle_decay=cycle_decay, cycle_limit=cycle_limit, ) lr_scheduler = None if sched == 'cosine': lr_scheduler = CosineLRScheduler( optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args, k_decay=k_decay, ) elif sched == 'tanh': lr_scheduler = TanhLRScheduler( optimizer, t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, **cycle_args, **warmup_args, **noise_args, ) elif sched == 'step': lr_scheduler = StepLRScheduler( optimizer, decay_t=decay_t, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args, ) elif sched == 'multistep': lr_scheduler = MultiStepLRScheduler( optimizer, decay_t=decay_milestones, decay_rate=decay_rate, t_in_epochs=step_on_epochs, **warmup_args, **noise_args, ) elif sched == 'plateau': assert step_on_epochs, 'Plateau LR only supports step per epoch.' warmup_args.pop('warmup_prefix', False) lr_scheduler = PlateauLRScheduler( optimizer, decay_rate=decay_rate, patience_t=patience_epochs, cooldown_t=0, **warmup_args, lr_min=min_lr, mode=plateau_mode, **noise_args, ) elif sched == 'poly': lr_scheduler = PolyLRScheduler( optimizer, power=decay_rate, # overloading 'decay_rate' as polynomial power t_initial=t_initial, lr_min=min_lr, t_in_epochs=step_on_epochs, k_decay=k_decay, **cycle_args, **warmup_args, **noise_args, ) if hasattr(lr_scheduler, 'get_cycle_length'): # for cycle based schedulers (cosine, tanh, poly) recalculate total epochs w/ cycles & cooldown t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t if step_on_epochs: num_epochs = t_with_cycles_and_cooldown else: num_epochs = t_with_cycles_and_cooldown // updates_per_epoch return lr_scheduler, num_epochs
0
hf_public_repos/pytorch-image-models/timm
hf_public_repos/pytorch-image-models/timm/scheduler/tanh_lr.py
""" TanH Scheduler TanH schedule with warmup, cycle/restarts, noise. Hacked together by / Copyright 2021 Ross Wightman """ import logging import math import numpy as np import torch from .scheduler import Scheduler _logger = logging.getLogger(__name__) class TanhLRScheduler(Scheduler): """ Hyberbolic-Tangent decay with restarts. This is described in the paper https://arxiv.org/abs/1806.01593 """ def __init__( self, optimizer: torch.optim.Optimizer, t_initial: int, lb: float = -7., ub: float = 3., lr_min: float = 0., cycle_mul: float = 1., cycle_decay: float = 1., cycle_limit: int = 1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize, ) assert t_initial > 0 assert lr_min >= 0 assert lb < ub assert cycle_limit >= 0 assert warmup_t >= 0 assert warmup_lr_init >= 0 self.lb = lb self.ub = ub self.t_initial = t_initial self.lr_min = lr_min self.cycle_mul = cycle_mul self.cycle_decay = cycle_decay self.cycle_limit = cycle_limit self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix if self.warmup_t: t_v = self.base_values if self.warmup_prefix else self._get_lr(self.warmup_t) self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in t_v] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t): if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t if self.cycle_mul != 1: i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) t_i = self.cycle_mul ** i * self.t_initial t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial else: i = t // self.t_initial t_i = self.t_initial t_curr = t - (self.t_initial * i) if i < self.cycle_limit: gamma = self.cycle_decay ** i lr_max_values = [v * gamma for v in self.base_values] tr = t_curr / t_i lrs = [ self.lr_min + 0.5 * (lr_max - self.lr_min) * (1 - math.tanh(self.lb * (1. - tr) + self.ub * tr)) for lr_max in lr_max_values ] else: lrs = [self.lr_min for _ in self.base_values] return lrs def get_cycle_length(self, cycles=0): cycles = max(1, cycles or self.cycle_limit) if self.cycle_mul == 1.0: return self.t_initial * cycles else: return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul)))
0