code
stringlengths
2k
1.04M
repo_path
stringlengths
5
517
parsed_code
stringlengths
0
1.04M
quality_prob
float64
0.02
0.95
learning_prob
float64
0.02
0.93
import pytest from django.urls import reverse from pytest_django.asserts import assertContains from ...folders.tests.factories import FolderFactory from ..models import Note from .factories import NoteFactory, UserFactory @pytest.fixture def user(): return UserFactory() @pytest.fixture def note(): return NoteFactory() @pytest.fixture def folder(): return FolderFactory() pytestmark = pytest.mark.django_db def test_good_notes_list_view(client, user): """ Tests if /notes/ returns the correct view :param client: :param user: :return: """ client.force_login(user) response = client.get(reverse("notes:list")) assertContains(response, "Note List") def test_good_note_detail_view(client, user, note): """ Tests if /notes/{note.slug}/ returns the correct view :param client: :param user: :param note: A note object created by the NoteFactory fixture :return: """ client.force_login(user) url = reverse("notes:detail", kwargs={"slug": note.slug}) response = client.get(url) assertContains(response, note.title) def test_good_note_create_view(client, user): """ Tests if /notes/add returns the correct view :param client: :param user: :return: """ client.force_login(user) url = reverse("notes:add") response = client.get(url) assert response.status_code == 200 def test_note_list_contains_2_notes(client, user): """ Creates two note objects and tests if both are listed in /notes/ :param client: :param user: :return: """ note1 = NoteFactory() note2 = NoteFactory() client.force_login(user) response = client.get(reverse("notes:list")) assertContains(response, note1.title) assertContains(response, note2.title) def test_note_detail_contains_note_data(client, user, note): """ Tests if NoteDetailView displays the correct Note object :param client: :param user: :param note: :return: """ client.force_login(user) response = client.get(reverse("notes:detail", kwargs={"slug": note.slug})) assertContains(response, note.title) assertContains(response, note.text) assertContains(response, note.creator) def test_note_create_form_valid(client, user, folder): """ Tests creating a note with valid input :param client: :param user: :param folder: A Folder object created by the FolderFactory fixture :return: """ client.force_login(user) form_data = { "title": "Test Note", "text": "Here's a note for testing.", "parent_folder": folder.id, } url = reverse("notes:add") response = client.post(url, form_data) assert response.status_code == 302 note = Note.objects.get(title="Test Note") assert note.text == form_data["text"] assert note.creator == user assert note.parent_folder == folder def test_note_create_correct_title(client, user): """ Tests if requesting the NoteCreateView returns the correct template, as NoteCreateView and NoteCreateView use the same template file :param client: :param user: :return: """ client.force_login(user) url = reverse("notes:add") response = client.get(url) assertContains(response, "Add Note") def test_good_note_update_view(client, user, note): """ Tests if requesting the NoteUpdateView returns the correct template, as NoteCreateView and NoteCreateView use the same template file :param client: :param user: :param note: A Note object created by the NoteFactory fixture :return: """ client.force_login(user) url = reverse("notes:update", kwargs={"slug": note.slug}) response = client.get(url) assertContains(response, "Update Note") def test_note_update(client, user, note, folder): """ Tests updating a note given valid input :param client: :param user: :param note: A Note object created by the NoteFactory fixture :param folder: A Folder object created by the FolderFactory fixture :return: """ client.force_login(user) url = reverse("notes:update", kwargs={"slug": note.slug}) form_data = { "title": note.title, "text": "something new", "parent_folder": folder.id, } response = client.post(url, form_data) assert response.status_code == 302 note.refresh_from_db() assert note.text == "something new" assert note.parent_folder == folder
sib_notes/notes/tests/test_views.py
import pytest from django.urls import reverse from pytest_django.asserts import assertContains from ...folders.tests.factories import FolderFactory from ..models import Note from .factories import NoteFactory, UserFactory @pytest.fixture def user(): return UserFactory() @pytest.fixture def note(): return NoteFactory() @pytest.fixture def folder(): return FolderFactory() pytestmark = pytest.mark.django_db def test_good_notes_list_view(client, user): """ Tests if /notes/ returns the correct view :param client: :param user: :return: """ client.force_login(user) response = client.get(reverse("notes:list")) assertContains(response, "Note List") def test_good_note_detail_view(client, user, note): """ Tests if /notes/{note.slug}/ returns the correct view :param client: :param user: :param note: A note object created by the NoteFactory fixture :return: """ client.force_login(user) url = reverse("notes:detail", kwargs={"slug": note.slug}) response = client.get(url) assertContains(response, note.title) def test_good_note_create_view(client, user): """ Tests if /notes/add returns the correct view :param client: :param user: :return: """ client.force_login(user) url = reverse("notes:add") response = client.get(url) assert response.status_code == 200 def test_note_list_contains_2_notes(client, user): """ Creates two note objects and tests if both are listed in /notes/ :param client: :param user: :return: """ note1 = NoteFactory() note2 = NoteFactory() client.force_login(user) response = client.get(reverse("notes:list")) assertContains(response, note1.title) assertContains(response, note2.title) def test_note_detail_contains_note_data(client, user, note): """ Tests if NoteDetailView displays the correct Note object :param client: :param user: :param note: :return: """ client.force_login(user) response = client.get(reverse("notes:detail", kwargs={"slug": note.slug})) assertContains(response, note.title) assertContains(response, note.text) assertContains(response, note.creator) def test_note_create_form_valid(client, user, folder): """ Tests creating a note with valid input :param client: :param user: :param folder: A Folder object created by the FolderFactory fixture :return: """ client.force_login(user) form_data = { "title": "Test Note", "text": "Here's a note for testing.", "parent_folder": folder.id, } url = reverse("notes:add") response = client.post(url, form_data) assert response.status_code == 302 note = Note.objects.get(title="Test Note") assert note.text == form_data["text"] assert note.creator == user assert note.parent_folder == folder def test_note_create_correct_title(client, user): """ Tests if requesting the NoteCreateView returns the correct template, as NoteCreateView and NoteCreateView use the same template file :param client: :param user: :return: """ client.force_login(user) url = reverse("notes:add") response = client.get(url) assertContains(response, "Add Note") def test_good_note_update_view(client, user, note): """ Tests if requesting the NoteUpdateView returns the correct template, as NoteCreateView and NoteCreateView use the same template file :param client: :param user: :param note: A Note object created by the NoteFactory fixture :return: """ client.force_login(user) url = reverse("notes:update", kwargs={"slug": note.slug}) response = client.get(url) assertContains(response, "Update Note") def test_note_update(client, user, note, folder): """ Tests updating a note given valid input :param client: :param user: :param note: A Note object created by the NoteFactory fixture :param folder: A Folder object created by the FolderFactory fixture :return: """ client.force_login(user) url = reverse("notes:update", kwargs={"slug": note.slug}) form_data = { "title": note.title, "text": "something new", "parent_folder": folder.id, } response = client.post(url, form_data) assert response.status_code == 302 note.refresh_from_db() assert note.text == "something new" assert note.parent_folder == folder
0.574156
0.643385
import pyttsx3 import datetime import wikipedia import webbrowser as wb import os import speech_recognition as sr engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[1].id) def speak(audio): engine.say(audio) print("Speaking....") engine.runAndWait() def wishme(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning sir") elif hour>=12 and hour<18: speak("Good Afternoon sir") else: speak("Good Evening sir") speak("I am jarvis, here to help you, tell me what to do") def takeCommand(): #It takes microphone input from the user and returns string output r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1 r.energy_threshold = 2 audio = r.listen(source) try: print("Recognizing...") query = r.recognize_google(audio, language='en-in') print(f"User said: {query}\n") except Exception: # print(e) print("I haven't got it, say that again please") return "None" return query if __name__ == "__main__": wishme() while True: query = takeCommand().lower() #logic for AI if "wikipedia" in query: speak("searching wikipedia......") query = query.replace("wikipedia", "") results = wikipedia.summary(query, sentences=2) print(results) speak("According to wikipedia") speak(results) elif "youtube" in query: speak("opening youtube.....") wb.open("youtube.com") elif "open github" in query: speak("opening github.....") wb.open("github.com") elif "open google" in query: wb.open("google.com") speak("opening Google") elif "play random video" in query: vid_dir = "E:\\Videos" video = os.listdir(vid_dir) random_file = random.choice(video) os.startfile(os.path.join(vid_dir, random_file)) elif ".com" in query: wb.open(".com"+query) speak(f"opening {query}") elif "what is the time now" in query: strTime = datetime.datetime.now().strftime("%H:%M:%S") speak(f"the time now is{strTime}") elif "open stackoverflow" in query: wb.open("stackoverflow.com") elif "who are you" in query: speak("I am EESHAAN's personal assistant") elif "what is your name" in query: speak("I am Jaarvis sir") elif "play video" in query: speak("playing you favourite video, sir") os.startfile("E:\\Don Diablo - We Are Love.mp4") elif "open amazon" in query: wb.open("www.amazon.in") elif "open twitter" in query: wb.open("www.twitter.com") elif "speak alphabets" in query: speak("Speaking alphabets") for alpha in range(65, 91): speak(chr(alpha))
Aspire The AI.py
import pyttsx3 import datetime import wikipedia import webbrowser as wb import os import speech_recognition as sr engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[1].id) def speak(audio): engine.say(audio) print("Speaking....") engine.runAndWait() def wishme(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning sir") elif hour>=12 and hour<18: speak("Good Afternoon sir") else: speak("Good Evening sir") speak("I am jarvis, here to help you, tell me what to do") def takeCommand(): #It takes microphone input from the user and returns string output r = sr.Recognizer() with sr.Microphone() as source: print("Listening...") r.pause_threshold = 1 r.energy_threshold = 2 audio = r.listen(source) try: print("Recognizing...") query = r.recognize_google(audio, language='en-in') print(f"User said: {query}\n") except Exception: # print(e) print("I haven't got it, say that again please") return "None" return query if __name__ == "__main__": wishme() while True: query = takeCommand().lower() #logic for AI if "wikipedia" in query: speak("searching wikipedia......") query = query.replace("wikipedia", "") results = wikipedia.summary(query, sentences=2) print(results) speak("According to wikipedia") speak(results) elif "youtube" in query: speak("opening youtube.....") wb.open("youtube.com") elif "open github" in query: speak("opening github.....") wb.open("github.com") elif "open google" in query: wb.open("google.com") speak("opening Google") elif "play random video" in query: vid_dir = "E:\\Videos" video = os.listdir(vid_dir) random_file = random.choice(video) os.startfile(os.path.join(vid_dir, random_file)) elif ".com" in query: wb.open(".com"+query) speak(f"opening {query}") elif "what is the time now" in query: strTime = datetime.datetime.now().strftime("%H:%M:%S") speak(f"the time now is{strTime}") elif "open stackoverflow" in query: wb.open("stackoverflow.com") elif "who are you" in query: speak("I am EESHAAN's personal assistant") elif "what is your name" in query: speak("I am Jaarvis sir") elif "play video" in query: speak("playing you favourite video, sir") os.startfile("E:\\Don Diablo - We Are Love.mp4") elif "open amazon" in query: wb.open("www.amazon.in") elif "open twitter" in query: wb.open("www.twitter.com") elif "speak alphabets" in query: speak("Speaking alphabets") for alpha in range(65, 91): speak(chr(alpha))
0.094224
0.062674
import argparse import os import re import unicodedata import Levenshtein import pandas import pandas as pd import regex from bz2file import BZ2File from tqdm import tqdm from wiktionary_de_parser import Parser def main(): parser = argparse.ArgumentParser() parser.add_argument('--wiktionary', type=str, default='dewiktionary-20210701-pages-articles.xml.bz2') parser.add_argument('--output', type=argparse.FileType('w'), default='wiktionary_relations.tsv') args = parser.parse_args() bz = BZ2File(args.wiktionary) substantive = [] adjektive = [] verben = [] derivs = [] adj_targets = ["bar", "en", "erig", "ern", "fach", "frei", "haft", "ig", "isch", "lich", "los", "mäßig", "sam", "sch"] subst_targets = ["chen", "e", "ei", "el", "en", "er", "heit", "ien", "iker", "in", "keit", "lein", "ler", "ling", "mut", "nis", "rich", "sal", "schaft", "sel", "tum", "ung"] with tqdm(unit='B', unit_scale=True, smoothing=0.05, total=os.path.getsize(args.wiktionary)) as pbar: for record in Parser(bz): pbar.update(bz._fp.tell() - pbar.n) if not regex.fullmatch(r'\p{L}+', record['title']): continue if 'langCode' not in record or record['langCode'] != 'de': continue if re.search(r'\|Adjektiv\|', record['wikitext']): try: target, lemma, base = process_deriv(record, adj_targets) derivs.append(['adj_' + target, lemma, base]) except: pass if re.search(r'\|Substantiv\|', record['wikitext']): try: target, lemma, base = process_deriv(record, subst_targets) derivs.append(['subst_' + target, lemma, base]) except: pass if 'flexion' in record.keys(): flexion = record["flexion"] wortart = list(record["pos"].keys())[0] if wortart == "Substantiv": substantive.append(flexion) if wortart == "Adjektiv": adjektive.append(flexion) if wortart == "Verb": verben.append(flexion) flexion["Infinitiv"] = record["title"] print_verb_infl(verben, args.output) print_adj_infl(adjektive, args.output) print_subst_infl(substantive, args.output) print_deriv(derivs, args.output) def process_deriv(record, targets): for t in targets: lemma = record['title'] if not lemma.endswith(t): continue herkunft = re.search(r'{{(Herkunft|Ableitung)}}[^{]*(\[\[Ableitung]][^{]*){{', record['wikitext'], re.MULTILINE) if herkunft is None: continue herkunft = herkunft.group(2).replace('\n', ' ') if not re.search(r"''\[\[-" + t + "]]", herkunft): continue base = [b[0] for b in regex.findall(r"''\[\[(\p{L}+)]](.,;)?''", herkunft)] def check_prefix(a, b): return unicodedata.normalize('NFD', a[0]).lower() != unicodedata.normalize('NFD', b[0]).lower() if len(base) == 0: continue if len(base) == 1: candidate = base[0] if not check_prefix(candidate, lemma): continue return t, lemma, candidate else: # heuristic by closest levenshtein distance distances = [(b, Levenshtein.distance(lemma.lower(), b.lower() + t)) for b in base if check_prefix(lemma, b)] candidate, dist = min(distances, key=lambda x: x[1]) if dist <= 3: return t, lemma, candidate def print_subst_infl(substantive, out): substantive = pd.DataFrame(substantive) labels = dict([('Nominativ Singular', 'nom_sg'), ('Nominativ Plural', 'nom_pl'), ('Dativ Plural', 'dat_pl'), ('Genitiv Singular', 'gen_sg')]) substantive = substantive[labels.keys()].dropna().rename(columns=labels) substantive.drop_duplicates(subset='nom_sg', keep=False, inplace=True) substantive = substantive[ substantive.applymap(lambda x: len(x) >= 2 and regex.fullmatch(r'\w+', x) is not None).all(axis=1)] for col in labels.values(): if col == 'nom_sg': continue if col == 'nom_pl' or col == 'dat_pl': selection = substantive[substantive['dat_pl'] != substantive['nom_pl']][['nom_sg', col]] else: selection = substantive[['nom_sg', col]] selection = selection[selection.apply(lambda x: x == selection[col]).sum(axis=1) == 1].drop_duplicates() for i, row in selection.iterrows(): print('infl_subst_' + col, row['nom_sg'], row[col], sep='\t', file=out) def print_adj_infl(adjektive, out): adjektive = pd.DataFrame(adjektive) adjektive.drop_duplicates(subset='Positiv', keep=False, inplace=True) for col in ['Komparativ', 'Superlativ']: selection = adjektive[adjektive.apply(lambda x: x == adjektive[col]).sum(axis=1) == 1][ ['Positiv', col]].drop_duplicates() for i, row in selection.iterrows(): print('infl_adj_' + col.lower(), row['Positiv'], row[col], sep='\t', file=out) def print_verb_infl(verben, out): verben = pd.DataFrame(verben) verben = verben.drop(verben[verben.Präsens_ich.isna()].index) labels = dict([('Infinitiv', 'inf'), ('Präsens_ich', 'sg_1p_präsens'), ('Präsens_du', 'sg_2p_präsens'), ('Präteritum_ich', 'sg_1p_prät_indikativ'), ('Partizip II', 'partizip_perfekt'), ('Konjunktiv II_ich', 'sg_1p_prät_konjunktiv')]) verben = verben[labels.keys()].dropna().rename(columns=labels) # verben.drop_duplicates(subset='inf', inplace=True) verben = verben[verben.applymap(lambda x: len(x) >= 2 and regex.fullmatch(r'\w+', x) is not None).all(axis=1)] for col in labels.values(): if col == 'inf': continue selection = verben[verben.apply(lambda x: x == verben[col]).sum(axis=1) == 1][['inf', col]].drop_duplicates() for i, row in selection.iterrows(): print('infl_verb_' + col, row['inf'], row[col], sep='\t', file=out) def print_deriv(derivs, out): df = pandas.DataFrame(derivs, columns=['derivation', 'base', 'lemma']) df.drop_duplicates(subset=['derivation', 'base'], keep=False, inplace=True) for row in df.sort_values('derivation').itertuples(): print('derivations_' + row.derivation, row.lemma, row.base, sep='\t', file=out) if __name__ == "__main__": main()
testsets/wiktionary_extraction.py
import argparse import os import re import unicodedata import Levenshtein import pandas import pandas as pd import regex from bz2file import BZ2File from tqdm import tqdm from wiktionary_de_parser import Parser def main(): parser = argparse.ArgumentParser() parser.add_argument('--wiktionary', type=str, default='dewiktionary-20210701-pages-articles.xml.bz2') parser.add_argument('--output', type=argparse.FileType('w'), default='wiktionary_relations.tsv') args = parser.parse_args() bz = BZ2File(args.wiktionary) substantive = [] adjektive = [] verben = [] derivs = [] adj_targets = ["bar", "en", "erig", "ern", "fach", "frei", "haft", "ig", "isch", "lich", "los", "mäßig", "sam", "sch"] subst_targets = ["chen", "e", "ei", "el", "en", "er", "heit", "ien", "iker", "in", "keit", "lein", "ler", "ling", "mut", "nis", "rich", "sal", "schaft", "sel", "tum", "ung"] with tqdm(unit='B', unit_scale=True, smoothing=0.05, total=os.path.getsize(args.wiktionary)) as pbar: for record in Parser(bz): pbar.update(bz._fp.tell() - pbar.n) if not regex.fullmatch(r'\p{L}+', record['title']): continue if 'langCode' not in record or record['langCode'] != 'de': continue if re.search(r'\|Adjektiv\|', record['wikitext']): try: target, lemma, base = process_deriv(record, adj_targets) derivs.append(['adj_' + target, lemma, base]) except: pass if re.search(r'\|Substantiv\|', record['wikitext']): try: target, lemma, base = process_deriv(record, subst_targets) derivs.append(['subst_' + target, lemma, base]) except: pass if 'flexion' in record.keys(): flexion = record["flexion"] wortart = list(record["pos"].keys())[0] if wortart == "Substantiv": substantive.append(flexion) if wortart == "Adjektiv": adjektive.append(flexion) if wortart == "Verb": verben.append(flexion) flexion["Infinitiv"] = record["title"] print_verb_infl(verben, args.output) print_adj_infl(adjektive, args.output) print_subst_infl(substantive, args.output) print_deriv(derivs, args.output) def process_deriv(record, targets): for t in targets: lemma = record['title'] if not lemma.endswith(t): continue herkunft = re.search(r'{{(Herkunft|Ableitung)}}[^{]*(\[\[Ableitung]][^{]*){{', record['wikitext'], re.MULTILINE) if herkunft is None: continue herkunft = herkunft.group(2).replace('\n', ' ') if not re.search(r"''\[\[-" + t + "]]", herkunft): continue base = [b[0] for b in regex.findall(r"''\[\[(\p{L}+)]](.,;)?''", herkunft)] def check_prefix(a, b): return unicodedata.normalize('NFD', a[0]).lower() != unicodedata.normalize('NFD', b[0]).lower() if len(base) == 0: continue if len(base) == 1: candidate = base[0] if not check_prefix(candidate, lemma): continue return t, lemma, candidate else: # heuristic by closest levenshtein distance distances = [(b, Levenshtein.distance(lemma.lower(), b.lower() + t)) for b in base if check_prefix(lemma, b)] candidate, dist = min(distances, key=lambda x: x[1]) if dist <= 3: return t, lemma, candidate def print_subst_infl(substantive, out): substantive = pd.DataFrame(substantive) labels = dict([('Nominativ Singular', 'nom_sg'), ('Nominativ Plural', 'nom_pl'), ('Dativ Plural', 'dat_pl'), ('Genitiv Singular', 'gen_sg')]) substantive = substantive[labels.keys()].dropna().rename(columns=labels) substantive.drop_duplicates(subset='nom_sg', keep=False, inplace=True) substantive = substantive[ substantive.applymap(lambda x: len(x) >= 2 and regex.fullmatch(r'\w+', x) is not None).all(axis=1)] for col in labels.values(): if col == 'nom_sg': continue if col == 'nom_pl' or col == 'dat_pl': selection = substantive[substantive['dat_pl'] != substantive['nom_pl']][['nom_sg', col]] else: selection = substantive[['nom_sg', col]] selection = selection[selection.apply(lambda x: x == selection[col]).sum(axis=1) == 1].drop_duplicates() for i, row in selection.iterrows(): print('infl_subst_' + col, row['nom_sg'], row[col], sep='\t', file=out) def print_adj_infl(adjektive, out): adjektive = pd.DataFrame(adjektive) adjektive.drop_duplicates(subset='Positiv', keep=False, inplace=True) for col in ['Komparativ', 'Superlativ']: selection = adjektive[adjektive.apply(lambda x: x == adjektive[col]).sum(axis=1) == 1][ ['Positiv', col]].drop_duplicates() for i, row in selection.iterrows(): print('infl_adj_' + col.lower(), row['Positiv'], row[col], sep='\t', file=out) def print_verb_infl(verben, out): verben = pd.DataFrame(verben) verben = verben.drop(verben[verben.Präsens_ich.isna()].index) labels = dict([('Infinitiv', 'inf'), ('Präsens_ich', 'sg_1p_präsens'), ('Präsens_du', 'sg_2p_präsens'), ('Präteritum_ich', 'sg_1p_prät_indikativ'), ('Partizip II', 'partizip_perfekt'), ('Konjunktiv II_ich', 'sg_1p_prät_konjunktiv')]) verben = verben[labels.keys()].dropna().rename(columns=labels) # verben.drop_duplicates(subset='inf', inplace=True) verben = verben[verben.applymap(lambda x: len(x) >= 2 and regex.fullmatch(r'\w+', x) is not None).all(axis=1)] for col in labels.values(): if col == 'inf': continue selection = verben[verben.apply(lambda x: x == verben[col]).sum(axis=1) == 1][['inf', col]].drop_duplicates() for i, row in selection.iterrows(): print('infl_verb_' + col, row['inf'], row[col], sep='\t', file=out) def print_deriv(derivs, out): df = pandas.DataFrame(derivs, columns=['derivation', 'base', 'lemma']) df.drop_duplicates(subset=['derivation', 'base'], keep=False, inplace=True) for row in df.sort_values('derivation').itertuples(): print('derivations_' + row.derivation, row.lemma, row.base, sep='\t', file=out) if __name__ == "__main__": main()
0.212886
0.219129
no_yes = {'NO': '90004', 'YES': '90003'} no_yes_1 = {'No': '1066', 'Yes': '1065'} no_yes_pregnant = {'No': '90081', 'Yes': '90082'} relationship = { 'AUNT/UNCLE': '90281', 'BROTHER/SISTER': '90285', 'CHILD': '90280', 'COUSIN': '90286', 'FRIEND': '5618', 'GRANDCHILD': '90284', 'GRANDPARENT': '90283', 'NIECE/NEPHEW': '90282', 'NOTFAMILY': '90287', 'PARENT/FARTHER/MOTHER': '90279', 'SPOUSE/PARTNER': '90288' } mode_of_delivery = { 'BREECH': '1172', 'CESAREAN SECTION': '1171', 'Forceps or Vacuum Extractor Delivery': '163005', 'Other': '5622', 'SPONTANEOUS VAGINAL DELIVERY/NORMAL': '1170' } mothers_arvs_for_pmtct = { 'ART': '163012', 'Life long ART': '99786', 'NONE': '1107', 'No ART': '99782', 'Unknown': '1067', 'sd NVP': '163009', 'sd NVP + AZT': '163010', 'sd NVP + AZT/3TC': '163011' } infant_arvs = { 'Daily NVP from birth through b/feeding': '163013', 'Daily NVP from birth to 6 weeks': '162966', 'NVP taken after 72 hours of birth': '99789', 'No ARVs taken at birth': '99790', 'Received NVP within 72 hours of birth': '99788', 'Unknown': '1067', 'sd NVP': '163009', 'sd NVP + AZT': '163010' } result = { 'NEGATIVE/NEG': '664', 'POSITIVE/POS': '703' } feeding_status = { 'BREASTFED EXCLUSIVELY/EBF': '5526', 'Complementary Feeding/CF': '99791', 'MIXED FEEDING/MF': '6046', 'No Longer Breastfeeding/NLB': '99793', 'REPLACEMENT FEEDING/RF': '99089', 'Weaning/W': '99792' } final_outcome = { 'Discharged Negative': '99427', 'Referred to ART Clinic': '99430', 'Lost': '5240', 'Transferred': '90306', 'Died': '99112' } entry_point = { 'PMTCT': '90012', 'TB': '90016', 'YCC': '99593', 'Outreach': '90019', 'Out Patient': '90013', 'STI': '90015', 'Inpatient': '90018', 'Other': '90002' } test_type = { 'PCR Test': '163006', 'Antibody Tes/AB': '163007' } muac = { 'Red': '99028', 'Yellow': '99029', 'Green': '99027' } clinical_assessment_codes = { 'WELL': '162848', 'LN': '162847', 'WL': '832', 'F': '90103', 'OT': '90130', 'EI': '162849', 'G': '162850', 'C': '107', 'ADR': '162851', 'RDR': '162852', 'PNEU': '42', 'RASH': '512', 'Others': '90002' } development_milestone = { 'Smilling': '162855', 'Sitting': '162857', 'Walking': '162856', 'Controling the head': '162858', 'Transfer Objects from one hand to hand': '162859', 'Cognition': '162860', 'Rolling Over': '162861', 'Crawl': '162862', 'Stand': '162863' } immunization_codes = { 'BCG': '886', 'OPV-0': '162831', 'OPV-1': '162832', 'OPV-2': '162833', 'OPV-3': '162834', 'DPT': '781', 'DPT-Hep+Hib1': '162835', 'DPT-HepB + Hib2': '162836', 'DPT-HepB + Hib3': '162837', 'MEASLES': '63', 'De-Worming': '162838', 'Vitamin A': '99356', 'PCV-1': '163014', 'PCV-2': '163015', 'PCV-3': '163016', 'Not Done': '90002' } drugs = { 'Amitriptilline': '931', 'Amoxicillin': '265', 'Cetrizine': '779', 'Ciprofloxacine': '740', 'Cloxacillin': '922', 'Coartem': '99266', 'Dapsone': '90171', 'Doxycycline': '95', 'EH': '1108', 'Erythromicin': '272', 'Fluconazole': '747', 'Ibuprofen': '912', 'Ketoconazole': '926', 'Mebendazole': '244', 'Metronidazole': '237', 'Multivitamins': '461', 'Nutrition Support': '99054', 'Nystatin': '919', 'Paracetamol': '89', 'RH': '1194', 'RHE': '99127', 'RHZ': '768', 'RHZE': '1131', 'RHZES': '99128', 'Septrin': '916', 'Vit B Complex': '329', 'Other specify': '90002', } tb_status = { 'No signs/1': '90079', 'Suspect/2': '90073', 'Diagnosed with Tb/3': '90078', 'Tb Rx/4': '90071' } side_effects = { 'AB/ABDOMINAL PAIN': '90100', 'Anaemia/ANEMIA': '90099', 'BN/BURNING': '90095', 'CNS/DIZZINESS': '90117', 'Diarrhoea/DIARRHOEA': '90092', 'FAT/FAT DISTRIBUTION CHANGES': '90116', 'Fatigue/FATIGUE': '90093', 'Headache/HEADACHE': '90094', 'Jaundice/JAUNDICE': '90115', 'Nausea/NAUSEA': '90091', 'Rash/RASH': '90098', 'Other specify:/OTHER SPECIFY': '90002', } symptoms = { 'Cough/COUGH': '90132', 'DB/BREATHING DIFFICULTY': '90133', 'Dementia/DEMENTIA': '90128', 'Enceph/ENCEPHALITIS': '90129', 'Fever/FEVER': '90131', 'GUD/GENITAL ULCER DISEASE': '90138', 'Headache/HEADACHE': '90094', 'IRIS/IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME': '90134', 'Malaria/PRESUMED': '123', 'Pneumonia/PNEUMONIA': '90127', 'PID/PELVIC INFLAMMATORY DISEASE': '90137', 'RTI/RESPIRATORY TRACT INFECTION, NOS': '999', 'Thrush/THRUSH': '90130', 'UD/URETHRAL DISCHARGE': '90136', 'Ulcers/ULCERS': '90139', 'URTI/RESPIRATORY TRACT INFECTION, UPPER': '106', 'Weight loss/WEIGHT LOSS': '90135', 'Zoster/ZOSTER': '90126', 'KS/KAPOSIS SARCOMA': '507', 'CCM/MENINGITIS, CRYPTOCOCCAL': '1294', 'Other specify:/OTHER SPECIFY': '90002' } malnutrition = { 'MAM/MODERATE ACUTE MALNUTRITION': '99271', 'SAM/SEVERE ACUTE MALNUTRITION': '99272', 'SAMO/SEVERE ACUTE MALNUTRITION WITH OEDEMA': '99273', 'PWG/PA/POOR WEIGHT GAIN / POOR APPETITE': '99274', } clinical_stage = { '1/HIV WHO CLINICAL STAGE 1': '90033', '2/HIV WHO CLINICAL STAGE 2': '90034', '3/HIV WHO CLINICAL STAGE 3': '90035', '4/HIV WHO CLINICAL STAGE 4': '90036', 'T1/HIV WHO CLINICAL STAGE T1': '90293', 'T2/HIV WHO CLINICAL STAGE T2': '90294', 'T3/HIV WHO CLINICAL STAGE T3': '90295', 'T4/HIV WHO CLINICAL STAGE T4': '90296' } functional_status = { 'Amb/AMBULATORY': '90037', 'Work/WORKING': '90038', 'Bed/BEDRIDDEN': '90039' } adherence = { 'Good/GOOD ADHERENCE': '90156', 'Fair/FAIR ADHERENCE': '90157', 'Poor/POOR ADHERENCE': '90158' }
core/common.py
no_yes = {'NO': '90004', 'YES': '90003'} no_yes_1 = {'No': '1066', 'Yes': '1065'} no_yes_pregnant = {'No': '90081', 'Yes': '90082'} relationship = { 'AUNT/UNCLE': '90281', 'BROTHER/SISTER': '90285', 'CHILD': '90280', 'COUSIN': '90286', 'FRIEND': '5618', 'GRANDCHILD': '90284', 'GRANDPARENT': '90283', 'NIECE/NEPHEW': '90282', 'NOTFAMILY': '90287', 'PARENT/FARTHER/MOTHER': '90279', 'SPOUSE/PARTNER': '90288' } mode_of_delivery = { 'BREECH': '1172', 'CESAREAN SECTION': '1171', 'Forceps or Vacuum Extractor Delivery': '163005', 'Other': '5622', 'SPONTANEOUS VAGINAL DELIVERY/NORMAL': '1170' } mothers_arvs_for_pmtct = { 'ART': '163012', 'Life long ART': '99786', 'NONE': '1107', 'No ART': '99782', 'Unknown': '1067', 'sd NVP': '163009', 'sd NVP + AZT': '163010', 'sd NVP + AZT/3TC': '163011' } infant_arvs = { 'Daily NVP from birth through b/feeding': '163013', 'Daily NVP from birth to 6 weeks': '162966', 'NVP taken after 72 hours of birth': '99789', 'No ARVs taken at birth': '99790', 'Received NVP within 72 hours of birth': '99788', 'Unknown': '1067', 'sd NVP': '163009', 'sd NVP + AZT': '163010' } result = { 'NEGATIVE/NEG': '664', 'POSITIVE/POS': '703' } feeding_status = { 'BREASTFED EXCLUSIVELY/EBF': '5526', 'Complementary Feeding/CF': '99791', 'MIXED FEEDING/MF': '6046', 'No Longer Breastfeeding/NLB': '99793', 'REPLACEMENT FEEDING/RF': '99089', 'Weaning/W': '99792' } final_outcome = { 'Discharged Negative': '99427', 'Referred to ART Clinic': '99430', 'Lost': '5240', 'Transferred': '90306', 'Died': '99112' } entry_point = { 'PMTCT': '90012', 'TB': '90016', 'YCC': '99593', 'Outreach': '90019', 'Out Patient': '90013', 'STI': '90015', 'Inpatient': '90018', 'Other': '90002' } test_type = { 'PCR Test': '163006', 'Antibody Tes/AB': '163007' } muac = { 'Red': '99028', 'Yellow': '99029', 'Green': '99027' } clinical_assessment_codes = { 'WELL': '162848', 'LN': '162847', 'WL': '832', 'F': '90103', 'OT': '90130', 'EI': '162849', 'G': '162850', 'C': '107', 'ADR': '162851', 'RDR': '162852', 'PNEU': '42', 'RASH': '512', 'Others': '90002' } development_milestone = { 'Smilling': '162855', 'Sitting': '162857', 'Walking': '162856', 'Controling the head': '162858', 'Transfer Objects from one hand to hand': '162859', 'Cognition': '162860', 'Rolling Over': '162861', 'Crawl': '162862', 'Stand': '162863' } immunization_codes = { 'BCG': '886', 'OPV-0': '162831', 'OPV-1': '162832', 'OPV-2': '162833', 'OPV-3': '162834', 'DPT': '781', 'DPT-Hep+Hib1': '162835', 'DPT-HepB + Hib2': '162836', 'DPT-HepB + Hib3': '162837', 'MEASLES': '63', 'De-Worming': '162838', 'Vitamin A': '99356', 'PCV-1': '163014', 'PCV-2': '163015', 'PCV-3': '163016', 'Not Done': '90002' } drugs = { 'Amitriptilline': '931', 'Amoxicillin': '265', 'Cetrizine': '779', 'Ciprofloxacine': '740', 'Cloxacillin': '922', 'Coartem': '99266', 'Dapsone': '90171', 'Doxycycline': '95', 'EH': '1108', 'Erythromicin': '272', 'Fluconazole': '747', 'Ibuprofen': '912', 'Ketoconazole': '926', 'Mebendazole': '244', 'Metronidazole': '237', 'Multivitamins': '461', 'Nutrition Support': '99054', 'Nystatin': '919', 'Paracetamol': '89', 'RH': '1194', 'RHE': '99127', 'RHZ': '768', 'RHZE': '1131', 'RHZES': '99128', 'Septrin': '916', 'Vit B Complex': '329', 'Other specify': '90002', } tb_status = { 'No signs/1': '90079', 'Suspect/2': '90073', 'Diagnosed with Tb/3': '90078', 'Tb Rx/4': '90071' } side_effects = { 'AB/ABDOMINAL PAIN': '90100', 'Anaemia/ANEMIA': '90099', 'BN/BURNING': '90095', 'CNS/DIZZINESS': '90117', 'Diarrhoea/DIARRHOEA': '90092', 'FAT/FAT DISTRIBUTION CHANGES': '90116', 'Fatigue/FATIGUE': '90093', 'Headache/HEADACHE': '90094', 'Jaundice/JAUNDICE': '90115', 'Nausea/NAUSEA': '90091', 'Rash/RASH': '90098', 'Other specify:/OTHER SPECIFY': '90002', } symptoms = { 'Cough/COUGH': '90132', 'DB/BREATHING DIFFICULTY': '90133', 'Dementia/DEMENTIA': '90128', 'Enceph/ENCEPHALITIS': '90129', 'Fever/FEVER': '90131', 'GUD/GENITAL ULCER DISEASE': '90138', 'Headache/HEADACHE': '90094', 'IRIS/IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME': '90134', 'Malaria/PRESUMED': '123', 'Pneumonia/PNEUMONIA': '90127', 'PID/PELVIC INFLAMMATORY DISEASE': '90137', 'RTI/RESPIRATORY TRACT INFECTION, NOS': '999', 'Thrush/THRUSH': '90130', 'UD/URETHRAL DISCHARGE': '90136', 'Ulcers/ULCERS': '90139', 'URTI/RESPIRATORY TRACT INFECTION, UPPER': '106', 'Weight loss/WEIGHT LOSS': '90135', 'Zoster/ZOSTER': '90126', 'KS/KAPOSIS SARCOMA': '507', 'CCM/MENINGITIS, CRYPTOCOCCAL': '1294', 'Other specify:/OTHER SPECIFY': '90002' } malnutrition = { 'MAM/MODERATE ACUTE MALNUTRITION': '99271', 'SAM/SEVERE ACUTE MALNUTRITION': '99272', 'SAMO/SEVERE ACUTE MALNUTRITION WITH OEDEMA': '99273', 'PWG/PA/POOR WEIGHT GAIN / POOR APPETITE': '99274', } clinical_stage = { '1/HIV WHO CLINICAL STAGE 1': '90033', '2/HIV WHO CLINICAL STAGE 2': '90034', '3/HIV WHO CLINICAL STAGE 3': '90035', '4/HIV WHO CLINICAL STAGE 4': '90036', 'T1/HIV WHO CLINICAL STAGE T1': '90293', 'T2/HIV WHO CLINICAL STAGE T2': '90294', 'T3/HIV WHO CLINICAL STAGE T3': '90295', 'T4/HIV WHO CLINICAL STAGE T4': '90296' } functional_status = { 'Amb/AMBULATORY': '90037', 'Work/WORKING': '90038', 'Bed/BEDRIDDEN': '90039' } adherence = { 'Good/GOOD ADHERENCE': '90156', 'Fair/FAIR ADHERENCE': '90157', 'Poor/POOR ADHERENCE': '90158' }
0.335024
0.115486
from .interval_limit import IntervalLimit def local_compare_to(a, b): return -1 if a < b else 1 if a > b else 0 class Interval: @staticmethod def closed(lower, upper): return Interval(lower, True, upper, True) @staticmethod def open(lower, upper): return Interval(lower, False, upper, False) @staticmethod def over(lower, lower_included, upper, upper_included): return Interval(lower, lower_included, upper, upper_included) def __init__(self, *args): assert len(args) == 2 or len(args) == 4 if len(args) == 2: self._create_with_intervals(*args) elif len(args) == 4: self._create_with_boundaries(*args) def _create_with_intervals(self, lower, upper): assert isinstance(lower, IntervalLimit) assert isinstance(upper, IntervalLimit) assert lower.is_lower() assert upper.is_upper() assert lower.compare_to(upper) <= 0 self._lower_limit_object = lower self._upper_limit_object = upper def _create_with_boundaries(self, lower, is_lower_closed, upper, is_upper_closed): self._create_with_intervals(IntervalLimit.lower(is_lower_closed, lower), IntervalLimit.upper(is_upper_closed, upper)) def __hash__(self): return hash((hash(self._lower_limit_object), hash(self._upper_limit_object))) def __eq__(self, other): return self.equals(other) def equals(self, other): if other is None: return False this_empty = self.is_empty() other_empty = other.is_empty() if this_empty and other_empty: return True if this_empty != other_empty: return False this_single = self.is_single_element() other_single = other.is_single_element() if this_single and other_single: return self.lower_limit() == other.lower_limit() if this_single != other_single: return False return self.compare_to(other) == 0 def new_of_same_type(self, lower, is_lower_closed, upper, is_upper_closed): return Interval(lower, is_lower_closed, upper, is_upper_closed) def empty_of_same_type(self): return self.new_of_same_type(self.lower_limit(), False, self.lower_limit(), False) def compare_to(self, other): if not self.upper_limit() == other.upper_limit(): return local_compare_to(self.upper_limit(), other.upper_limit()) if self.includes_lower_limit() and not other.includes_lower_limit(): return -1 if not self.includes_lower_limit() and other.includes_lower_limit(): return 1 return local_compare_to(self.lower_limit(), other.lower_limit()) def is_open(self): return not self.includes_lower_limit() and not self.includes_upper_limit() def is_closed(self): return self.includes_lower_limit() and self.includes_upper_limit() def is_empty(self): return self.is_open() and self.upper_limit() == self.lower_limit() def upper_limit(self): return self._upper_limit_object.get_value() def includes_upper_limit(self): return self._upper_limit_object.is_closed() def has_upper_limit(self): return self._upper_limit_object is not None def lower_limit(self): return self._lower_limit_object.get_value() def includes_lower_limit(self): return self._lower_limit_object.is_closed() def has_lower_limit(self): return self._lower_limit_object is not None def is_single_element(self): return self.upper_limit() == self.lower_limit() and not self.is_empty() def is_below(self, value): if not self.has_upper_limit(): return False comparison = local_compare_to(self.upper_limit(), value) return comparison < 0 or (comparison == 0 and not self.includes_upper_limit()) def is_above(self, value): if not self.has_lower_limit(): return False comparison = local_compare_to(self.lower_limit(), value) return comparison > 0 or (comparison == 0 and not self.includes_lower_limit()) def includes(self, value): return not self.is_below(value) and not self.is_above(value) def covers(self, other): lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) lower_pass = self.includes(other.lower_limit()) or (lower_comparison == 0 and not other.includes_lower_limit()) upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) upper_pass = self.includes(other.upper_limit()) or (upper_comparison == 0 and not other.includes_upper_limit()) return lower_pass and upper_pass def intersects(self, other): comparison = local_compare_to(self.greater_of_lower_limits(other), self.lesser_of_upper_limits(other)) if comparison < 0: return True if comparison > 0: return False return self._greater_of_lower_included_in_intersection(other) and \ self._lesser_of_upper_included_in_intersection(other) def lesser_of_lower_limits(self, other): if self.lower_limit() is None: return None lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) if lower_comparison <= 0: return self.lower_limit() return other.lower_limit() def greater_of_lower_limits(self, other): if self.lower_limit() is None: return other.lower_limit() lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) if lower_comparison >= 0: return self.lower_limit() return other.lower_limit() def lesser_of_upper_limits(self, other): if self.upper_limit() is None: return other.upperLimit(); upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) if upper_comparison <= 0: return self.upper_limit() return other.upper_limit() def greater_of_upper_limits(self, other): if self.upper_limit()is None: return None upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) if upper_comparison >= 0: return self.upper_limit() return other.upper_limit() def _greater_of_lower_included_in_intersection(self, other): limit = self.greater_of_lower_limits(other) return self.includes(limit) and other.includes(limit) def _lesser_of_upper_included_in_intersection(self, other): limit = self.lesser_of_upper_limits(other) return self.includes(limit) and other.includes(limit) def _greater_of_lower_included_in_union(self, other): limit = self.greater_of_lower_limits(other) return self.includes(limit) or other.includes(limit) def _lesser_of_upper_included_in_union(self, other): limit = self.lesser_of_upper_limits(other) return self.includes(limit) or other.includes(limit) def intersect(self, other): intersect_lower_bound = self.greater_of_lower_limits(other) intersect_upper_bound = self.lesser_of_upper_limits(other) if local_compare_to(intersect_lower_bound, intersect_upper_bound) > 0: return self.empty_of_same_type() return self.new_of_same_type(intersect_lower_bound, self._greater_of_lower_included_in_intersection(other), intersect_upper_bound, self._lesser_of_upper_included_in_intersection(other)) def gap(self, other): if self.intersects(other): return self.empty_of_same_type() return self.new_of_same_type(self.lesser_of_upper_limits(other), not self._lesser_of_upper_included_in_union(other), self.greater_of_lower_limits(other), not self._greater_of_lower_included_in_union(other)) # see: http://en.wikipedia.org/wiki/Set_theoretic_complement def complement_relative_to(self, other): interval_sequence = [] if not self.intersects(other): interval_sequence.append(other) return interval_sequence left = self._left_complement_relative_to(other) if left is not None: interval_sequence.append(left) right = self._right_complement_relative_to(other) if right is not None: interval_sequence.append(right) return interval_sequence def _left_complement_relative_to(self, other): if self.includes(self.lesser_of_lower_limits(other)): return None if self.lower_limit() == other.lower_limit() and not other.includes_lower_limit(): return None return self.new_of_same_type(other.lower_limit(), other.includes_lower_limit(), self.lower_limit(), not self.includes_lower_limit()) def _right_complement_relative_to(self, other): if self.includes(self.greater_of_upper_limits(other)): return None if self.upper_limit() == other.upper_limit() and not other.includes_upper_limit(): return None return self.new_of_same_type(self.upper_limit(), not self.includes_upper_limit(), other.upper_limit(), other.includes_upper_limit()) def __str__(self): return "{}{}..{}{}".format("(" if self._lower_limit_object.is_opened() else "[", self.lower_limit(), self.upper_limit(), ")" if self._upper_limit_object.is_opened() else "]",)
timeandmoneypy/intervals/interval.py
from .interval_limit import IntervalLimit def local_compare_to(a, b): return -1 if a < b else 1 if a > b else 0 class Interval: @staticmethod def closed(lower, upper): return Interval(lower, True, upper, True) @staticmethod def open(lower, upper): return Interval(lower, False, upper, False) @staticmethod def over(lower, lower_included, upper, upper_included): return Interval(lower, lower_included, upper, upper_included) def __init__(self, *args): assert len(args) == 2 or len(args) == 4 if len(args) == 2: self._create_with_intervals(*args) elif len(args) == 4: self._create_with_boundaries(*args) def _create_with_intervals(self, lower, upper): assert isinstance(lower, IntervalLimit) assert isinstance(upper, IntervalLimit) assert lower.is_lower() assert upper.is_upper() assert lower.compare_to(upper) <= 0 self._lower_limit_object = lower self._upper_limit_object = upper def _create_with_boundaries(self, lower, is_lower_closed, upper, is_upper_closed): self._create_with_intervals(IntervalLimit.lower(is_lower_closed, lower), IntervalLimit.upper(is_upper_closed, upper)) def __hash__(self): return hash((hash(self._lower_limit_object), hash(self._upper_limit_object))) def __eq__(self, other): return self.equals(other) def equals(self, other): if other is None: return False this_empty = self.is_empty() other_empty = other.is_empty() if this_empty and other_empty: return True if this_empty != other_empty: return False this_single = self.is_single_element() other_single = other.is_single_element() if this_single and other_single: return self.lower_limit() == other.lower_limit() if this_single != other_single: return False return self.compare_to(other) == 0 def new_of_same_type(self, lower, is_lower_closed, upper, is_upper_closed): return Interval(lower, is_lower_closed, upper, is_upper_closed) def empty_of_same_type(self): return self.new_of_same_type(self.lower_limit(), False, self.lower_limit(), False) def compare_to(self, other): if not self.upper_limit() == other.upper_limit(): return local_compare_to(self.upper_limit(), other.upper_limit()) if self.includes_lower_limit() and not other.includes_lower_limit(): return -1 if not self.includes_lower_limit() and other.includes_lower_limit(): return 1 return local_compare_to(self.lower_limit(), other.lower_limit()) def is_open(self): return not self.includes_lower_limit() and not self.includes_upper_limit() def is_closed(self): return self.includes_lower_limit() and self.includes_upper_limit() def is_empty(self): return self.is_open() and self.upper_limit() == self.lower_limit() def upper_limit(self): return self._upper_limit_object.get_value() def includes_upper_limit(self): return self._upper_limit_object.is_closed() def has_upper_limit(self): return self._upper_limit_object is not None def lower_limit(self): return self._lower_limit_object.get_value() def includes_lower_limit(self): return self._lower_limit_object.is_closed() def has_lower_limit(self): return self._lower_limit_object is not None def is_single_element(self): return self.upper_limit() == self.lower_limit() and not self.is_empty() def is_below(self, value): if not self.has_upper_limit(): return False comparison = local_compare_to(self.upper_limit(), value) return comparison < 0 or (comparison == 0 and not self.includes_upper_limit()) def is_above(self, value): if not self.has_lower_limit(): return False comparison = local_compare_to(self.lower_limit(), value) return comparison > 0 or (comparison == 0 and not self.includes_lower_limit()) def includes(self, value): return not self.is_below(value) and not self.is_above(value) def covers(self, other): lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) lower_pass = self.includes(other.lower_limit()) or (lower_comparison == 0 and not other.includes_lower_limit()) upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) upper_pass = self.includes(other.upper_limit()) or (upper_comparison == 0 and not other.includes_upper_limit()) return lower_pass and upper_pass def intersects(self, other): comparison = local_compare_to(self.greater_of_lower_limits(other), self.lesser_of_upper_limits(other)) if comparison < 0: return True if comparison > 0: return False return self._greater_of_lower_included_in_intersection(other) and \ self._lesser_of_upper_included_in_intersection(other) def lesser_of_lower_limits(self, other): if self.lower_limit() is None: return None lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) if lower_comparison <= 0: return self.lower_limit() return other.lower_limit() def greater_of_lower_limits(self, other): if self.lower_limit() is None: return other.lower_limit() lower_comparison = local_compare_to(self.lower_limit(), other.lower_limit()) if lower_comparison >= 0: return self.lower_limit() return other.lower_limit() def lesser_of_upper_limits(self, other): if self.upper_limit() is None: return other.upperLimit(); upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) if upper_comparison <= 0: return self.upper_limit() return other.upper_limit() def greater_of_upper_limits(self, other): if self.upper_limit()is None: return None upper_comparison = local_compare_to(self.upper_limit(), other.upper_limit()) if upper_comparison >= 0: return self.upper_limit() return other.upper_limit() def _greater_of_lower_included_in_intersection(self, other): limit = self.greater_of_lower_limits(other) return self.includes(limit) and other.includes(limit) def _lesser_of_upper_included_in_intersection(self, other): limit = self.lesser_of_upper_limits(other) return self.includes(limit) and other.includes(limit) def _greater_of_lower_included_in_union(self, other): limit = self.greater_of_lower_limits(other) return self.includes(limit) or other.includes(limit) def _lesser_of_upper_included_in_union(self, other): limit = self.lesser_of_upper_limits(other) return self.includes(limit) or other.includes(limit) def intersect(self, other): intersect_lower_bound = self.greater_of_lower_limits(other) intersect_upper_bound = self.lesser_of_upper_limits(other) if local_compare_to(intersect_lower_bound, intersect_upper_bound) > 0: return self.empty_of_same_type() return self.new_of_same_type(intersect_lower_bound, self._greater_of_lower_included_in_intersection(other), intersect_upper_bound, self._lesser_of_upper_included_in_intersection(other)) def gap(self, other): if self.intersects(other): return self.empty_of_same_type() return self.new_of_same_type(self.lesser_of_upper_limits(other), not self._lesser_of_upper_included_in_union(other), self.greater_of_lower_limits(other), not self._greater_of_lower_included_in_union(other)) # see: http://en.wikipedia.org/wiki/Set_theoretic_complement def complement_relative_to(self, other): interval_sequence = [] if not self.intersects(other): interval_sequence.append(other) return interval_sequence left = self._left_complement_relative_to(other) if left is not None: interval_sequence.append(left) right = self._right_complement_relative_to(other) if right is not None: interval_sequence.append(right) return interval_sequence def _left_complement_relative_to(self, other): if self.includes(self.lesser_of_lower_limits(other)): return None if self.lower_limit() == other.lower_limit() and not other.includes_lower_limit(): return None return self.new_of_same_type(other.lower_limit(), other.includes_lower_limit(), self.lower_limit(), not self.includes_lower_limit()) def _right_complement_relative_to(self, other): if self.includes(self.greater_of_upper_limits(other)): return None if self.upper_limit() == other.upper_limit() and not other.includes_upper_limit(): return None return self.new_of_same_type(self.upper_limit(), not self.includes_upper_limit(), other.upper_limit(), other.includes_upper_limit()) def __str__(self): return "{}{}..{}{}".format("(" if self._lower_limit_object.is_opened() else "[", self.lower_limit(), self.upper_limit(), ")" if self._upper_limit_object.is_opened() else "]",)
0.84075
0.534491
from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: nsxt_policy_ip_block short_description: Create or Delete a Policy IP Block description: Creates or deletes a Policy IP Block. Required attributes include id and display_name. version_added: "2.8" author: <NAME> extends_documentation_fragment: - vmware.ansible_for_nsxt.vmware_nsxt options: id: description: The id of the Policy IP Block. required: false type: str description: description: IP Block description. type: str cidr: description: - A contiguous IP address space represented by network address and prefix length - Represents a network address and the prefix length which will be associated with a layer-2 broadcast domain. Support only IPv4 CIDR. required: true type: str ''' EXAMPLES = ''' - name: create IP Block nsxt_policy_ip_block: hostname: "10.10.10.10" nsx_cert_path: /root/com.vmware.nsx.ncp/nsx.crt nsx_key_path: /root/com.vmware.nsx.ncp/nsx.key validate_certs: False id: test-ip-blk display_name: test-ip-blk state: "present" cidr: "192.168.0.0/16" ''' RETURN = '''# ''' import json import time from ansible.module_utils.basic import AnsibleModule from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_base_resource import NSXTBaseRealizableResource from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_resource_urls import IP_BLOCK_URL from ansible.module_utils._text import to_native class NSXTIpBlock(NSXTBaseRealizableResource): @staticmethod def get_resource_spec(): ip_block_arg_spec = {} ip_block_arg_spec.update( cidr=dict( required=True, type='str' ) ) return ip_block_arg_spec @staticmethod def get_resource_base_url(baseline_args=None): return IP_BLOCK_URL if __name__ == '__main__': ip_block = NSXTIpBlock() ip_block.realize()
plugins/modules/nsxt_policy_ip_block.py
from __future__ import (absolute_import, division, print_function) __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: nsxt_policy_ip_block short_description: Create or Delete a Policy IP Block description: Creates or deletes a Policy IP Block. Required attributes include id and display_name. version_added: "2.8" author: <NAME> extends_documentation_fragment: - vmware.ansible_for_nsxt.vmware_nsxt options: id: description: The id of the Policy IP Block. required: false type: str description: description: IP Block description. type: str cidr: description: - A contiguous IP address space represented by network address and prefix length - Represents a network address and the prefix length which will be associated with a layer-2 broadcast domain. Support only IPv4 CIDR. required: true type: str ''' EXAMPLES = ''' - name: create IP Block nsxt_policy_ip_block: hostname: "10.10.10.10" nsx_cert_path: /root/com.vmware.nsx.ncp/nsx.crt nsx_key_path: /root/com.vmware.nsx.ncp/nsx.key validate_certs: False id: test-ip-blk display_name: test-ip-blk state: "present" cidr: "192.168.0.0/16" ''' RETURN = '''# ''' import json import time from ansible.module_utils.basic import AnsibleModule from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_base_resource import NSXTBaseRealizableResource from ansible_collections.vmware.ansible_for_nsxt.plugins.module_utils.nsxt_resource_urls import IP_BLOCK_URL from ansible.module_utils._text import to_native class NSXTIpBlock(NSXTBaseRealizableResource): @staticmethod def get_resource_spec(): ip_block_arg_spec = {} ip_block_arg_spec.update( cidr=dict( required=True, type='str' ) ) return ip_block_arg_spec @staticmethod def get_resource_base_url(baseline_args=None): return IP_BLOCK_URL if __name__ == '__main__': ip_block = NSXTIpBlock() ip_block.realize()
0.736211
0.123234
import pickle import numpy as np import theano import theano.tensor as tt from theano.tests import unittest_tools as utt from exoplanet.theano_ops.starry import ( GetCl, GetClRev, LimbDark, RadiusFromOccArea, ) from exoplanet.theano_ops.driver import SimpleLimbDark class TestGetCl(utt.InferShapeTester): def setUp(self): super(TestGetCl, self).setUp() self.op_class = GetCl self.op = GetCl() def test_basic(self): x = tt.dvector() f = theano.function([x], self.op(x)) inp = np.array([-1, 0.3, 0.2, 0.5]) out = f(inp) utt.assert_allclose(np.array([-0.85, 2.5, -0.425, 0.1]), out) def test_infer_shape(self): x = tt.dvector() self._compile_and_check( [x], [self.op(x)], [np.asarray(np.random.rand(5))], self.op_class ) def test_grad(self): utt.verify_grad(self.op, [np.array([-1, 0.3, 0.2, 0.5])]) class TestGetClRev(utt.InferShapeTester): def setUp(self): super(TestGetClRev, self).setUp() self.op_class = GetClRev self.op = GetClRev() def test_basic(self): x = tt.dvector() f = theano.function([x], self.op(x)) inp = np.array([-1, 0.3, 0.2, 0.5]) out = f(inp) utt.assert_allclose(np.array([0, 1.3, 2.05, 3.53]), out) def test_infer_shape(self): x = tt.dvector() self._compile_and_check( [x], [self.op(x)], [np.asarray(np.random.rand(5))], self.op_class ) class TestLimbDark(utt.InferShapeTester): def setUp(self): super(TestLimbDark, self).setUp() self.op_class = LimbDark self.op = LimbDark() def get_args(self): c = tt.vector() b = tt.vector() r = tt.vector() los = tt.vector() f = theano.function([c, b, r, los], self.op(c, b, r, los)[0]) c_val = np.array([-0.85, 2.5, -0.425, 0.1]) b_val = np.linspace(-1.5, 1.5, 100) r_val = 0.1 + np.zeros_like(b_val) los_val = np.ones_like(b_val) return f, [c, b, r, los], [c_val, b_val, r_val, los_val] def test_basic(self): f, _, in_args = self.get_args() out = f(*in_args) utt.assert_allclose(0.0, out[0]) utt.assert_allclose(0.0, out[-1]) def test_los(self): f, _, in_args = self.get_args() in_args[-1] = -np.ones_like(in_args[-1]) out = f(*in_args) utt.assert_allclose(0.0, out) def test_infer_shape(self): f, args, arg_vals = self.get_args() self._compile_and_check(args, self.op(*args), arg_vals, self.op_class) def test_grad(self): _, _, in_args = self.get_args() func = lambda *args: self.op(*args)[0] # NOQA utt.verify_grad(func, in_args) class TestRadiusFromOccArea(utt.InferShapeTester): def setUp(self): super(TestRadiusFromOccArea, self).setUp() self.op_class = RadiusFromOccArea self.op = RadiusFromOccArea() def get_args(self): delta = tt.vector() b = tt.vector() f = theano.function([delta, b], self.op(delta, b)) delta_val = np.linspace(0.01, 0.99, 100) b_val = np.linspace(0.01, 1.5, len(delta_val)) return f, [delta, b], [delta_val, b_val] def test_basic(self): f, t_args, v_args = self.get_args() r = f(*v_args) expect = -LimbDark()( np.array([1.0 / np.pi, 0.0]), v_args[1], r, np.ones_like(r) )[0].eval() utt.assert_allclose(expect, v_args[0]) def test_infer_shape(self): f, args, arg_vals = self.get_args() self._compile_and_check( args, [self.op(*args)], arg_vals, self.op_class ) def test_grad(self): func, t_args, v_args = self.get_args() g = theano.function( t_args, theano.grad(tt.sum(self.op(*t_args)), t_args) )(*v_args) eps = 1.234e-6 for n in range(len(t_args)): v_args[n] += eps plus = func(*v_args) v_args[n] -= 2 * eps minus = func(*v_args) v_args[n] += eps est = 0.5 * (plus - minus) / eps utt.assert_allclose(est, g[n], atol=2 * eps) def test_simple(): np.random.seed(4502934) r = np.random.uniform(0, 1.0, 50) b = np.random.uniform(-1.2, 1.2, len(r)) u = np.array([0.5, 0.3]) cl = GetCl()(tt.as_tensor_variable(u)).eval() cl /= np.pi * (cl[0] + 2 * cl[1] / 3) f0 = LimbDark()(cl, b, r, np.ones_like(b))[0].eval() ld = SimpleLimbDark() assert np.allclose(ld.apply(b, r), 0.0) ld.set_u(u) assert np.allclose(ld.apply(b, r), f0) def test_simple_pickle(): np.random.seed(4502934) r = np.random.uniform(0, 1.0, 50) b = np.random.uniform(-1.2, 1.2, len(r)) u = np.array([0.5, 0.3]) ld = SimpleLimbDark() ld.set_u(u) f0 = ld.apply(b, r) data = pickle.dumps(ld, -1) ld2 = pickle.loads(data) assert np.allclose(ld2.apply(b, r), f0)
tests/theano_ops/starry_test.py
import pickle import numpy as np import theano import theano.tensor as tt from theano.tests import unittest_tools as utt from exoplanet.theano_ops.starry import ( GetCl, GetClRev, LimbDark, RadiusFromOccArea, ) from exoplanet.theano_ops.driver import SimpleLimbDark class TestGetCl(utt.InferShapeTester): def setUp(self): super(TestGetCl, self).setUp() self.op_class = GetCl self.op = GetCl() def test_basic(self): x = tt.dvector() f = theano.function([x], self.op(x)) inp = np.array([-1, 0.3, 0.2, 0.5]) out = f(inp) utt.assert_allclose(np.array([-0.85, 2.5, -0.425, 0.1]), out) def test_infer_shape(self): x = tt.dvector() self._compile_and_check( [x], [self.op(x)], [np.asarray(np.random.rand(5))], self.op_class ) def test_grad(self): utt.verify_grad(self.op, [np.array([-1, 0.3, 0.2, 0.5])]) class TestGetClRev(utt.InferShapeTester): def setUp(self): super(TestGetClRev, self).setUp() self.op_class = GetClRev self.op = GetClRev() def test_basic(self): x = tt.dvector() f = theano.function([x], self.op(x)) inp = np.array([-1, 0.3, 0.2, 0.5]) out = f(inp) utt.assert_allclose(np.array([0, 1.3, 2.05, 3.53]), out) def test_infer_shape(self): x = tt.dvector() self._compile_and_check( [x], [self.op(x)], [np.asarray(np.random.rand(5))], self.op_class ) class TestLimbDark(utt.InferShapeTester): def setUp(self): super(TestLimbDark, self).setUp() self.op_class = LimbDark self.op = LimbDark() def get_args(self): c = tt.vector() b = tt.vector() r = tt.vector() los = tt.vector() f = theano.function([c, b, r, los], self.op(c, b, r, los)[0]) c_val = np.array([-0.85, 2.5, -0.425, 0.1]) b_val = np.linspace(-1.5, 1.5, 100) r_val = 0.1 + np.zeros_like(b_val) los_val = np.ones_like(b_val) return f, [c, b, r, los], [c_val, b_val, r_val, los_val] def test_basic(self): f, _, in_args = self.get_args() out = f(*in_args) utt.assert_allclose(0.0, out[0]) utt.assert_allclose(0.0, out[-1]) def test_los(self): f, _, in_args = self.get_args() in_args[-1] = -np.ones_like(in_args[-1]) out = f(*in_args) utt.assert_allclose(0.0, out) def test_infer_shape(self): f, args, arg_vals = self.get_args() self._compile_and_check(args, self.op(*args), arg_vals, self.op_class) def test_grad(self): _, _, in_args = self.get_args() func = lambda *args: self.op(*args)[0] # NOQA utt.verify_grad(func, in_args) class TestRadiusFromOccArea(utt.InferShapeTester): def setUp(self): super(TestRadiusFromOccArea, self).setUp() self.op_class = RadiusFromOccArea self.op = RadiusFromOccArea() def get_args(self): delta = tt.vector() b = tt.vector() f = theano.function([delta, b], self.op(delta, b)) delta_val = np.linspace(0.01, 0.99, 100) b_val = np.linspace(0.01, 1.5, len(delta_val)) return f, [delta, b], [delta_val, b_val] def test_basic(self): f, t_args, v_args = self.get_args() r = f(*v_args) expect = -LimbDark()( np.array([1.0 / np.pi, 0.0]), v_args[1], r, np.ones_like(r) )[0].eval() utt.assert_allclose(expect, v_args[0]) def test_infer_shape(self): f, args, arg_vals = self.get_args() self._compile_and_check( args, [self.op(*args)], arg_vals, self.op_class ) def test_grad(self): func, t_args, v_args = self.get_args() g = theano.function( t_args, theano.grad(tt.sum(self.op(*t_args)), t_args) )(*v_args) eps = 1.234e-6 for n in range(len(t_args)): v_args[n] += eps plus = func(*v_args) v_args[n] -= 2 * eps minus = func(*v_args) v_args[n] += eps est = 0.5 * (plus - minus) / eps utt.assert_allclose(est, g[n], atol=2 * eps) def test_simple(): np.random.seed(4502934) r = np.random.uniform(0, 1.0, 50) b = np.random.uniform(-1.2, 1.2, len(r)) u = np.array([0.5, 0.3]) cl = GetCl()(tt.as_tensor_variable(u)).eval() cl /= np.pi * (cl[0] + 2 * cl[1] / 3) f0 = LimbDark()(cl, b, r, np.ones_like(b))[0].eval() ld = SimpleLimbDark() assert np.allclose(ld.apply(b, r), 0.0) ld.set_u(u) assert np.allclose(ld.apply(b, r), f0) def test_simple_pickle(): np.random.seed(4502934) r = np.random.uniform(0, 1.0, 50) b = np.random.uniform(-1.2, 1.2, len(r)) u = np.array([0.5, 0.3]) ld = SimpleLimbDark() ld.set_u(u) f0 = ld.apply(b, r) data = pickle.dumps(ld, -1) ld2 = pickle.loads(data) assert np.allclose(ld2.apply(b, r), f0)
0.4917
0.509886
import logging import os class SkiaGoldProperties(object): def __init__(self, args): """Abstract class to validate and store properties related to Skia Gold. Args: args: The parsed arguments from an argparse.ArgumentParser. """ self._git_revision = None self._issue = None self._patchset = None self._job_id = None self._local_pixel_tests = None self._no_luci_auth = None self._bypass_skia_gold_functionality = None self._code_review_system = None self._continuous_integration_system = None self._local_png_directory = None self._InitializeProperties(args) def IsTryjobRun(self): return self.issue is not None @property def continuous_integration_system(self): return self._continuous_integration_system or 'buildbucket' @property def code_review_system(self): return self._code_review_system or 'gerrit' @property def git_revision(self): return self._GetGitRevision() @property def issue(self): return self._issue @property def job_id(self): return self._job_id @property def local_pixel_tests(self): return self._IsLocalRun() @property def local_png_directory(self): return self._local_png_directory @property def no_luci_auth(self): return self._no_luci_auth @property def patchset(self): return self._patchset @property def bypass_skia_gold_functionality(self): return self._bypass_skia_gold_functionality @staticmethod def _GetGitOriginMasterHeadSha1(): raise NotImplementedError() def _GetGitRevision(self): if not self._git_revision: # Automated tests should always pass the revision, so assume we're on # a workstation and try to get the local origin/master HEAD. if not self._IsLocalRun(): raise RuntimeError( '--git-revision was not passed when running on a bot') revision = self._GetGitOriginMasterHeadSha1() if not revision or len(revision) != 40: raise RuntimeError( '--git-revision not passed and unable to determine from git') self._git_revision = revision return self._git_revision def _IsLocalRun(self): if self._local_pixel_tests is None: # Look for the presence of the SWARMING_SERVER environment variable as a # heuristic to determine whether we're running on a workstation or a bot. # This should always be set on swarming, but would be strange to be set on # a workstation. self._local_pixel_tests = 'SWARMING_SERVER' not in os.environ if self._local_pixel_tests: logging.warning( 'Automatically determined that test is running on a workstation') else: logging.warning( 'Automatically determined that test is running on a bot') return self._local_pixel_tests def _InitializeProperties(self, args): if hasattr(args, 'local_pixel_tests'): # If not set, will be automatically determined later if needed. self._local_pixel_tests = args.local_pixel_tests if hasattr(args, 'skia_gold_local_png_write_directory'): self._local_png_directory = args.skia_gold_local_png_write_directory if hasattr(args, 'no_luci_auth'): self._no_luci_auth = args.no_luci_auth if hasattr(args, 'bypass_skia_gold_functionality'): self._bypass_skia_gold_functionality = args.bypass_skia_gold_functionality if hasattr(args, 'code_review_system'): self._code_review_system = args.code_review_system if hasattr(args, 'continuous_integration_system'): self._continuous_integration_system = args.continuous_integration_system # Will be automatically determined later if needed. if not hasattr(args, 'git_revision') or not args.git_revision: return self._git_revision = args.git_revision # Only expected on tryjob runs. if not hasattr(args, 'gerrit_issue') or not args.gerrit_issue: return self._issue = args.gerrit_issue if not hasattr(args, 'gerrit_patchset') or not args.gerrit_patchset: raise RuntimeError( '--gerrit-issue passed, but --gerrit-patchset not passed.') self._patchset = args.gerrit_patchset if not hasattr(args, 'buildbucket_id') or not args.buildbucket_id: raise RuntimeError( '--gerrit-issue passed, but --buildbucket-id not passed.') self._job_id = args.buildbucket_id
build/skia_gold_common/skia_gold_properties.py
import logging import os class SkiaGoldProperties(object): def __init__(self, args): """Abstract class to validate and store properties related to Skia Gold. Args: args: The parsed arguments from an argparse.ArgumentParser. """ self._git_revision = None self._issue = None self._patchset = None self._job_id = None self._local_pixel_tests = None self._no_luci_auth = None self._bypass_skia_gold_functionality = None self._code_review_system = None self._continuous_integration_system = None self._local_png_directory = None self._InitializeProperties(args) def IsTryjobRun(self): return self.issue is not None @property def continuous_integration_system(self): return self._continuous_integration_system or 'buildbucket' @property def code_review_system(self): return self._code_review_system or 'gerrit' @property def git_revision(self): return self._GetGitRevision() @property def issue(self): return self._issue @property def job_id(self): return self._job_id @property def local_pixel_tests(self): return self._IsLocalRun() @property def local_png_directory(self): return self._local_png_directory @property def no_luci_auth(self): return self._no_luci_auth @property def patchset(self): return self._patchset @property def bypass_skia_gold_functionality(self): return self._bypass_skia_gold_functionality @staticmethod def _GetGitOriginMasterHeadSha1(): raise NotImplementedError() def _GetGitRevision(self): if not self._git_revision: # Automated tests should always pass the revision, so assume we're on # a workstation and try to get the local origin/master HEAD. if not self._IsLocalRun(): raise RuntimeError( '--git-revision was not passed when running on a bot') revision = self._GetGitOriginMasterHeadSha1() if not revision or len(revision) != 40: raise RuntimeError( '--git-revision not passed and unable to determine from git') self._git_revision = revision return self._git_revision def _IsLocalRun(self): if self._local_pixel_tests is None: # Look for the presence of the SWARMING_SERVER environment variable as a # heuristic to determine whether we're running on a workstation or a bot. # This should always be set on swarming, but would be strange to be set on # a workstation. self._local_pixel_tests = 'SWARMING_SERVER' not in os.environ if self._local_pixel_tests: logging.warning( 'Automatically determined that test is running on a workstation') else: logging.warning( 'Automatically determined that test is running on a bot') return self._local_pixel_tests def _InitializeProperties(self, args): if hasattr(args, 'local_pixel_tests'): # If not set, will be automatically determined later if needed. self._local_pixel_tests = args.local_pixel_tests if hasattr(args, 'skia_gold_local_png_write_directory'): self._local_png_directory = args.skia_gold_local_png_write_directory if hasattr(args, 'no_luci_auth'): self._no_luci_auth = args.no_luci_auth if hasattr(args, 'bypass_skia_gold_functionality'): self._bypass_skia_gold_functionality = args.bypass_skia_gold_functionality if hasattr(args, 'code_review_system'): self._code_review_system = args.code_review_system if hasattr(args, 'continuous_integration_system'): self._continuous_integration_system = args.continuous_integration_system # Will be automatically determined later if needed. if not hasattr(args, 'git_revision') or not args.git_revision: return self._git_revision = args.git_revision # Only expected on tryjob runs. if not hasattr(args, 'gerrit_issue') or not args.gerrit_issue: return self._issue = args.gerrit_issue if not hasattr(args, 'gerrit_patchset') or not args.gerrit_patchset: raise RuntimeError( '--gerrit-issue passed, but --gerrit-patchset not passed.') self._patchset = args.gerrit_patchset if not hasattr(args, 'buildbucket_id') or not args.buildbucket_id: raise RuntimeError( '--gerrit-issue passed, but --buildbucket-id not passed.') self._job_id = args.buildbucket_id
0.670824
0.118131
import pandas as pd df = pd.read_csv(r'C:\Users\Ishant\Desktop\BE Project\Combined_99Acres_V4.csv') # reading the csv file to be cleaned df2 = df.copy() # create a copy of csv file row = 1 # initialise row counter for reading each tuple of csv new_column = df['Location'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Bathrooms'] = new_column new_column = df['Bathrooms'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Bedrooms'] = new_column new_column = df['Bedrooms'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Balconies'] = new_column counter = 1 for index in range(1, 32794): try: str1 = str(df2.at[row, 'Configuration']).replace('No', str(0)) # replace no with zero s = map(int, filter(str.isdigit, str1)) # map the numbers from str1 and save the number in var s for i in s: # storing the no of bathroom, bedroom, balconies into resp columns if counter == 1: df2.at[row, 'Bathrooms'] = i counter = counter + 1 print(i) elif counter == 2: df2.at[row, 'Bedrooms'] = i counter = counter + 1 print(i) elif counter == 3: df2.at[row, 'Balconies'] = i counter = 1 print(i) print(s) df2.at[row, 'Floor Number'] = str(df2.at[row, 'Floor Number']).split('of', 1)[0] # cleaning floor no column str3 = str(df2.at[row, 'Floor Number']) df2.at[row, 'Floor Number'] = map(int, filter(str.isdigit, str3)) if str(df2.at[row, 'Parking']).find(','): data = str(df2.at[row, 'Parking']).split(',') df2.at[row, 'Parking'] = str(float(data[0])+float(data[2])) if str(df2.at[row, 'Parking']).find(' None '): df2.at[row, 'Parking'] = '' try: if str(df2.at[row, 'Price']).find('Cr'): k = str(df2.at[row, 'Price']).replace('Cr', '') df2.at[row, 'Price'] = k.replace(k, str(float(k)*100)) except Exception as e: print(e) try: if str(df2.at[row, 'Price per sq.Ft']).find(','): df2.at[row, 'Price per sq.Ft'] = str(df2.at[row, 'Price per sq.Ft']).replace(',', '') except Exception as e: print('') row = row + 1 except Exception as e: continue df2.to_csv(r'C:\Users\Ishant\Desktop\Combined_99Acres_V5.csv') # saving the data and formatting of df2 to the specified csv print(df2.head()) # print first 5 rows and columns of df2
Data_Cleaning.py
import pandas as pd df = pd.read_csv(r'C:\Users\Ishant\Desktop\BE Project\Combined_99Acres_V4.csv') # reading the csv file to be cleaned df2 = df.copy() # create a copy of csv file row = 1 # initialise row counter for reading each tuple of csv new_column = df['Location'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Bathrooms'] = new_column new_column = df['Bathrooms'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Bedrooms'] = new_column new_column = df['Bedrooms'] + str(1) # we then add the series to the dataframe, which holds our parsed CSV file df['Balconies'] = new_column counter = 1 for index in range(1, 32794): try: str1 = str(df2.at[row, 'Configuration']).replace('No', str(0)) # replace no with zero s = map(int, filter(str.isdigit, str1)) # map the numbers from str1 and save the number in var s for i in s: # storing the no of bathroom, bedroom, balconies into resp columns if counter == 1: df2.at[row, 'Bathrooms'] = i counter = counter + 1 print(i) elif counter == 2: df2.at[row, 'Bedrooms'] = i counter = counter + 1 print(i) elif counter == 3: df2.at[row, 'Balconies'] = i counter = 1 print(i) print(s) df2.at[row, 'Floor Number'] = str(df2.at[row, 'Floor Number']).split('of', 1)[0] # cleaning floor no column str3 = str(df2.at[row, 'Floor Number']) df2.at[row, 'Floor Number'] = map(int, filter(str.isdigit, str3)) if str(df2.at[row, 'Parking']).find(','): data = str(df2.at[row, 'Parking']).split(',') df2.at[row, 'Parking'] = str(float(data[0])+float(data[2])) if str(df2.at[row, 'Parking']).find(' None '): df2.at[row, 'Parking'] = '' try: if str(df2.at[row, 'Price']).find('Cr'): k = str(df2.at[row, 'Price']).replace('Cr', '') df2.at[row, 'Price'] = k.replace(k, str(float(k)*100)) except Exception as e: print(e) try: if str(df2.at[row, 'Price per sq.Ft']).find(','): df2.at[row, 'Price per sq.Ft'] = str(df2.at[row, 'Price per sq.Ft']).replace(',', '') except Exception as e: print('') row = row + 1 except Exception as e: continue df2.to_csv(r'C:\Users\Ishant\Desktop\Combined_99Acres_V5.csv') # saving the data and formatting of df2 to the specified csv print(df2.head()) # print first 5 rows and columns of df2
0.113383
0.402803
import sys from typing import Any from PySide2.QtCore import QRectF, QRect from PySide2.QtWidgets import QMessageBox, QLabel from PySide2.QtGui import Qt, QColor, QPainter, QPen, QPaintEvent, QFontMetrics, QBrush __author__ = "<NAME>" QDIALOG_TYPES = (QMessageBox) WINDOW_BUTTONS_RIGHT: str = 'window_buttons_right' WIDTH_PADDING_PX = 3 # add 2 pixel padding to width of titlebar text DEBUG = False class WindowTitleLabel(QLabel): """Implements a label for window titles""" def __init__(self, text: str, height: int, color: QColor, parent: Any, window_buttons_position: str, button_bar_width: int, minimum_width: int, margin: int) -> None: """ Constructor test: titlebar text height: titlebar height in pixels color: titlebar text color parent: parent widget window_buttons_position: WINDOW_BUTTONS_RIGHT or WINDOW_BUTTONS_RIGHT button_bar_width: combined width of all buttons in pixels minimum_width: right_margin: """ super().__init__(parent) self.__original_text: str = text self.__ofs_y: float = height / 2.0 self.__font_pen: QPen = QPen(color) self.__br_height: int = 0 self.__window_buttons_position: str = window_buttons_position self.__margin: int = margin self.__button_bar_width: int = button_bar_width + margin self.setText(text) self.setAttribute(Qt.WA_TransparentForMouseEvents) self.setMinimumWidth(minimum_width) def paintEvent(self, _: QPaintEvent) -> None: """Qt Paint Event: ensures the title-bar text is elided properly and stays centered""" painter = QPainter() painter.begin(self) painter.setPen(self.__font_pen) # bold font for macOS window titles font = self.font() if sys.platform in ["darwin", "linux"]: font.setBold(True) font_metrics = QFontMetrics(font) # calculate text properties text_width: int = self.width() - self.__button_bar_width - self.__margin text: str = font_metrics.elidedText(self.__original_text, Qt.ElideRight, text_width) # calculate height br: QRect = font_metrics.boundingRect(text) if br.height() > 0: self.__br_height = br.height() py = self.__ofs_y - self.__br_height / 2.0 br_width = br.width() # calculate width px = (self.width() - br_width - WIDTH_PADDING_PX) / 2.0 if px < self.__button_bar_width: if self.__window_buttons_position == WINDOW_BUTTONS_RIGHT: if text != self.__original_text: px = self.__margin else: px = px - (self.__button_bar_width - px) else: px = self.__button_bar_width # draw title rect = QRectF(px, py, br_width + WIDTH_PADDING_PX, self.__br_height) painter.setFont(font) if DEBUG: painter.setBrush(QBrush(QColor('#ff0000'))) painter.drawRect(rect) painter.drawText(rect, Qt.AlignLeft, text) def setWindowTitle(self, title: str) -> None: """Sets the Window title string""" self.__original_text = title self.update()
src/qtmodernredux/windowstyle/windowtitlelabel.py
import sys from typing import Any from PySide2.QtCore import QRectF, QRect from PySide2.QtWidgets import QMessageBox, QLabel from PySide2.QtGui import Qt, QColor, QPainter, QPen, QPaintEvent, QFontMetrics, QBrush __author__ = "<NAME>" QDIALOG_TYPES = (QMessageBox) WINDOW_BUTTONS_RIGHT: str = 'window_buttons_right' WIDTH_PADDING_PX = 3 # add 2 pixel padding to width of titlebar text DEBUG = False class WindowTitleLabel(QLabel): """Implements a label for window titles""" def __init__(self, text: str, height: int, color: QColor, parent: Any, window_buttons_position: str, button_bar_width: int, minimum_width: int, margin: int) -> None: """ Constructor test: titlebar text height: titlebar height in pixels color: titlebar text color parent: parent widget window_buttons_position: WINDOW_BUTTONS_RIGHT or WINDOW_BUTTONS_RIGHT button_bar_width: combined width of all buttons in pixels minimum_width: right_margin: """ super().__init__(parent) self.__original_text: str = text self.__ofs_y: float = height / 2.0 self.__font_pen: QPen = QPen(color) self.__br_height: int = 0 self.__window_buttons_position: str = window_buttons_position self.__margin: int = margin self.__button_bar_width: int = button_bar_width + margin self.setText(text) self.setAttribute(Qt.WA_TransparentForMouseEvents) self.setMinimumWidth(minimum_width) def paintEvent(self, _: QPaintEvent) -> None: """Qt Paint Event: ensures the title-bar text is elided properly and stays centered""" painter = QPainter() painter.begin(self) painter.setPen(self.__font_pen) # bold font for macOS window titles font = self.font() if sys.platform in ["darwin", "linux"]: font.setBold(True) font_metrics = QFontMetrics(font) # calculate text properties text_width: int = self.width() - self.__button_bar_width - self.__margin text: str = font_metrics.elidedText(self.__original_text, Qt.ElideRight, text_width) # calculate height br: QRect = font_metrics.boundingRect(text) if br.height() > 0: self.__br_height = br.height() py = self.__ofs_y - self.__br_height / 2.0 br_width = br.width() # calculate width px = (self.width() - br_width - WIDTH_PADDING_PX) / 2.0 if px < self.__button_bar_width: if self.__window_buttons_position == WINDOW_BUTTONS_RIGHT: if text != self.__original_text: px = self.__margin else: px = px - (self.__button_bar_width - px) else: px = self.__button_bar_width # draw title rect = QRectF(px, py, br_width + WIDTH_PADDING_PX, self.__br_height) painter.setFont(font) if DEBUG: painter.setBrush(QBrush(QColor('#ff0000'))) painter.drawRect(rect) painter.drawText(rect, Qt.AlignLeft, text) def setWindowTitle(self, title: str) -> None: """Sets the Window title string""" self.__original_text = title self.update()
0.584508
0.164148
import inspect import re from collections import Counter from typing import Any, Callable, Dict, List, Optional, Tuple from urllib.parse import urljoin from squall import convertors, params PARAM_REGEX = re.compile("{([a-zA-Z_][a-zA-Z0-9_]*)(:[a-zA-Z_][a-zA-Z0-9_]*)?}") class Path: __slots__ = ["path", "handler"] def __init__(self, path: str, handler: Callable[..., Any]) -> None: self.path = path self.handler = handler def strip_trailing_slash(self) -> None: """Strip trailing slash if path differ form '/' >>> p = Path("/my/route/", lambda: None) >>> assert p.path == "/my/route/" >>> p.strip_trailing_slash() >>> assert p.path == "/my/route" """ if self.path != "/": self.path = self.path.rstrip("/") def append_left(self, prefix: str) -> None: """Prepend provided prefix to the path :param prefix: Prefix path to add >>> p = Path("/my/route", lambda: None) >>> assert p.path == "/my/route" >>> p.append_left("/api/v1") >>> assert p.path == "/api/v1/my/route" """ if not prefix.endswith("/"): prefix += "/" self.path = urljoin(prefix, self.path.strip("/")) @property def path_params(self) -> List[Tuple[str, Optional[str]]]: """Returns dynamic path parameters and their path-declared convertor aliases >>> p = Path("/user/{user_id:int}/notes/{note:uuid}/type/{type}", lambda: None) >>> assert p.path_params == [ >>> ("user_id", "int"), >>> ("note", "uuid"), >>> ("type", None) >>> ] """ result, names = [], [] for param in PARAM_REGEX.finditer(self.path): name, suffix = param.groups("") names.append(name) convertor = suffix.lstrip(":") if suffix else None result.append((name, convertor)) if duplicates := [i for i, cnt in Counter(names).items() if cnt > 1]: raise ValueError( f'Path "{self.path}" contains ' f"duplicate params: {', '.join(duplicates)}" ) return result @property def schema_path(self) -> str: """Returns simplified path without convertor aliases >>> p = Path("/user/{user_id:int}/notes/{note:uuid}/type/{type}", lambda: None) >>> assert p.schema_path == "/user/{user_id}/notes/{note}/type/{type}" """ result = self.path for match in PARAM_REGEX.finditer(self.path): param_name, convertor_type = match.groups("") result = result.replace( "{" f"{param_name}{convertor_type}" "}", "{" f"{param_name}" "}", ) return result @property def router_path(self) -> str: """Returns path with detailed convertors aliases information. Also uses handler annotations for lookup. Used for exact pattern registration in squall-router library >>> async def my_handler(user_id: int, note): pass >>> >>> p = Path("/user/{user_id}/notes/{note:uuid}", my_handler) >>> assert p.router_path == "/user/{user_id:int}/notes/{note:uuid}" """ result = self.schema_path from_handler = self.get_path_params_from_handler() for param_name, convertor_name in self.path_params: if convertor_name := convertor_name or from_handler.get(param_name): result = result.replace( "{" f"{param_name}" "}", "{" f"{param_name}:{convertor_name}" "}", ) return result def get_path_params_from_handler(self) -> Dict[str, Optional[str]]: """Returns handler parameters affiliated with path. >>> from uuid import UUID >>> >>> async def my_handler(user_id: int, note: UUID): pass >>> >>> p = Path("/user/{user_id}/notes/{note}", my_handler) >>> assert p.get_path_params_from_handler() == { >>> "user_id": "int", >>> "note": "uuid" >>> } """ results = {} path_params = dict(self.path_params) for k, v in inspect.signature(self.handler).parameters.items(): name = k if isinstance(v.default, params.Path): if alias := v.default.alias: name = alias elif v.default is v.empty: name = k if name not in path_params: continue validate = path_params[name] if v.annotation != v.empty: if convertor := convertors.database.get_by_type(v.annotation): if validate is None: validate = convertor.alias elif convertor.alias != path_params[name]: raise ValueError( f"Parameter {name} have different annotation and convertor types: " f"{convertor.alias} != {path_params[name]}" ) else: raise ValueError( f"Parameter `{name}` have unknown convertor type: {v.annotation}" ) results[name] = validate return results
squall/routing/path.py
import inspect import re from collections import Counter from typing import Any, Callable, Dict, List, Optional, Tuple from urllib.parse import urljoin from squall import convertors, params PARAM_REGEX = re.compile("{([a-zA-Z_][a-zA-Z0-9_]*)(:[a-zA-Z_][a-zA-Z0-9_]*)?}") class Path: __slots__ = ["path", "handler"] def __init__(self, path: str, handler: Callable[..., Any]) -> None: self.path = path self.handler = handler def strip_trailing_slash(self) -> None: """Strip trailing slash if path differ form '/' >>> p = Path("/my/route/", lambda: None) >>> assert p.path == "/my/route/" >>> p.strip_trailing_slash() >>> assert p.path == "/my/route" """ if self.path != "/": self.path = self.path.rstrip("/") def append_left(self, prefix: str) -> None: """Prepend provided prefix to the path :param prefix: Prefix path to add >>> p = Path("/my/route", lambda: None) >>> assert p.path == "/my/route" >>> p.append_left("/api/v1") >>> assert p.path == "/api/v1/my/route" """ if not prefix.endswith("/"): prefix += "/" self.path = urljoin(prefix, self.path.strip("/")) @property def path_params(self) -> List[Tuple[str, Optional[str]]]: """Returns dynamic path parameters and their path-declared convertor aliases >>> p = Path("/user/{user_id:int}/notes/{note:uuid}/type/{type}", lambda: None) >>> assert p.path_params == [ >>> ("user_id", "int"), >>> ("note", "uuid"), >>> ("type", None) >>> ] """ result, names = [], [] for param in PARAM_REGEX.finditer(self.path): name, suffix = param.groups("") names.append(name) convertor = suffix.lstrip(":") if suffix else None result.append((name, convertor)) if duplicates := [i for i, cnt in Counter(names).items() if cnt > 1]: raise ValueError( f'Path "{self.path}" contains ' f"duplicate params: {', '.join(duplicates)}" ) return result @property def schema_path(self) -> str: """Returns simplified path without convertor aliases >>> p = Path("/user/{user_id:int}/notes/{note:uuid}/type/{type}", lambda: None) >>> assert p.schema_path == "/user/{user_id}/notes/{note}/type/{type}" """ result = self.path for match in PARAM_REGEX.finditer(self.path): param_name, convertor_type = match.groups("") result = result.replace( "{" f"{param_name}{convertor_type}" "}", "{" f"{param_name}" "}", ) return result @property def router_path(self) -> str: """Returns path with detailed convertors aliases information. Also uses handler annotations for lookup. Used for exact pattern registration in squall-router library >>> async def my_handler(user_id: int, note): pass >>> >>> p = Path("/user/{user_id}/notes/{note:uuid}", my_handler) >>> assert p.router_path == "/user/{user_id:int}/notes/{note:uuid}" """ result = self.schema_path from_handler = self.get_path_params_from_handler() for param_name, convertor_name in self.path_params: if convertor_name := convertor_name or from_handler.get(param_name): result = result.replace( "{" f"{param_name}" "}", "{" f"{param_name}:{convertor_name}" "}", ) return result def get_path_params_from_handler(self) -> Dict[str, Optional[str]]: """Returns handler parameters affiliated with path. >>> from uuid import UUID >>> >>> async def my_handler(user_id: int, note: UUID): pass >>> >>> p = Path("/user/{user_id}/notes/{note}", my_handler) >>> assert p.get_path_params_from_handler() == { >>> "user_id": "int", >>> "note": "uuid" >>> } """ results = {} path_params = dict(self.path_params) for k, v in inspect.signature(self.handler).parameters.items(): name = k if isinstance(v.default, params.Path): if alias := v.default.alias: name = alias elif v.default is v.empty: name = k if name not in path_params: continue validate = path_params[name] if v.annotation != v.empty: if convertor := convertors.database.get_by_type(v.annotation): if validate is None: validate = convertor.alias elif convertor.alias != path_params[name]: raise ValueError( f"Parameter {name} have different annotation and convertor types: " f"{convertor.alias} != {path_params[name]}" ) else: raise ValueError( f"Parameter `{name}` have unknown convertor type: {v.annotation}" ) results[name] = validate return results
0.86164
0.187579
import os import numpy as np import argparse import random import tensorflow as tf from data_generators.data_generator import DataGenerator from models.maml import MAML parser = argparse.ArgumentParser() parser.add_argument('data_path', metavar='DATA', help='path to data') parser.add_argument('ckpt_name', metavar='CKPT', help='path to checkpoint') parser.add_argument('-ds', '--data_source', default='imagenet', type=str, help='data_source (imagenet or omniglot)') parser.add_argument('-t', '--test', action='store_true', default=False, help='set for test, otherwise train') parser.add_argument('--multi', action='store_true', default=False, help='set for multi-class problems, otherwise binary classification') parser.add_argument('-l', '--train_lr', default=1e-4, type=float, help='train_lr (default=1e-4)') parser.add_argument('-p', '--pkl_file', default='filelist', type=str, help='path to pickle file') parser.add_argument('-cf', '--cluster_folder', default=None, type=str, help='cluster folder w/o root (default=None)') parser.add_argument('--kshot', default=1, type=int, help='# of shots per class (default=1)') parser.add_argument('--kquery', default=1, type=int, help='# of queries per class (default=1)') parser.add_argument('--nway', default=51, type=int, help='# of classes per problem (default=51)') parser.add_argument('--metabatch', default=4, type=int, help='meta batch-size for training (default=4)') parser.add_argument('--steps', default=5, type=int, help='# of gradient steps (default=5)') parser.add_argument('--iter', default=40000, type=int, help='# of training iterations (default=40,000)') parser.add_argument('--train_problems', default=100000, type=int, help='# of training problems (default=100,000)') parser.add_argument('--test_problems', default=600, type=int, help='# of test problems (default=600)') parser.add_argument('-c', '--cuda_id', default="0", type=str, help='cuda ID (default="0")') args = parser.parse_args() data_path = args.data_path data_source = args.data_source ckpt_name = args.ckpt_name cluster_folder = args.cluster_folder train_lr = args.train_lr pkl_file = args.pkl_file kshot = args.kshot kquery = args.kquery nway = args.nway meta_batchsz = args.metabatch steps = args.steps n_iterations = args.iter train_problems = args.train_problems test_problems = args.test_problems cuda_id = args.cuda_id os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = cuda_id def train(model, saver, sess): """ :param model: :param saver: :param sess: :return: """ # write graph to tensorboard # tb = tf.summary.FileWriter(os.path.join('logs', 'mini'), sess.graph) prelosses, postlosses, supportaccs, preaccs, postaccs = [], [], [], [], [] best_acc = 0 # train for meta_iteartion epoches for iteration in range(n_iterations): # this is the main op ops = [model.meta_op] # add summary and print op if iteration % 200 == 0: ops.extend([model.summ_op, model.query_losses[0], model.query_losses[-1], model.query_accs[0], model.query_accs[-1] ]) # run all ops result = sess.run(ops) # summary if iteration % 200 == 0: # summ_op # tb.add_summary(result[1], iteration) # query_losses[0] prelosses.append(result[2]) # query_losses[-1] postlosses.append(result[3]) # query_accs[0] preaccs.append(result[4]) # query_accs[-1] postaccs.append(result[5]) # support_acc print(iteration, '\tloss:', np.mean(prelosses), '=>', np.mean(postlosses), '\t\tacc:', np.mean(preaccs), '=>', np.mean(postaccs)) prelosses, postlosses, preaccs, postaccs, supportaccs = [], [], [], [], [] # evaluation if iteration % 2000 == 0: # DO NOT write as a = b = [], in that case a=b # DO NOT use train variable as we have train func already. acc0s, acc1s, acc2s = [], [], [] # sample 20 times to get more accurate statistics. for _ in range(20): acc1, acc2 = sess.run([ model.test_query_accs[0], model.test_query_accs[-1]]) acc1s.append(acc1) acc2s.append(acc2) acc = np.mean(acc2s) print('>>>>\t\tValidation accs::\t ', np.mean(acc1s), acc, 'best:', best_acc, '\t\t<<<<') if acc - best_acc > 0.0: saver.save(sess, os.path.join(ckpt_name, 'maml.mdl')) best_acc = acc print('saved into ckpt:', acc) def test(model, sess): np.random.seed(1) random.seed(1) # repeat test accuracy for 600 times test_accs = [] for i in range(test_problems): if i % 100 == 1: print(i) # extend return None!!! ops = [model.query_preds_probs, model.test_support_acc] ops.extend(model.test_query_accs) result = sess.run(ops) test_accs.append(result[1:]) # [600, steps+1] test_accs = np.array(test_accs) # [steps+1] means = np.mean(test_accs, 0) stds = np.std(test_accs, 0) ci95 = 1.96 * stds * 100 / np.sqrt(test_problems) print('[support_t0, query_t0 - \t\t\tsteps] ') print('mean:', means) print('stds:', stds) print('ci95:', ci95) def main(): training = not args.test multiclass = args.multi # kshot + kquery images per category, nway categories, meta_batchsz tasks. db = DataGenerator(data_source, nway, kshot, kquery, meta_batchsz, pkl_file, data_path, cluster_folder, multiclass, train_problems, test_problems) if training: # only construct training model if needed # get the tensors image_tensor, label_tensor = db.make_data_tensor(training=True) support_x = tf.slice(image_tensor, [0, 0, 0], [-1, nway, -1], name='support_x') query_x = tf.slice(image_tensor, [0, nway, 0], [-1, -1, -1], name='query_x') support_y = tf.slice(label_tensor, [0, 0, 0], [-1, nway, -1], name='support_y') query_y = tf.slice(label_tensor, [0, nway, 0], [-1, -1, -1], name='query_y') # construct test tensors image_tensor, label_tensor = db.make_data_tensor(training=False) support_x_test = tf.slice(image_tensor, [0, 0, 0], [-1, nway, -1], name='support_x_test') query_x_test = tf.slice(image_tensor, [0, nway, 0], [-1, -1, -1], name='query_x_test') support_y_test = tf.slice(label_tensor, [0, 0, 0], [-1, nway, -1], name='support_y_test') query_y_test = tf.slice(label_tensor, [0, nway, 0], [-1, -1, -1], name='query_y_test') # 1. construct MAML model model = MAML(data_source, 2, kshot, kquery, train_lr=train_lr) # construct metatrain_ and metaval_ if training: model.build(support_x, support_y, query_x, query_y, steps, meta_batchsz, mode='train') model.build(support_x_test, support_y_test, query_x_test, query_y_test, steps, meta_batchsz, mode='eval') else: model.build(support_x_test, support_y_test, query_x_test, query_y_test, steps, meta_batchsz, mode='test') model.summ_op = tf.summary.merge_all() all_vars = filter(lambda x: 'meta_optim' not in x.name, tf.trainable_variables()) for p in all_vars: print(p) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.InteractiveSession(config=config) # tf.global_variables() to save moving_mean and moving variance of batch norm # tf.trainable_variables() NOT include moving_mean and moving_variance. saver = tf.train.Saver(tf.global_variables(), max_to_keep=3) # initialize, under interative session tf.global_variables_initializer().run() tf.train.start_queue_runners() if os.path.exists(os.path.join(ckpt_name, 'checkpoint')): # alway load ckpt both train and test. model_file = tf.train.latest_checkpoint(ckpt_name) print("Restoring model weights from ", model_file) saver.restore(sess, model_file) if training: train(model, saver, sess) else: test(model, sess) if __name__ == "__main__": main()
main.py
import os import numpy as np import argparse import random import tensorflow as tf from data_generators.data_generator import DataGenerator from models.maml import MAML parser = argparse.ArgumentParser() parser.add_argument('data_path', metavar='DATA', help='path to data') parser.add_argument('ckpt_name', metavar='CKPT', help='path to checkpoint') parser.add_argument('-ds', '--data_source', default='imagenet', type=str, help='data_source (imagenet or omniglot)') parser.add_argument('-t', '--test', action='store_true', default=False, help='set for test, otherwise train') parser.add_argument('--multi', action='store_true', default=False, help='set for multi-class problems, otherwise binary classification') parser.add_argument('-l', '--train_lr', default=1e-4, type=float, help='train_lr (default=1e-4)') parser.add_argument('-p', '--pkl_file', default='filelist', type=str, help='path to pickle file') parser.add_argument('-cf', '--cluster_folder', default=None, type=str, help='cluster folder w/o root (default=None)') parser.add_argument('--kshot', default=1, type=int, help='# of shots per class (default=1)') parser.add_argument('--kquery', default=1, type=int, help='# of queries per class (default=1)') parser.add_argument('--nway', default=51, type=int, help='# of classes per problem (default=51)') parser.add_argument('--metabatch', default=4, type=int, help='meta batch-size for training (default=4)') parser.add_argument('--steps', default=5, type=int, help='# of gradient steps (default=5)') parser.add_argument('--iter', default=40000, type=int, help='# of training iterations (default=40,000)') parser.add_argument('--train_problems', default=100000, type=int, help='# of training problems (default=100,000)') parser.add_argument('--test_problems', default=600, type=int, help='# of test problems (default=600)') parser.add_argument('-c', '--cuda_id', default="0", type=str, help='cuda ID (default="0")') args = parser.parse_args() data_path = args.data_path data_source = args.data_source ckpt_name = args.ckpt_name cluster_folder = args.cluster_folder train_lr = args.train_lr pkl_file = args.pkl_file kshot = args.kshot kquery = args.kquery nway = args.nway meta_batchsz = args.metabatch steps = args.steps n_iterations = args.iter train_problems = args.train_problems test_problems = args.test_problems cuda_id = args.cuda_id os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = cuda_id def train(model, saver, sess): """ :param model: :param saver: :param sess: :return: """ # write graph to tensorboard # tb = tf.summary.FileWriter(os.path.join('logs', 'mini'), sess.graph) prelosses, postlosses, supportaccs, preaccs, postaccs = [], [], [], [], [] best_acc = 0 # train for meta_iteartion epoches for iteration in range(n_iterations): # this is the main op ops = [model.meta_op] # add summary and print op if iteration % 200 == 0: ops.extend([model.summ_op, model.query_losses[0], model.query_losses[-1], model.query_accs[0], model.query_accs[-1] ]) # run all ops result = sess.run(ops) # summary if iteration % 200 == 0: # summ_op # tb.add_summary(result[1], iteration) # query_losses[0] prelosses.append(result[2]) # query_losses[-1] postlosses.append(result[3]) # query_accs[0] preaccs.append(result[4]) # query_accs[-1] postaccs.append(result[5]) # support_acc print(iteration, '\tloss:', np.mean(prelosses), '=>', np.mean(postlosses), '\t\tacc:', np.mean(preaccs), '=>', np.mean(postaccs)) prelosses, postlosses, preaccs, postaccs, supportaccs = [], [], [], [], [] # evaluation if iteration % 2000 == 0: # DO NOT write as a = b = [], in that case a=b # DO NOT use train variable as we have train func already. acc0s, acc1s, acc2s = [], [], [] # sample 20 times to get more accurate statistics. for _ in range(20): acc1, acc2 = sess.run([ model.test_query_accs[0], model.test_query_accs[-1]]) acc1s.append(acc1) acc2s.append(acc2) acc = np.mean(acc2s) print('>>>>\t\tValidation accs::\t ', np.mean(acc1s), acc, 'best:', best_acc, '\t\t<<<<') if acc - best_acc > 0.0: saver.save(sess, os.path.join(ckpt_name, 'maml.mdl')) best_acc = acc print('saved into ckpt:', acc) def test(model, sess): np.random.seed(1) random.seed(1) # repeat test accuracy for 600 times test_accs = [] for i in range(test_problems): if i % 100 == 1: print(i) # extend return None!!! ops = [model.query_preds_probs, model.test_support_acc] ops.extend(model.test_query_accs) result = sess.run(ops) test_accs.append(result[1:]) # [600, steps+1] test_accs = np.array(test_accs) # [steps+1] means = np.mean(test_accs, 0) stds = np.std(test_accs, 0) ci95 = 1.96 * stds * 100 / np.sqrt(test_problems) print('[support_t0, query_t0 - \t\t\tsteps] ') print('mean:', means) print('stds:', stds) print('ci95:', ci95) def main(): training = not args.test multiclass = args.multi # kshot + kquery images per category, nway categories, meta_batchsz tasks. db = DataGenerator(data_source, nway, kshot, kquery, meta_batchsz, pkl_file, data_path, cluster_folder, multiclass, train_problems, test_problems) if training: # only construct training model if needed # get the tensors image_tensor, label_tensor = db.make_data_tensor(training=True) support_x = tf.slice(image_tensor, [0, 0, 0], [-1, nway, -1], name='support_x') query_x = tf.slice(image_tensor, [0, nway, 0], [-1, -1, -1], name='query_x') support_y = tf.slice(label_tensor, [0, 0, 0], [-1, nway, -1], name='support_y') query_y = tf.slice(label_tensor, [0, nway, 0], [-1, -1, -1], name='query_y') # construct test tensors image_tensor, label_tensor = db.make_data_tensor(training=False) support_x_test = tf.slice(image_tensor, [0, 0, 0], [-1, nway, -1], name='support_x_test') query_x_test = tf.slice(image_tensor, [0, nway, 0], [-1, -1, -1], name='query_x_test') support_y_test = tf.slice(label_tensor, [0, 0, 0], [-1, nway, -1], name='support_y_test') query_y_test = tf.slice(label_tensor, [0, nway, 0], [-1, -1, -1], name='query_y_test') # 1. construct MAML model model = MAML(data_source, 2, kshot, kquery, train_lr=train_lr) # construct metatrain_ and metaval_ if training: model.build(support_x, support_y, query_x, query_y, steps, meta_batchsz, mode='train') model.build(support_x_test, support_y_test, query_x_test, query_y_test, steps, meta_batchsz, mode='eval') else: model.build(support_x_test, support_y_test, query_x_test, query_y_test, steps, meta_batchsz, mode='test') model.summ_op = tf.summary.merge_all() all_vars = filter(lambda x: 'meta_optim' not in x.name, tf.trainable_variables()) for p in all_vars: print(p) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.InteractiveSession(config=config) # tf.global_variables() to save moving_mean and moving variance of batch norm # tf.trainable_variables() NOT include moving_mean and moving_variance. saver = tf.train.Saver(tf.global_variables(), max_to_keep=3) # initialize, under interative session tf.global_variables_initializer().run() tf.train.start_queue_runners() if os.path.exists(os.path.join(ckpt_name, 'checkpoint')): # alway load ckpt both train and test. model_file = tf.train.latest_checkpoint(ckpt_name) print("Restoring model weights from ", model_file) saver.restore(sess, model_file) if training: train(model, saver, sess) else: test(model, sess) if __name__ == "__main__": main()
0.516595
0.132711
"""Client and server classes corresponding to protobuf-defined services.""" import grpc from . import nodes_pb2 as nodes__pb2 class NodesStub(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Create = channel.unary_unary( '/v1.Nodes/Create', request_serializer=nodes__pb2.NodeCreateRequest.SerializeToString, response_deserializer=nodes__pb2.NodeCreateResponse.FromString, ) self.Get = channel.unary_unary( '/v1.Nodes/Get', request_serializer=nodes__pb2.NodeGetRequest.SerializeToString, response_deserializer=nodes__pb2.NodeGetResponse.FromString, ) self.Update = channel.unary_unary( '/v1.Nodes/Update', request_serializer=nodes__pb2.NodeUpdateRequest.SerializeToString, response_deserializer=nodes__pb2.NodeUpdateResponse.FromString, ) self.Delete = channel.unary_unary( '/v1.Nodes/Delete', request_serializer=nodes__pb2.NodeDeleteRequest.SerializeToString, response_deserializer=nodes__pb2.NodeDeleteResponse.FromString, ) self.List = channel.unary_unary( '/v1.Nodes/List', request_serializer=nodes__pb2.NodeListRequest.SerializeToString, response_deserializer=nodes__pb2.NodeListResponse.FromString, ) class NodesServicer(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ def Create(self, request, context): """Create registers a new Node. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Get(self, request, context): """Get reads one Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """Update patches a Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Delete(self, request, context): """Delete removes a Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def List(self, request, context): """List gets a list of Nodes matching a given set of criteria. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_NodesServicer_to_server(servicer, server): rpc_method_handlers = { 'Create': grpc.unary_unary_rpc_method_handler( servicer.Create, request_deserializer=nodes__pb2.NodeCreateRequest.FromString, response_serializer=nodes__pb2.NodeCreateResponse.SerializeToString, ), 'Get': grpc.unary_unary_rpc_method_handler( servicer.Get, request_deserializer=nodes__pb2.NodeGetRequest.FromString, response_serializer=nodes__pb2.NodeGetResponse.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=nodes__pb2.NodeUpdateRequest.FromString, response_serializer=nodes__pb2.NodeUpdateResponse.SerializeToString, ), 'Delete': grpc.unary_unary_rpc_method_handler( servicer.Delete, request_deserializer=nodes__pb2.NodeDeleteRequest.FromString, response_serializer=nodes__pb2.NodeDeleteResponse.SerializeToString, ), 'List': grpc.unary_unary_rpc_method_handler( servicer.List, request_deserializer=nodes__pb2.NodeListRequest.FromString, response_serializer=nodes__pb2.NodeListResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'v1.Nodes', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Nodes(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ @staticmethod def Create(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Create', nodes__pb2.NodeCreateRequest.SerializeToString, nodes__pb2.NodeCreateResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Get(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Get', nodes__pb2.NodeGetRequest.SerializeToString, nodes__pb2.NodeGetResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Update(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Update', nodes__pb2.NodeUpdateRequest.SerializeToString, nodes__pb2.NodeUpdateResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Delete(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Delete', nodes__pb2.NodeDeleteRequest.SerializeToString, nodes__pb2.NodeDeleteResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def List(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/List', nodes__pb2.NodeListRequest.SerializeToString, nodes__pb2.NodeListResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
strongdm/nodes_pb2_grpc.py
"""Client and server classes corresponding to protobuf-defined services.""" import grpc from . import nodes_pb2 as nodes__pb2 class NodesStub(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Create = channel.unary_unary( '/v1.Nodes/Create', request_serializer=nodes__pb2.NodeCreateRequest.SerializeToString, response_deserializer=nodes__pb2.NodeCreateResponse.FromString, ) self.Get = channel.unary_unary( '/v1.Nodes/Get', request_serializer=nodes__pb2.NodeGetRequest.SerializeToString, response_deserializer=nodes__pb2.NodeGetResponse.FromString, ) self.Update = channel.unary_unary( '/v1.Nodes/Update', request_serializer=nodes__pb2.NodeUpdateRequest.SerializeToString, response_deserializer=nodes__pb2.NodeUpdateResponse.FromString, ) self.Delete = channel.unary_unary( '/v1.Nodes/Delete', request_serializer=nodes__pb2.NodeDeleteRequest.SerializeToString, response_deserializer=nodes__pb2.NodeDeleteResponse.FromString, ) self.List = channel.unary_unary( '/v1.Nodes/List', request_serializer=nodes__pb2.NodeListRequest.SerializeToString, response_deserializer=nodes__pb2.NodeListResponse.FromString, ) class NodesServicer(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ def Create(self, request, context): """Create registers a new Node. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Get(self, request, context): """Get reads one Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Update(self, request, context): """Update patches a Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Delete(self, request, context): """Delete removes a Node by ID. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def List(self, request, context): """List gets a list of Nodes matching a given set of criteria. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_NodesServicer_to_server(servicer, server): rpc_method_handlers = { 'Create': grpc.unary_unary_rpc_method_handler( servicer.Create, request_deserializer=nodes__pb2.NodeCreateRequest.FromString, response_serializer=nodes__pb2.NodeCreateResponse.SerializeToString, ), 'Get': grpc.unary_unary_rpc_method_handler( servicer.Get, request_deserializer=nodes__pb2.NodeGetRequest.FromString, response_serializer=nodes__pb2.NodeGetResponse.SerializeToString, ), 'Update': grpc.unary_unary_rpc_method_handler( servicer.Update, request_deserializer=nodes__pb2.NodeUpdateRequest.FromString, response_serializer=nodes__pb2.NodeUpdateResponse.SerializeToString, ), 'Delete': grpc.unary_unary_rpc_method_handler( servicer.Delete, request_deserializer=nodes__pb2.NodeDeleteRequest.FromString, response_serializer=nodes__pb2.NodeDeleteResponse.SerializeToString, ), 'List': grpc.unary_unary_rpc_method_handler( servicer.List, request_deserializer=nodes__pb2.NodeListRequest.FromString, response_serializer=nodes__pb2.NodeListResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'v1.Nodes', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Nodes(object): """Nodes make up the strongDM network, and allow your users to connect securely to your resources. There are two types of nodes: - **Gateways** are the entry points into network. They listen for connection from the strongDM client, and provide access to databases and servers. - **Relays** are used to extend the strongDM network into segmented subnets. They provide access to databases and servers but do not listen for incoming connections. """ @staticmethod def Create(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Create', nodes__pb2.NodeCreateRequest.SerializeToString, nodes__pb2.NodeCreateResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Get(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Get', nodes__pb2.NodeGetRequest.SerializeToString, nodes__pb2.NodeGetResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Update(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Update', nodes__pb2.NodeUpdateRequest.SerializeToString, nodes__pb2.NodeUpdateResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Delete(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/Delete', nodes__pb2.NodeDeleteRequest.SerializeToString, nodes__pb2.NodeDeleteResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def List(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/v1.Nodes/List', nodes__pb2.NodeListRequest.SerializeToString, nodes__pb2.NodeListResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
0.776538
0.288619
import socket import argparse import threading import signal import json import requests import sys import time import traceback from queue import Queue from contextlib import contextmanager CLIENT2SERVER = 1 SERVER2CLIENT = 2 running = True def log(m): print(m, file=sys.stderr) def mitm(buff, direction, shared): hb = "".join("{:02x}".format(c) for c in buff) if direction == CLIENT2SERVER: log("-> %s ->" % hb) elif direction == SERVER2CLIENT: log("<- %s <-" % hb) return buff @contextmanager def ignored(*exceptions): try: yield except exceptions: pass def kill_p(a, b): with ignored(Exception): a.shutdown(socket.SHUT_RDWR) a.close() b.shutdown(socket.SHUT_RDWR) b.close() return def worker(client, server, n, shared): while running: b = "" with ignored(Exception): b = client.recv(4096) if len(b) == 0: kill_p(client, server) return try: b = mitm(b, n, shared) except Exception: pass try: server.send(b) except Exception: pass kill_p(client, server) return kill_p(client, server) return def signal_handler(sn, sf): global running running = False def do_proxy_main(port, remote_host, remote_port): signal.signal(signal.SIGTERM, signal_handler) workers = [] p = None global bank_address global bank_port bank_address = args.s bank_port = args.q try: shared = Queue() p = threading.Thread(target=send_input, args=(args.c, args.d, shared)) p.start() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("0.0.0.0", port)) s.listen(1) print("started") sys.stdout.flush() while running: k, a = s.accept() v = socket.socket(socket.AF_INET, socket.SOCK_STREAM) v.connect((remote_host, remote_port)) t1 = threading.Thread(target=worker, args=(k, v, CLIENT2SERVER, shared)) t2 = threading.Thread(target=worker, args=(v, k, SERVER2CLIENT, shared)) t2.start() t1.start() workers.append((t1, t2, k, v)) except Exception: pass signal_handler(None, None) for t1, t2, k, v in workers: kill_p(k, v) t1.join() t2.join() p.join() return def send_input(host, port, shared): global running while running: try: d = shared.get(block=True, timeout=1) time.sleep(1) r = requests.post("http://" + host + ":" + str(port), data={'REQUEST': json.dumps(d)}) log(r.text) except Exception: pass time.sleep(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Proxy') parser.add_argument('-p', type=int, default=4000, help="listen port") parser.add_argument('-s', type=str, default="127.0.0.1", help="server ip address") parser.add_argument('-q', type=int, default=3000, help="server port") parser.add_argument('-c', type=str, default="127.0.0.1", help="command server") parser.add_argument('-d', type=int, default=5000, help="command port") args = parser.parse_args() do_proxy_main(args.p, args.s, args.q)
attacks/confi_check/mitm.py
import socket import argparse import threading import signal import json import requests import sys import time import traceback from queue import Queue from contextlib import contextmanager CLIENT2SERVER = 1 SERVER2CLIENT = 2 running = True def log(m): print(m, file=sys.stderr) def mitm(buff, direction, shared): hb = "".join("{:02x}".format(c) for c in buff) if direction == CLIENT2SERVER: log("-> %s ->" % hb) elif direction == SERVER2CLIENT: log("<- %s <-" % hb) return buff @contextmanager def ignored(*exceptions): try: yield except exceptions: pass def kill_p(a, b): with ignored(Exception): a.shutdown(socket.SHUT_RDWR) a.close() b.shutdown(socket.SHUT_RDWR) b.close() return def worker(client, server, n, shared): while running: b = "" with ignored(Exception): b = client.recv(4096) if len(b) == 0: kill_p(client, server) return try: b = mitm(b, n, shared) except Exception: pass try: server.send(b) except Exception: pass kill_p(client, server) return kill_p(client, server) return def signal_handler(sn, sf): global running running = False def do_proxy_main(port, remote_host, remote_port): signal.signal(signal.SIGTERM, signal_handler) workers = [] p = None global bank_address global bank_port bank_address = args.s bank_port = args.q try: shared = Queue() p = threading.Thread(target=send_input, args=(args.c, args.d, shared)) p.start() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("0.0.0.0", port)) s.listen(1) print("started") sys.stdout.flush() while running: k, a = s.accept() v = socket.socket(socket.AF_INET, socket.SOCK_STREAM) v.connect((remote_host, remote_port)) t1 = threading.Thread(target=worker, args=(k, v, CLIENT2SERVER, shared)) t2 = threading.Thread(target=worker, args=(v, k, SERVER2CLIENT, shared)) t2.start() t1.start() workers.append((t1, t2, k, v)) except Exception: pass signal_handler(None, None) for t1, t2, k, v in workers: kill_p(k, v) t1.join() t2.join() p.join() return def send_input(host, port, shared): global running while running: try: d = shared.get(block=True, timeout=1) time.sleep(1) r = requests.post("http://" + host + ":" + str(port), data={'REQUEST': json.dumps(d)}) log(r.text) except Exception: pass time.sleep(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Proxy') parser.add_argument('-p', type=int, default=4000, help="listen port") parser.add_argument('-s', type=str, default="127.0.0.1", help="server ip address") parser.add_argument('-q', type=int, default=3000, help="server port") parser.add_argument('-c', type=str, default="127.0.0.1", help="command server") parser.add_argument('-d', type=int, default=5000, help="command port") args = parser.parse_args() do_proxy_main(args.p, args.s, args.q)
0.211498
0.091707
from __future__ import absolute_import, unicode_literals import requests import json import os import sys import urllib reload(sys) sys.setdefaultencoding('utf8') from flask import Flask, request, abort, render_template from wechatpy import parse_message, create_reply from wechatpy.utils import check_signature from wechatpy.exceptions import ( InvalidSignatureException, InvalidAppIdException, ) #send data to iot hardware content="" url="https://api.weixin.qq.com/hardware/mydevice/platform/ctrl_device?access_token=<KEY>" headers={'content-type':'application/json'} datajson={ "device_type": "gh_6064295bfad2", "device_id":"gh_6064295bfad2_d11fafd815c759ba", "user": "oYd-ytwz-EYkcXPb1mo4DmCKaUBw", "services": { "operation_status": { "status": 1 } }, "data": "" } # set token or get from environments TOKEN = os.getenv('WECHAT_TOKEN', '<PASSWORD>') AES_KEY = os.getenv('WECHAT_AES_KEY', 'a636227739200a71b1ec76be9e5bec81') APPID = os.getenv('WECHAT_APPID', 'wxc7ffbe44cacb90d0') app = Flask(__name__) def fetch_app_access_token(app_id, app_secret): resp = urllib.urlopen( 'https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid='+app_id + '&secret=' + app_secret) if resp.getcode() == 200: resp_body=resp.read() token=json.loads(resp_body.decode('utf-8'))['access_token'] global url url='https://api.weixin.qq.com/hardware/mydevice/platform/ctrl_device?access_token='+token print('fetch token update '+url) return resp.read() else: return None def fixup(adict,k,v): for key in adict.keys(): if key==k: adict[key]=v elif type(adict[key]) is dict: fixup(adict[key],k,v) @app.route('/') def index(): host = request.url_root return render_template('index.html', host=host) @app.route('/wechat', methods=['GET', 'POST']) def wechat(): signature = request.args.get('signature', '') timestamp = request.args.get('timestamp', '') nonce = request.args.get('nonce', '') encrypt_type = request.args.get('encrypt_type', 'raw') msg_signature = request.args.get('msg_signature', '') try: check_signature(TOKEN, signature, timestamp, nonce) except InvalidSignatureException: abort(403) if request.method == 'GET': echo_str = request.args.get('echostr', '') return echo_str # POST request if encrypt_type == 'raw': # plaintext mode print("msg content "+request.data) msg = parse_message(request.data) if msg.type == 'text': print('msg_content:', msg.content ) datacontent=json.loads(json.dumps(datajson)) fixup(datacontent,'data',msg.content.decode('unicode_escape')) r=requests.post(url,json.dumps(datacontent)) print('push to iot device'+r.text) if "errmsg" in r.text: if json.loads(r.text)['errmsg']=='access_token expired' or 'access_token' in json.loads(r.text)['errmsg']: fetch_app_access_token('<KEY>','a636227739200a71b1ec76be9e5bec81') r=requests.post(url,json.dumps(datacontent)) print('again push to iot device'+r.text+'url:'+url) reply = create_reply(msg.content, msg) elif msg.type=='voice': print('voice message '+str(msg.media_id)+ 'voice message '+str(msg.format)+'voice recognition '+str(msg.recognition)) data='{\"msg_type\":voice,\"media_id+\":'+msg.media_id+',\"format\":'+msg.format+'}' datacontent=json.loads(json.dumps(datajson)) fixup(datacontent,'data',data) r=requests.post(url,json.dumps(datacontent)) print('voice to iot device'+r.text) if "errmsg" in r.text: if json.loads(r.text)['errmsg']=='access_token expired': fetch_app_access_token('<KEY>','a636227739200a71b1ec76be9e5bec81') r=requests.post(url,json.dumps(datacontent)) print('again push to iot device'+r.text+'url:'+url) reply=create_reply('voice message',msg) else: reply = create_reply('Sorry, can not handle this for now', msg) return reply.render() else: # encryption mode from wechatpy.crypto import WeChatCrypto crypto = WeChatCrypto(TOKEN, AES_KEY, APPID) try: msg = crypto.decrypt_message( request.data, msg_signature, timestamp, nonce ) except (InvalidSignatureException, InvalidAppIdException): abort(403) else: msg = parse_message(msg) if msg.type == 'text': reply = create_reply(msg.content, msg) else: reply = create_reply('Sorry, can not handle this for now', msg) return crypto.encrypt_message(reply.render(), nonce, timestamp) if __name__ == '__main__': app.run('192.168.127.12',80, debug=True)
examples/echo/app.py
from __future__ import absolute_import, unicode_literals import requests import json import os import sys import urllib reload(sys) sys.setdefaultencoding('utf8') from flask import Flask, request, abort, render_template from wechatpy import parse_message, create_reply from wechatpy.utils import check_signature from wechatpy.exceptions import ( InvalidSignatureException, InvalidAppIdException, ) #send data to iot hardware content="" url="https://api.weixin.qq.com/hardware/mydevice/platform/ctrl_device?access_token=<KEY>" headers={'content-type':'application/json'} datajson={ "device_type": "gh_6064295bfad2", "device_id":"gh_6064295bfad2_d11fafd815c759ba", "user": "oYd-ytwz-EYkcXPb1mo4DmCKaUBw", "services": { "operation_status": { "status": 1 } }, "data": "" } # set token or get from environments TOKEN = os.getenv('WECHAT_TOKEN', '<PASSWORD>') AES_KEY = os.getenv('WECHAT_AES_KEY', 'a636227739200a71b1ec76be9e5bec81') APPID = os.getenv('WECHAT_APPID', 'wxc7ffbe44cacb90d0') app = Flask(__name__) def fetch_app_access_token(app_id, app_secret): resp = urllib.urlopen( 'https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid='+app_id + '&secret=' + app_secret) if resp.getcode() == 200: resp_body=resp.read() token=json.loads(resp_body.decode('utf-8'))['access_token'] global url url='https://api.weixin.qq.com/hardware/mydevice/platform/ctrl_device?access_token='+token print('fetch token update '+url) return resp.read() else: return None def fixup(adict,k,v): for key in adict.keys(): if key==k: adict[key]=v elif type(adict[key]) is dict: fixup(adict[key],k,v) @app.route('/') def index(): host = request.url_root return render_template('index.html', host=host) @app.route('/wechat', methods=['GET', 'POST']) def wechat(): signature = request.args.get('signature', '') timestamp = request.args.get('timestamp', '') nonce = request.args.get('nonce', '') encrypt_type = request.args.get('encrypt_type', 'raw') msg_signature = request.args.get('msg_signature', '') try: check_signature(TOKEN, signature, timestamp, nonce) except InvalidSignatureException: abort(403) if request.method == 'GET': echo_str = request.args.get('echostr', '') return echo_str # POST request if encrypt_type == 'raw': # plaintext mode print("msg content "+request.data) msg = parse_message(request.data) if msg.type == 'text': print('msg_content:', msg.content ) datacontent=json.loads(json.dumps(datajson)) fixup(datacontent,'data',msg.content.decode('unicode_escape')) r=requests.post(url,json.dumps(datacontent)) print('push to iot device'+r.text) if "errmsg" in r.text: if json.loads(r.text)['errmsg']=='access_token expired' or 'access_token' in json.loads(r.text)['errmsg']: fetch_app_access_token('<KEY>','a636227739200a71b1ec76be9e5bec81') r=requests.post(url,json.dumps(datacontent)) print('again push to iot device'+r.text+'url:'+url) reply = create_reply(msg.content, msg) elif msg.type=='voice': print('voice message '+str(msg.media_id)+ 'voice message '+str(msg.format)+'voice recognition '+str(msg.recognition)) data='{\"msg_type\":voice,\"media_id+\":'+msg.media_id+',\"format\":'+msg.format+'}' datacontent=json.loads(json.dumps(datajson)) fixup(datacontent,'data',data) r=requests.post(url,json.dumps(datacontent)) print('voice to iot device'+r.text) if "errmsg" in r.text: if json.loads(r.text)['errmsg']=='access_token expired': fetch_app_access_token('<KEY>','a636227739200a71b1ec76be9e5bec81') r=requests.post(url,json.dumps(datacontent)) print('again push to iot device'+r.text+'url:'+url) reply=create_reply('voice message',msg) else: reply = create_reply('Sorry, can not handle this for now', msg) return reply.render() else: # encryption mode from wechatpy.crypto import WeChatCrypto crypto = WeChatCrypto(TOKEN, AES_KEY, APPID) try: msg = crypto.decrypt_message( request.data, msg_signature, timestamp, nonce ) except (InvalidSignatureException, InvalidAppIdException): abort(403) else: msg = parse_message(msg) if msg.type == 'text': reply = create_reply(msg.content, msg) else: reply = create_reply('Sorry, can not handle this for now', msg) return crypto.encrypt_message(reply.render(), nonce, timestamp) if __name__ == '__main__': app.run('192.168.127.12',80, debug=True)
0.20091
0.0584
import logging import os import time from core.results_processor import util from core.tbmv3 import trace_processor from tracing.metrics import metric_runner # Aggregated TBMv2 trace is saved under this name. HTML_TRACE_NAME = 'trace.html' # Concatenated proto trace is saved under this name. CONCATENATED_PROTO_NAME = 'trace.pb' def _RunMetric(test_result, metrics): html_trace = test_result['outputArtifacts'][HTML_TRACE_NAME] html_local_path = html_trace['filePath'] html_remote_url = html_trace.get('viewUrl') # The timeout needs to be coordinated with the Swarming IO timeout for the # task that runs this code. If this timeout is longer or close in length # to the swarming IO timeout then we risk being forcibly killed for not # producing any output. Note that this could be fixed by periodically # outputting logs while waiting for metrics to be calculated. TEN_MINUTES = 60 * 10 mre_result = metric_runner.RunMetricOnSingleTrace( html_local_path, metrics, canonical_url=html_remote_url, timeout=TEN_MINUTES, extra_import_options={'trackDetailedModelStats': True}) if mre_result.failures: util.SetUnexpectedFailure(test_result) for f in mre_result.failures: logging.error('Failure recorded for test %s: %s', test_result['testPath'], f) return mre_result.pairs.get('histograms', []) def ComputeTBMv2Metrics(test_result): """Compute metrics on aggregated traces in parallel. For each test run that has an aggregate trace and some TBMv2 metrics listed in its tags, compute the metrics and return the list of all resulting histograms. """ artifacts = test_result.get('outputArtifacts', {}) if test_result['status'] == 'SKIP': return metrics = [tag['value'] for tag in test_result.get('tags', []) if tag['key'] == 'tbmv2'] if not metrics: logging.debug('%s: No TBMv2 metrics specified.', test_result['testPath']) return if HTML_TRACE_NAME not in artifacts: util.SetUnexpectedFailure(test_result) logging.error('%s: No traces to compute metrics on.', test_result['testPath']) return trace_size_in_mib = (os.path.getsize(artifacts[HTML_TRACE_NAME]['filePath']) / (2 ** 20)) # Bails out on traces that are too big. See crbug.com/812631 for more # details. if trace_size_in_mib > 400: util.SetUnexpectedFailure(test_result) logging.error('%s: Trace size is too big: %s MiB', test_result['testPath'], trace_size_in_mib) return start = time.time() test_result['_histograms'].ImportDicts(_RunMetric(test_result, metrics)) logging.info('%s: Computing TBMv2 metrics took %.3f seconds.' % ( test_result['testPath'], time.time() - start)) def ComputeTBMv3Metrics(test_result, trace_processor_path, fetch_power_profile=False): artifacts = test_result.get('outputArtifacts', {}) if test_result['status'] == 'SKIP': return metrics = [tag['value'] for tag in test_result.get('tags', []) if tag['key'] == 'tbmv3'] if not metrics: logging.debug('%s: No TBMv3 metrics specified.', test_result['testPath']) return if CONCATENATED_PROTO_NAME not in artifacts: # TODO(crbug.com/990304): This is only a warning now, because proto trace # generation is enabled only on selected bots. Make this an error # when Telemetry is switched over to proto trace generation everywhere. # Also don't forget to call util.SetUnexpectedFailure(test_result). logging.warning('%s: No proto traces to compute metrics on.', test_result['testPath']) return start = time.time() for metric in metrics: histograms = trace_processor.RunMetric( trace_processor_path, artifacts[CONCATENATED_PROTO_NAME]['filePath'], metric, fetch_power_profile) test_result['_histograms'].Merge(histograms) logging.info('%s: Computing TBMv3 metrics took %.3f seconds.' % ( test_result['testPath'], time.time() - start))
tools/perf/core/results_processor/compute_metrics.py
import logging import os import time from core.results_processor import util from core.tbmv3 import trace_processor from tracing.metrics import metric_runner # Aggregated TBMv2 trace is saved under this name. HTML_TRACE_NAME = 'trace.html' # Concatenated proto trace is saved under this name. CONCATENATED_PROTO_NAME = 'trace.pb' def _RunMetric(test_result, metrics): html_trace = test_result['outputArtifacts'][HTML_TRACE_NAME] html_local_path = html_trace['filePath'] html_remote_url = html_trace.get('viewUrl') # The timeout needs to be coordinated with the Swarming IO timeout for the # task that runs this code. If this timeout is longer or close in length # to the swarming IO timeout then we risk being forcibly killed for not # producing any output. Note that this could be fixed by periodically # outputting logs while waiting for metrics to be calculated. TEN_MINUTES = 60 * 10 mre_result = metric_runner.RunMetricOnSingleTrace( html_local_path, metrics, canonical_url=html_remote_url, timeout=TEN_MINUTES, extra_import_options={'trackDetailedModelStats': True}) if mre_result.failures: util.SetUnexpectedFailure(test_result) for f in mre_result.failures: logging.error('Failure recorded for test %s: %s', test_result['testPath'], f) return mre_result.pairs.get('histograms', []) def ComputeTBMv2Metrics(test_result): """Compute metrics on aggregated traces in parallel. For each test run that has an aggregate trace and some TBMv2 metrics listed in its tags, compute the metrics and return the list of all resulting histograms. """ artifacts = test_result.get('outputArtifacts', {}) if test_result['status'] == 'SKIP': return metrics = [tag['value'] for tag in test_result.get('tags', []) if tag['key'] == 'tbmv2'] if not metrics: logging.debug('%s: No TBMv2 metrics specified.', test_result['testPath']) return if HTML_TRACE_NAME not in artifacts: util.SetUnexpectedFailure(test_result) logging.error('%s: No traces to compute metrics on.', test_result['testPath']) return trace_size_in_mib = (os.path.getsize(artifacts[HTML_TRACE_NAME]['filePath']) / (2 ** 20)) # Bails out on traces that are too big. See crbug.com/812631 for more # details. if trace_size_in_mib > 400: util.SetUnexpectedFailure(test_result) logging.error('%s: Trace size is too big: %s MiB', test_result['testPath'], trace_size_in_mib) return start = time.time() test_result['_histograms'].ImportDicts(_RunMetric(test_result, metrics)) logging.info('%s: Computing TBMv2 metrics took %.3f seconds.' % ( test_result['testPath'], time.time() - start)) def ComputeTBMv3Metrics(test_result, trace_processor_path, fetch_power_profile=False): artifacts = test_result.get('outputArtifacts', {}) if test_result['status'] == 'SKIP': return metrics = [tag['value'] for tag in test_result.get('tags', []) if tag['key'] == 'tbmv3'] if not metrics: logging.debug('%s: No TBMv3 metrics specified.', test_result['testPath']) return if CONCATENATED_PROTO_NAME not in artifacts: # TODO(crbug.com/990304): This is only a warning now, because proto trace # generation is enabled only on selected bots. Make this an error # when Telemetry is switched over to proto trace generation everywhere. # Also don't forget to call util.SetUnexpectedFailure(test_result). logging.warning('%s: No proto traces to compute metrics on.', test_result['testPath']) return start = time.time() for metric in metrics: histograms = trace_processor.RunMetric( trace_processor_path, artifacts[CONCATENATED_PROTO_NAME]['filePath'], metric, fetch_power_profile) test_result['_histograms'].Merge(histograms) logging.info('%s: Computing TBMv3 metrics took %.3f seconds.' % ( test_result['testPath'], time.time() - start))
0.438785
0.118947
import pytest import smbclient._pool as pool from smbprotocol.exceptions import ( InvalidParameter, ) from .conftest import ( DOMAIN_NAME, DOMAIN_REFERRAL, ) @pytest.fixture() def reset_config(): config = pool.ClientConfig() client_guid = config.client_guid username = config.username password = config.password domain_controller = config.domain_controller skip_dfs = config.skip_dfs yield config.set(client_guid=client_guid, username=username, password=password, skip_dfs=skip_dfs, domain_controller=domain_controller) config._domain_cache = [] config._referral_cache = [] def test_client_config_private_key(reset_config): with pytest.raises(ValueError, match='Cannot set private attribute _domain_controller'): pool.ClientConfig().set(_domain_controller='test') def test_set_config_option(reset_config): pool.ClientConfig(username='test') assert pool.ClientConfig().username == 'test' pool.ClientConfig(username=None) assert not pool.ClientConfig().username def test_config_domain_cache(reset_config, monkeypatch, mocker): dfs_mock = mocker.MagicMock() dfs_mock.return_value = DOMAIN_REFERRAL monkeypatch.setattr(pool, 'get_smb_tree', mocker.MagicMock()) monkeypatch.setattr(pool, 'dfs_request', dfs_mock) config = pool.ClientConfig() domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral is None config.domain_controller = DOMAIN_NAME domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral.domain_name == '\\%s' % DOMAIN_NAME assert dfs_mock.call_count == 1 assert dfs_mock.call_args[0][1] == u'' def test_config_domain_cache_not_dfs_endpoint(reset_config, monkeypatch, mocker): dfs_mock = mocker.MagicMock() dfs_mock.side_effect = InvalidParameter() warning_mock = mocker.MagicMock() monkeypatch.setattr(pool, 'get_smb_tree', mocker.MagicMock()) monkeypatch.setattr(pool, 'dfs_request', dfs_mock) monkeypatch.setattr(pool.log, 'warning', warning_mock) config = pool.ClientConfig() config.domain_controller = DOMAIN_NAME domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral is None assert warning_mock.call_count == 1 assert 'cannot use as DFS domain cache source' in warning_mock.call_args[0][0] def test_reset_connection_error_fail(mocker): connection_mock = mocker.MagicMock() connection_mock.disconnect.side_effect = Exception("exception") with pytest.raises(Exception, match="exception"): pool.reset_connection_cache(connection_cache={'conn': connection_mock}) def test_reset_connection_error_warning(monkeypatch, mocker): connection_mock = mocker.MagicMock() connection_mock.disconnect.side_effect = Exception("exception") warning_mock = mocker.MagicMock() monkeypatch.setattr(pool.warnings, 'warn', warning_mock) pool.reset_connection_cache(fail_on_error=False, connection_cache={'conn': connection_mock}) assert warning_mock.call_count == 1 assert warning_mock.call_args[0][0] == 'Failed to close connection conn: exception'
tests/test_smbclient_pool.py
import pytest import smbclient._pool as pool from smbprotocol.exceptions import ( InvalidParameter, ) from .conftest import ( DOMAIN_NAME, DOMAIN_REFERRAL, ) @pytest.fixture() def reset_config(): config = pool.ClientConfig() client_guid = config.client_guid username = config.username password = config.password domain_controller = config.domain_controller skip_dfs = config.skip_dfs yield config.set(client_guid=client_guid, username=username, password=password, skip_dfs=skip_dfs, domain_controller=domain_controller) config._domain_cache = [] config._referral_cache = [] def test_client_config_private_key(reset_config): with pytest.raises(ValueError, match='Cannot set private attribute _domain_controller'): pool.ClientConfig().set(_domain_controller='test') def test_set_config_option(reset_config): pool.ClientConfig(username='test') assert pool.ClientConfig().username == 'test' pool.ClientConfig(username=None) assert not pool.ClientConfig().username def test_config_domain_cache(reset_config, monkeypatch, mocker): dfs_mock = mocker.MagicMock() dfs_mock.return_value = DOMAIN_REFERRAL monkeypatch.setattr(pool, 'get_smb_tree', mocker.MagicMock()) monkeypatch.setattr(pool, 'dfs_request', dfs_mock) config = pool.ClientConfig() domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral is None config.domain_controller = DOMAIN_NAME domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral.domain_name == '\\%s' % DOMAIN_NAME assert dfs_mock.call_count == 1 assert dfs_mock.call_args[0][1] == u'' def test_config_domain_cache_not_dfs_endpoint(reset_config, monkeypatch, mocker): dfs_mock = mocker.MagicMock() dfs_mock.side_effect = InvalidParameter() warning_mock = mocker.MagicMock() monkeypatch.setattr(pool, 'get_smb_tree', mocker.MagicMock()) monkeypatch.setattr(pool, 'dfs_request', dfs_mock) monkeypatch.setattr(pool.log, 'warning', warning_mock) config = pool.ClientConfig() config.domain_controller = DOMAIN_NAME domain_referral = config.lookup_domain(DOMAIN_NAME) assert domain_referral is None assert warning_mock.call_count == 1 assert 'cannot use as DFS domain cache source' in warning_mock.call_args[0][0] def test_reset_connection_error_fail(mocker): connection_mock = mocker.MagicMock() connection_mock.disconnect.side_effect = Exception("exception") with pytest.raises(Exception, match="exception"): pool.reset_connection_cache(connection_cache={'conn': connection_mock}) def test_reset_connection_error_warning(monkeypatch, mocker): connection_mock = mocker.MagicMock() connection_mock.disconnect.side_effect = Exception("exception") warning_mock = mocker.MagicMock() monkeypatch.setattr(pool.warnings, 'warn', warning_mock) pool.reset_connection_cache(fail_on_error=False, connection_cache={'conn': connection_mock}) assert warning_mock.call_count == 1 assert warning_mock.call_args[0][0] == 'Failed to close connection conn: exception'
0.533397
0.127625
import unittest from collections import OrderedDict import numpy as np import oneflow.experimental as flow from test_util import GenArgList dummy_val = np.random.randn(2, 3) in_val = np.full((2, 3), -2) cpu0_device = flow.device("cpu") gpu0_device = flow.device("cuda") class DummyModule(flow.nn.Module): def __init__(self): super().__init__() self.register_buffer("dummy_buf", flow.Tensor(dummy_val)) self.dummy_para = flow.nn.Parameter(flow.Tensor(dummy_val)) def forward(self, x): return (self.dummy_para * x) + self.dummy_buf def _test_dummy_module(test_case): m = DummyModule() test_case.assertEqual(m.dummy_buf.device, cpu0_device) test_case.assertEqual(m.dummy_para.device, cpu0_device) input = flow.Tensor(in_val) output = m(input) test_case.assertTrue(np.allclose(output.numpy(), -dummy_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertEqual(m.dummy_para.grad, None) test_case.assertEqual(input.device, cpu0_device) test_case.assertEqual(output.device, cpu0_device) def _test_dummy_module_to(test_case): m = DummyModule() test_case.assertEqual(m.dummy_buf.device, cpu0_device) test_case.assertEqual(m.dummy_para.device, cpu0_device) # test to m.to(gpu0_device) test_case.assertEqual(m.dummy_buf.device, gpu0_device) test_case.assertTrue(m.dummy_buf.is_leaf) test_case.assertTrue(not m.dummy_buf.requires_grad) test_case.assertEqual(m.dummy_para.device, gpu0_device) test_case.assertTrue(m.dummy_para.is_leaf) test_case.assertTrue(m.dummy_para.requires_grad) input = flow.Tensor(in_val).to(gpu0_device) output = m(input) test_case.assertTrue(np.allclose(output.numpy(), -dummy_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertEqual(m.dummy_para.grad, None) test_case.assertEqual(input.device, gpu0_device) test_case.assertEqual(output.device, gpu0_device) # test to with backward output_grad = flow.ones((2, 3)).to(gpu0_device) output.backward(output_grad) test_case.assertEqual(output_grad.device, gpu0_device) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertTrue(np.allclose(m.dummy_para.grad.numpy(), in_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_para.grad.device, gpu0_device) @unittest.skipIf( not flow.unittest.env.eager_execution_enabled(), ".numpy() doesn't work in lazy mode", ) class TestModuleTo(flow.unittest.TestCase): def test_module_to(test_case): arg_dict = OrderedDict() arg_dict["test_fun"] = [ _test_dummy_module, _test_dummy_module_to, ] for arg in GenArgList(arg_dict): arg[0](test_case, *arg[1:]) if __name__ == "__main__": unittest.main()
oneflow/python/test/modules/test_module_to.py
import unittest from collections import OrderedDict import numpy as np import oneflow.experimental as flow from test_util import GenArgList dummy_val = np.random.randn(2, 3) in_val = np.full((2, 3), -2) cpu0_device = flow.device("cpu") gpu0_device = flow.device("cuda") class DummyModule(flow.nn.Module): def __init__(self): super().__init__() self.register_buffer("dummy_buf", flow.Tensor(dummy_val)) self.dummy_para = flow.nn.Parameter(flow.Tensor(dummy_val)) def forward(self, x): return (self.dummy_para * x) + self.dummy_buf def _test_dummy_module(test_case): m = DummyModule() test_case.assertEqual(m.dummy_buf.device, cpu0_device) test_case.assertEqual(m.dummy_para.device, cpu0_device) input = flow.Tensor(in_val) output = m(input) test_case.assertTrue(np.allclose(output.numpy(), -dummy_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertEqual(m.dummy_para.grad, None) test_case.assertEqual(input.device, cpu0_device) test_case.assertEqual(output.device, cpu0_device) def _test_dummy_module_to(test_case): m = DummyModule() test_case.assertEqual(m.dummy_buf.device, cpu0_device) test_case.assertEqual(m.dummy_para.device, cpu0_device) # test to m.to(gpu0_device) test_case.assertEqual(m.dummy_buf.device, gpu0_device) test_case.assertTrue(m.dummy_buf.is_leaf) test_case.assertTrue(not m.dummy_buf.requires_grad) test_case.assertEqual(m.dummy_para.device, gpu0_device) test_case.assertTrue(m.dummy_para.is_leaf) test_case.assertTrue(m.dummy_para.requires_grad) input = flow.Tensor(in_val).to(gpu0_device) output = m(input) test_case.assertTrue(np.allclose(output.numpy(), -dummy_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertEqual(m.dummy_para.grad, None) test_case.assertEqual(input.device, gpu0_device) test_case.assertEqual(output.device, gpu0_device) # test to with backward output_grad = flow.ones((2, 3)).to(gpu0_device) output.backward(output_grad) test_case.assertEqual(output_grad.device, gpu0_device) test_case.assertEqual(m.dummy_buf.grad, None) test_case.assertTrue(np.allclose(m.dummy_para.grad.numpy(), in_val, 1e-4, 1e-4)) test_case.assertEqual(m.dummy_para.grad.device, gpu0_device) @unittest.skipIf( not flow.unittest.env.eager_execution_enabled(), ".numpy() doesn't work in lazy mode", ) class TestModuleTo(flow.unittest.TestCase): def test_module_to(test_case): arg_dict = OrderedDict() arg_dict["test_fun"] = [ _test_dummy_module, _test_dummy_module_to, ] for arg in GenArgList(arg_dict): arg[0](test_case, *arg[1:]) if __name__ == "__main__": unittest.main()
0.661595
0.716746
# pylint:disable=redefined-outer-name import numpy as np import pytest from pyei import GoodmansER @pytest.fixture def group_and_vote_fractions(): """Sample group and vote fractions, where every member of the demographic group votes for the given candidate and every non-member of the demographic group does not vote for the given candidate. """ group_share = np.array([0, 0.2, 0.4, 0.6, 0.8]) vote_share = np.array([0, 0.2, 0.4, 0.6, 0.8]) return group_share, vote_share @pytest.fixture def group_and_vote_fractions_with_pop(): """Sample group and vote fractions, where every member of the demographic group votes for the given candidate and 10% of the demographic group's complement supports the given candidate (i.e., slope = 1, intercept = 0.1), with an exception of one precinct. All precincts have population 1000, except one precinct that has population 1 and does not follow the above formula. """ group_share = np.array([0, 0.2, 0.4, 0.6, 0.8, 0.9]) vote_share = np.array([0.1, 0.3, 0.5, 0.7, 0.9, 0.9]) populations = np.array([1000, 1000, 1000, 1000, 1000, 1]) return group_share, vote_share, populations def test_fit(group_and_vote_fractions): model = GoodmansER() group_share, vote_share = group_and_vote_fractions model.fit(group_share, vote_share) np.testing.assert_almost_equal(model.intercept_, 0) np.testing.assert_almost_equal(model.slope_, 1) def test_weighted_fit(group_and_vote_fractions_with_pop): model = GoodmansER(is_weighted_regression=True) group_share, vote_share, pops = group_and_vote_fractions_with_pop model.fit(group_share, vote_share, pops) np.testing.assert_almost_equal(model.intercept_, 0.1, decimal=3) np.testing.assert_almost_equal(model.slope_, 1, decimal=3) def test_summary(): model = GoodmansER() model.demographic_group_name = "Trees" model.candidate_name = "Lorax" model.voting_prefs_est_ = 1.0 model.voting_prefs_complement_est_ = 0.0 expected_summary = """Goodmans ER Est. fraction of Trees voters who voted for Lorax is 1.000 Est. fraction of non- Trees voters who voted for Lorax is 0.000 """ assert model.summary() == expected_summary model.is_weighted_regression = True expected_summary = """Goodmans ER, weighted by population Est. fraction of Trees voters who voted for Lorax is 1.000 Est. fraction of non- Trees voters who voted for Lorax is 0.000 """ assert model.summary() == expected_summary def test_plot(group_and_vote_fractions): model = GoodmansER() group_share, vote_share = group_and_vote_fractions model.fit(group_share, vote_share) _, ax = model.plot() x_plot, y_plot = ax.lines[0].get_xydata().T np.testing.assert_allclose(x_plot, y_plot, atol=1e-10) assert (0.0, 1.0) == ax.get_xlim() assert (0.0, 1.0) == ax.get_ylim()
test/test_goodmans_er.py
# pylint:disable=redefined-outer-name import numpy as np import pytest from pyei import GoodmansER @pytest.fixture def group_and_vote_fractions(): """Sample group and vote fractions, where every member of the demographic group votes for the given candidate and every non-member of the demographic group does not vote for the given candidate. """ group_share = np.array([0, 0.2, 0.4, 0.6, 0.8]) vote_share = np.array([0, 0.2, 0.4, 0.6, 0.8]) return group_share, vote_share @pytest.fixture def group_and_vote_fractions_with_pop(): """Sample group and vote fractions, where every member of the demographic group votes for the given candidate and 10% of the demographic group's complement supports the given candidate (i.e., slope = 1, intercept = 0.1), with an exception of one precinct. All precincts have population 1000, except one precinct that has population 1 and does not follow the above formula. """ group_share = np.array([0, 0.2, 0.4, 0.6, 0.8, 0.9]) vote_share = np.array([0.1, 0.3, 0.5, 0.7, 0.9, 0.9]) populations = np.array([1000, 1000, 1000, 1000, 1000, 1]) return group_share, vote_share, populations def test_fit(group_and_vote_fractions): model = GoodmansER() group_share, vote_share = group_and_vote_fractions model.fit(group_share, vote_share) np.testing.assert_almost_equal(model.intercept_, 0) np.testing.assert_almost_equal(model.slope_, 1) def test_weighted_fit(group_and_vote_fractions_with_pop): model = GoodmansER(is_weighted_regression=True) group_share, vote_share, pops = group_and_vote_fractions_with_pop model.fit(group_share, vote_share, pops) np.testing.assert_almost_equal(model.intercept_, 0.1, decimal=3) np.testing.assert_almost_equal(model.slope_, 1, decimal=3) def test_summary(): model = GoodmansER() model.demographic_group_name = "Trees" model.candidate_name = "Lorax" model.voting_prefs_est_ = 1.0 model.voting_prefs_complement_est_ = 0.0 expected_summary = """Goodmans ER Est. fraction of Trees voters who voted for Lorax is 1.000 Est. fraction of non- Trees voters who voted for Lorax is 0.000 """ assert model.summary() == expected_summary model.is_weighted_regression = True expected_summary = """Goodmans ER, weighted by population Est. fraction of Trees voters who voted for Lorax is 1.000 Est. fraction of non- Trees voters who voted for Lorax is 0.000 """ assert model.summary() == expected_summary def test_plot(group_and_vote_fractions): model = GoodmansER() group_share, vote_share = group_and_vote_fractions model.fit(group_share, vote_share) _, ax = model.plot() x_plot, y_plot = ax.lines[0].get_xydata().T np.testing.assert_allclose(x_plot, y_plot, atol=1e-10) assert (0.0, 1.0) == ax.get_xlim() assert (0.0, 1.0) == ax.get_ylim()
0.726717
0.696023
import os import json import boto3 from boto3.dynamodb.conditions import Key, Attr from policy import MFAuth application = os.environ['application'] environment = os.environ['environment'] apps_table_name = '{}-{}-apps'.format(application, environment) schema_table_name = '{}-{}-schema'.format(application, environment) waves_table_name = '{}-{}-waves'.format(application, environment) servers_table_name = '{}-{}-servers'.format(application, environment) apps_table = boto3.resource('dynamodb').Table(apps_table_name) schema_table = boto3.resource('dynamodb').Table(schema_table_name) waves_table = boto3.resource('dynamodb').Table(waves_table_name) servers_table = boto3.resource('dynamodb').Table(servers_table_name) def lambda_handler(event, context): if event['httpMethod'] == 'GET': resp = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) if 'Item' in resp: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps(resp['Item'])} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} elif event['httpMethod'] == 'PUT': auth = MFAuth() authResponse = auth.getUserAttributePolicy(event) if authResponse['action'] == 'allow': try: body = json.loads(event['body']) app_attributes = [] if "app_id" in body: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': "You cannot modify app_id, this is managed by the system"} # check if app id exist existing_attr = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) print(existing_attr) if 'Item' not in existing_attr: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} # Validate Wave_id if 'wave_id' in body: waves = waves_table.scan() check = False for wave in waves['Items']: if wave['wave_id'] == str(body['wave_id']): check = True if check == False: message = 'wave Id: ' + body['wave_id'] + ' does not exist' return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Check if there is a duplicate app_name apps = apps_table.scan() for app in apps['Items']: if 'app_name' in body: if app['app_name'].lower() == str(body['app_name']).lower() and app['app_id'] != str(event['pathParameters']['appid']): return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app_name: ' + body['app_name'] + ' already exist'} # Check if attribute is defined in the App schema for app_schema in schema_table.scan()['Items']: if app_schema['schema_name'] == "app": app_attributes = app_schema['attributes'] for key in body.keys(): check = False for attribute in app_attributes: if key == attribute['name']: check = True if check == False: message = "App attribute: " + key + " is not defined in the App schema" return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Check if attribute in the body matches the list value defined in schema for attribute in app_attributes: if 'listvalue' in attribute: listvalue = attribute['listvalue'].split(',') for key in body.keys(): if key == attribute['name']: if body[key] not in listvalue: message = "App attribute " + key + " for app " + body['app_name'] + " is '" + body[key] + "', does not match the list values '" + attribute['listvalue'] + "' defined in the App schema" return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Merge new attributes with existing one for key in body.keys(): existing_attr['Item'][key] = body[key] print(existing_attr) resp = apps_table.put_item( Item=existing_attr['Item'] ) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps(resp)} except Exception as e: print(e) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'malformed json input'} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 401, 'body': json.dumps(authResponse)} elif event['httpMethod'] == 'DELETE': auth = MFAuth() authResponse = auth.getUserResourceCrationPolicy(event) if authResponse['action'] == 'allow': resp = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) if 'Item' in resp: respdel = apps_table.delete_item(Key={'app_id': event['pathParameters']['appid']}) if respdel['ResponseMetadata']['HTTPStatusCode'] == 200: # Remove App Id from servers servers = servers_table.query( IndexName='app_id-index', KeyConditionExpression=Key('app_id').eq(event['pathParameters']['appid']) ) if servers['Count'] is not 0: serverids = [] for server in servers['Items']: serverids.append(str(server['server_id'])) for id in serverids: serverattr = servers_table.get_item(Key={'server_id': id}) del serverattr['Item']['app_id'] serverupdate = servers_table.put_item( Item=serverattr['Item'] ) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 200, 'body': "App " + str(resp['Item']) + " was successfully deleted"} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': respdel['ResponseMetadata']['HTTPStatusCode'], 'body': json.dumps(respdel)} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 401, 'body': json.dumps(authResponse)}
source/lambda_app_item.py
import os import json import boto3 from boto3.dynamodb.conditions import Key, Attr from policy import MFAuth application = os.environ['application'] environment = os.environ['environment'] apps_table_name = '{}-{}-apps'.format(application, environment) schema_table_name = '{}-{}-schema'.format(application, environment) waves_table_name = '{}-{}-waves'.format(application, environment) servers_table_name = '{}-{}-servers'.format(application, environment) apps_table = boto3.resource('dynamodb').Table(apps_table_name) schema_table = boto3.resource('dynamodb').Table(schema_table_name) waves_table = boto3.resource('dynamodb').Table(waves_table_name) servers_table = boto3.resource('dynamodb').Table(servers_table_name) def lambda_handler(event, context): if event['httpMethod'] == 'GET': resp = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) if 'Item' in resp: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps(resp['Item'])} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} elif event['httpMethod'] == 'PUT': auth = MFAuth() authResponse = auth.getUserAttributePolicy(event) if authResponse['action'] == 'allow': try: body = json.loads(event['body']) app_attributes = [] if "app_id" in body: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': "You cannot modify app_id, this is managed by the system"} # check if app id exist existing_attr = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) print(existing_attr) if 'Item' not in existing_attr: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} # Validate Wave_id if 'wave_id' in body: waves = waves_table.scan() check = False for wave in waves['Items']: if wave['wave_id'] == str(body['wave_id']): check = True if check == False: message = 'wave Id: ' + body['wave_id'] + ' does not exist' return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Check if there is a duplicate app_name apps = apps_table.scan() for app in apps['Items']: if 'app_name' in body: if app['app_name'].lower() == str(body['app_name']).lower() and app['app_id'] != str(event['pathParameters']['appid']): return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app_name: ' + body['app_name'] + ' already exist'} # Check if attribute is defined in the App schema for app_schema in schema_table.scan()['Items']: if app_schema['schema_name'] == "app": app_attributes = app_schema['attributes'] for key in body.keys(): check = False for attribute in app_attributes: if key == attribute['name']: check = True if check == False: message = "App attribute: " + key + " is not defined in the App schema" return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Check if attribute in the body matches the list value defined in schema for attribute in app_attributes: if 'listvalue' in attribute: listvalue = attribute['listvalue'].split(',') for key in body.keys(): if key == attribute['name']: if body[key] not in listvalue: message = "App attribute " + key + " for app " + body['app_name'] + " is '" + body[key] + "', does not match the list values '" + attribute['listvalue'] + "' defined in the App schema" return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': message} # Merge new attributes with existing one for key in body.keys(): existing_attr['Item'][key] = body[key] print(existing_attr) resp = apps_table.put_item( Item=existing_attr['Item'] ) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'body': json.dumps(resp)} except Exception as e: print(e) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'malformed json input'} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 401, 'body': json.dumps(authResponse)} elif event['httpMethod'] == 'DELETE': auth = MFAuth() authResponse = auth.getUserResourceCrationPolicy(event) if authResponse['action'] == 'allow': resp = apps_table.get_item(Key={'app_id': event['pathParameters']['appid']}) if 'Item' in resp: respdel = apps_table.delete_item(Key={'app_id': event['pathParameters']['appid']}) if respdel['ResponseMetadata']['HTTPStatusCode'] == 200: # Remove App Id from servers servers = servers_table.query( IndexName='app_id-index', KeyConditionExpression=Key('app_id').eq(event['pathParameters']['appid']) ) if servers['Count'] is not 0: serverids = [] for server in servers['Items']: serverids.append(str(server['server_id'])) for id in serverids: serverattr = servers_table.get_item(Key={'server_id': id}) del serverattr['Item']['app_id'] serverupdate = servers_table.put_item( Item=serverattr['Item'] ) return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 200, 'body': "App " + str(resp['Item']) + " was successfully deleted"} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': respdel['ResponseMetadata']['HTTPStatusCode'], 'body': json.dumps(respdel)} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 400, 'body': 'app Id: ' + str(event['pathParameters']['appid']) + ' does not exist'} else: return {'headers': {'Access-Control-Allow-Origin': '*'}, 'statusCode': 401, 'body': json.dumps(authResponse)}
0.258607
0.054525
__all__ = ['convert_examples_to_features', 'preprocess_data', 'ALL_TASKS_DIC', 'EXTRA_METRICS', 'RACEHash', 'ReCoRDHash', 'process_MultiRC_answers', 'process_ReCoRD_answers', 'process_RACE_answers'] # Classes being called directly by finetune_bort.py import os import re import json import logging import fnmatch import mxnet as mx import gluonnlp as nlp import numpy as np from collections import OrderedDict from functools import partial from mxnet import gluon, nd from gluonnlp.base import get_home_dir from data.preprocessing_utils import truncate_seqs_equal, concat_sequences from data.classification import MRPCTask, QQPTask, RTETask, STSBTask, SSTTask from data.classification import QNLITask, CoLATask, MNLITask, WNLITask from data.classification import SuperGLUERTETask, CBTask, WSCTask, WiCTask, COPATask from data.classification import MultiRCTask, BoolQTask, ReCoRDTask, AXbTask, AXgTask from data.classification import RACEHTask, RACEMTask from .metrics import AvgF1, GP ALL_TASKS_DIC = { 'MRPC': MRPCTask(), 'QQP': QQPTask(), 'QNLI': QNLITask(), 'RTE': RTETask(), 'STS-B': STSBTask(), 'CoLA': CoLATask(), 'MNLI': MNLITask(), 'WNLI': WNLITask(), 'SST': SSTTask(), 'SuperGLUERTE': SuperGLUERTETask(), 'CB': CBTask(), 'WSC': WSCTask(), "WiC": WiCTask(), "COPA": COPATask(), "MultiRC": MultiRCTask(), "BoolQ": BoolQTask(), "ReCoRD": ReCoRDTask(), "AXb": AXbTask(), "AXg": AXgTask(), "RACE-H": RACEHTask(), "RACE-M": RACEMTask() } EXTRA_METRICS = { "CB": [("avg_f1", AvgF1())], "AXg": [("GP", GP())], } def do_log(batch_id, batch_num, metric, step_loss, log_interval, epoch_id=None, learning_rate=None): """Generate and print out the log messages. """ metric_nm, metric_val = metric.get() if not isinstance(metric_nm, list): metric_nm, metric_val = [metric_nm], [metric_val] if epoch_id is None: eval_str = '[Batch %d/%d] loss=%.4f, metrics:' + \ ','.join([i + ':%.4f' for i in metric_nm]) logging.info(eval_str, batch_id + 1, batch_num, step_loss / log_interval, *metric_val) else: train_str = '[Epoch %d Batch %d/%d] loss=%.4f, lr=%.10f, metrics:' + \ ','.join([i + ':%.4f' for i in metric_nm]) logging.info(train_str, epoch_id + 1, batch_id + 1, batch_num, step_loss / log_interval, learning_rate, *metric_val) def convert_examples_to_features(example, tokenizer=None, truncate_length=512, cls_token=None, sep_token=None, class_labels=None, label_alias=None, vocab=None, is_test=False): """Convert GLUE/SuperGLUE classification and regression examples into the necessary features""" if not is_test: label_dtype = 'int32' if class_labels else 'float32' example, label = example[:-1], example[-1] # create label maps if classification task if class_labels: label_map = {} for (i, l) in enumerate(class_labels): label_map[l] = i if label_alias: for key in label_alias: label_map[key] = label_map[label_alias[key]] # Fix for BoolQ, WSC, and MultiRC, json values get loaded as boolean and not as string # assignments. if type(label) == bool: label = "true" if label else "false" # Fix for COPA if type(label) == int: label = "0" if label == 0 else "1" label = label_map[label] label = np.array([label], dtype=label_dtype) tokens_raw = [tokenizer(l) for l in example] tokens_trun = truncate_seqs_equal(tokens_raw, truncate_length) tokens_trun[0] = [cls_token] + tokens_trun[0] tokens, segment_ids, _ = concat_sequences( tokens_trun, [[sep_token]] * len(tokens_trun)) input_ids = vocab[tokens] valid_length = len(input_ids) if not is_test: return input_ids, segment_ids, valid_length, label else: return input_ids, segment_ids, valid_length def preprocess_data(tokenizer, task, batch_size, dev_batch_size, max_len, vocab, world_size=None): """Train/eval Data preparation function.""" label_dtype = 'int32' if task.class_labels else 'float32' truncate_length = max_len - 3 if task.is_pair else max_len - 2 trans = partial(convert_examples_to_features, tokenizer=tokenizer, truncate_length=truncate_length, cls_token=vocab.bos_token, sep_token=vocab.eos_token, class_labels=task.class_labels, label_alias=task.label_alias, vocab=vocab) # task.dataset_train returns (segment_name, dataset) train_tsv = task.dataset_train()[1] data_train = mx.gluon.data.SimpleDataset(list(map(trans, train_tsv))) data_train_len = data_train.transform(lambda _, segment_ids, valid_length, label: valid_length, lazy=False) # bucket sampler for training pad_val = vocab[vocab.padding_token] batchify_fn = nlp.data.batchify.Tuple( nlp.data.batchify.Pad(axis=0, pad_val=pad_val), nlp.data.batchify.Pad(axis=0, pad_val=0), nlp.data.batchify.Stack(), # length nlp.data.batchify.Stack(label_dtype)) # label if world_size is not None: batch_sampler = nlp.data.sampler.FixedBucketSampler(data_train_len, batch_size=batch_size, num_buckets=15, ratio=0, shuffle=True, num_shards=world_size) loader_train = nlp.data.ShardedDataLoader(dataset=data_train, num_workers=4, batch_sampler=batch_sampler, batchify_fn=batchify_fn) else: batch_sampler = nlp.data.sampler.FixedBucketSampler(data_train_len, batch_size=batch_size, num_buckets=15, ratio=0, shuffle=True) loader_train = mx.gluon.data.DataLoader(dataset=data_train, num_workers=4, batch_sampler=batch_sampler, batchify_fn=batchify_fn) # data dev. For MNLI, more than one dev set is available dev_tsv = task.dataset_dev() dev_tsv_list = dev_tsv if isinstance(dev_tsv, list) else [dev_tsv] loader_dev_list = [] for segment, data in dev_tsv_list: data_dev = mx.gluon.data.SimpleDataset(list(map(trans, data))) loader_dev = mx.gluon.data.DataLoader(data_dev, batch_size=dev_batch_size, num_workers=4, shuffle=False, batchify_fn=batchify_fn) loader_dev_list.append((segment, loader_dev)) # batchify for data test test_batchify_fn = nlp.data.batchify.Tuple( nlp.data.batchify.Pad(axis=0, pad_val=pad_val), nlp.data.batchify.Pad(axis=0, pad_val=0), nlp.data.batchify.Stack()) # transform for data test test_trans = partial(convert_examples_to_features, tokenizer=tokenizer, truncate_length=truncate_length, cls_token=vocab.bos_token, sep_token=vocab.eos_token, class_labels=None, is_test=True, vocab=vocab) # data test. For MNLI, more than one test set is available test_tsv = task.dataset_test() test_tsv_list = test_tsv if isinstance(test_tsv, list) else [test_tsv] loader_test_list = [] for segment, data in test_tsv_list: data_test = mx.gluon.data.SimpleDataset(list(map(test_trans, data))) loader_test = mx.gluon.data.DataLoader(data_test, batch_size=dev_batch_size, num_workers=4, shuffle=False, batchify_fn=test_batchify_fn) loader_test_list.append((segment, loader_test)) # Return data_dev for ReCoRD and MultiRC return loader_train, data_dev, loader_dev_list, loader_test_list, len(data_train) def MultiRCHash(test_dataset_location): """ MultiRC has multiple nested points. Return a list of dictionaries with the predictions to fill out. """ dataset = [json.loads(l, object_pairs_hook=OrderedDict) for l in open(test_dataset_location, 'r', encoding='utf8').readlines()] line_dict = [(l["idx"], l["passage"]) for l in dataset] lines = [] for idx, line in line_dict: questions = line["questions"] line_hashes = {"idx": idx, "passage": {"questions": []}} for question in questions: question_dict = {"idx": question["idx"], "answers": []} for answer in question["answers"]: question_dict["answers"].append( {"idx": answer["idx"], "label": 0}) line_hashes["passage"]["questions"].append(question_dict) lines.append(line_hashes) return lines def ReCoRDHash(dataset_location): """ Because of the way we've setup ReCoRD, we need to figure out a way to translate it back into a viable answer. """ dataset = [json.loads(l, object_pairs_hook=OrderedDict) for l in open(dataset_location, 'r', encoding='utf8').readlines()] is_test = "test" in dataset_location all_lines = [(l["idx"], l["passage"], l["qas"]) for l in dataset] lines = {} for idx, line, qas in all_lines: entities = sorted( set([line["text"][e["start"]:e["end"] + 1] for e in line["entities"]])) for question in qas: tmp_lines = [] answers = None if is_test else [ ans["text"] for ans in question["answers"]] for entity in entities: is_answer = False if not is_test: is_answer = entity in answers tmp_lines.append( {"idx": question["idx"], "label": entity, "is_answer": is_answer}) lines[question["idx"]] = tmp_lines return lines def RACEHash(dataset_location, task_name, segment='test'): """ Because of the way we've setup RACE-H/RACE-M, we need to figure out a way to translate it back into a viable answer. """ if dataset_location is None: dataset_location = os.path.join(get_home_dir(), 'datasets', 'race') task = "high" if task_name[-1] == "H" else "middle" test_dataset_location = os.path.join(dataset_location, segment, task) filenames = [os.path.expanduser(f) for f in os.listdir( test_dataset_location) if fnmatch.fnmatch(f, '*.txt')] filenames.sort() dataset = [] for f in filenames: dataset += [json.loads(l, object_pairs_hook=OrderedDict) for l in open(os.path.join(test_dataset_location, f), 'r').readlines()] return dataset def process_ReCoRD_answers(results, result_data): # In practice we should get the max confidence over the question space. # First assign label and confidence to every single point on the set, then # prune out low-confidence elements. tmp_results = [] start_index = 0 preds, label = [], [] for i in range(len(result_data)): candidate_result_array = result_data[i] results_subarray = results[ start_index:start_index + len(candidate_result_array)] idx, max_confidence = 0, -np.inf backup_idx, backup_max_confidence = 0, -np.inf for j in range(len(results_subarray)): score, logits = results_subarray[j][0], results_subarray[j][-1] if score == 1 and logits[-1] > max_confidence: idx = j else: if logits[-1] > backup_max_confidence: backup_idx = j backup_max_confidence = logits[-1] if max_confidence == -np.inf: idx = backup_idx chosen_candidate = candidate_result_array[idx] preds.append(chosen_candidate["label"]) label.append(chosen_candidate["label"] if candidate_result_array[ idx]["is_answer"] else "glorp") chosen_candidate.pop("is_answer", None) tmp_results.append(chosen_candidate) start_index = start_index + len(results_subarray) # This number is meaningless in test (all eval to False), and # might have high false negatives score = sum([p == l for (p, l) in zip(preds, label)]) / len(preds) return tmp_results, score def process_MultiRC_answers(results, test_dataset_location): # "Re-roll" the unrolled prediction vector into the required format. result_data = MultiRCHash(test_dataset_location) p_idx, q_idx, a_idx = 0, 0, 0 for label in results: if len(result_data[p_idx]["passage"]["questions"][q_idx]["answers"]) == a_idx: a_idx = 0 q_idx += 1 if len(result_data[p_idx]["passage"]["questions"]) == q_idx: q_idx = 0 p_idx += 1 result_data[p_idx]["passage"]["questions"][ q_idx]["answers"][a_idx]["label"] = int(label) a_idx += 1 return result_data def process_RACE_answers(result_data, results): # In practice we should get the max confidence over the question space. # First assign label and confidence to every single point on the set, then # prune out low-confidence elements. IDX_TO_ANSWER = {"0": "A", "1": "B", "2": "C", "3": "D"} tmp_results = [] start_index = 0 total, correct = 0, 0 for line in result_data: new_line = {k: v for k, v in line.items()} new_line["answers"] = [] for question, prediction in zip(new_line["questions"], results[start_index:start_index + len(line["answers"])]): label = IDX_TO_ANSWER[prediction[0]] new_line["answers"].append(label) start_index += len(line["answers"]) if "answers" in line: for pred, label in zip(new_line["answers"], line["answers"]): if pred == label: correct += 1 total += 1 tmp_results.append(new_line) class_accuracy = correct / total if total != 0 else 0 # Class accuracy is bugged, but we only need the actual accuracy anyway return tmp_results, class_accuracy
utils/finetune_utils.py
__all__ = ['convert_examples_to_features', 'preprocess_data', 'ALL_TASKS_DIC', 'EXTRA_METRICS', 'RACEHash', 'ReCoRDHash', 'process_MultiRC_answers', 'process_ReCoRD_answers', 'process_RACE_answers'] # Classes being called directly by finetune_bort.py import os import re import json import logging import fnmatch import mxnet as mx import gluonnlp as nlp import numpy as np from collections import OrderedDict from functools import partial from mxnet import gluon, nd from gluonnlp.base import get_home_dir from data.preprocessing_utils import truncate_seqs_equal, concat_sequences from data.classification import MRPCTask, QQPTask, RTETask, STSBTask, SSTTask from data.classification import QNLITask, CoLATask, MNLITask, WNLITask from data.classification import SuperGLUERTETask, CBTask, WSCTask, WiCTask, COPATask from data.classification import MultiRCTask, BoolQTask, ReCoRDTask, AXbTask, AXgTask from data.classification import RACEHTask, RACEMTask from .metrics import AvgF1, GP ALL_TASKS_DIC = { 'MRPC': MRPCTask(), 'QQP': QQPTask(), 'QNLI': QNLITask(), 'RTE': RTETask(), 'STS-B': STSBTask(), 'CoLA': CoLATask(), 'MNLI': MNLITask(), 'WNLI': WNLITask(), 'SST': SSTTask(), 'SuperGLUERTE': SuperGLUERTETask(), 'CB': CBTask(), 'WSC': WSCTask(), "WiC": WiCTask(), "COPA": COPATask(), "MultiRC": MultiRCTask(), "BoolQ": BoolQTask(), "ReCoRD": ReCoRDTask(), "AXb": AXbTask(), "AXg": AXgTask(), "RACE-H": RACEHTask(), "RACE-M": RACEMTask() } EXTRA_METRICS = { "CB": [("avg_f1", AvgF1())], "AXg": [("GP", GP())], } def do_log(batch_id, batch_num, metric, step_loss, log_interval, epoch_id=None, learning_rate=None): """Generate and print out the log messages. """ metric_nm, metric_val = metric.get() if not isinstance(metric_nm, list): metric_nm, metric_val = [metric_nm], [metric_val] if epoch_id is None: eval_str = '[Batch %d/%d] loss=%.4f, metrics:' + \ ','.join([i + ':%.4f' for i in metric_nm]) logging.info(eval_str, batch_id + 1, batch_num, step_loss / log_interval, *metric_val) else: train_str = '[Epoch %d Batch %d/%d] loss=%.4f, lr=%.10f, metrics:' + \ ','.join([i + ':%.4f' for i in metric_nm]) logging.info(train_str, epoch_id + 1, batch_id + 1, batch_num, step_loss / log_interval, learning_rate, *metric_val) def convert_examples_to_features(example, tokenizer=None, truncate_length=512, cls_token=None, sep_token=None, class_labels=None, label_alias=None, vocab=None, is_test=False): """Convert GLUE/SuperGLUE classification and regression examples into the necessary features""" if not is_test: label_dtype = 'int32' if class_labels else 'float32' example, label = example[:-1], example[-1] # create label maps if classification task if class_labels: label_map = {} for (i, l) in enumerate(class_labels): label_map[l] = i if label_alias: for key in label_alias: label_map[key] = label_map[label_alias[key]] # Fix for BoolQ, WSC, and MultiRC, json values get loaded as boolean and not as string # assignments. if type(label) == bool: label = "true" if label else "false" # Fix for COPA if type(label) == int: label = "0" if label == 0 else "1" label = label_map[label] label = np.array([label], dtype=label_dtype) tokens_raw = [tokenizer(l) for l in example] tokens_trun = truncate_seqs_equal(tokens_raw, truncate_length) tokens_trun[0] = [cls_token] + tokens_trun[0] tokens, segment_ids, _ = concat_sequences( tokens_trun, [[sep_token]] * len(tokens_trun)) input_ids = vocab[tokens] valid_length = len(input_ids) if not is_test: return input_ids, segment_ids, valid_length, label else: return input_ids, segment_ids, valid_length def preprocess_data(tokenizer, task, batch_size, dev_batch_size, max_len, vocab, world_size=None): """Train/eval Data preparation function.""" label_dtype = 'int32' if task.class_labels else 'float32' truncate_length = max_len - 3 if task.is_pair else max_len - 2 trans = partial(convert_examples_to_features, tokenizer=tokenizer, truncate_length=truncate_length, cls_token=vocab.bos_token, sep_token=vocab.eos_token, class_labels=task.class_labels, label_alias=task.label_alias, vocab=vocab) # task.dataset_train returns (segment_name, dataset) train_tsv = task.dataset_train()[1] data_train = mx.gluon.data.SimpleDataset(list(map(trans, train_tsv))) data_train_len = data_train.transform(lambda _, segment_ids, valid_length, label: valid_length, lazy=False) # bucket sampler for training pad_val = vocab[vocab.padding_token] batchify_fn = nlp.data.batchify.Tuple( nlp.data.batchify.Pad(axis=0, pad_val=pad_val), nlp.data.batchify.Pad(axis=0, pad_val=0), nlp.data.batchify.Stack(), # length nlp.data.batchify.Stack(label_dtype)) # label if world_size is not None: batch_sampler = nlp.data.sampler.FixedBucketSampler(data_train_len, batch_size=batch_size, num_buckets=15, ratio=0, shuffle=True, num_shards=world_size) loader_train = nlp.data.ShardedDataLoader(dataset=data_train, num_workers=4, batch_sampler=batch_sampler, batchify_fn=batchify_fn) else: batch_sampler = nlp.data.sampler.FixedBucketSampler(data_train_len, batch_size=batch_size, num_buckets=15, ratio=0, shuffle=True) loader_train = mx.gluon.data.DataLoader(dataset=data_train, num_workers=4, batch_sampler=batch_sampler, batchify_fn=batchify_fn) # data dev. For MNLI, more than one dev set is available dev_tsv = task.dataset_dev() dev_tsv_list = dev_tsv if isinstance(dev_tsv, list) else [dev_tsv] loader_dev_list = [] for segment, data in dev_tsv_list: data_dev = mx.gluon.data.SimpleDataset(list(map(trans, data))) loader_dev = mx.gluon.data.DataLoader(data_dev, batch_size=dev_batch_size, num_workers=4, shuffle=False, batchify_fn=batchify_fn) loader_dev_list.append((segment, loader_dev)) # batchify for data test test_batchify_fn = nlp.data.batchify.Tuple( nlp.data.batchify.Pad(axis=0, pad_val=pad_val), nlp.data.batchify.Pad(axis=0, pad_val=0), nlp.data.batchify.Stack()) # transform for data test test_trans = partial(convert_examples_to_features, tokenizer=tokenizer, truncate_length=truncate_length, cls_token=vocab.bos_token, sep_token=vocab.eos_token, class_labels=None, is_test=True, vocab=vocab) # data test. For MNLI, more than one test set is available test_tsv = task.dataset_test() test_tsv_list = test_tsv if isinstance(test_tsv, list) else [test_tsv] loader_test_list = [] for segment, data in test_tsv_list: data_test = mx.gluon.data.SimpleDataset(list(map(test_trans, data))) loader_test = mx.gluon.data.DataLoader(data_test, batch_size=dev_batch_size, num_workers=4, shuffle=False, batchify_fn=test_batchify_fn) loader_test_list.append((segment, loader_test)) # Return data_dev for ReCoRD and MultiRC return loader_train, data_dev, loader_dev_list, loader_test_list, len(data_train) def MultiRCHash(test_dataset_location): """ MultiRC has multiple nested points. Return a list of dictionaries with the predictions to fill out. """ dataset = [json.loads(l, object_pairs_hook=OrderedDict) for l in open(test_dataset_location, 'r', encoding='utf8').readlines()] line_dict = [(l["idx"], l["passage"]) for l in dataset] lines = [] for idx, line in line_dict: questions = line["questions"] line_hashes = {"idx": idx, "passage": {"questions": []}} for question in questions: question_dict = {"idx": question["idx"], "answers": []} for answer in question["answers"]: question_dict["answers"].append( {"idx": answer["idx"], "label": 0}) line_hashes["passage"]["questions"].append(question_dict) lines.append(line_hashes) return lines def ReCoRDHash(dataset_location): """ Because of the way we've setup ReCoRD, we need to figure out a way to translate it back into a viable answer. """ dataset = [json.loads(l, object_pairs_hook=OrderedDict) for l in open(dataset_location, 'r', encoding='utf8').readlines()] is_test = "test" in dataset_location all_lines = [(l["idx"], l["passage"], l["qas"]) for l in dataset] lines = {} for idx, line, qas in all_lines: entities = sorted( set([line["text"][e["start"]:e["end"] + 1] for e in line["entities"]])) for question in qas: tmp_lines = [] answers = None if is_test else [ ans["text"] for ans in question["answers"]] for entity in entities: is_answer = False if not is_test: is_answer = entity in answers tmp_lines.append( {"idx": question["idx"], "label": entity, "is_answer": is_answer}) lines[question["idx"]] = tmp_lines return lines def RACEHash(dataset_location, task_name, segment='test'): """ Because of the way we've setup RACE-H/RACE-M, we need to figure out a way to translate it back into a viable answer. """ if dataset_location is None: dataset_location = os.path.join(get_home_dir(), 'datasets', 'race') task = "high" if task_name[-1] == "H" else "middle" test_dataset_location = os.path.join(dataset_location, segment, task) filenames = [os.path.expanduser(f) for f in os.listdir( test_dataset_location) if fnmatch.fnmatch(f, '*.txt')] filenames.sort() dataset = [] for f in filenames: dataset += [json.loads(l, object_pairs_hook=OrderedDict) for l in open(os.path.join(test_dataset_location, f), 'r').readlines()] return dataset def process_ReCoRD_answers(results, result_data): # In practice we should get the max confidence over the question space. # First assign label and confidence to every single point on the set, then # prune out low-confidence elements. tmp_results = [] start_index = 0 preds, label = [], [] for i in range(len(result_data)): candidate_result_array = result_data[i] results_subarray = results[ start_index:start_index + len(candidate_result_array)] idx, max_confidence = 0, -np.inf backup_idx, backup_max_confidence = 0, -np.inf for j in range(len(results_subarray)): score, logits = results_subarray[j][0], results_subarray[j][-1] if score == 1 and logits[-1] > max_confidence: idx = j else: if logits[-1] > backup_max_confidence: backup_idx = j backup_max_confidence = logits[-1] if max_confidence == -np.inf: idx = backup_idx chosen_candidate = candidate_result_array[idx] preds.append(chosen_candidate["label"]) label.append(chosen_candidate["label"] if candidate_result_array[ idx]["is_answer"] else "glorp") chosen_candidate.pop("is_answer", None) tmp_results.append(chosen_candidate) start_index = start_index + len(results_subarray) # This number is meaningless in test (all eval to False), and # might have high false negatives score = sum([p == l for (p, l) in zip(preds, label)]) / len(preds) return tmp_results, score def process_MultiRC_answers(results, test_dataset_location): # "Re-roll" the unrolled prediction vector into the required format. result_data = MultiRCHash(test_dataset_location) p_idx, q_idx, a_idx = 0, 0, 0 for label in results: if len(result_data[p_idx]["passage"]["questions"][q_idx]["answers"]) == a_idx: a_idx = 0 q_idx += 1 if len(result_data[p_idx]["passage"]["questions"]) == q_idx: q_idx = 0 p_idx += 1 result_data[p_idx]["passage"]["questions"][ q_idx]["answers"][a_idx]["label"] = int(label) a_idx += 1 return result_data def process_RACE_answers(result_data, results): # In practice we should get the max confidence over the question space. # First assign label and confidence to every single point on the set, then # prune out low-confidence elements. IDX_TO_ANSWER = {"0": "A", "1": "B", "2": "C", "3": "D"} tmp_results = [] start_index = 0 total, correct = 0, 0 for line in result_data: new_line = {k: v for k, v in line.items()} new_line["answers"] = [] for question, prediction in zip(new_line["questions"], results[start_index:start_index + len(line["answers"])]): label = IDX_TO_ANSWER[prediction[0]] new_line["answers"].append(label) start_index += len(line["answers"]) if "answers" in line: for pred, label in zip(new_line["answers"], line["answers"]): if pred == label: correct += 1 total += 1 tmp_results.append(new_line) class_accuracy = correct / total if total != 0 else 0 # Class accuracy is bugged, but we only need the actual accuracy anyway return tmp_results, class_accuracy
0.679179
0.317083
import gzip import pickle import os from gensim.models.doc2vec import TaggedDocument CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.abspath(os.path.join(os.path.join(CURRENT_DIR, '..'), 'data')) MODEL_DIR = os.path.join(DATA_DIR, 'models') VOCAB_DIR = os.path.join(DATA_DIR, 'vocabs') PICKLES_DIR = os.path.join(DATA_DIR, 'pickles') def read(path): with open(path, 'rb') as file: raw = file.read() return raw def load(path): file = gzip.open(path,'rb') obj = pickle.load(file) file.close() return obj def save(object, path): file = gzip.open(path,'wb') pickle.dump(object, file) file.close() def load_multi(path): file = gzip.open(path,'rb') objs = [] while True: try: objs.append(pickle.load(file)) except EOFError: break file.close() return objs def load_vocab(path): file = gzip.open(path,'rb') objs = {} while True: try: obj = pickle.load(file) vocab = {word[0]:word[1] for word in obj[1]} objs.update(vocab) except EOFError: break file.close() return objs def read_vocab(path): file = gzip.open(path,'rb') objs = [] while True: try: obj = pickle.load(file) objs.extend([obj[0]]) except EOFError: break file.close() return objs def save_multi(object, path): file = gzip.open(path,'ab') pickle.dump(object, file) file.close() def save_subvocab(dir, main_vocab, percents): more_half = int(100/(100-percents)) less_half = int(100/percents) name = 'vocab%d.data'%percents path = os.path.join(dir, name) new = gzip.open(path,'ab') main = gzip.open(main_vocab,'rb') index = 0 while True: try: obj = pickle.load(main) if less_half > 1: if index % less_half == 0: pickle.dump(obj, new) else: if index % more_half != 0: pickle.dump(obj, new) index += 1 except EOFError: break main.close() new.close() def load_docs(path, random_docs=False, count=-1, full_word=0): file = gzip.open(path,'rb') documents = [] index = 0 while True: try: obj = pickle.load(file) name = obj[0] words = [word[full_word] for word in obj[1]] documents.append(TaggedDocument(words, [name[:-4].strip()])) if count >= 0 and index >= count: break index += 1 except EOFError: break file.close() if random_docs: shuffle(documents) if count >= 0: documents = documents[:count] return documents
scripts/manager.py
import gzip import pickle import os from gensim.models.doc2vec import TaggedDocument CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.abspath(os.path.join(os.path.join(CURRENT_DIR, '..'), 'data')) MODEL_DIR = os.path.join(DATA_DIR, 'models') VOCAB_DIR = os.path.join(DATA_DIR, 'vocabs') PICKLES_DIR = os.path.join(DATA_DIR, 'pickles') def read(path): with open(path, 'rb') as file: raw = file.read() return raw def load(path): file = gzip.open(path,'rb') obj = pickle.load(file) file.close() return obj def save(object, path): file = gzip.open(path,'wb') pickle.dump(object, file) file.close() def load_multi(path): file = gzip.open(path,'rb') objs = [] while True: try: objs.append(pickle.load(file)) except EOFError: break file.close() return objs def load_vocab(path): file = gzip.open(path,'rb') objs = {} while True: try: obj = pickle.load(file) vocab = {word[0]:word[1] for word in obj[1]} objs.update(vocab) except EOFError: break file.close() return objs def read_vocab(path): file = gzip.open(path,'rb') objs = [] while True: try: obj = pickle.load(file) objs.extend([obj[0]]) except EOFError: break file.close() return objs def save_multi(object, path): file = gzip.open(path,'ab') pickle.dump(object, file) file.close() def save_subvocab(dir, main_vocab, percents): more_half = int(100/(100-percents)) less_half = int(100/percents) name = 'vocab%d.data'%percents path = os.path.join(dir, name) new = gzip.open(path,'ab') main = gzip.open(main_vocab,'rb') index = 0 while True: try: obj = pickle.load(main) if less_half > 1: if index % less_half == 0: pickle.dump(obj, new) else: if index % more_half != 0: pickle.dump(obj, new) index += 1 except EOFError: break main.close() new.close() def load_docs(path, random_docs=False, count=-1, full_word=0): file = gzip.open(path,'rb') documents = [] index = 0 while True: try: obj = pickle.load(file) name = obj[0] words = [word[full_word] for word in obj[1]] documents.append(TaggedDocument(words, [name[:-4].strip()])) if count >= 0 and index >= count: break index += 1 except EOFError: break file.close() if random_docs: shuffle(documents) if count >= 0: documents = documents[:count] return documents
0.06777
0.07024
"""Define graph entity.""" import abc from collections import OrderedDict from typing import List from mindinsight.mindconverter.common.log import logger as log from mindinsight.mindconverter.graph_based_converter.constant import InputType from mindinsight.mindconverter.common.exceptions import NodeInputTypeNotSupportError class GraphParser(metaclass=abc.ABCMeta): """Graph parser.""" @classmethod @abc.abstractmethod def parse(cls, model_path: str, **kwargs): """Parse graph into readable format.""" class BaseGraph(metaclass=abc.ABCMeta): """Define basic graph.""" _REQUIRED_PARAM_OF_MODEL = "model" @abc.abstractmethod def build(self): """Build graph.""" @abc.abstractmethod def sub_graph_merging(self): """Merge split nodes into one.""" @staticmethod @abc.abstractmethod def load_checkpoint(ckpt_path: str) -> dict: """Load checkpoint file.""" @staticmethod @abc.abstractmethod def load_metadata(**kwargs): """Load graph metadata.""" @staticmethod @abc.abstractmethod def load_graph(graph_path: str, **kwargs): """Load graph file.""" @classmethod @abc.abstractmethod def load(cls, model_path: str, **kwargs): """Factory method to initialize an graph object.""" def __new__(cls, *args, **kwargs): """Control the create action of graph.""" model_param = args[0] if args else kwargs.get( cls._REQUIRED_PARAM_OF_MODEL) if not model_param: error = ValueError(f"`{cls._REQUIRED_PARAM_OF_MODEL}` " f"can not be None.") log.error(str(error)) log.exception(error) raise error return super(BaseGraph, cls).__new__(cls) class Graph(BaseGraph, abc.ABC): """ Define Factory method to create Graph sub-class. Args: model (Union[torch.nn.Module, Any]): Graph file. checkpoint (dict): Checkpoint path. """ sorted = False def __init__(self, model, **kwargs): super(Graph, self).__init__() self.model = model self._raw_input_nodes = kwargs.get("input_nodes") self._raw_output_nodes = kwargs.get("output_nodes") self._nodes_collection = OrderedDict() self._nodes_record = dict() self._shape_dict = dict() self._input_nodes = [] self._output_nodes = [] self._topological_order = [] self._input_shape = dict() self._is_multi_opt_graph = False @property def user_provided_input_nodes(self) -> List[str]: """User provided input_nodes in CLI.""" return list(self._raw_input_nodes.keys()) def get_input_shape(self, name): """ Get node input shape. Args: name (str): Node name. Returns: Union[list, int], shape. """ return self._input_shape.get(name) def get_output_shape(self, name): """ Get node output shape. Args: name (str): Node name. Returns: Union[list, int], """ return self._shape_dict.get(name) def get_input_shape_from_input(self, name): """ Get node input shape. Returns: list, shape. """ return self._input_shape.get(name) @property def nodes_in_topological_order(self): """ Return nodes in topological order. Returns: List[GraphNode], nodes. """ if not self.sorted: self._topological_sort() return self._topological_order def _reset_topological_order(self): """ Reset topological order queue. """ self._topological_order = self._input_nodes[:] self.sorted = False def get_node(self, node_name): """ Get node reference. Args: node_name (str): Node name. Returns: GraphNode, node instance. """ prefix = node_name.split(":")[0] if prefix not in self._nodes_collection: return None return self._nodes_collection[prefix] def build(self): """Build graph.""" # Collect input nodes and output nodes. self._collect_ipt_and_opt_nodes() # Use topological sort to solve nodes order. self._topological_sort() def _collect_ipt_and_opt_nodes(self): """ Collect input and output nodes in model. """ for name, node in self._nodes_collection.items(): if node.in_degree == 0: self._input_nodes.append(name) if node.out_degree == 0: self._output_nodes.append(name) def _topological_sort(self): """Topological sort to arrange nodes order.""" self._reset_topological_order() def is_connected(src, dst): """Judge two node whether are connected.""" for precursor in dst.precursor_nodes: if src == precursor.split(":")[0]: return 1 return 0 idx = 0 while idx < len(self._topological_order): cur_node_name = self._topological_order[idx] cur_node = self.get_node(cur_node_name) # `scsr` is abbreviation for `successor`. for scsr_name in cur_node.successor_nodes: scsr_node = self.get_node(scsr_name) scsr_node.cur_in_degree -= is_connected(cur_node_name, scsr_node) if scsr_node.cur_in_degree == 0: self._topological_order.append(scsr_name) idx += 1 self.sorted = True def sub_graph_merging(self): raise NotImplementedError @staticmethod def load_checkpoint(ckpt_path: str) -> dict: raise NotImplementedError @staticmethod def load_metadata(**kwargs): raise NotImplementedError @staticmethod def load_graph(graph_path: str, **kwargs): raise NotImplementedError @classmethod def load(cls, model_path: str, **kwargs) -> BaseGraph: """ Load third party graph. Args: model_path (str): Graph or model file path. Returns: cls, graph instance. """ src_graph = cls.load_graph(graph_path=model_path, **kwargs) return cls(src_graph, **kwargs) class GraphNode(abc.ABC): """ Graph node. Args: node (torch._C.Node): PyTorch node. """ transformed = False def __init__(self, node): # Store the edge from precursor. self.precursor_nodes = [] # Store the edge to successor. self.successor_nodes = [] # Control dependency. self._deleted_in_edge = 0 # Source node in ONNX. self._src_node = node if node else None # Original operation name in ONNX. self._op_name = None self._op_params = dict() self._scope_name = None self._op_shape = None # Node type of current node, e.g. class, module, operation. self._node_type = None # Function, class or operation needed args. self._args_in_code = dict() # Unique key of node. self._hash_key = None # Input shape of current op. self._ipt_shape = None # Output shape of current op. self._opt_shape = None # Weight of current op. self._weight = None # Input variable names. self._ipt_var_names = list() # Output variable names. self._opt_var_names = list() # Is in multi output graph. self._is_in_multi_opt_graph = False @property def ir_node_name(self): """Getter of ir node's name.""" return self._src_node.name @property def ir_node_operation(self): """Getter of ir node's operation.""" return self._src_node.op_type @property def ir_node_inputs(self): """Getter of ir node's inputs.""" return list(self._src_node.input_name_list) @property def ir_node_outputs(self): """Getter of ir node's outputs.""" return list(self._src_node.output_name_list) @property def ir_node_precursor(self): """Getter of ir node's precursor.""" return [ v.name for _, v in self._src_node.precursor_onnx_node_dict.items() ] @property def ir_node_successor(self): """Getter of ir node's successor.""" return [ v.name for _, v in self._src_node.successor_onnx_node_dict.items() ] @property def weight(self): return self._weight @property def ipt_var_names(self): return self._ipt_var_names @ipt_var_names.setter def ipt_var_names(self, var_names): self._ipt_var_names = var_names @property def opt_var_names(self): return self._opt_var_names @opt_var_names.setter def opt_var_names(self, var_names): self._opt_var_names = var_names @staticmethod def get_opt_var_name(variable_name): """ Output variable name. Returns: str, variable name. """ return f"{variable_name}_opt" @property def args_in_code(self): """ Args in code. Returns: dict, args. """ return self._args_in_code @args_in_code.setter def args_in_code(self, args): """ Setter for args_in_code. Args: args (dict): Args. """ self._args_in_code = args @property def input_shape(self): """ Input tensor shape of current node. Returns: tuple, tensor shape of input. """ return self._ipt_shape @property def output_shape(self): """ Output tensor shape. Returns: tuple, output tensor shape. """ return self._opt_shape def is_empty(self): """ Whether is empty. Returns: bool, true or false. """ return not self._src_node @property def node_type(self): """Get node type (ONNX op type).""" return self._node_type @node_type.setter def node_type(self, m): """ Setter of node_type. Args: m (str): Node type. """ self._node_type = m @property def scope_name(self): """ Scope name. Returns: str, scope name. """ return self._scope_name @scope_name.setter def scope_name(self, name): """ Setter of scope name. Args: name(str): Scope name. """ self._scope_name = name @property def node_params(self): """Get node params (ONNX op params).""" return self._op_params @property def cur_in_degree(self): """ Current in-degree. Returns: int, current in-degree. """ return self.in_degree - self._deleted_in_edge @cur_in_degree.setter def cur_in_degree(self, e): """ Setter of cur_in_degree. Args: e (int): To be update value. """ self._deleted_in_edge += self.cur_in_degree - e @property def in_degree(self): """ Define in-degree. Returns: int, in-degree. """ return len(self.precursor_nodes) @property def out_degree(self): """ Define out-degree. Returns: int, out-degree. """ return len(self.successor_nodes) @property @abc.abstractmethod def hash_key(self): """ Generate unique hash key for each node. Use topological order as key. """ @abc.abstractmethod def _get_raw_params(self, node): """Get params in onnx.""" @property @abc.abstractmethod def op_name(self): """Return op_name.""" @abc.abstractmethod def replace_with_arg(self, src_arg, tgt_arg): """Replace actual parameter with formal parameter.""" @abc.abstractmethod def _get_arg_name(self, arg, variable_name): """Get arg name for func or class.""" @abc.abstractmethod def clear_args_of_declaration(self): """Clear `_args_in_code`.""" @property @abc.abstractmethod def real_name(self): """Getter of `real_name`.""" @real_name.setter @abc.abstractmethod def real_name(self, **kwargs): """Setter of `real_name`.""" @abc.abstractmethod def to_code(self, ipt_args_in_construct: str, variable_name: str, output_var: str, code_fragment): """Graph node to MindSpore code.""" @abc.abstractmethod def to_ir(self): """Graph node to ir node.""" @abc.abstractmethod def add_input_and_output_shape(self, input_shape, output_shape): """Add the node input shape.""" @staticmethod def _generate_ipt_args_settings_in_construct(ipt_args_in_construct, settings): """ Generate input with args and settings in construct. Args: ipt_args_in_construct (str): Input args in construct. settings (Setting): Settings in operator. Returns: str, args of each node in generated construct statement. """ if settings and settings.op_ipt_type: input_type = settings.op_ipt_type if input_type == InputType.TENSOR.value: ipt_args_settings_in_construct = ipt_args_in_construct elif input_type == InputType.LIST.value: ipt_args_settings_in_construct = f"({ipt_args_in_construct},)" else: raise NodeInputTypeNotSupportError(f"Input type[{input_type}] is not supported now.") else: ipt_args_settings_in_construct = ipt_args_in_construct if settings and settings.op_extra_input: settings_value = settings.op_extra_input if settings_value: settings_in_construct = ', '.join([f"{setting_val}" for _, setting_val in settings_value.items()]) ipt_args_settings_in_construct = ', '.join((ipt_args_settings_in_construct, settings_in_construct)) return ipt_args_settings_in_construct
mindinsight/mindconverter/graph_based_converter/third_party_graph/base.py
"""Define graph entity.""" import abc from collections import OrderedDict from typing import List from mindinsight.mindconverter.common.log import logger as log from mindinsight.mindconverter.graph_based_converter.constant import InputType from mindinsight.mindconverter.common.exceptions import NodeInputTypeNotSupportError class GraphParser(metaclass=abc.ABCMeta): """Graph parser.""" @classmethod @abc.abstractmethod def parse(cls, model_path: str, **kwargs): """Parse graph into readable format.""" class BaseGraph(metaclass=abc.ABCMeta): """Define basic graph.""" _REQUIRED_PARAM_OF_MODEL = "model" @abc.abstractmethod def build(self): """Build graph.""" @abc.abstractmethod def sub_graph_merging(self): """Merge split nodes into one.""" @staticmethod @abc.abstractmethod def load_checkpoint(ckpt_path: str) -> dict: """Load checkpoint file.""" @staticmethod @abc.abstractmethod def load_metadata(**kwargs): """Load graph metadata.""" @staticmethod @abc.abstractmethod def load_graph(graph_path: str, **kwargs): """Load graph file.""" @classmethod @abc.abstractmethod def load(cls, model_path: str, **kwargs): """Factory method to initialize an graph object.""" def __new__(cls, *args, **kwargs): """Control the create action of graph.""" model_param = args[0] if args else kwargs.get( cls._REQUIRED_PARAM_OF_MODEL) if not model_param: error = ValueError(f"`{cls._REQUIRED_PARAM_OF_MODEL}` " f"can not be None.") log.error(str(error)) log.exception(error) raise error return super(BaseGraph, cls).__new__(cls) class Graph(BaseGraph, abc.ABC): """ Define Factory method to create Graph sub-class. Args: model (Union[torch.nn.Module, Any]): Graph file. checkpoint (dict): Checkpoint path. """ sorted = False def __init__(self, model, **kwargs): super(Graph, self).__init__() self.model = model self._raw_input_nodes = kwargs.get("input_nodes") self._raw_output_nodes = kwargs.get("output_nodes") self._nodes_collection = OrderedDict() self._nodes_record = dict() self._shape_dict = dict() self._input_nodes = [] self._output_nodes = [] self._topological_order = [] self._input_shape = dict() self._is_multi_opt_graph = False @property def user_provided_input_nodes(self) -> List[str]: """User provided input_nodes in CLI.""" return list(self._raw_input_nodes.keys()) def get_input_shape(self, name): """ Get node input shape. Args: name (str): Node name. Returns: Union[list, int], shape. """ return self._input_shape.get(name) def get_output_shape(self, name): """ Get node output shape. Args: name (str): Node name. Returns: Union[list, int], """ return self._shape_dict.get(name) def get_input_shape_from_input(self, name): """ Get node input shape. Returns: list, shape. """ return self._input_shape.get(name) @property def nodes_in_topological_order(self): """ Return nodes in topological order. Returns: List[GraphNode], nodes. """ if not self.sorted: self._topological_sort() return self._topological_order def _reset_topological_order(self): """ Reset topological order queue. """ self._topological_order = self._input_nodes[:] self.sorted = False def get_node(self, node_name): """ Get node reference. Args: node_name (str): Node name. Returns: GraphNode, node instance. """ prefix = node_name.split(":")[0] if prefix not in self._nodes_collection: return None return self._nodes_collection[prefix] def build(self): """Build graph.""" # Collect input nodes and output nodes. self._collect_ipt_and_opt_nodes() # Use topological sort to solve nodes order. self._topological_sort() def _collect_ipt_and_opt_nodes(self): """ Collect input and output nodes in model. """ for name, node in self._nodes_collection.items(): if node.in_degree == 0: self._input_nodes.append(name) if node.out_degree == 0: self._output_nodes.append(name) def _topological_sort(self): """Topological sort to arrange nodes order.""" self._reset_topological_order() def is_connected(src, dst): """Judge two node whether are connected.""" for precursor in dst.precursor_nodes: if src == precursor.split(":")[0]: return 1 return 0 idx = 0 while idx < len(self._topological_order): cur_node_name = self._topological_order[idx] cur_node = self.get_node(cur_node_name) # `scsr` is abbreviation for `successor`. for scsr_name in cur_node.successor_nodes: scsr_node = self.get_node(scsr_name) scsr_node.cur_in_degree -= is_connected(cur_node_name, scsr_node) if scsr_node.cur_in_degree == 0: self._topological_order.append(scsr_name) idx += 1 self.sorted = True def sub_graph_merging(self): raise NotImplementedError @staticmethod def load_checkpoint(ckpt_path: str) -> dict: raise NotImplementedError @staticmethod def load_metadata(**kwargs): raise NotImplementedError @staticmethod def load_graph(graph_path: str, **kwargs): raise NotImplementedError @classmethod def load(cls, model_path: str, **kwargs) -> BaseGraph: """ Load third party graph. Args: model_path (str): Graph or model file path. Returns: cls, graph instance. """ src_graph = cls.load_graph(graph_path=model_path, **kwargs) return cls(src_graph, **kwargs) class GraphNode(abc.ABC): """ Graph node. Args: node (torch._C.Node): PyTorch node. """ transformed = False def __init__(self, node): # Store the edge from precursor. self.precursor_nodes = [] # Store the edge to successor. self.successor_nodes = [] # Control dependency. self._deleted_in_edge = 0 # Source node in ONNX. self._src_node = node if node else None # Original operation name in ONNX. self._op_name = None self._op_params = dict() self._scope_name = None self._op_shape = None # Node type of current node, e.g. class, module, operation. self._node_type = None # Function, class or operation needed args. self._args_in_code = dict() # Unique key of node. self._hash_key = None # Input shape of current op. self._ipt_shape = None # Output shape of current op. self._opt_shape = None # Weight of current op. self._weight = None # Input variable names. self._ipt_var_names = list() # Output variable names. self._opt_var_names = list() # Is in multi output graph. self._is_in_multi_opt_graph = False @property def ir_node_name(self): """Getter of ir node's name.""" return self._src_node.name @property def ir_node_operation(self): """Getter of ir node's operation.""" return self._src_node.op_type @property def ir_node_inputs(self): """Getter of ir node's inputs.""" return list(self._src_node.input_name_list) @property def ir_node_outputs(self): """Getter of ir node's outputs.""" return list(self._src_node.output_name_list) @property def ir_node_precursor(self): """Getter of ir node's precursor.""" return [ v.name for _, v in self._src_node.precursor_onnx_node_dict.items() ] @property def ir_node_successor(self): """Getter of ir node's successor.""" return [ v.name for _, v in self._src_node.successor_onnx_node_dict.items() ] @property def weight(self): return self._weight @property def ipt_var_names(self): return self._ipt_var_names @ipt_var_names.setter def ipt_var_names(self, var_names): self._ipt_var_names = var_names @property def opt_var_names(self): return self._opt_var_names @opt_var_names.setter def opt_var_names(self, var_names): self._opt_var_names = var_names @staticmethod def get_opt_var_name(variable_name): """ Output variable name. Returns: str, variable name. """ return f"{variable_name}_opt" @property def args_in_code(self): """ Args in code. Returns: dict, args. """ return self._args_in_code @args_in_code.setter def args_in_code(self, args): """ Setter for args_in_code. Args: args (dict): Args. """ self._args_in_code = args @property def input_shape(self): """ Input tensor shape of current node. Returns: tuple, tensor shape of input. """ return self._ipt_shape @property def output_shape(self): """ Output tensor shape. Returns: tuple, output tensor shape. """ return self._opt_shape def is_empty(self): """ Whether is empty. Returns: bool, true or false. """ return not self._src_node @property def node_type(self): """Get node type (ONNX op type).""" return self._node_type @node_type.setter def node_type(self, m): """ Setter of node_type. Args: m (str): Node type. """ self._node_type = m @property def scope_name(self): """ Scope name. Returns: str, scope name. """ return self._scope_name @scope_name.setter def scope_name(self, name): """ Setter of scope name. Args: name(str): Scope name. """ self._scope_name = name @property def node_params(self): """Get node params (ONNX op params).""" return self._op_params @property def cur_in_degree(self): """ Current in-degree. Returns: int, current in-degree. """ return self.in_degree - self._deleted_in_edge @cur_in_degree.setter def cur_in_degree(self, e): """ Setter of cur_in_degree. Args: e (int): To be update value. """ self._deleted_in_edge += self.cur_in_degree - e @property def in_degree(self): """ Define in-degree. Returns: int, in-degree. """ return len(self.precursor_nodes) @property def out_degree(self): """ Define out-degree. Returns: int, out-degree. """ return len(self.successor_nodes) @property @abc.abstractmethod def hash_key(self): """ Generate unique hash key for each node. Use topological order as key. """ @abc.abstractmethod def _get_raw_params(self, node): """Get params in onnx.""" @property @abc.abstractmethod def op_name(self): """Return op_name.""" @abc.abstractmethod def replace_with_arg(self, src_arg, tgt_arg): """Replace actual parameter with formal parameter.""" @abc.abstractmethod def _get_arg_name(self, arg, variable_name): """Get arg name for func or class.""" @abc.abstractmethod def clear_args_of_declaration(self): """Clear `_args_in_code`.""" @property @abc.abstractmethod def real_name(self): """Getter of `real_name`.""" @real_name.setter @abc.abstractmethod def real_name(self, **kwargs): """Setter of `real_name`.""" @abc.abstractmethod def to_code(self, ipt_args_in_construct: str, variable_name: str, output_var: str, code_fragment): """Graph node to MindSpore code.""" @abc.abstractmethod def to_ir(self): """Graph node to ir node.""" @abc.abstractmethod def add_input_and_output_shape(self, input_shape, output_shape): """Add the node input shape.""" @staticmethod def _generate_ipt_args_settings_in_construct(ipt_args_in_construct, settings): """ Generate input with args and settings in construct. Args: ipt_args_in_construct (str): Input args in construct. settings (Setting): Settings in operator. Returns: str, args of each node in generated construct statement. """ if settings and settings.op_ipt_type: input_type = settings.op_ipt_type if input_type == InputType.TENSOR.value: ipt_args_settings_in_construct = ipt_args_in_construct elif input_type == InputType.LIST.value: ipt_args_settings_in_construct = f"({ipt_args_in_construct},)" else: raise NodeInputTypeNotSupportError(f"Input type[{input_type}] is not supported now.") else: ipt_args_settings_in_construct = ipt_args_in_construct if settings and settings.op_extra_input: settings_value = settings.op_extra_input if settings_value: settings_in_construct = ', '.join([f"{setting_val}" for _, setting_val in settings_value.items()]) ipt_args_settings_in_construct = ', '.join((ipt_args_settings_in_construct, settings_in_construct)) return ipt_args_settings_in_construct
0.940572
0.271333
__all__ = ['ParticleInterval'] """ Contains the ParticleInterval class """ from panda3d.core import * from panda3d.direct import * from direct.directnotify.DirectNotifyGlobal import directNotify from .Interval import Interval class ParticleInterval(Interval): """ Use this interval when you want to have greater control over a ParticleEffect. The interval does not register the effect with the global particle and physics managers, but it does call upon them to perform its stepping. You should NOT call particleEffect.start() with an effect that is being controlled by a ParticleInterval. """ # Name counter particleNum = 1 # create ParticleInterval DirectNotify category notify = directNotify.newCategory('ParticleInterval') # Class methods def __init__(self, particleEffect, parent, worldRelative = 1, renderParent = None, duration = 0.0, softStopT = 0.0, cleanup = False, name = None): """ particleEffect is a ParticleEffect parent is a NodePath: this is where the effect will be parented in the scenegraph worldRelative is a boolean: this will override 'renderParent' with render renderParent is a NodePath: this is where the particles will be rendered in the scenegraph duration is a float: for the time softStopT is a float: no effect if 0.0, a positive value will count from the start of the interval, a negative value will count from the end of the interval cleanup is a boolean: if True the effect will be destroyed and removed from the scenegraph upon interval completion set to False if planning on reusing the interval name is a string: use this for unique intervals so that they can be easily found in the taskMgr """ # Generate unique name id = 'Particle-%d' % ParticleInterval.particleNum ParticleInterval.particleNum += 1 if name == None: name = id # Record instance variables self.particleEffect = particleEffect self.cleanup = cleanup if parent != None: self.particleEffect.reparentTo(parent) if worldRelative: renderParent = render if renderParent: for particles in self.particleEffect.getParticlesList(): particles.setRenderParent(renderParent.node()) self.__softStopped = False if softStopT == 0.0: self.softStopT = duration elif softStopT < 0.0: self.softStopT = duration+softStopT else: self.softStopT = softStopT # Initialize superclass Interval.__init__(self, name, duration) def __step(self,dt): if self.particleEffect: self.particleEffect.accelerate(dt,1,0.05) def __softStart(self): if self.particleEffect: self.particleEffect.softStart() self.__softStopped = False def __softStop(self): if self.particleEffect: self.particleEffect.softStop() self.__softStopped = True def privInitialize(self, t): if self.state != CInterval.SPaused: # Restarting from a hard stop or just interrupting the # current play self.__softStart() if self.particleEffect: self.particleEffect.clearToInitial() self.currT = 0 if self.particleEffect: for forceGroup in self.particleEffect.getForceGroupList(): forceGroup.enable() Interval.privInitialize(self,t) def privInstant(self): self.privInitialize(self.getDuration()) self.privFinalize() def privStep(self, t): if self.state == CInterval.SPaused or t < self.currT: # Restarting from a pause. self.privInitialize(t) else: if not self.__softStopped and t > self.softStopT: self.__step(self.softStopT-self.currT) self.__softStop() self.__step(t-self.softStopT) else: self.__step(t-self.currT) Interval.privStep(self,t) def privFinalize(self): Interval.privFinalize(self) if self.cleanup and self.particleEffect: self.particleEffect.cleanup() self.particleEffect = None
Panda3D-1.10.0/direct/interval/ParticleInterval.py
__all__ = ['ParticleInterval'] """ Contains the ParticleInterval class """ from panda3d.core import * from panda3d.direct import * from direct.directnotify.DirectNotifyGlobal import directNotify from .Interval import Interval class ParticleInterval(Interval): """ Use this interval when you want to have greater control over a ParticleEffect. The interval does not register the effect with the global particle and physics managers, but it does call upon them to perform its stepping. You should NOT call particleEffect.start() with an effect that is being controlled by a ParticleInterval. """ # Name counter particleNum = 1 # create ParticleInterval DirectNotify category notify = directNotify.newCategory('ParticleInterval') # Class methods def __init__(self, particleEffect, parent, worldRelative = 1, renderParent = None, duration = 0.0, softStopT = 0.0, cleanup = False, name = None): """ particleEffect is a ParticleEffect parent is a NodePath: this is where the effect will be parented in the scenegraph worldRelative is a boolean: this will override 'renderParent' with render renderParent is a NodePath: this is where the particles will be rendered in the scenegraph duration is a float: for the time softStopT is a float: no effect if 0.0, a positive value will count from the start of the interval, a negative value will count from the end of the interval cleanup is a boolean: if True the effect will be destroyed and removed from the scenegraph upon interval completion set to False if planning on reusing the interval name is a string: use this for unique intervals so that they can be easily found in the taskMgr """ # Generate unique name id = 'Particle-%d' % ParticleInterval.particleNum ParticleInterval.particleNum += 1 if name == None: name = id # Record instance variables self.particleEffect = particleEffect self.cleanup = cleanup if parent != None: self.particleEffect.reparentTo(parent) if worldRelative: renderParent = render if renderParent: for particles in self.particleEffect.getParticlesList(): particles.setRenderParent(renderParent.node()) self.__softStopped = False if softStopT == 0.0: self.softStopT = duration elif softStopT < 0.0: self.softStopT = duration+softStopT else: self.softStopT = softStopT # Initialize superclass Interval.__init__(self, name, duration) def __step(self,dt): if self.particleEffect: self.particleEffect.accelerate(dt,1,0.05) def __softStart(self): if self.particleEffect: self.particleEffect.softStart() self.__softStopped = False def __softStop(self): if self.particleEffect: self.particleEffect.softStop() self.__softStopped = True def privInitialize(self, t): if self.state != CInterval.SPaused: # Restarting from a hard stop or just interrupting the # current play self.__softStart() if self.particleEffect: self.particleEffect.clearToInitial() self.currT = 0 if self.particleEffect: for forceGroup in self.particleEffect.getForceGroupList(): forceGroup.enable() Interval.privInitialize(self,t) def privInstant(self): self.privInitialize(self.getDuration()) self.privFinalize() def privStep(self, t): if self.state == CInterval.SPaused or t < self.currT: # Restarting from a pause. self.privInitialize(t) else: if not self.__softStopped and t > self.softStopT: self.__step(self.softStopT-self.currT) self.__softStop() self.__step(t-self.softStopT) else: self.__step(t-self.currT) Interval.privStep(self,t) def privFinalize(self): Interval.privFinalize(self) if self.cleanup and self.particleEffect: self.particleEffect.cleanup() self.particleEffect = None
0.679817
0.331985
# In[ ]: import pandas as pd data=pd.read_csv("../../../input/merishnasuwal_breast-cancer-prediction-dataset/Breast_cancer_data.csv", delimiter=",") # In[ ]: data.head() # In[ ]: data.shape # In[ ]: data["diagnosis"].value_counts() # In[ ]: data.info() # In[ ]: Y=data["diagnosis"] X=data.drop("diagnosis",axis=1) # In[ ]: X.shape # In[ ]: X.corr() # In[ ]: import seaborn as sns import matplotlib.pyplot as plt print() # In[ ]: print() # In[ ]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2) # In[ ]: from sklearn.tree import DecisionTreeClassifier print() from sklearn.model_selection import TimeSeriesSplit from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from scipy.stats import randint as sp_randint depths=[1,5,50,100,150,250] samples=[5, 10,50, 100,250, 500] clf = DecisionTreeClassifier() params = {'max_depth' : depths, "min_samples_split":samples} grid = GridSearchCV(estimator = clf,param_grid=params ,cv = 3,n_jobs = 3,scoring='roc_auc') grid.fit(X_train, y_train) print("best depth = ", grid.best_params_) print("AUC value on train data = ", grid.best_score_*100) a = grid.best_params_ # In[ ]: optimal_depth = a.get('depth') optimal_split=a.get("min_samples_split") # In[ ]: clf = DecisionTreeClassifier(max_depth=optimal_depth,min_samples_split=optimal_split) clf.fit(X_train,y_train) pred = clf.predict(X_test) # In[ ]: from sklearn import metrics fpr, tpr, threshold = metrics.roc_curve(y_test, pred) roc_auc = metrics.auc(fpr, tpr) import matplotlib.pyplot as plt plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') print() # In[ ]: import numpy as np scores = grid.cv_results_['mean_test_score'].reshape(len(samples),len(depths)) plt.figure(figsize=(16, 12)) print() plt.xlabel('min_samples_split') plt.ylabel('max_depth') plt.xticks(np.arange(len(samples)), samples) plt.yticks(np.arange(len(depths)), depths) plt.title('Grid Search AUC Score') print() # In[ ]: from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix acc1 = accuracy_score(y_test, pred) * 100 pre1 = precision_score(y_test, pred) * 100 rec1 = recall_score(y_test, pred) * 100 f11 = f1_score(y_test, pred) * 100 print('\nAccuracy=%f%%' % (acc1)) print('\nprecision=%f%%' % (pre1)) print('\nrecall=%f%%' % (rec1)) print('\nF1-Score=%f%%' % (f11)) # In[ ]: cm = confusion_matrix(y_test,pred) print() plt.title('Confusion Matrix for BoW') print() # In[ ]: from sklearn.tree import DecisionTreeClassifier dtree=DecisionTreeClassifier(max_depth=2,min_samples_split=3) dtree.fit(X_train,y_train) # In[ ]: from matplotlib import pyplot importance =dtree.feature_importances_ # summarize feature importance for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) # plot feature importance pyplot.bar([x for x in range(len(importance))], importance) # In[ ]: from sklearn.externals.six import StringIO from IPython.display import Image from sklearn.tree import export_graphviz import pydotplus dot_data = StringIO() export_graphviz(dtree, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) Image(graph.create_png()) # In[ ]:
relancer-exp/original_notebooks/merishnasuwal_breast-cancer-prediction-dataset/breast-cancer-prediction-decision-tree.py
# In[ ]: import pandas as pd data=pd.read_csv("../../../input/merishnasuwal_breast-cancer-prediction-dataset/Breast_cancer_data.csv", delimiter=",") # In[ ]: data.head() # In[ ]: data.shape # In[ ]: data["diagnosis"].value_counts() # In[ ]: data.info() # In[ ]: Y=data["diagnosis"] X=data.drop("diagnosis",axis=1) # In[ ]: X.shape # In[ ]: X.corr() # In[ ]: import seaborn as sns import matplotlib.pyplot as plt print() # In[ ]: print() # In[ ]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2) # In[ ]: from sklearn.tree import DecisionTreeClassifier print() from sklearn.model_selection import TimeSeriesSplit from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from scipy.stats import randint as sp_randint depths=[1,5,50,100,150,250] samples=[5, 10,50, 100,250, 500] clf = DecisionTreeClassifier() params = {'max_depth' : depths, "min_samples_split":samples} grid = GridSearchCV(estimator = clf,param_grid=params ,cv = 3,n_jobs = 3,scoring='roc_auc') grid.fit(X_train, y_train) print("best depth = ", grid.best_params_) print("AUC value on train data = ", grid.best_score_*100) a = grid.best_params_ # In[ ]: optimal_depth = a.get('depth') optimal_split=a.get("min_samples_split") # In[ ]: clf = DecisionTreeClassifier(max_depth=optimal_depth,min_samples_split=optimal_split) clf.fit(X_train,y_train) pred = clf.predict(X_test) # In[ ]: from sklearn import metrics fpr, tpr, threshold = metrics.roc_curve(y_test, pred) roc_auc = metrics.auc(fpr, tpr) import matplotlib.pyplot as plt plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') print() # In[ ]: import numpy as np scores = grid.cv_results_['mean_test_score'].reshape(len(samples),len(depths)) plt.figure(figsize=(16, 12)) print() plt.xlabel('min_samples_split') plt.ylabel('max_depth') plt.xticks(np.arange(len(samples)), samples) plt.yticks(np.arange(len(depths)), depths) plt.title('Grid Search AUC Score') print() # In[ ]: from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix acc1 = accuracy_score(y_test, pred) * 100 pre1 = precision_score(y_test, pred) * 100 rec1 = recall_score(y_test, pred) * 100 f11 = f1_score(y_test, pred) * 100 print('\nAccuracy=%f%%' % (acc1)) print('\nprecision=%f%%' % (pre1)) print('\nrecall=%f%%' % (rec1)) print('\nF1-Score=%f%%' % (f11)) # In[ ]: cm = confusion_matrix(y_test,pred) print() plt.title('Confusion Matrix for BoW') print() # In[ ]: from sklearn.tree import DecisionTreeClassifier dtree=DecisionTreeClassifier(max_depth=2,min_samples_split=3) dtree.fit(X_train,y_train) # In[ ]: from matplotlib import pyplot importance =dtree.feature_importances_ # summarize feature importance for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) # plot feature importance pyplot.bar([x for x in range(len(importance))], importance) # In[ ]: from sklearn.externals.six import StringIO from IPython.display import Image from sklearn.tree import export_graphviz import pydotplus dot_data = StringIO() export_graphviz(dtree, out_file=dot_data, filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) Image(graph.create_png()) # In[ ]:
0.484868
0.531574
import serial import time import os import xmlformatter import signal def handler(signum, frame): print("Forever is over!") raise Exception("end of time") def xml_formatter(xml_filename): #Formatting the xml output formatter = xmlformatter.Formatter(indent="1", indent_char="\t", encoding_output="UTF-8", preserve=["literal"]) xmldata = formatter.format_file(xml_filename) f3 = open(xml_filename, 'wb+') f3.write(xmldata) f3.close() def main(): #Variables start_tag = "" end_tag = "" testcases = [] testsuite_st_tag = "" testsuite_ed_tag = "" testrun = "" testcount = 0 #initialising timeout of 10 secs signal.signal(signal.SIGALRM, handler) signal.alarm(10) #print ("timeout starts.......") #opening the serial port ser = open('output.txt', 'rb') f1 = open('test-results.xml', 'w+') f2 = open('test.log','w+') while True: data = ser.readline().decode('ascii') if (data): signal.alarm(10) #print ("timeout reset.......") print (data.rstrip("\r\n")) f2.write(data) if(data[0:10] == "<test-case"): testcases.append(data) testcount = testcount + 1 elif(data[0:5] == "<?xml"): start_tag = data elif(data[0:9] == "<test-run"): testrun = data elif(data[0:11] == "<test-suite"): testsuite_st_tag = data elif(data[0:13] == '</test-suite>'): testsuite_ed_tag = data elif(data[0:9] == '<failure>'): failure_start_tag = data elif(data[0:9] == '<message>'): failure_message = data elif(data[0:10] =="</failure>"): failure_end_tag = data if(data[0:11] == '</test-run>'): end_tag = data break else: print ("waiting for input on serial port.......") #writing to the test-results.xml file in xml format f1.write(start_tag) f1.write(testrun) f1.write(testsuite_st_tag) f1.write(failure_start_tag) f1.write(failure_message) f1.write(failure_end_tag) for i in range(0,testcount): f1.write(testcases[i]) f1.write(testsuite_ed_tag) f1.write(end_tag) f1.close() f2.close() xml_formatter('test-results.xml') ser.close() exit() if __name__ == "__main__": main()
test/SerialRead.py
import serial import time import os import xmlformatter import signal def handler(signum, frame): print("Forever is over!") raise Exception("end of time") def xml_formatter(xml_filename): #Formatting the xml output formatter = xmlformatter.Formatter(indent="1", indent_char="\t", encoding_output="UTF-8", preserve=["literal"]) xmldata = formatter.format_file(xml_filename) f3 = open(xml_filename, 'wb+') f3.write(xmldata) f3.close() def main(): #Variables start_tag = "" end_tag = "" testcases = [] testsuite_st_tag = "" testsuite_ed_tag = "" testrun = "" testcount = 0 #initialising timeout of 10 secs signal.signal(signal.SIGALRM, handler) signal.alarm(10) #print ("timeout starts.......") #opening the serial port ser = open('output.txt', 'rb') f1 = open('test-results.xml', 'w+') f2 = open('test.log','w+') while True: data = ser.readline().decode('ascii') if (data): signal.alarm(10) #print ("timeout reset.......") print (data.rstrip("\r\n")) f2.write(data) if(data[0:10] == "<test-case"): testcases.append(data) testcount = testcount + 1 elif(data[0:5] == "<?xml"): start_tag = data elif(data[0:9] == "<test-run"): testrun = data elif(data[0:11] == "<test-suite"): testsuite_st_tag = data elif(data[0:13] == '</test-suite>'): testsuite_ed_tag = data elif(data[0:9] == '<failure>'): failure_start_tag = data elif(data[0:9] == '<message>'): failure_message = data elif(data[0:10] =="</failure>"): failure_end_tag = data if(data[0:11] == '</test-run>'): end_tag = data break else: print ("waiting for input on serial port.......") #writing to the test-results.xml file in xml format f1.write(start_tag) f1.write(testrun) f1.write(testsuite_st_tag) f1.write(failure_start_tag) f1.write(failure_message) f1.write(failure_end_tag) for i in range(0,testcount): f1.write(testcases[i]) f1.write(testsuite_ed_tag) f1.write(end_tag) f1.close() f2.close() xml_formatter('test-results.xml') ser.close() exit() if __name__ == "__main__": main()
0.038394
0.198666
from functools import partial from typing import Optional, Tuple from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.compass import compass from gdsfactory.tech import LAYER from gdsfactory.types import ComponentOrFactory, Layer @cell def pad( size: Tuple[float, float] = (100.0, 100.0), layer: Layer = LAYER.M3, layers_cladding: Optional[Tuple[Layer, ...]] = None, cladding_offsets: Optional[Tuple[float, ...]] = None, port_inclusion: float = 0, ) -> Component: """Rectangular pad with 4 ports (1, 2, 3, 4) Args: size: layer: pad layer layers_cladding: cladding_offsets: port_inclusion: from edge """ c = Component() rect = compass(size=size, layer=layer, port_inclusion=port_inclusion) c_ref = c.add_ref(rect) c.add_ports(c_ref.ports) c.info["size"] = (float(size[0]), float(size[1])) c.info["layer"] = layer if layers_cladding and cladding_offsets: for layer, cladding_offset in zip(layers_cladding, cladding_offsets): c.add_ref( compass( size=(size[0] + 2 * cladding_offset, size[1] + 2 * cladding_offset), layer=layer, ) ) c.add_port(name="pad", port_type="vertical_dc", layer=layer, orientation=0) return c @cell def pad_array( pad: ComponentOrFactory = pad, spacing: Tuple[float, float] = (150.0, 150.0), columns: int = 6, rows: int = 1, orientation: float = 270, ) -> Component: """Returns 2D array of pads Args: pad: pad element spacing: x, y pitch columns: rows: orientation: port orientation in deg """ c = Component() pad = pad() if callable(pad) else pad size = pad.settings.full["size"] c.info["size"] = size c.add_array(pad, columns=columns, rows=rows, spacing=spacing) width = size[0] if orientation in [90, 270] else size[1] for col in range(columns): for row in range(rows): c.add_port( name=f"e{row+1}{col+1}", midpoint=(col * spacing[0], row * spacing[1]), width=width, orientation=orientation, port_type="electrical", layer=pad.info["layer"], ) return c pad_array90 = partial(pad_array, orientation=90) pad_array270 = partial(pad_array, orientation=270) pad_array0 = partial(pad_array, orientation=0, columns=1, rows=3) pad_array180 = partial(pad_array, orientation=180, columns=1, rows=3) if __name__ == "__main__": # c = pad() # c = pad(layer_to_inclusion={(3, 0): 10}) # print(c.ports) # c = pad(width=10, height=10) # print(c.ports.keys()) # c = pad_array90() c = pad_array0() # c = pad_array270() # c.pprint_ports() # c = pad_array_2d(cols=2, rows=3, port_names=("e2",)) # c = pad_array(columns=2, rows=2, orientation=270) # c.auto_rename_ports() c.show()
gdsfactory/components/pad.py
from functools import partial from typing import Optional, Tuple from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.compass import compass from gdsfactory.tech import LAYER from gdsfactory.types import ComponentOrFactory, Layer @cell def pad( size: Tuple[float, float] = (100.0, 100.0), layer: Layer = LAYER.M3, layers_cladding: Optional[Tuple[Layer, ...]] = None, cladding_offsets: Optional[Tuple[float, ...]] = None, port_inclusion: float = 0, ) -> Component: """Rectangular pad with 4 ports (1, 2, 3, 4) Args: size: layer: pad layer layers_cladding: cladding_offsets: port_inclusion: from edge """ c = Component() rect = compass(size=size, layer=layer, port_inclusion=port_inclusion) c_ref = c.add_ref(rect) c.add_ports(c_ref.ports) c.info["size"] = (float(size[0]), float(size[1])) c.info["layer"] = layer if layers_cladding and cladding_offsets: for layer, cladding_offset in zip(layers_cladding, cladding_offsets): c.add_ref( compass( size=(size[0] + 2 * cladding_offset, size[1] + 2 * cladding_offset), layer=layer, ) ) c.add_port(name="pad", port_type="vertical_dc", layer=layer, orientation=0) return c @cell def pad_array( pad: ComponentOrFactory = pad, spacing: Tuple[float, float] = (150.0, 150.0), columns: int = 6, rows: int = 1, orientation: float = 270, ) -> Component: """Returns 2D array of pads Args: pad: pad element spacing: x, y pitch columns: rows: orientation: port orientation in deg """ c = Component() pad = pad() if callable(pad) else pad size = pad.settings.full["size"] c.info["size"] = size c.add_array(pad, columns=columns, rows=rows, spacing=spacing) width = size[0] if orientation in [90, 270] else size[1] for col in range(columns): for row in range(rows): c.add_port( name=f"e{row+1}{col+1}", midpoint=(col * spacing[0], row * spacing[1]), width=width, orientation=orientation, port_type="electrical", layer=pad.info["layer"], ) return c pad_array90 = partial(pad_array, orientation=90) pad_array270 = partial(pad_array, orientation=270) pad_array0 = partial(pad_array, orientation=0, columns=1, rows=3) pad_array180 = partial(pad_array, orientation=180, columns=1, rows=3) if __name__ == "__main__": # c = pad() # c = pad(layer_to_inclusion={(3, 0): 10}) # print(c.ports) # c = pad(width=10, height=10) # print(c.ports.keys()) # c = pad_array90() c = pad_array0() # c = pad_array270() # c.pprint_ports() # c = pad_array_2d(cols=2, rows=3, port_names=("e2",)) # c = pad_array(columns=2, rows=2, orientation=270) # c.auto_rename_ports() c.show()
0.92391
0.39036
from django.utils.http import urlsafe_base64_encode, urlsafe_base64_decode from django.utils.encoding import force_bytes, force_str from django.contrib.auth.tokens import default_token_generator from django.contrib.auth import get_user_model as django_get_user_model from rest_framework.authtoken.models import Token from drf_registration.settings import drfr_settings from drf_registration.utils.common import import_string def get_user_model(): """ Get user model base on AUTH_USER_MODEL """ return django_get_user_model() def get_all_users(): """ Get all users queryset """ return get_user_model().objects.all() def get_user_serializer(): """ Get user serializer from settings """ return import_string(drfr_settings.USER_SERIALIZER) def get_user_token(user): """ Get or create token for user Args: user (dict): The user instance Returns: [string]: The user token """ token, created = Token.objects.get_or_create(user=user) return token def remove_user_token(user): """ Remove user token Args: user (dict): The user instance """ # Remove old token Token.objects.filter(user=user).delete() def get_user_profile_data(user): """ Get user refresh token and access token Args: user (dict): The user instance Returns: [dict]: The data response include the token """ serializer = import_string(drfr_settings.USER_SERIALIZER) data = serializer(user).data # Add tokens to data if has_user_verified(user): data['token'] = get_user_token(user).key return data def has_user_activate_token(): """ Check to has user verify token from settings Returns: [boolean]: True if USER_ACTIVATE_TOKEN_ENABLED is True, else is False """ return drfr_settings.USER_ACTIVATE_TOKEN_ENABLED def has_user_verify_code(): """ Check to has user verify code from settings Returns: [boolean]: True if USER_VERIFY_CODE_ENABLED is True, else is False """ return drfr_settings.USER_VERIFY_CODE_ENABLED def has_user_verified(user): """ Check user verify or not Args: user (object): The user instance Returns: [boolean]: The verified value """ return get_user_verified(user) def get_user_verified(user): """ Get user verify value Args: user (object): The user instance Returns: [boolean]: The verified value """ return getattr(user, drfr_settings.USER_VERIFY_FIELD) def set_user_verified(user, verified=True): """ Set user verified Args: user (object): The user instance """ setattr(user, drfr_settings.USER_VERIFY_FIELD, verified) user.save() def generate_user_uid(user): """ Generate user UID from user pk Args: user (object): The user object Returns: [string]: The UID """ return urlsafe_base64_encode(force_bytes(user.pk)) def generate_uid_and_token(user, token_generator=None): """ Generate UID and token from user information Args: user (object): The user object token_generator (optional): The token generator class. Defaults to None. Returns: [object]: The object of uid and token """ token_generator = token_generator or default_token_generator return { 'uidb64': generate_user_uid(user), 'token': token_generator.make_token(user) } def get_user_from_uid(uidb64): """ Get user from uidb64 Args: uidb64 (string): The uidb64 Returns: [optional]: The user object or None """ try: uid = force_str(urlsafe_base64_decode(uidb64)) user = get_user_model().objects.get(pk=uid) return user except: return None
drf_registration/utils/users.py
from django.utils.http import urlsafe_base64_encode, urlsafe_base64_decode from django.utils.encoding import force_bytes, force_str from django.contrib.auth.tokens import default_token_generator from django.contrib.auth import get_user_model as django_get_user_model from rest_framework.authtoken.models import Token from drf_registration.settings import drfr_settings from drf_registration.utils.common import import_string def get_user_model(): """ Get user model base on AUTH_USER_MODEL """ return django_get_user_model() def get_all_users(): """ Get all users queryset """ return get_user_model().objects.all() def get_user_serializer(): """ Get user serializer from settings """ return import_string(drfr_settings.USER_SERIALIZER) def get_user_token(user): """ Get or create token for user Args: user (dict): The user instance Returns: [string]: The user token """ token, created = Token.objects.get_or_create(user=user) return token def remove_user_token(user): """ Remove user token Args: user (dict): The user instance """ # Remove old token Token.objects.filter(user=user).delete() def get_user_profile_data(user): """ Get user refresh token and access token Args: user (dict): The user instance Returns: [dict]: The data response include the token """ serializer = import_string(drfr_settings.USER_SERIALIZER) data = serializer(user).data # Add tokens to data if has_user_verified(user): data['token'] = get_user_token(user).key return data def has_user_activate_token(): """ Check to has user verify token from settings Returns: [boolean]: True if USER_ACTIVATE_TOKEN_ENABLED is True, else is False """ return drfr_settings.USER_ACTIVATE_TOKEN_ENABLED def has_user_verify_code(): """ Check to has user verify code from settings Returns: [boolean]: True if USER_VERIFY_CODE_ENABLED is True, else is False """ return drfr_settings.USER_VERIFY_CODE_ENABLED def has_user_verified(user): """ Check user verify or not Args: user (object): The user instance Returns: [boolean]: The verified value """ return get_user_verified(user) def get_user_verified(user): """ Get user verify value Args: user (object): The user instance Returns: [boolean]: The verified value """ return getattr(user, drfr_settings.USER_VERIFY_FIELD) def set_user_verified(user, verified=True): """ Set user verified Args: user (object): The user instance """ setattr(user, drfr_settings.USER_VERIFY_FIELD, verified) user.save() def generate_user_uid(user): """ Generate user UID from user pk Args: user (object): The user object Returns: [string]: The UID """ return urlsafe_base64_encode(force_bytes(user.pk)) def generate_uid_and_token(user, token_generator=None): """ Generate UID and token from user information Args: user (object): The user object token_generator (optional): The token generator class. Defaults to None. Returns: [object]: The object of uid and token """ token_generator = token_generator or default_token_generator return { 'uidb64': generate_user_uid(user), 'token': token_generator.make_token(user) } def get_user_from_uid(uidb64): """ Get user from uidb64 Args: uidb64 (string): The uidb64 Returns: [optional]: The user object or None """ try: uid = force_str(urlsafe_base64_decode(uidb64)) user = get_user_model().objects.get(pk=uid) return user except: return None
0.778986
0.129678
import numpy as np import sys import tensorflow as tf import time import os import pickle as pkl os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" syspath = os.path.dirname(os.path.realpath(__file__)) + '/../..' sys.path.insert(0, syspath) from vbsw_module.functions.df import dataset_weighting from vbsw_module.algorithms.training import training def vbsw(training_set, test_set, ratio, N_stat, N_layers, N_units, activation_hidden, activation_output, N_seeds, batch_size, epochs, optimizer, learning_rate, loss_function, test_losses, keep_best=True, criterion_for_best=None, saving_period=1, verbose=1, case_name=None, dataset=None): x_train, y_train = training_set training_set = dataset_weighting(x_train, y_train, ratio, N_stat, dataset) if case_name is not None: save_dir = syspath + "/results/" + case_name res_name = "res_" + str(os.getpid()) + str(time.time())[:10] if not os.path.isdir(save_dir): os.makedirs(save_dir) save_file = os.path.join(save_dir, res_name) else: save_file = None model = training(training_set=training_set, test_set=test_set, N_layers=N_layers, N_units=N_units, activation_hidden=activation_hidden, activation_output=activation_output, N_seeds=N_seeds, batch_size=batch_size, epochs=epochs, optimizer=optimizer, learning_rate=learning_rate, loss_function=loss_function + "_w", test_losses=test_losses, keep_best=keep_best, criterion_for_best=criterion_for_best, saving_period=saving_period, verbose=verbose, save_file=save_file) if case_name is not None: with open(save_file, "rb") as f: results = pkl.load(f) results["hyperparams"]["ratio"] = ratio results["hyperparams"]["N_stat"] = N_stat results["hyperparams"]["vbsw"] = 1 with open(save_file, "wb") as f: pkl.dump(results, f) if keep_best: return model def vbsw_for_dl(model_init, training_set, test_set, ratio, N_stat, N_seeds, activation_output, batch_size, epochs, optimizer, learning_rate, loss_function, test_losses, keep_best=True, criterion_for_best=None, saving_period=1, verbose=1, case_name=None, dataset=None): x_train_init, y_train = training_set x_test_init, y_test = test_set loss_init = model_init.evaluate(x_test_init, y_test)[1] inputs = model_init.input output_latent = model_init.layers[-2].output model_trunc = tf.keras.Model(inputs, output_latent, name="model_trunc") x_train = model_trunc.predict(x_train_init) x_test = model_trunc.predict(x_test_init) training_set = dataset_weighting(x_train, y_train, ratio, N_stat, dataset) test_set = (x_test, y_test) if case_name is not None: save_dir = syspath + "/results/" + case_name res_name = "res_" + str(os.getpid()) + str(time.time())[:10] if not os.path.isdir(save_dir): os.makedirs(save_dir) save_file = os.path.join(save_dir, res_name) else: save_file = None model = training(training_set=training_set, test_set=test_set, N_layers=0, N_units=0, activation_hidden="", activation_output=activation_output, N_seeds=N_seeds, batch_size=batch_size, epochs=epochs, optimizer=optimizer, learning_rate=learning_rate, loss_function=loss_function + "_w", test_losses=test_losses, keep_best=keep_best, criterion_for_best=criterion_for_best, saving_period=saving_period, verbose=verbose, save_file=save_file) if case_name is not None: with open(save_file, "rb") as f: results = pkl.load(f) results["misc"] = {} results["misc"]["loss_init"] = loss_init results["hyperparams"]["ratio"] = ratio results["hyperparams"]["N_stat"] = N_stat results["hyperparams"]["vbsw"] = 1 with open(save_file, "wb") as f: pkl.dump(results, f) if keep_best: input = model_trunc.input x = model_trunc(input) output = model(x) final_model = tf.keras.models.Model(input, output) return final_model
vbsw_module/algorithms/vbsw.py
import numpy as np import sys import tensorflow as tf import time import os import pickle as pkl os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" syspath = os.path.dirname(os.path.realpath(__file__)) + '/../..' sys.path.insert(0, syspath) from vbsw_module.functions.df import dataset_weighting from vbsw_module.algorithms.training import training def vbsw(training_set, test_set, ratio, N_stat, N_layers, N_units, activation_hidden, activation_output, N_seeds, batch_size, epochs, optimizer, learning_rate, loss_function, test_losses, keep_best=True, criterion_for_best=None, saving_period=1, verbose=1, case_name=None, dataset=None): x_train, y_train = training_set training_set = dataset_weighting(x_train, y_train, ratio, N_stat, dataset) if case_name is not None: save_dir = syspath + "/results/" + case_name res_name = "res_" + str(os.getpid()) + str(time.time())[:10] if not os.path.isdir(save_dir): os.makedirs(save_dir) save_file = os.path.join(save_dir, res_name) else: save_file = None model = training(training_set=training_set, test_set=test_set, N_layers=N_layers, N_units=N_units, activation_hidden=activation_hidden, activation_output=activation_output, N_seeds=N_seeds, batch_size=batch_size, epochs=epochs, optimizer=optimizer, learning_rate=learning_rate, loss_function=loss_function + "_w", test_losses=test_losses, keep_best=keep_best, criterion_for_best=criterion_for_best, saving_period=saving_period, verbose=verbose, save_file=save_file) if case_name is not None: with open(save_file, "rb") as f: results = pkl.load(f) results["hyperparams"]["ratio"] = ratio results["hyperparams"]["N_stat"] = N_stat results["hyperparams"]["vbsw"] = 1 with open(save_file, "wb") as f: pkl.dump(results, f) if keep_best: return model def vbsw_for_dl(model_init, training_set, test_set, ratio, N_stat, N_seeds, activation_output, batch_size, epochs, optimizer, learning_rate, loss_function, test_losses, keep_best=True, criterion_for_best=None, saving_period=1, verbose=1, case_name=None, dataset=None): x_train_init, y_train = training_set x_test_init, y_test = test_set loss_init = model_init.evaluate(x_test_init, y_test)[1] inputs = model_init.input output_latent = model_init.layers[-2].output model_trunc = tf.keras.Model(inputs, output_latent, name="model_trunc") x_train = model_trunc.predict(x_train_init) x_test = model_trunc.predict(x_test_init) training_set = dataset_weighting(x_train, y_train, ratio, N_stat, dataset) test_set = (x_test, y_test) if case_name is not None: save_dir = syspath + "/results/" + case_name res_name = "res_" + str(os.getpid()) + str(time.time())[:10] if not os.path.isdir(save_dir): os.makedirs(save_dir) save_file = os.path.join(save_dir, res_name) else: save_file = None model = training(training_set=training_set, test_set=test_set, N_layers=0, N_units=0, activation_hidden="", activation_output=activation_output, N_seeds=N_seeds, batch_size=batch_size, epochs=epochs, optimizer=optimizer, learning_rate=learning_rate, loss_function=loss_function + "_w", test_losses=test_losses, keep_best=keep_best, criterion_for_best=criterion_for_best, saving_period=saving_period, verbose=verbose, save_file=save_file) if case_name is not None: with open(save_file, "rb") as f: results = pkl.load(f) results["misc"] = {} results["misc"]["loss_init"] = loss_init results["hyperparams"]["ratio"] = ratio results["hyperparams"]["N_stat"] = N_stat results["hyperparams"]["vbsw"] = 1 with open(save_file, "wb") as f: pkl.dump(results, f) if keep_best: input = model_trunc.input x = model_trunc(input) output = model(x) final_model = tf.keras.models.Model(input, output) return final_model
0.412767
0.17614
from flask import Blueprint, request, jsonify from os import path from sense2vec import Sense2Vec from lib.AutocompleteIndex import AutocompleteIndex from lib.VectorSearchIndex import VectorSearchIndex api = Blueprint("api", __name__) s2v = Sense2Vec().from_disk(path.join(path.dirname(__file__), "../data")) search_index = VectorSearchIndex(s2v) autocomplete_index = AutocompleteIndex(s2v) @api.get("/") def index(): return "OK", 200 @api.get("/autocomplete") def autocomplete(): query = request.args.get("query") if query is None: return "Must provide a query", 400 results = autocomplete_index.search(query) enhanced_results = [] for result in results: best_sense = s2v.get_best_sense(result, ignore_case=False) other_senses = s2v.get_other_senses(best_sense, ignore_case=False) senses = [best_sense] + other_senses pos_with_freqs = [ {"pos": s2v.split_key(sense)[1], "freq": s2v.get_freq(sense)} for sense in senses ] enhanced_results.append( { "term": result, "senses": sorted( pos_with_freqs, key=lambda obj: obj["freq"], reverse=True ), "freq": s2v.get_freq(best_sense), } ) return jsonify(enhanced_results) @api.get("/bias-rank") def bias_rank(): """ requires query params for leftSense, rightSense this will return to top 100 positive and negative extreme words matching this bias vector by dot product """ left_sense = request.args.get("leftSense") right_sense = request.args.get("rightSense") if left_sense is None: return "Must provide a query param: leftSense", 400 if right_sense is None: return "Must provide a query param: rightSense", 400 print(f"bias: {left_sense} - {right_sense}") left_sense_vec = s2v[left_sense] right_sense_vec = s2v[right_sense] if left_sense_vec is None: return f"{left_sense} not found", 400 if right_sense_vec is None: return f"{right_sense} not found", 400 bias_vec = right_sense_vec - left_sense_vec top_right_bias_senses = search_index.search(bias_vec, 100) top_left_bias_senses = search_index.search(-1 * bias_vec, 100) return jsonify( { "topLeftSenses": top_left_bias_senses, "topRightSenses": top_right_bias_senses, } )
server/api/routes.py
from flask import Blueprint, request, jsonify from os import path from sense2vec import Sense2Vec from lib.AutocompleteIndex import AutocompleteIndex from lib.VectorSearchIndex import VectorSearchIndex api = Blueprint("api", __name__) s2v = Sense2Vec().from_disk(path.join(path.dirname(__file__), "../data")) search_index = VectorSearchIndex(s2v) autocomplete_index = AutocompleteIndex(s2v) @api.get("/") def index(): return "OK", 200 @api.get("/autocomplete") def autocomplete(): query = request.args.get("query") if query is None: return "Must provide a query", 400 results = autocomplete_index.search(query) enhanced_results = [] for result in results: best_sense = s2v.get_best_sense(result, ignore_case=False) other_senses = s2v.get_other_senses(best_sense, ignore_case=False) senses = [best_sense] + other_senses pos_with_freqs = [ {"pos": s2v.split_key(sense)[1], "freq": s2v.get_freq(sense)} for sense in senses ] enhanced_results.append( { "term": result, "senses": sorted( pos_with_freqs, key=lambda obj: obj["freq"], reverse=True ), "freq": s2v.get_freq(best_sense), } ) return jsonify(enhanced_results) @api.get("/bias-rank") def bias_rank(): """ requires query params for leftSense, rightSense this will return to top 100 positive and negative extreme words matching this bias vector by dot product """ left_sense = request.args.get("leftSense") right_sense = request.args.get("rightSense") if left_sense is None: return "Must provide a query param: leftSense", 400 if right_sense is None: return "Must provide a query param: rightSense", 400 print(f"bias: {left_sense} - {right_sense}") left_sense_vec = s2v[left_sense] right_sense_vec = s2v[right_sense] if left_sense_vec is None: return f"{left_sense} not found", 400 if right_sense_vec is None: return f"{right_sense} not found", 400 bias_vec = right_sense_vec - left_sense_vec top_right_bias_senses = search_index.search(bias_vec, 100) top_left_bias_senses = search_index.search(-1 * bias_vec, 100) return jsonify( { "topLeftSenses": top_left_bias_senses, "topRightSenses": top_right_bias_senses, } )
0.641085
0.218253
import math import cv2 import numpy as np def is_inside_polygon(polygon, point): # ref:https://stackoverflow.com/a/2922778/1266873 # int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy) # { # int i, j, c = 0; # for (i = 0, j = nvert-1; i < nvert; j = i++) { # if ( ((verty[i]>testy) != (verty[j]>testy)) && # (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) ) # c = !c; # } # return c; # } def pnpoly(nvert, vertx, verty, testx, testy): i = 0 j = nvert - 1 c = False while True: j = i i += 1 if i >= nvert: break if (verty[i] > testy) != (verty[j] > testy) and testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / ( verty[j] - verty[i]) + vertx[i]: c = not c return c vertx = [] verty = [] for p in polygon: vertx.append(p[0]) verty.append(p[1]) if polygon[-1] is not polygon[0]: p = polygon[0] vertx.append(p[0]) verty.append(p[1]) return pnpoly(len(vertx), vertx, verty, point[0], point[1]) def is_inside_rect(rect, point): e = 0.001 x = point[0] if x < rect[1] - e: return False elif x > rect[3] + e: return False y = point[1] if y < rect[0] - e: return False elif y > rect[2] + e: return False return True def rects_intersect(rect1, rect2): class Rectangle: def intersects(self, other): a, b = self, other x1 = max(min(a.x1, a.x2), min(b.x1, b.x2)) y1 = max(min(a.y1, a.y2), min(b.y1, b.y2)) x2 = min(max(a.x1, a.x2), max(b.x1, b.x2)) y2 = min(max(a.y1, a.y2), max(b.y1, b.y2)) return x1 < x2 and y1 < y2 def _set(self, x1, y1, x2, y2): if x1 > x2 or y1 > y2: raise ValueError("Coordinates are invalid") self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 def __init__(self, bbox): self._set(bbox[0], bbox[1], bbox[2], bbox[3]) return Rectangle(rect1).intersects(Rectangle(rect2)) def rects_overlap(rect1, rect2, min_ratio): w1 = rect1[2] - rect1[0] w2 = rect2[2] - rect2[0] w_min = min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]) if (w_min / w1) >= min_ratio or (w_min / w2) >= min_ratio: h1 = rect1[3] - rect1[1] h2 = rect2[3] - rect2[1] h_min = min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]) return (h_min / h1) >= min_ratio or (h_min / h2) >= min_ratio return False def add_padding_rect(rect, padding): x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3] dw = (x2 - x1) * padding dh = (y2 - y1) * padding return [x1 - dw, y1 - dh, x2 + dw, y2 + dh] def distance(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) def get_rect_values(rect): # y1, x1, y2, x2 return rect[0], rect[1], rect[2], rect[3] def get_rect_pnts(rect): # p1, p2 return (rect[1], rect[0]), (rect[3], rect[2]) def get_rect(p1, p2): return [p1[1], p1[0], p2[1], p2[0]] def get_rect_bottom_center(rect): r1 = rect[1] r2 = rect[2] r3 = rect[3] return int(r1 + (r3 - r1) * 0.5), r2 # bottom center def get_dist_sq(p1, p2): d1 = p2[0] - p1[0] d2 = p2[1] - p1[1] return d1 * d1 + d2 * d2 def get_center_int(pnts): x = 0 y = 0 for pnt in pnts: x += pnt[0] y += pnt[1] length = float(len(pnts)) return [int(x / length), int(y / length)]
ndu_gate_camera/utility/geometry_helper.py
import math import cv2 import numpy as np def is_inside_polygon(polygon, point): # ref:https://stackoverflow.com/a/2922778/1266873 # int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy) # { # int i, j, c = 0; # for (i = 0, j = nvert-1; i < nvert; j = i++) { # if ( ((verty[i]>testy) != (verty[j]>testy)) && # (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) ) # c = !c; # } # return c; # } def pnpoly(nvert, vertx, verty, testx, testy): i = 0 j = nvert - 1 c = False while True: j = i i += 1 if i >= nvert: break if (verty[i] > testy) != (verty[j] > testy) and testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / ( verty[j] - verty[i]) + vertx[i]: c = not c return c vertx = [] verty = [] for p in polygon: vertx.append(p[0]) verty.append(p[1]) if polygon[-1] is not polygon[0]: p = polygon[0] vertx.append(p[0]) verty.append(p[1]) return pnpoly(len(vertx), vertx, verty, point[0], point[1]) def is_inside_rect(rect, point): e = 0.001 x = point[0] if x < rect[1] - e: return False elif x > rect[3] + e: return False y = point[1] if y < rect[0] - e: return False elif y > rect[2] + e: return False return True def rects_intersect(rect1, rect2): class Rectangle: def intersects(self, other): a, b = self, other x1 = max(min(a.x1, a.x2), min(b.x1, b.x2)) y1 = max(min(a.y1, a.y2), min(b.y1, b.y2)) x2 = min(max(a.x1, a.x2), max(b.x1, b.x2)) y2 = min(max(a.y1, a.y2), max(b.y1, b.y2)) return x1 < x2 and y1 < y2 def _set(self, x1, y1, x2, y2): if x1 > x2 or y1 > y2: raise ValueError("Coordinates are invalid") self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 def __init__(self, bbox): self._set(bbox[0], bbox[1], bbox[2], bbox[3]) return Rectangle(rect1).intersects(Rectangle(rect2)) def rects_overlap(rect1, rect2, min_ratio): w1 = rect1[2] - rect1[0] w2 = rect2[2] - rect2[0] w_min = min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]) if (w_min / w1) >= min_ratio or (w_min / w2) >= min_ratio: h1 = rect1[3] - rect1[1] h2 = rect2[3] - rect2[1] h_min = min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]) return (h_min / h1) >= min_ratio or (h_min / h2) >= min_ratio return False def add_padding_rect(rect, padding): x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3] dw = (x2 - x1) * padding dh = (y2 - y1) * padding return [x1 - dw, y1 - dh, x2 + dw, y2 + dh] def distance(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) def get_rect_values(rect): # y1, x1, y2, x2 return rect[0], rect[1], rect[2], rect[3] def get_rect_pnts(rect): # p1, p2 return (rect[1], rect[0]), (rect[3], rect[2]) def get_rect(p1, p2): return [p1[1], p1[0], p2[1], p2[0]] def get_rect_bottom_center(rect): r1 = rect[1] r2 = rect[2] r3 = rect[3] return int(r1 + (r3 - r1) * 0.5), r2 # bottom center def get_dist_sq(p1, p2): d1 = p2[0] - p1[0] d2 = p2[1] - p1[1] return d1 * d1 + d2 * d2 def get_center_int(pnts): x = 0 y = 0 for pnt in pnts: x += pnt[0] y += pnt[1] length = float(len(pnts)) return [int(x / length), int(y / length)]
0.467818
0.501404
import os import time import numpy as np import pandas as pd import librosa import configparser import soundfile as sf from keras.models import model_from_json from keras import backend as K from sklearn.cluster import AgglomerativeClustering, KMeans, DBSCAN import sklearn import tensorflow as tf from scipy.cluster.hierarchy import dendrogram, linkage from sklearn import manifold class SpeakerClusterAnalyzer: def __init__(self): self.loaded = False self.model = None def refFun(self, S): return np.log10(1 + 10000 * S) def load(self): if not self.loaded: # We load the JSON file and create the model json_file = open(os.path.join(os.sep, 'data/sound/clustering/model.json'), 'r') loaded_model_json = json_file.read() json_file.close() self.model = model_from_json(loaded_model_json) # We load the weights into our model self.model.load_weights( os.path.join(os.sep, "data/sound/clustering/weights.h5")) cfg = configparser.ConfigParser() cfg.read(os.path.join(os.path.dirname(__file__), 'config.cfg')) self.SOUND_FORMAT = cfg.get("IO", "sound_format") self.PARAM_FRAME_LENGTH = int(cfg.get("MEL", "frame_length")) self.PARAM_NUMBER_MELS = int(cfg.get("MEL", "n_mels")) self.loaded = True print("* Loaded model from disk") def analyze(self, inputFile, count=2): if not(self.loaded): raise UnloadedException() timeS = time.time() try: (signal, samplerate) = sf.read(inputFile) except: print( "Error with chunk file. Unable to perform features extraction on the file.") raise Exception() # The number of columns in the dataset (except for index) dataset_shape = (self.PARAM_FRAME_LENGTH / 10) * self.PARAM_NUMBER_MELS X_test_vectors = [ np.repeat(0, dataset_shape) ] signal = librosa.to_mono(np.transpose(signal)) signal, _ = librosa.effects.trim(signal, top_db=50) #spectrogram = librosa.feature.melspectrogram(signal, sr=samplerate, n_fft=1024, hop_length=160, fmin=240, fmax=3000) spectrogram = librosa.feature.melspectrogram(signal, sr=samplerate, n_fft=1024, hop_length=160) logSpectrogram = self.refFun(spectrogram) signalLength = float(len(signal) / samplerate) * 1000 indexPosition = 0 while indexPosition < signalLength - self.PARAM_FRAME_LENGTH: row = np.asarray(logSpectrogram[:, int(indexPosition / 10):int((indexPosition + self.PARAM_FRAME_LENGTH) / 10)]).ravel() X_test_vectors.append(row) indexPosition += self.PARAM_FRAME_LENGTH X_test_vectors = X_test_vectors[1:] # We remove first row which is only 0 X_test = [] for i in range(len(X_test_vectors)): matrix = np.zeros((self.PARAM_NUMBER_MELS, int(self.PARAM_FRAME_LENGTH / 10))) for l in range(self.PARAM_NUMBER_MELS): for m in range(int(self.PARAM_FRAME_LENGTH / 10)): matrix[l, m] = X_test_vectors[i][l * int(self.PARAM_FRAME_LENGTH / 10) + m] X_test.append([matrix]) # Creating vector into clustering space cluster_space_layer = K.function([self.model.layers[0].input], [self.model.layers[7].output]) layer_output = cluster_space_layer([X_test])[0] cosinus_dist = 1. - sklearn.metrics.pairwise.cosine_similarity(layer_output) cosinus_dist[cosinus_dist < 0] = 0 cosine_tsne = manifold.TSNE(n_components=2, metric='precomputed').fit_transform(cosinus_dist) Z = linkage(layer_output, metric='cosine', method='complete') minDist = max([row[2] for row in Z]) nb_clusters = len(Z) for i in range(len(Z)-1): if (minDist > Z[i+1][2] - Z[i][2]): minDist = Z[i+1][2] - Z[i][2] nb_clusters = i if count is None: count = 2 int(count) clustering = AgglomerativeClustering(affinity='cosine', linkage="complete", n_clusters=count).fit_predict(layer_output) # Now we need to find indexes when current speaker changes flags = [] currentSpeaker = clustering[0] for i in range(1, len(clustering)): if clustering[i] != currentSpeaker: currentSpeaker = clustering[i] flags.append(i) finalClustering = [] for flag in flags: fragment = signal[(flag-1)*samplerate:(flag+1)*samplerate] chroma = librosa.feature.chroma_cens(y=fragment, sr=samplerate) #librosa.output.write_wav("output/test_fragment.wav", test_fragment, samplerate) bounds = librosa.segment.agglomerative(chroma, 3) speakerStartPos = (flag-1) + librosa.frames_to_time(bounds, sr=samplerate)[1] finalClustering.append(float("{0:.3f}".format(speakerStartPos))) flags.insert(0, 0) finalClustering.insert(0, 0) result = [[] for i in range(count)] for i in range(1, len(flags)): print(flags[i] - 1) n = clustering[flags[i] - 1] result[n].append((finalClustering[i-1], finalClustering[i] - 0.001)) result[clustering[-1]].append((finalClustering[-1], "EOF")) #clustering = KMeans(n_clusters=4).fit_predict(layer_output) return {'res': result, 'exec_time': time.time() - timeS}
app/src/aipcloud/sound/clustering/clustering.py
import os import time import numpy as np import pandas as pd import librosa import configparser import soundfile as sf from keras.models import model_from_json from keras import backend as K from sklearn.cluster import AgglomerativeClustering, KMeans, DBSCAN import sklearn import tensorflow as tf from scipy.cluster.hierarchy import dendrogram, linkage from sklearn import manifold class SpeakerClusterAnalyzer: def __init__(self): self.loaded = False self.model = None def refFun(self, S): return np.log10(1 + 10000 * S) def load(self): if not self.loaded: # We load the JSON file and create the model json_file = open(os.path.join(os.sep, 'data/sound/clustering/model.json'), 'r') loaded_model_json = json_file.read() json_file.close() self.model = model_from_json(loaded_model_json) # We load the weights into our model self.model.load_weights( os.path.join(os.sep, "data/sound/clustering/weights.h5")) cfg = configparser.ConfigParser() cfg.read(os.path.join(os.path.dirname(__file__), 'config.cfg')) self.SOUND_FORMAT = cfg.get("IO", "sound_format") self.PARAM_FRAME_LENGTH = int(cfg.get("MEL", "frame_length")) self.PARAM_NUMBER_MELS = int(cfg.get("MEL", "n_mels")) self.loaded = True print("* Loaded model from disk") def analyze(self, inputFile, count=2): if not(self.loaded): raise UnloadedException() timeS = time.time() try: (signal, samplerate) = sf.read(inputFile) except: print( "Error with chunk file. Unable to perform features extraction on the file.") raise Exception() # The number of columns in the dataset (except for index) dataset_shape = (self.PARAM_FRAME_LENGTH / 10) * self.PARAM_NUMBER_MELS X_test_vectors = [ np.repeat(0, dataset_shape) ] signal = librosa.to_mono(np.transpose(signal)) signal, _ = librosa.effects.trim(signal, top_db=50) #spectrogram = librosa.feature.melspectrogram(signal, sr=samplerate, n_fft=1024, hop_length=160, fmin=240, fmax=3000) spectrogram = librosa.feature.melspectrogram(signal, sr=samplerate, n_fft=1024, hop_length=160) logSpectrogram = self.refFun(spectrogram) signalLength = float(len(signal) / samplerate) * 1000 indexPosition = 0 while indexPosition < signalLength - self.PARAM_FRAME_LENGTH: row = np.asarray(logSpectrogram[:, int(indexPosition / 10):int((indexPosition + self.PARAM_FRAME_LENGTH) / 10)]).ravel() X_test_vectors.append(row) indexPosition += self.PARAM_FRAME_LENGTH X_test_vectors = X_test_vectors[1:] # We remove first row which is only 0 X_test = [] for i in range(len(X_test_vectors)): matrix = np.zeros((self.PARAM_NUMBER_MELS, int(self.PARAM_FRAME_LENGTH / 10))) for l in range(self.PARAM_NUMBER_MELS): for m in range(int(self.PARAM_FRAME_LENGTH / 10)): matrix[l, m] = X_test_vectors[i][l * int(self.PARAM_FRAME_LENGTH / 10) + m] X_test.append([matrix]) # Creating vector into clustering space cluster_space_layer = K.function([self.model.layers[0].input], [self.model.layers[7].output]) layer_output = cluster_space_layer([X_test])[0] cosinus_dist = 1. - sklearn.metrics.pairwise.cosine_similarity(layer_output) cosinus_dist[cosinus_dist < 0] = 0 cosine_tsne = manifold.TSNE(n_components=2, metric='precomputed').fit_transform(cosinus_dist) Z = linkage(layer_output, metric='cosine', method='complete') minDist = max([row[2] for row in Z]) nb_clusters = len(Z) for i in range(len(Z)-1): if (minDist > Z[i+1][2] - Z[i][2]): minDist = Z[i+1][2] - Z[i][2] nb_clusters = i if count is None: count = 2 int(count) clustering = AgglomerativeClustering(affinity='cosine', linkage="complete", n_clusters=count).fit_predict(layer_output) # Now we need to find indexes when current speaker changes flags = [] currentSpeaker = clustering[0] for i in range(1, len(clustering)): if clustering[i] != currentSpeaker: currentSpeaker = clustering[i] flags.append(i) finalClustering = [] for flag in flags: fragment = signal[(flag-1)*samplerate:(flag+1)*samplerate] chroma = librosa.feature.chroma_cens(y=fragment, sr=samplerate) #librosa.output.write_wav("output/test_fragment.wav", test_fragment, samplerate) bounds = librosa.segment.agglomerative(chroma, 3) speakerStartPos = (flag-1) + librosa.frames_to_time(bounds, sr=samplerate)[1] finalClustering.append(float("{0:.3f}".format(speakerStartPos))) flags.insert(0, 0) finalClustering.insert(0, 0) result = [[] for i in range(count)] for i in range(1, len(flags)): print(flags[i] - 1) n = clustering[flags[i] - 1] result[n].append((finalClustering[i-1], finalClustering[i] - 0.001)) result[clustering[-1]].append((finalClustering[-1], "EOF")) #clustering = KMeans(n_clusters=4).fit_predict(layer_output) return {'res': result, 'exec_time': time.time() - timeS}
0.529507
0.221414
from typing import List, Tuple, Dict class ScoreContributionSpecification: """ Specifies how to calculate the score of a goal-directed benchmark. The global score will be a weighted average of top-x scores. This class specifies which top-x to consider and what the corresponding weights are. """ def __init__(self, contributions: List[Tuple[int, float]]) -> None: """ Args: contributions: List of tuples (top_count, weight) for the score contributions """ self.contributions = contributions @property def top_counts(self) -> List[int]: return [x[0] for x in self.contributions] @property def weights(self) -> List[float]: return [x[1] for x in self.contributions] def uniform_specification(*top_counts: int) -> ScoreContributionSpecification: """ Creates an instance of ScoreContributionSpecification where all the top-x contributions have equal weight Args: top_counts: list of values, where each value x will correspond to the top-x contribution """ contributions = [(x, 1.0) for x in top_counts] return ScoreContributionSpecification(contributions=contributions) def compute_global_score(contribution_specification: ScoreContributionSpecification, scores: List[float]) -> Tuple[float, Dict[str, float]]: """ Computes the global score according to the contribution specification. Args: contribution_specification: Score contribution specification scores: List of all scores - list must be long enough for all top_counts in contribution_specification Returns: Tuple with the global score and a dict with the considered top-x scores """ sorted_scores = sorted(scores, reverse=True) global_score = 0.0 top_x_dict = {} for top_count, weight in contribution_specification.contributions: score = sum(sorted_scores[:top_count]) / top_count top_x_dict[f'top_{top_count}'] = score global_score += score * weight global_score /= sum(contribution_specification.weights) return global_score, top_x_dict
examples/generation/docking_generation/guacamol_tdc/guacamol/guacamol/goal_directed_score_contributions.py
from typing import List, Tuple, Dict class ScoreContributionSpecification: """ Specifies how to calculate the score of a goal-directed benchmark. The global score will be a weighted average of top-x scores. This class specifies which top-x to consider and what the corresponding weights are. """ def __init__(self, contributions: List[Tuple[int, float]]) -> None: """ Args: contributions: List of tuples (top_count, weight) for the score contributions """ self.contributions = contributions @property def top_counts(self) -> List[int]: return [x[0] for x in self.contributions] @property def weights(self) -> List[float]: return [x[1] for x in self.contributions] def uniform_specification(*top_counts: int) -> ScoreContributionSpecification: """ Creates an instance of ScoreContributionSpecification where all the top-x contributions have equal weight Args: top_counts: list of values, where each value x will correspond to the top-x contribution """ contributions = [(x, 1.0) for x in top_counts] return ScoreContributionSpecification(contributions=contributions) def compute_global_score(contribution_specification: ScoreContributionSpecification, scores: List[float]) -> Tuple[float, Dict[str, float]]: """ Computes the global score according to the contribution specification. Args: contribution_specification: Score contribution specification scores: List of all scores - list must be long enough for all top_counts in contribution_specification Returns: Tuple with the global score and a dict with the considered top-x scores """ sorted_scores = sorted(scores, reverse=True) global_score = 0.0 top_x_dict = {} for top_count, weight in contribution_specification.contributions: score = sum(sorted_scores[:top_count]) / top_count top_x_dict[f'top_{top_count}'] = score global_score += score * weight global_score /= sum(contribution_specification.weights) return global_score, top_x_dict
0.960556
0.740221
from database.database import MongoManager from pydantic.networks import EmailStr from auth.manager.auth import authenticate_manager, create_manager, send_sign_up_code_verification from models.manager import ManagerCreate, ManagerLogin from auth.constants import REFRESH_TOKEN_EXPIRES_TIME, SECRET_KEY, TOKEN_EXPIRES_TIME from fastapi import HTTPException, Depends, APIRouter, status, Body, BackgroundTasks from fastapi_jwt_auth import AuthJWT from database import get_database from pydantic import BaseModel router = APIRouter() class Settings(BaseModel): authjwt_secret_key:str = SECRET_KEY authjwt_access_token_expires = TOKEN_EXPIRES_TIME authjwt_refresh_token_expires = REFRESH_TOKEN_EXPIRES_TIME @AuthJWT.load_config def get_config(): return Settings() @router.post("/signup") async def sign_up(background_tasks: BackgroundTasks,new_manager: ManagerCreate = Body(...), db:MongoManager=Depends(get_database),): manager = await create_manager(db=db,manager=new_manager) if manager: background_tasks.add_task(send_sign_up_code_verification,manager.email,db) return manager else: return "email_already_exists" @router.post("/resend-signup-verification") async def resend_signup_verification(background_tasks: BackgroundTasks,email: EmailStr = Body(...), db:MongoManager=Depends(get_database)): manager = await db.manager_repo.get_managerDB({'email':email}) if manager and not (manager.verified): background_tasks.add_task(send_sign_up_code_verification,manager.email,db) return "verification_sent" else: return "user_not_exists_or_alredy_verified" @router.post('/login') async def login(creds: ManagerLogin, Authorize: AuthJWT = Depends(), db = Depends(get_database)): email = await authenticate_manager(creds.username, creds.password,db) if not email: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) # Use create_access_token() and create_refresh_token() to create our access_token = Authorize.create_access_token(subject=creds.username) refresh_token = Authorize.create_refresh_token(subject=creds.username) return {"access_token": access_token, "refresh_token": refresh_token} @router.post('/refresh') def refresh(Authorize: AuthJWT = Depends()): Authorize.jwt_refresh_token_required() current_user = Authorize.get_jwt_subject() new_access_token = Authorize.create_access_token(subject=current_user) return {"access_token": new_access_token}
auth/manager/router.py
from database.database import MongoManager from pydantic.networks import EmailStr from auth.manager.auth import authenticate_manager, create_manager, send_sign_up_code_verification from models.manager import ManagerCreate, ManagerLogin from auth.constants import REFRESH_TOKEN_EXPIRES_TIME, SECRET_KEY, TOKEN_EXPIRES_TIME from fastapi import HTTPException, Depends, APIRouter, status, Body, BackgroundTasks from fastapi_jwt_auth import AuthJWT from database import get_database from pydantic import BaseModel router = APIRouter() class Settings(BaseModel): authjwt_secret_key:str = SECRET_KEY authjwt_access_token_expires = TOKEN_EXPIRES_TIME authjwt_refresh_token_expires = REFRESH_TOKEN_EXPIRES_TIME @AuthJWT.load_config def get_config(): return Settings() @router.post("/signup") async def sign_up(background_tasks: BackgroundTasks,new_manager: ManagerCreate = Body(...), db:MongoManager=Depends(get_database),): manager = await create_manager(db=db,manager=new_manager) if manager: background_tasks.add_task(send_sign_up_code_verification,manager.email,db) return manager else: return "email_already_exists" @router.post("/resend-signup-verification") async def resend_signup_verification(background_tasks: BackgroundTasks,email: EmailStr = Body(...), db:MongoManager=Depends(get_database)): manager = await db.manager_repo.get_managerDB({'email':email}) if manager and not (manager.verified): background_tasks.add_task(send_sign_up_code_verification,manager.email,db) return "verification_sent" else: return "user_not_exists_or_alredy_verified" @router.post('/login') async def login(creds: ManagerLogin, Authorize: AuthJWT = Depends(), db = Depends(get_database)): email = await authenticate_manager(creds.username, creds.password,db) if not email: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) # Use create_access_token() and create_refresh_token() to create our access_token = Authorize.create_access_token(subject=creds.username) refresh_token = Authorize.create_refresh_token(subject=creds.username) return {"access_token": access_token, "refresh_token": refresh_token} @router.post('/refresh') def refresh(Authorize: AuthJWT = Depends()): Authorize.jwt_refresh_token_required() current_user = Authorize.get_jwt_subject() new_access_token = Authorize.create_access_token(subject=current_user) return {"access_token": new_access_token}
0.334916
0.075109
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Backend Register.""" import os from .common.class_factory import ClassFactory from ..search_space.networks import NetworkFactory def register_pytorch(): """Register class factory of pytorch.""" # register trainer import vega.core.trainer.timm_trainer_callback # register evaluator from vega.core.evaluator.evaluator import Evaluator from vega.core.evaluator.hava_d_evaluator import HavaDEvaluator from vega.core.evaluator.davinci_mobile_evaluator import DavinciMobileEvaluator from vega.core.evaluator.gpu_evaluator import GpuEvaluator # register metrics import vega.core.metrics.pytorch # reigister datasets import vega.datasets.pytorch # register networks import vega.search_space.networks.pytorch import vega.model_zoo def register_tensorflow(): """Register class factory of tensorflow.""" # register metrics import vega.core.metrics.tensorflow # register datasets import vega.datasets.tensorflow # register networks import vega.search_space.networks.tensorflow def set_backend(backend='pytorch', device_category='GPU'): """Set backend. :param backend: backend type, default pytorch :type backend: str """ if "BACKEND_TYPE" in os.environ: return if 'CUDA_VISIBLE_DEVICES' in os.environ: os.environ['DEVICE_CATEGORY'] = 'GPU' elif 'NPU-VISIBLE-DEVICES' in os.environ: os.environ['DEVICE_CATEGORY'] = 'NPU' os.environ['ORIGIN_RANK_TABLE_FILE'] = os.environ.get('RANK_TABLE_FILE', '') os.environ['ORIGIN_RANK_SIZE'] = os.environ['RANK_SIZE'] if device_category is not None: os.environ['DEVICE_CATEGORY'] = device_category if backend == 'pytorch': os.environ['BACKEND_TYPE'] = 'PYTORCH' register_pytorch() elif backend == 'tensorflow': os.environ['BACKEND_TYPE'] = 'TENSORFLOW' register_tensorflow() else: raise Exception('backend must be pytorch or tensorflow') import vega.core.trainer.trainer import vega.search_space.search_algs.ps_differential import vega.algorithms def is_gpu_device(): """Return whether is gpu device or not.""" return os.environ.get('DEVICE_CATEGORY', None) == 'GPU' def is_npu_device(): """Return whether is npu device or not.""" return os.environ.get('DEVICE_CATEGORY', None) == 'NPU' def is_torch_backend(): """Return whether is pytorch backend or not.""" return os.environ.get('BACKEND_TYPE', None) == 'PYTORCH' def is_tf_backend(): """Return whether is tensorflow backend or not.""" return os.environ.get('BACKEND_TYPE', None) == 'TENSORFLOW'
built-in/TensorFlow/Official/cv/image_classification/ResnetVariant_for_TensorFlow/automl/vega/core/backend_register.py
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Backend Register.""" import os from .common.class_factory import ClassFactory from ..search_space.networks import NetworkFactory def register_pytorch(): """Register class factory of pytorch.""" # register trainer import vega.core.trainer.timm_trainer_callback # register evaluator from vega.core.evaluator.evaluator import Evaluator from vega.core.evaluator.hava_d_evaluator import HavaDEvaluator from vega.core.evaluator.davinci_mobile_evaluator import DavinciMobileEvaluator from vega.core.evaluator.gpu_evaluator import GpuEvaluator # register metrics import vega.core.metrics.pytorch # reigister datasets import vega.datasets.pytorch # register networks import vega.search_space.networks.pytorch import vega.model_zoo def register_tensorflow(): """Register class factory of tensorflow.""" # register metrics import vega.core.metrics.tensorflow # register datasets import vega.datasets.tensorflow # register networks import vega.search_space.networks.tensorflow def set_backend(backend='pytorch', device_category='GPU'): """Set backend. :param backend: backend type, default pytorch :type backend: str """ if "BACKEND_TYPE" in os.environ: return if 'CUDA_VISIBLE_DEVICES' in os.environ: os.environ['DEVICE_CATEGORY'] = 'GPU' elif 'NPU-VISIBLE-DEVICES' in os.environ: os.environ['DEVICE_CATEGORY'] = 'NPU' os.environ['ORIGIN_RANK_TABLE_FILE'] = os.environ.get('RANK_TABLE_FILE', '') os.environ['ORIGIN_RANK_SIZE'] = os.environ['RANK_SIZE'] if device_category is not None: os.environ['DEVICE_CATEGORY'] = device_category if backend == 'pytorch': os.environ['BACKEND_TYPE'] = 'PYTORCH' register_pytorch() elif backend == 'tensorflow': os.environ['BACKEND_TYPE'] = 'TENSORFLOW' register_tensorflow() else: raise Exception('backend must be pytorch or tensorflow') import vega.core.trainer.trainer import vega.search_space.search_algs.ps_differential import vega.algorithms def is_gpu_device(): """Return whether is gpu device or not.""" return os.environ.get('DEVICE_CATEGORY', None) == 'GPU' def is_npu_device(): """Return whether is npu device or not.""" return os.environ.get('DEVICE_CATEGORY', None) == 'NPU' def is_torch_backend(): """Return whether is pytorch backend or not.""" return os.environ.get('BACKEND_TYPE', None) == 'PYTORCH' def is_tf_backend(): """Return whether is tensorflow backend or not.""" return os.environ.get('BACKEND_TYPE', None) == 'TENSORFLOW'
0.758063
0.111628
import json from urllib import parse from paddleflow.common.exception.paddleflow_sdk_exception import PaddleFlowSDKException from paddleflow.utils import api_client from paddleflow.common import api from paddleflow.queue.queue_info import QueueInfo from paddleflow.queue.queue_info import GrantInfo class QueueServiceApi(object): """queue service api""" def __init__(self): """ """ @classmethod def add_queue(self, host, name, namespace, clusterName, maxResources, minResources=None, schedulingPolicy=None, location=None, quotaType=None, header=None): """ add queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") body = { "namespace": namespace, "name": name, "clusterName": clusterName, "maxResources": maxResources, } if minResources: body['minResources'] = minResources if schedulingPolicy: body['schedulingPolicy'] = schedulingPolicy if location: body['location'] = location if quotaType: body['quotaType'] = quotaType response = api_client.call_api(method="POST", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE), headers=header, json=body) if not response: raise PaddleFlowSDKException("Connection Error", "add queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def grant_queue(self, host, username, queuename, header=None): """ grant queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") body = { "username": username, "resourceType": "queue", "resourceID": queuename } response = api_client.call_api(method="POST", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), headers=header, json=body) if not response: raise PaddleFlowSDKException("Connection Error", "grant queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def ungrant_queue(self, host, username, queuename, header=None): """ ungrant queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") ## call grant params = { "username": username, "resourceType": "queue", "resourceID": queuename } response = api_client.call_api(method="DELETE", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), headers=header, params=params) if not response.text: return True, None if not response: raise PaddleFlowSDKException("Connection Error", "ungrant queue failed due to HTTPError") data = json.loads(response.text) if data and 'message' in data: return False, data['message'] return True, None @classmethod def del_queue(self, host, queuename, header=None): """ delete queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="DELETE", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "delete queue failed due to HTTPError") if not response.text: return True, None data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def stop_queue(self, host, queuename, action=None, header=None): """ delete queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if action: params = {"action":action} else: params = {"action":'close'} response = api_client.call_api(method="PUT", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "stop queue failed due to HTTPError") if not response.text: return True, None data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def list_queue(self, host, header=None, maxsize=100, marker=None): """ list queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if not isinstance(maxsize, int) or maxsize <= 0: raise PaddleFlowSDKException("InvalidRequest", "maxsize should be int and greater than 0") params = { "maxKeys": maxsize } if marker: params['marker'] = marker response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "list queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] queueList = [] if len(data['queueList']): for queue in data['queueList']: queueinfo = QueueInfo(queue['name'], queue['status'], queue['namespace'], queue['clusterName'], None, queue['maxResources'], queue['minResources'], None, None, queue['createTime'], queue['updateTime']) queueList.append(queueinfo) return True, queueList, data.get('nextMarker', None) @classmethod def show_queue(self, host, queuename, header=None): """ show queue info """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "show queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] queueInfo = QueueInfo(data['name'], data['status'], data['namespace'], data['clusterName'], None, data['maxResources'], data.get('minResources'), data.get('location'), data.get('schedulingPolicy'), data['createTime'], data['updateTime']) return True, queueInfo @classmethod def show_grant(self, host, username=None, header=None, maxsize=100): """ show grant resources """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if not isinstance(maxsize, int) or maxsize <= 0: raise PaddleFlowSDKException("InvalidRequest", "maxsize should be int and greater than 0") params = { "maxKeys": maxsize } if username: params['username'] = username response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "show grant failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] grantList = [] if len(data['grantList']): for grant in data['grantList']: if grant['resourceType'] != "queue": continue grantinfo = GrantInfo(grant['userName'], grant['resourceID']) grantList.append(grantinfo) return True, grantList @classmethod def flavour(self, host, header=None): """ list flavour """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_FLAVOUR), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "list flavour failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, data
client/paddleflow/queue/queue_api.py
import json from urllib import parse from paddleflow.common.exception.paddleflow_sdk_exception import PaddleFlowSDKException from paddleflow.utils import api_client from paddleflow.common import api from paddleflow.queue.queue_info import QueueInfo from paddleflow.queue.queue_info import GrantInfo class QueueServiceApi(object): """queue service api""" def __init__(self): """ """ @classmethod def add_queue(self, host, name, namespace, clusterName, maxResources, minResources=None, schedulingPolicy=None, location=None, quotaType=None, header=None): """ add queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") body = { "namespace": namespace, "name": name, "clusterName": clusterName, "maxResources": maxResources, } if minResources: body['minResources'] = minResources if schedulingPolicy: body['schedulingPolicy'] = schedulingPolicy if location: body['location'] = location if quotaType: body['quotaType'] = quotaType response = api_client.call_api(method="POST", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE), headers=header, json=body) if not response: raise PaddleFlowSDKException("Connection Error", "add queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def grant_queue(self, host, username, queuename, header=None): """ grant queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") body = { "username": username, "resourceType": "queue", "resourceID": queuename } response = api_client.call_api(method="POST", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), headers=header, json=body) if not response: raise PaddleFlowSDKException("Connection Error", "grant queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def ungrant_queue(self, host, username, queuename, header=None): """ ungrant queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") ## call grant params = { "username": username, "resourceType": "queue", "resourceID": queuename } response = api_client.call_api(method="DELETE", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), headers=header, params=params) if not response.text: return True, None if not response: raise PaddleFlowSDKException("Connection Error", "ungrant queue failed due to HTTPError") data = json.loads(response.text) if data and 'message' in data: return False, data['message'] return True, None @classmethod def del_queue(self, host, queuename, header=None): """ delete queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="DELETE", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "delete queue failed due to HTTPError") if not response.text: return True, None data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def stop_queue(self, host, queuename, action=None, header=None): """ delete queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if action: params = {"action":action} else: params = {"action":'close'} response = api_client.call_api(method="PUT", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "stop queue failed due to HTTPError") if not response.text: return True, None data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, None @classmethod def list_queue(self, host, header=None, maxsize=100, marker=None): """ list queue """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if not isinstance(maxsize, int) or maxsize <= 0: raise PaddleFlowSDKException("InvalidRequest", "maxsize should be int and greater than 0") params = { "maxKeys": maxsize } if marker: params['marker'] = marker response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "list queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] queueList = [] if len(data['queueList']): for queue in data['queueList']: queueinfo = QueueInfo(queue['name'], queue['status'], queue['namespace'], queue['clusterName'], None, queue['maxResources'], queue['minResources'], None, None, queue['createTime'], queue['updateTime']) queueList.append(queueinfo) return True, queueList, data.get('nextMarker', None) @classmethod def show_queue(self, host, queuename, header=None): """ show queue info """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_QUEUE + "/%s" % queuename), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "show queue failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] queueInfo = QueueInfo(data['name'], data['status'], data['namespace'], data['clusterName'], None, data['maxResources'], data.get('minResources'), data.get('location'), data.get('schedulingPolicy'), data['createTime'], data['updateTime']) return True, queueInfo @classmethod def show_grant(self, host, username=None, header=None, maxsize=100): """ show grant resources """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") if not isinstance(maxsize, int) or maxsize <= 0: raise PaddleFlowSDKException("InvalidRequest", "maxsize should be int and greater than 0") params = { "maxKeys": maxsize } if username: params['username'] = username response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_GRANT), params=params, headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "show grant failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] grantList = [] if len(data['grantList']): for grant in data['grantList']: if grant['resourceType'] != "queue": continue grantinfo = GrantInfo(grant['userName'], grant['resourceID']) grantList.append(grantinfo) return True, grantList @classmethod def flavour(self, host, header=None): """ list flavour """ if not header: raise PaddleFlowSDKException("InvalidRequest", "paddleflow should login first") response = api_client.call_api(method="GET", url=parse.urljoin(host, api.PADDLE_FLOW_FLAVOUR), headers=header) if not response: raise PaddleFlowSDKException("Connection Error", "list flavour failed due to HTTPError") data = json.loads(response.text) if 'message' in data: return False, data['message'] return True, data
0.5144
0.107813
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class RoleClassPartitive(GenericTypeCode): """ v3.RoleClassPartitive From: http://terminology.hl7.org/ValueSet/v3-RoleClassPartitive in v3-codesystems.xml An association between two Entities where the playing Entity is considered in some way "part" of the scoping Entity, e.g., as a member, component, ingredient, or content. Being "part" in the broadest sense of the word can mean anything from being an integral structural component to a mere incidental temporary association of a playing Entity with a (generally larger) scoping Entity. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://terminology.hl7.org/CodeSystem/v3-RoleClass """ codeset: FhirUri = "http://terminology.hl7.org/CodeSystem/v3-RoleClass" class RoleClassPartitiveValues: """ Corresponds to the Role class From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Role = RoleClassPartitive("ROL") """ The player of the role is a child of the scoping entity, in a generic sense. From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Child = RoleClassPartitive("CHILD") """ A role played by an entity that receives credentials from the scoping entity. From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ CredentialedEntity = RoleClassPartitive("CRED") """ nurse practitioner From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ NursePractitioner = RoleClassPartitive("NURPRAC") """ nurse From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Nurse = RoleClassPartitive("NURS") """ physician assistant From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ PhysicianAssistant = RoleClassPartitive("PA") """ physician From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Physician = RoleClassPartitive("PHYS")
spark_auto_mapper_fhir/value_sets/role_class_partitive.py
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class RoleClassPartitive(GenericTypeCode): """ v3.RoleClassPartitive From: http://terminology.hl7.org/ValueSet/v3-RoleClassPartitive in v3-codesystems.xml An association between two Entities where the playing Entity is considered in some way "part" of the scoping Entity, e.g., as a member, component, ingredient, or content. Being "part" in the broadest sense of the word can mean anything from being an integral structural component to a mere incidental temporary association of a playing Entity with a (generally larger) scoping Entity. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://terminology.hl7.org/CodeSystem/v3-RoleClass """ codeset: FhirUri = "http://terminology.hl7.org/CodeSystem/v3-RoleClass" class RoleClassPartitiveValues: """ Corresponds to the Role class From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Role = RoleClassPartitive("ROL") """ The player of the role is a child of the scoping entity, in a generic sense. From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Child = RoleClassPartitive("CHILD") """ A role played by an entity that receives credentials from the scoping entity. From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ CredentialedEntity = RoleClassPartitive("CRED") """ nurse practitioner From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ NursePractitioner = RoleClassPartitive("NURPRAC") """ nurse From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Nurse = RoleClassPartitive("NURS") """ physician assistant From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ PhysicianAssistant = RoleClassPartitive("PA") """ physician From: http://terminology.hl7.org/CodeSystem/v3-RoleClass in v3-codesystems.xml """ Physician = RoleClassPartitive("PHYS")
0.7874
0.263831
import os from plotly.graph_objs import Bar, Figure, Layout from ..memberlookup import message_to_author, id_to_name from ..statistic import statistic from ..plotly_helpers import marker, try_saving_plotly_figure class Total(object): def __init__(self, author): self.author = author self.hearts_received = 0 def add_message(self, message): self.hearts_received += len(message.favorited_by) @statistic class HeartsReceivedPlot(object): def calculate(self, group, messages, ignore_users=[], **kwargs): id_to_totals = {} for message in messages: user_id = message.user_id if user_id == "system": continue if user_id not in id_to_totals: id_to_totals[user_id] = Total(message_to_author(message)) id_to_totals[user_id].add_message(message) totals = sorted(id_to_totals.values(), key=lambda total: total.author) self._totals = [total for total in totals if total.author not in ignore_users] self._group_name = group.name def show(self): if not os.path.exists(self._group_name): os.mkdir(self._group_name) x_axis = [total.author for total in self._totals] y_axis = [total.hearts_received for total in self._totals] hearts_received = Bar( x=x_axis, y=y_axis, marker=marker, ) data = [hearts_received] layout = Layout( title="%s - Total Hearts Received" % self._group_name, autosize=False, width=30*len(x_axis) + 300, height=800, showlegend=False, annotations=[ dict(x=xi, y=yi, text=str(yi), xanchor='center', yanchor='bottom', showarrow=False, ) for xi, yi in zip(x_axis, y_axis)], yaxis=dict(title="Hearts Received"), ) figure = Figure(data=data, layout=layout) filename = os.path.join(self._group_name, "%s - Hearts Received.png" % self._group_name) try_saving_plotly_figure(figure, filename)
groupmestats/statistics/heartsreceivedplot.py
import os from plotly.graph_objs import Bar, Figure, Layout from ..memberlookup import message_to_author, id_to_name from ..statistic import statistic from ..plotly_helpers import marker, try_saving_plotly_figure class Total(object): def __init__(self, author): self.author = author self.hearts_received = 0 def add_message(self, message): self.hearts_received += len(message.favorited_by) @statistic class HeartsReceivedPlot(object): def calculate(self, group, messages, ignore_users=[], **kwargs): id_to_totals = {} for message in messages: user_id = message.user_id if user_id == "system": continue if user_id not in id_to_totals: id_to_totals[user_id] = Total(message_to_author(message)) id_to_totals[user_id].add_message(message) totals = sorted(id_to_totals.values(), key=lambda total: total.author) self._totals = [total for total in totals if total.author not in ignore_users] self._group_name = group.name def show(self): if not os.path.exists(self._group_name): os.mkdir(self._group_name) x_axis = [total.author for total in self._totals] y_axis = [total.hearts_received for total in self._totals] hearts_received = Bar( x=x_axis, y=y_axis, marker=marker, ) data = [hearts_received] layout = Layout( title="%s - Total Hearts Received" % self._group_name, autosize=False, width=30*len(x_axis) + 300, height=800, showlegend=False, annotations=[ dict(x=xi, y=yi, text=str(yi), xanchor='center', yanchor='bottom', showarrow=False, ) for xi, yi in zip(x_axis, y_axis)], yaxis=dict(title="Hearts Received"), ) figure = Figure(data=data, layout=layout) filename = os.path.join(self._group_name, "%s - Hearts Received.png" % self._group_name) try_saving_plotly_figure(figure, filename)
0.356447
0.133641
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rjoyride.proto\x12\x07joyride\"7\n\x0bRideRequest\x12\r\n\x05start\x18\x01 \x01(\t\x12\x0b\n\x03\x65nd\x18\x02 \x01(\t\x12\x0c\n\x04time\x18\x03 \x01(\x05\"*\n\tRideReply\x12\x0c\n\x04node\x18\x01 \x01(\x03\x12\x0f\n\x07message\x18\x02 \x01(\t\"*\n\nRideRating\x12\x0e\n\x06rating\x18\x01 \x01(\x03\x12\x0c\n\x04path\x18\x02 \x03(\x03\"\x06\n\x04Null2|\n\x07JoyRide\x12:\n\nGetJoyRide\x12\x14.joyride.RideRequest\x1a\x12.joyride.RideReply\"\x00\x30\x01\x12\x35\n\rGetRideRating\x12\x13.joyride.RideRating\x1a\r.joyride.Null\"\x00\x42\x30\n\x18io.grpc.examples.joyrideB\x0cJoyrideProtoP\x01\xa2\x02\x03HLWb\x06proto3') _RIDEREQUEST = DESCRIPTOR.message_types_by_name['RideRequest'] _RIDEREPLY = DESCRIPTOR.message_types_by_name['RideReply'] _RIDERATING = DESCRIPTOR.message_types_by_name['RideRating'] _NULL = DESCRIPTOR.message_types_by_name['Null'] RideRequest = _reflection.GeneratedProtocolMessageType('RideRequest', (_message.Message,), { 'DESCRIPTOR' : _RIDEREQUEST, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideRequest) }) _sym_db.RegisterMessage(RideRequest) RideReply = _reflection.GeneratedProtocolMessageType('RideReply', (_message.Message,), { 'DESCRIPTOR' : _RIDEREPLY, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideReply) }) _sym_db.RegisterMessage(RideReply) RideRating = _reflection.GeneratedProtocolMessageType('RideRating', (_message.Message,), { 'DESCRIPTOR' : _RIDERATING, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideRating) }) _sym_db.RegisterMessage(RideRating) Null = _reflection.GeneratedProtocolMessageType('Null', (_message.Message,), { 'DESCRIPTOR' : _NULL, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.Null) }) _sym_db.RegisterMessage(Null) _JOYRIDE = DESCRIPTOR.services_by_name['JoyRide'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n\030io.grpc.examples.joyrideB\014JoyrideProtoP\001\242\002\003HLW' _RIDEREQUEST._serialized_start=26 _RIDEREQUEST._serialized_end=81 _RIDEREPLY._serialized_start=83 _RIDEREPLY._serialized_end=125 _RIDERATING._serialized_start=127 _RIDERATING._serialized_end=169 _NULL._serialized_start=171 _NULL._serialized_end=177 _JOYRIDE._serialized_start=179 _JOYRIDE._serialized_end=303 # @@protoc_insertion_point(module_scope)
gen/joyride_pb2.py
"""Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rjoyride.proto\x12\x07joyride\"7\n\x0bRideRequest\x12\r\n\x05start\x18\x01 \x01(\t\x12\x0b\n\x03\x65nd\x18\x02 \x01(\t\x12\x0c\n\x04time\x18\x03 \x01(\x05\"*\n\tRideReply\x12\x0c\n\x04node\x18\x01 \x01(\x03\x12\x0f\n\x07message\x18\x02 \x01(\t\"*\n\nRideRating\x12\x0e\n\x06rating\x18\x01 \x01(\x03\x12\x0c\n\x04path\x18\x02 \x03(\x03\"\x06\n\x04Null2|\n\x07JoyRide\x12:\n\nGetJoyRide\x12\x14.joyride.RideRequest\x1a\x12.joyride.RideReply\"\x00\x30\x01\x12\x35\n\rGetRideRating\x12\x13.joyride.RideRating\x1a\r.joyride.Null\"\x00\x42\x30\n\x18io.grpc.examples.joyrideB\x0cJoyrideProtoP\x01\xa2\x02\x03HLWb\x06proto3') _RIDEREQUEST = DESCRIPTOR.message_types_by_name['RideRequest'] _RIDEREPLY = DESCRIPTOR.message_types_by_name['RideReply'] _RIDERATING = DESCRIPTOR.message_types_by_name['RideRating'] _NULL = DESCRIPTOR.message_types_by_name['Null'] RideRequest = _reflection.GeneratedProtocolMessageType('RideRequest', (_message.Message,), { 'DESCRIPTOR' : _RIDEREQUEST, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideRequest) }) _sym_db.RegisterMessage(RideRequest) RideReply = _reflection.GeneratedProtocolMessageType('RideReply', (_message.Message,), { 'DESCRIPTOR' : _RIDEREPLY, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideReply) }) _sym_db.RegisterMessage(RideReply) RideRating = _reflection.GeneratedProtocolMessageType('RideRating', (_message.Message,), { 'DESCRIPTOR' : _RIDERATING, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.RideRating) }) _sym_db.RegisterMessage(RideRating) Null = _reflection.GeneratedProtocolMessageType('Null', (_message.Message,), { 'DESCRIPTOR' : _NULL, '__module__' : 'joyride_pb2' # @@protoc_insertion_point(class_scope:joyride.Null) }) _sym_db.RegisterMessage(Null) _JOYRIDE = DESCRIPTOR.services_by_name['JoyRide'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n\030io.grpc.examples.joyrideB\014JoyrideProtoP\001\242\002\003HLW' _RIDEREQUEST._serialized_start=26 _RIDEREQUEST._serialized_end=81 _RIDEREPLY._serialized_start=83 _RIDEREPLY._serialized_end=125 _RIDERATING._serialized_start=127 _RIDERATING._serialized_end=169 _NULL._serialized_start=171 _NULL._serialized_end=177 _JOYRIDE._serialized_start=179 _JOYRIDE._serialized_end=303 # @@protoc_insertion_point(module_scope)
0.282196
0.091707
import sys import xbmc import xbmcgui import xbmcaddon import time import kodi import log_utils import utils from salts_lib import salts_utils from salts_lib import image_proxy from salts_lib import utils2 from salts_lib.utils2 import i18n from salts_lib.constants import MODES from salts_lib.db_utils import DB_Connection from salts_lib.trakt_api import Trakt_API logger = log_utils.Logger.get_logger() logger.disable() class Service(xbmc.Player): def __init__(self, *args, **kwargs): logger.log('Service: starting...', log_utils.LOGNOTICE) self.db_connection = DB_Connection() xbmc.Player.__init__(self, *args, **kwargs) self.win = xbmcgui.Window(10000) self.reset() def reset(self): logger.log('Service: Resetting...', log_utils.LOGDEBUG) self.win.clearProperty('salts.playing') self.win.clearProperty('salts.playing.trakt_id') self.win.clearProperty('salts.playing.season') self.win.clearProperty('salts.playing.episode') self.win.clearProperty('salts.playing.srt') self.win.clearProperty('salts.playing.trakt_resume') self.win.clearProperty('salts.playing.salts_resume') self.win.clearProperty('salts.playing.library') self._from_library = False self.tracked = False self._totalTime = 999999 self.trakt_id = None self.season = None self.episode = None self._lastPos = 0 def onPlayBackStarted(self): logger.log('Service: Playback started', log_utils.LOGNOTICE) playing = self.win.getProperty('salts.playing') == 'True' self.trakt_id = self.win.getProperty('salts.playing.trakt_id') self.season = self.win.getProperty('salts.playing.season') self.episode = self.win.getProperty('salts.playing.episode') srt_path = self.win.getProperty('salts.playing.srt') trakt_resume = self.win.getProperty('salts.playing.trakt_resume') salts_resume = self.win.getProperty('salts.playing.salts_resume') self._from_library = self.win.getProperty('salts.playing.library') == 'True' if playing: # Playback is ours logger.log('Service: tracking progress...', log_utils.LOGNOTICE) self.tracked = True if srt_path: logger.log('Service: Enabling subtitles: %s' % (srt_path), log_utils.LOGDEBUG) self.setSubtitles(srt_path) else: self.showSubtitles(False) self._totalTime = 0 while self._totalTime == 0: try: self._totalTime = self.getTotalTime() except RuntimeError: self._totalTime = 0 break kodi.sleep(1000) if salts_resume: logger.log("SaltsRD Local Resume: Resume Time: %s Total Time: %s" % (salts_resume, self._totalTime), log_utils.LOGDEBUG) self.seekTime(float(salts_resume)) elif trakt_resume: resume_time = float(trakt_resume) * self._totalTime / 100 logger.log("SaltsRD Trakt Resume: Percent: %s, Resume Time: %s Total Time: %s" % (trakt_resume, resume_time, self._totalTime), log_utils.LOGDEBUG) self.seekTime(resume_time) def onPlayBackStopped(self): logger.log('Service: Playback Stopped', log_utils.LOGNOTICE) if self.tracked: # clear the playlist if SaltsRD was playing and only one item in playlist to # use playlist to determine playback method in get_sources pl = xbmc.PlayList(xbmc.PLAYLIST_VIDEO) plugin_url = 'plugin://%s/' % (kodi.get_id()) if pl.size() == 1 and pl[0].getfilename().lower().startswith(plugin_url): logger.log('Service: Clearing Single Item SaltsRD Playlist', log_utils.LOGDEBUG) pl.clear() playedTime = float(self._lastPos) try: percent_played = int((playedTime / self._totalTime) * 100) except: percent_played = 0 # guard div by zero pTime = utils.format_time(playedTime) tTime = utils.format_time(self._totalTime) logger.log('Service: Played %s of %s total = %s%%' % (pTime, tTime, percent_played), log_utils.LOGDEBUG) if playedTime == 0 and self._totalTime == 999999: logger.log('Kodi silently failed to start playback', log_utils.LOGWARNING) elif playedTime >= 5: if percent_played <= 98: logger.log('Service: Setting bookmark on |%s|%s|%s| to %s seconds' % (self.trakt_id, self.season, self.episode, playedTime), log_utils.LOGDEBUG) self.db_connection.set_bookmark(self.trakt_id, playedTime, self.season, self.episode) if percent_played >= 75 and self._from_library: if kodi.has_addon('script.trakt'): run = 'RunScript(script.trakt, action=sync, silent=True)' xbmc.executebuiltin(run) self.reset() def onPlayBackEnded(self): logger.log('Service: Playback completed', log_utils.LOGNOTICE) self.onPlayBackStopped() def disable_global_cx(was_on): if kodi.has_addon('plugin.program.mega.favourites'): active_plugin = xbmc.getInfoLabel('Container.PluginName') sf = xbmcaddon.Addon('plugin.program.super.favourites') if active_plugin == kodi.get_id(): if sf.getSetting('CONTEXT') == 'true': logger.log('Disabling Global CX while SaltsRD is active', log_utils.LOGDEBUG) was_on = True sf.setSetting('CONTEXT', 'false') elif was_on: logger.log('Re-enabling Global CX while SaltsRD is not active', log_utils.LOGDEBUG) sf.setSetting('CONTEXT', 'true') was_on = False return was_on def check_cooldown(cd_begin): # black_list = ['plugin.video.livestreams'] # active_plugin = xbmc.getInfoLabel('Container.PluginName') # if active_plugin in black_list: # cd_begin = time.time() active = 'false' if (time.time() - cd_begin) > 30 else 'true' if kodi.get_setting('cool_down') != active: kodi.set_setting('cool_down', active) return cd_begin def show_next_up(last_label, sf_begin): token = kodi.get_setting('trakt_oauth_token') if token and xbmc.getInfoLabel('Container.PluginName') == kodi.get_id() and xbmc.getInfoLabel('Container.Content') == 'tvshows': if xbmc.getInfoLabel('ListItem.label') != last_label: sf_begin = time.time() last_label = xbmc.getInfoLabel('ListItem.label') if sf_begin and (time.time() - sf_begin) >= int(kodi.get_setting('next_up_delay')): liz_url = xbmc.getInfoLabel('ListItem.FileNameAndPath') queries = kodi.parse_query(liz_url[liz_url.find('?'):]) if 'trakt_id' in queries: try: list_size = int(kodi.get_setting('list_size')) except: list_size = 30 try: trakt_timeout = int(kodi.get_setting('trakt_timeout')) except: trakt_timeout = 20 trakt_api = Trakt_API(token, kodi.get_setting('use_https') == 'true', list_size, trakt_timeout, kodi.get_setting('trakt_offline') == 'true') progress = trakt_api.get_show_progress(queries['trakt_id'], full=True) if 'next_episode' in progress and progress['next_episode']: if progress['completed'] or kodi.get_setting('next_unwatched') == 'true': next_episode = progress['next_episode'] date = utils2.make_day(utils2.make_air_date(next_episode['first_aired'])) if kodi.get_setting('next_time') != '0': date_time = '%s@%s' % (date, utils2.make_time(utils.iso_2_utc(next_episode['first_aired']), 'next_time')) else: date_time = date msg = '[[COLOR deeppink]%s[/COLOR]] - %sx%s' % (date_time, next_episode['season'], next_episode['number']) if next_episode['title']: msg += ' - %s' % (next_episode['title']) duration = int(kodi.get_setting('next_up_duration')) * 1000 kodi.notify(header=i18n('next_episode'), msg=msg, duration=duration) sf_begin = 0 else: last_label = '' return last_label, sf_begin def main(argv=None): # @UnusedVariable if sys.argv: argv = sys.argv # @UnusedVariable MAX_ERRORS = 10 errors = 0 last_label = '' sf_begin = 0 cd_begin = 0 was_on = False logger.log('Service: Installed Version: %s' % (kodi.get_version()), log_utils.LOGNOTICE) monitor = xbmc.Monitor() proxy = image_proxy.ImageProxy() service = Service() salts_utils.do_startup_task(MODES.UPDATE_SUBS) salts_utils.do_startup_task(MODES.PRUNE_CACHE) while not monitor.abortRequested(): try: is_playing = service.isPlaying() salts_utils.do_scheduled_task(MODES.UPDATE_SUBS, is_playing) salts_utils.do_scheduled_task(MODES.PRUNE_CACHE, is_playing) if service.tracked and service.isPlayingVideo(): service._lastPos = service.getTime() was_on = disable_global_cx(was_on) cd_begin = check_cooldown(cd_begin) if not proxy.running: proxy.start_proxy() if kodi.get_setting('show_next_up') == 'true': last_label, sf_begin = show_next_up(last_label, sf_begin) except Exception as e: errors += 1 if errors >= MAX_ERRORS: logger.log('Service: Error (%s) received..(%s/%s)...Ending Service...' % (e, errors, MAX_ERRORS), log_utils.LOGERROR) break else: logger.log('Service: Error (%s) received..(%s/%s)...Continuing Service...' % (e, errors, MAX_ERRORS), log_utils.LOGERROR) else: errors = 0 if monitor.waitForAbort(.5): break proxy.stop_proxy() logger.log('Service: shutting down...', log_utils.LOGNOTICE) if __name__ == '__main__': sys.exit(main())
plugin.video.saltsrd.lite/service.py
import sys import xbmc import xbmcgui import xbmcaddon import time import kodi import log_utils import utils from salts_lib import salts_utils from salts_lib import image_proxy from salts_lib import utils2 from salts_lib.utils2 import i18n from salts_lib.constants import MODES from salts_lib.db_utils import DB_Connection from salts_lib.trakt_api import Trakt_API logger = log_utils.Logger.get_logger() logger.disable() class Service(xbmc.Player): def __init__(self, *args, **kwargs): logger.log('Service: starting...', log_utils.LOGNOTICE) self.db_connection = DB_Connection() xbmc.Player.__init__(self, *args, **kwargs) self.win = xbmcgui.Window(10000) self.reset() def reset(self): logger.log('Service: Resetting...', log_utils.LOGDEBUG) self.win.clearProperty('salts.playing') self.win.clearProperty('salts.playing.trakt_id') self.win.clearProperty('salts.playing.season') self.win.clearProperty('salts.playing.episode') self.win.clearProperty('salts.playing.srt') self.win.clearProperty('salts.playing.trakt_resume') self.win.clearProperty('salts.playing.salts_resume') self.win.clearProperty('salts.playing.library') self._from_library = False self.tracked = False self._totalTime = 999999 self.trakt_id = None self.season = None self.episode = None self._lastPos = 0 def onPlayBackStarted(self): logger.log('Service: Playback started', log_utils.LOGNOTICE) playing = self.win.getProperty('salts.playing') == 'True' self.trakt_id = self.win.getProperty('salts.playing.trakt_id') self.season = self.win.getProperty('salts.playing.season') self.episode = self.win.getProperty('salts.playing.episode') srt_path = self.win.getProperty('salts.playing.srt') trakt_resume = self.win.getProperty('salts.playing.trakt_resume') salts_resume = self.win.getProperty('salts.playing.salts_resume') self._from_library = self.win.getProperty('salts.playing.library') == 'True' if playing: # Playback is ours logger.log('Service: tracking progress...', log_utils.LOGNOTICE) self.tracked = True if srt_path: logger.log('Service: Enabling subtitles: %s' % (srt_path), log_utils.LOGDEBUG) self.setSubtitles(srt_path) else: self.showSubtitles(False) self._totalTime = 0 while self._totalTime == 0: try: self._totalTime = self.getTotalTime() except RuntimeError: self._totalTime = 0 break kodi.sleep(1000) if salts_resume: logger.log("SaltsRD Local Resume: Resume Time: %s Total Time: %s" % (salts_resume, self._totalTime), log_utils.LOGDEBUG) self.seekTime(float(salts_resume)) elif trakt_resume: resume_time = float(trakt_resume) * self._totalTime / 100 logger.log("SaltsRD Trakt Resume: Percent: %s, Resume Time: %s Total Time: %s" % (trakt_resume, resume_time, self._totalTime), log_utils.LOGDEBUG) self.seekTime(resume_time) def onPlayBackStopped(self): logger.log('Service: Playback Stopped', log_utils.LOGNOTICE) if self.tracked: # clear the playlist if SaltsRD was playing and only one item in playlist to # use playlist to determine playback method in get_sources pl = xbmc.PlayList(xbmc.PLAYLIST_VIDEO) plugin_url = 'plugin://%s/' % (kodi.get_id()) if pl.size() == 1 and pl[0].getfilename().lower().startswith(plugin_url): logger.log('Service: Clearing Single Item SaltsRD Playlist', log_utils.LOGDEBUG) pl.clear() playedTime = float(self._lastPos) try: percent_played = int((playedTime / self._totalTime) * 100) except: percent_played = 0 # guard div by zero pTime = utils.format_time(playedTime) tTime = utils.format_time(self._totalTime) logger.log('Service: Played %s of %s total = %s%%' % (pTime, tTime, percent_played), log_utils.LOGDEBUG) if playedTime == 0 and self._totalTime == 999999: logger.log('Kodi silently failed to start playback', log_utils.LOGWARNING) elif playedTime >= 5: if percent_played <= 98: logger.log('Service: Setting bookmark on |%s|%s|%s| to %s seconds' % (self.trakt_id, self.season, self.episode, playedTime), log_utils.LOGDEBUG) self.db_connection.set_bookmark(self.trakt_id, playedTime, self.season, self.episode) if percent_played >= 75 and self._from_library: if kodi.has_addon('script.trakt'): run = 'RunScript(script.trakt, action=sync, silent=True)' xbmc.executebuiltin(run) self.reset() def onPlayBackEnded(self): logger.log('Service: Playback completed', log_utils.LOGNOTICE) self.onPlayBackStopped() def disable_global_cx(was_on): if kodi.has_addon('plugin.program.mega.favourites'): active_plugin = xbmc.getInfoLabel('Container.PluginName') sf = xbmcaddon.Addon('plugin.program.super.favourites') if active_plugin == kodi.get_id(): if sf.getSetting('CONTEXT') == 'true': logger.log('Disabling Global CX while SaltsRD is active', log_utils.LOGDEBUG) was_on = True sf.setSetting('CONTEXT', 'false') elif was_on: logger.log('Re-enabling Global CX while SaltsRD is not active', log_utils.LOGDEBUG) sf.setSetting('CONTEXT', 'true') was_on = False return was_on def check_cooldown(cd_begin): # black_list = ['plugin.video.livestreams'] # active_plugin = xbmc.getInfoLabel('Container.PluginName') # if active_plugin in black_list: # cd_begin = time.time() active = 'false' if (time.time() - cd_begin) > 30 else 'true' if kodi.get_setting('cool_down') != active: kodi.set_setting('cool_down', active) return cd_begin def show_next_up(last_label, sf_begin): token = kodi.get_setting('trakt_oauth_token') if token and xbmc.getInfoLabel('Container.PluginName') == kodi.get_id() and xbmc.getInfoLabel('Container.Content') == 'tvshows': if xbmc.getInfoLabel('ListItem.label') != last_label: sf_begin = time.time() last_label = xbmc.getInfoLabel('ListItem.label') if sf_begin and (time.time() - sf_begin) >= int(kodi.get_setting('next_up_delay')): liz_url = xbmc.getInfoLabel('ListItem.FileNameAndPath') queries = kodi.parse_query(liz_url[liz_url.find('?'):]) if 'trakt_id' in queries: try: list_size = int(kodi.get_setting('list_size')) except: list_size = 30 try: trakt_timeout = int(kodi.get_setting('trakt_timeout')) except: trakt_timeout = 20 trakt_api = Trakt_API(token, kodi.get_setting('use_https') == 'true', list_size, trakt_timeout, kodi.get_setting('trakt_offline') == 'true') progress = trakt_api.get_show_progress(queries['trakt_id'], full=True) if 'next_episode' in progress and progress['next_episode']: if progress['completed'] or kodi.get_setting('next_unwatched') == 'true': next_episode = progress['next_episode'] date = utils2.make_day(utils2.make_air_date(next_episode['first_aired'])) if kodi.get_setting('next_time') != '0': date_time = '%s@%s' % (date, utils2.make_time(utils.iso_2_utc(next_episode['first_aired']), 'next_time')) else: date_time = date msg = '[[COLOR deeppink]%s[/COLOR]] - %sx%s' % (date_time, next_episode['season'], next_episode['number']) if next_episode['title']: msg += ' - %s' % (next_episode['title']) duration = int(kodi.get_setting('next_up_duration')) * 1000 kodi.notify(header=i18n('next_episode'), msg=msg, duration=duration) sf_begin = 0 else: last_label = '' return last_label, sf_begin def main(argv=None): # @UnusedVariable if sys.argv: argv = sys.argv # @UnusedVariable MAX_ERRORS = 10 errors = 0 last_label = '' sf_begin = 0 cd_begin = 0 was_on = False logger.log('Service: Installed Version: %s' % (kodi.get_version()), log_utils.LOGNOTICE) monitor = xbmc.Monitor() proxy = image_proxy.ImageProxy() service = Service() salts_utils.do_startup_task(MODES.UPDATE_SUBS) salts_utils.do_startup_task(MODES.PRUNE_CACHE) while not monitor.abortRequested(): try: is_playing = service.isPlaying() salts_utils.do_scheduled_task(MODES.UPDATE_SUBS, is_playing) salts_utils.do_scheduled_task(MODES.PRUNE_CACHE, is_playing) if service.tracked and service.isPlayingVideo(): service._lastPos = service.getTime() was_on = disable_global_cx(was_on) cd_begin = check_cooldown(cd_begin) if not proxy.running: proxy.start_proxy() if kodi.get_setting('show_next_up') == 'true': last_label, sf_begin = show_next_up(last_label, sf_begin) except Exception as e: errors += 1 if errors >= MAX_ERRORS: logger.log('Service: Error (%s) received..(%s/%s)...Ending Service...' % (e, errors, MAX_ERRORS), log_utils.LOGERROR) break else: logger.log('Service: Error (%s) received..(%s/%s)...Continuing Service...' % (e, errors, MAX_ERRORS), log_utils.LOGERROR) else: errors = 0 if monitor.waitForAbort(.5): break proxy.stop_proxy() logger.log('Service: shutting down...', log_utils.LOGNOTICE) if __name__ == '__main__': sys.exit(main())
0.225843
0.065635
from pathlib import Path from typing import Dict, Iterator, List, Optional, Tuple, Union import numpy as np import tensorflow as tf import tensorflow.python.util.deprecation as deprecation import tensorflow_probability as tfp from tqdm import tqdm from ..datalib.metrics import MetricAnalyser deprecation._PRINT_DEPRECATION_WARNINGS = False tfd = tfp.distributions tfk = tfp.math.psd_kernels def convert_index_points(array: np.ndarray) -> tf.Tensor: """Convert an array into a tensor appropriate for GP index points. Args: array (:obj:`np.ndarray`): The array to extend. Returns: tensor (:obj:`tf.Tensor`): The converted Tensor. """ return tf.constant(array, dtype=tf.float64) def get_default_kernel() -> tfp.math.psd_kernels.ExponentiatedQuadratic: """Get a default kernel.""" amplitude = tf.Variable(1.0, trainable=True, dtype=tf.float64, name="amplitude") length_scale = tf.Variable( 1.0, trainable=True, dtype=tf.float64, name="length_scale" ) return tfk.ExponentiatedQuadratic( amplitude=amplitude, length_scale=length_scale, ) class GPTrainer(tf.Module): """Class for training hyperparameters for GP kernels. Args: observation_index_points (:obj:`tf.Tensor`): The observed index points (`x` values). observations (:obj:`tf.Tensor`): The observed samples (`y` values). checkpoint_dir (str or :obj:`Path`, optional): The directory to check for checkpoints and to save checkpoints to. kernel: The kernel to use. Must be instantiated with trainable parameters. Defaults to a radial basis function. Attributes: observation_index_points (:obj:`tf.Tensor`): The observed index points (`x` values). observations (:obj:`tf.Tensor`): The observed samples (`y` values). checkpoint_dir (str or :obj:`Path`, optional): The directory to check for checkpoints and to save checkpoints to. trainable_vars: The trainable variables (parameters) of the kernel as a dictionary. The keys are the variables' names, stripped of the colon. kernel (:obj:`tf.Tensor`): The kernel to use for the Gaussian process. optimizer (:obj:`Optimizer`): The optimizer to use for determining :attr:`trainable_vars`. training_steps (:obj:`tf.Tensor`): The current number of training epochs executed. loss (:obj:`tf.Tensor`): The current loss on the training data (A negative log likelihood). metrics (dict): Contains metric names and values. Default to `np.nan` when uncalculated. ckpt (:obj:`Checkpoint`, optional): A tensorflow training checkpoint. Defaults to `None` if `checkpoint_dir` is not passed. ckpt_manager (:obj:`CheckpointManager`, optional): A checkpoint manager, used to save :attr:`ckpt` to file. Defaults to `None` if `checkpoint_dir` is not passed. gp_prior (:obj:`GaussianProcess`): A Gaussian process using :attr:`kernel` and using :attr:`observation_index_points` as indices. """ def __init__( self, observation_index_points: tf.Tensor, observations: tf.Tensor, checkpoint_dir: Optional[Union[str, Path]] = None, kernel: Optional[tfp.math.psd_kernels.PositiveSemidefiniteKernel] = None, ): """Initialze attributes, kernel, optimizer and checkpoint manager.""" self.observation_index_points = tf.Variable( observation_index_points, dtype=tf.float64, trainable=False, name="observation_index_points", ) self.observations = tf.Variable( observations, dtype=tf.float64, trainable=False, name="observations", ) if kernel is None: self.kernel: tfp.math.psd_kernels.PositiveSemidefiniteKernel = ( get_default_kernel() ) else: self.kernel = kernel self.trainable_vars: Dict[str, tf.Variable] = { var.name.strip(":"): var for var in self.kernel.trainable_variables } self.optimizer = tf.optimizers.Adam() self.training_steps = tf.Variable( 0, dtype=tf.int32, trainable=False, name="training_steps" ) self.loss = tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="training_nll", ) self.metrics = { "nll": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_nll", ), "mae": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_mae", ), "sharpness": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_sharpness", ), "variation": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_coeff_variance", ), "calibration_err": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_calibration_error", ), } if checkpoint_dir: self.ckpt = tf.train.Checkpoint( step=self.training_steps, loss=self.loss, val_nll=self.metrics["nll"], val_mae=self.metrics["mae"], val_sharpness=self.metrics["sharpness"], val_coeff_var=self.metrics["variation"], val_cal_err=self.metrics["calibration_err"], **self.trainable_vars, ) self.ckpt_manager = tf.train.CheckpointManager( self.ckpt, checkpoint_dir, max_to_keep=1, step_counter=self.training_steps, ) self.ckpt.restore(self.ckpt_manager.latest_checkpoint) if self.ckpt_manager.latest_checkpoint: print(f"Restored from {self.ckpt_manager.latest_checkpoint}") else: print("No checkpoints found.") else: self.ckpt = None self.ckpt_manager = None self.gp_prior = tfd.GaussianProcess(self.kernel, self.observation_index_points) @staticmethod def load_model(model_dir: str): """Load a `GPTrainer` model from a file. Args: model_dir (str): The directory to import the model from. Returns: The model as a TensorFlow AutoTrackable object. """ return tf.saved_model.load(model_dir) def get_model( self, index_points: tf.Tensor ) -> tfp.python.distributions.GaussianProcessRegressionModel: """Get a regression model for a set of index points. Args: index_points (:obj:`tf.Tensor`): The index points to fit regression model. Returns: gprm (:obj:`GaussianProcessRegressionModel`): The regression model. """ return tfd.GaussianProcessRegressionModel( kernel=self.kernel, index_points=index_points, observation_index_points=self.observation_index_points, observations=self.observations, ) @tf.function(input_signature=[tf.TensorSpec(None, tf.float64)]) def predict(self, points: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: """Predict targets and the standard deviation of the distribution. Args: points (:obj:`tf.Tensor`): The points (`x` values) to make predictions with. Returns: mean (:obj:`tf.Tensor`): The mean of the distribution at each point. stddev (:obj:`tf.Tensor`): The standard deviation of the distribution at each point. """ gprm = self.get_model(points) return gprm.mean(), gprm.stddev() def train_model( self, val_points: tf.Tensor, val_obs: tf.Tensor, epochs: int = 1000, patience: Optional[int] = None, save_dir: Optional[Union[str, Path]] = None, metrics: List[str] = [], ) -> Iterator[Dict[str, float]]: """Optimize model parameters. Args: val_points (:obj:`tf.Tensor`): The validation points. val_obs (:obj:`tf.Tensor`): The validation targets. epochs (int): The number of training epochs. patience (int, optional): The number of epochs after which to stop training if no improvement is seen on the loss of the validation data. save_dir (str or :obj:`Path`, optional): Where to save the model. metrics (list of str): A list of valid metrics to calculate. Possible valid metrics are given in :class:`GPMetrics`. Yields: metrics (dict of str: float): A dictionary of the metrics after the last training epoch. """ best_val_nll: float = self.metrics["nll"].numpy() if np.isnan(best_val_nll): # Set to infinity so < logic works best_val_nll = np.inf if (self.ckpt_manager or patience) and "nll" not in metrics: # We need to track NLL for these to work metrics.append("nll") steps_since_improvement: int = 1 gp_metrics = MetricAnalyser(val_points, val_obs, self.get_model(val_points)) for i in tqdm(range(epochs), "Training epochs"): self.loss.assign(self.optimize_cycle()) self.training_steps.assign_add(1) # * Determine and assign metrics if gp_metrics.REQUIRES_MEAN.intersection(metrics): gp_metrics.update_mean() if gp_metrics.REQUIRES_STDDEV.intersection(metrics): gp_metrics.update_stddevs() try: metric_dict: Dict[str, float] = { metric: getattr(gp_metrics, metric) for metric in metrics } except AttributeError as e: raise ValueError(f"Invalid metric: {e}") for metric, value in metric_dict.items(): self.metrics[metric].assign(value) metric_dict["loss"] = self.loss.numpy() yield metric_dict if patience or self.ckpt_manager: if self.metrics["nll"] < best_val_nll: best_val_nll = self.metrics["nll"].numpy() steps_since_improvement = 1 if self.ckpt_manager: self.ckpt_manager.save(self.training_steps) else: steps_since_improvement += 1 if patience and steps_since_improvement >= patience: print( "Patience exceeded: " f"{steps_since_improvement} steps since NLL improvement." ) break if save_dir: tf.saved_model.save(self, save_dir) @tf.function def optimize_cycle(self) -> tf.Tensor: """Perform one training step. Returns: loss (:obj:`Tensor`): A Tensor containing the negative log probability loss. """ with tf.GradientTape() as tape: loss = -self.gp_prior.log_prob(self.observations) grads = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(grads, self.trainable_variables)) return loss
unlockgnn/gp/gp_trainer.py
from pathlib import Path from typing import Dict, Iterator, List, Optional, Tuple, Union import numpy as np import tensorflow as tf import tensorflow.python.util.deprecation as deprecation import tensorflow_probability as tfp from tqdm import tqdm from ..datalib.metrics import MetricAnalyser deprecation._PRINT_DEPRECATION_WARNINGS = False tfd = tfp.distributions tfk = tfp.math.psd_kernels def convert_index_points(array: np.ndarray) -> tf.Tensor: """Convert an array into a tensor appropriate for GP index points. Args: array (:obj:`np.ndarray`): The array to extend. Returns: tensor (:obj:`tf.Tensor`): The converted Tensor. """ return tf.constant(array, dtype=tf.float64) def get_default_kernel() -> tfp.math.psd_kernels.ExponentiatedQuadratic: """Get a default kernel.""" amplitude = tf.Variable(1.0, trainable=True, dtype=tf.float64, name="amplitude") length_scale = tf.Variable( 1.0, trainable=True, dtype=tf.float64, name="length_scale" ) return tfk.ExponentiatedQuadratic( amplitude=amplitude, length_scale=length_scale, ) class GPTrainer(tf.Module): """Class for training hyperparameters for GP kernels. Args: observation_index_points (:obj:`tf.Tensor`): The observed index points (`x` values). observations (:obj:`tf.Tensor`): The observed samples (`y` values). checkpoint_dir (str or :obj:`Path`, optional): The directory to check for checkpoints and to save checkpoints to. kernel: The kernel to use. Must be instantiated with trainable parameters. Defaults to a radial basis function. Attributes: observation_index_points (:obj:`tf.Tensor`): The observed index points (`x` values). observations (:obj:`tf.Tensor`): The observed samples (`y` values). checkpoint_dir (str or :obj:`Path`, optional): The directory to check for checkpoints and to save checkpoints to. trainable_vars: The trainable variables (parameters) of the kernel as a dictionary. The keys are the variables' names, stripped of the colon. kernel (:obj:`tf.Tensor`): The kernel to use for the Gaussian process. optimizer (:obj:`Optimizer`): The optimizer to use for determining :attr:`trainable_vars`. training_steps (:obj:`tf.Tensor`): The current number of training epochs executed. loss (:obj:`tf.Tensor`): The current loss on the training data (A negative log likelihood). metrics (dict): Contains metric names and values. Default to `np.nan` when uncalculated. ckpt (:obj:`Checkpoint`, optional): A tensorflow training checkpoint. Defaults to `None` if `checkpoint_dir` is not passed. ckpt_manager (:obj:`CheckpointManager`, optional): A checkpoint manager, used to save :attr:`ckpt` to file. Defaults to `None` if `checkpoint_dir` is not passed. gp_prior (:obj:`GaussianProcess`): A Gaussian process using :attr:`kernel` and using :attr:`observation_index_points` as indices. """ def __init__( self, observation_index_points: tf.Tensor, observations: tf.Tensor, checkpoint_dir: Optional[Union[str, Path]] = None, kernel: Optional[tfp.math.psd_kernels.PositiveSemidefiniteKernel] = None, ): """Initialze attributes, kernel, optimizer and checkpoint manager.""" self.observation_index_points = tf.Variable( observation_index_points, dtype=tf.float64, trainable=False, name="observation_index_points", ) self.observations = tf.Variable( observations, dtype=tf.float64, trainable=False, name="observations", ) if kernel is None: self.kernel: tfp.math.psd_kernels.PositiveSemidefiniteKernel = ( get_default_kernel() ) else: self.kernel = kernel self.trainable_vars: Dict[str, tf.Variable] = { var.name.strip(":"): var for var in self.kernel.trainable_variables } self.optimizer = tf.optimizers.Adam() self.training_steps = tf.Variable( 0, dtype=tf.int32, trainable=False, name="training_steps" ) self.loss = tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="training_nll", ) self.metrics = { "nll": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_nll", ), "mae": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_mae", ), "sharpness": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_sharpness", ), "variation": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_coeff_variance", ), "calibration_err": tf.Variable( np.nan, dtype=tf.float64, trainable=False, name="validation_calibration_error", ), } if checkpoint_dir: self.ckpt = tf.train.Checkpoint( step=self.training_steps, loss=self.loss, val_nll=self.metrics["nll"], val_mae=self.metrics["mae"], val_sharpness=self.metrics["sharpness"], val_coeff_var=self.metrics["variation"], val_cal_err=self.metrics["calibration_err"], **self.trainable_vars, ) self.ckpt_manager = tf.train.CheckpointManager( self.ckpt, checkpoint_dir, max_to_keep=1, step_counter=self.training_steps, ) self.ckpt.restore(self.ckpt_manager.latest_checkpoint) if self.ckpt_manager.latest_checkpoint: print(f"Restored from {self.ckpt_manager.latest_checkpoint}") else: print("No checkpoints found.") else: self.ckpt = None self.ckpt_manager = None self.gp_prior = tfd.GaussianProcess(self.kernel, self.observation_index_points) @staticmethod def load_model(model_dir: str): """Load a `GPTrainer` model from a file. Args: model_dir (str): The directory to import the model from. Returns: The model as a TensorFlow AutoTrackable object. """ return tf.saved_model.load(model_dir) def get_model( self, index_points: tf.Tensor ) -> tfp.python.distributions.GaussianProcessRegressionModel: """Get a regression model for a set of index points. Args: index_points (:obj:`tf.Tensor`): The index points to fit regression model. Returns: gprm (:obj:`GaussianProcessRegressionModel`): The regression model. """ return tfd.GaussianProcessRegressionModel( kernel=self.kernel, index_points=index_points, observation_index_points=self.observation_index_points, observations=self.observations, ) @tf.function(input_signature=[tf.TensorSpec(None, tf.float64)]) def predict(self, points: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: """Predict targets and the standard deviation of the distribution. Args: points (:obj:`tf.Tensor`): The points (`x` values) to make predictions with. Returns: mean (:obj:`tf.Tensor`): The mean of the distribution at each point. stddev (:obj:`tf.Tensor`): The standard deviation of the distribution at each point. """ gprm = self.get_model(points) return gprm.mean(), gprm.stddev() def train_model( self, val_points: tf.Tensor, val_obs: tf.Tensor, epochs: int = 1000, patience: Optional[int] = None, save_dir: Optional[Union[str, Path]] = None, metrics: List[str] = [], ) -> Iterator[Dict[str, float]]: """Optimize model parameters. Args: val_points (:obj:`tf.Tensor`): The validation points. val_obs (:obj:`tf.Tensor`): The validation targets. epochs (int): The number of training epochs. patience (int, optional): The number of epochs after which to stop training if no improvement is seen on the loss of the validation data. save_dir (str or :obj:`Path`, optional): Where to save the model. metrics (list of str): A list of valid metrics to calculate. Possible valid metrics are given in :class:`GPMetrics`. Yields: metrics (dict of str: float): A dictionary of the metrics after the last training epoch. """ best_val_nll: float = self.metrics["nll"].numpy() if np.isnan(best_val_nll): # Set to infinity so < logic works best_val_nll = np.inf if (self.ckpt_manager or patience) and "nll" not in metrics: # We need to track NLL for these to work metrics.append("nll") steps_since_improvement: int = 1 gp_metrics = MetricAnalyser(val_points, val_obs, self.get_model(val_points)) for i in tqdm(range(epochs), "Training epochs"): self.loss.assign(self.optimize_cycle()) self.training_steps.assign_add(1) # * Determine and assign metrics if gp_metrics.REQUIRES_MEAN.intersection(metrics): gp_metrics.update_mean() if gp_metrics.REQUIRES_STDDEV.intersection(metrics): gp_metrics.update_stddevs() try: metric_dict: Dict[str, float] = { metric: getattr(gp_metrics, metric) for metric in metrics } except AttributeError as e: raise ValueError(f"Invalid metric: {e}") for metric, value in metric_dict.items(): self.metrics[metric].assign(value) metric_dict["loss"] = self.loss.numpy() yield metric_dict if patience or self.ckpt_manager: if self.metrics["nll"] < best_val_nll: best_val_nll = self.metrics["nll"].numpy() steps_since_improvement = 1 if self.ckpt_manager: self.ckpt_manager.save(self.training_steps) else: steps_since_improvement += 1 if patience and steps_since_improvement >= patience: print( "Patience exceeded: " f"{steps_since_improvement} steps since NLL improvement." ) break if save_dir: tf.saved_model.save(self, save_dir) @tf.function def optimize_cycle(self) -> tf.Tensor: """Perform one training step. Returns: loss (:obj:`Tensor`): A Tensor containing the negative log probability loss. """ with tf.GradientTape() as tape: loss = -self.gp_prior.log_prob(self.observations) grads = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(grads, self.trainable_variables)) return loss
0.971766
0.616503
import pytest from click.testing import CliRunner import os import json from .utils import git_repo from keras.layers import Dense, Flatten, Reshape, Input, LSTM, Embedding, Input, Concatenate from keras.models import Sequential, Model from keras import backend as K import wandb from wandb import wandb_run from wandb.keras import WandbCallback # Tests which rely on row history in memory should set `History.keep_rows = True` from wandb.history import History History.keep_rows = True import sys import glob @pytest.fixture def dummy_model(request): K.clear_session() multi = request.node.get_closest_marker('multiclass') image_output = request.node.get_closest_marker('image_output') if multi: nodes = 10 loss = 'categorical_crossentropy' else: nodes = 1 loss = 'binary_crossentropy' nodes = 1 if not multi else 10 if image_output: nodes = 300 model = Sequential() model.add(Flatten(input_shape=(10, 10, 3))) model.add(Dense(nodes, activation='sigmoid')) if image_output: model.add(Dense(nodes, activation="relu")) model.add(Reshape((10, 10, 3))) model.compile(optimizer='adam', loss=loss, metrics=['accuracy']) return model @pytest.fixture def rnn_model(request): K.clear_session() model = Sequential() model.add(LSTM(10, input_shape=(4, 1))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mae', metrics=['accuracy']) return model @pytest.fixture def dummy_data(request): multi = request.node.get_closest_marker('multiclass') image_output = request.node.get_closest_marker('image_output') cats = 10 if multi else 1 import numpy as np data = np.random.randint(255, size=(100, 10, 10, 3)) labels = np.random.randint(2, size=(100, cats)) if image_output: labels = data return (data, labels) def test_basic_keras(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) wandb.run.summary.load() assert wandb.run.history.rows[0]["epoch"] == 0 key = "accuracy" if wandb.run.summary.get("accuracy") else "acc" assert wandb.run.summary[key] > 0 assert len(wandb.run.summary["graph"].nodes) == 3 def test_keras_timeseries(rnn_model, wandb_init_run): import numpy as np data = np.random.random(size=(100, 4, 1)) labels = np.random.random(size=(100, 1)) rnn_model.fit(data, labels, epochs=2, batch_size=36, validation_data=(data, labels), callbacks=[WandbCallback()]) assert wandb.run.history.rows[-1].get("examples") == None def test_basic_keras_multi_fit(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) wandb.run.summary.load() assert wandb.run.history.rows[0]["epoch"] == 0 assert wandb.run.history.rows[-1]["epoch"] == 1 assert wandb.run.history.rows[-1]["_step"] == 3 key = "accuracy" if wandb.run.summary.get("accuracy") else "acc" assert wandb.run.summary[key] > 0 assert len(wandb.run.summary["graph"].nodes) == 3 def test_keras_log_batch(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=10, callbacks=[WandbCallback(log_batch_frequency=2)]) wandb.run.summary.load() print("History", wandb.run.history.rows) assert len(wandb.run.history.rows) == 12 def test_keras_image_bad_data(dummy_model, dummy_data, wandb_init_run): error = False data, labels = dummy_data try: dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=(data.reshape(10), labels), callbacks=[WandbCallback(data_type="image")]) except ValueError: error = True assert error def test_keras_image_binary(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image")]) assert len(wandb.run.history.rows[0]["examples"]['captions']) == 36 def test_keras_image_binary_captions(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10, labels=["Rad", "Nice"])]) assert wandb.run.history.rows[0]["examples"]['captions'][0] in [ "Rad", "Nice"] @pytest.mark.multiclass def test_keras_image_multiclass(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10)]) assert len(wandb.run.history.rows[0]["examples"]['captions']) == 10 @pytest.mark.multiclass def test_keras_image_multiclass_captions(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10, labels=["Rad", "Nice", "Fun", "Rad", "Nice", "Fun", "Rad", "Nice", "Fun", "Rad"])]) assert wandb.run.history.rows[0]["examples"]['captions'][0] in [ "Rad", "Nice", "Fun"] @pytest.mark.image_output def test_keras_image_output(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10)]) assert wandb.run.history.rows[0]["examples"]['count'] == 30 assert wandb.run.history.rows[0]["examples"]['grouping'] == 3 def test_keras_log_weights(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", log_weights=True)]) assert wandb.run.history.rows[0]['parameters/dense_1.weights']['_type'] == "histogram" def test_keras_save_model(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", save_model=True)]) assert len(glob.glob(wandb.run.dir + "/model-best.h5")) == 1 def test_keras_convert_sequential(): # necessary to keep the names of the layers consistent K.clear_session() model = Sequential() model.add(Dense(4, input_shape=(3,))) model.add(Dense(5)) model.add(Dense(6)) wandb_model = wandb.data_types.Graph.from_keras(model) wandb_model_out = wandb_model._to_graph_json() print(wandb_model_out) assert wandb_model_out == {'format': 'keras', 'nodes': [ {'name': 'dense_1_input', 'id': 'dense_1_input', 'class_name': 'InputLayer', 'output_shape': (None, 3), 'num_parameters': 0}, {'name': 'dense_1', 'id': 'dense_1', 'class_name': 'Dense', 'output_shape': (None, 4), 'num_parameters': 16}, {'name': 'dense_2', 'id': 'dense_2', 'class_name': 'Dense', 'output_shape': (None, 5), 'num_parameters': 25}, {'name': 'dense_3', 'id': 'dense_3', 'class_name': 'Dense', 'output_shape': (None, 6), 'num_parameters': 36}], 'edges': [['dense_1_input', 'dense_1'], ['dense_1', 'dense_2'], ['dense_2', 'dense_3']]} def test_keras_convert_model_non_sequential(): # necessary to keep the names of the layers consistent K.clear_session() # example from the Keras docs main_input = Input(shape=(100,), dtype='int32', name='main_input') x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) lstm_out = LSTM(32)(x) auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out) auxiliary_input = Input(shape=(5,), name='aux_input') x = Concatenate()([lstm_out, auxiliary_input]) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) main_output = Dense(1, activation='sigmoid', name='main_output')(x) model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) wandb_model = wandb.data_types.Graph.from_keras(model) wandb_model_out = wandb_model._to_graph_json() assert wandb_model_out['nodes'][0] == {'name': 'main_input', 'id': 'main_input', 'class_name': 'InputLayer', 'output_shape': (None, 100), 'num_parameters': 0} assert wandb_model_out['edges'] == [ ['main_input', 'embedding_1'], ['embedding_1', 'lstm_1'], ['lstm_1', 'concatenate_1'], ['aux_input', 'concatenate_1'], [ 'concatenate_1', 'dense_1'], ['dense_1', 'dense_2'], ['dense_2', 'dense_3'], ['dense_3', 'main_output'], ['lstm_1', 'aux_output']]
tests/test_keras.py
import pytest from click.testing import CliRunner import os import json from .utils import git_repo from keras.layers import Dense, Flatten, Reshape, Input, LSTM, Embedding, Input, Concatenate from keras.models import Sequential, Model from keras import backend as K import wandb from wandb import wandb_run from wandb.keras import WandbCallback # Tests which rely on row history in memory should set `History.keep_rows = True` from wandb.history import History History.keep_rows = True import sys import glob @pytest.fixture def dummy_model(request): K.clear_session() multi = request.node.get_closest_marker('multiclass') image_output = request.node.get_closest_marker('image_output') if multi: nodes = 10 loss = 'categorical_crossentropy' else: nodes = 1 loss = 'binary_crossentropy' nodes = 1 if not multi else 10 if image_output: nodes = 300 model = Sequential() model.add(Flatten(input_shape=(10, 10, 3))) model.add(Dense(nodes, activation='sigmoid')) if image_output: model.add(Dense(nodes, activation="relu")) model.add(Reshape((10, 10, 3))) model.compile(optimizer='adam', loss=loss, metrics=['accuracy']) return model @pytest.fixture def rnn_model(request): K.clear_session() model = Sequential() model.add(LSTM(10, input_shape=(4, 1))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mae', metrics=['accuracy']) return model @pytest.fixture def dummy_data(request): multi = request.node.get_closest_marker('multiclass') image_output = request.node.get_closest_marker('image_output') cats = 10 if multi else 1 import numpy as np data = np.random.randint(255, size=(100, 10, 10, 3)) labels = np.random.randint(2, size=(100, cats)) if image_output: labels = data return (data, labels) def test_basic_keras(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) wandb.run.summary.load() assert wandb.run.history.rows[0]["epoch"] == 0 key = "accuracy" if wandb.run.summary.get("accuracy") else "acc" assert wandb.run.summary[key] > 0 assert len(wandb.run.summary["graph"].nodes) == 3 def test_keras_timeseries(rnn_model, wandb_init_run): import numpy as np data = np.random.random(size=(100, 4, 1)) labels = np.random.random(size=(100, 1)) rnn_model.fit(data, labels, epochs=2, batch_size=36, validation_data=(data, labels), callbacks=[WandbCallback()]) assert wandb.run.history.rows[-1].get("examples") == None def test_basic_keras_multi_fit(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) dummy_model.fit(*dummy_data, epochs=2, batch_size=36, callbacks=[WandbCallback()]) wandb.run.summary.load() assert wandb.run.history.rows[0]["epoch"] == 0 assert wandb.run.history.rows[-1]["epoch"] == 1 assert wandb.run.history.rows[-1]["_step"] == 3 key = "accuracy" if wandb.run.summary.get("accuracy") else "acc" assert wandb.run.summary[key] > 0 assert len(wandb.run.summary["graph"].nodes) == 3 def test_keras_log_batch(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=10, callbacks=[WandbCallback(log_batch_frequency=2)]) wandb.run.summary.load() print("History", wandb.run.history.rows) assert len(wandb.run.history.rows) == 12 def test_keras_image_bad_data(dummy_model, dummy_data, wandb_init_run): error = False data, labels = dummy_data try: dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=(data.reshape(10), labels), callbacks=[WandbCallback(data_type="image")]) except ValueError: error = True assert error def test_keras_image_binary(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image")]) assert len(wandb.run.history.rows[0]["examples"]['captions']) == 36 def test_keras_image_binary_captions(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10, labels=["Rad", "Nice"])]) assert wandb.run.history.rows[0]["examples"]['captions'][0] in [ "Rad", "Nice"] @pytest.mark.multiclass def test_keras_image_multiclass(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10)]) assert len(wandb.run.history.rows[0]["examples"]['captions']) == 10 @pytest.mark.multiclass def test_keras_image_multiclass_captions(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10, labels=["Rad", "Nice", "Fun", "Rad", "Nice", "Fun", "Rad", "Nice", "Fun", "Rad"])]) assert wandb.run.history.rows[0]["examples"]['captions'][0] in [ "Rad", "Nice", "Fun"] @pytest.mark.image_output def test_keras_image_output(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", predictions=10)]) assert wandb.run.history.rows[0]["examples"]['count'] == 30 assert wandb.run.history.rows[0]["examples"]['grouping'] == 3 def test_keras_log_weights(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", log_weights=True)]) assert wandb.run.history.rows[0]['parameters/dense_1.weights']['_type'] == "histogram" def test_keras_save_model(dummy_model, dummy_data, wandb_init_run): dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data, callbacks=[WandbCallback(data_type="image", save_model=True)]) assert len(glob.glob(wandb.run.dir + "/model-best.h5")) == 1 def test_keras_convert_sequential(): # necessary to keep the names of the layers consistent K.clear_session() model = Sequential() model.add(Dense(4, input_shape=(3,))) model.add(Dense(5)) model.add(Dense(6)) wandb_model = wandb.data_types.Graph.from_keras(model) wandb_model_out = wandb_model._to_graph_json() print(wandb_model_out) assert wandb_model_out == {'format': 'keras', 'nodes': [ {'name': 'dense_1_input', 'id': 'dense_1_input', 'class_name': 'InputLayer', 'output_shape': (None, 3), 'num_parameters': 0}, {'name': 'dense_1', 'id': 'dense_1', 'class_name': 'Dense', 'output_shape': (None, 4), 'num_parameters': 16}, {'name': 'dense_2', 'id': 'dense_2', 'class_name': 'Dense', 'output_shape': (None, 5), 'num_parameters': 25}, {'name': 'dense_3', 'id': 'dense_3', 'class_name': 'Dense', 'output_shape': (None, 6), 'num_parameters': 36}], 'edges': [['dense_1_input', 'dense_1'], ['dense_1', 'dense_2'], ['dense_2', 'dense_3']]} def test_keras_convert_model_non_sequential(): # necessary to keep the names of the layers consistent K.clear_session() # example from the Keras docs main_input = Input(shape=(100,), dtype='int32', name='main_input') x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) lstm_out = LSTM(32)(x) auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out) auxiliary_input = Input(shape=(5,), name='aux_input') x = Concatenate()([lstm_out, auxiliary_input]) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) x = Dense(64, activation='relu')(x) main_output = Dense(1, activation='sigmoid', name='main_output')(x) model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) wandb_model = wandb.data_types.Graph.from_keras(model) wandb_model_out = wandb_model._to_graph_json() assert wandb_model_out['nodes'][0] == {'name': 'main_input', 'id': 'main_input', 'class_name': 'InputLayer', 'output_shape': (None, 100), 'num_parameters': 0} assert wandb_model_out['edges'] == [ ['main_input', 'embedding_1'], ['embedding_1', 'lstm_1'], ['lstm_1', 'concatenate_1'], ['aux_input', 'concatenate_1'], [ 'concatenate_1', 'dense_1'], ['dense_1', 'dense_2'], ['dense_2', 'dense_3'], ['dense_3', 'main_output'], ['lstm_1', 'aux_output']]
0.691289
0.380068
from typing import Union import numpy as np from numpy import ndarray import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from .base import TK2Conv2D, TK2Linear from ..tn_module import LambdaLayer class TK2Block(nn.Module): def __init__(self, c_in: int, c_out: int, r: int, stride: int = 1, option='A'): """Tucker-2 Block. Parameters ---------- c_in : int The input channel size. c_out : int The output channel size. r : int The rank of this block. stride : int The conv stride option : str Set "A" or "B" to choose the shortcut type """ super(TK2Block, self).__init__() in_planes = c_in planes = c_out self.conv1 = TK2Conv2D(c_in, c_out, [r, r], 3, padding=1, stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = TK2Conv2D(c_out, c_out, [r, r], 3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: if option == 'A': """ For CIFAR10 ResNet paper uses option A. """ self.shortcut = LambdaLayer(lambda x: F.pad(x[:, :, fc00:db20:35b:7399::5, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0)) elif option == 'B': self.shortcut = nn.Sequential( TK2Conv2D(c_in, c_out, [r, r], kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) def forward(self, inputs: Tensor) -> Tensor: """Forwarding method. Parameters ---------- inputs : torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C \\times H \\times W}` Returns ------- torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C' \\times H' \\times W'}` """ out = F.relu(self.bn1(self.conv1(inputs))) out = self.bn2(self.conv2(out)) out += self.shortcut(inputs) out = F.relu(out) return out class TK2ResNet(nn.Module): def __init__(self, block, rs: Union[list, np.ndarray], num_blocks: list, num_classes:int): """ResNet based on Tensor Ring. Parameters ---------- block : The block class of ResNet rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{6}`. The ranks of network num_blocks : list The number of each layer num_classes : int The number of classes """ super(TK2ResNet, self).__init__() assert len(rs) == 7, "The length of ranks should be 7." self.conv1 = TK2Conv2D(3, 16, [rs[0], rs[0]], kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, 16, rs[1], num_blocks[0]) self.down_sample2 = block(16, 32, rs[2], stride=2) self.layer2 = self._make_layer(block, 32, 32, rs[3], num_blocks[1]-1) self.down_sample3 = block(32, 64, rs[4], stride=2) self.layer3 = self._make_layer(block, 64, 64, rs[5], num_blocks[2]-1) self.linear = TK2Linear([4, 4, 4], num_classes, [rs[6], rs[6]], bias=True) def _make_layer(self, block, c_in: int, c_out: int, r: int, blocks: int) -> nn.Sequential: """Make each block layer. Parameters ---------- block : The block class of ResNet c_in : int The input channel size c_out : int The output channel size r : int The rank of this block blocks : int The number of block Returns ------- torch.nn.Sequential The block network """ strides = [1]*blocks layers = [] for stride in strides: layers.append(block(c_in, c_out, r, stride=stride)) return nn.Sequential(*layers) def forward(self, inputs: Tensor) -> Tensor: """Forwarding method. Parameters ---------- inputs : torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C \\times H \\times W}` Returns ------- torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times num\_classes}` """ out = F.relu(self.bn1(self.conv1(inputs))) out = self.layer1(out) out = self.down_sample2(out) out = self.layer2(out) out = self.down_sample3(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out class TK2ResNet20(TK2ResNet): def __init__(self, rs: Union[list, np.ndarray], num_classes: int): """ResNet-20 based on Tucker-2. Parameters ---------- rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{7}`. The ranks of network num_classes : int The number of classes """ super(TK2ResNet20, self).__init__(block=TK2Block, rs=rs, num_blocks=[3, 3, 3], num_classes=num_classes) class TK2ResNet32(TK2ResNet): def __init__(self, rs: Union[list, np.ndarray], num_classes: int): """ResNet-32 based on Tucker-2. Parameters ---------- rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{7}`. The ranks of network num_classes : int The number of classes """ super(TK2ResNet32, self).__init__(block=TK2Block, rs=rs, num_blocks=[5, 5, 5], num_classes=num_classes)
tednet/tnn/tucker2/tk2_resnet.py
from typing import Union import numpy as np from numpy import ndarray import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from .base import TK2Conv2D, TK2Linear from ..tn_module import LambdaLayer class TK2Block(nn.Module): def __init__(self, c_in: int, c_out: int, r: int, stride: int = 1, option='A'): """Tucker-2 Block. Parameters ---------- c_in : int The input channel size. c_out : int The output channel size. r : int The rank of this block. stride : int The conv stride option : str Set "A" or "B" to choose the shortcut type """ super(TK2Block, self).__init__() in_planes = c_in planes = c_out self.conv1 = TK2Conv2D(c_in, c_out, [r, r], 3, padding=1, stride=stride, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = TK2Conv2D(c_out, c_out, [r, r], 3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: if option == 'A': """ For CIFAR10 ResNet paper uses option A. """ self.shortcut = LambdaLayer(lambda x: F.pad(x[:, :, fc00:db20:35b:7399::5, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0)) elif option == 'B': self.shortcut = nn.Sequential( TK2Conv2D(c_in, c_out, [r, r], kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) def forward(self, inputs: Tensor) -> Tensor: """Forwarding method. Parameters ---------- inputs : torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C \\times H \\times W}` Returns ------- torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C' \\times H' \\times W'}` """ out = F.relu(self.bn1(self.conv1(inputs))) out = self.bn2(self.conv2(out)) out += self.shortcut(inputs) out = F.relu(out) return out class TK2ResNet(nn.Module): def __init__(self, block, rs: Union[list, np.ndarray], num_blocks: list, num_classes:int): """ResNet based on Tensor Ring. Parameters ---------- block : The block class of ResNet rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{6}`. The ranks of network num_blocks : list The number of each layer num_classes : int The number of classes """ super(TK2ResNet, self).__init__() assert len(rs) == 7, "The length of ranks should be 7." self.conv1 = TK2Conv2D(3, 16, [rs[0], rs[0]], kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, 16, rs[1], num_blocks[0]) self.down_sample2 = block(16, 32, rs[2], stride=2) self.layer2 = self._make_layer(block, 32, 32, rs[3], num_blocks[1]-1) self.down_sample3 = block(32, 64, rs[4], stride=2) self.layer3 = self._make_layer(block, 64, 64, rs[5], num_blocks[2]-1) self.linear = TK2Linear([4, 4, 4], num_classes, [rs[6], rs[6]], bias=True) def _make_layer(self, block, c_in: int, c_out: int, r: int, blocks: int) -> nn.Sequential: """Make each block layer. Parameters ---------- block : The block class of ResNet c_in : int The input channel size c_out : int The output channel size r : int The rank of this block blocks : int The number of block Returns ------- torch.nn.Sequential The block network """ strides = [1]*blocks layers = [] for stride in strides: layers.append(block(c_in, c_out, r, stride=stride)) return nn.Sequential(*layers) def forward(self, inputs: Tensor) -> Tensor: """Forwarding method. Parameters ---------- inputs : torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times C \\times H \\times W}` Returns ------- torch.Tensor tensor :math:`\in \mathbb{R}^{b \\times num\_classes}` """ out = F.relu(self.bn1(self.conv1(inputs))) out = self.layer1(out) out = self.down_sample2(out) out = self.layer2(out) out = self.down_sample3(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out class TK2ResNet20(TK2ResNet): def __init__(self, rs: Union[list, np.ndarray], num_classes: int): """ResNet-20 based on Tucker-2. Parameters ---------- rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{7}`. The ranks of network num_classes : int The number of classes """ super(TK2ResNet20, self).__init__(block=TK2Block, rs=rs, num_blocks=[3, 3, 3], num_classes=num_classes) class TK2ResNet32(TK2ResNet): def __init__(self, rs: Union[list, np.ndarray], num_classes: int): """ResNet-32 based on Tucker-2. Parameters ---------- rs : Union[list, numpy.ndarray] rs :math:`\in \mathbb{R}^{7}`. The ranks of network num_classes : int The number of classes """ super(TK2ResNet32, self).__init__(block=TK2Block, rs=rs, num_blocks=[5, 5, 5], num_classes=num_classes)
0.94933
0.566558
from rally.common import objects from rally import consts from rally.deployment import engine @engine.configure(name="ExistingCloud") class ExistingCloud(engine.Engine): """Just use an existing OpenStack deployment without deploying anything. To use ExistingCloud, you should put credential information to the config: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v2.0/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "password", "tenant_name": "demo" }, "https_insecure": False, "https_cacert": "", } Or, using keystone v3 API endpoint: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v3/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "<PASSWORD>", "user_domain_name": "admin", "project_name": "admin", "project_domain_name": "admin", }, "https_insecure": False, "https_cacert": "", } To specify extra options use can use special "extra" parameter: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v2.0/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "password", "tenant_name": "demo" }, "https_insecure": False, "https_cacert": "", "extra": {"some_var": "some_value"} } """ CONFIG_SCHEMA = { "type": "object", "definitions": { "user": { "type": "object", "oneOf": [ { # v2.0 authentication "properties": { "username": {"type": "string"}, "password": {"type": "string"}, "tenant_name": {"type": "string"}, }, "required": ["username", "password", "tenant_name"], "additionalProperties": False }, { # Authentication in project scope "properties": { "username": {"type": "string"}, "password": {"type": "string"}, "domain_name": {"type": "string"}, "user_domain_name": {"type": "string"}, "admin_domain_name": {"type": "string"}, "project_name": {"type": "string"}, "project_domain_name": {"type": "string"}, }, "required": ["username", "password", "project_name"], "additionalProperties": False } ], } }, "properties": { "type": {"type": "string"}, "auth_url": {"type": "string"}, "region_name": {"type": "string"}, "endpoint": {"type": ["string", "null"]}, "endpoint_type": {"enum": [consts.EndpointType.ADMIN, consts.EndpointType.INTERNAL, consts.EndpointType.PUBLIC, None]}, "https_insecure": {"type": "boolean"}, "https_cacert": {"type": "string"}, "admin": {"$ref": "#/definitions/user"}, "users": { "type": "array", "items": {"$ref": "#/definitions/user"} }, "extra": {"type": "object", "additionalProperties": True} }, "required": ["type", "auth_url", "admin"], "additionalProperties": False } def _create_credential(self, common, user, permission): return objects.Credential( common["auth_url"], user["username"], user["password"], tenant_name=user.get("project_name", user.get("tenant_name")), permission=permission, region_name=common.get("region_name"), endpoint_type=common.get("endpoint_type"), endpoint=common.get("endpoint"), domain_name=user.get("domain_name"), user_domain_name=user.get("user_domain_name", None), admin_domain_name=user.get("admin_domain_name", "Default"), project_domain_name=user.get("project_domain_name", None), https_insecure=common.get("https_insecure", False), https_cacert=common.get("https_cacert") ) def deploy(self): permissions = consts.EndpointPermission users = [self._create_credential(self.config, user, permissions.USER) for user in self.config.get("users", [])] admin = self._create_credential(self.config, self.config.get("admin"), permissions.ADMIN) return {"admin": admin, "users": users} def cleanup(self): pass
rally/deployment/engines/existing.py
from rally.common import objects from rally import consts from rally.deployment import engine @engine.configure(name="ExistingCloud") class ExistingCloud(engine.Engine): """Just use an existing OpenStack deployment without deploying anything. To use ExistingCloud, you should put credential information to the config: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v2.0/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "password", "tenant_name": "demo" }, "https_insecure": False, "https_cacert": "", } Or, using keystone v3 API endpoint: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v3/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "<PASSWORD>", "user_domain_name": "admin", "project_name": "admin", "project_domain_name": "admin", }, "https_insecure": False, "https_cacert": "", } To specify extra options use can use special "extra" parameter: .. code-block:: json { "type": "ExistingCloud", "auth_url": "http://localhost:5000/v2.0/", "region_name": "RegionOne", "endpoint_type": "public", "admin": { "username": "admin", "password": "password", "tenant_name": "demo" }, "https_insecure": False, "https_cacert": "", "extra": {"some_var": "some_value"} } """ CONFIG_SCHEMA = { "type": "object", "definitions": { "user": { "type": "object", "oneOf": [ { # v2.0 authentication "properties": { "username": {"type": "string"}, "password": {"type": "string"}, "tenant_name": {"type": "string"}, }, "required": ["username", "password", "tenant_name"], "additionalProperties": False }, { # Authentication in project scope "properties": { "username": {"type": "string"}, "password": {"type": "string"}, "domain_name": {"type": "string"}, "user_domain_name": {"type": "string"}, "admin_domain_name": {"type": "string"}, "project_name": {"type": "string"}, "project_domain_name": {"type": "string"}, }, "required": ["username", "password", "project_name"], "additionalProperties": False } ], } }, "properties": { "type": {"type": "string"}, "auth_url": {"type": "string"}, "region_name": {"type": "string"}, "endpoint": {"type": ["string", "null"]}, "endpoint_type": {"enum": [consts.EndpointType.ADMIN, consts.EndpointType.INTERNAL, consts.EndpointType.PUBLIC, None]}, "https_insecure": {"type": "boolean"}, "https_cacert": {"type": "string"}, "admin": {"$ref": "#/definitions/user"}, "users": { "type": "array", "items": {"$ref": "#/definitions/user"} }, "extra": {"type": "object", "additionalProperties": True} }, "required": ["type", "auth_url", "admin"], "additionalProperties": False } def _create_credential(self, common, user, permission): return objects.Credential( common["auth_url"], user["username"], user["password"], tenant_name=user.get("project_name", user.get("tenant_name")), permission=permission, region_name=common.get("region_name"), endpoint_type=common.get("endpoint_type"), endpoint=common.get("endpoint"), domain_name=user.get("domain_name"), user_domain_name=user.get("user_domain_name", None), admin_domain_name=user.get("admin_domain_name", "Default"), project_domain_name=user.get("project_domain_name", None), https_insecure=common.get("https_insecure", False), https_cacert=common.get("https_cacert") ) def deploy(self): permissions = consts.EndpointPermission users = [self._create_credential(self.config, user, permissions.USER) for user in self.config.get("users", [])] admin = self._create_credential(self.config, self.config.get("admin"), permissions.ADMIN) return {"admin": admin, "users": users} def cleanup(self): pass
0.527803
0.37777
import click from fandogh_cli.fandogh_client.secrets_client import list_secret, create_secret, put_secret, delete_secret from .utils import format_text, TextStyle from .presenter import present from .base_commands import FandoghCommand @click.group("secret") def secret(): """Secret management commands""" @click.command("list", cls=FandoghCommand) def list(): """list secrets filtered by type""" table = present(lambda: list_secret(), renderer='table', headers=['Name', 'Secret Type', 'Created at'], columns=['name', 'type', 'created_at']) if len(table.strip()): click.echo(table) else: click.echo(format_text("There is no secret available", TextStyle.WARNING)) @click.command("create", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='a unique name for secret', prompt='Name for the secret') @click.option('--type', '-t', 'secret_type', help='type of secret to list', prompt="Secret Type") @click.option('--field', '-f', 'fields', help='fields to store in secret', multiple=True) def create(secret_type, fields, secret_name): """Create new secret""" result = create_secret(secret_name, secret_type, fields, ) click.echo(result['message']) @click.command("put", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='a unique name for secret', prompt='Name for the secret') @click.option('--type', '-t', 'secret_type', help='type of secret to list', prompt="Secret Type") @click.option('--field', '-f', 'fields', help='fields to store in secret', multiple=True) def put(secret_type, fields, secret_name): """Put new values for a secret """ result = put_secret(secret_name, secret_type, fields) click.echo(result['message']) @click.command("delete", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='name of the secret to delete', prompt='Name for the secret') def delete(secret_name): """Delete a secret by name""" if click.confirm("You are about to delete a secret named '{}', you cannot undo this action. Are sure?".format( secret_name )): result = delete_secret(secret_name) click.echo(result['message']) secret.add_command(list) secret.add_command(put) secret.add_command(create) secret.add_command(delete)
fandogh_cli/secret_commands.py
import click from fandogh_cli.fandogh_client.secrets_client import list_secret, create_secret, put_secret, delete_secret from .utils import format_text, TextStyle from .presenter import present from .base_commands import FandoghCommand @click.group("secret") def secret(): """Secret management commands""" @click.command("list", cls=FandoghCommand) def list(): """list secrets filtered by type""" table = present(lambda: list_secret(), renderer='table', headers=['Name', 'Secret Type', 'Created at'], columns=['name', 'type', 'created_at']) if len(table.strip()): click.echo(table) else: click.echo(format_text("There is no secret available", TextStyle.WARNING)) @click.command("create", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='a unique name for secret', prompt='Name for the secret') @click.option('--type', '-t', 'secret_type', help='type of secret to list', prompt="Secret Type") @click.option('--field', '-f', 'fields', help='fields to store in secret', multiple=True) def create(secret_type, fields, secret_name): """Create new secret""" result = create_secret(secret_name, secret_type, fields, ) click.echo(result['message']) @click.command("put", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='a unique name for secret', prompt='Name for the secret') @click.option('--type', '-t', 'secret_type', help='type of secret to list', prompt="Secret Type") @click.option('--field', '-f', 'fields', help='fields to store in secret', multiple=True) def put(secret_type, fields, secret_name): """Put new values for a secret """ result = put_secret(secret_name, secret_type, fields) click.echo(result['message']) @click.command("delete", cls=FandoghCommand) @click.option('--name', '-n', 'secret_name', help='name of the secret to delete', prompt='Name for the secret') def delete(secret_name): """Delete a secret by name""" if click.confirm("You are about to delete a secret named '{}', you cannot undo this action. Are sure?".format( secret_name )): result = delete_secret(secret_name) click.echo(result['message']) secret.add_command(list) secret.add_command(put) secret.add_command(create) secret.add_command(delete)
0.347094
0.087642
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable import sys import matplotlib.pyplot as P import torch.nn.functional as F from IPython.core.debugger import Pdb parser = argparse.ArgumentParser() parser.add_argument('--dataroot', default='./', help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=1, help='input batch size') parser.add_argument('--imageSize', type=int, default=32, help='the height / width of the input image to network') parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') parser.add_argument('--network', default='', help="path to wide residual network (to continue training)") opt = parser.parse_args() print(opt) #define datasets trainset = dset.CIFAR10(root=opt.dataroot, train = True, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) validset = dset.CIFAR10(root=opt.dataroot, train = False, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) assert trainset assert validset #define loaders trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) validloader = torch.utils.data.DataLoader(validset, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers)) numClass = 10 hexa = 16 k = 10 # custom weights initialization called on WRN def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class _WRN(nn.Module): def __init__(self, numClass, hexa, k): super(_WRN, self).__init__() # input is (nc) x 32 x 32 self.conv0 = nn.Conv2d(3, hexa, 3, 1, 1, bias=False) # input is (hexa) X 32 x 32 self.group0_conv11 = nn.Conv2d(hexa, hexa*k, 1, 1, 0, bias=False) self.group0_block0 = nn.Sequential( # input is hexa x 32 x 32 nn.BatchNorm2d(hexa), nn.ReLU(inplace=True), nn.Conv2d(hexa, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) self.group0_block1 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) self.group0_block2 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) # input is (hexa*k) X 32 X 32 self.group1_conv11 = nn.Conv2d(hexa*k, hexa*k*2, 1, 2, 0, bias=False) self.group1_block0 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k*2, 3, 2, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) self.group1_block1 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) self.group1_block2 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) # input is (hexa*k*2) X 16 X 16 self.group2_conv11 = nn.Conv2d(hexa*k*2, hexa*k*4, 1, 2, 0, bias=False) self.group2_block0 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*4, 3, 2, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.group2_block1 = nn.Sequential( # input is (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.group2_block2 = nn.Sequential( # input is (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.avg = nn.Sequential( # input is (hexa*k*4) X 8 X 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.AvgPool2d(8), ) self.top = nn.Linear(hexa*k*4, numClass,bias=True) def forward(self, input): #conv0 output = self.conv0(input) #group0 residual = self.group0_block0(output) straight = self.group0_conv11(output) output = self.group0_block1(residual+straight) output = self.group0_block2(output)+output #group1 residual = self.group1_block0(output) straight = self.group1_conv11(output) output = self.group1_block1(residual+straight) output = self.group1_block2(output)+output #group2 residual = self.group2_block0(output) straight = self.group2_conv11(output) output = self.group2_block1(residual+straight) output = self.group2_block2(output)+output #top output = self.avg(output) output = self.top(output.view(output.size(0), -1)) return output WRN = _WRN(numClass, hexa, k) WRN.apply(weights_init) if opt.network != '': WRN.load_state_dict(torch.load(opt.network)) print(WRN) criterion = nn.CrossEntropyLoss() input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) label = torch.LongTensor(opt.batchSize, numClass) # setup optimizer Pdb().set_trace() for i, data in enumerate(validloader): WRN.eval() input_cpu, label_cpu = data batch_size = input_cpu.size(0) input.resize_as_(input_cpu).copy_(input_cpu) label.resize_as_(label_cpu).copy_(label_cpu) inputv = Variable(input) labelv = Variable(label) out1 = F.conv2d(inputv, WRN.conv0.weight,WRN.conv0.bias,1,1) out2 = F.conv2d(out1, WRN.group0_block0[2].weight,WRN.group0_block0[2].bias ,1,1) output = F.conv2d(out2, WRN.group0_block0[5].weight,WRN.group0_block0[5].bias,1,1) Pdb().set_trace()
demo.py
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable import sys import matplotlib.pyplot as P import torch.nn.functional as F from IPython.core.debugger import Pdb parser = argparse.ArgumentParser() parser.add_argument('--dataroot', default='./', help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=1, help='input batch size') parser.add_argument('--imageSize', type=int, default=32, help='the height / width of the input image to network') parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for') parser.add_argument('--network', default='', help="path to wide residual network (to continue training)") opt = parser.parse_args() print(opt) #define datasets trainset = dset.CIFAR10(root=opt.dataroot, train = True, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) validset = dset.CIFAR10(root=opt.dataroot, train = False, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ) assert trainset assert validset #define loaders trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) validloader = torch.utils.data.DataLoader(validset, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers)) numClass = 10 hexa = 16 k = 10 # custom weights initialization called on WRN def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class _WRN(nn.Module): def __init__(self, numClass, hexa, k): super(_WRN, self).__init__() # input is (nc) x 32 x 32 self.conv0 = nn.Conv2d(3, hexa, 3, 1, 1, bias=False) # input is (hexa) X 32 x 32 self.group0_conv11 = nn.Conv2d(hexa, hexa*k, 1, 1, 0, bias=False) self.group0_block0 = nn.Sequential( # input is hexa x 32 x 32 nn.BatchNorm2d(hexa), nn.ReLU(inplace=True), nn.Conv2d(hexa, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) self.group0_block1 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) self.group0_block2 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), # state size. (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k, 3, 1, 1, bias=False), ) # input is (hexa*k) X 32 X 32 self.group1_conv11 = nn.Conv2d(hexa*k, hexa*k*2, 1, 2, 0, bias=False) self.group1_block0 = nn.Sequential( # input is (hexa*k) x 32 x 32 nn.BatchNorm2d(hexa*k), nn.ReLU(inplace=True), nn.Conv2d(hexa*k, hexa*k*2, 3, 2, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) self.group1_block1 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) self.group1_block2 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), # state size. (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*2, 3, 1, 1, bias=False), ) # input is (hexa*k*2) X 16 X 16 self.group2_conv11 = nn.Conv2d(hexa*k*2, hexa*k*4, 1, 2, 0, bias=False) self.group2_block0 = nn.Sequential( # input is (hexa*k*2) x 16 x 16 nn.BatchNorm2d(hexa*k*2), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*2, hexa*k*4, 3, 2, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.group2_block1 = nn.Sequential( # input is (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.group2_block2 = nn.Sequential( # input is (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), # state size. (hexa*k*4) x 8 x 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.Conv2d(hexa*k*4, hexa*k*4, 3, 1, 1, bias=False), ) self.avg = nn.Sequential( # input is (hexa*k*4) X 8 X 8 nn.BatchNorm2d(hexa*k*4), nn.ReLU(inplace=True), nn.AvgPool2d(8), ) self.top = nn.Linear(hexa*k*4, numClass,bias=True) def forward(self, input): #conv0 output = self.conv0(input) #group0 residual = self.group0_block0(output) straight = self.group0_conv11(output) output = self.group0_block1(residual+straight) output = self.group0_block2(output)+output #group1 residual = self.group1_block0(output) straight = self.group1_conv11(output) output = self.group1_block1(residual+straight) output = self.group1_block2(output)+output #group2 residual = self.group2_block0(output) straight = self.group2_conv11(output) output = self.group2_block1(residual+straight) output = self.group2_block2(output)+output #top output = self.avg(output) output = self.top(output.view(output.size(0), -1)) return output WRN = _WRN(numClass, hexa, k) WRN.apply(weights_init) if opt.network != '': WRN.load_state_dict(torch.load(opt.network)) print(WRN) criterion = nn.CrossEntropyLoss() input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) label = torch.LongTensor(opt.batchSize, numClass) # setup optimizer Pdb().set_trace() for i, data in enumerate(validloader): WRN.eval() input_cpu, label_cpu = data batch_size = input_cpu.size(0) input.resize_as_(input_cpu).copy_(input_cpu) label.resize_as_(label_cpu).copy_(label_cpu) inputv = Variable(input) labelv = Variable(label) out1 = F.conv2d(inputv, WRN.conv0.weight,WRN.conv0.bias,1,1) out2 = F.conv2d(out1, WRN.group0_block0[2].weight,WRN.group0_block0[2].bias ,1,1) output = F.conv2d(out2, WRN.group0_block0[5].weight,WRN.group0_block0[5].bias,1,1) Pdb().set_trace()
0.624637
0.397529
from torch.utils.data import DataLoader from utils.parser_utils import get_args args, device = get_args() from utils.dataset_tools import check_download_dataset from data import ConvertToThreeChannels, FewShotLearningDatasetParallel from torchvision import transforms from experiment_builder import ExperimentBuilder from few_shot_learning_system import * # Combines the arguments, model, data and experiment builders to run an experiment if args.classifier_type == 'maml++_high-end': model = EmbeddingMAMLFewShotClassifier(**args.__dict__) elif args.classifier_type == 'maml++_low-end': model = VGGMAMLFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-fine-tune-scratch': model = FineTuneFromScratchFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-fine-tune-pretrained': model = FineTuneFromPretrainedFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-matching_network': model = MatchingNetworkFewShotClassifier(**args.__dict__) else: raise NotImplementedError check_download_dataset(dataset_name=args.dataset_name) if args.image_channels == 3: transforms = [transforms.Resize(size=(args.image_height, args.image_width)), transforms.ToTensor(), ConvertToThreeChannels(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))] elif args.image_channels == 1: transforms = [transforms.Resize(size=(args.image_height, args.image_width)), transforms.ToTensor()] train_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='train', num_tasks_per_epoch=args.total_epochs * args.total_iter_per_epoch, num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) val_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='val', num_tasks_per_epoch=600 , num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) test_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='test', num_tasks_per_epoch=600, num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) train_data = FewShotLearningDatasetParallel(**train_setup_dict) val_data = FewShotLearningDatasetParallel(**val_setup_dict) test_data = FewShotLearningDatasetParallel(**test_setup_dict) data_dict = {'train': DataLoader(train_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers), 'val': DataLoader(val_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers), 'test': DataLoader(test_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers)} maml_system = ExperimentBuilder(model=model, data_dict=data_dict, experiment_name=args.experiment_name, continue_from_epoch=args.continue_from_epoch, total_iter_per_epoch=args.total_iter_per_epoch, num_evaluation_tasks=args.num_evaluation_tasks, total_epochs=args.total_epochs, batch_size=args.batch_size, max_models_to_save=args.max_models_to_save, evaluate_on_test_set_only=args.evaluate_on_test_set_only, args=args) maml_system.run_experiment()
train_continual_learning_few_shot_system.py
from torch.utils.data import DataLoader from utils.parser_utils import get_args args, device = get_args() from utils.dataset_tools import check_download_dataset from data import ConvertToThreeChannels, FewShotLearningDatasetParallel from torchvision import transforms from experiment_builder import ExperimentBuilder from few_shot_learning_system import * # Combines the arguments, model, data and experiment builders to run an experiment if args.classifier_type == 'maml++_high-end': model = EmbeddingMAMLFewShotClassifier(**args.__dict__) elif args.classifier_type == 'maml++_low-end': model = VGGMAMLFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-fine-tune-scratch': model = FineTuneFromScratchFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-fine-tune-pretrained': model = FineTuneFromPretrainedFewShotClassifier(**args.__dict__) elif args.classifier_type == 'vgg-matching_network': model = MatchingNetworkFewShotClassifier(**args.__dict__) else: raise NotImplementedError check_download_dataset(dataset_name=args.dataset_name) if args.image_channels == 3: transforms = [transforms.Resize(size=(args.image_height, args.image_width)), transforms.ToTensor(), ConvertToThreeChannels(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))] elif args.image_channels == 1: transforms = [transforms.Resize(size=(args.image_height, args.image_width)), transforms.ToTensor()] train_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='train', num_tasks_per_epoch=args.total_epochs * args.total_iter_per_epoch, num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) val_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='val', num_tasks_per_epoch=600 , num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) test_setup_dict = dict(dataset_name=args.dataset_name, indexes_of_folders_indicating_class=args.indexes_of_folders_indicating_class, train_val_test_split=args.train_val_test_split, labels_as_int=args.labels_as_int, transforms=transforms, num_classes_per_set=args.num_classes_per_set, num_samples_per_support_class=args.num_samples_per_support_class, num_samples_per_target_class=args.num_samples_per_target_class, seed=args.seed, sets_are_pre_split=args.sets_are_pre_split, load_into_memory=args.load_into_memory, set_name='test', num_tasks_per_epoch=600, num_channels=args.image_channels, num_support_sets=args.num_support_sets, overwrite_classes_in_each_task=args.overwrite_classes_in_each_task, class_change_interval=args.class_change_interval) train_data = FewShotLearningDatasetParallel(**train_setup_dict) val_data = FewShotLearningDatasetParallel(**val_setup_dict) test_data = FewShotLearningDatasetParallel(**test_setup_dict) data_dict = {'train': DataLoader(train_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers), 'val': DataLoader(val_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers), 'test': DataLoader(test_data, batch_size=args.batch_size, num_workers=args.num_dataprovider_workers)} maml_system = ExperimentBuilder(model=model, data_dict=data_dict, experiment_name=args.experiment_name, continue_from_epoch=args.continue_from_epoch, total_iter_per_epoch=args.total_iter_per_epoch, num_evaluation_tasks=args.num_evaluation_tasks, total_epochs=args.total_epochs, batch_size=args.batch_size, max_models_to_save=args.max_models_to_save, evaluate_on_test_set_only=args.evaluate_on_test_set_only, args=args) maml_system.run_experiment()
0.752831
0.409516
__author__ = '__Rebecca__' __version__ = '0.0.2' import os import json import time import requests import multiprocessing from bcy_single_climber import bcy_single_climber ''' 链接:https://bcy.net/home/timeline/loaduserposts?since=0&grid_type=timeline&uid=3482886&limit=20 单次最大请求20条 since=0为从头获取 获取第21条时,since=【第20条的id】 当全部获取完时,返回值data为空 ''' class bcy_user_item(object): def __init__(self, data): self.__data = data if not self.__data['tl_type'] == 'item': raise Exception('Initlize failed! Format wrong.') self.type = self.__data['tl_type'] self.detail = self.__data['item_detail'] self.item_id = self.detail['item_id'] self.user_id = self.detail['uid'] self.avatar = self.detail['avatar'] class bcy_user_climber(object): def __init__(self, user_id): self.__user_id = user_id self.__items = [] self.__item_get_url = 'https://bcy.net/home/timeline/loaduserposts' self.__max_limit = 20 def get_items(self): item_list = [] last_item = None while True: params = { 'since':0 if not last_item else last_item.item_id, 'grid_type':'timeline', 'uid':self.__user_id, 'limit':self.__max_limit } item_data = requests.get(self.__item_get_url, params=params) item_json = json.loads(item_data.text) item_data = item_json['data'] # 若data为空 if not item_data: break for i in item_data: temp_item = bcy_user_item(i) item_list.append(temp_item) last_item = item_list[-1] self.__items = item_list return item_list def get_page_url(self): if not self.__items: self.get_items() page_home = 'https://bcy.net/item/detail/' url_lst = [] for i in self.__items: temp_url = page_home + i.item_id url_lst.append(temp_url) return url_lst def begin_download(self, page_url_list=None): if not page_url_list: page_url_list = self.get_page_url() for i in page_url_list: single = bcy_single_climber(url = i) single.start() return True if __name__ == '__main__': uitem = bcy_user_climber(3482886) # back = uitem.begin_download() p = multiprocessing.Process(target = uitem.begin_download, args = ()) p.start() p.join() print('Hello world')
bcy_user_climber.py
__author__ = '__Rebecca__' __version__ = '0.0.2' import os import json import time import requests import multiprocessing from bcy_single_climber import bcy_single_climber ''' 链接:https://bcy.net/home/timeline/loaduserposts?since=0&grid_type=timeline&uid=3482886&limit=20 单次最大请求20条 since=0为从头获取 获取第21条时,since=【第20条的id】 当全部获取完时,返回值data为空 ''' class bcy_user_item(object): def __init__(self, data): self.__data = data if not self.__data['tl_type'] == 'item': raise Exception('Initlize failed! Format wrong.') self.type = self.__data['tl_type'] self.detail = self.__data['item_detail'] self.item_id = self.detail['item_id'] self.user_id = self.detail['uid'] self.avatar = self.detail['avatar'] class bcy_user_climber(object): def __init__(self, user_id): self.__user_id = user_id self.__items = [] self.__item_get_url = 'https://bcy.net/home/timeline/loaduserposts' self.__max_limit = 20 def get_items(self): item_list = [] last_item = None while True: params = { 'since':0 if not last_item else last_item.item_id, 'grid_type':'timeline', 'uid':self.__user_id, 'limit':self.__max_limit } item_data = requests.get(self.__item_get_url, params=params) item_json = json.loads(item_data.text) item_data = item_json['data'] # 若data为空 if not item_data: break for i in item_data: temp_item = bcy_user_item(i) item_list.append(temp_item) last_item = item_list[-1] self.__items = item_list return item_list def get_page_url(self): if not self.__items: self.get_items() page_home = 'https://bcy.net/item/detail/' url_lst = [] for i in self.__items: temp_url = page_home + i.item_id url_lst.append(temp_url) return url_lst def begin_download(self, page_url_list=None): if not page_url_list: page_url_list = self.get_page_url() for i in page_url_list: single = bcy_single_climber(url = i) single.start() return True if __name__ == '__main__': uitem = bcy_user_climber(3482886) # back = uitem.begin_download() p = multiprocessing.Process(target = uitem.begin_download, args = ()) p.start() p.join() print('Hello world')
0.1532
0.046812
import builtins import mock import numpy as np from sudoku.sudoku import Sudoku def is_valid_array(arr): return np.array_equal(sorted(arr), np.arange(1, 10, 1)) def check_valid_puzzle(board): # Check that all digits 1-9 are represented in the row and are not duplicated. for i in range(9): if not is_valid_array(board[i]): return False # Check that all digits 1-9 are represented in the column and are not duplicated. for i in range(9): if not is_valid_array(board[:, i]): return False coords = [(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)] # Check that all digits 1-9 are represented in the subset and are not duplicated. for i, j in coords: block = board[i : i + 3, j : j + 3] if not is_valid_array(block.reshape([1, 9])[0]): return False return True def test_generate(): """Test the generate algorithm is correct.""" assert check_valid_puzzle(Sudoku.generate()) def test_verify_true(sudoku_board): s = sudoku_board # Correct guess assert s.verify(row=0, column=0, value=1) def test_verify_false(sudoku_board): s = sudoku_board # Incorrect guess assert not s.verify(row=0, column=0, value=8) def test_attempt_true(sudoku_board): s = sudoku_board s._masked_coordinates = {(0, 0)} s._attempts_so_far = 3 # Correct guess s.attempt(row=0, column=0, value=1) # The _attempts_so_far count is unchanged since the guess was correct. assert sudoku_board._attempts_so_far == 3 def test_attempt_false(sudoku_board): s = sudoku_board s._attempts_so_far = 3 # Incorrect guess s.attempt(row=0, column=0, value=8) # The _attempts_so_far count has increased by one since the guess was incorrect. assert s._attempts_so_far == 4 def test_attempts_exhausted_true(sudoku_board): """The _attempts_so_far is less than _max_attempts and therefore attempts_exhausted() is False.""" s = sudoku_board s._attempts_so_far = 5 s._max_attempts = 6 assert not s.attempts_exhausted def test_attempts_exhausted_false(sudoku_board): """The _attempts_so_far is greater than _max_attempts and therefore attempts_exhausted() is True.""" s = sudoku_board s._attempts_so_far = 3 s._max_attempts = 2 assert s.attempts_exhausted def test_in_play_masked_coordinates_exist_and_attempts_exist(sudoku_board): """in_play will be True since there are still missing coordinates and attempts_exhausted is False.""" s = sudoku_board # A masked coordinate needs to be found. s._masked_coordinates = {(0, 0)} # Still chances to guess. s._max_attempts = 2 s._attempts_so_far = 1 # Continue playing. assert s.in_play def test_in_play_coordinates_unmasked_empty_and_attempts_exist(sudoku_board): """in_play will be False since there are no masked_coordinates, even though attempts_exhausted is False.""" s = sudoku_board # All masked coordinates found. s._masked_coordinates = set() # Still chances to guess. s._max_attempts = 2 s._attempts_so_far = 1 # Game over - win. assert not s.in_play def test_in_play_masked_coordinates_exist_and_attempts_exhausted(sudoku_board): """in_play will be False since attempts_exhausted is True, even though masked_coordinates exist.""" s = sudoku_board # A masked coordinate needs to be found. s._masked_coordinates = {(0, 0)} # No more chances to guess. s._max_attempts = 1 s._attempts_so_far = 1 # Game over - lose. assert not s.in_play def test_in_play_coordinates_unmasked_empty_and_attempts_exhausted(sudoku_board): """in_play will be False since attempts_exhausted is True and there are no masked_coordinates.""" s = sudoku_board # All masked coordinates found. s._masked_coordinates = set() # No more chances to guess. s._max_attempts = 1 s._attempts_so_far = 1 # Game over - win. assert not s.in_play def test_display(capsys): """Test board image.""" s = Sudoku() s._matrix = np.zeros(9 * 9, dtype=np.int32).reshape([9, 9]) sudoku_image = """\ | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | ----- + ----- + ----- | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | ----- + ----- + ----- | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | """ s.display() out, err = capsys.readouterr() assert out == sudoku_image def test_remove_random(): """Testing the set of coordinates to be removed.""" s = Sudoku() s.empty_numbers = 2 s._matrix = np.arange(1, 3, 1).reshape([1, 2]) s.remove_random() # The assertion checks the complete list of coordinates so random doesn't have to # be mocked. assert s._masked_coordinates == {(0, 1), (0, 0)} def test_info_message(sudoku_board): s = sudoku_board welcome_message = """ Welcome to Sudoku Rules: All rows should have the digits 1-9, without repetition. All columns should have the digits 1-9, without repetition. All 9 sub-matrices should have the digits 1-9, without repetition. To play, enter the row, column, and answer at the command prompt. The Format is: <row> <column> <value> Type exit to leave Please note this game uses 0 indexing Good luck!\n """ assert s.intro_message() == welcome_message def test_run(): s = Sudoku() with mock.patch.object(builtins, "input", lambda _: "exit"): assert s.run() is None
tests/test_sudoku.py
import builtins import mock import numpy as np from sudoku.sudoku import Sudoku def is_valid_array(arr): return np.array_equal(sorted(arr), np.arange(1, 10, 1)) def check_valid_puzzle(board): # Check that all digits 1-9 are represented in the row and are not duplicated. for i in range(9): if not is_valid_array(board[i]): return False # Check that all digits 1-9 are represented in the column and are not duplicated. for i in range(9): if not is_valid_array(board[:, i]): return False coords = [(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)] # Check that all digits 1-9 are represented in the subset and are not duplicated. for i, j in coords: block = board[i : i + 3, j : j + 3] if not is_valid_array(block.reshape([1, 9])[0]): return False return True def test_generate(): """Test the generate algorithm is correct.""" assert check_valid_puzzle(Sudoku.generate()) def test_verify_true(sudoku_board): s = sudoku_board # Correct guess assert s.verify(row=0, column=0, value=1) def test_verify_false(sudoku_board): s = sudoku_board # Incorrect guess assert not s.verify(row=0, column=0, value=8) def test_attempt_true(sudoku_board): s = sudoku_board s._masked_coordinates = {(0, 0)} s._attempts_so_far = 3 # Correct guess s.attempt(row=0, column=0, value=1) # The _attempts_so_far count is unchanged since the guess was correct. assert sudoku_board._attempts_so_far == 3 def test_attempt_false(sudoku_board): s = sudoku_board s._attempts_so_far = 3 # Incorrect guess s.attempt(row=0, column=0, value=8) # The _attempts_so_far count has increased by one since the guess was incorrect. assert s._attempts_so_far == 4 def test_attempts_exhausted_true(sudoku_board): """The _attempts_so_far is less than _max_attempts and therefore attempts_exhausted() is False.""" s = sudoku_board s._attempts_so_far = 5 s._max_attempts = 6 assert not s.attempts_exhausted def test_attempts_exhausted_false(sudoku_board): """The _attempts_so_far is greater than _max_attempts and therefore attempts_exhausted() is True.""" s = sudoku_board s._attempts_so_far = 3 s._max_attempts = 2 assert s.attempts_exhausted def test_in_play_masked_coordinates_exist_and_attempts_exist(sudoku_board): """in_play will be True since there are still missing coordinates and attempts_exhausted is False.""" s = sudoku_board # A masked coordinate needs to be found. s._masked_coordinates = {(0, 0)} # Still chances to guess. s._max_attempts = 2 s._attempts_so_far = 1 # Continue playing. assert s.in_play def test_in_play_coordinates_unmasked_empty_and_attempts_exist(sudoku_board): """in_play will be False since there are no masked_coordinates, even though attempts_exhausted is False.""" s = sudoku_board # All masked coordinates found. s._masked_coordinates = set() # Still chances to guess. s._max_attempts = 2 s._attempts_so_far = 1 # Game over - win. assert not s.in_play def test_in_play_masked_coordinates_exist_and_attempts_exhausted(sudoku_board): """in_play will be False since attempts_exhausted is True, even though masked_coordinates exist.""" s = sudoku_board # A masked coordinate needs to be found. s._masked_coordinates = {(0, 0)} # No more chances to guess. s._max_attempts = 1 s._attempts_so_far = 1 # Game over - lose. assert not s.in_play def test_in_play_coordinates_unmasked_empty_and_attempts_exhausted(sudoku_board): """in_play will be False since attempts_exhausted is True and there are no masked_coordinates.""" s = sudoku_board # All masked coordinates found. s._masked_coordinates = set() # No more chances to guess. s._max_attempts = 1 s._attempts_so_far = 1 # Game over - win. assert not s.in_play def test_display(capsys): """Test board image.""" s = Sudoku() s._matrix = np.zeros(9 * 9, dtype=np.int32).reshape([9, 9]) sudoku_image = """\ | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | ----- + ----- + ----- | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | ----- + ----- + ----- | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | | 0 0 0 | 0 0 0 | 0 0 0 | """ s.display() out, err = capsys.readouterr() assert out == sudoku_image def test_remove_random(): """Testing the set of coordinates to be removed.""" s = Sudoku() s.empty_numbers = 2 s._matrix = np.arange(1, 3, 1).reshape([1, 2]) s.remove_random() # The assertion checks the complete list of coordinates so random doesn't have to # be mocked. assert s._masked_coordinates == {(0, 1), (0, 0)} def test_info_message(sudoku_board): s = sudoku_board welcome_message = """ Welcome to Sudoku Rules: All rows should have the digits 1-9, without repetition. All columns should have the digits 1-9, without repetition. All 9 sub-matrices should have the digits 1-9, without repetition. To play, enter the row, column, and answer at the command prompt. The Format is: <row> <column> <value> Type exit to leave Please note this game uses 0 indexing Good luck!\n """ assert s.intro_message() == welcome_message def test_run(): s = Sudoku() with mock.patch.object(builtins, "input", lambda _: "exit"): assert s.run() is None
0.723602
0.598459
from mako.template import Template import os import importlib.resources as resources def genRobotCode(projectType, config): if projectType == "Simple": with resources.path(__name__, "templates") as path: with open(os.path.join(path, "Simple", "Robot.java.mako"), "r") as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lcontrollers=config["leftControllerTypes"], rcontrollers=config["rightControllerTypes"], lencoderports=config["leftEncoderPorts"], rencoderports=config["rightEncoderPorts"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "Talon": with resources.path(__name__, "templates") as path: with open(os.path.join(path, "Talon", "Robot.java.mako"), "r") as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lcontrollers=config["leftControllerTypes"], rcontrollers=config["rightControllerTypes"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "SparkMax_Brushed": with resources.path(__name__, "templates") as path: with open( os.path.join(path, "SparkMax_Brushed", "Robot.java.mako"), "r" ) as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], gearing=config["gearing"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "SparkMax_Brushless": with resources.path(__name__, "templates") as path: with open( os.path.join(path, "SparkMax_Brushless", "Robot.java.mako"), "r" ) as template: return Template(template.read()).render( diam=config["wheelDiameter"], gearing=config["gearing"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) def genBuildGradle(projectType, team): with resources.path(__name__, "templates") as path: with open( os.path.join(path, projectType, "build.gradle.mako"), "r" ) as template: return Template(template.read()).render(team=team)
frc_characterization/drive_characterization/__init__.py
from mako.template import Template import os import importlib.resources as resources def genRobotCode(projectType, config): if projectType == "Simple": with resources.path(__name__, "templates") as path: with open(os.path.join(path, "Simple", "Robot.java.mako"), "r") as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lcontrollers=config["leftControllerTypes"], rcontrollers=config["rightControllerTypes"], lencoderports=config["leftEncoderPorts"], rencoderports=config["rightEncoderPorts"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "Talon": with resources.path(__name__, "templates") as path: with open(os.path.join(path, "Talon", "Robot.java.mako"), "r") as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lcontrollers=config["leftControllerTypes"], rcontrollers=config["rightControllerTypes"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "SparkMax_Brushed": with resources.path(__name__, "templates") as path: with open( os.path.join(path, "SparkMax_Brushed", "Robot.java.mako"), "r" ) as template: return Template(template.read()).render( diam=config["wheelDiameter"], epr=config["encoderEPR"], gearing=config["gearing"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], lencoderinv=config["leftEncoderInverted"], rencoderinv=config["rightEncoderInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) elif projectType == "SparkMax_Brushless": with resources.path(__name__, "templates") as path: with open( os.path.join(path, "SparkMax_Brushless", "Robot.java.mako"), "r" ) as template: return Template(template.read()).render( diam=config["wheelDiameter"], gearing=config["gearing"], lports=config["leftMotorPorts"], rports=config["rightMotorPorts"], linverted=config["leftMotorsInverted"], rinverted=config["rightMotorsInverted"], gyro=config["gyroType"], gyroport=config["gyroPort"], ) def genBuildGradle(projectType, team): with resources.path(__name__, "templates") as path: with open( os.path.join(path, projectType, "build.gradle.mako"), "r" ) as template: return Template(template.read()).render(team=team)
0.509032
0.12692
from __future__ import unicode_literals import random import pyecharts.echarts as option base_fs = [] # _config_components() 方法中被调用 other_fs = [] # add() 方法中被调用 SYMBOLS = ("rect", "roundRect", "triangle", "diamond", "pin", "arrow") def collect_other_func(func): other_fs.append(func) return func def collect_base_func(func): base_fs.append(func) return func @collect_base_func def datazoom( is_datazoom_show=False, datazoom_type="slider", datazoom_range=None, datazoom_orient="horizontal", datazoom_xaxis_index=None, datazoom_yaxis_index=None, **kwargs ): """ dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整 体,或者去除离群点的影响。 :param is_datazoom_show: 是否使用区域缩放组件,默认为 False :param datazoom_type: 区域缩放组件类型,默认为'slider',有'slider', 'inside', 'both'可选 :param datazoom_range: 区域缩放的范围,默认为[50, 100] :param datazoom_orient: datazoom 组件在直角坐标系中的方向,默认为 'horizontal',效果显示在 x 轴。 如若设置为 'vertical' 的话效果显示在 y 轴。 :param datazoom_xaxis_index: datazoom 组件控制的 x 轴索引 默认控制第一个 x 轴,如没特殊需求无须显示指定。单个为 int 类型而控制多个为 list 类型,如 [0, 1] 表示控制第一个和第二个 x 轴。 :param datazoom_yaxis_index: datazoom 组件控制的 y 轴索引 默认控制第一个 y 轴,如没特殊需求无须显示指定。单个为 int 类型而控制多个为 list 类型,如 [0, 1] 表示控制第一个和第二个 x 轴。 :param kwargs: """ _min, _max = 50, 100 if datazoom_range: if len(datazoom_range) == 2: _min, _max = datazoom_range if datazoom_type not in ("slider", "inside", "both"): datazoom_type = "slider" _datazoom = [] _datazoom_config = { "show": is_datazoom_show, "type": "slider", "start": _min, "end": _max, "orient": datazoom_orient, "xAxisIndex": datazoom_xaxis_index, "yAxisIndex": datazoom_yaxis_index, } if datazoom_type == "both": _datazoom.append(_datazoom_config.copy()) datazoom_type = "inside" _datazoom_config["type"] = datazoom_type _datazoom.append(_datazoom_config) return _datazoom @collect_base_func def datazoom_extra( is_datazoom_extra_show=False, datazoom_extra_type="slider", datazoom_extra_range=None, datazoom_extra_orient="vertical", datazoom_extra_xaxis_index=None, datazoom_extra_yaxis_index=None, **kwargs ): """ 额外的 dataZoom 条,直接 X/Y 轴同时使用 dataZoom 效果 """ if is_datazoom_extra_show: return datazoom( is_datazoom_show=True, datazoom_type=datazoom_extra_type, datazoom_range=datazoom_extra_range, datazoom_orient=datazoom_extra_orient, datazoom_xaxis_index=datazoom_extra_xaxis_index, datazoom_yaxis_index=datazoom_extra_yaxis_index, ) @collect_base_func def color(colorlst=None, is_random=False, label_color=None, **kwargs): """ :param colorlst: 全局颜色列表 :param is_random: 指定是否随机打乱全局颜色列表 :param label_color: 追加的颜色列表 :param kwargs: """ if colorlst is None: colorlst = [] if label_color: for color in reversed(list(label_color)): colorlst.insert(0, color) if is_random: random.shuffle(colorlst) return colorlst @collect_base_func def tooltip(**kwargs): return option.Tooltip(**kwargs) @collect_base_func def legend( is_legend_show=True, legend_orient="horizontal", legend_pos="center", legend_top="top", legend_selectedmode="multiple", legend_text_size=12, legend_text_color=None, **kwargs ): """ 图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例 控制哪些系列不显示。 :param is_legend_show: 是否显示顶端图例,默认为 True :param legend_orient: 图例列表的布局朝向,默认为'horizontal',有'horizontal', 'vertical'可选 :param legend_pos: 图例组件离容器左侧的距离,默认为'center',有'left', 'center', 'right'可选, 也可以为百分数,如 "%60" :param legend_top: 图例组件离容器上侧的距离,默认为'top',有'top', 'center', 'bottom'可选, 也可以为百分数,如 "%60" :param legend_selectedmode: 图例选择的模式,控制是否可以通过点击图例改变系列的显示状态。默认为'multiple', 可以设成 'single' 或者 'multiple' 使用单选或者多选模式。 也可以设置为 False 关闭显示状态。 :param legend_text_size: 图例名称字体大小 :param legend_text_color: 图例名称字体颜色 :param kwargs: """ _legend = { "selectedMode": legend_selectedmode, "show": is_legend_show, "left": legend_pos, "top": legend_top, "orient": legend_orient, "textStyle": { "fontSize": legend_text_size, "color": legend_text_color, }, } return _legend @collect_base_func def visual_map( visual_type="color", visual_range=None, visual_text_color=None, visual_range_text=None, visual_range_color=None, visual_range_size=None, visual_orient="vertical", visual_pos="left", visual_top="bottom", visual_split_number=5, visual_dimension=None, is_calculable=True, is_piecewise=False, pieces=None, **kwargs ): """ 是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道) :param visual_type: 制定组件映射方式,默认为'color‘,即通过颜色来映射数值。有'color', 'size'可选。 'size'通过数值点的大小,也就是图形点的大小来映射数值。 :param visual_range: 指定组件的允许的最小值与最大值。默认为 [0, 100] :param visual_text_color: 两端文本颜色。 :param visual_range_text: 两端文本。默认为 ['low', 'hight'] :param visual_range_size: 数值映射的范围,也就是图形点大小的范围。默认为 [20, 50] :param visual_range_color: 过渡颜色。默认为 ['#50a3ba', '#eac763', '#d94e5d'] :param visual_orient: visualMap 组件条的方向,默认为'vertical',有'vertical', 'horizontal'可选。 :param visual_pos: visualmap 组件条距离左侧的位置,默认为'left'。有'right', 'center', 'right'可选,也可为百分数或整数。 :param visual_top: visualmap 组件条距离顶部的位置,默认为'top'。有'top', 'center', 'bottom'可选,也可为百分数或整数。 :param visual_split_number: 分段型中分割的段数,在设置为分段型时生效。默认分为 5 段。 :param visual_dimension: 指定用数据的『哪个维度』,映射到视觉元素上。默认映射到最后一个维度。索引从 0 开始。 在直角坐标系中,x 轴为第一个维度(0),y 轴为第二个维度(1)。 :param is_calculable: 是否显示拖拽用的手柄(手柄能拖拽调整选中范围)。默认为 True :param is_piecewise: 是否将组件转换为分段型(默认为连续型),默认为 False :param pieces: 自定义『分段式视觉映射组件(visualMapPiecewise)』的每一段的范围, 以及每一段的文字,以及每一段的特别的样式(仅在 is_piecewise 为 True 时生效)。例如: pieces: [ {min: 1500}, // 不指定 max,表示 max 为无限大(Infinity)。 {min: 900, max: 1500}, {min: 310, max: 1000}, {min: 200, max: 300}, {min: 10, max: 200, label: '10 到 200(自定义label)'}, // 表示 value 等于 123 的情况。 {value: 123, label: '123(自定义特殊颜色)', color: 'grey'} {max: 5} // 不指定 min,表示 min 为无限大(-Infinity)。 ] :param kwargs: """ _min, _max = 0, 100 if visual_range: if len(visual_range) == 2: _min, _max = visual_range _tlow, _thigh = "low", "high" if visual_range_text: if len(visual_range_text) == 2: _tlow, _thigh = visual_range_text _inrange_op = {} if visual_type == "color": range_color = ["#50a3ba", "#eac763", "#d94e5d"] if visual_range_color: if len(visual_range_color) >= 2: range_color = visual_range_color _inrange_op.update(color=range_color) if visual_type == "size": range_size = [20, 50] if visual_range_size: if len(visual_range_size) >= 2: range_size = visual_range_size _inrange_op.update(symbolSize=range_size) _type = "piecewise" if is_piecewise else "continuous" _visual_map = { "type": _type, "min": _min, "max": _max, "text": [_thigh, _tlow], "textStyle": {"color": visual_text_color}, "inRange": _inrange_op, "calculable": is_calculable, "splitNumber": visual_split_number, "dimension": visual_dimension, "orient": visual_orient, "left": visual_pos, "top": visual_top, "showLabel": True, } if is_piecewise: _visual_map.update(pieces=pieces) return _visual_map @collect_other_func def label( type=None, is_label_show=False, is_label_emphasis=True, label_pos=None, label_text_color=None, label_text_size=12, label_formatter=None, label_emphasis_pos=None, label_emphasis_textcolor=None, label_emphasis_textsize=12, **kwargs ): """ 图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。 :param type: 图形类型 :param is_label_emphasis: 是否高亮显示标签,默认显示。高亮标签即选中数据时显示的信息项。 :param is_label_show: 是否正常显示标签,默认不显示。标签即各点的数据项信息 :param label_pos: 标签的位置,Bar 图默认为'top'。有'top', 'left', 'right', 'bottom', 'inside', 'outside'可选 :param label_text_color: 标签字体颜色,默认为 "#000" :param label_text_size: 标签字体大小,默认为 12 :param label_formatter: 模板变量有 {a}, {b},{c},{d},{e},分别表示系列名,数据名,数据值等。 使用示例,如 label_formatter='{a}' 在 trigger 为 'axis' 的时候,会有多个系列的数据,此时可以通过 {a0}, {a1}, {a2} 这种后面加索引的方式表示系列的索引。不同图表类型下的 {a},{b},{c},{d} 含义不一样。 其中变量 {a}, {b}, {c}, {d} 在不同图表类型下代表数据含义为: 折线(区域)图、柱状(条形)图、K线图 : {a}(系列名称),{b}(类目值),{c}(数值), {d}(无) 散点图(气泡)图 : {a}(系列名称),{b}(数据名称),{c}(数值数组), {d}(无) 地图 : {a}(系列名称),{b}(区域名称),{c}(合并数值), {d}(无) 饼图、仪表盘、漏斗图: {a}(系列名称),{b}(数据项名称),{c}(数值), {d}(百分比) :param label_emphasis_pos: 高亮标签的位置,Bar 图默认为'top'。有'top', 'left', 'right', 'bottom', 'inside', 'outside'可选 :param label_emphasis_textcolor: 高亮标签字体颜色,默认为 "#fff" :param label_emphasis_textsize: 高亮标签字体大小,默认为 12 :param kwargs: """ _label = { "normal": option.NormalLabel( visibility=is_label_show, position=label_pos, text_color=label_text_color, text_size=label_text_size, formatter=label_formatter, chart_type=type, ), "emphasis": option.EmphasisLabel( visibility=is_label_emphasis, position=label_emphasis_pos, text_color=label_emphasis_textcolor, text_size=label_emphasis_textsize, chart_type=type, ), } return _label @collect_other_func def line_style( type=None, line_width=1, line_opacity=1, line_curve=0, line_type="solid", line_color=None, **kwargs ): """ 带线图形的线的风格选项 :param type: 图形类型 :param line_width: 线的宽度,默认为 1 :param line_opacity: 线的透明度,0 为完全透明,1 为完全不透明。默认为 1 :param line_curve: 线的弯曲程度,0 为完全不弯曲,1 为最弯曲。默认为 0 :param line_type: 线的类型,有'solid', 'dashed', 'dotted'可选。默认为'solid' :param line_color: 线的颜色 :param kwargs: """ if line_color is None and type == "graph": line_color = "#aaa" _line_style = { "normal": option.Line( width=line_width, opacity=line_opacity, curve=line_curve, line_type=line_type, color=line_color, chart_type=type, ) } return _line_style @collect_other_func def split_line(is_splitline_show=True, **kwargs): """ :param is_splitline_show: 指定是否显示分割线 :param kwargs: """ _split_line = { "show": is_splitline_show, "lineStyle": line_style(**kwargs), } return _split_line @collect_other_func def axis_line(is_axisline_show=True, **kwargs): """ :param is_axisline_show: 指定是否显示坐标轴线 :param kwargs: """ _axis_line = {"show": is_axisline_show, "lineStyle": line_style(**kwargs)} return _axis_line @collect_other_func def split_area(is_area_show=True, **kwargs): """ :param is_area_show: 指定是否显示标记区域 :param kwargs: """ _split_area = {"show": is_area_show, "areaStyle": area_style(**kwargs)} return _split_area @collect_other_func def area_style(flag=False, area_opacity=None, area_color=None, **kwargs): """ :param flag: 判断符 :param area_opacity: 区域透明度。支持从 0 到 1 的数字,为 0 时不绘制该图形。 :param area_color: 填充的颜色 :param kwargs: """ if area_opacity is None: area_opacity = 0 if flag else 1 _area_style = {"opacity": area_opacity, "color": area_color} return _area_style @collect_other_func def xy_axis( type=None, x_axis=None, xaxis_margin=8, xaxis_name_size=14, xaxis_name_gap=25, xaxis_name="", xaxis_name_pos="middle", xaxis_rotate=0, xaxis_min=None, xaxis_max=None, xaxis_type=None, xaxis_interval="auto", xaxis_force_interval=None, xaxis_pos=None, xaxis_label_textsize=12, xaxis_label_textcolor=None, xaxis_formatter=None, xaxis_line_color=None, xaxis_line_width=1, yaxis_margin=8, yaxis_name_size=14, yaxis_name_gap=25, yaxis_name="", yaxis_name_pos="middle", yaxis_rotate=0, yaxis_min=None, yaxis_max=None, yaxis_type=None, yaxis_interval="auto", yaxis_force_interval=None, yaxis_pos=None, yaxis_label_textsize=12, yaxis_label_textcolor=None, yaxis_formatter="", yaxis_line_color=None, yaxis_line_width=1, is_convert=False, is_xaxis_inverse=False, is_yaxis_inverse=False, is_xaxislabel_align=False, is_yaxislabel_align=False, is_xaxis_boundarygap=True, is_yaxis_boundarygap=True, is_xaxis_show=True, is_yaxis_show=True, is_splitline_show=True, **kwargs ): """ 直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)。 :param type: 图形类型。 :param x_axis: x 轴数据项。 :param xaxis_margin: x 轴刻度标签与轴线之间的距离。默认为 8 :param xaxis_name_size: x 轴名称体大小,默认为 14 :param xaxis_name_gap: x 轴名称与轴线之间的距离,默认为 25 :param xaxis_name: x 轴名称 :param xaxis_name_pos: x 轴名称位置,有'start','middle','end'可选 :param xaxis_rotate: x 轴刻度标签旋转的角度,在类目轴的类目标签显示不下的时候可以通过旋转防止标 签之间重叠。默认为 0,即不旋转。旋转的角度从 -90 度到 90 度。 :param xaxis_min: x 坐标轴刻度最小值,默认为自适应。使用特殊值 "dataMin" 可自定以数 据中最小值为 x 轴最小值。 :param xaxis_max: x 坐标轴刻度最大值,默认为自适应。使用特殊值 "dataMax" 可自定以数 据中最小值为 x 轴最大值。 :param xaxis_type: x 坐标轴类型 'value':数值轴,适用于连续数据。 'category':类目轴,适用于离散的类目数据。 'log':对数轴。适用于对数数据。 :param xaxis_interval: x 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』, 如果值为 2,表示隔两个标签显示一个标签,以此类推 :param xaxis_force_interval: 强制设置 x 坐标轴分割间隔。如设置为 50 则刻度为 [0, 50, 150, ...],设置为 "auto" 则只显示两个刻度。一般情况下不建议设置这个参数!! 因为 splitNumber 是预估的值,实际根据策略计算出来的刻度可能无法达到想要的效果, 这时候可以使用 interval 配合 min、max 强制设定刻度划分。在类目轴中无效。 :param xaxis_pos: x 坐标轴位置,有'top','bottom'可选 :param xaxis_label_textsize: x 坐标轴标签字体大小 :param xaxis_label_textcolor: x 坐标轴标签字体颜色 :param xaxis_formatter: x 轴标签格式器,如 '天',则 x 轴的标签为数据加'天'(3 天,4 天),默认为 "" xaxis_formatter -> function ```python def label_formatter(params): return params.value + ' [Good!]' ``` 回调函数格式,更多内容请参考 [高级用法篇](zh-cn/advanced) ``` (params: Object|Array) => string 参数 params 是 formatter 需要的单个数据集。格式如下: { componentType: 'series', // 系列类型 seriesType: string, // 系列在传入的 option.series 中的 index seriesIndex: number, // 系列名称 seriesName: string, // 数据名,类目名 name: string, // 数据在传入的 data 数组中的 index dataIndex: number, // 传入的原始数据项 data: Object, // 传入的数据值 value: number|Array, // 数据图形的颜色 color: string, } ``` :param xaxis_line_color: x 坐标轴线线的颜色,默认为 None :param xaxis_line_width: x 坐标轴线线的宽度,默认为 1 :param yaxis_margin: y 轴刻度标签与轴线之间的距离。默认为 8 :param yaxis_name_size: y 轴名称体大小,默认为 14 :param yaxis_name_gap: y 轴名称与轴线之间的距离,默认为 25 :param yaxis_name: y 轴名称 :param yaxis_name_pos: y 轴名称位置,有'start', 'middle','end'可选 :param yaxis_rotate: y 轴刻度标签旋转的角度,在类目轴的类目标签显示不下的时候可以通过旋转防止标 签之间重叠。默认为 0,即不旋转。旋转的角度从 -90 度到 90 度。 :param yaxis_min: y 坐标轴刻度最小值,默认为自适应。使用特殊值 "dataMin" 可自定以数 据中最小值为 y 轴最小值。 :param yaxis_max: y 坐标轴刻度最大值,默认为自适应。使用特殊值 "dataMax" 可自定以数 据中最小值为 y 轴最大值。 :param yaxis_type: y 坐标轴类型 'value':数值轴,适用于连续数据。 'category':类目轴,适用于离散的类目数据。 'log':对数轴。适用于对数数据。 :param yaxis_interval: y 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』, 如果值为 2,表示隔两个标签显示一个标签,以此类推 :param yaxis_force_interval: 强制设置 y 坐标轴分割间隔。如设置为 50 则刻度为 [0, 50, 150, ...],设置为 "auto" 则只显示两个刻度。一般情况下不建议设置这个参数!! 因为 splitNumber 是预估的值,实际根据策略计算出来的刻度可能无法达到想要的效果, 这时候可以使用 interval 配合 min、max 强制设定刻度划分。在类目轴中无效。 :param yaxis_pos: y 坐标轴位置,有'left','right'可选 :param yaxis_label_textsize: y 坐标轴标签字体大小 :param yaxis_label_textcolor: y 坐标轴标签字体颜色 :param yaxis_formatter: y 轴标签格式器,如 '天',则 y 轴的标签为数据加'天'(3 天,4 天),默认为 "" yaxis_formatter -> function ```python def label_formatter(params): return params.value + ' [Good!]' ``` 回调函数格式,更多内容请参考 [高级用法篇](zh-cn/advanced) ``` (params: Object|Array) => string 参数 params 是 formatter 需要的单个数据集。格式如下: { componentType: 'series', // 系列类型 seriesType: string, // 系列在传入的 option.series 中的 index seriesIndex: number, // 系列名称 seriesName: string, // 数据名,类目名 name: string, // 数据在传入的 data 数组中的 index dataIndex: number, // 传入的原始数据项 data: Object, // 传入的数据值 value: number|Array, // 数据图形的颜色 color: string, } `` :param yaxis_line_color: y 坐标轴线线的颜色,默认为 None :param yaxis_line_width: y 坐标轴线线的宽度,默认为 1 :param is_convert: 是否交换 x 轴与 y 轴 :param is_xaxis_inverse: 是否反向 x 坐标轴,默认为 False :param is_yaxis_inverse: 是否反向 y 坐标轴,默认为 False :param is_xaxislabel_align: x 轴刻度线和标签是否对齐,默认为 False :param is_yaxislabel_align: y 轴刻度线和标签是否对齐,默认为 False :param is_xaxis_boundarygap: x 轴两边留白策略,适用于类目轴。类目轴中 boundaryGap 可以配置为 True 和 False。 默认为 True,这时候刻度只是作为分隔线,标签和数据点都会在两个刻度之间的带(band) 中间,即两边留白。 :param is_yaxis_boundarygap: y 轴两边留白策略,适用于类目轴。类目轴中 boundaryGap 可以配置为 True 和 False。 默认为 True,这时候刻度只是作为分隔线,标签和数据点都会在两个刻度之间的带(band) 中间,即两边留白。 :param is_xaxis_show: 是否显示 x 轴 :param is_yaxis_show: 是否显示 y 轴 :param is_splitline_show: 是否显示 y 轴网格线,默认为 True。 :param kwargs: """ _xAxis = option.XAxis( name=xaxis_name, visibility=is_xaxis_show, name_location=xaxis_name_pos, name_gap=xaxis_name_gap, name_size=xaxis_name_size, position=xaxis_pos, boundary_gap=is_xaxis_boundarygap, label_alignment=is_xaxislabel_align, inverse=is_xaxis_inverse, value_range=[xaxis_min, xaxis_max], axis_type=xaxis_type, axis_line_color=xaxis_line_color, axis_line_width=xaxis_line_width, chart_type=type, ) _xAxis["axisLabel"] = option.XAxisLabel( interval=xaxis_interval, rotate=xaxis_rotate, margin=xaxis_margin, text_size=xaxis_label_textsize, text_color=xaxis_label_textcolor, formatter=xaxis_formatter, ) _yAxis = option.YAxis( name=yaxis_name, visibility=is_yaxis_show, name_location=yaxis_name_pos, name_gap=yaxis_name_gap, name_size=yaxis_name_size, position=yaxis_pos, boundary_gap=is_yaxis_boundarygap, label_alignment=is_yaxislabel_align, inverse=is_yaxis_inverse, value_range=[yaxis_min, yaxis_max], split_line=is_splitline_show, axis_type=yaxis_type, axis_line_color=yaxis_line_color, axis_line_width=yaxis_line_width, chart_type=type, ) _yAxis["axisLabel"] = option.YAxisLabel( interval=yaxis_interval, rotate=yaxis_rotate, margin=yaxis_margin, text_size=yaxis_label_textsize, text_color=yaxis_label_textcolor, formatter=yaxis_formatter, ) if is_convert: xaxis_type, yaxis_type = _yAxis["type"], _xAxis["type"] _xAxis["type"] = xaxis_type _yAxis.update(data=x_axis, type=yaxis_type) else: _xAxis["data"] = x_axis # 强制分割数值轴,在多 x、y 轴中可以使用强制分割使标刻线对齐 if xaxis_force_interval is not None: _xAxis["interval"] = xaxis_force_interval if yaxis_force_interval is not None: _yAxis["interval"] = yaxis_force_interval # 返回字典 return [_xAxis], [_yAxis] def _mark( data, mark_point_raw=None, mark_point_symbol="pin", mark_point_symbolsize=50, mark_point_textcolor="#fff", mark_line_raw=None, mark_line_symbolsize=10, mark_line_valuedim="", mark_line_coords=None, mark_point_valuedim="", _is_markline=False, **kwargs ): """ 图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种 :param data: 标记点 默认有'min', 'max', 'average'可选。支持自定义标记点,具体使用如下 [ { "coord": [a1, b1], "name": "first markpoint" }, { "coord": [a2, b2], "name": "second markpoint" } ] 需自己传入标记点字典,共有两个键值对,'coord' 对应为 x y 轴坐标,'name' 为标记点名称 标记线 只支持默认的 'min', 'max', 'average' :param mark_point_raw: 原生格式的 markPoint 数据,数据类型为 [{}, {}, ...]。 格式请参考 http://echarts.baidu.com/option.html#series-line.markPoint.data :param mark_point_symbol: 标记点图形,,默认为'pin',有'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选 :param mark_point_symbolsize: 标记点图形大小,默认为 50 :param mark_point_textcolor: 标记点字体颜色,默认为'#fff' :param mark_line_raw: 原生格式的 markLine 数据,数据类型为 [{}, {}, ...]。 格式请参考 http://echarts.baidu.com/option.html#series-line.markLine.data :param mark_line_symbolsize: 标记线图形大小,默认为 15 :param mark_line_valuedim: 标记线指定在哪个维度上指定最大值最小值。这可以是维度的直接名称,Line 时可以 是 x、angle 等、Kline 图时可以是 open、close、highest、lowest。 可同时制定多个维度,如 mark_line=['min', 'max'], mark_line_valuedim=['lowest', 'highest'] 则表示 min 使用 lowest 维度,max 使用 highest 维度,以此类推 :param mark_line_coords: 标记线指定起点坐标和终点坐标,如 [[10, 10], [30, 30]],两个点分别为横 纵坐标轴点。 :param mark_point_valuedim: 标记点指定在哪个维度上指定最大值最小值。这可以是维度的直接名称,Line 时可以 是 x、angle 等、Kline 图时可以是 open、close、highest、lowest。 可同时制定多个维度,如 mark_point=['min', 'max'], mark_point_valuedim=['lowest', 'highest'] 则表示 min 使用 lowest 维度,max 使用 highest 维度,以此类推 :param _is_markline: 指定是否为 markline """ if _is_markline: if mark_line_raw: return {"data": mark_line_raw} else: if mark_point_raw: return {"data": mark_point_raw} mark = {"data": []} if data: _markpv = _marklv = [None for _ in range(len(data))] _markpv[: len(mark_point_valuedim)] = mark_point_valuedim _marklv[: len(mark_line_valuedim)] = mark_line_valuedim for index, d in enumerate(list(data)): # 自定义坐标点数据 if isinstance(d, dict): _coord = d.get("coord", None) _pname = d.get("name", None) _marktmp = { "coord": _coord, "value": _coord[1], "name": _pname, "symbol": mark_point_symbol, "symbolSize": mark_point_symbolsize, "label": { "normal": { "textStyle": {"color": mark_point_textcolor} } }, } mark.get("data").append(_marktmp) else: _type, _name = "", "" if "max" in d: _type, _name = "max", "Maximum" elif "min" in d: _type, _name = "min", "Minimum" elif "average" in d: _type, _name = "average", "mean-Value" if _is_markline: _marktmp = { "type": _type, "name": _name, "valueDim": _marklv[index], } if _type: mark.get("data").append(_marktmp) mark.update(symbolSize=mark_line_symbolsize) else: _marktmp = { "type": _type, "name": _name, "valueDim": _markpv[index], } _marktmp.update( symbol=mark_point_symbol, symbolSize=mark_point_symbolsize, label={ "normal": { "textStyle": {"color": mark_point_textcolor} } }, ) if _type: mark.get("data").append(_marktmp) if mark_line_coords and len(mark_line_coords) == 2: return { "data": [ [ {"coord": mark_line_coords[0]}, {"coord": mark_line_coords[1]}, ] ] } return mark @collect_other_func def mark_point(mark_point=None, **kwargs): """ 标记点配置项 :param mark_point: 默认有'min', 'max', 'average'可选。支持自定义标记点,具体使用如下 [ { "coord": [a1, b1], "name": "first markpoint" }, { "coord": [a2, b2], "name": "second markpoint" } ] 需自己传入标记点字典,共有两个键值对,'coord' 对应为 x y 轴坐标,'name' 为标记点名称 :param kwargs: """ return _mark(mark_point, **kwargs) @collect_other_func def mark_line(mark_line=None, **kwargs): """ 标记线配置项 :param mark_line: 只支持默认的 'min', 'max', 'average' :param kwargs: """ return _mark(mark_line, _is_markline=True, **kwargs) @collect_other_func def symbol(type=None, symbol="", **kwargs): """ :param symbol: 标记类型, 有'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选 :param kwargs: """ if symbol is None: # Radar symbol = "none" elif type == "line" and symbol == "": # Line symbol = "emptyCircle" elif symbol not in SYMBOLS: symbol = "circle" return symbol @collect_other_func def effect( effect_brushtype="stroke", effect_scale=2.5, effect_period=4, **kwargs ): """ 涟漪动画配置项 :param effect_brushtype: 波纹绘制方式,有'stroke', 'fill'可选。默认为'stroke' :param effect_scale: 动画中波纹的最大缩放比例。默认为 2.5 :param effect_period: 动画持续的时间。默认为 4(s) :param kwargs: """ _effect = { "brushType": effect_brushtype, "scale": effect_scale, "period": effect_period, } return _effect @collect_other_func def grid( grid_width=None, grid_height=None, grid_top=None, grid_bottom=None, grid_left=None, grid_right=None, **kwargs ): """ Grid 类组件配置项 :param grid_width: grid 组件的宽度。默认自适应。 :param grid_height: grid 组件的高度。默认自适应。 :param grid_top: grid 组件离容器顶部的距离。默认为 None, 有'top', 'center', 'middle'可选, 也可以为百分数或者整数 :param grid_bottom: grid 组件离容器底部的距离。默认为 None, 有'top', 'center', 'middle'可选, 也可以为百分数或者整数 :param grid_left: grid 组件离容器左侧的距离。默认为 None, 有'left', 'center', 'right'可选, 也可以为百分数或者整数 :param grid_right: grid 组件离容器右侧的距离。默认为 None, 有'left', 'center', 'right'可选 也可以为百分数或者整数 """ _grid = {} if grid_width is not None: _grid.update(width=grid_width) if grid_height is not None: _grid.update(height=grid_height) if grid_top is not None: _grid.update(top=grid_top) if grid_bottom is not None: _grid.update(bottom=grid_bottom) if grid_left is not None: _grid.update(left=grid_left) if grid_right is not None: _grid.update(right=grid_right) return _grid @collect_other_func def grid3D( grid3d_width=100, grid3d_height=100, grid3d_depth=100, grid3d_rotate_speed=10, grid3d_rotate_sensitivity=1, is_grid3d_rotate=False, **kwargs ): """ 3D 笛卡尔坐标系组配置项,适用于 3D 图形。 :param grid3d_width: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_height: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_depth: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_rotate_speed: 物体自传的速度。单位为角度 / 秒,默认为 10 ,也就是 36 秒转一圈。 :param is_grid3d_rotate: 是否开启视角绕物体的自动旋转查看。默认为 False :param grid3d_rotate_sensitivity: 旋转操作的灵敏度,值越大越灵敏。默认为 1, 设置为 0 后无法旋转。 :param kwargs: """ _grid3D = { "boxWidth": grid3d_width, "boxHeight": grid3d_height, "boxDepth": grid3d_depth, "viewControl": { "autoRotate": is_grid3d_rotate, "autoRotateSpeed": grid3d_rotate_speed, "rotateSensitivity": grid3d_rotate_sensitivity, }, } return _grid3D @collect_other_func def xaxis3D( xaxis3d_type=None, xaxis3d_name="", xaxis3d_name_size=16, xaxis3d_name_gap=20, xaxis3d_min=None, xaxis3d_max=None, xaxis3d_interval="auto", xaxis3d_margin=8, **kwargs ): """ 3D x 轴配置项 :param xaxis3d_type: 3D x 轴类型 :param xaxis3d_name: x 轴名称,默认为 "" :param xaxis3d_name_size: x 轴名称体大小,默认为 16 :param xaxis3d_name_gap: x 轴名称与轴线之间的距离,默认为 25 :param xaxis3d_min: x 坐标轴刻度最小值,默认为自适应。 :param xaxis3d_max: x 坐标轴刻度最大值,默认为自适应。 :param xaxis3d_interval: x 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』,如果值 为 2,表示隔两个标签显示一个标签,以此类推 :param xaxis3d_margin: x 轴刻度标签与轴线之间的距离。默认为 8 """ _xaxis3D = { "name": xaxis3d_name, "nameGap": xaxis3d_name_gap, "nameTextStyle": {"fontSize": xaxis3d_name_size}, "type": xaxis3d_type, "min": xaxis3d_min, "max": xaxis3d_max, "axisLabel": {"margin": xaxis3d_margin, "interval": xaxis3d_interval}, } return _xaxis3D @collect_other_func def yaxis3D( yaxis3d_type=None, yaxis3d_name="", yaxis3d_name_size=16, yaxis3d_name_gap=20, yaxis3d_min=None, yaxis3d_max=None, yaxis3d_interval="auto", yaxis3d_margin=8, **kwargs ): """ 3D y 轴配置项 :param yaxis3d_type: 3D x 轴类型 :param yaxis3d_name: y 轴名称,默认为 "" :param yaxis3d_name_size: y 轴名称体大小,默认为 16 :param yaxis3d_name_gap: y 轴名称与轴线之间的距离,默认为 25 :param yaxis3d_min: y 坐标轴刻度最小值,默认为自适应。 :param yaxis3d_max: y 坐标轴刻度最大值,默认为自适应。 :param yaxis3d_interval: y 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』,如果值 为 2,表示隔两个标签显示一个标签,以此类推 :param yaxis3d_margin: y 轴刻度标签与轴线之间的距离。默认为 8 """ _yaxis3D = { "name": yaxis3d_name, "nameGap": yaxis3d_name_gap, "nameTextStyle": {"fontSize": yaxis3d_name_size}, "type": yaxis3d_type, "min": yaxis3d_min, "max": yaxis3d_max, "axisLabel": {"margin": yaxis3d_margin, "interval": yaxis3d_interval}, } return _yaxis3D @collect_other_func def zaxis3D( zaxis3d_type=None, zaxis3d_name="", zaxis3d_name_size=16, zaxis3d_name_gap=20, zaxis3d_min=None, zaxis3d_max=None, zaxis3d_margin=8, **kwargs ): """ 3D y 轴配置项 :param zaxis3d_type: 3D y 轴类型 :param zaxis3d_name: z 轴名称,默认为 "" :param zaxis3d_name_size: z 轴名称体大小,默认为 16 :param zaxis3d_name_gap: z 轴名称与轴线之间的距离,默认为 25 :param zaxis3d_min: z 坐标轴刻度最小值,默认为自适应。 :param zaxis3d_max: z 坐标轴刻度最大值,默认为自适应。 :param zaxis3d_margin: z 轴刻度标签与轴线之间的距离。默认为 8 """ _zaxis3D = { "name": zaxis3d_name, "nameGap": zaxis3d_name_gap, "nameTextStyle": {"fontSize": zaxis3d_name_size}, "type": zaxis3d_type, "min": zaxis3d_min, "max": zaxis3d_max, "axisLabel": {"margin": zaxis3d_margin}, } return _zaxis3D @collect_other_func def calendar(calendar_date_range=None, calendar_cell_size=None, **kwargs): """ :param calendar_date_range: 日历热力图的日期, "2016" 表示 2016 年, ["2016-5-5", "2017-5-5"] 表示 2016 年 5 月 5 日至 2017 年 5 月 5 日 :param calendar_cell_size: 日历每格框的大小,可设置单值 或数组 第一个元素是宽 第二个元素是高,支持 设置自适应 "auto"。默认为 ["auto", 20] :param kwargs: """ if calendar_cell_size is None: calendar_cell_size = ["auto", 20] _calendar = {"range": calendar_date_range, "cellSize": calendar_cell_size} return _calendar def get_base_options(**kwargs): """ 返回图形实例的所有配置项 """ _funcs = {} for f in base_fs: _funcs[f.__name__] = f(**kwargs) return _funcs def get_other_options(**kwargs): """ 返回图形实例的所有配置项 """ _funcs = {} for f in other_fs: _funcs[f.__name__] = f(**kwargs) return _funcs
pyecharts/echarts/option.py
from __future__ import unicode_literals import random import pyecharts.echarts as option base_fs = [] # _config_components() 方法中被调用 other_fs = [] # add() 方法中被调用 SYMBOLS = ("rect", "roundRect", "triangle", "diamond", "pin", "arrow") def collect_other_func(func): other_fs.append(func) return func def collect_base_func(func): base_fs.append(func) return func @collect_base_func def datazoom( is_datazoom_show=False, datazoom_type="slider", datazoom_range=None, datazoom_orient="horizontal", datazoom_xaxis_index=None, datazoom_yaxis_index=None, **kwargs ): """ dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整 体,或者去除离群点的影响。 :param is_datazoom_show: 是否使用区域缩放组件,默认为 False :param datazoom_type: 区域缩放组件类型,默认为'slider',有'slider', 'inside', 'both'可选 :param datazoom_range: 区域缩放的范围,默认为[50, 100] :param datazoom_orient: datazoom 组件在直角坐标系中的方向,默认为 'horizontal',效果显示在 x 轴。 如若设置为 'vertical' 的话效果显示在 y 轴。 :param datazoom_xaxis_index: datazoom 组件控制的 x 轴索引 默认控制第一个 x 轴,如没特殊需求无须显示指定。单个为 int 类型而控制多个为 list 类型,如 [0, 1] 表示控制第一个和第二个 x 轴。 :param datazoom_yaxis_index: datazoom 组件控制的 y 轴索引 默认控制第一个 y 轴,如没特殊需求无须显示指定。单个为 int 类型而控制多个为 list 类型,如 [0, 1] 表示控制第一个和第二个 x 轴。 :param kwargs: """ _min, _max = 50, 100 if datazoom_range: if len(datazoom_range) == 2: _min, _max = datazoom_range if datazoom_type not in ("slider", "inside", "both"): datazoom_type = "slider" _datazoom = [] _datazoom_config = { "show": is_datazoom_show, "type": "slider", "start": _min, "end": _max, "orient": datazoom_orient, "xAxisIndex": datazoom_xaxis_index, "yAxisIndex": datazoom_yaxis_index, } if datazoom_type == "both": _datazoom.append(_datazoom_config.copy()) datazoom_type = "inside" _datazoom_config["type"] = datazoom_type _datazoom.append(_datazoom_config) return _datazoom @collect_base_func def datazoom_extra( is_datazoom_extra_show=False, datazoom_extra_type="slider", datazoom_extra_range=None, datazoom_extra_orient="vertical", datazoom_extra_xaxis_index=None, datazoom_extra_yaxis_index=None, **kwargs ): """ 额外的 dataZoom 条,直接 X/Y 轴同时使用 dataZoom 效果 """ if is_datazoom_extra_show: return datazoom( is_datazoom_show=True, datazoom_type=datazoom_extra_type, datazoom_range=datazoom_extra_range, datazoom_orient=datazoom_extra_orient, datazoom_xaxis_index=datazoom_extra_xaxis_index, datazoom_yaxis_index=datazoom_extra_yaxis_index, ) @collect_base_func def color(colorlst=None, is_random=False, label_color=None, **kwargs): """ :param colorlst: 全局颜色列表 :param is_random: 指定是否随机打乱全局颜色列表 :param label_color: 追加的颜色列表 :param kwargs: """ if colorlst is None: colorlst = [] if label_color: for color in reversed(list(label_color)): colorlst.insert(0, color) if is_random: random.shuffle(colorlst) return colorlst @collect_base_func def tooltip(**kwargs): return option.Tooltip(**kwargs) @collect_base_func def legend( is_legend_show=True, legend_orient="horizontal", legend_pos="center", legend_top="top", legend_selectedmode="multiple", legend_text_size=12, legend_text_color=None, **kwargs ): """ 图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例 控制哪些系列不显示。 :param is_legend_show: 是否显示顶端图例,默认为 True :param legend_orient: 图例列表的布局朝向,默认为'horizontal',有'horizontal', 'vertical'可选 :param legend_pos: 图例组件离容器左侧的距离,默认为'center',有'left', 'center', 'right'可选, 也可以为百分数,如 "%60" :param legend_top: 图例组件离容器上侧的距离,默认为'top',有'top', 'center', 'bottom'可选, 也可以为百分数,如 "%60" :param legend_selectedmode: 图例选择的模式,控制是否可以通过点击图例改变系列的显示状态。默认为'multiple', 可以设成 'single' 或者 'multiple' 使用单选或者多选模式。 也可以设置为 False 关闭显示状态。 :param legend_text_size: 图例名称字体大小 :param legend_text_color: 图例名称字体颜色 :param kwargs: """ _legend = { "selectedMode": legend_selectedmode, "show": is_legend_show, "left": legend_pos, "top": legend_top, "orient": legend_orient, "textStyle": { "fontSize": legend_text_size, "color": legend_text_color, }, } return _legend @collect_base_func def visual_map( visual_type="color", visual_range=None, visual_text_color=None, visual_range_text=None, visual_range_color=None, visual_range_size=None, visual_orient="vertical", visual_pos="left", visual_top="bottom", visual_split_number=5, visual_dimension=None, is_calculable=True, is_piecewise=False, pieces=None, **kwargs ): """ 是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道) :param visual_type: 制定组件映射方式,默认为'color‘,即通过颜色来映射数值。有'color', 'size'可选。 'size'通过数值点的大小,也就是图形点的大小来映射数值。 :param visual_range: 指定组件的允许的最小值与最大值。默认为 [0, 100] :param visual_text_color: 两端文本颜色。 :param visual_range_text: 两端文本。默认为 ['low', 'hight'] :param visual_range_size: 数值映射的范围,也就是图形点大小的范围。默认为 [20, 50] :param visual_range_color: 过渡颜色。默认为 ['#50a3ba', '#eac763', '#d94e5d'] :param visual_orient: visualMap 组件条的方向,默认为'vertical',有'vertical', 'horizontal'可选。 :param visual_pos: visualmap 组件条距离左侧的位置,默认为'left'。有'right', 'center', 'right'可选,也可为百分数或整数。 :param visual_top: visualmap 组件条距离顶部的位置,默认为'top'。有'top', 'center', 'bottom'可选,也可为百分数或整数。 :param visual_split_number: 分段型中分割的段数,在设置为分段型时生效。默认分为 5 段。 :param visual_dimension: 指定用数据的『哪个维度』,映射到视觉元素上。默认映射到最后一个维度。索引从 0 开始。 在直角坐标系中,x 轴为第一个维度(0),y 轴为第二个维度(1)。 :param is_calculable: 是否显示拖拽用的手柄(手柄能拖拽调整选中范围)。默认为 True :param is_piecewise: 是否将组件转换为分段型(默认为连续型),默认为 False :param pieces: 自定义『分段式视觉映射组件(visualMapPiecewise)』的每一段的范围, 以及每一段的文字,以及每一段的特别的样式(仅在 is_piecewise 为 True 时生效)。例如: pieces: [ {min: 1500}, // 不指定 max,表示 max 为无限大(Infinity)。 {min: 900, max: 1500}, {min: 310, max: 1000}, {min: 200, max: 300}, {min: 10, max: 200, label: '10 到 200(自定义label)'}, // 表示 value 等于 123 的情况。 {value: 123, label: '123(自定义特殊颜色)', color: 'grey'} {max: 5} // 不指定 min,表示 min 为无限大(-Infinity)。 ] :param kwargs: """ _min, _max = 0, 100 if visual_range: if len(visual_range) == 2: _min, _max = visual_range _tlow, _thigh = "low", "high" if visual_range_text: if len(visual_range_text) == 2: _tlow, _thigh = visual_range_text _inrange_op = {} if visual_type == "color": range_color = ["#50a3ba", "#eac763", "#d94e5d"] if visual_range_color: if len(visual_range_color) >= 2: range_color = visual_range_color _inrange_op.update(color=range_color) if visual_type == "size": range_size = [20, 50] if visual_range_size: if len(visual_range_size) >= 2: range_size = visual_range_size _inrange_op.update(symbolSize=range_size) _type = "piecewise" if is_piecewise else "continuous" _visual_map = { "type": _type, "min": _min, "max": _max, "text": [_thigh, _tlow], "textStyle": {"color": visual_text_color}, "inRange": _inrange_op, "calculable": is_calculable, "splitNumber": visual_split_number, "dimension": visual_dimension, "orient": visual_orient, "left": visual_pos, "top": visual_top, "showLabel": True, } if is_piecewise: _visual_map.update(pieces=pieces) return _visual_map @collect_other_func def label( type=None, is_label_show=False, is_label_emphasis=True, label_pos=None, label_text_color=None, label_text_size=12, label_formatter=None, label_emphasis_pos=None, label_emphasis_textcolor=None, label_emphasis_textsize=12, **kwargs ): """ 图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。 :param type: 图形类型 :param is_label_emphasis: 是否高亮显示标签,默认显示。高亮标签即选中数据时显示的信息项。 :param is_label_show: 是否正常显示标签,默认不显示。标签即各点的数据项信息 :param label_pos: 标签的位置,Bar 图默认为'top'。有'top', 'left', 'right', 'bottom', 'inside', 'outside'可选 :param label_text_color: 标签字体颜色,默认为 "#000" :param label_text_size: 标签字体大小,默认为 12 :param label_formatter: 模板变量有 {a}, {b},{c},{d},{e},分别表示系列名,数据名,数据值等。 使用示例,如 label_formatter='{a}' 在 trigger 为 'axis' 的时候,会有多个系列的数据,此时可以通过 {a0}, {a1}, {a2} 这种后面加索引的方式表示系列的索引。不同图表类型下的 {a},{b},{c},{d} 含义不一样。 其中变量 {a}, {b}, {c}, {d} 在不同图表类型下代表数据含义为: 折线(区域)图、柱状(条形)图、K线图 : {a}(系列名称),{b}(类目值),{c}(数值), {d}(无) 散点图(气泡)图 : {a}(系列名称),{b}(数据名称),{c}(数值数组), {d}(无) 地图 : {a}(系列名称),{b}(区域名称),{c}(合并数值), {d}(无) 饼图、仪表盘、漏斗图: {a}(系列名称),{b}(数据项名称),{c}(数值), {d}(百分比) :param label_emphasis_pos: 高亮标签的位置,Bar 图默认为'top'。有'top', 'left', 'right', 'bottom', 'inside', 'outside'可选 :param label_emphasis_textcolor: 高亮标签字体颜色,默认为 "#fff" :param label_emphasis_textsize: 高亮标签字体大小,默认为 12 :param kwargs: """ _label = { "normal": option.NormalLabel( visibility=is_label_show, position=label_pos, text_color=label_text_color, text_size=label_text_size, formatter=label_formatter, chart_type=type, ), "emphasis": option.EmphasisLabel( visibility=is_label_emphasis, position=label_emphasis_pos, text_color=label_emphasis_textcolor, text_size=label_emphasis_textsize, chart_type=type, ), } return _label @collect_other_func def line_style( type=None, line_width=1, line_opacity=1, line_curve=0, line_type="solid", line_color=None, **kwargs ): """ 带线图形的线的风格选项 :param type: 图形类型 :param line_width: 线的宽度,默认为 1 :param line_opacity: 线的透明度,0 为完全透明,1 为完全不透明。默认为 1 :param line_curve: 线的弯曲程度,0 为完全不弯曲,1 为最弯曲。默认为 0 :param line_type: 线的类型,有'solid', 'dashed', 'dotted'可选。默认为'solid' :param line_color: 线的颜色 :param kwargs: """ if line_color is None and type == "graph": line_color = "#aaa" _line_style = { "normal": option.Line( width=line_width, opacity=line_opacity, curve=line_curve, line_type=line_type, color=line_color, chart_type=type, ) } return _line_style @collect_other_func def split_line(is_splitline_show=True, **kwargs): """ :param is_splitline_show: 指定是否显示分割线 :param kwargs: """ _split_line = { "show": is_splitline_show, "lineStyle": line_style(**kwargs), } return _split_line @collect_other_func def axis_line(is_axisline_show=True, **kwargs): """ :param is_axisline_show: 指定是否显示坐标轴线 :param kwargs: """ _axis_line = {"show": is_axisline_show, "lineStyle": line_style(**kwargs)} return _axis_line @collect_other_func def split_area(is_area_show=True, **kwargs): """ :param is_area_show: 指定是否显示标记区域 :param kwargs: """ _split_area = {"show": is_area_show, "areaStyle": area_style(**kwargs)} return _split_area @collect_other_func def area_style(flag=False, area_opacity=None, area_color=None, **kwargs): """ :param flag: 判断符 :param area_opacity: 区域透明度。支持从 0 到 1 的数字,为 0 时不绘制该图形。 :param area_color: 填充的颜色 :param kwargs: """ if area_opacity is None: area_opacity = 0 if flag else 1 _area_style = {"opacity": area_opacity, "color": area_color} return _area_style @collect_other_func def xy_axis( type=None, x_axis=None, xaxis_margin=8, xaxis_name_size=14, xaxis_name_gap=25, xaxis_name="", xaxis_name_pos="middle", xaxis_rotate=0, xaxis_min=None, xaxis_max=None, xaxis_type=None, xaxis_interval="auto", xaxis_force_interval=None, xaxis_pos=None, xaxis_label_textsize=12, xaxis_label_textcolor=None, xaxis_formatter=None, xaxis_line_color=None, xaxis_line_width=1, yaxis_margin=8, yaxis_name_size=14, yaxis_name_gap=25, yaxis_name="", yaxis_name_pos="middle", yaxis_rotate=0, yaxis_min=None, yaxis_max=None, yaxis_type=None, yaxis_interval="auto", yaxis_force_interval=None, yaxis_pos=None, yaxis_label_textsize=12, yaxis_label_textcolor=None, yaxis_formatter="", yaxis_line_color=None, yaxis_line_width=1, is_convert=False, is_xaxis_inverse=False, is_yaxis_inverse=False, is_xaxislabel_align=False, is_yaxislabel_align=False, is_xaxis_boundarygap=True, is_yaxis_boundarygap=True, is_xaxis_show=True, is_yaxis_show=True, is_splitline_show=True, **kwargs ): """ 直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)。 :param type: 图形类型。 :param x_axis: x 轴数据项。 :param xaxis_margin: x 轴刻度标签与轴线之间的距离。默认为 8 :param xaxis_name_size: x 轴名称体大小,默认为 14 :param xaxis_name_gap: x 轴名称与轴线之间的距离,默认为 25 :param xaxis_name: x 轴名称 :param xaxis_name_pos: x 轴名称位置,有'start','middle','end'可选 :param xaxis_rotate: x 轴刻度标签旋转的角度,在类目轴的类目标签显示不下的时候可以通过旋转防止标 签之间重叠。默认为 0,即不旋转。旋转的角度从 -90 度到 90 度。 :param xaxis_min: x 坐标轴刻度最小值,默认为自适应。使用特殊值 "dataMin" 可自定以数 据中最小值为 x 轴最小值。 :param xaxis_max: x 坐标轴刻度最大值,默认为自适应。使用特殊值 "dataMax" 可自定以数 据中最小值为 x 轴最大值。 :param xaxis_type: x 坐标轴类型 'value':数值轴,适用于连续数据。 'category':类目轴,适用于离散的类目数据。 'log':对数轴。适用于对数数据。 :param xaxis_interval: x 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』, 如果值为 2,表示隔两个标签显示一个标签,以此类推 :param xaxis_force_interval: 强制设置 x 坐标轴分割间隔。如设置为 50 则刻度为 [0, 50, 150, ...],设置为 "auto" 则只显示两个刻度。一般情况下不建议设置这个参数!! 因为 splitNumber 是预估的值,实际根据策略计算出来的刻度可能无法达到想要的效果, 这时候可以使用 interval 配合 min、max 强制设定刻度划分。在类目轴中无效。 :param xaxis_pos: x 坐标轴位置,有'top','bottom'可选 :param xaxis_label_textsize: x 坐标轴标签字体大小 :param xaxis_label_textcolor: x 坐标轴标签字体颜色 :param xaxis_formatter: x 轴标签格式器,如 '天',则 x 轴的标签为数据加'天'(3 天,4 天),默认为 "" xaxis_formatter -> function ```python def label_formatter(params): return params.value + ' [Good!]' ``` 回调函数格式,更多内容请参考 [高级用法篇](zh-cn/advanced) ``` (params: Object|Array) => string 参数 params 是 formatter 需要的单个数据集。格式如下: { componentType: 'series', // 系列类型 seriesType: string, // 系列在传入的 option.series 中的 index seriesIndex: number, // 系列名称 seriesName: string, // 数据名,类目名 name: string, // 数据在传入的 data 数组中的 index dataIndex: number, // 传入的原始数据项 data: Object, // 传入的数据值 value: number|Array, // 数据图形的颜色 color: string, } ``` :param xaxis_line_color: x 坐标轴线线的颜色,默认为 None :param xaxis_line_width: x 坐标轴线线的宽度,默认为 1 :param yaxis_margin: y 轴刻度标签与轴线之间的距离。默认为 8 :param yaxis_name_size: y 轴名称体大小,默认为 14 :param yaxis_name_gap: y 轴名称与轴线之间的距离,默认为 25 :param yaxis_name: y 轴名称 :param yaxis_name_pos: y 轴名称位置,有'start', 'middle','end'可选 :param yaxis_rotate: y 轴刻度标签旋转的角度,在类目轴的类目标签显示不下的时候可以通过旋转防止标 签之间重叠。默认为 0,即不旋转。旋转的角度从 -90 度到 90 度。 :param yaxis_min: y 坐标轴刻度最小值,默认为自适应。使用特殊值 "dataMin" 可自定以数 据中最小值为 y 轴最小值。 :param yaxis_max: y 坐标轴刻度最大值,默认为自适应。使用特殊值 "dataMax" 可自定以数 据中最小值为 y 轴最大值。 :param yaxis_type: y 坐标轴类型 'value':数值轴,适用于连续数据。 'category':类目轴,适用于离散的类目数据。 'log':对数轴。适用于对数数据。 :param yaxis_interval: y 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』, 如果值为 2,表示隔两个标签显示一个标签,以此类推 :param yaxis_force_interval: 强制设置 y 坐标轴分割间隔。如设置为 50 则刻度为 [0, 50, 150, ...],设置为 "auto" 则只显示两个刻度。一般情况下不建议设置这个参数!! 因为 splitNumber 是预估的值,实际根据策略计算出来的刻度可能无法达到想要的效果, 这时候可以使用 interval 配合 min、max 强制设定刻度划分。在类目轴中无效。 :param yaxis_pos: y 坐标轴位置,有'left','right'可选 :param yaxis_label_textsize: y 坐标轴标签字体大小 :param yaxis_label_textcolor: y 坐标轴标签字体颜色 :param yaxis_formatter: y 轴标签格式器,如 '天',则 y 轴的标签为数据加'天'(3 天,4 天),默认为 "" yaxis_formatter -> function ```python def label_formatter(params): return params.value + ' [Good!]' ``` 回调函数格式,更多内容请参考 [高级用法篇](zh-cn/advanced) ``` (params: Object|Array) => string 参数 params 是 formatter 需要的单个数据集。格式如下: { componentType: 'series', // 系列类型 seriesType: string, // 系列在传入的 option.series 中的 index seriesIndex: number, // 系列名称 seriesName: string, // 数据名,类目名 name: string, // 数据在传入的 data 数组中的 index dataIndex: number, // 传入的原始数据项 data: Object, // 传入的数据值 value: number|Array, // 数据图形的颜色 color: string, } `` :param yaxis_line_color: y 坐标轴线线的颜色,默认为 None :param yaxis_line_width: y 坐标轴线线的宽度,默认为 1 :param is_convert: 是否交换 x 轴与 y 轴 :param is_xaxis_inverse: 是否反向 x 坐标轴,默认为 False :param is_yaxis_inverse: 是否反向 y 坐标轴,默认为 False :param is_xaxislabel_align: x 轴刻度线和标签是否对齐,默认为 False :param is_yaxislabel_align: y 轴刻度线和标签是否对齐,默认为 False :param is_xaxis_boundarygap: x 轴两边留白策略,适用于类目轴。类目轴中 boundaryGap 可以配置为 True 和 False。 默认为 True,这时候刻度只是作为分隔线,标签和数据点都会在两个刻度之间的带(band) 中间,即两边留白。 :param is_yaxis_boundarygap: y 轴两边留白策略,适用于类目轴。类目轴中 boundaryGap 可以配置为 True 和 False。 默认为 True,这时候刻度只是作为分隔线,标签和数据点都会在两个刻度之间的带(band) 中间,即两边留白。 :param is_xaxis_show: 是否显示 x 轴 :param is_yaxis_show: 是否显示 y 轴 :param is_splitline_show: 是否显示 y 轴网格线,默认为 True。 :param kwargs: """ _xAxis = option.XAxis( name=xaxis_name, visibility=is_xaxis_show, name_location=xaxis_name_pos, name_gap=xaxis_name_gap, name_size=xaxis_name_size, position=xaxis_pos, boundary_gap=is_xaxis_boundarygap, label_alignment=is_xaxislabel_align, inverse=is_xaxis_inverse, value_range=[xaxis_min, xaxis_max], axis_type=xaxis_type, axis_line_color=xaxis_line_color, axis_line_width=xaxis_line_width, chart_type=type, ) _xAxis["axisLabel"] = option.XAxisLabel( interval=xaxis_interval, rotate=xaxis_rotate, margin=xaxis_margin, text_size=xaxis_label_textsize, text_color=xaxis_label_textcolor, formatter=xaxis_formatter, ) _yAxis = option.YAxis( name=yaxis_name, visibility=is_yaxis_show, name_location=yaxis_name_pos, name_gap=yaxis_name_gap, name_size=yaxis_name_size, position=yaxis_pos, boundary_gap=is_yaxis_boundarygap, label_alignment=is_yaxislabel_align, inverse=is_yaxis_inverse, value_range=[yaxis_min, yaxis_max], split_line=is_splitline_show, axis_type=yaxis_type, axis_line_color=yaxis_line_color, axis_line_width=yaxis_line_width, chart_type=type, ) _yAxis["axisLabel"] = option.YAxisLabel( interval=yaxis_interval, rotate=yaxis_rotate, margin=yaxis_margin, text_size=yaxis_label_textsize, text_color=yaxis_label_textcolor, formatter=yaxis_formatter, ) if is_convert: xaxis_type, yaxis_type = _yAxis["type"], _xAxis["type"] _xAxis["type"] = xaxis_type _yAxis.update(data=x_axis, type=yaxis_type) else: _xAxis["data"] = x_axis # 强制分割数值轴,在多 x、y 轴中可以使用强制分割使标刻线对齐 if xaxis_force_interval is not None: _xAxis["interval"] = xaxis_force_interval if yaxis_force_interval is not None: _yAxis["interval"] = yaxis_force_interval # 返回字典 return [_xAxis], [_yAxis] def _mark( data, mark_point_raw=None, mark_point_symbol="pin", mark_point_symbolsize=50, mark_point_textcolor="#fff", mark_line_raw=None, mark_line_symbolsize=10, mark_line_valuedim="", mark_line_coords=None, mark_point_valuedim="", _is_markline=False, **kwargs ): """ 图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种 :param data: 标记点 默认有'min', 'max', 'average'可选。支持自定义标记点,具体使用如下 [ { "coord": [a1, b1], "name": "first markpoint" }, { "coord": [a2, b2], "name": "second markpoint" } ] 需自己传入标记点字典,共有两个键值对,'coord' 对应为 x y 轴坐标,'name' 为标记点名称 标记线 只支持默认的 'min', 'max', 'average' :param mark_point_raw: 原生格式的 markPoint 数据,数据类型为 [{}, {}, ...]。 格式请参考 http://echarts.baidu.com/option.html#series-line.markPoint.data :param mark_point_symbol: 标记点图形,,默认为'pin',有'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选 :param mark_point_symbolsize: 标记点图形大小,默认为 50 :param mark_point_textcolor: 标记点字体颜色,默认为'#fff' :param mark_line_raw: 原生格式的 markLine 数据,数据类型为 [{}, {}, ...]。 格式请参考 http://echarts.baidu.com/option.html#series-line.markLine.data :param mark_line_symbolsize: 标记线图形大小,默认为 15 :param mark_line_valuedim: 标记线指定在哪个维度上指定最大值最小值。这可以是维度的直接名称,Line 时可以 是 x、angle 等、Kline 图时可以是 open、close、highest、lowest。 可同时制定多个维度,如 mark_line=['min', 'max'], mark_line_valuedim=['lowest', 'highest'] 则表示 min 使用 lowest 维度,max 使用 highest 维度,以此类推 :param mark_line_coords: 标记线指定起点坐标和终点坐标,如 [[10, 10], [30, 30]],两个点分别为横 纵坐标轴点。 :param mark_point_valuedim: 标记点指定在哪个维度上指定最大值最小值。这可以是维度的直接名称,Line 时可以 是 x、angle 等、Kline 图时可以是 open、close、highest、lowest。 可同时制定多个维度,如 mark_point=['min', 'max'], mark_point_valuedim=['lowest', 'highest'] 则表示 min 使用 lowest 维度,max 使用 highest 维度,以此类推 :param _is_markline: 指定是否为 markline """ if _is_markline: if mark_line_raw: return {"data": mark_line_raw} else: if mark_point_raw: return {"data": mark_point_raw} mark = {"data": []} if data: _markpv = _marklv = [None for _ in range(len(data))] _markpv[: len(mark_point_valuedim)] = mark_point_valuedim _marklv[: len(mark_line_valuedim)] = mark_line_valuedim for index, d in enumerate(list(data)): # 自定义坐标点数据 if isinstance(d, dict): _coord = d.get("coord", None) _pname = d.get("name", None) _marktmp = { "coord": _coord, "value": _coord[1], "name": _pname, "symbol": mark_point_symbol, "symbolSize": mark_point_symbolsize, "label": { "normal": { "textStyle": {"color": mark_point_textcolor} } }, } mark.get("data").append(_marktmp) else: _type, _name = "", "" if "max" in d: _type, _name = "max", "Maximum" elif "min" in d: _type, _name = "min", "Minimum" elif "average" in d: _type, _name = "average", "mean-Value" if _is_markline: _marktmp = { "type": _type, "name": _name, "valueDim": _marklv[index], } if _type: mark.get("data").append(_marktmp) mark.update(symbolSize=mark_line_symbolsize) else: _marktmp = { "type": _type, "name": _name, "valueDim": _markpv[index], } _marktmp.update( symbol=mark_point_symbol, symbolSize=mark_point_symbolsize, label={ "normal": { "textStyle": {"color": mark_point_textcolor} } }, ) if _type: mark.get("data").append(_marktmp) if mark_line_coords and len(mark_line_coords) == 2: return { "data": [ [ {"coord": mark_line_coords[0]}, {"coord": mark_line_coords[1]}, ] ] } return mark @collect_other_func def mark_point(mark_point=None, **kwargs): """ 标记点配置项 :param mark_point: 默认有'min', 'max', 'average'可选。支持自定义标记点,具体使用如下 [ { "coord": [a1, b1], "name": "first markpoint" }, { "coord": [a2, b2], "name": "second markpoint" } ] 需自己传入标记点字典,共有两个键值对,'coord' 对应为 x y 轴坐标,'name' 为标记点名称 :param kwargs: """ return _mark(mark_point, **kwargs) @collect_other_func def mark_line(mark_line=None, **kwargs): """ 标记线配置项 :param mark_line: 只支持默认的 'min', 'max', 'average' :param kwargs: """ return _mark(mark_line, _is_markline=True, **kwargs) @collect_other_func def symbol(type=None, symbol="", **kwargs): """ :param symbol: 标记类型, 有'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选 :param kwargs: """ if symbol is None: # Radar symbol = "none" elif type == "line" and symbol == "": # Line symbol = "emptyCircle" elif symbol not in SYMBOLS: symbol = "circle" return symbol @collect_other_func def effect( effect_brushtype="stroke", effect_scale=2.5, effect_period=4, **kwargs ): """ 涟漪动画配置项 :param effect_brushtype: 波纹绘制方式,有'stroke', 'fill'可选。默认为'stroke' :param effect_scale: 动画中波纹的最大缩放比例。默认为 2.5 :param effect_period: 动画持续的时间。默认为 4(s) :param kwargs: """ _effect = { "brushType": effect_brushtype, "scale": effect_scale, "period": effect_period, } return _effect @collect_other_func def grid( grid_width=None, grid_height=None, grid_top=None, grid_bottom=None, grid_left=None, grid_right=None, **kwargs ): """ Grid 类组件配置项 :param grid_width: grid 组件的宽度。默认自适应。 :param grid_height: grid 组件的高度。默认自适应。 :param grid_top: grid 组件离容器顶部的距离。默认为 None, 有'top', 'center', 'middle'可选, 也可以为百分数或者整数 :param grid_bottom: grid 组件离容器底部的距离。默认为 None, 有'top', 'center', 'middle'可选, 也可以为百分数或者整数 :param grid_left: grid 组件离容器左侧的距离。默认为 None, 有'left', 'center', 'right'可选, 也可以为百分数或者整数 :param grid_right: grid 组件离容器右侧的距离。默认为 None, 有'left', 'center', 'right'可选 也可以为百分数或者整数 """ _grid = {} if grid_width is not None: _grid.update(width=grid_width) if grid_height is not None: _grid.update(height=grid_height) if grid_top is not None: _grid.update(top=grid_top) if grid_bottom is not None: _grid.update(bottom=grid_bottom) if grid_left is not None: _grid.update(left=grid_left) if grid_right is not None: _grid.update(right=grid_right) return _grid @collect_other_func def grid3D( grid3d_width=100, grid3d_height=100, grid3d_depth=100, grid3d_rotate_speed=10, grid3d_rotate_sensitivity=1, is_grid3d_rotate=False, **kwargs ): """ 3D 笛卡尔坐标系组配置项,适用于 3D 图形。 :param grid3d_width: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_height: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_depth: 三维笛卡尔坐标系组件在三维场景中的高度。默认为 100 :param grid3d_rotate_speed: 物体自传的速度。单位为角度 / 秒,默认为 10 ,也就是 36 秒转一圈。 :param is_grid3d_rotate: 是否开启视角绕物体的自动旋转查看。默认为 False :param grid3d_rotate_sensitivity: 旋转操作的灵敏度,值越大越灵敏。默认为 1, 设置为 0 后无法旋转。 :param kwargs: """ _grid3D = { "boxWidth": grid3d_width, "boxHeight": grid3d_height, "boxDepth": grid3d_depth, "viewControl": { "autoRotate": is_grid3d_rotate, "autoRotateSpeed": grid3d_rotate_speed, "rotateSensitivity": grid3d_rotate_sensitivity, }, } return _grid3D @collect_other_func def xaxis3D( xaxis3d_type=None, xaxis3d_name="", xaxis3d_name_size=16, xaxis3d_name_gap=20, xaxis3d_min=None, xaxis3d_max=None, xaxis3d_interval="auto", xaxis3d_margin=8, **kwargs ): """ 3D x 轴配置项 :param xaxis3d_type: 3D x 轴类型 :param xaxis3d_name: x 轴名称,默认为 "" :param xaxis3d_name_size: x 轴名称体大小,默认为 16 :param xaxis3d_name_gap: x 轴名称与轴线之间的距离,默认为 25 :param xaxis3d_min: x 坐标轴刻度最小值,默认为自适应。 :param xaxis3d_max: x 坐标轴刻度最大值,默认为自适应。 :param xaxis3d_interval: x 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』,如果值 为 2,表示隔两个标签显示一个标签,以此类推 :param xaxis3d_margin: x 轴刻度标签与轴线之间的距离。默认为 8 """ _xaxis3D = { "name": xaxis3d_name, "nameGap": xaxis3d_name_gap, "nameTextStyle": {"fontSize": xaxis3d_name_size}, "type": xaxis3d_type, "min": xaxis3d_min, "max": xaxis3d_max, "axisLabel": {"margin": xaxis3d_margin, "interval": xaxis3d_interval}, } return _xaxis3D @collect_other_func def yaxis3D( yaxis3d_type=None, yaxis3d_name="", yaxis3d_name_size=16, yaxis3d_name_gap=20, yaxis3d_min=None, yaxis3d_max=None, yaxis3d_interval="auto", yaxis3d_margin=8, **kwargs ): """ 3D y 轴配置项 :param yaxis3d_type: 3D x 轴类型 :param yaxis3d_name: y 轴名称,默认为 "" :param yaxis3d_name_size: y 轴名称体大小,默认为 16 :param yaxis3d_name_gap: y 轴名称与轴线之间的距离,默认为 25 :param yaxis3d_min: y 坐标轴刻度最小值,默认为自适应。 :param yaxis3d_max: y 坐标轴刻度最大值,默认为自适应。 :param yaxis3d_interval: y 轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签。 设置成 0 强制显示所有标签。设置为 1,表示『隔一个标签显示一个标签』,如果值 为 2,表示隔两个标签显示一个标签,以此类推 :param yaxis3d_margin: y 轴刻度标签与轴线之间的距离。默认为 8 """ _yaxis3D = { "name": yaxis3d_name, "nameGap": yaxis3d_name_gap, "nameTextStyle": {"fontSize": yaxis3d_name_size}, "type": yaxis3d_type, "min": yaxis3d_min, "max": yaxis3d_max, "axisLabel": {"margin": yaxis3d_margin, "interval": yaxis3d_interval}, } return _yaxis3D @collect_other_func def zaxis3D( zaxis3d_type=None, zaxis3d_name="", zaxis3d_name_size=16, zaxis3d_name_gap=20, zaxis3d_min=None, zaxis3d_max=None, zaxis3d_margin=8, **kwargs ): """ 3D y 轴配置项 :param zaxis3d_type: 3D y 轴类型 :param zaxis3d_name: z 轴名称,默认为 "" :param zaxis3d_name_size: z 轴名称体大小,默认为 16 :param zaxis3d_name_gap: z 轴名称与轴线之间的距离,默认为 25 :param zaxis3d_min: z 坐标轴刻度最小值,默认为自适应。 :param zaxis3d_max: z 坐标轴刻度最大值,默认为自适应。 :param zaxis3d_margin: z 轴刻度标签与轴线之间的距离。默认为 8 """ _zaxis3D = { "name": zaxis3d_name, "nameGap": zaxis3d_name_gap, "nameTextStyle": {"fontSize": zaxis3d_name_size}, "type": zaxis3d_type, "min": zaxis3d_min, "max": zaxis3d_max, "axisLabel": {"margin": zaxis3d_margin}, } return _zaxis3D @collect_other_func def calendar(calendar_date_range=None, calendar_cell_size=None, **kwargs): """ :param calendar_date_range: 日历热力图的日期, "2016" 表示 2016 年, ["2016-5-5", "2017-5-5"] 表示 2016 年 5 月 5 日至 2017 年 5 月 5 日 :param calendar_cell_size: 日历每格框的大小,可设置单值 或数组 第一个元素是宽 第二个元素是高,支持 设置自适应 "auto"。默认为 ["auto", 20] :param kwargs: """ if calendar_cell_size is None: calendar_cell_size = ["auto", 20] _calendar = {"range": calendar_date_range, "cellSize": calendar_cell_size} return _calendar def get_base_options(**kwargs): """ 返回图形实例的所有配置项 """ _funcs = {} for f in base_fs: _funcs[f.__name__] = f(**kwargs) return _funcs def get_other_options(**kwargs): """ 返回图形实例的所有配置项 """ _funcs = {} for f in other_fs: _funcs[f.__name__] = f(**kwargs) return _funcs
0.448909
0.263422
class HistoryManager(): def __init__(self, maxSize=100): """ Initialize HistoryManager which saved maximal maxSize states. The maxSize+1 insertion removes the first """ self.history = [] # Position is a value contains the index of the state in a continues way. # That means even when the first entries get deleted because of maxSize # self.position do not get decreased by this. self.position = -1 # the index of the current position in history list self.__idx = -1 # self.listLen contains maxSize self.listLen = maxSize # If this gets true, no other entry can be make in history self.__lockHistory = False def canUndo(self): return self.__idx >0 def canRedo(self): return self.__idx < len(self.history)-1 def undo(self): if self.canUndo(): self.__idx -=1 self.position -= 1 def redo(self): if self.canRedo(): self.__idx +=1 self.position += 1 def currentState(self): """ Get latest state saved in history""" if len(self.history) > 0: return self.history[self.__idx] else: return None def _insert(self,element): """ Insert element at the current position """ # remove newer elements del self.history[self.__idx + 1:] # Remove the oldest element if there are too many elements if self.__idx == self.listLen: del self.history[0] else: self.__idx += 1 self.history.append(element) self.position += 1 def lockHistory(self, fun): """ Lock history for the whole method fun. As a result no history can be inserted whil fun is executed. """ if self.__lockHistory: return self.__lockHistory = True fun() self.__lockHistory = False def insertFunc(self, fun): """ Insert an element in history using the function fun. While fun is working insertFunc is locked, so no other element can be added in history. As a result recursivly insertion of history is stopped. The function fun will be called with in insertion function which can be called to insert an element in history. E.g.: def createNewElement(text): # Nothing happend, because insertFunc is locked historymanager.insertFunc(lambda insertF: insertF(text)) return text historymananger.insertFunc(lambda insertF: insertF(createNewElement("bla")) # Only one string will be insert When inserting a new state old state gets removed if the limit of entries is reached. Also states newer than the current one (e.g. by using undo()) get removed (so you can't do a redo() anymore) """ if self.__lockHistory: return self.__lockHistory = True fun(self._insert) self.__lockHistory = False def clear(self): self.position = -1 self.__idx = -1 self.history = []
gui/network_manager/history_manager.py
class HistoryManager(): def __init__(self, maxSize=100): """ Initialize HistoryManager which saved maximal maxSize states. The maxSize+1 insertion removes the first """ self.history = [] # Position is a value contains the index of the state in a continues way. # That means even when the first entries get deleted because of maxSize # self.position do not get decreased by this. self.position = -1 # the index of the current position in history list self.__idx = -1 # self.listLen contains maxSize self.listLen = maxSize # If this gets true, no other entry can be make in history self.__lockHistory = False def canUndo(self): return self.__idx >0 def canRedo(self): return self.__idx < len(self.history)-1 def undo(self): if self.canUndo(): self.__idx -=1 self.position -= 1 def redo(self): if self.canRedo(): self.__idx +=1 self.position += 1 def currentState(self): """ Get latest state saved in history""" if len(self.history) > 0: return self.history[self.__idx] else: return None def _insert(self,element): """ Insert element at the current position """ # remove newer elements del self.history[self.__idx + 1:] # Remove the oldest element if there are too many elements if self.__idx == self.listLen: del self.history[0] else: self.__idx += 1 self.history.append(element) self.position += 1 def lockHistory(self, fun): """ Lock history for the whole method fun. As a result no history can be inserted whil fun is executed. """ if self.__lockHistory: return self.__lockHistory = True fun() self.__lockHistory = False def insertFunc(self, fun): """ Insert an element in history using the function fun. While fun is working insertFunc is locked, so no other element can be added in history. As a result recursivly insertion of history is stopped. The function fun will be called with in insertion function which can be called to insert an element in history. E.g.: def createNewElement(text): # Nothing happend, because insertFunc is locked historymanager.insertFunc(lambda insertF: insertF(text)) return text historymananger.insertFunc(lambda insertF: insertF(createNewElement("bla")) # Only one string will be insert When inserting a new state old state gets removed if the limit of entries is reached. Also states newer than the current one (e.g. by using undo()) get removed (so you can't do a redo() anymore) """ if self.__lockHistory: return self.__lockHistory = True fun(self._insert) self.__lockHistory = False def clear(self): self.position = -1 self.__idx = -1 self.history = []
0.61451
0.224895
import numpy as np import psyneulink.core.llvm as pnlvm import psyneulink.core.components.functions.transferfunctions as Functions import psyneulink.core.globals.keywords as kw import pytest from math import e, pi, sqrt SIZE=5 test_var = np.random.rand(SIZE) test_matrix = np.random.rand(SIZE, SIZE) test_matrix_s = np.random.rand(SIZE, SIZE // 4) test_matrix_l = np.random.rand(SIZE, 3 * SIZE) RAND1 = np.random.rand() RAND2 = np.random.rand() RAND3 = np.random.rand() RAND4 = np.random.rand() softmax_helper = RAND1 * test_var softmax_helper = softmax_helper - np.max(softmax_helper) softmax_helper = np.exp(softmax_helper) / np.sum(np.exp(softmax_helper)) tanh_helper = -2 * (RAND1 * (test_var + RAND2 - RAND3) + RAND4) tanh_helper = (1 - e**tanh_helper)/ (1 + e**tanh_helper) gaussian_helper = e**(-(test_var - RAND2)**2 / (2 * RAND1**2)) / sqrt(2 * pi * RAND1) gaussian_helper = RAND3 * gaussian_helper + RAND4 def gaussian_distort_helper(seed): state = np.random.RandomState([seed]) # compensate for construction state.normal(test_var + RAND1, RAND2) return RAND4 * state.normal(test_var + RAND1, RAND2) + RAND3 test_data = [ (Functions.Linear, test_var, {'slope':RAND1, 'intercept':RAND2}, None, test_var * RAND1 + RAND2), (Functions.Exponential, test_var, {'scale':RAND1, 'rate':RAND2}, None, RAND1 * np.exp(RAND2 * test_var)), (Functions.Logistic, test_var, {'gain':RAND1, 'x_0':RAND2, 'offset':RAND3, 'scale':RAND4}, None, RAND4 / (1 + np.exp(-(RAND1 * (test_var - RAND2)) + RAND3))), (Functions.Tanh, test_var, {'gain':RAND1, 'bias':RAND2, 'x_0':RAND3, 'offset':RAND4}, None, tanh_helper), (Functions.ReLU, test_var, {'gain':RAND1, 'bias':RAND2, 'leak':RAND3}, None, np.maximum(RAND1 * (test_var - RAND2), RAND3 * RAND1 *(test_var - RAND2))), (Functions.Gaussian, test_var, {'standard_deviation':RAND1, 'bias':RAND2, 'scale':RAND3, 'offset':RAND4}, None, gaussian_helper), (Functions.GaussianDistort, test_var.tolist(), {'bias': RAND1, 'variance':RAND2, 'offset':RAND3, 'scale':RAND4 }, None, gaussian_distort_helper(0)), (Functions.GaussianDistort, test_var.tolist(), {'bias': RAND1, 'variance':RAND2, 'offset':RAND3, 'scale':RAND4, 'seed':0 }, None, gaussian_distort_helper(0)), (Functions.SoftMax, test_var, {'gain':RAND1, 'per_item': False}, None, softmax_helper), (Functions.SoftMax, test_var, {'gain':RAND1, 'params':{kw.OUTPUT_TYPE:kw.MAX_VAL}, 'per_item': False}, None, np.where(softmax_helper == np.max(softmax_helper), np.max(softmax_helper), 0)), (Functions.SoftMax, test_var, {'gain':RAND1, 'params':{kw.OUTPUT_TYPE:kw.MAX_INDICATOR}, 'per_item': False}, None, np.where(softmax_helper == np.max(softmax_helper), 1, 0)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix.tolist()}, None, np.dot(test_var, test_matrix)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix_l.tolist()}, None, np.dot(test_var, test_matrix_l)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix_s.tolist()}, None, np.dot(test_var, test_matrix_s)), ] # use list, naming function produces ugly names names = [ "LINEAR", "EXPONENTIAL", "LOGISTIC", "TANH", "RELU", "GAUSIAN", "GAUSSIAN DISTORT GLOBAL SEED", "GAUSSIAN DISTORT", "SOFT_MAX ALL", "SOFT_MAX MAX_VAL", "SOFT_MAX MAX_INDICATOR", "LINEAR_MATRIX SQUARE", "LINEAR_MATRIX WIDE", "LINEAR_MATRIX TALL", ] @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_basic(func, variable, params, fail, expected, benchmark): f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName res = f.function(variable) benchmark(f.function, variable) assert np.allclose(res, expected) @pytest.mark.llvm @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_llvm(func, variable, params, fail, expected, benchmark): if fail is not None: pytest.xfail(fail) f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName m = pnlvm.execution.FuncExecution(f) res = m.execute(variable) benchmark(m.execute, variable) assert np.allclose(res, expected) @pytest.mark.llvm @pytest.mark.cuda @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_ptx_cuda(func, variable, params, fail, expected, benchmark): if fail is not None: pytest.xfail(fail) f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName m = pnlvm.execution.FuncExecution(f) res = m.cuda_execute(variable) benchmark(m.cuda_execute, variable) assert np.allclose(res, expected) def test_transfer_with_costs_function(): from psyneulink.core.components.functions.transferfunctions import TransferWithCosts, CostFunctions f = TransferWithCosts() result = f(1) assert np.allclose(result, 1) f.toggle_cost_function(CostFunctions.INTENSITY) f = TransferWithCosts(enabled_cost_functions=CostFunctions.INTENSITY) result = f(2) assert np.allclose(result, 2) assert np.allclose(f.intensity_cost, 7.38905609893065) assert f.adjustment_cost == None assert f.duration_cost == None assert np.allclose(np.float(f.combined_costs), 7.38905609893065) f.toggle_cost_function(CostFunctions.ADJUSTMENT) result = f(3) assert np.allclose(result, 3) assert np.allclose(f.intensity_cost, 20.085536923187668) assert np.allclose(f.adjustment_cost, 1) assert f.duration_cost == None assert np.allclose(np.float(f.combined_costs), 21.085536923187668) f.toggle_cost_function(CostFunctions.DURATION) result = f(5) assert np.allclose(result, 5) assert np.allclose(f.intensity_cost, 148.413159102576603) assert np.allclose(f.adjustment_cost, 2) assert np.allclose(f.duration_cost, 5) assert np.allclose(np.float(f.combined_costs), 155.413159102576603) result = f(1) assert np.allclose(result, 1) assert np.allclose(f.intensity_cost, 2.718281828459045) assert np.allclose(f.adjustment_cost, 4) assert np.allclose(f.duration_cost, 6) assert np.allclose(np.float(f.combined_costs), 12.718281828459045)
tests/functions/test_transfer.py
import numpy as np import psyneulink.core.llvm as pnlvm import psyneulink.core.components.functions.transferfunctions as Functions import psyneulink.core.globals.keywords as kw import pytest from math import e, pi, sqrt SIZE=5 test_var = np.random.rand(SIZE) test_matrix = np.random.rand(SIZE, SIZE) test_matrix_s = np.random.rand(SIZE, SIZE // 4) test_matrix_l = np.random.rand(SIZE, 3 * SIZE) RAND1 = np.random.rand() RAND2 = np.random.rand() RAND3 = np.random.rand() RAND4 = np.random.rand() softmax_helper = RAND1 * test_var softmax_helper = softmax_helper - np.max(softmax_helper) softmax_helper = np.exp(softmax_helper) / np.sum(np.exp(softmax_helper)) tanh_helper = -2 * (RAND1 * (test_var + RAND2 - RAND3) + RAND4) tanh_helper = (1 - e**tanh_helper)/ (1 + e**tanh_helper) gaussian_helper = e**(-(test_var - RAND2)**2 / (2 * RAND1**2)) / sqrt(2 * pi * RAND1) gaussian_helper = RAND3 * gaussian_helper + RAND4 def gaussian_distort_helper(seed): state = np.random.RandomState([seed]) # compensate for construction state.normal(test_var + RAND1, RAND2) return RAND4 * state.normal(test_var + RAND1, RAND2) + RAND3 test_data = [ (Functions.Linear, test_var, {'slope':RAND1, 'intercept':RAND2}, None, test_var * RAND1 + RAND2), (Functions.Exponential, test_var, {'scale':RAND1, 'rate':RAND2}, None, RAND1 * np.exp(RAND2 * test_var)), (Functions.Logistic, test_var, {'gain':RAND1, 'x_0':RAND2, 'offset':RAND3, 'scale':RAND4}, None, RAND4 / (1 + np.exp(-(RAND1 * (test_var - RAND2)) + RAND3))), (Functions.Tanh, test_var, {'gain':RAND1, 'bias':RAND2, 'x_0':RAND3, 'offset':RAND4}, None, tanh_helper), (Functions.ReLU, test_var, {'gain':RAND1, 'bias':RAND2, 'leak':RAND3}, None, np.maximum(RAND1 * (test_var - RAND2), RAND3 * RAND1 *(test_var - RAND2))), (Functions.Gaussian, test_var, {'standard_deviation':RAND1, 'bias':RAND2, 'scale':RAND3, 'offset':RAND4}, None, gaussian_helper), (Functions.GaussianDistort, test_var.tolist(), {'bias': RAND1, 'variance':RAND2, 'offset':RAND3, 'scale':RAND4 }, None, gaussian_distort_helper(0)), (Functions.GaussianDistort, test_var.tolist(), {'bias': RAND1, 'variance':RAND2, 'offset':RAND3, 'scale':RAND4, 'seed':0 }, None, gaussian_distort_helper(0)), (Functions.SoftMax, test_var, {'gain':RAND1, 'per_item': False}, None, softmax_helper), (Functions.SoftMax, test_var, {'gain':RAND1, 'params':{kw.OUTPUT_TYPE:kw.MAX_VAL}, 'per_item': False}, None, np.where(softmax_helper == np.max(softmax_helper), np.max(softmax_helper), 0)), (Functions.SoftMax, test_var, {'gain':RAND1, 'params':{kw.OUTPUT_TYPE:kw.MAX_INDICATOR}, 'per_item': False}, None, np.where(softmax_helper == np.max(softmax_helper), 1, 0)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix.tolist()}, None, np.dot(test_var, test_matrix)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix_l.tolist()}, None, np.dot(test_var, test_matrix_l)), (Functions.LinearMatrix, test_var.tolist(), {'matrix':test_matrix_s.tolist()}, None, np.dot(test_var, test_matrix_s)), ] # use list, naming function produces ugly names names = [ "LINEAR", "EXPONENTIAL", "LOGISTIC", "TANH", "RELU", "GAUSIAN", "GAUSSIAN DISTORT GLOBAL SEED", "GAUSSIAN DISTORT", "SOFT_MAX ALL", "SOFT_MAX MAX_VAL", "SOFT_MAX MAX_INDICATOR", "LINEAR_MATRIX SQUARE", "LINEAR_MATRIX WIDE", "LINEAR_MATRIX TALL", ] @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_basic(func, variable, params, fail, expected, benchmark): f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName res = f.function(variable) benchmark(f.function, variable) assert np.allclose(res, expected) @pytest.mark.llvm @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_llvm(func, variable, params, fail, expected, benchmark): if fail is not None: pytest.xfail(fail) f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName m = pnlvm.execution.FuncExecution(f) res = m.execute(variable) benchmark(m.execute, variable) assert np.allclose(res, expected) @pytest.mark.llvm @pytest.mark.cuda @pytest.mark.function @pytest.mark.transfer_function @pytest.mark.parametrize("func, variable, params, fail, expected", test_data, ids=names) @pytest.mark.benchmark def test_ptx_cuda(func, variable, params, fail, expected, benchmark): if fail is not None: pytest.xfail(fail) f = func(default_variable=variable, **params) benchmark.group = "TransferFunction " + func.componentName m = pnlvm.execution.FuncExecution(f) res = m.cuda_execute(variable) benchmark(m.cuda_execute, variable) assert np.allclose(res, expected) def test_transfer_with_costs_function(): from psyneulink.core.components.functions.transferfunctions import TransferWithCosts, CostFunctions f = TransferWithCosts() result = f(1) assert np.allclose(result, 1) f.toggle_cost_function(CostFunctions.INTENSITY) f = TransferWithCosts(enabled_cost_functions=CostFunctions.INTENSITY) result = f(2) assert np.allclose(result, 2) assert np.allclose(f.intensity_cost, 7.38905609893065) assert f.adjustment_cost == None assert f.duration_cost == None assert np.allclose(np.float(f.combined_costs), 7.38905609893065) f.toggle_cost_function(CostFunctions.ADJUSTMENT) result = f(3) assert np.allclose(result, 3) assert np.allclose(f.intensity_cost, 20.085536923187668) assert np.allclose(f.adjustment_cost, 1) assert f.duration_cost == None assert np.allclose(np.float(f.combined_costs), 21.085536923187668) f.toggle_cost_function(CostFunctions.DURATION) result = f(5) assert np.allclose(result, 5) assert np.allclose(f.intensity_cost, 148.413159102576603) assert np.allclose(f.adjustment_cost, 2) assert np.allclose(f.duration_cost, 5) assert np.allclose(np.float(f.combined_costs), 155.413159102576603) result = f(1) assert np.allclose(result, 1) assert np.allclose(f.intensity_cost, 2.718281828459045) assert np.allclose(f.adjustment_cost, 4) assert np.allclose(f.duration_cost, 6) assert np.allclose(np.float(f.combined_costs), 12.718281828459045)
0.554712
0.394143
__all__ = [ "Schedule", "Season", "Team", "team_from_str" ] class Season(object): """Data model of types of seasons""" POST = 'POST' PRE = 'PRE' PRO = 'PRO' REGULAR = 'REG' class Schedule(object): """Data model of a season's week's schedule""" def __init__(self, season, week, stype=Season.REGULAR, data=None, games=None): self.season = season self.week = week self.stype = stype self.data = data self.games = games def __str__(self): return self.data if self.games is None else str(self.games) class Team(object): """Data model of a team""" def __init__(self, code, name): self._code = code self._name = name def __str__(self): return '{} ({})'.format(self._name, self._code) @property def code(self): return self._code @property def name(self): return self._name _STR_TO_TEAM_MAPPING = {} _TEAM_METADATA = [ ('SF', '49ers'), ('CHI', 'bears'), ('CIN', 'bengals'), ('BUF', 'bills'), ('DEN', 'broncos'), ('CLE', 'browns'), ('TB', 'buccaneers'), ('ARI', 'cardinals'), ('LAC', 'chargers'), ('KC', 'chiefs'), ('IND', 'colts'), ('DAL', 'cowboys'), ('MIA', 'dolphins'), ('PHI', 'eagles'), ('ATL', 'falcons'), ('NYG', 'giants'), ('JAX', 'jaguars'), ('NYJ', 'jets'), ('DET', 'lions'), ('GB', 'packers'), ('CAR', 'panthers'), ('OAK', 'raiders'), ('LA', 'rams'), ('BAL', 'ravens'), ('WAS', 'redskins'), ('NO', 'saints'), ('SEA', 'seahawks'), ('PIT', 'steelers'), ('HOU', 'texans'), ('TEN', 'titans'), ('NE', 'patriots'), ('MIN', 'vikings') ] for team_metadatum in _TEAM_METADATA: team = Team(*team_metadatum) _STR_TO_TEAM_MAPPING[team_metadatum[0]] = team _STR_TO_TEAM_MAPPING[team_metadatum[1]] = team def team_from_str(team_str): team = _STR_TO_TEAM_MAPPING.get(team_str) if team is None: raise RuntimeError('No team with code or name of `{}`'.format(team_str)) return team
ffpicker/data/models.py
__all__ = [ "Schedule", "Season", "Team", "team_from_str" ] class Season(object): """Data model of types of seasons""" POST = 'POST' PRE = 'PRE' PRO = 'PRO' REGULAR = 'REG' class Schedule(object): """Data model of a season's week's schedule""" def __init__(self, season, week, stype=Season.REGULAR, data=None, games=None): self.season = season self.week = week self.stype = stype self.data = data self.games = games def __str__(self): return self.data if self.games is None else str(self.games) class Team(object): """Data model of a team""" def __init__(self, code, name): self._code = code self._name = name def __str__(self): return '{} ({})'.format(self._name, self._code) @property def code(self): return self._code @property def name(self): return self._name _STR_TO_TEAM_MAPPING = {} _TEAM_METADATA = [ ('SF', '49ers'), ('CHI', 'bears'), ('CIN', 'bengals'), ('BUF', 'bills'), ('DEN', 'broncos'), ('CLE', 'browns'), ('TB', 'buccaneers'), ('ARI', 'cardinals'), ('LAC', 'chargers'), ('KC', 'chiefs'), ('IND', 'colts'), ('DAL', 'cowboys'), ('MIA', 'dolphins'), ('PHI', 'eagles'), ('ATL', 'falcons'), ('NYG', 'giants'), ('JAX', 'jaguars'), ('NYJ', 'jets'), ('DET', 'lions'), ('GB', 'packers'), ('CAR', 'panthers'), ('OAK', 'raiders'), ('LA', 'rams'), ('BAL', 'ravens'), ('WAS', 'redskins'), ('NO', 'saints'), ('SEA', 'seahawks'), ('PIT', 'steelers'), ('HOU', 'texans'), ('TEN', 'titans'), ('NE', 'patriots'), ('MIN', 'vikings') ] for team_metadatum in _TEAM_METADATA: team = Team(*team_metadatum) _STR_TO_TEAM_MAPPING[team_metadatum[0]] = team _STR_TO_TEAM_MAPPING[team_metadatum[1]] = team def team_from_str(team_str): team = _STR_TO_TEAM_MAPPING.get(team_str) if team is None: raise RuntimeError('No team with code or name of `{}`'.format(team_str)) return team
0.750278
0.155399
import os.path as op import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_almost_equal) from nose.tools import assert_true, assert_raises import warnings from mne.datasets import testing from mne import read_forward_solution from mne.simulation import simulate_sparse_stc, simulate_evoked from mne import read_cov from mne.io import Raw from mne import pick_types_forward, read_evokeds from mne.utils import run_tests_if_main warnings.simplefilter('always') data_path = testing.data_path(download=False) fwd_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test_raw.fif') ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test-ave.fif') cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test-cov.fif') @testing.requires_testing_data def test_simulate_evoked(): """ Test simulation of evoked data """ raw = Raw(raw_fname) fwd = read_forward_solution(fwd_fname, force_fixed=True) fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads']) cov = read_cov(cov_fname) evoked_template = read_evokeds(ave_fname, condition=0, baseline=None) evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads']) snr = 6 # dB tmin = -0.1 sfreq = 1000. # Hz tstep = 1. / sfreq n_samples = 600 times = np.linspace(tmin, tmin + n_samples * tstep, n_samples) # Generate times series for 2 dipoles stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times) stc._data *= 1e-9 # Generate noisy evoked data iir_filter = [1, -0.9] evoked = simulate_evoked(fwd, stc, evoked_template.info, cov, snr, tmin=0.0, tmax=0.2, iir_filter=iir_filter) assert_array_almost_equal(evoked.times, stc.times) assert_true(len(evoked.data) == len(fwd['sol']['data'])) # make a vertex that doesn't exist in fwd, should throw error stc_bad = stc.copy() mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']]) stc_bad.vertices[0][0] = mv + 1 assert_raises(RuntimeError, simulate_evoked, fwd, stc_bad, evoked_template.info, cov, snr, tmin=0.0, tmax=0.2) evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf, tmin=0.0, tmax=0.2) evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf, tmin=0.0, tmax=0.2) assert_array_equal(evoked_1.data, evoked_2.data) # test snr definition in dB evoked_noise = simulate_evoked(fwd, stc, evoked_template.info, cov, snr=snr, tmin=None, tmax=None, iir_filter=None) evoked_clean = simulate_evoked(fwd, stc, evoked_template.info, cov, snr=np.inf, tmin=None, tmax=None, iir_filter=None) noise = evoked_noise.data - evoked_clean.data empirical_snr = 10 * np.log10(np.mean((evoked_clean.data ** 2).ravel()) / np.mean((noise ** 2).ravel())) assert_almost_equal(snr, empirical_snr, decimal=5) cov['names'] = cov.ch_names[:-2] # Error channels are different. assert_raises(ValueError, simulate_evoked, fwd, stc, evoked_template.info, cov, snr=3., tmin=None, tmax=None, iir_filter=None) run_tests_if_main()
mne/simulation/tests/test_evoked.py
import os.path as op import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_almost_equal) from nose.tools import assert_true, assert_raises import warnings from mne.datasets import testing from mne import read_forward_solution from mne.simulation import simulate_sparse_stc, simulate_evoked from mne import read_cov from mne.io import Raw from mne import pick_types_forward, read_evokeds from mne.utils import run_tests_if_main warnings.simplefilter('always') data_path = testing.data_path(download=False) fwd_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test_raw.fif') ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test-ave.fif') cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data', 'test-cov.fif') @testing.requires_testing_data def test_simulate_evoked(): """ Test simulation of evoked data """ raw = Raw(raw_fname) fwd = read_forward_solution(fwd_fname, force_fixed=True) fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads']) cov = read_cov(cov_fname) evoked_template = read_evokeds(ave_fname, condition=0, baseline=None) evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads']) snr = 6 # dB tmin = -0.1 sfreq = 1000. # Hz tstep = 1. / sfreq n_samples = 600 times = np.linspace(tmin, tmin + n_samples * tstep, n_samples) # Generate times series for 2 dipoles stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times) stc._data *= 1e-9 # Generate noisy evoked data iir_filter = [1, -0.9] evoked = simulate_evoked(fwd, stc, evoked_template.info, cov, snr, tmin=0.0, tmax=0.2, iir_filter=iir_filter) assert_array_almost_equal(evoked.times, stc.times) assert_true(len(evoked.data) == len(fwd['sol']['data'])) # make a vertex that doesn't exist in fwd, should throw error stc_bad = stc.copy() mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']]) stc_bad.vertices[0][0] = mv + 1 assert_raises(RuntimeError, simulate_evoked, fwd, stc_bad, evoked_template.info, cov, snr, tmin=0.0, tmax=0.2) evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf, tmin=0.0, tmax=0.2) evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf, tmin=0.0, tmax=0.2) assert_array_equal(evoked_1.data, evoked_2.data) # test snr definition in dB evoked_noise = simulate_evoked(fwd, stc, evoked_template.info, cov, snr=snr, tmin=None, tmax=None, iir_filter=None) evoked_clean = simulate_evoked(fwd, stc, evoked_template.info, cov, snr=np.inf, tmin=None, tmax=None, iir_filter=None) noise = evoked_noise.data - evoked_clean.data empirical_snr = 10 * np.log10(np.mean((evoked_clean.data ** 2).ravel()) / np.mean((noise ** 2).ravel())) assert_almost_equal(snr, empirical_snr, decimal=5) cov['names'] = cov.ch_names[:-2] # Error channels are different. assert_raises(ValueError, simulate_evoked, fwd, stc, evoked_template.info, cov, snr=3., tmin=None, tmax=None, iir_filter=None) run_tests_if_main()
0.567218
0.574275
import pytest from decouple import config @pytest.fixture def ipnetworkxmlschema(): from lxml import etree schema = config('EPPSCHEMAPATH', '../../../schemas') + '/ipnetwork-1.0.xsd' xmlschema_doc = etree.parse(schema) return etree.XMLSchema(xmlschema_doc) @pytest.fixture def checkipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <check> <ipnetwork:check xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> </ipnetwork:check> </check> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsecheckipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:chkData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:cd> <ipnetwork:ipRange avail="0" version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:reason>In use</ipnetwork:reason> </ipnetwork:cd> </ipnetwork:chkData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def createipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <create> <ipnetwork:create xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.31.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:organization>BR-ABC-LACNIC</ipnetwork:organization> <ipnetwork:allocType>assignment</ipnetwork:allocType> <ipnetwork:contact type="admin">ABC123</ipnetwork:contact> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.17.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>a.example.com</ipnetwork:hostName> <ipnetwork:hostName>b.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> </ipnetwork:create> </create> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsecreateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:creData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.31.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:crDate>1999-04-03T22:00:00.0Z</ipnetwork:crDate> </ipnetwork:creData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def deleteipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <delete> <ipnetwork:delete xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> </ipnetwork:delete> </delete> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsedeleteipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def infoipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <info> <ipnetwork:info xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.15.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> </ipnetwork:info> </info> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responseinfoipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:infData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.15.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:ipRangeInfo> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:allocType>allocation</ipnetwork:allocType> <ipnetwork:organization>BR-ABC-LACNIC</ipnetwork:organization> <ipnetwork:contact type="admin">HKK</ipnetwork:contact> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>a.example.com</ipnetwork:hostName> <ipnetwork:hostName>b.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.2.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.2.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>d.example.com</ipnetwork:hostName> <ipnetwork:hostName>e.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.2.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.2.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>54321</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:parentNetwork> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.255.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> </ipnetwork:parentNetwork> <ipnetwork:childNetwork> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.127</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_234567-LACNIC</ipnetwork:roid> </ipnetwork:childNetwork> <ipnetwork:clID>ClientY</ipnetwork:clID> <ipnetwork:crID>ClientX</ipnetwork:crID> <ipnetwork:crDate>1999-04-03T22:00:00.0Z</ipnetwork:crDate> <ipnetwork:upID>ClientX</ipnetwork:upID> <ipnetwork:upDate>1999-12-03T09:00:00.0Z</ipnetwork:upDate> </ipnetwork:ipRangeInfo> </ipnetwork:infData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def renewipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <renew> <ipnetwork:renew xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:curExpDate>2008-04-03T00:00:00.0Z</ipnetwork:curExpDate> <ipnetwork:period unit="y">3</ipnetwork:period> </ipnetwork:renew> </renew> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responserenewipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:renData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:exDate>2011-04-03T00:00:00.0Z</ipnetwork:exDate> </ipnetwork:renData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def transferrequestipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <transfer op="request"> <ipnetwork:transfer xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> </ipnetwork:transfer> </transfer> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsetransferipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:trnData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:trStatus>pending</ipnetwork:trStatus> <ipnetwork:reID>ClientX</ipnetwork:reID> <ipnetwork:reDate>2000-06-08T22:00:00.0Z</ipnetwork:reDate> <ipnetwork:acID>ClientY</ipnetwork:acID> <ipnetwork:acDate>2000-06-13T22:00:00.0Z</ipnetwork:acDate> </ipnetwork:trnData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def updateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <update> <ipnetwork:update xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:add> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:contact type="tech">AAA1</ipnetwork:contact> </ipnetwork:add> <ipnetwork:rem> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:contact type="abuse">AAA1</ipnetwork:contact> </ipnetwork:rem> <ipnetwork:chg> <ipnetwork:organization>BR-DEF-LACNIC</ipnetwork:organization> <ipnetwork:allocType>assignment</ipnetwork:allocType> <ipnetwork:asn>2</ipnetwork:asn> </ipnetwork:chg> <ipnetwork:aggr> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:hostName>a.a.com</ipnetwork:hostName> </ipnetwork:aggr> <ipnetwork:creation_date>2011-01-27T00:00:00.0Z</ipnetwork:creation_date> </ipnetwork:update> </update> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responseupdateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """
tests/unit/ipnetwork/conftest.py
import pytest from decouple import config @pytest.fixture def ipnetworkxmlschema(): from lxml import etree schema = config('EPPSCHEMAPATH', '../../../schemas') + '/ipnetwork-1.0.xsd' xmlschema_doc = etree.parse(schema) return etree.XMLSchema(xmlschema_doc) @pytest.fixture def checkipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <check> <ipnetwork:check xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> </ipnetwork:check> </check> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsecheckipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:chkData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:cd> <ipnetwork:ipRange avail="0" version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:reason>In use</ipnetwork:reason> </ipnetwork:cd> </ipnetwork:chkData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def createipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <create> <ipnetwork:create xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.31.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:organization>BR-ABC-LACNIC</ipnetwork:organization> <ipnetwork:allocType>assignment</ipnetwork:allocType> <ipnetwork:contact type="admin">ABC123</ipnetwork:contact> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.17.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>a.example.com</ipnetwork:hostName> <ipnetwork:hostName>b.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> </ipnetwork:create> </create> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsecreateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:creData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.31.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:crDate>1999-04-03T22:00:00.0Z</ipnetwork:crDate> </ipnetwork:creData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def deleteipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <delete> <ipnetwork:delete xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> </ipnetwork:delete> </delete> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsedeleteipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def infoipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <info> <ipnetwork:info xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.15.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> </ipnetwork:info> </info> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responseinfoipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:infData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.15.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:ipRangeInfo> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:allocType>allocation</ipnetwork:allocType> <ipnetwork:organization>BR-ABC-LACNIC</ipnetwork:organization> <ipnetwork:contact type="admin">HKK</ipnetwork:contact> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>a.example.com</ipnetwork:hostName> <ipnetwork:hostName>b.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:reverseDNS> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.2.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.2.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:hostName>d.example.com</ipnetwork:hostName> <ipnetwork:hostName>e.example.com</ipnetwork:hostName> </ipnetwork:reverseDNS> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.2.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.2.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>54321</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:parentNetwork> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.255.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> </ipnetwork:parentNetwork> <ipnetwork:childNetwork> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.0.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.0.127</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:roid>b_234567-LACNIC</ipnetwork:roid> </ipnetwork:childNetwork> <ipnetwork:clID>ClientY</ipnetwork:clID> <ipnetwork:crID>ClientX</ipnetwork:crID> <ipnetwork:crDate>1999-04-03T22:00:00.0Z</ipnetwork:crDate> <ipnetwork:upID>ClientX</ipnetwork:upID> <ipnetwork:upDate>1999-12-03T09:00:00.0Z</ipnetwork:upDate> </ipnetwork:ipRangeInfo> </ipnetwork:infData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def renewipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <renew> <ipnetwork:renew xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:curExpDate>2008-04-03T00:00:00.0Z</ipnetwork:curExpDate> <ipnetwork:period unit="y">3</ipnetwork:period> </ipnetwork:renew> </renew> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responserenewipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:renData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:exDate>2011-04-03T00:00:00.0Z</ipnetwork:exDate> </ipnetwork:renData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def transferrequestipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <transfer op="request"> <ipnetwork:transfer xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> </ipnetwork:transfer> </transfer> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responsetransferipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <resData> <ipnetwork:trnData xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_12345-LACNIC</ipnetwork:roid> <ipnetwork:trStatus>pending</ipnetwork:trStatus> <ipnetwork:reID>ClientX</ipnetwork:reID> <ipnetwork:reDate>2000-06-08T22:00:00.0Z</ipnetwork:reDate> <ipnetwork:acID>ClientY</ipnetwork:acID> <ipnetwork:acDate>2000-06-13T22:00:00.0Z</ipnetwork:acDate> </ipnetwork:trnData> </resData> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54322-XYZ</svTRID> </trID> </response> </epp> """ @pytest.fixture def updateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <command> <update> <ipnetwork:update xmlns:ipnetwork="urn:ietf:params:xml:ns:ipnetwork-1.0"> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:add> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:contact type="tech">AAA1</ipnetwork:contact> </ipnetwork:add> <ipnetwork:rem> <ipnetwork:dsData> <ipnetwork:ipRange version="v4"> <ipnetwork:startAddress>192.168.16.0</ipnetwork:startAddress> <ipnetwork:endAddress>192.168.16.255</ipnetwork:endAddress> </ipnetwork:ipRange> <ipnetwork:keyTag>12345</ipnetwork:keyTag> <ipnetwork:alg>3</ipnetwork:alg> <ipnetwork:digestType>1</ipnetwork:digestType> <ipnetwork:digest>49FD46E6C4B45C55D4AC</ipnetwork:digest> </ipnetwork:dsData> <ipnetwork:contact type="abuse">AAA1</ipnetwork:contact> </ipnetwork:rem> <ipnetwork:chg> <ipnetwork:organization>BR-DEF-LACNIC</ipnetwork:organization> <ipnetwork:allocType>assignment</ipnetwork:allocType> <ipnetwork:asn>2</ipnetwork:asn> </ipnetwork:chg> <ipnetwork:aggr> <ipnetwork:roid>b_123456-LACNIC</ipnetwork:roid> <ipnetwork:hostName>a.a.com</ipnetwork:hostName> </ipnetwork:aggr> <ipnetwork:creation_date>2011-01-27T00:00:00.0Z</ipnetwork:creation_date> </ipnetwork:update> </update> <clTRID>ABC-12345</clTRID> </command> </epp> """ @pytest.fixture def responseupdateipnetworkcommandxmlexpected(): return """<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"> <response> <result code="1000"> <msg>Command completed successfully</msg> </result> <trID> <clTRID>ABC-12345</clTRID> <svTRID>54321-XYZ</svTRID> </trID> </response> </epp> """
0.420243
0.188567
import csv import glob import unittest import numpy as np import libpandasafety_py MAX_RATE_UP = 3 MAX_RATE_DOWN = 3 MAX_STEER = 261 MAX_RT_DELTA = 112 RT_INTERVAL = 250000 MAX_TORQUE_ERROR = 80 def twos_comp(val, bits): if val >= 0: return val else: return (2**bits) + val def sign(a): if a > 0: return 1 else: return -1 def swap_bytes(data_str): """Accepts string with hex, returns integer with order swapped for CAN.""" a = int(data_str, 16) return ((a & 0xff) << 24) + ((a & 0xff00) << 8) + ((a & 0x00ff0000) >> 8) + ((a & 0xff000000) >> 24) class TestChryslerSafety(unittest.TestCase): @classmethod def setUp(cls): cls.safety = libpandasafety_py.libpandasafety cls.safety.nooutput_init(0) cls.safety.init_tests_chrysler() def _button_msg(self, buttons): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 1265 << 21 to_send[0].RDLR = buttons return to_send def _set_prev_torque(self, t): self.safety.set_chrysler_desired_torque_last(t) self.safety.set_chrysler_rt_torque_last(t) self.safety.set_chrysler_torque_meas(t, t) def _torque_meas_msg(self, torque): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 544 << 21 to_send[0].RDHR = ((torque + 1024) >> 8) + (((torque + 1024) & 0xff) << 8) return to_send def _torque_msg(self, torque): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x292 << 21 to_send[0].RDLR = ((torque + 1024) >> 8) + (((torque + 1024) & 0xff) << 8) return to_send def test_default_controls_not_allowed(self): self.assertFalse(self.safety.get_controls_allowed()) def test_steer_safety_check(self): for enabled in [0, 1]: for t in range(-MAX_STEER*2, MAX_STEER*2): self.safety.set_controls_allowed(enabled) self._set_prev_torque(t) if abs(t) > MAX_STEER or (not enabled and abs(t) > 0): self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(t))) else: self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) def test_manually_enable_controls_allowed(self): self.safety.set_controls_allowed(1) self.assertTrue(self.safety.get_controls_allowed()) self.safety.set_controls_allowed(0) self.assertFalse(self.safety.get_controls_allowed()) def test_enable_control_allowed_from_cruise(self): to_push = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_push[0].RIR = 0x309 << 21 #1f4 to_push[0].RDLR = 0x380000 self.safety.chrysler_rx_hook(to_push) self.assertTrue(self.safety.get_controls_allowed()) def test_disable_control_allowed_from_cruise(self): to_push = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_push[0].RIR = 0x309 << 21 #1f4 to_push[0].RDLR = 0 self.safety.set_controls_allowed(1) self.safety.chrysler_rx_hook(to_push) self.assertFalse(self.safety.get_controls_allowed()) def test_non_realtime_limit_up(self): self.safety.set_controls_allowed(True) self._set_prev_torque(0) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(MAX_RATE_UP))) self._set_prev_torque(0) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(MAX_RATE_UP + 1))) def test_non_realtime_limit_down(self): self.safety.set_controls_allowed(True) self.safety.set_chrysler_rt_torque_last(MAX_STEER) torque_meas = MAX_STEER - MAX_TORQUE_ERROR - 20 self.safety.set_chrysler_torque_meas(torque_meas, torque_meas) self.safety.set_chrysler_desired_torque_last(MAX_STEER) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(MAX_STEER - MAX_RATE_DOWN))) self.safety.set_chrysler_rt_torque_last(MAX_STEER) self.safety.set_chrysler_torque_meas(torque_meas, torque_meas) self.safety.set_chrysler_desired_torque_last(MAX_STEER) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(MAX_STEER - MAX_RATE_DOWN + 1))) def test_exceed_torque_sensor(self): self.safety.set_controls_allowed(True) for sign in [-1, 1]: self._set_prev_torque(0) for t in np.arange(0, MAX_TORQUE_ERROR + 2, 2): # step needs to be smaller than MAX_TORQUE_ERROR t *= sign self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_TORQUE_ERROR + 2)))) def test_realtime_limit_up(self): self.safety.set_controls_allowed(True) for sign in [-1, 1]: self.safety.init_tests_chrysler() self._set_prev_torque(0) for t in np.arange(0, MAX_RT_DELTA+1, 1): t *= sign self.safety.set_chrysler_torque_meas(t, t) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_RT_DELTA + 1)))) self._set_prev_torque(0) for t in np.arange(0, MAX_RT_DELTA+1, 1): t *= sign self.safety.set_chrysler_torque_meas(t, t) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) # Increase timer to update rt_torque_last self.safety.set_timer(RT_INTERVAL + 1) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(sign * MAX_RT_DELTA))) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_RT_DELTA + 1)))) def test_torque_measurements(self): self.safety.chrysler_rx_hook(self._torque_meas_msg(50)) self.safety.chrysler_rx_hook(self._torque_meas_msg(-50)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(-50, self.safety.get_chrysler_torque_meas_min()) self.assertEqual(50, self.safety.get_chrysler_torque_meas_max()) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(0, self.safety.get_chrysler_torque_meas_max()) self.assertEqual(-50, self.safety.get_chrysler_torque_meas_min()) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(0, self.safety.get_chrysler_torque_meas_max()) self.assertEqual(0, self.safety.get_chrysler_torque_meas_min()) def _replay_drive(self, csv_reader): for row in csv_reader: if len(row) != 4: # sometimes truncated at end of the file continue if row[0] == 'time': # skip CSV header continue addr = int(row[1]) bus = int(row[2]) data_str = row[3] # Example '081407ff0806e06f' to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = addr << 21 to_send[0].RDHR = swap_bytes(data_str[8:]) to_send[0].RDLR = swap_bytes(data_str[:8]) if (bus == 128): self.assertTrue(self.safety.chrysler_tx_hook(to_send), msg=row) else: self.safety.chrysler_rx_hook(to_send) def test_replay_drive(self): # In Cabana, click "Save Log" and then put the downloaded CSV in this directory. test_files = glob.glob('chrysler_*.csv') for filename in test_files: print 'testing %s' % filename with open(filename) as csvfile: reader = csv.reader(csvfile) self._replay_drive(reader) if __name__ == "__main__": unittest.main()
panda/tests/safety/test_chrysler.py
import csv import glob import unittest import numpy as np import libpandasafety_py MAX_RATE_UP = 3 MAX_RATE_DOWN = 3 MAX_STEER = 261 MAX_RT_DELTA = 112 RT_INTERVAL = 250000 MAX_TORQUE_ERROR = 80 def twos_comp(val, bits): if val >= 0: return val else: return (2**bits) + val def sign(a): if a > 0: return 1 else: return -1 def swap_bytes(data_str): """Accepts string with hex, returns integer with order swapped for CAN.""" a = int(data_str, 16) return ((a & 0xff) << 24) + ((a & 0xff00) << 8) + ((a & 0x00ff0000) >> 8) + ((a & 0xff000000) >> 24) class TestChryslerSafety(unittest.TestCase): @classmethod def setUp(cls): cls.safety = libpandasafety_py.libpandasafety cls.safety.nooutput_init(0) cls.safety.init_tests_chrysler() def _button_msg(self, buttons): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 1265 << 21 to_send[0].RDLR = buttons return to_send def _set_prev_torque(self, t): self.safety.set_chrysler_desired_torque_last(t) self.safety.set_chrysler_rt_torque_last(t) self.safety.set_chrysler_torque_meas(t, t) def _torque_meas_msg(self, torque): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 544 << 21 to_send[0].RDHR = ((torque + 1024) >> 8) + (((torque + 1024) & 0xff) << 8) return to_send def _torque_msg(self, torque): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x292 << 21 to_send[0].RDLR = ((torque + 1024) >> 8) + (((torque + 1024) & 0xff) << 8) return to_send def test_default_controls_not_allowed(self): self.assertFalse(self.safety.get_controls_allowed()) def test_steer_safety_check(self): for enabled in [0, 1]: for t in range(-MAX_STEER*2, MAX_STEER*2): self.safety.set_controls_allowed(enabled) self._set_prev_torque(t) if abs(t) > MAX_STEER or (not enabled and abs(t) > 0): self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(t))) else: self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) def test_manually_enable_controls_allowed(self): self.safety.set_controls_allowed(1) self.assertTrue(self.safety.get_controls_allowed()) self.safety.set_controls_allowed(0) self.assertFalse(self.safety.get_controls_allowed()) def test_enable_control_allowed_from_cruise(self): to_push = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_push[0].RIR = 0x309 << 21 #1f4 to_push[0].RDLR = 0x380000 self.safety.chrysler_rx_hook(to_push) self.assertTrue(self.safety.get_controls_allowed()) def test_disable_control_allowed_from_cruise(self): to_push = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_push[0].RIR = 0x309 << 21 #1f4 to_push[0].RDLR = 0 self.safety.set_controls_allowed(1) self.safety.chrysler_rx_hook(to_push) self.assertFalse(self.safety.get_controls_allowed()) def test_non_realtime_limit_up(self): self.safety.set_controls_allowed(True) self._set_prev_torque(0) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(MAX_RATE_UP))) self._set_prev_torque(0) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(MAX_RATE_UP + 1))) def test_non_realtime_limit_down(self): self.safety.set_controls_allowed(True) self.safety.set_chrysler_rt_torque_last(MAX_STEER) torque_meas = MAX_STEER - MAX_TORQUE_ERROR - 20 self.safety.set_chrysler_torque_meas(torque_meas, torque_meas) self.safety.set_chrysler_desired_torque_last(MAX_STEER) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(MAX_STEER - MAX_RATE_DOWN))) self.safety.set_chrysler_rt_torque_last(MAX_STEER) self.safety.set_chrysler_torque_meas(torque_meas, torque_meas) self.safety.set_chrysler_desired_torque_last(MAX_STEER) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(MAX_STEER - MAX_RATE_DOWN + 1))) def test_exceed_torque_sensor(self): self.safety.set_controls_allowed(True) for sign in [-1, 1]: self._set_prev_torque(0) for t in np.arange(0, MAX_TORQUE_ERROR + 2, 2): # step needs to be smaller than MAX_TORQUE_ERROR t *= sign self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_TORQUE_ERROR + 2)))) def test_realtime_limit_up(self): self.safety.set_controls_allowed(True) for sign in [-1, 1]: self.safety.init_tests_chrysler() self._set_prev_torque(0) for t in np.arange(0, MAX_RT_DELTA+1, 1): t *= sign self.safety.set_chrysler_torque_meas(t, t) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) self.assertFalse(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_RT_DELTA + 1)))) self._set_prev_torque(0) for t in np.arange(0, MAX_RT_DELTA+1, 1): t *= sign self.safety.set_chrysler_torque_meas(t, t) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(t))) # Increase timer to update rt_torque_last self.safety.set_timer(RT_INTERVAL + 1) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(sign * MAX_RT_DELTA))) self.assertTrue(self.safety.chrysler_tx_hook(self._torque_msg(sign * (MAX_RT_DELTA + 1)))) def test_torque_measurements(self): self.safety.chrysler_rx_hook(self._torque_meas_msg(50)) self.safety.chrysler_rx_hook(self._torque_meas_msg(-50)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(-50, self.safety.get_chrysler_torque_meas_min()) self.assertEqual(50, self.safety.get_chrysler_torque_meas_max()) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(0, self.safety.get_chrysler_torque_meas_max()) self.assertEqual(-50, self.safety.get_chrysler_torque_meas_min()) self.safety.chrysler_rx_hook(self._torque_meas_msg(0)) self.assertEqual(0, self.safety.get_chrysler_torque_meas_max()) self.assertEqual(0, self.safety.get_chrysler_torque_meas_min()) def _replay_drive(self, csv_reader): for row in csv_reader: if len(row) != 4: # sometimes truncated at end of the file continue if row[0] == 'time': # skip CSV header continue addr = int(row[1]) bus = int(row[2]) data_str = row[3] # Example '081407ff0806e06f' to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = addr << 21 to_send[0].RDHR = swap_bytes(data_str[8:]) to_send[0].RDLR = swap_bytes(data_str[:8]) if (bus == 128): self.assertTrue(self.safety.chrysler_tx_hook(to_send), msg=row) else: self.safety.chrysler_rx_hook(to_send) def test_replay_drive(self): # In Cabana, click "Save Log" and then put the downloaded CSV in this directory. test_files = glob.glob('chrysler_*.csv') for filename in test_files: print 'testing %s' % filename with open(filename) as csvfile: reader = csv.reader(csvfile) self._replay_drive(reader) if __name__ == "__main__": unittest.main()
0.483161
0.320077
from itertools import chain from collections import namedtuple from .lazyre import LazyReCompile LinePart = namedtuple("LinePart", ["start", "stop", "word"]) current_word_re = LazyReCompile(r"(?<![)\]\w_.])" r"([\w_][\w0-9._]*[(]?)") def current_word(cursor_offset, line): """the object.attribute.attribute just before or under the cursor""" pos = cursor_offset matches = current_word_re.finditer(line) start = pos end = pos word = None for m in matches: if m.start(1) < pos and m.end(1) >= pos: start = m.start(1) end = m.end(1) word = m.group(1) if word is None: return None return LinePart(start, end, word) current_dict_key_re = LazyReCompile(r"""[\w_][\w0-9._]*\[([\w0-9._(), '"]*)""") def current_dict_key(cursor_offset, line): """If in dictionary completion, return the current key""" matches = current_dict_key_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_dict_re = LazyReCompile(r"""([\w_][\w0-9._]*)\[([\w0-9._(), '"]*)""") def current_dict(cursor_offset, line): """If in dictionary completion, return the dict that should be used""" matches = current_dict_re.finditer(line) for m in matches: if m.start(2) <= cursor_offset and m.end(2) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_string_re = LazyReCompile( '''(?P<open>(?:""")|"|(?:''\')|')(?:((?P<closed>.+?)(?P=open))|''' """(?P<unclosed>.+))""" ) def current_string(cursor_offset, line): """If inside a string of nonzero length, return the string (excluding quotes) Weaker than bpython.Repl's current_string, because that checks that a string is a string based on previous lines in the buffer.""" for m in current_string_re.finditer(line): i = 3 if m.group(3) else 4 if m.start(i) <= cursor_offset and m.end(i) >= cursor_offset: return LinePart(m.start(i), m.end(i), m.group(i)) return None current_object_re = LazyReCompile(r"([\w_][\w0-9_]*)[.]") def current_object(cursor_offset, line): """If in attribute completion, the object on which attribute should be looked up.""" match = current_word(cursor_offset, line) if match is None: return None start, end, word = match matches = current_object_re.finditer(word) s = "" for m in matches: if m.end(1) + start < cursor_offset: if s: s += "." s += m.group(1) if not s: return None return LinePart(start, start + len(s), s) current_object_attribute_re = LazyReCompile(r"([\w_][\w0-9_]*)[.]?") def current_object_attribute(cursor_offset, line): """If in attribute completion, the attribute being completed""" # TODO replace with more general current_expression_attribute match = current_word(cursor_offset, line) if match is None: return None start, end, word = match matches = current_object_attribute_re.finditer(word) next(matches) for m in matches: if ( m.start(1) + start <= cursor_offset and m.end(1) + start >= cursor_offset ): return LinePart(m.start(1) + start, m.end(1) + start, m.group(1)) return None current_from_import_from_re = LazyReCompile( r"from ([\w0-9_.]*)(?:\s+import\s+([\w0-9_]+[,]?\s*)+)*" ) def current_from_import_from(cursor_offset, line): """If in from import completion, the word after from returns None if cursor not in or just after one of the two interesting parts of an import: from (module) import (name1, name2) """ # TODO allow for as's tokens = line.split() if not ("from" in tokens or "import" in tokens): return None matches = current_from_import_from_re.finditer(line) for m in matches: if (m.start(1) < cursor_offset and m.end(1) >= cursor_offset) or ( m.start(2) < cursor_offset and m.end(2) >= cursor_offset ): return LinePart(m.start(1), m.end(1), m.group(1)) return None current_from_import_import_re_1 = LazyReCompile(r"from\s([\w0-9_.]*)\s+import") current_from_import_import_re_2 = LazyReCompile(r"([\w0-9_]+)") current_from_import_import_re_3 = LazyReCompile(r"[,][ ]([\w0-9_]*)") def current_from_import_import(cursor_offset, line): """If in from import completion, the word after import being completed returns None if cursor not in or just after one of these words """ baseline = current_from_import_import_re_1.search(line) if baseline is None: return None match1 = current_from_import_import_re_2.search(line[baseline.end() :]) if match1 is None: return None matches = current_from_import_import_re_3.finditer(line[baseline.end() :]) for m in chain((match1,), matches): start = baseline.end() + m.start(1) end = baseline.end() + m.end(1) if start < cursor_offset and end >= cursor_offset: return LinePart(start, end, m.group(1)) return None current_import_re_1 = LazyReCompile(r"import") current_import_re_2 = LazyReCompile(r"([\w0-9_.]+)") current_import_re_3 = LazyReCompile(r"[,][ ]([\w0-9_.]*)") def current_import(cursor_offset, line): # TODO allow for multiple as's baseline = current_import_re_1.search(line) if baseline is None: return None match1 = current_import_re_2.search(line[baseline.end() :]) if match1 is None: return None matches = current_import_re_3.finditer(line[baseline.end() :]) for m in chain((match1,), matches): start = baseline.end() + m.start(1) end = baseline.end() + m.end(1) if start < cursor_offset and end >= cursor_offset: return LinePart(start, end, m.group(1)) current_method_definition_name_re = LazyReCompile(r"def\s+([a-zA-Z_][\w]*)") def current_method_definition_name(cursor_offset, line): """The name of a method being defined""" matches = current_method_definition_name_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_single_word_re = LazyReCompile(r"(?<![.])\b([a-zA-Z_][\w]*)") def current_single_word(cursor_offset, line): """the un-dotted word just before or under the cursor""" matches = current_single_word_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None def current_dotted_attribute(cursor_offset, line): """The dotted attribute-object pair before the cursor""" match = current_word(cursor_offset, line) if match is None: return None start, end, word = match if "." in word[1:]: return LinePart(start, end, word) current_expression_attribute_re = LazyReCompile( r"[.]\s*((?:[\w_][\w0-9_]*)|(?:))" ) def current_expression_attribute(cursor_offset, line): """If after a dot, the attribute being completed""" # TODO replace with more general current_expression_attribute matches = current_expression_attribute_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None
bpython/line.py
from itertools import chain from collections import namedtuple from .lazyre import LazyReCompile LinePart = namedtuple("LinePart", ["start", "stop", "word"]) current_word_re = LazyReCompile(r"(?<![)\]\w_.])" r"([\w_][\w0-9._]*[(]?)") def current_word(cursor_offset, line): """the object.attribute.attribute just before or under the cursor""" pos = cursor_offset matches = current_word_re.finditer(line) start = pos end = pos word = None for m in matches: if m.start(1) < pos and m.end(1) >= pos: start = m.start(1) end = m.end(1) word = m.group(1) if word is None: return None return LinePart(start, end, word) current_dict_key_re = LazyReCompile(r"""[\w_][\w0-9._]*\[([\w0-9._(), '"]*)""") def current_dict_key(cursor_offset, line): """If in dictionary completion, return the current key""" matches = current_dict_key_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_dict_re = LazyReCompile(r"""([\w_][\w0-9._]*)\[([\w0-9._(), '"]*)""") def current_dict(cursor_offset, line): """If in dictionary completion, return the dict that should be used""" matches = current_dict_re.finditer(line) for m in matches: if m.start(2) <= cursor_offset and m.end(2) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_string_re = LazyReCompile( '''(?P<open>(?:""")|"|(?:''\')|')(?:((?P<closed>.+?)(?P=open))|''' """(?P<unclosed>.+))""" ) def current_string(cursor_offset, line): """If inside a string of nonzero length, return the string (excluding quotes) Weaker than bpython.Repl's current_string, because that checks that a string is a string based on previous lines in the buffer.""" for m in current_string_re.finditer(line): i = 3 if m.group(3) else 4 if m.start(i) <= cursor_offset and m.end(i) >= cursor_offset: return LinePart(m.start(i), m.end(i), m.group(i)) return None current_object_re = LazyReCompile(r"([\w_][\w0-9_]*)[.]") def current_object(cursor_offset, line): """If in attribute completion, the object on which attribute should be looked up.""" match = current_word(cursor_offset, line) if match is None: return None start, end, word = match matches = current_object_re.finditer(word) s = "" for m in matches: if m.end(1) + start < cursor_offset: if s: s += "." s += m.group(1) if not s: return None return LinePart(start, start + len(s), s) current_object_attribute_re = LazyReCompile(r"([\w_][\w0-9_]*)[.]?") def current_object_attribute(cursor_offset, line): """If in attribute completion, the attribute being completed""" # TODO replace with more general current_expression_attribute match = current_word(cursor_offset, line) if match is None: return None start, end, word = match matches = current_object_attribute_re.finditer(word) next(matches) for m in matches: if ( m.start(1) + start <= cursor_offset and m.end(1) + start >= cursor_offset ): return LinePart(m.start(1) + start, m.end(1) + start, m.group(1)) return None current_from_import_from_re = LazyReCompile( r"from ([\w0-9_.]*)(?:\s+import\s+([\w0-9_]+[,]?\s*)+)*" ) def current_from_import_from(cursor_offset, line): """If in from import completion, the word after from returns None if cursor not in or just after one of the two interesting parts of an import: from (module) import (name1, name2) """ # TODO allow for as's tokens = line.split() if not ("from" in tokens or "import" in tokens): return None matches = current_from_import_from_re.finditer(line) for m in matches: if (m.start(1) < cursor_offset and m.end(1) >= cursor_offset) or ( m.start(2) < cursor_offset and m.end(2) >= cursor_offset ): return LinePart(m.start(1), m.end(1), m.group(1)) return None current_from_import_import_re_1 = LazyReCompile(r"from\s([\w0-9_.]*)\s+import") current_from_import_import_re_2 = LazyReCompile(r"([\w0-9_]+)") current_from_import_import_re_3 = LazyReCompile(r"[,][ ]([\w0-9_]*)") def current_from_import_import(cursor_offset, line): """If in from import completion, the word after import being completed returns None if cursor not in or just after one of these words """ baseline = current_from_import_import_re_1.search(line) if baseline is None: return None match1 = current_from_import_import_re_2.search(line[baseline.end() :]) if match1 is None: return None matches = current_from_import_import_re_3.finditer(line[baseline.end() :]) for m in chain((match1,), matches): start = baseline.end() + m.start(1) end = baseline.end() + m.end(1) if start < cursor_offset and end >= cursor_offset: return LinePart(start, end, m.group(1)) return None current_import_re_1 = LazyReCompile(r"import") current_import_re_2 = LazyReCompile(r"([\w0-9_.]+)") current_import_re_3 = LazyReCompile(r"[,][ ]([\w0-9_.]*)") def current_import(cursor_offset, line): # TODO allow for multiple as's baseline = current_import_re_1.search(line) if baseline is None: return None match1 = current_import_re_2.search(line[baseline.end() :]) if match1 is None: return None matches = current_import_re_3.finditer(line[baseline.end() :]) for m in chain((match1,), matches): start = baseline.end() + m.start(1) end = baseline.end() + m.end(1) if start < cursor_offset and end >= cursor_offset: return LinePart(start, end, m.group(1)) current_method_definition_name_re = LazyReCompile(r"def\s+([a-zA-Z_][\w]*)") def current_method_definition_name(cursor_offset, line): """The name of a method being defined""" matches = current_method_definition_name_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None current_single_word_re = LazyReCompile(r"(?<![.])\b([a-zA-Z_][\w]*)") def current_single_word(cursor_offset, line): """the un-dotted word just before or under the cursor""" matches = current_single_word_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None def current_dotted_attribute(cursor_offset, line): """The dotted attribute-object pair before the cursor""" match = current_word(cursor_offset, line) if match is None: return None start, end, word = match if "." in word[1:]: return LinePart(start, end, word) current_expression_attribute_re = LazyReCompile( r"[.]\s*((?:[\w_][\w0-9_]*)|(?:))" ) def current_expression_attribute(cursor_offset, line): """If after a dot, the attribute being completed""" # TODO replace with more general current_expression_attribute matches = current_expression_attribute_re.finditer(line) for m in matches: if m.start(1) <= cursor_offset and m.end(1) >= cursor_offset: return LinePart(m.start(1), m.end(1), m.group(1)) return None
0.415373
0.38885
import numpy as np x = np.load('Data/x.npy') y = np.load('Data/y.npy') from maxsmooth.DCF import smooth N = 5 result = smooth(x, y, N, base_dir='examples/', fit_type='qp') """ We have changed the order of the fit to 5 to illustrate that for order :math:`{N \leq 5}` and fits with derivatives :math:`{m \geq 2}` constrained the function will plot each region of the graph corresponding to different sign functions in a different colourmap. If the constraints are different or the order is greater than 5 then the viable regions will have a single colourmap. Invalid regions are plotted as black shaded colourmaps and the contour lines are contours of :math:`{\chi^2}`. Specifically, invalid regions violate the condition .. math:: \pm_m \frac{\delta^m y}{\delta x^m} \leq 0 where :math:`{m}` represents the derivative order, :math:`{y}` is the dependent variable and :math:`{x}` is the independent variable. Violation of the condition means that one or more of the constrained derivatives crosses 0 in the band of interest. For an MSF, as mentioned, :math:`{m \geq 2}` and the sign :math:`{\pm_m}` applies to specific derivative orders. For this specific example there are 3 constrained derivatives, :math:`{m = 2, 3, 4}` and consequently 3 signs to optimise for alongside the parameters :math:`{a_k}`. The coloured valid regions therefore correspond to a specific combination of :math:`{\pm_m}` for the problem. :math:`{\pm_m}` is also referred to as :math:`{\mathbf{s}}` in the theory section and the ``maxsmooth`` paper. We can import the function like so, """ from maxsmooth.parameter_plotter import param_plotter """ and access it using, """ param_plotter(result.optimum_params, result.optimum_signs, x, y, N, base_dir='examples/') """ The function takes in the optimum parameters and signs found after the fit as well as the data and order of the fit. There are a number of keyword arguments detailed in the following section and the resultant fit is shown below. The function by default samples the parameter ranges 50% either side of the optimum and calculates 50 spamples for each parameter. In each panel the two labelled parameters are varied while the others are maintained at their optimum values. .. image:: https://github.com/htjb/maxsmooth/raw/master/docs/images/Parameter_plot.png We are also able to plot the data, fit and residuals alongside the parameter plot and this can be done by setting data_plot=True. We can also highlight the central region in each panel of the parameter space by setting center_plot=True. """ param_plotter(result.optimum_params, result.optimum_signs, x, y, N, base_dir='examples/', data_plot=True, center_plot=True) """ which gives us the graph below. .. image:: https://github.com/htjb/maxsmooth/raw/master/docs/images/Parameter_plot_extended.png """
example_codes/param_plotter_example.py
import numpy as np x = np.load('Data/x.npy') y = np.load('Data/y.npy') from maxsmooth.DCF import smooth N = 5 result = smooth(x, y, N, base_dir='examples/', fit_type='qp') """ We have changed the order of the fit to 5 to illustrate that for order :math:`{N \leq 5}` and fits with derivatives :math:`{m \geq 2}` constrained the function will plot each region of the graph corresponding to different sign functions in a different colourmap. If the constraints are different or the order is greater than 5 then the viable regions will have a single colourmap. Invalid regions are plotted as black shaded colourmaps and the contour lines are contours of :math:`{\chi^2}`. Specifically, invalid regions violate the condition .. math:: \pm_m \frac{\delta^m y}{\delta x^m} \leq 0 where :math:`{m}` represents the derivative order, :math:`{y}` is the dependent variable and :math:`{x}` is the independent variable. Violation of the condition means that one or more of the constrained derivatives crosses 0 in the band of interest. For an MSF, as mentioned, :math:`{m \geq 2}` and the sign :math:`{\pm_m}` applies to specific derivative orders. For this specific example there are 3 constrained derivatives, :math:`{m = 2, 3, 4}` and consequently 3 signs to optimise for alongside the parameters :math:`{a_k}`. The coloured valid regions therefore correspond to a specific combination of :math:`{\pm_m}` for the problem. :math:`{\pm_m}` is also referred to as :math:`{\mathbf{s}}` in the theory section and the ``maxsmooth`` paper. We can import the function like so, """ from maxsmooth.parameter_plotter import param_plotter """ and access it using, """ param_plotter(result.optimum_params, result.optimum_signs, x, y, N, base_dir='examples/') """ The function takes in the optimum parameters and signs found after the fit as well as the data and order of the fit. There are a number of keyword arguments detailed in the following section and the resultant fit is shown below. The function by default samples the parameter ranges 50% either side of the optimum and calculates 50 spamples for each parameter. In each panel the two labelled parameters are varied while the others are maintained at their optimum values. .. image:: https://github.com/htjb/maxsmooth/raw/master/docs/images/Parameter_plot.png We are also able to plot the data, fit and residuals alongside the parameter plot and this can be done by setting data_plot=True. We can also highlight the central region in each panel of the parameter space by setting center_plot=True. """ param_plotter(result.optimum_params, result.optimum_signs, x, y, N, base_dir='examples/', data_plot=True, center_plot=True) """ which gives us the graph below. .. image:: https://github.com/htjb/maxsmooth/raw/master/docs/images/Parameter_plot_extended.png """
0.905565
0.827201
import pytestqt.qtbot from qtpy import QtCore import pytest import qtrio._qt def test_signal_emits(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.Signal emits.""" class NotQObject: signal = qtrio.Signal() instance = NotQObject() with qtbot.wait_signal(instance.signal, 100): instance.signal.emit() def test_signal_emits_value(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.Signal emits a value.""" class NotQObject: signal = qtrio.Signal(int) result = None def collect_result(value): nonlocal result result = value instance = NotQObject() instance.signal.connect(collect_result) with qtbot.wait_signal(instance.signal, 100): instance.signal.emit(13) assert result == 13 def test_accessing_signal_on_class_results_in_our_signal(): """qtrio._core.Signal instance accessible via class attribute.""" class NotQObject: signal = qtrio.Signal(int) assert isinstance(NotQObject.signal, qtrio.Signal) def test_our_signal_object_method_returns_qobject(): """qtrio._core.Signal instance provides access to signal-hosting QObject.""" class NotQObject: signal = qtrio.Signal(int) instance = NotQObject() assert isinstance(NotQObject.signal.object(instance=instance), QtCore.QObject) def test_connection_connects(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection connects signal inside managed context.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) instance.signal.emit(1) with qtrio._qt.connection(instance.signal, collect_result): instance.signal.emit(2) assert results == [2] def test_connection_disconnects(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection disconnects signal when exiting managed context.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) with qtrio._qt.connection(instance.signal, collect_result): instance.signal.emit(1) instance.signal.emit(2) assert results == [1] def test_connection_yield_can_be_disconnected(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection result can be used to disconnect the signal early.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) with qtrio._qt.connection(instance.signal, collect_result) as connection: instance.signal.emit(1) instance.signal.disconnect(connection) instance.signal.emit(2) assert results == [1] def test_failed_connection_raises(): """qtrio._core.connection raises TypeError on failure to connect.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal() instance = MyQObject() # TODO: get more specific about the exception with pytest.raises(TypeError): with qtrio._qt.connection(instance.signal, 2): # type: ignore pass # pragma: no cover
qtrio/_tests/test_qt.py
import pytestqt.qtbot from qtpy import QtCore import pytest import qtrio._qt def test_signal_emits(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.Signal emits.""" class NotQObject: signal = qtrio.Signal() instance = NotQObject() with qtbot.wait_signal(instance.signal, 100): instance.signal.emit() def test_signal_emits_value(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.Signal emits a value.""" class NotQObject: signal = qtrio.Signal(int) result = None def collect_result(value): nonlocal result result = value instance = NotQObject() instance.signal.connect(collect_result) with qtbot.wait_signal(instance.signal, 100): instance.signal.emit(13) assert result == 13 def test_accessing_signal_on_class_results_in_our_signal(): """qtrio._core.Signal instance accessible via class attribute.""" class NotQObject: signal = qtrio.Signal(int) assert isinstance(NotQObject.signal, qtrio.Signal) def test_our_signal_object_method_returns_qobject(): """qtrio._core.Signal instance provides access to signal-hosting QObject.""" class NotQObject: signal = qtrio.Signal(int) instance = NotQObject() assert isinstance(NotQObject.signal.object(instance=instance), QtCore.QObject) def test_connection_connects(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection connects signal inside managed context.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) instance.signal.emit(1) with qtrio._qt.connection(instance.signal, collect_result): instance.signal.emit(2) assert results == [2] def test_connection_disconnects(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection disconnects signal when exiting managed context.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) with qtrio._qt.connection(instance.signal, collect_result): instance.signal.emit(1) instance.signal.emit(2) assert results == [1] def test_connection_yield_can_be_disconnected(qtbot: pytestqt.qtbot.QtBot) -> None: """qtrio._core.connection result can be used to disconnect the signal early.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal(int) instance = MyQObject() results = [] def collect_result(value): results.append(value) with qtrio._qt.connection(instance.signal, collect_result) as connection: instance.signal.emit(1) instance.signal.disconnect(connection) instance.signal.emit(2) assert results == [1] def test_failed_connection_raises(): """qtrio._core.connection raises TypeError on failure to connect.""" class MyQObject(QtCore.QObject): signal = QtCore.Signal() instance = MyQObject() # TODO: get more specific about the exception with pytest.raises(TypeError): with qtrio._qt.connection(instance.signal, 2): # type: ignore pass # pragma: no cover
0.630912
0.657786
# [START docs_quickstart] from __future__ import print_function import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import sys import converters.latex import converters.markdown # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/documents.readonly'] def auth_and_download_body(doc_id, doc_pickle_file): """Shows basic usage of the Docs API. Prints the title of a sample document. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_console() # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('docs', 'v1', credentials=creds) # Retrieve the documents contents from the Docs service. document = service.documents().get(documentId=doc_id).execute() print('The title of the document is: {}'.format(document.get('title'))) with open(doc_pickle_file, 'wb') as body_pickle: pickle.dump(document.get('body'), body_pickle) if __name__ == '__main__': if len(sys.argv) != 4: print("Usage: docker run [...] download-doc.py [doc-id] [latex,markdown] [out-file]") sys.exit(1) doc_id = sys.argv[1] format = sys.argv[2] out_file = sys.argv[3] doc_pickle_file = 'document-body-' + doc_id + '.pickle' if not os.path.exists(doc_pickle_file): print("Downloading document ... ") auth_and_download_body(doc_id, doc_pickle_file) if format == "latex": converters.latex.process_body(doc_pickle_file, out_file) if format == "markdown": converters.markdown.process_body(doc_pickle_file, out_file) # [END docs_quickstart]
download-doc.py
# [START docs_quickstart] from __future__ import print_function import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import sys import converters.latex import converters.markdown # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/documents.readonly'] def auth_and_download_body(doc_id, doc_pickle_file): """Shows basic usage of the Docs API. Prints the title of a sample document. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_console() # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('docs', 'v1', credentials=creds) # Retrieve the documents contents from the Docs service. document = service.documents().get(documentId=doc_id).execute() print('The title of the document is: {}'.format(document.get('title'))) with open(doc_pickle_file, 'wb') as body_pickle: pickle.dump(document.get('body'), body_pickle) if __name__ == '__main__': if len(sys.argv) != 4: print("Usage: docker run [...] download-doc.py [doc-id] [latex,markdown] [out-file]") sys.exit(1) doc_id = sys.argv[1] format = sys.argv[2] out_file = sys.argv[3] doc_pickle_file = 'document-body-' + doc_id + '.pickle' if not os.path.exists(doc_pickle_file): print("Downloading document ... ") auth_and_download_body(doc_id, doc_pickle_file) if format == "latex": converters.latex.process_body(doc_pickle_file, out_file) if format == "markdown": converters.markdown.process_body(doc_pickle_file, out_file) # [END docs_quickstart]
0.338186
0.172799
import numpy as np from enum import Enum class BasePalette(Enum): """Palette Enum class with additional helper functions""" def __len__(self): """Number of colors in palette""" return len(self.value) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self): result = self.value[self.n] self.n += 1 return result else: raise StopIteration @classmethod def list(self): """list all available Palette names""" return list(map(lambda x: x.name, self)) def from_hex(hex_list): """Generate Pal palette from list of #HEX color values""" hex_list = [h.lstrip("#") for h in hex_list] return np.array([[tuple(int(h[i:i+2], 16) for i in (0, 2, 4))] for h in hex_list], dtype=float) / 255. def from_rgb(rgb_list): """Generate Pal palette from list of 0-255 [R, G, B] values""" return np.array([[rgb] for rgb in rgb_list], dtype=float) / 255. class Pal(BasePalette): """Enum of common palettes based on https://en.wikipedia.org/wiki/List_of_color_palettes""" TELETEXT = [ [[0. , 0. , 0. ]], [[1. , 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] BBC_MICRO = TELETEXT CGA_MODE4_PAL1 = [ [[0., 0., 0.]], [[1., 1., 1.]], [[0., 1., 1.]], [[1., 0., 1.]] ] CGA_MODE5_PAL1 = [ [[0. , 0. , 0. ]], [[0.33333333, 1. , 1. ]], [[1. , 0.33333333, 0.33333333]], [[1. , 1. , 1. ]] ] CGA_MODE4_PAL2 = [ [[0., 0., 0.]], [[0.33333333, 1. , 0.33333333]], [[1. , 0.33333333, 0.33333333]], [[0.33333333, 1. , 0.33333333]] ] ZX_SPECTRUM = [ [[0. , 0. , 0. ]], [[0. , 0.15294118, 0.98431373]], [[1. , 0.18823529, 0.08627451]], [[1. , 0.24705882, 0.98823529]], [[0. , 0.97647059, 0.17254902]], [[0. , 0.98823529, 0.99607843]], [[1. , 0.99215686, 0.2 ]], [[1. , 1. , 1. ]] ] APPLE_II_LO = [ [[0. , 0. , 0. ]], [[0.52156863, 0.23137255, 0.31764706]], [[0.31372549, 0.27843137, 0.5372549 ]], [[0.91764706, 0.36470588, 0.94117647]], [[0. , 0.40784314, 0.32156863]], [[0.57254902, 0.57254902, 0.57254902]], [[0. , 0.65882353, 0.94509804]], [[0.79215686, 0.76470588, 0.97254902]], [[0.31764706, 0.36078431, 0.05882353]], [[0.92156863, 0.49803922, 0.1372549 ]], [[0.57254902, 0.57254902, 0.57254902]], [[0.96470588, 0.7254902 , 0.79215686]], [[0. , 0.79215686, 0.16078431]], [[0.79607843, 0.82745098, 0.60784314]], [[0.60392157, 0.8627451 , 0.79607843]], [[1. , 1. , 1. ]] ] APPLE_II_HI = [ [[0. , 0. , 0. ]], [[1. , 0. , 1. ]], [[0. , 1. , 0. ]], [[1. , 1. , 1. ]], [[0. , 0.68627451, 1. ]], [[1. , 0.31372549, 0. ]] ] COMMODORE_64 = [ [[0. , 0. , 0. ]], [[1. , 1. , 1. ]], [[0.63137255, 0.30196078, 0.2627451 ]], [[0.41568627, 0.75686275, 0.78431373]], [[0.63529412, 0.34117647, 0.64705882]], [[0.36078431, 0.67843137, 0.37254902]], [[0.30980392, 0.26666667, 0.61176471]], [[0.79607843, 0.83921569, 0.5372549 ]], [[0.63921569, 0.40784314, 0.22745098]], [[0.43137255, 0.32941176, 0.04313725]], [[0.8 , 0.49803922, 0.4627451 ]], [[0.38823529, 0.38823529, 0.38823529]], [[0.54509804, 0.54509804, 0.54509804]], [[0.60784314, 0.89019608, 0.61568627]], [[0.54117647, 0.49803922, 0.80392157]], [[0.68627451, 0.68627451, 0.68627451]] ] GAMEBOY_COMBO_UP = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_COMBO_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.61176471, 0.57254902, 0.95686275]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.98823529, 0.98039216, 0.6745098 ]] ] GAMEBOY_COMBO_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]] ] GAMEBOY_COMBO_RIGHT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.98823529, 0.19607843, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_A_UP = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.98823529, 0.98039216, 0.98823529]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]] ] GAMEBOY_A_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.98823529, 0.19607843, 0.01568627]], [[0.95686275, 0.99607843, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_A_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.04313725, 0.02745098, 0.08235294]], [[0.55686275, 0.52156863, 0.87058824]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]] ] GAMEBOY_A_RIGHT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.01568627, 0.98039216, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]] ] GAMEBOY_B_UP = [ [[0.29803922, 0.16470588, 0.01568627]], [[0.58039216, 0.47843137, 0.29803922]], [[0.76862745, 0.68235294, 0.58039216]], [[0.98823529, 0.91764706, 0.89411765]], [[0. , 0. , 0. ]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]] ] GAMEBOY_B_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.51764706, 0.25882353, 0.01568627]], [[0.95686275, 0.99607843, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]] ] GAMEBOY_B_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.45490196, 0.44705882, 0.45490196]], [[0.7372549 , 0.72941176, 0.7372549 ]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_B_RIGHT = [ [[0.98823529, 0.98039216, 0.98823529]], [[0.95686275, 0.99607843, 0.01568627]], [[0.01568627, 0.63529412, 0.64313725]], [[0.01568627, 0.00784314, 0.01568627]] ] GAMEBOY_ORIGINAL = [ [[0. , 0.24705882, 0. ]], [[0.18039216, 0.45098039, 0.1254902 ]], [[0.54901961, 0.74901961, 0.03921569]], [[0.62745098, 0.81176471, 0.03921569]] ] GAMEBOY_POCKET = [ [[0. , 0. , 0. ]], [[0.33333333, 0.33333333, 0.33333333]], [[0.66666667, 0.66666667, 0.66666667]], [[1. , 1. , 1. ]] ] GAMEBOY_VIRTUALBOY = [ [[0.9372549 , 0. , 0. ]], [[0.64313725, 0. , 0. ]], [[0.33333333, 0. , 0. ]], [[0. , 0. , 0. ]] ] MICROSOFT_WINDOWS_16 = [ [[0. , 0. , 0. ]], [[0.50196078, 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[0.50196078, 0.50196078, 0. ]], [[0. , 0. , 0.50196078]], [[0.50196078, 0. , 0.50196078]], [[0. , 0.50196078, 0.50196078]], [[0.75294118, 0.75294118, 0.75294118]], [[0.50196078, 0.50196078, 0.50196078]], [[1. , 0. , 0. ]], [[0. , 1. , 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] MICROSOFT_WINDOWS_20 = [ [[0. , 0. , 0. ]], [[0.50196078, 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[0.50196078, 0.50196078, 0. ]], [[0. , 0. , 0.50196078]], [[0.50196078, 0. , 0.50196078]], [[0. , 0.50196078, 0.50196078]], [[0.75294118, 0.75294118, 0.75294118]], [[0.75294118, 0.8627451 , 0.75294118]], [[0.65098039, 0.79215686, 0.94117647]], [[1. , 0.98431373, 0.94117647]], [[0.62745098, 0.62745098, 0.64313725]], [[0.50196078, 0.50196078, 0.50196078]], [[1. , 0. , 0. ]], [[0. , 1. , 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] MICROSOFT_WINDOWS_PAINT = [ [[0. , 0. , 0. ]], [[1. , 1. , 1. ]], [[0.48235294, 0.48235294, 0.48235294]], [[0.74117647, 0.74117647, 0.74117647]], [[0.48235294, 0.04705882, 0.00784314]], [[1. , 0.14509804, 0. ]], [[0.48235294, 0.48235294, 0.00392157]], [[1. , 0.98431373, 0.00392157]], [[0. , 0.48235294, 0.00784314]], [[0.00784314, 0.97647059, 0.00392157]], [[0. , 0.48235294, 0.47843137]], [[0.00784314, 0.99215686, 0.99607843]], [[0.00392157, 0.0745098 , 0.47843137]], [[0.01568627, 0.19607843, 1. ]], [[0.48235294, 0.09803922, 0.47843137]], [[1. , 0.25098039, 0.99607843]], [[0.47843137, 0.22352941, 0.00392157]], [[1. , 0.47843137, 0.22352941]], [[0.48235294, 0.48235294, 0.21960784]], [[1. , 0.98823529, 0.47843137]], [[0.00784314, 0.22352941, 0.22352941]], [[0.01176471, 0.98039216, 0.48235294]], [[0. , 0.48235294, 1. ]], [[1. , 0.17254902, 0.48235294]] ] PICO_8 = [ [[0. , 0. , 0. ]], [[0.11372549, 0.16862745, 0.3254902 ]], [[0.49411765, 0.14509804, 0.3254902 ]], [[0. , 0.52941176, 0.31764706]], [[0.67058824, 0.32156863, 0.21176471]], [[0.37254902, 0.34117647, 0.30980392]], [[0.76078431, 0.76470588, 0.78039216]], [[1. , 0.94509804, 0.90980392]], [[1. , 0. , 0.30196078]], [[1. , 0.63921569, 0. ]], [[1. , 0.9254902 , 0.15294118]], [[0. , 0.89411765, 0.21176471]], [[0.16078431, 0.67843137, 1. ]], [[0.51372549, 0.4627451 , 0.61176471]], [[1. , 0.46666667, 0.65882353]], [[1. , 0.8 , 0.66666667]] ] MSX = [ [[0. , 0. , 0. ]], [[0.24313725, 0.72156863, 0.28627451]], [[0.45490196, 0.81568627, 0.49019608]], [[0.34901961, 0.33333333, 0.87843137]], [[0.50196078, 0.4627451 , 0.94509804]], [[0.7254902 , 0.36862745, 0.31764706]], [[0.39607843, 0.85882353, 0.9372549 ]], [[0.85882353, 0.39607843, 0.34901961]], [[1. , 0.5372549 , 0.49019608]], [[0.8 , 0.76470588, 0.36862745]], [[0.87058824, 0.81568627, 0.52941176]], [[0.22745098, 0.63529412, 0.25490196]], [[0.71764706, 0.4 , 0.70980392]], [[0.8 , 0.8 , 0.8 ]], [[1. , 1. , 1. ]] ] MONO_OBRADINN_IBM = [ [[0.18039216, 0.18823529, 0.21568627]], [[0.92156863, 0.89803922, 0.80784314]] ] MONO_OBRADINN_MAC = [ [[0.2 , 0.2 , 0.09803922]], [[0.89803922, 1. , 1. ]] ] MONO_BJG = [ [[0.9372549 , 1. , 0.95686275]], [[0.17254902, 0.05882353, 0.2 ]] ] MONO_BW = [ [[0., 0., 0.]], [[1., 1., 1.]] ] # https://superuser.com/questions/361297/what-colour-is-the-dark-green-on-old-fashioned-green-screen-computer-displays/1206781#1206781 MONO_PHOSPHOR_AMBER = [ [[0.15686275, 0.15686275, 0.15686275]], [[1. , 0.69019608, 0. ]] ] MONO_PHOSPHOR_LTAMBER = [ [[0.15686275, 0.15686275, 0.15686275]], [[1. , 0.8 , 0. ]] ] MONO_PHOSPHOR_GREEN1 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.2 , 1. , 0. ]] ] MONO_PHOSPHOR_GREEN2 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0 , 1. , 0.2 ]] ] MONO_PHOSPHOR_GREEN3 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0 , 1. , 0.4 ]] ] MONO_PHOSPHOR_APPLE = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.2 , 1. , 0.2 ]] ] APPLE_II_MONO = MONO_PHOSPHOR_APPLE MONO_PHOSPHOR_APPLEC = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.4 , 1. , 0.4 ]] ] APPLE_II_MONOC = MONO_PHOSPHOR_APPLEC
pyxelate/pal.py
import numpy as np from enum import Enum class BasePalette(Enum): """Palette Enum class with additional helper functions""" def __len__(self): """Number of colors in palette""" return len(self.value) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self): result = self.value[self.n] self.n += 1 return result else: raise StopIteration @classmethod def list(self): """list all available Palette names""" return list(map(lambda x: x.name, self)) def from_hex(hex_list): """Generate Pal palette from list of #HEX color values""" hex_list = [h.lstrip("#") for h in hex_list] return np.array([[tuple(int(h[i:i+2], 16) for i in (0, 2, 4))] for h in hex_list], dtype=float) / 255. def from_rgb(rgb_list): """Generate Pal palette from list of 0-255 [R, G, B] values""" return np.array([[rgb] for rgb in rgb_list], dtype=float) / 255. class Pal(BasePalette): """Enum of common palettes based on https://en.wikipedia.org/wiki/List_of_color_palettes""" TELETEXT = [ [[0. , 0. , 0. ]], [[1. , 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] BBC_MICRO = TELETEXT CGA_MODE4_PAL1 = [ [[0., 0., 0.]], [[1., 1., 1.]], [[0., 1., 1.]], [[1., 0., 1.]] ] CGA_MODE5_PAL1 = [ [[0. , 0. , 0. ]], [[0.33333333, 1. , 1. ]], [[1. , 0.33333333, 0.33333333]], [[1. , 1. , 1. ]] ] CGA_MODE4_PAL2 = [ [[0., 0., 0.]], [[0.33333333, 1. , 0.33333333]], [[1. , 0.33333333, 0.33333333]], [[0.33333333, 1. , 0.33333333]] ] ZX_SPECTRUM = [ [[0. , 0. , 0. ]], [[0. , 0.15294118, 0.98431373]], [[1. , 0.18823529, 0.08627451]], [[1. , 0.24705882, 0.98823529]], [[0. , 0.97647059, 0.17254902]], [[0. , 0.98823529, 0.99607843]], [[1. , 0.99215686, 0.2 ]], [[1. , 1. , 1. ]] ] APPLE_II_LO = [ [[0. , 0. , 0. ]], [[0.52156863, 0.23137255, 0.31764706]], [[0.31372549, 0.27843137, 0.5372549 ]], [[0.91764706, 0.36470588, 0.94117647]], [[0. , 0.40784314, 0.32156863]], [[0.57254902, 0.57254902, 0.57254902]], [[0. , 0.65882353, 0.94509804]], [[0.79215686, 0.76470588, 0.97254902]], [[0.31764706, 0.36078431, 0.05882353]], [[0.92156863, 0.49803922, 0.1372549 ]], [[0.57254902, 0.57254902, 0.57254902]], [[0.96470588, 0.7254902 , 0.79215686]], [[0. , 0.79215686, 0.16078431]], [[0.79607843, 0.82745098, 0.60784314]], [[0.60392157, 0.8627451 , 0.79607843]], [[1. , 1. , 1. ]] ] APPLE_II_HI = [ [[0. , 0. , 0. ]], [[1. , 0. , 1. ]], [[0. , 1. , 0. ]], [[1. , 1. , 1. ]], [[0. , 0.68627451, 1. ]], [[1. , 0.31372549, 0. ]] ] COMMODORE_64 = [ [[0. , 0. , 0. ]], [[1. , 1. , 1. ]], [[0.63137255, 0.30196078, 0.2627451 ]], [[0.41568627, 0.75686275, 0.78431373]], [[0.63529412, 0.34117647, 0.64705882]], [[0.36078431, 0.67843137, 0.37254902]], [[0.30980392, 0.26666667, 0.61176471]], [[0.79607843, 0.83921569, 0.5372549 ]], [[0.63921569, 0.40784314, 0.22745098]], [[0.43137255, 0.32941176, 0.04313725]], [[0.8 , 0.49803922, 0.4627451 ]], [[0.38823529, 0.38823529, 0.38823529]], [[0.54509804, 0.54509804, 0.54509804]], [[0.60784314, 0.89019608, 0.61568627]], [[0.54117647, 0.49803922, 0.80392157]], [[0.68627451, 0.68627451, 0.68627451]] ] GAMEBOY_COMBO_UP = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_COMBO_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.61176471, 0.57254902, 0.95686275]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.98823529, 0.98039216, 0.6745098 ]] ] GAMEBOY_COMBO_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]] ] GAMEBOY_COMBO_RIGHT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.98823529, 0.19607843, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_A_UP = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.98823529, 0.98039216, 0.98823529]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]] ] GAMEBOY_A_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.98823529, 0.19607843, 0.01568627]], [[0.95686275, 0.99607843, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_A_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.04313725, 0.02745098, 0.08235294]], [[0.55686275, 0.52156863, 0.87058824]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]] ] GAMEBOY_A_RIGHT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.01568627, 0.19607843, 0.98823529]], [[0.01568627, 0.98039216, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]], [[0.6745098 , 0.14901961, 0.14117647]], [[0.9254902 , 0.54117647, 0.54901961]] ] GAMEBOY_B_UP = [ [[0.29803922, 0.16470588, 0.01568627]], [[0.58039216, 0.47843137, 0.29803922]], [[0.76862745, 0.68235294, 0.58039216]], [[0.98823529, 0.91764706, 0.89411765]], [[0. , 0. , 0. ]], [[0.51764706, 0.25882353, 0.01568627]], [[0.9254902 , 0.60392157, 0.32941176]] ] GAMEBOY_B_DOWN = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.51764706, 0.25882353, 0.01568627]], [[0.95686275, 0.99607843, 0.01568627]], [[0.98823529, 0.98039216, 0.98823529]], [[0.01568627, 0.19607843, 0.98823529]], [[0.48627451, 0.66666667, 0.98823529]], [[0.29803922, 0.54117647, 0.01568627]], [[0.01568627, 0.98039216, 0.01568627]] ] GAMEBOY_B_LEFT = [ [[0.01568627, 0.00784314, 0.01568627]], [[0.45490196, 0.44705882, 0.45490196]], [[0.7372549 , 0.72941176, 0.7372549 ]], [[0.98823529, 0.98039216, 0.98823529]] ] GAMEBOY_B_RIGHT = [ [[0.98823529, 0.98039216, 0.98823529]], [[0.95686275, 0.99607843, 0.01568627]], [[0.01568627, 0.63529412, 0.64313725]], [[0.01568627, 0.00784314, 0.01568627]] ] GAMEBOY_ORIGINAL = [ [[0. , 0.24705882, 0. ]], [[0.18039216, 0.45098039, 0.1254902 ]], [[0.54901961, 0.74901961, 0.03921569]], [[0.62745098, 0.81176471, 0.03921569]] ] GAMEBOY_POCKET = [ [[0. , 0. , 0. ]], [[0.33333333, 0.33333333, 0.33333333]], [[0.66666667, 0.66666667, 0.66666667]], [[1. , 1. , 1. ]] ] GAMEBOY_VIRTUALBOY = [ [[0.9372549 , 0. , 0. ]], [[0.64313725, 0. , 0. ]], [[0.33333333, 0. , 0. ]], [[0. , 0. , 0. ]] ] MICROSOFT_WINDOWS_16 = [ [[0. , 0. , 0. ]], [[0.50196078, 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[0.50196078, 0.50196078, 0. ]], [[0. , 0. , 0.50196078]], [[0.50196078, 0. , 0.50196078]], [[0. , 0.50196078, 0.50196078]], [[0.75294118, 0.75294118, 0.75294118]], [[0.50196078, 0.50196078, 0.50196078]], [[1. , 0. , 0. ]], [[0. , 1. , 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] MICROSOFT_WINDOWS_20 = [ [[0. , 0. , 0. ]], [[0.50196078, 0. , 0. ]], [[0. , 0.50196078, 0. ]], [[0.50196078, 0.50196078, 0. ]], [[0. , 0. , 0.50196078]], [[0.50196078, 0. , 0.50196078]], [[0. , 0.50196078, 0.50196078]], [[0.75294118, 0.75294118, 0.75294118]], [[0.75294118, 0.8627451 , 0.75294118]], [[0.65098039, 0.79215686, 0.94117647]], [[1. , 0.98431373, 0.94117647]], [[0.62745098, 0.62745098, 0.64313725]], [[0.50196078, 0.50196078, 0.50196078]], [[1. , 0. , 0. ]], [[0. , 1. , 0. ]], [[1. , 1. , 0. ]], [[0. , 0. , 1. ]], [[1. , 0. , 1. ]], [[0. , 1. , 1. ]], [[1. , 1. , 1. ]] ] MICROSOFT_WINDOWS_PAINT = [ [[0. , 0. , 0. ]], [[1. , 1. , 1. ]], [[0.48235294, 0.48235294, 0.48235294]], [[0.74117647, 0.74117647, 0.74117647]], [[0.48235294, 0.04705882, 0.00784314]], [[1. , 0.14509804, 0. ]], [[0.48235294, 0.48235294, 0.00392157]], [[1. , 0.98431373, 0.00392157]], [[0. , 0.48235294, 0.00784314]], [[0.00784314, 0.97647059, 0.00392157]], [[0. , 0.48235294, 0.47843137]], [[0.00784314, 0.99215686, 0.99607843]], [[0.00392157, 0.0745098 , 0.47843137]], [[0.01568627, 0.19607843, 1. ]], [[0.48235294, 0.09803922, 0.47843137]], [[1. , 0.25098039, 0.99607843]], [[0.47843137, 0.22352941, 0.00392157]], [[1. , 0.47843137, 0.22352941]], [[0.48235294, 0.48235294, 0.21960784]], [[1. , 0.98823529, 0.47843137]], [[0.00784314, 0.22352941, 0.22352941]], [[0.01176471, 0.98039216, 0.48235294]], [[0. , 0.48235294, 1. ]], [[1. , 0.17254902, 0.48235294]] ] PICO_8 = [ [[0. , 0. , 0. ]], [[0.11372549, 0.16862745, 0.3254902 ]], [[0.49411765, 0.14509804, 0.3254902 ]], [[0. , 0.52941176, 0.31764706]], [[0.67058824, 0.32156863, 0.21176471]], [[0.37254902, 0.34117647, 0.30980392]], [[0.76078431, 0.76470588, 0.78039216]], [[1. , 0.94509804, 0.90980392]], [[1. , 0. , 0.30196078]], [[1. , 0.63921569, 0. ]], [[1. , 0.9254902 , 0.15294118]], [[0. , 0.89411765, 0.21176471]], [[0.16078431, 0.67843137, 1. ]], [[0.51372549, 0.4627451 , 0.61176471]], [[1. , 0.46666667, 0.65882353]], [[1. , 0.8 , 0.66666667]] ] MSX = [ [[0. , 0. , 0. ]], [[0.24313725, 0.72156863, 0.28627451]], [[0.45490196, 0.81568627, 0.49019608]], [[0.34901961, 0.33333333, 0.87843137]], [[0.50196078, 0.4627451 , 0.94509804]], [[0.7254902 , 0.36862745, 0.31764706]], [[0.39607843, 0.85882353, 0.9372549 ]], [[0.85882353, 0.39607843, 0.34901961]], [[1. , 0.5372549 , 0.49019608]], [[0.8 , 0.76470588, 0.36862745]], [[0.87058824, 0.81568627, 0.52941176]], [[0.22745098, 0.63529412, 0.25490196]], [[0.71764706, 0.4 , 0.70980392]], [[0.8 , 0.8 , 0.8 ]], [[1. , 1. , 1. ]] ] MONO_OBRADINN_IBM = [ [[0.18039216, 0.18823529, 0.21568627]], [[0.92156863, 0.89803922, 0.80784314]] ] MONO_OBRADINN_MAC = [ [[0.2 , 0.2 , 0.09803922]], [[0.89803922, 1. , 1. ]] ] MONO_BJG = [ [[0.9372549 , 1. , 0.95686275]], [[0.17254902, 0.05882353, 0.2 ]] ] MONO_BW = [ [[0., 0., 0.]], [[1., 1., 1.]] ] # https://superuser.com/questions/361297/what-colour-is-the-dark-green-on-old-fashioned-green-screen-computer-displays/1206781#1206781 MONO_PHOSPHOR_AMBER = [ [[0.15686275, 0.15686275, 0.15686275]], [[1. , 0.69019608, 0. ]] ] MONO_PHOSPHOR_LTAMBER = [ [[0.15686275, 0.15686275, 0.15686275]], [[1. , 0.8 , 0. ]] ] MONO_PHOSPHOR_GREEN1 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.2 , 1. , 0. ]] ] MONO_PHOSPHOR_GREEN2 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0 , 1. , 0.2 ]] ] MONO_PHOSPHOR_GREEN3 = [ [[0.15686275, 0.15686275, 0.15686275]], [[0 , 1. , 0.4 ]] ] MONO_PHOSPHOR_APPLE = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.2 , 1. , 0.2 ]] ] APPLE_II_MONO = MONO_PHOSPHOR_APPLE MONO_PHOSPHOR_APPLEC = [ [[0.15686275, 0.15686275, 0.15686275]], [[0.4 , 1. , 0.4 ]] ] APPLE_II_MONOC = MONO_PHOSPHOR_APPLEC
0.657209
0.359308
# Copyright 2006, <NAME> <<EMAIL>> import logging from twisted.internet import task, defer from twisted.internet import reactor import coherence.extern.louie as louie from coherence.upnp.core.device import RootDevice _log = logging.getLogger( "coherence.DeviceList" ) # this is a list of root devices! class DeviceList(object): def __init__(self): self._devices = {} # keyed by udn # self._devices = [] louie.connect( self.create_device, 'Coherence.UPnP.SSDP.new_device', louie.Any) louie.connect( self.remove_device, 'Coherence.UPnP.SSDP.removed_device', louie.Any) louie.connect( self.add_device, 'Coherence.UPnP.RootDevice.detection_completed', louie.Any) #self.renew_service_subscription_loop = task.LoopingCall(self.check_devices) # what if the device under question gives less than 20 seconds as the timeout. #self.renew_service_subscription_loop.start(20.0, now=False) reactor.addSystemEventTrigger( 'before', 'shutdown', self.shutdown) def check_devices(self): """ iterate over devices and their embedded ones and renew subscriptions """ for udn in self._devices: root_device = self._devices[udn] root_device.renew_service_subscriptions() def get_device_by_host(self, host): found = [] for udn in self._devices: device = self._devices[udn] if device.get_host() == host: found.append(device) return found def get_device_with_usn(self, usn): found = None for ky in self._devices: if self._devices[ky].get_usn() == usn: found = self._devices[ky] break return found def get_device_with_id(self, device_id): # actually a udn. found = None if self._devices.has_key(device_id): found = self._devices[device_id] # for device in self._devices: # id = device.get_id() # if device_id[:5] != 'uuid:': # id = id[5:] # if id == device_id: # found = device # break _log.debug("get_device_with_id %s (%s)", device_id, found ) return found def get_nonlocal_devices(self): return [self._devices[d] for d in self._devices if self._devices[d].manifestation == 'remote'] def create_device(self, device_type, infos): # the louie event is only triggerred for a root device. root = RootDevice(infos) # add_device will be called after rood detection completes def add_device(self, device): _log.debug("add_device %s (%s)", device.get_id(), device ) self._devices[device.get_id()]= device def remove_device(self, device_type, infos): _log.info("removed device %s %s", infos['ST'], infos['USN'] ) device = self.get_device_with_usn(infos['USN']) if device: del self._devices[device.get_id()] if infos['ST'] == 'upnp:rootdevice': louie.send('Coherence.UPnP.Device.removed', None, udn=device.get_id() ) device.remove() def shutdown( self): """ send service unsubscribe messages """ try: self.renew_service_subscription_loop.stop() except: pass l = [] for ky in self._devices: root_device = self._devices[ky] for device in root_device.get_devices(): d = device.unsubscribe_service_subscriptions() l.append(d) d.addCallback(device.remove) d = root_device.unsubscribe_service_subscriptions() l.append(d) d.addCallback(root_device.remove) dl = defer.DeferredList(l) return dl
WebBrickLibs/coherence/Save/DeviceList.py
# Copyright 2006, <NAME> <<EMAIL>> import logging from twisted.internet import task, defer from twisted.internet import reactor import coherence.extern.louie as louie from coherence.upnp.core.device import RootDevice _log = logging.getLogger( "coherence.DeviceList" ) # this is a list of root devices! class DeviceList(object): def __init__(self): self._devices = {} # keyed by udn # self._devices = [] louie.connect( self.create_device, 'Coherence.UPnP.SSDP.new_device', louie.Any) louie.connect( self.remove_device, 'Coherence.UPnP.SSDP.removed_device', louie.Any) louie.connect( self.add_device, 'Coherence.UPnP.RootDevice.detection_completed', louie.Any) #self.renew_service_subscription_loop = task.LoopingCall(self.check_devices) # what if the device under question gives less than 20 seconds as the timeout. #self.renew_service_subscription_loop.start(20.0, now=False) reactor.addSystemEventTrigger( 'before', 'shutdown', self.shutdown) def check_devices(self): """ iterate over devices and their embedded ones and renew subscriptions """ for udn in self._devices: root_device = self._devices[udn] root_device.renew_service_subscriptions() def get_device_by_host(self, host): found = [] for udn in self._devices: device = self._devices[udn] if device.get_host() == host: found.append(device) return found def get_device_with_usn(self, usn): found = None for ky in self._devices: if self._devices[ky].get_usn() == usn: found = self._devices[ky] break return found def get_device_with_id(self, device_id): # actually a udn. found = None if self._devices.has_key(device_id): found = self._devices[device_id] # for device in self._devices: # id = device.get_id() # if device_id[:5] != 'uuid:': # id = id[5:] # if id == device_id: # found = device # break _log.debug("get_device_with_id %s (%s)", device_id, found ) return found def get_nonlocal_devices(self): return [self._devices[d] for d in self._devices if self._devices[d].manifestation == 'remote'] def create_device(self, device_type, infos): # the louie event is only triggerred for a root device. root = RootDevice(infos) # add_device will be called after rood detection completes def add_device(self, device): _log.debug("add_device %s (%s)", device.get_id(), device ) self._devices[device.get_id()]= device def remove_device(self, device_type, infos): _log.info("removed device %s %s", infos['ST'], infos['USN'] ) device = self.get_device_with_usn(infos['USN']) if device: del self._devices[device.get_id()] if infos['ST'] == 'upnp:rootdevice': louie.send('Coherence.UPnP.Device.removed', None, udn=device.get_id() ) device.remove() def shutdown( self): """ send service unsubscribe messages """ try: self.renew_service_subscription_loop.stop() except: pass l = [] for ky in self._devices: root_device = self._devices[ky] for device in root_device.get_devices(): d = device.unsubscribe_service_subscriptions() l.append(d) d.addCallback(device.remove) d = root_device.unsubscribe_service_subscriptions() l.append(d) d.addCallback(root_device.remove) dl = defer.DeferredList(l) return dl
0.457137
0.056081
from jinja2 import Environment, FileSystemLoader from simplemap.html_render import SilentUndefined import json import os import sys import traceback TEMPLATES_DIR = FileSystemLoader('simplemap/templates') ZOOM_DEFAULT = 11 LINES_DEFAULT = [] class Map(object): def __init__(self, title, center=None, zoom=11, markers=None, points=None, html_template='basic.html', config_file='config.json'): self._env = Environment(loader=TEMPLATES_DIR, trim_blocks=True, undefined=SilentUndefined) self.title = title self.template = self._env.get_template(html_template) self.center = center self.zoom = zoom self.config = config_file self.markers = markers # points for lines added in self.points = points def set_center(self, center_point): self._center = '{{ lat:{}, lng:{}}}'.format(*center_point) if center_point else 'null' def get_center(self): return self._center def set_zoom(self, zoom): if zoom: self._zoom = zoom else: #Don't allow zoom to be null if customer center is given self._zoom = ZOOM_DEFAULT if self.center else 'null' def get_zoom(self): return self._zoom def set_config(self, config_file): try: with open(config_file, "r") as config: self._config = json.load(config) except IOError: print("Error, unable to open {0} config file.".format(config_file)) sys.exit() except KeyError: print("Error, `api_entry` not found in {0} config file.".format(config_file)) sys.exit() except Exception: print("An unknown error occured while attempting to read {0} config file.".format(config_file)) traceback.print_exc() sys.exit() def get_config(self): return self._config def set_markers(self, markers): if markers: for i in markers: if len(i) == 2: i.insert(0, '') self._markers = markers def get_markers(self): return self._markers # Points setter and getter def set_points(self, points): if points: self._points = points else: self._points = LINES_DEFAULT def get_points(self): return self._points config = property(get_config, set_config) markers = property(get_markers, set_markers) center = property(get_center, set_center) zoom = property(get_zoom, set_zoom) # Declare the names of the setter and getters points = property(get_points, set_points) def write(self, output_path): try: html = self.template.render(map_title = self.title, center=self.center, zoom=self.zoom, markers=self.markers, points=self.points, api_key=self.config['api_key']) with open(output_path, "w") as out_file: out_file.write(html) return 'file://' + os.path.join(os.path.abspath(os.curdir), output_path) except IOError: print("Error, unable to write {0}".format(output_path)) sys.exit() except Exception: print("Undefined error occured while writing generating {0}".format(output_path)) traceback.print_exc() sys.exit()
simplemap/map.py
from jinja2 import Environment, FileSystemLoader from simplemap.html_render import SilentUndefined import json import os import sys import traceback TEMPLATES_DIR = FileSystemLoader('simplemap/templates') ZOOM_DEFAULT = 11 LINES_DEFAULT = [] class Map(object): def __init__(self, title, center=None, zoom=11, markers=None, points=None, html_template='basic.html', config_file='config.json'): self._env = Environment(loader=TEMPLATES_DIR, trim_blocks=True, undefined=SilentUndefined) self.title = title self.template = self._env.get_template(html_template) self.center = center self.zoom = zoom self.config = config_file self.markers = markers # points for lines added in self.points = points def set_center(self, center_point): self._center = '{{ lat:{}, lng:{}}}'.format(*center_point) if center_point else 'null' def get_center(self): return self._center def set_zoom(self, zoom): if zoom: self._zoom = zoom else: #Don't allow zoom to be null if customer center is given self._zoom = ZOOM_DEFAULT if self.center else 'null' def get_zoom(self): return self._zoom def set_config(self, config_file): try: with open(config_file, "r") as config: self._config = json.load(config) except IOError: print("Error, unable to open {0} config file.".format(config_file)) sys.exit() except KeyError: print("Error, `api_entry` not found in {0} config file.".format(config_file)) sys.exit() except Exception: print("An unknown error occured while attempting to read {0} config file.".format(config_file)) traceback.print_exc() sys.exit() def get_config(self): return self._config def set_markers(self, markers): if markers: for i in markers: if len(i) == 2: i.insert(0, '') self._markers = markers def get_markers(self): return self._markers # Points setter and getter def set_points(self, points): if points: self._points = points else: self._points = LINES_DEFAULT def get_points(self): return self._points config = property(get_config, set_config) markers = property(get_markers, set_markers) center = property(get_center, set_center) zoom = property(get_zoom, set_zoom) # Declare the names of the setter and getters points = property(get_points, set_points) def write(self, output_path): try: html = self.template.render(map_title = self.title, center=self.center, zoom=self.zoom, markers=self.markers, points=self.points, api_key=self.config['api_key']) with open(output_path, "w") as out_file: out_file.write(html) return 'file://' + os.path.join(os.path.abspath(os.curdir), output_path) except IOError: print("Error, unable to write {0}".format(output_path)) sys.exit() except Exception: print("Undefined error occured while writing generating {0}".format(output_path)) traceback.print_exc() sys.exit()
0.234231
0.084455
import argparse import logging from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='SageMaker Training Job') parser.add_argument('--region', type=str.strip, required=True, help='The region where the cluster launches.') parser.add_argument('--endpoint_config_name', type=str.strip, required=False, help='The name of the endpoint configuration.', default='') parser.add_argument('--variant_name_1', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-1') parser.add_argument('--model_name_1', type=str.strip, required=True, help='The model name used for endpoint deployment.') parser.add_argument('--initial_instance_count_1', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_1', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_1', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_1', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--variant_name_2', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-2') parser.add_argument('--model_name_2', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='') parser.add_argument('--initial_instance_count_2', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_2', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_2', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_2', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--variant_name_3', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-3') parser.add_argument('--model_name_3', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='') parser.add_argument('--initial_instance_count_3', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_3', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_3', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_3', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--resource_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='') parser.add_argument('--endpoint_config_tags', type=_utils.str_to_json_dict, required=False, help='An array of key-value pairs, to categorize AWS resources.', default='{}') parser.add_argument('--endpoint_name', type=str.strip, required=False, help='The name of the endpoint.', default='') parser.add_argument('--endpoint_tags', type=_utils.str_to_json_dict, required=False, help='An array of key-value pairs, to categorize AWS resources.', default='{}') args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) client = _utils.get_client(args.region) logging.info('Submitting Endpoint request to SageMaker...') endpoint_name = _utils.deploy_model(client, vars(args)) logging.info('Endpoint creation request submitted. Waiting for completion...') _utils.wait_for_endpoint_creation(client, endpoint_name) with open('/tmp/endpoint_name.txt', 'w') as f: f.write(endpoint_name) logging.info('Endpoint creation completed.') if __name__== "__main__": main()
components/aws/sagemaker/deploy/src/deploy.py
import argparse import logging from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='SageMaker Training Job') parser.add_argument('--region', type=str.strip, required=True, help='The region where the cluster launches.') parser.add_argument('--endpoint_config_name', type=str.strip, required=False, help='The name of the endpoint configuration.', default='') parser.add_argument('--variant_name_1', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-1') parser.add_argument('--model_name_1', type=str.strip, required=True, help='The model name used for endpoint deployment.') parser.add_argument('--initial_instance_count_1', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_1', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_1', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_1', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--variant_name_2', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-2') parser.add_argument('--model_name_2', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='') parser.add_argument('--initial_instance_count_2', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_2', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_2', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_2', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--variant_name_3', type=str.strip, required=False, help='The name of the production variant.', default='variant-name-3') parser.add_argument('--model_name_3', type=str.strip, required=False, help='The model name used for endpoint deployment.', default='') parser.add_argument('--initial_instance_count_3', type=_utils.str_to_int, required=False, help='Number of instances to launch initially.', default=1) parser.add_argument('--instance_type_3', choices=['ml.m4.xlarge', 'ml.m4.2xlarge', 'ml.m4.4xlarge', 'ml.m4.10xlarge', 'ml.m4.16xlarge', 'ml.m5.large', 'ml.m5.xlarge', 'ml.m5.2xlarge', 'ml.m5.4xlarge', 'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge', 'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge', ''], type=str.strip, required=False, help='The ML compute instance type.', default='ml.m4.xlarge') parser.add_argument('--initial_variant_weight_3', type=_utils.str_to_float, required=False, help='Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.', default=1.0) parser.add_argument('--accelerator_type_3', choices=['ml.eia1.medium', 'ml.eia1.large', 'ml.eia1.xlarge', ''], type=str.strip, required=False, help='The size of the Elastic Inference (EI) instance to use for the production variant.', default='') parser.add_argument('--resource_encryption_key', type=str.strip, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='') parser.add_argument('--endpoint_config_tags', type=_utils.str_to_json_dict, required=False, help='An array of key-value pairs, to categorize AWS resources.', default='{}') parser.add_argument('--endpoint_name', type=str.strip, required=False, help='The name of the endpoint.', default='') parser.add_argument('--endpoint_tags', type=_utils.str_to_json_dict, required=False, help='An array of key-value pairs, to categorize AWS resources.', default='{}') args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) client = _utils.get_client(args.region) logging.info('Submitting Endpoint request to SageMaker...') endpoint_name = _utils.deploy_model(client, vars(args)) logging.info('Endpoint creation request submitted. Waiting for completion...') _utils.wait_for_endpoint_creation(client, endpoint_name) with open('/tmp/endpoint_name.txt', 'w') as f: f.write(endpoint_name) logging.info('Endpoint creation completed.') if __name__== "__main__": main()
0.591605
0.203312
import pprint import re # noqa: F401 import six from aylien_news_api.configuration import Configuration class RelatedStories(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'related_stories': 'list[Story]', 'story_body': 'str', 'story_language': 'str', 'story_title': 'str', 'published_at_end': 'datetime', 'published_at_start': 'datetime' } attribute_map = { 'related_stories': 'related_stories', 'story_body': 'story_body', 'story_language': 'story_language', 'story_title': 'story_title', 'published_at_end': 'published_at.end', 'published_at_start': 'published_at.start' } def __init__(self, related_stories=None, story_body=None, story_language=None, story_title=None, published_at_end=None, published_at_start=None, local_vars_configuration=None): # noqa: E501 """RelatedStories - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._related_stories = None self._story_body = None self._story_language = None self._story_title = None self._published_at_end = None self._published_at_start = None self.discriminator = None if related_stories is not None: self.related_stories = related_stories if story_body is not None: self.story_body = story_body if story_language is not None: self.story_language = story_language if story_title is not None: self.story_title = story_title if published_at_end is not None: self.published_at_end = published_at_end if published_at_start is not None: self.published_at_start = published_at_start @property def related_stories(self): """Gets the related_stories of this RelatedStories. # noqa: E501 An array of related stories for the input story # noqa: E501 :return: The related_stories of this RelatedStories. # noqa: E501 :rtype: list[Story] """ return self._related_stories @related_stories.setter def related_stories(self, related_stories): """Sets the related_stories of this RelatedStories. An array of related stories for the input story # noqa: E501 :param related_stories: The related_stories of this RelatedStories. # noqa: E501 :type related_stories: list[Story] """ self._related_stories = related_stories @property def story_body(self): """Gets the story_body of this RelatedStories. # noqa: E501 The input story body # noqa: E501 :return: The story_body of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_body @story_body.setter def story_body(self, story_body): """Sets the story_body of this RelatedStories. The input story body # noqa: E501 :param story_body: The story_body of this RelatedStories. # noqa: E501 :type story_body: str """ self._story_body = story_body @property def story_language(self): """Gets the story_language of this RelatedStories. # noqa: E501 The input story language # noqa: E501 :return: The story_language of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_language @story_language.setter def story_language(self, story_language): """Sets the story_language of this RelatedStories. The input story language # noqa: E501 :param story_language: The story_language of this RelatedStories. # noqa: E501 :type story_language: str """ self._story_language = story_language @property def story_title(self): """Gets the story_title of this RelatedStories. # noqa: E501 The input story title # noqa: E501 :return: The story_title of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_title @story_title.setter def story_title(self, story_title): """Sets the story_title of this RelatedStories. The input story title # noqa: E501 :param story_title: The story_title of this RelatedStories. # noqa: E501 :type story_title: str """ self._story_title = story_title @property def published_at_end(self): """Gets the published_at_end of this RelatedStories. # noqa: E501 The end of a period in which searched stories were published # noqa: E501 :return: The published_at_end of this RelatedStories. # noqa: E501 :rtype: datetime """ return self._published_at_end @published_at_end.setter def published_at_end(self, published_at_end): """Sets the published_at_end of this RelatedStories. The end of a period in which searched stories were published # noqa: E501 :param published_at_end: The published_at_end of this RelatedStories. # noqa: E501 :type published_at_end: datetime """ self._published_at_end = published_at_end @property def published_at_start(self): """Gets the published_at_start of this RelatedStories. # noqa: E501 The start of a period in which searched stories were published # noqa: E501 :return: The published_at_start of this RelatedStories. # noqa: E501 :rtype: datetime """ return self._published_at_start @published_at_start.setter def published_at_start(self, published_at_start): """Sets the published_at_start of this RelatedStories. The start of a period in which searched stories were published # noqa: E501 :param published_at_start: The published_at_start of this RelatedStories. # noqa: E501 :type published_at_start: datetime """ self._published_at_start = published_at_start def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RelatedStories): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, RelatedStories): return True return self.to_dict() != other.to_dict()
aylien_news_api/models/related_stories.py
import pprint import re # noqa: F401 import six from aylien_news_api.configuration import Configuration class RelatedStories(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'related_stories': 'list[Story]', 'story_body': 'str', 'story_language': 'str', 'story_title': 'str', 'published_at_end': 'datetime', 'published_at_start': 'datetime' } attribute_map = { 'related_stories': 'related_stories', 'story_body': 'story_body', 'story_language': 'story_language', 'story_title': 'story_title', 'published_at_end': 'published_at.end', 'published_at_start': 'published_at.start' } def __init__(self, related_stories=None, story_body=None, story_language=None, story_title=None, published_at_end=None, published_at_start=None, local_vars_configuration=None): # noqa: E501 """RelatedStories - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._related_stories = None self._story_body = None self._story_language = None self._story_title = None self._published_at_end = None self._published_at_start = None self.discriminator = None if related_stories is not None: self.related_stories = related_stories if story_body is not None: self.story_body = story_body if story_language is not None: self.story_language = story_language if story_title is not None: self.story_title = story_title if published_at_end is not None: self.published_at_end = published_at_end if published_at_start is not None: self.published_at_start = published_at_start @property def related_stories(self): """Gets the related_stories of this RelatedStories. # noqa: E501 An array of related stories for the input story # noqa: E501 :return: The related_stories of this RelatedStories. # noqa: E501 :rtype: list[Story] """ return self._related_stories @related_stories.setter def related_stories(self, related_stories): """Sets the related_stories of this RelatedStories. An array of related stories for the input story # noqa: E501 :param related_stories: The related_stories of this RelatedStories. # noqa: E501 :type related_stories: list[Story] """ self._related_stories = related_stories @property def story_body(self): """Gets the story_body of this RelatedStories. # noqa: E501 The input story body # noqa: E501 :return: The story_body of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_body @story_body.setter def story_body(self, story_body): """Sets the story_body of this RelatedStories. The input story body # noqa: E501 :param story_body: The story_body of this RelatedStories. # noqa: E501 :type story_body: str """ self._story_body = story_body @property def story_language(self): """Gets the story_language of this RelatedStories. # noqa: E501 The input story language # noqa: E501 :return: The story_language of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_language @story_language.setter def story_language(self, story_language): """Sets the story_language of this RelatedStories. The input story language # noqa: E501 :param story_language: The story_language of this RelatedStories. # noqa: E501 :type story_language: str """ self._story_language = story_language @property def story_title(self): """Gets the story_title of this RelatedStories. # noqa: E501 The input story title # noqa: E501 :return: The story_title of this RelatedStories. # noqa: E501 :rtype: str """ return self._story_title @story_title.setter def story_title(self, story_title): """Sets the story_title of this RelatedStories. The input story title # noqa: E501 :param story_title: The story_title of this RelatedStories. # noqa: E501 :type story_title: str """ self._story_title = story_title @property def published_at_end(self): """Gets the published_at_end of this RelatedStories. # noqa: E501 The end of a period in which searched stories were published # noqa: E501 :return: The published_at_end of this RelatedStories. # noqa: E501 :rtype: datetime """ return self._published_at_end @published_at_end.setter def published_at_end(self, published_at_end): """Sets the published_at_end of this RelatedStories. The end of a period in which searched stories were published # noqa: E501 :param published_at_end: The published_at_end of this RelatedStories. # noqa: E501 :type published_at_end: datetime """ self._published_at_end = published_at_end @property def published_at_start(self): """Gets the published_at_start of this RelatedStories. # noqa: E501 The start of a period in which searched stories were published # noqa: E501 :return: The published_at_start of this RelatedStories. # noqa: E501 :rtype: datetime """ return self._published_at_start @published_at_start.setter def published_at_start(self, published_at_start): """Sets the published_at_start of this RelatedStories. The start of a period in which searched stories were published # noqa: E501 :param published_at_start: The published_at_start of this RelatedStories. # noqa: E501 :type published_at_start: datetime """ self._published_at_start = published_at_start def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RelatedStories): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, RelatedStories): return True return self.to_dict() != other.to_dict()
0.768907
0.105073
import json import uuid from pgadmin.browser.server_groups.servers.databases.tests import \ utils as database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from . import utils as language_utils from unittest.mock import patch class LanguagesAddTestCase(BaseTestGenerator): skip_on_database = ['gpdb'] scenarios = utils.generate_scenarios('create_language', language_utils.test_cases) def setUp(self): super(LanguagesAddTestCase, self).setUp() db_user = self.server['username'] self.data = self.test_data self.data['name'] = "language_%s" % str(uuid.uuid4())[1:8] self.data['lanowner'] = db_user self.server_data = parent_node_dict["database"][-1] self.server_id = self.server_data["server_id"] self.db_id = self.server_data['db_id'] self.db_name = self.server_data["db_name"] db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con["info"] == "Database connected.": raise Exception("Could not connect to database.") def runTest(self): """This function will add language under test database.""" actual_status_code = '' expected_status_code = '' if self.is_positive_test: response = self.create_language() actual_status_code = response.status_code expected_output = language_utils.verify_language(self) expected_status_code = self.expected_data["status_code"] self.assertDictEqual(expected_output, self.data) else: if hasattr(self, "missing_name"): del self.data["name"] response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] if hasattr(self, "missing_lang_pack"): with patch(self.mock_data["function_name"], return_value=eval(self.mock_data["return_value"])): response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] if hasattr(self, "error_in_properties"): with patch(self.mock_data["function_name"], side_effect=[eval(self.mock_data["return_value"])]): response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] self.assertEqual(actual_status_code, expected_status_code) def create_language(self): """This function will add language under test database.""" return self.tester.post( self.url + str(utils.SERVER_GROUP) + '/' + str(self.server_id) + '/' + str(self.db_id) + '/', data=json.dumps(self.data), content_type='html/json') def tearDown(self): """This function delete added language and disconnect the test database.""" if self.is_positive_test or hasattr(self, "error_in_properties"): language_utils.delete_language( self.server, self.db_name, self.data['name']) database_utils.disconnect_database(self, self.server_id, self.db_id)
pgAdmin/pgadmin4/web/pgadmin/browser/server_groups/servers/databases/languages/tests/test_language_add.py
import json import uuid from pgadmin.browser.server_groups.servers.databases.tests import \ utils as database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from . import utils as language_utils from unittest.mock import patch class LanguagesAddTestCase(BaseTestGenerator): skip_on_database = ['gpdb'] scenarios = utils.generate_scenarios('create_language', language_utils.test_cases) def setUp(self): super(LanguagesAddTestCase, self).setUp() db_user = self.server['username'] self.data = self.test_data self.data['name'] = "language_%s" % str(uuid.uuid4())[1:8] self.data['lanowner'] = db_user self.server_data = parent_node_dict["database"][-1] self.server_id = self.server_data["server_id"] self.db_id = self.server_data['db_id'] self.db_name = self.server_data["db_name"] db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con["info"] == "Database connected.": raise Exception("Could not connect to database.") def runTest(self): """This function will add language under test database.""" actual_status_code = '' expected_status_code = '' if self.is_positive_test: response = self.create_language() actual_status_code = response.status_code expected_output = language_utils.verify_language(self) expected_status_code = self.expected_data["status_code"] self.assertDictEqual(expected_output, self.data) else: if hasattr(self, "missing_name"): del self.data["name"] response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] if hasattr(self, "missing_lang_pack"): with patch(self.mock_data["function_name"], return_value=eval(self.mock_data["return_value"])): response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] if hasattr(self, "error_in_properties"): with patch(self.mock_data["function_name"], side_effect=[eval(self.mock_data["return_value"])]): response = self.create_language() actual_status_code = response.status_code expected_status_code = self.expected_data["status_code"] self.assertEqual(actual_status_code, expected_status_code) def create_language(self): """This function will add language under test database.""" return self.tester.post( self.url + str(utils.SERVER_GROUP) + '/' + str(self.server_id) + '/' + str(self.db_id) + '/', data=json.dumps(self.data), content_type='html/json') def tearDown(self): """This function delete added language and disconnect the test database.""" if self.is_positive_test or hasattr(self, "error_in_properties"): language_utils.delete_language( self.server, self.db_name, self.data['name']) database_utils.disconnect_database(self, self.server_id, self.db_id)
0.500977
0.178454
from abc import ABC, abstractmethod from typing import Any, Dict, List, Mapping, Optional, Sequence, Type, cast from uuid import uuid4 from intelliflow.core.application.context.traversal import ContextVisitor from intelliflow.core.platform.development import HostPlatform from intelliflow.core.serialization import Serializable, dumps, loads from intelliflow.core.signal_processing.definitions.metric_alarm_defs import ( ALARM_STATE_TRANSITION_DIMENSION_TYPE, ALARM_TIME_DIMENSION_TYPE, METRIC_NAME_DIMENSION_TYPE, METRIC_PERIOD_DIMENSION_TYPE, METRIC_STATISTIC_DIMENSION_TYPE, METRIC_TIME_DIMENSION_TYPE, AlarmDimension, MetricDimension, MetricSubDimensionMapType, ) from intelliflow.core.signal_processing.dimension_constructs import DateVariant, Dimension, DimensionFilter, DimensionSpec from intelliflow.core.signal_processing.signal import Signal, SignalDomainSpec, SignalType from intelliflow.core.signal_processing.signal_source import ( AlarmSignalSourceAccessSpec, CompositeAlarmSignalSourceAccessSpec, MetricSignalSourceAccessSpec, SignalSourceAccessSpec, TimerSignalSourceAccessSpec, ) from intelliflow.core.signal_processing.slot import Slot class Node(Serializable["Node"], ABC): """Abstract class representing an atomic signal/slot provider within Application flow. A Node generically represents a persistent action taken against an entity flowing through an Application. This entities are represented with Signal abstraction. So basically a Node is at least a transformation or a listener on a Signal. As a transformation, it should definitely provide a Signal, and as a listener it should be taking some persistent action and yielding new data in Platform::storage, which cannot be exposed as a Signal to the rest of the flow. So it should have at least one Slot and optionally expose a Signal. Because of this fact, a Node should register its connections (input Signals and at least one Slot) during Activation so that in runtime its Slot(s) can be executed, based on changes in its input Signal(s). Obeys Serializable protocol to guarantee serialization at Context level. """ class QueryVisitor(ContextVisitor): """Node impls can (are supposed to) provide QueryVisitor impls to abstract high-level modules from the details of how to build a query for a particular node type (and its attributes)""" def __init__(self, node_type: Type["Node"], *args, **kwargs) -> None: """Impls should provide a pretty interface for more convenient high-level instantiation a query visitor""" self._results: Dict[str, "Node"] = dict() self._args: Sequence[Any] = list(args) if args else [] self._kwargs: Dict[str, Any] = dict(kwargs) if kwargs else {} self._node_type = node_type if node_type else kwargs.get("node_type", None) @property def results(self) -> Mapping[str, "Node"]: return self._results # overrides def visit(self, node: "Node") -> None: if self.match(node): self._results[node.node_id] = node def match(self, node: "Node") -> bool: return type(node) == self._node_type or isinstance(node, self._node_type) # parent and child_nodes strong/direct references would normally mean memory leak here. # currently this issue is intentionally ignored based on the particular use-cases that # we are targeting for POC (as of 07/2020). # TODO Will move to 'weakref' or ignore it at all, depepending on our FUTURE evaluation. def __init__(self, parent_node: "Node", child_nodes: List["Node"] = None, node_id: str = None) -> None: """ Create a Node. Parameters ---------- parent_node: Node Container Node. Owner/creator of this Node. Not to be confused with an upstream relationship. That type of relationship will be up to sub-classes / Node implementations. node_id: str Unique ID for this Node. Within a Context this id is used to retrieve the handle for this Node. *child_node : Node Children. """ self._parent_node = parent_node self._child_nodes = [] if child_nodes is None else child_nodes # don't forget that our serializer should not call __init__ on new objects during deserialization. # so this assignment is safe for now since we are using pickle. Pickle does not call __init__. self._node_id = "{0}-{1}".format(self.__class__.__name__, uuid4()) if node_id is None else node_id self._check_cylic_dependency() def _check_cylic_dependency(self) -> None: if self._parent_node == self or self in self._child_nodes: raise TypeError("Node ({0}) has a cyclic relationship") # TODO check the whole hierarchy def __hash__(self) -> int: return hash(self._node_id) def __eq__(self, other: Any) -> bool: try: return self._node_id == cast("Node", other).node_id except AttributeError: return NotImplemented @property def parent_node(self) -> "Node": return self._parent_node @parent_node.setter def parent_node(self, value: "Node") -> None: self._parent_node = value @property def node_id(self) -> str: return self._node_id @abstractmethod def _id(self) -> str: pass @property def route_id(self) -> str: return self._node_id def is_root(self) -> bool: return self._parent_node is None @property def child_nodes(self) -> Sequence["Node"]: return self._child_nodes def add_child(self, child: "Node") -> None: child.parent_node = self self._child_nodes.append(child) @abstractmethod def signal(self) -> Optional[Signal]: """What does this Node represent? Emit it as a Signal during development and use the same during 'activation' This method is particularly important while Nodes are referring each other. While a Node binds to another one (like MarshalerNode to a DataNode) or when a Node is implicitly used as an input for another Node (i.e Application::createDataset), this method provides the necessary abstraction in terms of representing this particular Node impl (a subclass) as a Signal object. """ pass @abstractmethod def _slots(self) -> Optional[List[Slot]]: """A Node is supposed to provide at least one Slot. if a Slot is not going to be provided, then the existence of Node impl should be questioned as it can only be a development-time entity such as the views in "node.marshaling.filter_views" module. Currently only exception to this logic is <ExternalDataNode>. That is why the return type is still Optional. Otherwise this would not make sense. The reason this method is supposed to be 'private' is that currently we cannot envision a scenario where the slots would be accessed externally. So sole purpose of this abstract method is to high-light the above logic behind having Node impls. """ pass def activate(self, platform: HostPlatform) -> None: """Do activation while the high-level Context (and Application) is being interpreted/activated. Node activates itself and then scans its children. This basic logic is what determines the order of route entries (i.e Code Segment) within a DAG of Nodes (that represents an <Instruction>). High-level order of route entries (aligned with the flow of Application code) is determined by :class:`InstructionChain` . """ self.do_activate(platform) for child_node in self._child_nodes: child_node.activate(platform) @abstractmethod def do_activate(self, platform: HostPlatform) -> None: pass def accept(self, visitor: ContextVisitor) -> None: visitor.visit(self) for child_node in self._child_nodes: child_node.accept(visitor) class DataNode(Node, ABC): """Base class for all Data (new Signal) provider Nodes. It encapsulates bare-bones fields for the creation of a new Signal. """ class QueryVisitor(Node.QueryVisitor): def __init__(self, data_id: str, *args, **kwargs) -> None: super().__init__(None, args, kwargs) self._data_id: str = data_id if data_id else kwargs.get("data_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, DataNode): if self._exact_match: return self._data_id == node.data_id else: return self._data_id in node.data_id return False def __init__( self, data_id: str, source_access_spec: SignalSourceAccessSpec, domain_spec: SignalDomainSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: """ Create a DataNode. Parameters ---------- data_id: str Identifier for the logical data object represented by this Node. resource_format: str See Signal::resource_format domain_spec: SignalDomainSpec See Signal::domain_spec parent_node: Node Container Node. Owner/creator of this Node. Not to be confused with an upstream relationship. That type of relationship will be up to sub-classes / Node implementations. node_id: str Unique ID for this Node. Within a Context this id is used to retrieve the handle for this Node. *child_node : Node Children. """ super().__init__(parent_node, child_nodes, node_id) self._data_id = data_id self._source_access_spec = source_access_spec self._domain_spec = domain_spec # overrides @property def _id(self) -> str: return self.data_id @property def data_id(self) -> str: return self._data_id # overrides @property def route_id(self) -> str: # It is by design that we allow the same route_id generation for the same data_id. # This allows the most recent node to overwrite / update the route (during activation). return "{0}-{1}".format(self.__class__.__name__, self._data_id) class TimerNode(Node): class QueryVisitor(Node.QueryVisitor): def __init__(self, timer_id: str, *args, **kwargs) -> None: super().__init__(None, args, kwargs) self._timer_id: str = timer_id if timer_id else kwargs.get("timer_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, TimerNode): if self._exact_match: return self._timer_id == node.timer_id else: return self._timer_id in node.timer_id return False def __init__( self, timer_id: str, schedule_expression: str, date_dimension: DateVariant, context_id: str, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, **kwargs, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._timer_id = timer_id self._schedule_expresssion = schedule_expression spec: DimensionSpec = DimensionSpec() spec.add_dimension(Dimension(date_dimension.name, date_dimension.type, date_dimension.params), None) dim_filter: DimensionFilter = DimensionFilter() dim_filter.add_dimension(date_dimension, None) source_access_spec = TimerSignalSourceAccessSpec(timer_id, schedule_expression, context_id, **kwargs) domain_spec = SignalDomainSpec(spec, dim_filter, None) self._timer_signal = Signal(SignalType.TIMER_EVENT, source_access_spec, domain_spec, timer_id, False) def signal(self) -> Optional[Signal]: return self._timer_signal def _slots(self) -> Optional[List[Slot]]: return [] def do_activate(self, platform: HostPlatform) -> None: platform.connect_internal_signal(self._timer_signal) @property def timer_id(self) -> str: return self._timer_id # overrides @property def _id(self) -> str: return self.timer_id class MetricNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, metric_id: str, sub_dimensions: MetricSubDimensionMapType, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._metric_id: str = metric_id if metric_id else kwargs.get("metric_id", None) self._sub_dimensions = sub_dimensions self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, MetricNode): id_match = True sub_dims_match = True if self._metric_id: if self._exact_match: id_match = self._metric_id == node.metric_id else: id_match = self._metric_id in node.metric_id if id_match: if self._sub_dimensions: sub_dims_match = all([node.sub_dimensions.get(key, None) == value for key, value in self._sub_dimensions.items()]) return id_match and sub_dims_match return False def __init__( self, signal_type: SignalType, metric_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: MetricSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._metric_id = metric_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { MetricDimension.NAME: { type: METRIC_NAME_DIMENSION_TYPE, MetricDimension.STATISTIC: { type: METRIC_STATISTIC_DIMENSION_TYPE, MetricDimension.PERIOD: { type: METRIC_PERIOD_DIMENSION_TYPE, MetricDimension.TIME: {type: METRIC_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, }, }, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Metric (id={metric_id}: Dimension filter {dimension_filter_spec!r} is not compatible " f"with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._metric_signal = Signal(signal_type, source_access_spec, domain_spec, metric_id) def signal(self) -> Optional[Signal]: return self._metric_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def metric_id(self) -> str: return self._metric_id @property def sub_dimensions(self) -> MetricSubDimensionMapType: return self._source_access_spec.sub_dimensions # overrides @property def _id(self) -> str: return self.metric_id class AlarmNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, alarm_id: str, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._alarm_id: str = alarm_id if alarm_id else kwargs.get("alarm_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, AlarmNode): if self._exact_match: return self._alarm_id == node.alarm_id else: return self._alarm_id in node.alarm_id return False def __init__( self, signal_type: SignalType, alarm_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: AlarmSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._alarm_id = alarm_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { AlarmDimension.STATE_TRANSITION: { type: ALARM_STATE_TRANSITION_DIMENSION_TYPE, AlarmDimension.TIME: {type: ALARM_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Alarm (id={alarm_id}: Dimension filter {dimension_filter_spec!r} is not compatible " f"with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._alarm_signal = Signal(signal_type, source_access_spec, domain_spec, alarm_id) def signal(self) -> Optional[Signal]: return self._alarm_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def alarm_id(self) -> str: return self._alarm_id # overrides @property def _id(self) -> str: return self.alarm_id class CompositeAlarmNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, alarm_id: str, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._alarm_id: str = alarm_id if alarm_id else kwargs.get("alarm_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, CompositeAlarmNode): if self._exact_match: return self._alarm_id == node.alarm_id else: return self._alarm_id in node.alarm_id return False def __init__( self, signal_type: SignalType, alarm_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: CompositeAlarmSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._alarm_id = alarm_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { AlarmDimension.STATE_TRANSITION: { type: ALARM_STATE_TRANSITION_DIMENSION_TYPE, AlarmDimension.TIME: {type: ALARM_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Composite alarm (id={alarm_id}: Dimension filter {dimension_filter_spec!r} is not " f"compatible with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._alarm_signal = Signal(signal_type, source_access_spec, domain_spec, alarm_id) def signal(self) -> Optional[Signal]: return self._alarm_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def alarm_id(self) -> str: return self._alarm_id # overrides @property def _id(self) -> str: return self.alarm_id
src/intelliflow/core/application/context/node/base.py
from abc import ABC, abstractmethod from typing import Any, Dict, List, Mapping, Optional, Sequence, Type, cast from uuid import uuid4 from intelliflow.core.application.context.traversal import ContextVisitor from intelliflow.core.platform.development import HostPlatform from intelliflow.core.serialization import Serializable, dumps, loads from intelliflow.core.signal_processing.definitions.metric_alarm_defs import ( ALARM_STATE_TRANSITION_DIMENSION_TYPE, ALARM_TIME_DIMENSION_TYPE, METRIC_NAME_DIMENSION_TYPE, METRIC_PERIOD_DIMENSION_TYPE, METRIC_STATISTIC_DIMENSION_TYPE, METRIC_TIME_DIMENSION_TYPE, AlarmDimension, MetricDimension, MetricSubDimensionMapType, ) from intelliflow.core.signal_processing.dimension_constructs import DateVariant, Dimension, DimensionFilter, DimensionSpec from intelliflow.core.signal_processing.signal import Signal, SignalDomainSpec, SignalType from intelliflow.core.signal_processing.signal_source import ( AlarmSignalSourceAccessSpec, CompositeAlarmSignalSourceAccessSpec, MetricSignalSourceAccessSpec, SignalSourceAccessSpec, TimerSignalSourceAccessSpec, ) from intelliflow.core.signal_processing.slot import Slot class Node(Serializable["Node"], ABC): """Abstract class representing an atomic signal/slot provider within Application flow. A Node generically represents a persistent action taken against an entity flowing through an Application. This entities are represented with Signal abstraction. So basically a Node is at least a transformation or a listener on a Signal. As a transformation, it should definitely provide a Signal, and as a listener it should be taking some persistent action and yielding new data in Platform::storage, which cannot be exposed as a Signal to the rest of the flow. So it should have at least one Slot and optionally expose a Signal. Because of this fact, a Node should register its connections (input Signals and at least one Slot) during Activation so that in runtime its Slot(s) can be executed, based on changes in its input Signal(s). Obeys Serializable protocol to guarantee serialization at Context level. """ class QueryVisitor(ContextVisitor): """Node impls can (are supposed to) provide QueryVisitor impls to abstract high-level modules from the details of how to build a query for a particular node type (and its attributes)""" def __init__(self, node_type: Type["Node"], *args, **kwargs) -> None: """Impls should provide a pretty interface for more convenient high-level instantiation a query visitor""" self._results: Dict[str, "Node"] = dict() self._args: Sequence[Any] = list(args) if args else [] self._kwargs: Dict[str, Any] = dict(kwargs) if kwargs else {} self._node_type = node_type if node_type else kwargs.get("node_type", None) @property def results(self) -> Mapping[str, "Node"]: return self._results # overrides def visit(self, node: "Node") -> None: if self.match(node): self._results[node.node_id] = node def match(self, node: "Node") -> bool: return type(node) == self._node_type or isinstance(node, self._node_type) # parent and child_nodes strong/direct references would normally mean memory leak here. # currently this issue is intentionally ignored based on the particular use-cases that # we are targeting for POC (as of 07/2020). # TODO Will move to 'weakref' or ignore it at all, depepending on our FUTURE evaluation. def __init__(self, parent_node: "Node", child_nodes: List["Node"] = None, node_id: str = None) -> None: """ Create a Node. Parameters ---------- parent_node: Node Container Node. Owner/creator of this Node. Not to be confused with an upstream relationship. That type of relationship will be up to sub-classes / Node implementations. node_id: str Unique ID for this Node. Within a Context this id is used to retrieve the handle for this Node. *child_node : Node Children. """ self._parent_node = parent_node self._child_nodes = [] if child_nodes is None else child_nodes # don't forget that our serializer should not call __init__ on new objects during deserialization. # so this assignment is safe for now since we are using pickle. Pickle does not call __init__. self._node_id = "{0}-{1}".format(self.__class__.__name__, uuid4()) if node_id is None else node_id self._check_cylic_dependency() def _check_cylic_dependency(self) -> None: if self._parent_node == self or self in self._child_nodes: raise TypeError("Node ({0}) has a cyclic relationship") # TODO check the whole hierarchy def __hash__(self) -> int: return hash(self._node_id) def __eq__(self, other: Any) -> bool: try: return self._node_id == cast("Node", other).node_id except AttributeError: return NotImplemented @property def parent_node(self) -> "Node": return self._parent_node @parent_node.setter def parent_node(self, value: "Node") -> None: self._parent_node = value @property def node_id(self) -> str: return self._node_id @abstractmethod def _id(self) -> str: pass @property def route_id(self) -> str: return self._node_id def is_root(self) -> bool: return self._parent_node is None @property def child_nodes(self) -> Sequence["Node"]: return self._child_nodes def add_child(self, child: "Node") -> None: child.parent_node = self self._child_nodes.append(child) @abstractmethod def signal(self) -> Optional[Signal]: """What does this Node represent? Emit it as a Signal during development and use the same during 'activation' This method is particularly important while Nodes are referring each other. While a Node binds to another one (like MarshalerNode to a DataNode) or when a Node is implicitly used as an input for another Node (i.e Application::createDataset), this method provides the necessary abstraction in terms of representing this particular Node impl (a subclass) as a Signal object. """ pass @abstractmethod def _slots(self) -> Optional[List[Slot]]: """A Node is supposed to provide at least one Slot. if a Slot is not going to be provided, then the existence of Node impl should be questioned as it can only be a development-time entity such as the views in "node.marshaling.filter_views" module. Currently only exception to this logic is <ExternalDataNode>. That is why the return type is still Optional. Otherwise this would not make sense. The reason this method is supposed to be 'private' is that currently we cannot envision a scenario where the slots would be accessed externally. So sole purpose of this abstract method is to high-light the above logic behind having Node impls. """ pass def activate(self, platform: HostPlatform) -> None: """Do activation while the high-level Context (and Application) is being interpreted/activated. Node activates itself and then scans its children. This basic logic is what determines the order of route entries (i.e Code Segment) within a DAG of Nodes (that represents an <Instruction>). High-level order of route entries (aligned with the flow of Application code) is determined by :class:`InstructionChain` . """ self.do_activate(platform) for child_node in self._child_nodes: child_node.activate(platform) @abstractmethod def do_activate(self, platform: HostPlatform) -> None: pass def accept(self, visitor: ContextVisitor) -> None: visitor.visit(self) for child_node in self._child_nodes: child_node.accept(visitor) class DataNode(Node, ABC): """Base class for all Data (new Signal) provider Nodes. It encapsulates bare-bones fields for the creation of a new Signal. """ class QueryVisitor(Node.QueryVisitor): def __init__(self, data_id: str, *args, **kwargs) -> None: super().__init__(None, args, kwargs) self._data_id: str = data_id if data_id else kwargs.get("data_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, DataNode): if self._exact_match: return self._data_id == node.data_id else: return self._data_id in node.data_id return False def __init__( self, data_id: str, source_access_spec: SignalSourceAccessSpec, domain_spec: SignalDomainSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: """ Create a DataNode. Parameters ---------- data_id: str Identifier for the logical data object represented by this Node. resource_format: str See Signal::resource_format domain_spec: SignalDomainSpec See Signal::domain_spec parent_node: Node Container Node. Owner/creator of this Node. Not to be confused with an upstream relationship. That type of relationship will be up to sub-classes / Node implementations. node_id: str Unique ID for this Node. Within a Context this id is used to retrieve the handle for this Node. *child_node : Node Children. """ super().__init__(parent_node, child_nodes, node_id) self._data_id = data_id self._source_access_spec = source_access_spec self._domain_spec = domain_spec # overrides @property def _id(self) -> str: return self.data_id @property def data_id(self) -> str: return self._data_id # overrides @property def route_id(self) -> str: # It is by design that we allow the same route_id generation for the same data_id. # This allows the most recent node to overwrite / update the route (during activation). return "{0}-{1}".format(self.__class__.__name__, self._data_id) class TimerNode(Node): class QueryVisitor(Node.QueryVisitor): def __init__(self, timer_id: str, *args, **kwargs) -> None: super().__init__(None, args, kwargs) self._timer_id: str = timer_id if timer_id else kwargs.get("timer_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, TimerNode): if self._exact_match: return self._timer_id == node.timer_id else: return self._timer_id in node.timer_id return False def __init__( self, timer_id: str, schedule_expression: str, date_dimension: DateVariant, context_id: str, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, **kwargs, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._timer_id = timer_id self._schedule_expresssion = schedule_expression spec: DimensionSpec = DimensionSpec() spec.add_dimension(Dimension(date_dimension.name, date_dimension.type, date_dimension.params), None) dim_filter: DimensionFilter = DimensionFilter() dim_filter.add_dimension(date_dimension, None) source_access_spec = TimerSignalSourceAccessSpec(timer_id, schedule_expression, context_id, **kwargs) domain_spec = SignalDomainSpec(spec, dim_filter, None) self._timer_signal = Signal(SignalType.TIMER_EVENT, source_access_spec, domain_spec, timer_id, False) def signal(self) -> Optional[Signal]: return self._timer_signal def _slots(self) -> Optional[List[Slot]]: return [] def do_activate(self, platform: HostPlatform) -> None: platform.connect_internal_signal(self._timer_signal) @property def timer_id(self) -> str: return self._timer_id # overrides @property def _id(self) -> str: return self.timer_id class MetricNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, metric_id: str, sub_dimensions: MetricSubDimensionMapType, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._metric_id: str = metric_id if metric_id else kwargs.get("metric_id", None) self._sub_dimensions = sub_dimensions self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, MetricNode): id_match = True sub_dims_match = True if self._metric_id: if self._exact_match: id_match = self._metric_id == node.metric_id else: id_match = self._metric_id in node.metric_id if id_match: if self._sub_dimensions: sub_dims_match = all([node.sub_dimensions.get(key, None) == value for key, value in self._sub_dimensions.items()]) return id_match and sub_dims_match return False def __init__( self, signal_type: SignalType, metric_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: MetricSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._metric_id = metric_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { MetricDimension.NAME: { type: METRIC_NAME_DIMENSION_TYPE, MetricDimension.STATISTIC: { type: METRIC_STATISTIC_DIMENSION_TYPE, MetricDimension.PERIOD: { type: METRIC_PERIOD_DIMENSION_TYPE, MetricDimension.TIME: {type: METRIC_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, }, }, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Metric (id={metric_id}: Dimension filter {dimension_filter_spec!r} is not compatible " f"with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._metric_signal = Signal(signal_type, source_access_spec, domain_spec, metric_id) def signal(self) -> Optional[Signal]: return self._metric_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def metric_id(self) -> str: return self._metric_id @property def sub_dimensions(self) -> MetricSubDimensionMapType: return self._source_access_spec.sub_dimensions # overrides @property def _id(self) -> str: return self.metric_id class AlarmNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, alarm_id: str, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._alarm_id: str = alarm_id if alarm_id else kwargs.get("alarm_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, AlarmNode): if self._exact_match: return self._alarm_id == node.alarm_id else: return self._alarm_id in node.alarm_id return False def __init__( self, signal_type: SignalType, alarm_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: AlarmSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._alarm_id = alarm_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { AlarmDimension.STATE_TRANSITION: { type: ALARM_STATE_TRANSITION_DIMENSION_TYPE, AlarmDimension.TIME: {type: ALARM_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Alarm (id={alarm_id}: Dimension filter {dimension_filter_spec!r} is not compatible " f"with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._alarm_signal = Signal(signal_type, source_access_spec, domain_spec, alarm_id) def signal(self) -> Optional[Signal]: return self._alarm_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def alarm_id(self) -> str: return self._alarm_id # overrides @property def _id(self) -> str: return self.alarm_id class CompositeAlarmNode(Node, ABC): class QueryVisitor(Node.QueryVisitor): def __init__(self, alarm_id: str, *args, **kwargs) -> None: super().__init__(None, *args, **kwargs) self._alarm_id: str = alarm_id if alarm_id else kwargs.get("alarm_id", None) self._exact_match: bool = kwargs.get("exact_match", False) # overrides def match(self, node: "Node") -> bool: if isinstance(node, CompositeAlarmNode): if self._exact_match: return self._alarm_id == node.alarm_id else: return self._alarm_id in node.alarm_id return False def __init__( self, signal_type: SignalType, alarm_id: str, dimension_filter_spec: DimensionFilter, source_access_spec: CompositeAlarmSignalSourceAccessSpec, parent_node: Node = None, child_nodes: List[Node] = None, node_id: str = None, ) -> None: super().__init__(parent_node, child_nodes, node_id) self._alarm_id = alarm_id self._source_access_spec = source_access_spec dimension_spec: DimensionSpec = DimensionSpec.load_from_pretty( { AlarmDimension.STATE_TRANSITION: { type: ALARM_STATE_TRANSITION_DIMENSION_TYPE, AlarmDimension.TIME: {type: ALARM_TIME_DIMENSION_TYPE, "format": "%Y-%m-%d %H:%M:%S"}, } } ) if not dimension_filter_spec.check_spec_match(dimension_spec): raise ValueError( f"Composite alarm (id={alarm_id}: Dimension filter {dimension_filter_spec!r} is not " f"compatible with the expected dimension spec {dimension_spec!r}." ) dimension_filter_spec.set_spec(dimension_spec) domain_spec = SignalDomainSpec(dimension_spec, dimension_filter_spec, None) self._alarm_signal = Signal(signal_type, source_access_spec, domain_spec, alarm_id) def signal(self) -> Optional[Signal]: return self._alarm_signal def _slots(self) -> Optional[List[Slot]]: raise NotImplemented @property def alarm_id(self) -> str: return self._alarm_id # overrides @property def _id(self) -> str: return self.alarm_id
0.899842
0.336658
import os import sys import re try: from setuptools import setup except ImportError: from distutils.core import setup # different source folders version_info = sys.version_info[:2] source_folder = { (2, 5): 'py25', (2, 6): 'py25', (2, 7): 'py27', (3, 4): 'py34', (3, 5): 'py34', (3, 6): 'py34', (3, 7): 'py34', }.get(version_info, None) if not source_folder: raise EnvironmentError("unsupported version of Python") if not os.path.exists(source_folder): raise EnvironmentError("broken distirbution, looking for " + repr(source_folder) + " in " + os.getcwd() ) # load in the project metadata init_py = open(os.path.join(source_folder, 'bacpypes', '__init__.py')).read() metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", init_py)) requirements = [ # no external requirements ] setup_requirements = [ 'pytest-runner', ] test_requirements = [ 'pytest', 'bacpypes', ] setup( name="bacpypes", version=metadata['version'], description="BACnet Communications Library", long_description="BACpypes provides a BACnet application layer and network layer written in Python for daemons, scripting, and graphical interfaces.", author=metadata['author'], author_email=metadata['email'], url="https://github.com/JoelBender/bacpypes", packages=[ 'bacpypes', 'bacpypes.local', 'bacpypes.service', ], package_dir={ '': os.path.join(source_folder, ''), }, include_package_data=True, install_requires=requirements, license="MIT", zip_safe=False, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, )
setup.py
import os import sys import re try: from setuptools import setup except ImportError: from distutils.core import setup # different source folders version_info = sys.version_info[:2] source_folder = { (2, 5): 'py25', (2, 6): 'py25', (2, 7): 'py27', (3, 4): 'py34', (3, 5): 'py34', (3, 6): 'py34', (3, 7): 'py34', }.get(version_info, None) if not source_folder: raise EnvironmentError("unsupported version of Python") if not os.path.exists(source_folder): raise EnvironmentError("broken distirbution, looking for " + repr(source_folder) + " in " + os.getcwd() ) # load in the project metadata init_py = open(os.path.join(source_folder, 'bacpypes', '__init__.py')).read() metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", init_py)) requirements = [ # no external requirements ] setup_requirements = [ 'pytest-runner', ] test_requirements = [ 'pytest', 'bacpypes', ] setup( name="bacpypes", version=metadata['version'], description="BACnet Communications Library", long_description="BACpypes provides a BACnet application layer and network layer written in Python for daemons, scripting, and graphical interfaces.", author=metadata['author'], author_email=metadata['email'], url="https://github.com/JoelBender/bacpypes", packages=[ 'bacpypes', 'bacpypes.local', 'bacpypes.service', ], package_dir={ '': os.path.join(source_folder, ''), }, include_package_data=True, install_requires=requirements, license="MIT", zip_safe=False, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, )
0.328422
0.247817
import argparse import os import logging import random import numpy as np import torch from torchvision.datasets import MNIST import torchvision.transforms as xforms from torch.utils.data import DataLoader import ttools import ttools.interfaces import pydiffvg LOG = ttools.get_logger(__name__) pydiffvg.render_pytorch.print_timing = False torch.manual_seed(123) np.random.seed(123) torch.backends.cudnn.deterministic = True latent_dim = 100 img_size = 32 num_paths = 8 num_segments = 8 def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) class VisdomImageCallback(ttools.callbacks.ImageDisplayCallback): def visualized_image(self, batch, fwd_result): return torch.cat([batch[0], fwd_result.cpu()], dim = 2) # From https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py class Generator(torch.nn.Module): def __init__(self): super(Generator, self).__init__() self.fc = torch.nn.Sequential( torch.nn.Linear(latent_dim, 128), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(128, 256), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(256, 512), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(512, 1024), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(1024, 2 * num_paths * (num_segments + 1) + num_paths + num_paths), torch.nn.Sigmoid() ) def forward(self, z): out = self.fc(z) # construct paths imgs = [] for b in range(out.shape[0]): index = 0 shapes = [] shape_groups = [] for i in range(num_paths): points = img_size * out[b, index: index + 2 * (num_segments + 1)].view(-1, 2).cpu() index += 2 * (num_segments + 1) stroke_width = img_size * out[b, index].view(1).cpu() index += 1 num_control_points = torch.zeros(num_segments, dtype = torch.int32) + 2 path = pydiffvg.Path(num_control_points = num_control_points, points = points, stroke_width = stroke_width, is_closed = False) shapes.append(path) stroke_color = out[b, index].view(1).cpu() index += 1 stroke_color = torch.cat([stroke_color, torch.tensor([0.0, 0.0, 1.0])]) path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(shapes) - 1]), fill_color = None, stroke_color = stroke_color) shape_groups.append(path_group) scene_args = pydiffvg.RenderFunction.serialize_scene(img_size, img_size, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(img_size, # width img_size, # height 2, # num_samples_x 2, # num_samples_y random.randint(0, 1048576), # seed None, *scene_args) img = img[:, :, :1] # HWC -> NCHW img = img.unsqueeze(0) img = img.permute(0, 3, 1, 2) # NHWC -> NCHW imgs.append(img) img = torch.cat(imgs, dim = 0) return img class Discriminator(torch.nn.Module): def __init__(self): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [torch.nn.Conv2d(in_filters, out_filters, 3, 2, 1), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Dropout2d(0.25)] if bn: block.append(torch.nn.BatchNorm2d(out_filters, 0.8)) return block self.model = torch.nn.Sequential( *discriminator_block(1, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = img_size // 2 ** 4 self.adv_layer = torch.nn.Sequential( torch.nn.Linear(128 * ds_size ** 2, 1), torch.nn.Sigmoid()) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity class MNISTInterface(ttools.interfaces.SGANInterface): """An adapter to run or train a model.""" def __init__(self, gen, discrim, lr=2e-4): super(MNISTInterface, self).__init__(gen, discrim, lr, opt = 'adam') def forward(self, batch): return self.gen(torch.zeros([batch[0].shape[0], latent_dim], device = self.device).normal_()) def _discriminator_input(self, batch, fwd_data, fake=False): if fake: return fwd_data else: return batch[0].to(self.device) def train(args): """Train a MNIST classifier.""" # Setup train and val data _xform = xforms.Compose([xforms.Resize([32, 32]), xforms.ToTensor()]) data = MNIST("data/mnist", train=True, download=True, transform=_xform) # Initialize asynchronous dataloaders loader = DataLoader(data, batch_size=args.bs, num_workers=2) # Instantiate the models gen = Generator() discrim = Discriminator() gen.apply(weights_init_normal) discrim.apply(weights_init_normal) # Checkpointer to save/recall model parameters checkpointer_gen = ttools.Checkpointer(os.path.join(args.out, "checkpoints"), model=gen, prefix="gen_") checkpointer_discrim = ttools.Checkpointer(os.path.join(args.out, "checkpoints"), model=discrim, prefix="discrim_") # resume from a previous checkpoint, if any checkpointer_gen.load_latest() checkpointer_discrim.load_latest() # Setup a training interface for the model interface = MNISTInterface(gen, discrim, lr=args.lr) # Create a training looper with the interface we defined trainer = ttools.Trainer(interface) # Adds several callbacks, that will be called by the trainer -------------- # A periodic checkpointing operation trainer.add_callback(ttools.callbacks.CheckpointingCallback(checkpointer_gen)) trainer.add_callback(ttools.callbacks.CheckpointingCallback(checkpointer_discrim)) # A simple progress bar trainer.add_callback(ttools.callbacks.ProgressBarCallback( keys=["loss_g", "loss_d", "loss"])) # A volatile logging using visdom trainer.add_callback(ttools.callbacks.VisdomLoggingCallback( keys=["loss_g", "loss_d", "loss"], port=8080, env="mnist_demo")) # Image trainer.add_callback(VisdomImageCallback(port=8080, env="mnist_demo")) # ------------------------------------------------------------------------- # Start the training LOG.info("Training started, press Ctrl-C to interrupt.") trainer.train(loader, num_epochs=args.epochs) if __name__ == "__main__": parser = argparse.ArgumentParser() # TODO: subparsers parser.add_argument("data", help="directory where we download and store the MNIST dataset.") parser.add_argument("out", help="directory where we write the checkpoints and visualizations.") parser.add_argument("--lr", type=float, default=1e-4, help="learning rate for the optimizer.") parser.add_argument("--epochs", type=int, default=500, help="number of epochs to train for.") parser.add_argument("--bs", type=int, default=64, help="number of elements per batch.") args = parser.parse_args() ttools.set_logger(True) # activate debug prints train(args)
apps/sketch_gan.py
import argparse import os import logging import random import numpy as np import torch from torchvision.datasets import MNIST import torchvision.transforms as xforms from torch.utils.data import DataLoader import ttools import ttools.interfaces import pydiffvg LOG = ttools.get_logger(__name__) pydiffvg.render_pytorch.print_timing = False torch.manual_seed(123) np.random.seed(123) torch.backends.cudnn.deterministic = True latent_dim = 100 img_size = 32 num_paths = 8 num_segments = 8 def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) class VisdomImageCallback(ttools.callbacks.ImageDisplayCallback): def visualized_image(self, batch, fwd_result): return torch.cat([batch[0], fwd_result.cpu()], dim = 2) # From https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py class Generator(torch.nn.Module): def __init__(self): super(Generator, self).__init__() self.fc = torch.nn.Sequential( torch.nn.Linear(latent_dim, 128), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(128, 256), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(256, 512), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(512, 1024), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Linear(1024, 2 * num_paths * (num_segments + 1) + num_paths + num_paths), torch.nn.Sigmoid() ) def forward(self, z): out = self.fc(z) # construct paths imgs = [] for b in range(out.shape[0]): index = 0 shapes = [] shape_groups = [] for i in range(num_paths): points = img_size * out[b, index: index + 2 * (num_segments + 1)].view(-1, 2).cpu() index += 2 * (num_segments + 1) stroke_width = img_size * out[b, index].view(1).cpu() index += 1 num_control_points = torch.zeros(num_segments, dtype = torch.int32) + 2 path = pydiffvg.Path(num_control_points = num_control_points, points = points, stroke_width = stroke_width, is_closed = False) shapes.append(path) stroke_color = out[b, index].view(1).cpu() index += 1 stroke_color = torch.cat([stroke_color, torch.tensor([0.0, 0.0, 1.0])]) path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(shapes) - 1]), fill_color = None, stroke_color = stroke_color) shape_groups.append(path_group) scene_args = pydiffvg.RenderFunction.serialize_scene(img_size, img_size, shapes, shape_groups) render = pydiffvg.RenderFunction.apply img = render(img_size, # width img_size, # height 2, # num_samples_x 2, # num_samples_y random.randint(0, 1048576), # seed None, *scene_args) img = img[:, :, :1] # HWC -> NCHW img = img.unsqueeze(0) img = img.permute(0, 3, 1, 2) # NHWC -> NCHW imgs.append(img) img = torch.cat(imgs, dim = 0) return img class Discriminator(torch.nn.Module): def __init__(self): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [torch.nn.Conv2d(in_filters, out_filters, 3, 2, 1), torch.nn.LeakyReLU(0.2, inplace=True), torch.nn.Dropout2d(0.25)] if bn: block.append(torch.nn.BatchNorm2d(out_filters, 0.8)) return block self.model = torch.nn.Sequential( *discriminator_block(1, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = img_size // 2 ** 4 self.adv_layer = torch.nn.Sequential( torch.nn.Linear(128 * ds_size ** 2, 1), torch.nn.Sigmoid()) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity class MNISTInterface(ttools.interfaces.SGANInterface): """An adapter to run or train a model.""" def __init__(self, gen, discrim, lr=2e-4): super(MNISTInterface, self).__init__(gen, discrim, lr, opt = 'adam') def forward(self, batch): return self.gen(torch.zeros([batch[0].shape[0], latent_dim], device = self.device).normal_()) def _discriminator_input(self, batch, fwd_data, fake=False): if fake: return fwd_data else: return batch[0].to(self.device) def train(args): """Train a MNIST classifier.""" # Setup train and val data _xform = xforms.Compose([xforms.Resize([32, 32]), xforms.ToTensor()]) data = MNIST("data/mnist", train=True, download=True, transform=_xform) # Initialize asynchronous dataloaders loader = DataLoader(data, batch_size=args.bs, num_workers=2) # Instantiate the models gen = Generator() discrim = Discriminator() gen.apply(weights_init_normal) discrim.apply(weights_init_normal) # Checkpointer to save/recall model parameters checkpointer_gen = ttools.Checkpointer(os.path.join(args.out, "checkpoints"), model=gen, prefix="gen_") checkpointer_discrim = ttools.Checkpointer(os.path.join(args.out, "checkpoints"), model=discrim, prefix="discrim_") # resume from a previous checkpoint, if any checkpointer_gen.load_latest() checkpointer_discrim.load_latest() # Setup a training interface for the model interface = MNISTInterface(gen, discrim, lr=args.lr) # Create a training looper with the interface we defined trainer = ttools.Trainer(interface) # Adds several callbacks, that will be called by the trainer -------------- # A periodic checkpointing operation trainer.add_callback(ttools.callbacks.CheckpointingCallback(checkpointer_gen)) trainer.add_callback(ttools.callbacks.CheckpointingCallback(checkpointer_discrim)) # A simple progress bar trainer.add_callback(ttools.callbacks.ProgressBarCallback( keys=["loss_g", "loss_d", "loss"])) # A volatile logging using visdom trainer.add_callback(ttools.callbacks.VisdomLoggingCallback( keys=["loss_g", "loss_d", "loss"], port=8080, env="mnist_demo")) # Image trainer.add_callback(VisdomImageCallback(port=8080, env="mnist_demo")) # ------------------------------------------------------------------------- # Start the training LOG.info("Training started, press Ctrl-C to interrupt.") trainer.train(loader, num_epochs=args.epochs) if __name__ == "__main__": parser = argparse.ArgumentParser() # TODO: subparsers parser.add_argument("data", help="directory where we download and store the MNIST dataset.") parser.add_argument("out", help="directory where we write the checkpoints and visualizations.") parser.add_argument("--lr", type=float, default=1e-4, help="learning rate for the optimizer.") parser.add_argument("--epochs", type=int, default=500, help="number of epochs to train for.") parser.add_argument("--bs", type=int, default=64, help="number of elements per batch.") args = parser.parse_args() ttools.set_logger(True) # activate debug prints train(args)
0.842701
0.442215
import opensearchpy import curator import os import json import string, random, tempfile import time from click import testing as clicktest from mock import patch, Mock import unittest from . import CuratorTestCase from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') port = int(port) if port else 9200 global_client = elasticsearch.Elasticsearch(host=host, port=port) EMPTY710ROUTING = {'allocation': {'include': {'_tier_preference': 'data_content'}}} delete_count_pattern = ('---\n' 'actions:\n' ' 1:\n' ' description: "Delete indices as filtered"\n' ' action: delete_indices\n' ' options:\n' ' continue_if_exception: False\n' ' disable_action: False\n' ' filters:\n' ' - filtertype: count\n' ' pattern: {0}\n' ' use_age: {1}\n' ' source: {2}\n' ' timestring: {3}\n' ' reverse: {4}\n' ' count: {5}\n') class TestCLICountPattern(CuratorTestCase): def test_match_proper_indices(self): for i in range(1, 4): self.create_index('a-{0}'.format(i)) for i in range(4, 7): self.create_index('b-{0}'.format(i)) for i in range(5, 9): self.create_index('c-{0}'.format(i)) self.create_index('not_a_match') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], delete_count_pattern.format( '\'^(a|b|c)-\d$\'', 'false', 'name', '\'%Y.%m.%d\'', 'true', 1 ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) indices = sorted(list(self.client.indices.get('_all'))) self.assertEquals(['a-3', 'b-6', 'c-8', 'not_a_match'], indices) def test_match_proper_indices_by_age(self): self.create_index('a-2017.10.01') self.create_index('a-2017.10.02') self.create_index('a-2017.10.03') self.create_index('b-2017.09.01') self.create_index('b-2017.09.02') self.create_index('b-2017.09.03') self.create_index('not_a_match') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], delete_count_pattern.format( '\'^(a|b)-\d{4}\.\d{2}\.\d{2}$\'', 'true', 'name', '\'%Y.%m.%d\'', 'true', 1 ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) indices = sorted(list(self.client.indices.get('_all'))) self.assertEquals(['a-2017.10.03', 'b-2017.09.03', 'not_a_match'], indices) def test_count_indices_by_age_same_age(self): key = 'tag' value = 'value' at = 'include' ver = curator.get_version(self.client) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.allocation_count_test.format(key, value, at, False)) self.create_index('c-2017.10.01') self.create_index('c-2017.10.02') self.create_index('c-2017.10.03') self.create_index('a-2017.10.01') self.create_index('a-2017.10.02') self.create_index('a-2017.10.03') self.create_index('b-2017.10.01') self.create_index('b-2017.10.02') self.create_index('b-2017.10.03') self.create_index('d-2017.10.01') self.create_index('d-2017.10.02') self.create_index('d-2017.10.03') test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEquals(value, self.client.indices.get_settings(index='c-2017.10.03')['c-2017.10.03']['settings']['index']['routing']['allocation'][at][key]) self.assertEquals(value, self.client.indices.get_settings(index='d-2017.10.03')['d-2017.10.03']['settings']['index']['routing']['allocation'][at][key]) idxlist = [ 'a-2017.10.01', 'a-2017.10.02', 'a-2017.10.03', 'b-2017.10.01', 'b-2017.10.02', 'b-2017.10.03', 'c-2017.10.01', 'c-2017.10.02', 'd-2017.10.01', 'd-2017.10.02' ] for idx in idxlist: if ver >= (7, 10, 0): self.assertEquals( EMPTY710ROUTING, self.client.indices.get_settings(index=idx)[idx]['settings']['index']['routing'] ) else: self.assertNotIn('routing', self.client.indices.get_settings( index=idx)[idx]['settings']['index'] )
test/integration/test_count_pattern.py
import opensearchpy import curator import os import json import string, random, tempfile import time from click import testing as clicktest from mock import patch, Mock import unittest from . import CuratorTestCase from . import testvars as testvars import logging logger = logging.getLogger(__name__) host, port = os.environ.get('TEST_ES_SERVER', 'localhost:9200').split(':') port = int(port) if port else 9200 global_client = elasticsearch.Elasticsearch(host=host, port=port) EMPTY710ROUTING = {'allocation': {'include': {'_tier_preference': 'data_content'}}} delete_count_pattern = ('---\n' 'actions:\n' ' 1:\n' ' description: "Delete indices as filtered"\n' ' action: delete_indices\n' ' options:\n' ' continue_if_exception: False\n' ' disable_action: False\n' ' filters:\n' ' - filtertype: count\n' ' pattern: {0}\n' ' use_age: {1}\n' ' source: {2}\n' ' timestring: {3}\n' ' reverse: {4}\n' ' count: {5}\n') class TestCLICountPattern(CuratorTestCase): def test_match_proper_indices(self): for i in range(1, 4): self.create_index('a-{0}'.format(i)) for i in range(4, 7): self.create_index('b-{0}'.format(i)) for i in range(5, 9): self.create_index('c-{0}'.format(i)) self.create_index('not_a_match') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], delete_count_pattern.format( '\'^(a|b|c)-\d$\'', 'false', 'name', '\'%Y.%m.%d\'', 'true', 1 ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) indices = sorted(list(self.client.indices.get('_all'))) self.assertEquals(['a-3', 'b-6', 'c-8', 'not_a_match'], indices) def test_match_proper_indices_by_age(self): self.create_index('a-2017.10.01') self.create_index('a-2017.10.02') self.create_index('a-2017.10.03') self.create_index('b-2017.09.01') self.create_index('b-2017.09.02') self.create_index('b-2017.09.03') self.create_index('not_a_match') self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config( self.args['actionfile'], delete_count_pattern.format( '\'^(a|b)-\d{4}\.\d{2}\.\d{2}$\'', 'true', 'name', '\'%Y.%m.%d\'', 'true', 1 ) ) test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) indices = sorted(list(self.client.indices.get('_all'))) self.assertEquals(['a-2017.10.03', 'b-2017.09.03', 'not_a_match'], indices) def test_count_indices_by_age_same_age(self): key = 'tag' value = 'value' at = 'include' ver = curator.get_version(self.client) self.write_config( self.args['configfile'], testvars.client_config.format(host, port)) self.write_config(self.args['actionfile'], testvars.allocation_count_test.format(key, value, at, False)) self.create_index('c-2017.10.01') self.create_index('c-2017.10.02') self.create_index('c-2017.10.03') self.create_index('a-2017.10.01') self.create_index('a-2017.10.02') self.create_index('a-2017.10.03') self.create_index('b-2017.10.01') self.create_index('b-2017.10.02') self.create_index('b-2017.10.03') self.create_index('d-2017.10.01') self.create_index('d-2017.10.02') self.create_index('d-2017.10.03') test = clicktest.CliRunner() _ = test.invoke( curator.cli, [ '--config', self.args['configfile'], self.args['actionfile'] ], ) self.assertEquals(value, self.client.indices.get_settings(index='c-2017.10.03')['c-2017.10.03']['settings']['index']['routing']['allocation'][at][key]) self.assertEquals(value, self.client.indices.get_settings(index='d-2017.10.03')['d-2017.10.03']['settings']['index']['routing']['allocation'][at][key]) idxlist = [ 'a-2017.10.01', 'a-2017.10.02', 'a-2017.10.03', 'b-2017.10.01', 'b-2017.10.02', 'b-2017.10.03', 'c-2017.10.01', 'c-2017.10.02', 'd-2017.10.01', 'd-2017.10.02' ] for idx in idxlist: if ver >= (7, 10, 0): self.assertEquals( EMPTY710ROUTING, self.client.indices.get_settings(index=idx)[idx]['settings']['index']['routing'] ) else: self.assertNotIn('routing', self.client.indices.get_settings( index=idx)[idx]['settings']['index'] )
0.365004
0.089654
from unittest import TestCase from mkdocs.structure.nav import Section from ...meta import Meta from ...navigation import AwesomeNavigation class TestSetTitle(TestCase): def setUp(self): self.section = Section('Section', []) def test(self): AwesomeNavigation._set_title(self.section, Meta(title='Section Title')) self.assertEqual(self.section.title, 'Section Title') def test_none_value(self): AwesomeNavigation._set_title(self.section, Meta()) self.assertEqual(self.section.title, 'Section') def test_empty_string_value(self): AwesomeNavigation._set_title(self.section, Meta(title='')) self.assertEqual(self.section.title, '') class TestCollapse(TestCase): def setUp(self): self.child = Section('Child', []) self.parent = Section('Parent', [ self.child ]) def test_default(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=None, collapse_recursive=False), self.parent ) def test_local_false(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=False, collapse_recursive=False), self.parent ) def test_explicit(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=True, collapse_recursive=False), self.child ) def test_explicit_and_recursive(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=True, collapse_recursive=True), self.child ) def test_recursive(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=None, collapse_recursive=True), self.child ) def test_local_override_false(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=False, collapse_recursive=True), self.parent ) def test_multiple_children(self): section = Section('Parent', [ Section('Child 1', []), Section('Child 2', []) ]) self.assertEqual(AwesomeNavigation._collapse(section, None, False), section) self.assertEqual(AwesomeNavigation._collapse(section, None, True), section) self.assertEqual(AwesomeNavigation._collapse(section, False, False), section) self.assertEqual(AwesomeNavigation._collapse(section, True, False), section) self.assertEqual(AwesomeNavigation._collapse(section, True, True), section) self.assertEqual(AwesomeNavigation._collapse(section, False, True), section)
mkdocs_awesome_pages_plugin/tests/navigation/test_static.py
from unittest import TestCase from mkdocs.structure.nav import Section from ...meta import Meta from ...navigation import AwesomeNavigation class TestSetTitle(TestCase): def setUp(self): self.section = Section('Section', []) def test(self): AwesomeNavigation._set_title(self.section, Meta(title='Section Title')) self.assertEqual(self.section.title, 'Section Title') def test_none_value(self): AwesomeNavigation._set_title(self.section, Meta()) self.assertEqual(self.section.title, 'Section') def test_empty_string_value(self): AwesomeNavigation._set_title(self.section, Meta(title='')) self.assertEqual(self.section.title, '') class TestCollapse(TestCase): def setUp(self): self.child = Section('Child', []) self.parent = Section('Parent', [ self.child ]) def test_default(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=None, collapse_recursive=False), self.parent ) def test_local_false(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=False, collapse_recursive=False), self.parent ) def test_explicit(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=True, collapse_recursive=False), self.child ) def test_explicit_and_recursive(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=True, collapse_recursive=True), self.child ) def test_recursive(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=None, collapse_recursive=True), self.child ) def test_local_override_false(self): self.assertEqual( AwesomeNavigation._collapse(self.parent, collapse=False, collapse_recursive=True), self.parent ) def test_multiple_children(self): section = Section('Parent', [ Section('Child 1', []), Section('Child 2', []) ]) self.assertEqual(AwesomeNavigation._collapse(section, None, False), section) self.assertEqual(AwesomeNavigation._collapse(section, None, True), section) self.assertEqual(AwesomeNavigation._collapse(section, False, False), section) self.assertEqual(AwesomeNavigation._collapse(section, True, False), section) self.assertEqual(AwesomeNavigation._collapse(section, True, True), section) self.assertEqual(AwesomeNavigation._collapse(section, False, True), section)
0.563618
0.355523
import csv import io import typing import audeer import audfactory.core.api as audfactory # Skip doctests until we have public lookup tables __doctest_skip__ = ['*'] LOOKUP_EXT = 'csv' class Lookup: r"""Lookup table for managing artifact flavors on Artifactory. It creates one row for every flavor, and assigns a unique ID to it. The columns are parameters associated with the flavor. The parameter names are stored as column headers. The column values can be of type :class:`bool`, :class:`float`, :class:`int`, :class:`NoneType`, :class:`str`. You cannot use strings that would be converted to any of the other types like ``'None'``, ``'True'``, ``'False'``, ``'4.0'``, and ``'4'``. The following code converts an :class:`audfactory.Lookup` object into a :class:`pandas.DataFrame`: .. code-block:: python index, data = [], [] if len(lookup.table) > 1: index = [entry[0] for entry in lookup.table[1:]] data = [entry[1:] for entry in lookup.table[1:]] df = pd.DataFrame(data=data, index=index, columns=lookup.columns) Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table name: name of lookup table version: version of lookup table Raises: RuntimeError: if no lookup tables or no lookup table with the specified version can be found Example: >>> lookup = Lookup( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... version='0.2.0', ... ) >>> lookup id purpose sampling_rate train-db 3bb24968-759a-11ea-ab25-309c2364e602 prod 16000 voxceleb1 >>> lookup.table [['id', 'purpose', 'sampling_rate', 'train-db'], ['3bb24968-759a-11ea-ab25-309c2364e602', 'prod', 16000, 'voxceleb1']] >>> lookup['3bb24968-759a-11ea-ab25-309c2364e602'] {'purpose': 'prod', 'sampling_rate': 16000, 'train-db': 'voxceleb1'} """ def __init__( self, server, repository: str, group_id: str, *, name: str = 'lookup', version: str = None, ): self.server = server """server URL""" self.group_id = group_id """group ID of lookup table""" self.name = name """name of lookup table""" self.repository = repository """repository of lookup table""" if version is None: version = Lookup.latest_version( server, repository, group_id, name=name, ) if version is None: url = audfactory.url( server, repository=repository, group_id=group_id, name=name, ) raise RuntimeError( f"No lookup tables available under '{url}'" ) elif not Lookup.exists( server, repository, group_id, version, name=name ): url = audfactory.url( server, repository=repository, group_id=group_id, name=name, version=version, ) raise RuntimeError( f"Lookup table '{url}/" f"{name}-{version}.{LOOKUP_EXT}' does not exist yet." ) self.version = version """version of lookup table""" self.url = _url_table(server, repository, group_id, name, version) """Artifactory URL of lookup table""" def __getitem__(self, uid: str) -> typing.Dict: r"""Get lookup table entry by ID. Args: uid: ID of lookup table entry Returns: lookup table entry """ table = self.table columns = _columns(table) item = {} for row in table[1:]: if row[0] == uid: item = {c: p for c, p in zip(columns, row[1:])} break return item def __repr__(self): r"""String representation of lokkup table.""" table = self.table padding = 2 # Longest string in each column transposed_table = [list(x) for x in zip(*table)] col_width = [ len(max([str(word) for word in row], key=len)) + padding for row in transposed_table ] # Don't pad the last column col_width[-1] -= padding row = [ ''.join( str(word).ljust(width) for word, width in zip(row, col_width) ) for row in table ] return '\n'.join(row) @property def columns(self) -> typing.List: r"""Lookup table column names.""" table = _download(self.url) return _columns(table) @property def ids(self) -> typing.List: r"""Lookup table ids.""" table = _download(self.url) return _ids(table) @property def table(self) -> typing.List[typing.List]: r"""Lookup table.""" return _download(self.url) def append(self, params: typing.Dict[str, typing.Any]) -> str: r"""Append entry to lookup table. The lookup table entry gets a unique ID from ``params``, :attr:`self.name`, :attr:`self.group_id`, :attr:`self.version`, and :attr:`self.repository`. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of added lookup table entry Raises: RuntimeError: if entry for given ``params`` exists already, or the columns ``params`` do not match the columns of the lookup ValueError: if ``params`` contain unsupported data types """ table = self.table columns = _columns(table) _check_params_type(params) params = dict(sorted(params.items())) if self.contains(params): raise RuntimeError(f"Entry for '{params}' already exists.") if list(params.keys()) != columns: raise RuntimeError( f"Table columns '{columns}' do not match parameters '{params}'" ) # Add an UID to the new row and append it to the table uid = self.generate_uid( params=str(params), group_id=self.group_id, name=self.name, version=self.version, repository=self.repository, ) new_row = [uid] + list(params.values()) table.append(new_row) _upload(table, self.url) return uid def clear(self) -> None: r"""Clear lookup table.""" table = self.table table = [table[0]] # empty table with header _upload(table, self.url) def contains(self, params: typing.Dict[str, typing.Any]) -> bool: r"""Check if lookup table contains entry. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ``True`` if lookup table contains entry """ try: self.find(params) except RuntimeError: return False return True def extend( self, params: typing.Union[ str, typing.Sequence[str], typing.Dict[str, typing.Any], ], ) -> typing.List[typing.List]: r"""Extend columns of lookup table. If no parameter values are given for the new columns, they are set to ``None``. Args: params: lookup table entry in the form of ``{column: parameter}`` or ``[column]`` or ``column`` Returns: lookup table Raises: ValueError: if ``params`` contain unsupported data types """ if isinstance(params, str): params = [params] if isinstance(params, (tuple, list)): params = {param: None for param in params} _check_params_type(params) table = self.table columns = _columns(table) for param, value in params.items(): if param not in columns: # Append param key to columns table[0] += [param] # FIXME: the following code seems ugly to me if len(table) == 1 and value is not None: # Start from empty table, by first updating the columns _upload(table, self.url) original_params = {p: None for p in columns} self.append({**original_params, **{param: value}}) table = self.table else: for n in range(len(table[1:])): # Append param value to every row table[n + 1] += [value] table = _sort(table) _upload(table, self.url) return table def find(self, params: typing.Dict[str, typing.Any]) -> str: r"""Find entry in lookup table. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of lookup table entry Raises: RuntimeError: if lookup table entry cannot be found """ table = self.table params = dict(sorted(params.items())) for row in table[1:]: uid = row[0] entries = row[1:] if entries == list(params.values()): return uid raise RuntimeError( f"Could not find requested entry '{params}' " f"in version {self.version}:\n\n{table}" ) def remove(self, params: typing.Dict[str, typing.Any]) -> str: r"""Remove entry from lookup table. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of removed entry """ table = self.table uid = self.find(params) for n in range(len(table)): if table[n][0] == uid: table.pop(n) break _upload(table, self.url) return uid @staticmethod def create( server: str, repository: str, group_id: str, version: str, params: typing.Sequence[str] = (), *, name: str = 'lookup', force: bool = False ) -> str: r"""Create lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table params: lookup table column names name: name of lookup table force: if ``True`` an existing lookup table is overwritten Returns: URL of lookup table Raises: RuntimeError: if lookup table exists already and ``force=False`` """ ex = Lookup.exists(server, repository, group_id, version, name=name) url = _url_table(server, repository, group_id, name, version) if force or not ex: table = [['id'] + sorted(params)] _upload(table, url) else: raise RuntimeError( f"Lookup table '{name}-{version}' exists already." ) return url @staticmethod def delete( server: str, repository: str, group_id: str, version: str, *, name: str = 'lookup', force: bool = True, ) -> None: r"""Delete lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table name: name of lookup table force: if ``True`` removes lookup table even if not empty Raises: RuntimeError: if lookup table is not empty and ``force=False`` """ lookup = Lookup( server, repository, group_id, name=name, version=version, ) if len(lookup.table) > 1: if not force: raise RuntimeError( f"Cannot remove lookup table '{name}-{version}' " f"if it is not empty.") lookup.clear() audfactory.path(lookup.url).parent.rmdir() @staticmethod def exists( server: str, repository: str, group_id: str, version: str, *, name: str = 'lookup', ) -> bool: r"""Check if lookup table exists on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table name: name of lookup table Returns: ``True`` if lookup table exists Example: >>> Lookup.exists( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... '0.1.0', ... ) True """ versions = audfactory.versions(server, repository, group_id, name) return version in versions @staticmethod def latest_version( server: str, repository: str, group_id: str, *, params: typing.Dict[str, typing.Any] = None, name: str = 'lookup', ) -> typing.Optional[str]: r"""Latest version of lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table params: lookup table entry in the form of ``{column: parameter}`` name: name of lookup table Returns: latest version of lookup table Example: >>> Lookup.latest_version( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... ) '0.2.0' """ v = Lookup.versions(server, repository, group_id, params, name=name) if len(v) > 0: return v[-1] else: return None @staticmethod def generate_uid( *, params: typing.Dict[str, typing.Any], name: str, group_id: str, version: str, repository: str, ) -> str: r"""Generate unique ID. It converts ``params`` to a string, and concatenates it with ``name``, ``group_id``, ``version``, and ``repository``. From that concatenated string a unique ID is derived. Args: params: params in the form of ``{column: parameter}`` group_id: group ID of lookup table name: name of lookup table version: version of lookup table repository: repository of lookup table Returns: unique identifier of length 36 Example: >>> Lookup.generate_uid( ... params={0: None}, ... name='name', ... group_id='group.id', ... version='1.0.0', ... repository='models-public-local', ... ) 'afe694a5-8bad-4dbc-73ba-636f18340615' """ unique_string = ( str(params) + group_id + name + version + repository ) uid = audeer.uid(from_string=unique_string) return uid @staticmethod def versions( server: str, repository: str, group_id: str, params: typing.Dict[str, typing.Any] = None, *, name: str = 'lookup', ) -> list: r"""Available versions of lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table params: lookup table entry in the form of ``{column: parameter}`` name: name of lookup table Returns: available versions of lookup table Example: >>> Lookup.versions( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... ) ['0.1.0', '0.2.0'] """ versions = audfactory.versions(server, repository, group_id, name) if params is not None: filtered_versions = [] for version in versions: lookup = Lookup( server, repository, group_id, name=name, version=version, ) if lookup.contains(params): filtered_versions.append(version) versions = filtered_versions return versions def _check_params_type(params): r"""Raise error if params includes wrong data types.""" for value in params.values(): if not isinstance(value, (bool, float, int, type(None), str)): raise ValueError( "'params' can only contain values of type: " "bool, float, int, NoneType, str. " f"Yours includes {type(value)}" ) if isinstance(value, str): # Forbid strings that are converted to other types try: int(value) except ValueError: pass else: raise ValueError( f"'{value}' is forbidden, use the int {value} instead" ) try: float(value) except ValueError: pass else: raise ValueError( f"'{value}' is forbidden, use the float {value} instead" ) if value in ['True', 'False']: raise ValueError( f"'{value}' is forbidden, use the bool {value} instead" ) if value == 'None': raise ValueError( f"'{value}' is forbidden, use the NoneType {value} instead" ) def _columns(table: typing.List[typing.List]) -> typing.List: return table[0][1:] def _ids(table: typing.List[typing.List]) -> typing.List: return [row[0] for row in table[1:]] def _import_csv(s): r"""Convert strings to int, float, and None. The build in CSV reader returns only strings. """ if s == '': return None if s == 'True': return True if s == 'False': return False try: s = int(s) except ValueError: try: s = float(s) except ValueError: pass return s def _download(url: str) -> typing.List[typing.List]: r = audfactory.rest_api_get(url) code = r.status_code if code in [403, 404]: # pragma: no cover raise RuntimeError( f"{code}, URL not found or no access rights: '{url}'" ) elif code != 200: # pragma: no cover raise RuntimeError( f"{code}, problem downloading '{url}'.\n{audfactory.REPORT_ISSUE}" ) r.encoding = 'utf-8' table = [] csvreader = csv.reader(r.text.splitlines(), delimiter=',') for row in csvreader: # Convert '' to None row = [_import_csv(r) for r in row] table.append(row) return table def _sort(table: typing.List[typing.List]) -> typing.List[typing.List]: # Get index to sort each row, excluding 'id' idx = sorted(range(len(table[0][1:])), key=lambda k: table[0][k + 1]) idx = [0] + [i + 1 for i in idx] for n in range(len(table)): table[n] = [table[n][i] for i in idx] return table def _upload( table: typing.List[typing.List], url: str, ) -> None: r"""Upload table to a CSV file on Artifactory without using a tmp file.""" fobj = io.StringIO() writer = csv.writer(fobj, delimiter=',') writer.writerows(table) # Seek to beginning of file, otherwise an empty CSV file wil be written fobj.seek(0) artifactory_path = audfactory.path(url) if not artifactory_path.parent.exists(): artifactory_path.parent.mkdir() artifactory_path.deploy(fobj) return url def _url_table( server: str, repository: str, group_id: str, name: str, version: str, ) -> str: url = audfactory.url( server, repository=repository, group_id=group_id, name=name, version=version, ) return f'{url}/{name}-{version}.{LOOKUP_EXT}'
audfactory/core/lookup.py
import csv import io import typing import audeer import audfactory.core.api as audfactory # Skip doctests until we have public lookup tables __doctest_skip__ = ['*'] LOOKUP_EXT = 'csv' class Lookup: r"""Lookup table for managing artifact flavors on Artifactory. It creates one row for every flavor, and assigns a unique ID to it. The columns are parameters associated with the flavor. The parameter names are stored as column headers. The column values can be of type :class:`bool`, :class:`float`, :class:`int`, :class:`NoneType`, :class:`str`. You cannot use strings that would be converted to any of the other types like ``'None'``, ``'True'``, ``'False'``, ``'4.0'``, and ``'4'``. The following code converts an :class:`audfactory.Lookup` object into a :class:`pandas.DataFrame`: .. code-block:: python index, data = [], [] if len(lookup.table) > 1: index = [entry[0] for entry in lookup.table[1:]] data = [entry[1:] for entry in lookup.table[1:]] df = pd.DataFrame(data=data, index=index, columns=lookup.columns) Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table name: name of lookup table version: version of lookup table Raises: RuntimeError: if no lookup tables or no lookup table with the specified version can be found Example: >>> lookup = Lookup( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... version='0.2.0', ... ) >>> lookup id purpose sampling_rate train-db 3bb24968-759a-11ea-ab25-309c2364e602 prod 16000 voxceleb1 >>> lookup.table [['id', 'purpose', 'sampling_rate', 'train-db'], ['3bb24968-759a-11ea-ab25-309c2364e602', 'prod', 16000, 'voxceleb1']] >>> lookup['3bb24968-759a-11ea-ab25-309c2364e602'] {'purpose': 'prod', 'sampling_rate': 16000, 'train-db': 'voxceleb1'} """ def __init__( self, server, repository: str, group_id: str, *, name: str = 'lookup', version: str = None, ): self.server = server """server URL""" self.group_id = group_id """group ID of lookup table""" self.name = name """name of lookup table""" self.repository = repository """repository of lookup table""" if version is None: version = Lookup.latest_version( server, repository, group_id, name=name, ) if version is None: url = audfactory.url( server, repository=repository, group_id=group_id, name=name, ) raise RuntimeError( f"No lookup tables available under '{url}'" ) elif not Lookup.exists( server, repository, group_id, version, name=name ): url = audfactory.url( server, repository=repository, group_id=group_id, name=name, version=version, ) raise RuntimeError( f"Lookup table '{url}/" f"{name}-{version}.{LOOKUP_EXT}' does not exist yet." ) self.version = version """version of lookup table""" self.url = _url_table(server, repository, group_id, name, version) """Artifactory URL of lookup table""" def __getitem__(self, uid: str) -> typing.Dict: r"""Get lookup table entry by ID. Args: uid: ID of lookup table entry Returns: lookup table entry """ table = self.table columns = _columns(table) item = {} for row in table[1:]: if row[0] == uid: item = {c: p for c, p in zip(columns, row[1:])} break return item def __repr__(self): r"""String representation of lokkup table.""" table = self.table padding = 2 # Longest string in each column transposed_table = [list(x) for x in zip(*table)] col_width = [ len(max([str(word) for word in row], key=len)) + padding for row in transposed_table ] # Don't pad the last column col_width[-1] -= padding row = [ ''.join( str(word).ljust(width) for word, width in zip(row, col_width) ) for row in table ] return '\n'.join(row) @property def columns(self) -> typing.List: r"""Lookup table column names.""" table = _download(self.url) return _columns(table) @property def ids(self) -> typing.List: r"""Lookup table ids.""" table = _download(self.url) return _ids(table) @property def table(self) -> typing.List[typing.List]: r"""Lookup table.""" return _download(self.url) def append(self, params: typing.Dict[str, typing.Any]) -> str: r"""Append entry to lookup table. The lookup table entry gets a unique ID from ``params``, :attr:`self.name`, :attr:`self.group_id`, :attr:`self.version`, and :attr:`self.repository`. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of added lookup table entry Raises: RuntimeError: if entry for given ``params`` exists already, or the columns ``params`` do not match the columns of the lookup ValueError: if ``params`` contain unsupported data types """ table = self.table columns = _columns(table) _check_params_type(params) params = dict(sorted(params.items())) if self.contains(params): raise RuntimeError(f"Entry for '{params}' already exists.") if list(params.keys()) != columns: raise RuntimeError( f"Table columns '{columns}' do not match parameters '{params}'" ) # Add an UID to the new row and append it to the table uid = self.generate_uid( params=str(params), group_id=self.group_id, name=self.name, version=self.version, repository=self.repository, ) new_row = [uid] + list(params.values()) table.append(new_row) _upload(table, self.url) return uid def clear(self) -> None: r"""Clear lookup table.""" table = self.table table = [table[0]] # empty table with header _upload(table, self.url) def contains(self, params: typing.Dict[str, typing.Any]) -> bool: r"""Check if lookup table contains entry. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ``True`` if lookup table contains entry """ try: self.find(params) except RuntimeError: return False return True def extend( self, params: typing.Union[ str, typing.Sequence[str], typing.Dict[str, typing.Any], ], ) -> typing.List[typing.List]: r"""Extend columns of lookup table. If no parameter values are given for the new columns, they are set to ``None``. Args: params: lookup table entry in the form of ``{column: parameter}`` or ``[column]`` or ``column`` Returns: lookup table Raises: ValueError: if ``params`` contain unsupported data types """ if isinstance(params, str): params = [params] if isinstance(params, (tuple, list)): params = {param: None for param in params} _check_params_type(params) table = self.table columns = _columns(table) for param, value in params.items(): if param not in columns: # Append param key to columns table[0] += [param] # FIXME: the following code seems ugly to me if len(table) == 1 and value is not None: # Start from empty table, by first updating the columns _upload(table, self.url) original_params = {p: None for p in columns} self.append({**original_params, **{param: value}}) table = self.table else: for n in range(len(table[1:])): # Append param value to every row table[n + 1] += [value] table = _sort(table) _upload(table, self.url) return table def find(self, params: typing.Dict[str, typing.Any]) -> str: r"""Find entry in lookup table. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of lookup table entry Raises: RuntimeError: if lookup table entry cannot be found """ table = self.table params = dict(sorted(params.items())) for row in table[1:]: uid = row[0] entries = row[1:] if entries == list(params.values()): return uid raise RuntimeError( f"Could not find requested entry '{params}' " f"in version {self.version}:\n\n{table}" ) def remove(self, params: typing.Dict[str, typing.Any]) -> str: r"""Remove entry from lookup table. Args: params: lookup table entry in the form of ``{column: parameter}`` Returns: ID of removed entry """ table = self.table uid = self.find(params) for n in range(len(table)): if table[n][0] == uid: table.pop(n) break _upload(table, self.url) return uid @staticmethod def create( server: str, repository: str, group_id: str, version: str, params: typing.Sequence[str] = (), *, name: str = 'lookup', force: bool = False ) -> str: r"""Create lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table params: lookup table column names name: name of lookup table force: if ``True`` an existing lookup table is overwritten Returns: URL of lookup table Raises: RuntimeError: if lookup table exists already and ``force=False`` """ ex = Lookup.exists(server, repository, group_id, version, name=name) url = _url_table(server, repository, group_id, name, version) if force or not ex: table = [['id'] + sorted(params)] _upload(table, url) else: raise RuntimeError( f"Lookup table '{name}-{version}' exists already." ) return url @staticmethod def delete( server: str, repository: str, group_id: str, version: str, *, name: str = 'lookup', force: bool = True, ) -> None: r"""Delete lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table name: name of lookup table force: if ``True`` removes lookup table even if not empty Raises: RuntimeError: if lookup table is not empty and ``force=False`` """ lookup = Lookup( server, repository, group_id, name=name, version=version, ) if len(lookup.table) > 1: if not force: raise RuntimeError( f"Cannot remove lookup table '{name}-{version}' " f"if it is not empty.") lookup.clear() audfactory.path(lookup.url).parent.rmdir() @staticmethod def exists( server: str, repository: str, group_id: str, version: str, *, name: str = 'lookup', ) -> bool: r"""Check if lookup table exists on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table version: version of lookup table name: name of lookup table Returns: ``True`` if lookup table exists Example: >>> Lookup.exists( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... '0.1.0', ... ) True """ versions = audfactory.versions(server, repository, group_id, name) return version in versions @staticmethod def latest_version( server: str, repository: str, group_id: str, *, params: typing.Dict[str, typing.Any] = None, name: str = 'lookup', ) -> typing.Optional[str]: r"""Latest version of lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table params: lookup table entry in the form of ``{column: parameter}`` name: name of lookup table Returns: latest version of lookup table Example: >>> Lookup.latest_version( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... ) '0.2.0' """ v = Lookup.versions(server, repository, group_id, params, name=name) if len(v) > 0: return v[-1] else: return None @staticmethod def generate_uid( *, params: typing.Dict[str, typing.Any], name: str, group_id: str, version: str, repository: str, ) -> str: r"""Generate unique ID. It converts ``params`` to a string, and concatenates it with ``name``, ``group_id``, ``version``, and ``repository``. From that concatenated string a unique ID is derived. Args: params: params in the form of ``{column: parameter}`` group_id: group ID of lookup table name: name of lookup table version: version of lookup table repository: repository of lookup table Returns: unique identifier of length 36 Example: >>> Lookup.generate_uid( ... params={0: None}, ... name='name', ... group_id='group.id', ... version='1.0.0', ... repository='models-public-local', ... ) 'afe694a5-8bad-4dbc-73ba-636f18340615' """ unique_string = ( str(params) + group_id + name + version + repository ) uid = audeer.uid(from_string=unique_string) return uid @staticmethod def versions( server: str, repository: str, group_id: str, params: typing.Dict[str, typing.Any] = None, *, name: str = 'lookup', ) -> list: r"""Available versions of lookup table on server. Args: server: URL of Artifactory server, e.g. https://audeering.jfrog.io/artifactory repository: repository of lookup table group_id: group ID of lookup table params: lookup table entry in the form of ``{column: parameter}`` name: name of lookup table Returns: available versions of lookup table Example: >>> Lookup.versions( ... 'https://artifactory.audeering.com/artifactory', ... 'models-public-local', ... 'com.audeering.models.gender.voxcnn', ... ) ['0.1.0', '0.2.0'] """ versions = audfactory.versions(server, repository, group_id, name) if params is not None: filtered_versions = [] for version in versions: lookup = Lookup( server, repository, group_id, name=name, version=version, ) if lookup.contains(params): filtered_versions.append(version) versions = filtered_versions return versions def _check_params_type(params): r"""Raise error if params includes wrong data types.""" for value in params.values(): if not isinstance(value, (bool, float, int, type(None), str)): raise ValueError( "'params' can only contain values of type: " "bool, float, int, NoneType, str. " f"Yours includes {type(value)}" ) if isinstance(value, str): # Forbid strings that are converted to other types try: int(value) except ValueError: pass else: raise ValueError( f"'{value}' is forbidden, use the int {value} instead" ) try: float(value) except ValueError: pass else: raise ValueError( f"'{value}' is forbidden, use the float {value} instead" ) if value in ['True', 'False']: raise ValueError( f"'{value}' is forbidden, use the bool {value} instead" ) if value == 'None': raise ValueError( f"'{value}' is forbidden, use the NoneType {value} instead" ) def _columns(table: typing.List[typing.List]) -> typing.List: return table[0][1:] def _ids(table: typing.List[typing.List]) -> typing.List: return [row[0] for row in table[1:]] def _import_csv(s): r"""Convert strings to int, float, and None. The build in CSV reader returns only strings. """ if s == '': return None if s == 'True': return True if s == 'False': return False try: s = int(s) except ValueError: try: s = float(s) except ValueError: pass return s def _download(url: str) -> typing.List[typing.List]: r = audfactory.rest_api_get(url) code = r.status_code if code in [403, 404]: # pragma: no cover raise RuntimeError( f"{code}, URL not found or no access rights: '{url}'" ) elif code != 200: # pragma: no cover raise RuntimeError( f"{code}, problem downloading '{url}'.\n{audfactory.REPORT_ISSUE}" ) r.encoding = 'utf-8' table = [] csvreader = csv.reader(r.text.splitlines(), delimiter=',') for row in csvreader: # Convert '' to None row = [_import_csv(r) for r in row] table.append(row) return table def _sort(table: typing.List[typing.List]) -> typing.List[typing.List]: # Get index to sort each row, excluding 'id' idx = sorted(range(len(table[0][1:])), key=lambda k: table[0][k + 1]) idx = [0] + [i + 1 for i in idx] for n in range(len(table)): table[n] = [table[n][i] for i in idx] return table def _upload( table: typing.List[typing.List], url: str, ) -> None: r"""Upload table to a CSV file on Artifactory without using a tmp file.""" fobj = io.StringIO() writer = csv.writer(fobj, delimiter=',') writer.writerows(table) # Seek to beginning of file, otherwise an empty CSV file wil be written fobj.seek(0) artifactory_path = audfactory.path(url) if not artifactory_path.parent.exists(): artifactory_path.parent.mkdir() artifactory_path.deploy(fobj) return url def _url_table( server: str, repository: str, group_id: str, name: str, version: str, ) -> str: url = audfactory.url( server, repository=repository, group_id=group_id, name=name, version=version, ) return f'{url}/{name}-{version}.{LOOKUP_EXT}'
0.836955
0.382516
import collections import functools import itertools import json import operator import pathlib import subprocess import sys import pytest PATH = pathlib.Path(".pytest-deps") DEPS = set() TEST_FILES = set() def pytest_addoption(parser): group = parser.getgroup("run-changed") group.addoption( "--changed-only", action="store_true", dest="changed_only", help="", ) def pytest_unconfigure(): key = operator.itemgetter(0) indexed = { caller: set(c for _, c in called) for caller, called in itertools.groupby(sorted(DEPS, key=key), key=key) } result = {} for tf in TEST_FILES: mod_set = {tf} new = True while new: new = [indexed.get(tf, set()) for fname in tf] new = functools.reduce(lambda x, y: x.union(y), new, set()) new = new.difference(mod_set) mod_set = mod_set.union(new) result[tf] = mod_set del indexed result = {tf: list(mod_set) for tf, mod_set in result.items()} if PATH.exists(): with open(PATH, "r") as fp: old_index = json.load(fp) for tf, mod_set in result.items(): old_index[tf] = mod_set result = old_index with open(PATH, "w") as fp: json.dump(result, fp, sort_keys=True, indent=4) def pytest_runtest_makereport(item, call): pass def pytest_collection_modifyitems(session, config, items): changed_only = config.getoption("changed_only") if changed_only and PATH.exists(): with open(PATH, "r") as fp: inverse_file_index = json.load(fp) file_index = collections.defaultdict(set) for tf, mod_set in inverse_file_index.items(): for mod in mod_set: file_index[mod].add(tf) dirty = get_dirty_files() selected_test_files = [set(file_index.get(fname, [])) for fname in dirty] selected_test_files = functools.reduce( lambda x, y: x.union(y), selected_test_files, set() ) unknown_test_files = { item.module.__file__ for item in items if item.module.__file__ not in file_index } items[:] = [ item for item in items if item.module.__file__ in selected_test_files or item.module.__file__ in unknown_test_files ] @pytest.fixture(scope="function", autouse=True) def profile(request): if request.config.getoption("changed_only"): TEST_FILES.add(request.node.module.__file__) def trace_calls(frame, event, arg): if event != "call": return func_filename = frame.f_code.co_filename caller_filename = frame.f_back.f_code.co_filename if func_filename != caller_filename: DEPS.add((caller_filename, func_filename)) return sys.settrace(trace_calls) yield sys.settrace(None) else: yield def get_dirty_files(): proc = subprocess.run(["git", "status", "--porcelain"], stdout=subprocess.PIPE) proc.check_returncode() modified = set() untracked = set() for line in proc.stdout.decode().splitlines(): action, fname = line[0:3], line[3:] if action == " M ": modified.add(fname) elif action == " D ": modified.add(fname) elif action == "?? ": fname = pathlib.Path(fname) if fname.is_dir(): for ffname in fname.glob("*"): untracked.add(str(ffname)) else: untracked.add(str(fname)) return {str(pathlib.Path(fname).absolute()) for fname in modified.union(untracked)}
pytest_run_changed/__init__.py
import collections import functools import itertools import json import operator import pathlib import subprocess import sys import pytest PATH = pathlib.Path(".pytest-deps") DEPS = set() TEST_FILES = set() def pytest_addoption(parser): group = parser.getgroup("run-changed") group.addoption( "--changed-only", action="store_true", dest="changed_only", help="", ) def pytest_unconfigure(): key = operator.itemgetter(0) indexed = { caller: set(c for _, c in called) for caller, called in itertools.groupby(sorted(DEPS, key=key), key=key) } result = {} for tf in TEST_FILES: mod_set = {tf} new = True while new: new = [indexed.get(tf, set()) for fname in tf] new = functools.reduce(lambda x, y: x.union(y), new, set()) new = new.difference(mod_set) mod_set = mod_set.union(new) result[tf] = mod_set del indexed result = {tf: list(mod_set) for tf, mod_set in result.items()} if PATH.exists(): with open(PATH, "r") as fp: old_index = json.load(fp) for tf, mod_set in result.items(): old_index[tf] = mod_set result = old_index with open(PATH, "w") as fp: json.dump(result, fp, sort_keys=True, indent=4) def pytest_runtest_makereport(item, call): pass def pytest_collection_modifyitems(session, config, items): changed_only = config.getoption("changed_only") if changed_only and PATH.exists(): with open(PATH, "r") as fp: inverse_file_index = json.load(fp) file_index = collections.defaultdict(set) for tf, mod_set in inverse_file_index.items(): for mod in mod_set: file_index[mod].add(tf) dirty = get_dirty_files() selected_test_files = [set(file_index.get(fname, [])) for fname in dirty] selected_test_files = functools.reduce( lambda x, y: x.union(y), selected_test_files, set() ) unknown_test_files = { item.module.__file__ for item in items if item.module.__file__ not in file_index } items[:] = [ item for item in items if item.module.__file__ in selected_test_files or item.module.__file__ in unknown_test_files ] @pytest.fixture(scope="function", autouse=True) def profile(request): if request.config.getoption("changed_only"): TEST_FILES.add(request.node.module.__file__) def trace_calls(frame, event, arg): if event != "call": return func_filename = frame.f_code.co_filename caller_filename = frame.f_back.f_code.co_filename if func_filename != caller_filename: DEPS.add((caller_filename, func_filename)) return sys.settrace(trace_calls) yield sys.settrace(None) else: yield def get_dirty_files(): proc = subprocess.run(["git", "status", "--porcelain"], stdout=subprocess.PIPE) proc.check_returncode() modified = set() untracked = set() for line in proc.stdout.decode().splitlines(): action, fname = line[0:3], line[3:] if action == " M ": modified.add(fname) elif action == " D ": modified.add(fname) elif action == "?? ": fname = pathlib.Path(fname) if fname.is_dir(): for ffname in fname.glob("*"): untracked.add(str(ffname)) else: untracked.add(str(fname)) return {str(pathlib.Path(fname).absolute()) for fname in modified.union(untracked)}
0.27914
0.158109
import argparse from gym.spaces import Dict, Discrete, Tuple, MultiDiscrete import logging import os import ray from ray import tune from ray.tune import register_env from ray.rllib.algorithms.qmix import QMixConfig from ray.rllib.env.multi_agent_env import ENV_STATE from ray.rllib.examples.env.two_step_game import TwoStepGame from ray.rllib.policy.policy import PolicySpec from ray.rllib.utils.test_utils import check_learning_achieved logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PG", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--mixer", type=str, default="qmix", choices=["qmix", "vdn", "none"], help="The mixer model to use.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=70000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=8.0, help="Reward at which we stop training." ) parser.add_argument( "--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.", ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode) if args.run == "contrib/MADDPG": logger.warning( "`contrib/MADDPG` is not longer a valid algorithm descriptor! " "Use `MADDPG` instead." ) args.run = "MADDPG" grouping = { "group_1": [0, 1], } obs_space = Tuple( [ Dict( { "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]), } ), Dict( { "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]), } ), ] ) act_space = Tuple( [ TwoStepGame.action_space, TwoStepGame.action_space, ] ) register_env( "grouped_twostep", lambda config: TwoStepGame(config).with_agent_groups( grouping, obs_space=obs_space, act_space=act_space ), ) if args.run == "MADDPG": obs_space = Discrete(6) act_space = TwoStepGame.action_space config = { "env": TwoStepGame, "env_config": { "actions_are_logits": True, }, "replay_buffer_config": {"learning_starts": 100}, "multiagent": { "policies": { "pol1": PolicySpec( observation_space=obs_space, action_space=act_space, config={"agent_id": 0}, ), "pol2": PolicySpec( observation_space=obs_space, action_space=act_space, config={"agent_id": 1}, ), }, "policy_mapping_fn": (lambda aid, **kwargs: "pol2" if aid else "pol1"), }, "framework": args.framework, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), } elif args.run == "QMIX": config = ( QMixConfig() .training(mixer=args.mixer, train_batch_size=32) .rollouts(num_rollout_workers=0, rollout_fragment_length=4) .exploration( exploration_config={ "final_epsilon": 0.0, } ) .environment( env="grouped_twostep", env_config={ "separate_state_space": True, "one_hot_state_encoding": True, }, ) .resources(num_gpus=int(os.environ.get("RLLIB_NUM_GPUS", "0"))) ) config = config.to_dict() else: config = { "env": TwoStepGame, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "framework": args.framework, } stop = { "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, "training_iteration": args.stop_iters, } results = tune.run(args.run, stop=stop, config=config, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()
rllib/examples/two_step_game.py
import argparse from gym.spaces import Dict, Discrete, Tuple, MultiDiscrete import logging import os import ray from ray import tune from ray.tune import register_env from ray.rllib.algorithms.qmix import QMixConfig from ray.rllib.env.multi_agent_env import ENV_STATE from ray.rllib.examples.env.two_step_game import TwoStepGame from ray.rllib.policy.policy import PolicySpec from ray.rllib.utils.test_utils import check_learning_achieved logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PG", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--mixer", type=str, default="qmix", choices=["qmix", "vdn", "none"], help="The mixer model to use.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=70000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=8.0, help="Reward at which we stop training." ) parser.add_argument( "--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.", ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode) if args.run == "contrib/MADDPG": logger.warning( "`contrib/MADDPG` is not longer a valid algorithm descriptor! " "Use `MADDPG` instead." ) args.run = "MADDPG" grouping = { "group_1": [0, 1], } obs_space = Tuple( [ Dict( { "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]), } ), Dict( { "obs": MultiDiscrete([2, 2, 2, 3]), ENV_STATE: MultiDiscrete([2, 2, 2]), } ), ] ) act_space = Tuple( [ TwoStepGame.action_space, TwoStepGame.action_space, ] ) register_env( "grouped_twostep", lambda config: TwoStepGame(config).with_agent_groups( grouping, obs_space=obs_space, act_space=act_space ), ) if args.run == "MADDPG": obs_space = Discrete(6) act_space = TwoStepGame.action_space config = { "env": TwoStepGame, "env_config": { "actions_are_logits": True, }, "replay_buffer_config": {"learning_starts": 100}, "multiagent": { "policies": { "pol1": PolicySpec( observation_space=obs_space, action_space=act_space, config={"agent_id": 0}, ), "pol2": PolicySpec( observation_space=obs_space, action_space=act_space, config={"agent_id": 1}, ), }, "policy_mapping_fn": (lambda aid, **kwargs: "pol2" if aid else "pol1"), }, "framework": args.framework, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), } elif args.run == "QMIX": config = ( QMixConfig() .training(mixer=args.mixer, train_batch_size=32) .rollouts(num_rollout_workers=0, rollout_fragment_length=4) .exploration( exploration_config={ "final_epsilon": 0.0, } ) .environment( env="grouped_twostep", env_config={ "separate_state_space": True, "one_hot_state_encoding": True, }, ) .resources(num_gpus=int(os.environ.get("RLLIB_NUM_GPUS", "0"))) ) config = config.to_dict() else: config = { "env": TwoStepGame, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "framework": args.framework, } stop = { "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, "training_iteration": args.stop_iters, } results = tune.run(args.run, stop=stop, config=config, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()
0.712832
0.22465
import unittest import sys import itertools import time import os from streamsx.topology.topology import * from streamsx.topology.tester import Tester from streamsx.topology import schema import streamsx.topology.context import streamsx.spl.op as op class TestPending(unittest.TestCase): _multiprocess_can_split_ = True """ Test pending connections. """ def setUp(self): Tester.setup_distributed(self) def test_simple_map(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = [ e + "PC" for e in data ] topo = Topology() pending = PendingStream(topo) ap = pending.stream.map(lambda s : s + "PC") self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_simple_filter(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = ['A3'] topo = Topology() pending = PendingStream(topo) ap = pending.stream.filter(lambda s : s.startswith('A')) ap = ap.filter(lambda s : s.endswith('3')) self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_fan_in_out(self): """Test pending connection fan in/out. """ data1 = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] data2 = ['X','Y', 'Z', 'Q', 'T', 'X'] all_data = data1 + data2 expected_pc = [ e + "PC" for e in all_data ] expected_cp = [ "CP" + e for e in all_data ] expected_su = [ "SU" + e + "US" for e in all_data ] topo = Topology() pending = PendingStream(topo) apc = pending.stream.map(lambda s : s + "PC") acp = pending.stream.map(lambda s : 'CP' + s) self.assertFalse(pending.is_complete()) s1 = topo.source(data1) s2 = topo.source(data2) su = s1.union({s2}) asu = su.map(lambda s : 'SU' + s + 'US') pending.complete(su) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(apc, expected_pc, ordered=False) tester.contents(acp, expected_cp, ordered=False) tester.contents(asu, expected_su, ordered=False) tester.test(self.test_ctxtype, self.test_config) def test_feedback_loop(self): topo = Topology() data = ['A','B', 'A', 'A', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] expected = ['B', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] s = topo.source(data) s = s.filter(lambda t : time.sleep(1) or True).as_string(); feedback = PendingStream(topo) df = op.Invoke(topo, 'spl.utility::DynamicFilter', inputs = [s, feedback.stream], schemas= [schema.CommonSchema.String]) df.params['key'] = df.attribute(s, 'string') df.params['addKey'] = df.attribute(feedback.stream, 'string') delayed_out = op.Map('spl.utility::Delay', df.outputs[0], params={'delay': 0.05}).stream x = delayed_out.filter(lambda s : s == 'X').map(lambda s : 'A').as_string() i = topo.source(['B', 'X', 'C', 'D', 'E']).as_string() x = x.union({i}) feedback.complete(x) result = delayed_out result.print() #streamsx.topology.context.submit('TOOLKIT', topo) tester = Tester(topo) tester.contents(result, expected) tester.test(self.test_ctxtype, self.test_config) class TestSasPending(TestPending): def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=True) class TestPendingCompileOnly(unittest.TestCase): @unittest.skipIf("STREAMS_INSTALL" not in os.environ, "STREAMS_INSTALL not set") def test_pure_loop(self): topo = Topology() feedback = PendingStream(topo) df = op.Map('spl.utility::Custom', feedback.stream, schema=schema.CommonSchema.String) delayed_out = op.Map('spl.utility::Delay', df.stream, params={'delay': 0.05}).stream feedback.complete(delayed_out) sr = streamsx.topology.context.submit('BUNDLE', topo) self.assertEqual(0, sr['return_code']) os.remove(sr.bundlePath)
test/python/topology/test2_pending.py
import unittest import sys import itertools import time import os from streamsx.topology.topology import * from streamsx.topology.tester import Tester from streamsx.topology import schema import streamsx.topology.context import streamsx.spl.op as op class TestPending(unittest.TestCase): _multiprocess_can_split_ = True """ Test pending connections. """ def setUp(self): Tester.setup_distributed(self) def test_simple_map(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = [ e + "PC" for e in data ] topo = Topology() pending = PendingStream(topo) ap = pending.stream.map(lambda s : s + "PC") self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_simple_filter(self): """Test pending connection simple case. """ data = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] expected = ['A3'] topo = Topology() pending = PendingStream(topo) ap = pending.stream.filter(lambda s : s.startswith('A')) ap = ap.filter(lambda s : s.endswith('3')) self.assertFalse(pending.is_complete()) pending.complete(topo.source(data)) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(ap, expected) tester.test(self.test_ctxtype, self.test_config) def test_fan_in_out(self): """Test pending connection fan in/out. """ data1 = ['A1','B1', 'A2', 'A3', 'C1', 'C1'] data2 = ['X','Y', 'Z', 'Q', 'T', 'X'] all_data = data1 + data2 expected_pc = [ e + "PC" for e in all_data ] expected_cp = [ "CP" + e for e in all_data ] expected_su = [ "SU" + e + "US" for e in all_data ] topo = Topology() pending = PendingStream(topo) apc = pending.stream.map(lambda s : s + "PC") acp = pending.stream.map(lambda s : 'CP' + s) self.assertFalse(pending.is_complete()) s1 = topo.source(data1) s2 = topo.source(data2) su = s1.union({s2}) asu = su.map(lambda s : 'SU' + s + 'US') pending.complete(su) self.assertTrue(pending.is_complete()) tester = Tester(topo) tester.contents(apc, expected_pc, ordered=False) tester.contents(acp, expected_cp, ordered=False) tester.contents(asu, expected_su, ordered=False) tester.test(self.test_ctxtype, self.test_config) def test_feedback_loop(self): topo = Topology() data = ['A','B', 'A', 'A', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] expected = ['B', 'X', 'C', 'C', 'D', 'A', 'A', 'E'] s = topo.source(data) s = s.filter(lambda t : time.sleep(1) or True).as_string(); feedback = PendingStream(topo) df = op.Invoke(topo, 'spl.utility::DynamicFilter', inputs = [s, feedback.stream], schemas= [schema.CommonSchema.String]) df.params['key'] = df.attribute(s, 'string') df.params['addKey'] = df.attribute(feedback.stream, 'string') delayed_out = op.Map('spl.utility::Delay', df.outputs[0], params={'delay': 0.05}).stream x = delayed_out.filter(lambda s : s == 'X').map(lambda s : 'A').as_string() i = topo.source(['B', 'X', 'C', 'D', 'E']).as_string() x = x.union({i}) feedback.complete(x) result = delayed_out result.print() #streamsx.topology.context.submit('TOOLKIT', topo) tester = Tester(topo) tester.contents(result, expected) tester.test(self.test_ctxtype, self.test_config) class TestSasPending(TestPending): def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=True) class TestPendingCompileOnly(unittest.TestCase): @unittest.skipIf("STREAMS_INSTALL" not in os.environ, "STREAMS_INSTALL not set") def test_pure_loop(self): topo = Topology() feedback = PendingStream(topo) df = op.Map('spl.utility::Custom', feedback.stream, schema=schema.CommonSchema.String) delayed_out = op.Map('spl.utility::Delay', df.stream, params={'delay': 0.05}).stream feedback.complete(delayed_out) sr = streamsx.topology.context.submit('BUNDLE', topo) self.assertEqual(0, sr['return_code']) os.remove(sr.bundlePath)
0.380183
0.39257
from urllib.parse import urlparse from google.cloud import storage import numpy as np import resampy import tensorflow as tf import urllib.request import itertools import io import jsonlines from pydub import AudioSegment import yamnet.params as yamnet_params import yamnet.yamnet as yamnet_model import os from argparse import ArgumentParser import config import logging logger = logging.getLogger(__name__) def main(): config = parse_arguments() setup_logging(config) run_inference(config) def parse_arguments(): parser = ArgumentParser("Run YAMNET on a set of audio files.") parser.add_argument("-i", "--input-path", default="gs://the-peoples-speech-west-europe/forced-aligner/cuda-forced-aligner/output_work_dir_5b/output_work_dir_5b/training_set", help="Path to yamnet dataset.") parser.add_argument("-o", "--output-path", default="results.jsonl", help="The path to save the results.") parser.add_argument("-c", "--config-file-path", default=".json", help="The path to the config file.") parser.add_argument("-v", "--verbose", default=False, action="store_true", help="Print out debug messages.") parser.add_argument("-vi", "--verbose-info", default=False, action="store_true", help="Print out info messages.") args = parser.parse_args() arguments = vars(args) config = setup_config(arguments) return config def run_inference(config): model, classes, params = load_model(config) dataset, filenames = get_dataset(config) run_model_on_dataset(model, classes, params, dataset, filenames, config) def get_dataset(config): logger.debug("Getting file paths") files, filenames = list_files(config["input_path"], config) logger.debug("Making dataset") ds = files.map(tf.io.read_file) #ds = ds.map(tf.audio.decode_wav) ds = ds.map(lambda file : tf.py_function(func=decode_mp3, inp=[file], Tout=tf.float32)) ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE) return ds, filenames def decode_mp3(mp3_tensor): mp3_data = mp3_tensor.numpy() mp3_file = io.BytesIO(mp3_data) mp3_audio = AudioSegment.from_file(mp3_file, format="mp3") logger.debug("duration: " + str(mp3_audio.duration_seconds) + ", channels: " + str(mp3_audio.channels) + ", sampling_width: " + str(mp3_audio.sample_width) + ", sampling rate: " + str(mp3_audio.frame_rate) + ", dbfs: " + str(mp3_audio.dBFS) ) mp3_audio = mp3_audio.set_channels(1) mp3_audio = mp3_audio.set_sample_width(2) seconds = mp3_audio.duration_seconds max_duration = 600 if seconds > max_duration: mp3_audio = mp3_audio[0:max_duration*1000] array = mp3_audio.get_array_of_samples() array = np.append(array, [int(mp3_audio.frame_rate)]) return array def list_files(path, config): if not "max_files" in config: filenames = tf.data.Dataset.list_files(path, "*/*.wav", shuffle=False) return filenames, [filename.numpy().decode("utf-8") for filename in filenames] return list_blobs(path, int(config["max_files"])) def list_blobs(path, max_files): result = urlparse(path, allow_fragments=False) logger.debug("Path: " + str(result)) files = list_blobs_with_prefix(result.netloc, result.path.lstrip("/")) files = list(itertools.islice(files, max_files)) logger.debug("Found matching files under " + path + ": " + str(files)) filenames = [os.path.join("gs://" + result.netloc, filename) for filename in files] return tf.data.Dataset.list_files(filenames, shuffle=False), filenames def list_blobs_with_prefix(bucket_name, prefix, delimiter=None): """Lists all the blobs in the bucket that begin with the prefix. This can be used to list all blobs in a "folder", e.g. "public/". The delimiter argument can be used to restrict the results to only the "files" in the given "folder". Without the delimiter, the entire tree under the prefix is returned. For example, given these blobs: a/1.txt a/b/2.txt If you specify prefix ='a/', without a delimiter, you'll get back: a/1.txt a/b/2.txt However, if you specify prefix='a/' and delimiter='/', you'll get back only the file directly under 'a/': a/1.txt As part of the response, you'll also get back a blobs.prefixes entity that lists the "subfolders" under `a/`: a/b/ """ storage_client = storage.Client() # Note: Client.list_blobs requires at least package version 1.17.0. blobs = storage_client.list_blobs(bucket_name, prefix=prefix, delimiter=delimiter) for blob in blobs: logger.debug("Got file: " + str(blob.name)) if is_audio(blob.name): yield blob.name if delimiter: for prefix in blobs.prefixes: yield prefix def is_audio(path): base, extension = os.path.splitext(path) if extension.strip() == ".mp3": return True return False def load_model(config): logger.debug("Loading model...") weights = load_weights(config) params = yamnet_params.Params() yamnet = yamnet_model.yamnet_frames_model(params) yamnet.load_weights(weights) yamnet_classes = yamnet_model.class_names(os.path.join(os.path.dirname(__file__), "yamnet", "yamnet_class_map.csv")) return yamnet, yamnet_classes, params def load_weights(config): download_path = "https://storage.googleapis.com/audioset/yamnet.h5" target_path = "/tmp/yamnet/yamnet.h5" download(download_path, target_path) return target_path def download(url, path): logger.debug("Downloading from " + url + " to " + path) directory = os.path.dirname(path) os.makedirs(directory, exist_ok=True) if not os.path.exists(path): urllib.request.urlretrieve(url, path) logger.debug("Download success") def run_model_on_dataset(yamnet, classes, params, dataset, filenames, config): with jsonlines.open(config["output_path"], mode='w') as writer: for batch, filename in zip(dataset, filenames): logger.debug(filename) items = split_into_items(batch, config) logger.debug("chunks" + str(len(items))) for index, item in enumerate(items): results = run_model_on_batch(yamnet, classes, params, item) print_results(writer, filename, results, classes, index, config) def split_into_items(pair, config): batch = pair[:-1] sr = int(pair[-1]) chunk_size = int(float(config["seconds_per_chunk"]) * sr) array = batch.numpy() sample_count = array.shape[-1] logger.debug("total samples " + str(array.shape)) items = [] chunks = (sample_count + chunk_size - 1) // chunk_size for chunk in range(chunks): start = chunk * chunk_size end = min((chunk+1) * chunk_size, sample_count) items.append((array[start:end], sr)) return items def print_results(writer, filename, results, yamnet_classes, index, config): top, prediction = results seconds = index * float(config["seconds_per_chunk"]) print(str(int(seconds // 60)) + ":" + str(int(seconds) % 60) + '\n'.join(' {:12s}: {:.3f}'.format(yamnet_classes[i], prediction[i]) for i in top[0:1])) result = { "path" : filename, "seconds" : seconds } for i in top: result[yamnet_classes[i]] = float(prediction[i]) writer.write(result) def run_model_on_batch(yamnet, classes, params, pair): batch, sr = pair waveform = batch / 32768.0 # Convert to [-1.0, +1.0] # Convert to mono and the sample rate expected by YAMNet. if len(waveform.shape) > 1: waveform = np.mean(waveform, axis=1) if sr != params.sample_rate: waveform = resampy.resample(waveform, sr, params.sample_rate) # Predict YAMNet classes. scores, embeddings, spectrogram = yamnet(waveform) # Scores is a matrix of (time_frames, num_classes) classifier scores. # Average them along time to get an overall classifier output for the clip. prediction = np.mean(scores, axis=0) # Report the highest-scoring classes and their scores. top = np.argsort(prediction)[::-1][:5] return top, prediction def setup_config(dictionary): return config.ConfigurationSet( config.config_from_env(prefix="MLCOMMONS"), config.config_from_yaml(config_path(), read_from_file=True), config.config_from_dict(dictionary), ) def config_path(): home = os.path.expanduser("~") home_config_path = os.path.join(home, ".mlcommons", "config.yaml") if os.path.exists(home_config_path): return home_config_path return os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "config", "default.yaml") def setup_logging(arguments): logging_format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s" if arguments["verbose"]: logging.basicConfig(level=logging.DEBUG, format=logging_format) elif arguments["verbose_info"]: logging.basicConfig(level=logging.INFO, format=logging_format) else: logging.basicConfig(level=logging.WARNING, format=logging_format) root_logger = logging.getLogger() if arguments["verbose"]: root_logger.setLevel(logging.DEBUG) elif arguments["verbose_info"]: root_logger.setLevel(logging.INFO) else: root_logger.setLevel(logging.WARNING) logging.getLogger("numba.core.ssa").setLevel(logging.CRITICAL) logging.getLogger("numba.core.byteflow").setLevel(logging.CRITICAL) logging.getLogger("numba.core.interpreter").setLevel(logging.CRITICAL) if __name__ == '__main__': main()
galvasr2/yamnet/inference.py
from urllib.parse import urlparse from google.cloud import storage import numpy as np import resampy import tensorflow as tf import urllib.request import itertools import io import jsonlines from pydub import AudioSegment import yamnet.params as yamnet_params import yamnet.yamnet as yamnet_model import os from argparse import ArgumentParser import config import logging logger = logging.getLogger(__name__) def main(): config = parse_arguments() setup_logging(config) run_inference(config) def parse_arguments(): parser = ArgumentParser("Run YAMNET on a set of audio files.") parser.add_argument("-i", "--input-path", default="gs://the-peoples-speech-west-europe/forced-aligner/cuda-forced-aligner/output_work_dir_5b/output_work_dir_5b/training_set", help="Path to yamnet dataset.") parser.add_argument("-o", "--output-path", default="results.jsonl", help="The path to save the results.") parser.add_argument("-c", "--config-file-path", default=".json", help="The path to the config file.") parser.add_argument("-v", "--verbose", default=False, action="store_true", help="Print out debug messages.") parser.add_argument("-vi", "--verbose-info", default=False, action="store_true", help="Print out info messages.") args = parser.parse_args() arguments = vars(args) config = setup_config(arguments) return config def run_inference(config): model, classes, params = load_model(config) dataset, filenames = get_dataset(config) run_model_on_dataset(model, classes, params, dataset, filenames, config) def get_dataset(config): logger.debug("Getting file paths") files, filenames = list_files(config["input_path"], config) logger.debug("Making dataset") ds = files.map(tf.io.read_file) #ds = ds.map(tf.audio.decode_wav) ds = ds.map(lambda file : tf.py_function(func=decode_mp3, inp=[file], Tout=tf.float32)) ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE) return ds, filenames def decode_mp3(mp3_tensor): mp3_data = mp3_tensor.numpy() mp3_file = io.BytesIO(mp3_data) mp3_audio = AudioSegment.from_file(mp3_file, format="mp3") logger.debug("duration: " + str(mp3_audio.duration_seconds) + ", channels: " + str(mp3_audio.channels) + ", sampling_width: " + str(mp3_audio.sample_width) + ", sampling rate: " + str(mp3_audio.frame_rate) + ", dbfs: " + str(mp3_audio.dBFS) ) mp3_audio = mp3_audio.set_channels(1) mp3_audio = mp3_audio.set_sample_width(2) seconds = mp3_audio.duration_seconds max_duration = 600 if seconds > max_duration: mp3_audio = mp3_audio[0:max_duration*1000] array = mp3_audio.get_array_of_samples() array = np.append(array, [int(mp3_audio.frame_rate)]) return array def list_files(path, config): if not "max_files" in config: filenames = tf.data.Dataset.list_files(path, "*/*.wav", shuffle=False) return filenames, [filename.numpy().decode("utf-8") for filename in filenames] return list_blobs(path, int(config["max_files"])) def list_blobs(path, max_files): result = urlparse(path, allow_fragments=False) logger.debug("Path: " + str(result)) files = list_blobs_with_prefix(result.netloc, result.path.lstrip("/")) files = list(itertools.islice(files, max_files)) logger.debug("Found matching files under " + path + ": " + str(files)) filenames = [os.path.join("gs://" + result.netloc, filename) for filename in files] return tf.data.Dataset.list_files(filenames, shuffle=False), filenames def list_blobs_with_prefix(bucket_name, prefix, delimiter=None): """Lists all the blobs in the bucket that begin with the prefix. This can be used to list all blobs in a "folder", e.g. "public/". The delimiter argument can be used to restrict the results to only the "files" in the given "folder". Without the delimiter, the entire tree under the prefix is returned. For example, given these blobs: a/1.txt a/b/2.txt If you specify prefix ='a/', without a delimiter, you'll get back: a/1.txt a/b/2.txt However, if you specify prefix='a/' and delimiter='/', you'll get back only the file directly under 'a/': a/1.txt As part of the response, you'll also get back a blobs.prefixes entity that lists the "subfolders" under `a/`: a/b/ """ storage_client = storage.Client() # Note: Client.list_blobs requires at least package version 1.17.0. blobs = storage_client.list_blobs(bucket_name, prefix=prefix, delimiter=delimiter) for blob in blobs: logger.debug("Got file: " + str(blob.name)) if is_audio(blob.name): yield blob.name if delimiter: for prefix in blobs.prefixes: yield prefix def is_audio(path): base, extension = os.path.splitext(path) if extension.strip() == ".mp3": return True return False def load_model(config): logger.debug("Loading model...") weights = load_weights(config) params = yamnet_params.Params() yamnet = yamnet_model.yamnet_frames_model(params) yamnet.load_weights(weights) yamnet_classes = yamnet_model.class_names(os.path.join(os.path.dirname(__file__), "yamnet", "yamnet_class_map.csv")) return yamnet, yamnet_classes, params def load_weights(config): download_path = "https://storage.googleapis.com/audioset/yamnet.h5" target_path = "/tmp/yamnet/yamnet.h5" download(download_path, target_path) return target_path def download(url, path): logger.debug("Downloading from " + url + " to " + path) directory = os.path.dirname(path) os.makedirs(directory, exist_ok=True) if not os.path.exists(path): urllib.request.urlretrieve(url, path) logger.debug("Download success") def run_model_on_dataset(yamnet, classes, params, dataset, filenames, config): with jsonlines.open(config["output_path"], mode='w') as writer: for batch, filename in zip(dataset, filenames): logger.debug(filename) items = split_into_items(batch, config) logger.debug("chunks" + str(len(items))) for index, item in enumerate(items): results = run_model_on_batch(yamnet, classes, params, item) print_results(writer, filename, results, classes, index, config) def split_into_items(pair, config): batch = pair[:-1] sr = int(pair[-1]) chunk_size = int(float(config["seconds_per_chunk"]) * sr) array = batch.numpy() sample_count = array.shape[-1] logger.debug("total samples " + str(array.shape)) items = [] chunks = (sample_count + chunk_size - 1) // chunk_size for chunk in range(chunks): start = chunk * chunk_size end = min((chunk+1) * chunk_size, sample_count) items.append((array[start:end], sr)) return items def print_results(writer, filename, results, yamnet_classes, index, config): top, prediction = results seconds = index * float(config["seconds_per_chunk"]) print(str(int(seconds // 60)) + ":" + str(int(seconds) % 60) + '\n'.join(' {:12s}: {:.3f}'.format(yamnet_classes[i], prediction[i]) for i in top[0:1])) result = { "path" : filename, "seconds" : seconds } for i in top: result[yamnet_classes[i]] = float(prediction[i]) writer.write(result) def run_model_on_batch(yamnet, classes, params, pair): batch, sr = pair waveform = batch / 32768.0 # Convert to [-1.0, +1.0] # Convert to mono and the sample rate expected by YAMNet. if len(waveform.shape) > 1: waveform = np.mean(waveform, axis=1) if sr != params.sample_rate: waveform = resampy.resample(waveform, sr, params.sample_rate) # Predict YAMNet classes. scores, embeddings, spectrogram = yamnet(waveform) # Scores is a matrix of (time_frames, num_classes) classifier scores. # Average them along time to get an overall classifier output for the clip. prediction = np.mean(scores, axis=0) # Report the highest-scoring classes and their scores. top = np.argsort(prediction)[::-1][:5] return top, prediction def setup_config(dictionary): return config.ConfigurationSet( config.config_from_env(prefix="MLCOMMONS"), config.config_from_yaml(config_path(), read_from_file=True), config.config_from_dict(dictionary), ) def config_path(): home = os.path.expanduser("~") home_config_path = os.path.join(home, ".mlcommons", "config.yaml") if os.path.exists(home_config_path): return home_config_path return os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "config", "default.yaml") def setup_logging(arguments): logging_format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s" if arguments["verbose"]: logging.basicConfig(level=logging.DEBUG, format=logging_format) elif arguments["verbose_info"]: logging.basicConfig(level=logging.INFO, format=logging_format) else: logging.basicConfig(level=logging.WARNING, format=logging_format) root_logger = logging.getLogger() if arguments["verbose"]: root_logger.setLevel(logging.DEBUG) elif arguments["verbose_info"]: root_logger.setLevel(logging.INFO) else: root_logger.setLevel(logging.WARNING) logging.getLogger("numba.core.ssa").setLevel(logging.CRITICAL) logging.getLogger("numba.core.byteflow").setLevel(logging.CRITICAL) logging.getLogger("numba.core.interpreter").setLevel(logging.CRITICAL) if __name__ == '__main__': main()
0.52902
0.145479
import time from urllib.parse import urlparse from Jumpscale import j from .ZeroOSClient import ZeroOSClient class ZeroOSFactory(j.application.JSBaseConfigsClass): """ """ _CHILDCLASS = ZeroOSClient __jslocation__ = "j.clients.zos" def get_by_id(self, node_id): directory = j.clients.threefold_directory.get() node, resp = directory.api.GetCapacity(node_id) resp.raise_for_status() u = urlparse(node.robot_address) node = self.get(node_id) if node.host != u.hostname: node.host = u.hostname node.save() return self.get(node_id) def zero_node_ovh_install(self, OVHHostName, OVHClient, zerotierNetworkID, zerotierClient): """ OVHHostName is server name as known by OVH get clients as follows: - zerotierClient = j.clients.zerotier.get(instance='main', data={'data': ZT_API_TOKEN}) - OVHClient = j.clients.ovh.get(...) """ cl = OVHClient self._log_debug("booting server {} to zero-os".format(OVHHostName)) task = cl.zero_os_boot(target=OVHHostName, zerotierNetworkID=zerotierNetworkID) self._log_debug("waiting for {} to reboote".format(OVHHostName)) cl.server_wait_reboot(OVHHostName, task["taskId"]) ip_pub = cl.server_detail_get(OVHHostName)["ip"] self._log_info("ip addr is:%s" % ip_pub) while True: try: network = zerotierClient.get_network(network_id=zerotierNetworkID) member = network.member_get(public_ip=ip_pub) ipaddr_priv = member.private_ip break except RuntimeError as e: # case where we don't find the member in zerotier self._log_error(e) time.sleep(1) except IndexError as e: # case were we the member doesn't have a private ip self._log_error("please authorize the server with the public ip %s in the zerotier network" % ip_pub) time.sleep(1) self._log_debug("server found: %s" % member["id"]) self._log_debug("zerotier IP: %s" % ipaddr_priv) return ip_pub, ipaddr_priv def zero_node_packetnet_install( self, packetnetClient, zerotierClient, project_name, plan_type, location, server_name, zerotierNetworkID, ipxe_base="https://bootstrap.grid.tf/ipxe/master", ): """ packetnetClient = j.clients.packetnet.get('TOKEN') zerotierClient = j.clients.zerotier.get(instance='main', data={'token': 'TOKEN'}) project_name = packet.net project plan_type: one of "Type 0", "Type 1", "Type 2" ,"Type 2A", "Type 3", "Type S" location: one of "Amsterdam", "Tokyo", "Synnuvale", "Parsippany" server_name: name of the server that is going to be created zerotierNetworkID: zertotier network id ipxe_base: change this to the version you want, use master branch by default """ valid_plan_types = ("Type 0", "Type 1", "Type 2", "Type 2A", "Type 3", "Type S") # FIXME if plan_type not in valid_plan_types: j.exceptions.Input("bad plan type %s. Valid plan type are %s" % (plan_type, ",".join(valid_plan_types))) if zerotierNetworkID: ipxe_url = "%s/%s" % (ipxe_base, zerotierNetworkID) else: ipxe_url = None hostname = server_name # find project id project_ids = [project.id for project in packetnetClient.projects if project.name == project_name] if not project_ids: raise j.exceptions.NotFound("No projects found with name %s" % project_name) project_id = project_ids[0] packetnetClient.project_id = project_id packetnetClient.startDevice( hostname=server_name, plan=plan_type, facility=location, os="ubuntu_17_04", ipxeUrl=ipxe_url, wait=True, remove=False, ) device = packetnetClient.getDevice(server_name) ip_pub = [ netinfo["address"] for netinfo in device.ip_addresses if netinfo["public"] and netinfo["address_family"] == 4 ] while True: try: network = zerotierClient.get_network(network_id=zerotierNetworkID) member = network.member_get(public_ip=ip_pub[0]) ipaddr_priv = member.private_ip break except RuntimeError as e: # case where we don't find the member in zerotier self._log_error(e) time.sleep(1) except IndexError as e: # case were we the member doesn't have a private ip self._log_error("please authorize the server with the public ip %s in the zerotier network" % ip_pub[0]) time.sleep(1) self._log_debug("server found: %s" % device.id) self._log_debug("zerotier IP: %s" % ipaddr_priv) return ip_pub, ipaddr_priv def get_from_itsyouonline( self, name="default", iyo_instance="default", iyo_organization=None, host="localhost", port=6379, reset=False, save=True, ): """ :param name: name for this instance :param iyo_instance: the instance name of the IYO client you will use :param iyo_organization: the organization in IYO to connect :param host: addr of the zos :param port: por tof the zos (for the redis protocol) :param reset: to refresh you'r jwt :param save: if the resulting client will be stored on your bcdb :return: """ if iyo_organization is None: raise RuntimeError("need to specify name of organization.") jwt_name = j.core.text.strip_to_ascii_dense("zos_%s" % iyo_organization) iyo = j.clients.itsyouonline.get(name=iyo_instance) jwt = iyo.jwt_get( name=jwt_name, scope="user:memberof:%s" % iyo_organization, reset=reset ) # there should be enough protection in here to refresh # print(jwt) cl = self.get(name=name, host=host, port=port, password=<PASSWORD>, ssl=True) print(cl) cl.ping() if save: cl.save() return cl def test(self): """ kosmos 'j.clients.zos.test()' :return: """ cl = j.clients.zos.get_from_itsyouonline( name="default", host="10.102.90.219", port=6379, iyo_organization="tf-production", reset=True ) print(cl) print(cl.ping()) # use j.clients.zoscmd... to start a local zos # connect client to zos do quite some tests
Jumpscale/clients/zero_os/ZeroOSClientFactory.py
import time from urllib.parse import urlparse from Jumpscale import j from .ZeroOSClient import ZeroOSClient class ZeroOSFactory(j.application.JSBaseConfigsClass): """ """ _CHILDCLASS = ZeroOSClient __jslocation__ = "j.clients.zos" def get_by_id(self, node_id): directory = j.clients.threefold_directory.get() node, resp = directory.api.GetCapacity(node_id) resp.raise_for_status() u = urlparse(node.robot_address) node = self.get(node_id) if node.host != u.hostname: node.host = u.hostname node.save() return self.get(node_id) def zero_node_ovh_install(self, OVHHostName, OVHClient, zerotierNetworkID, zerotierClient): """ OVHHostName is server name as known by OVH get clients as follows: - zerotierClient = j.clients.zerotier.get(instance='main', data={'data': ZT_API_TOKEN}) - OVHClient = j.clients.ovh.get(...) """ cl = OVHClient self._log_debug("booting server {} to zero-os".format(OVHHostName)) task = cl.zero_os_boot(target=OVHHostName, zerotierNetworkID=zerotierNetworkID) self._log_debug("waiting for {} to reboote".format(OVHHostName)) cl.server_wait_reboot(OVHHostName, task["taskId"]) ip_pub = cl.server_detail_get(OVHHostName)["ip"] self._log_info("ip addr is:%s" % ip_pub) while True: try: network = zerotierClient.get_network(network_id=zerotierNetworkID) member = network.member_get(public_ip=ip_pub) ipaddr_priv = member.private_ip break except RuntimeError as e: # case where we don't find the member in zerotier self._log_error(e) time.sleep(1) except IndexError as e: # case were we the member doesn't have a private ip self._log_error("please authorize the server with the public ip %s in the zerotier network" % ip_pub) time.sleep(1) self._log_debug("server found: %s" % member["id"]) self._log_debug("zerotier IP: %s" % ipaddr_priv) return ip_pub, ipaddr_priv def zero_node_packetnet_install( self, packetnetClient, zerotierClient, project_name, plan_type, location, server_name, zerotierNetworkID, ipxe_base="https://bootstrap.grid.tf/ipxe/master", ): """ packetnetClient = j.clients.packetnet.get('TOKEN') zerotierClient = j.clients.zerotier.get(instance='main', data={'token': 'TOKEN'}) project_name = packet.net project plan_type: one of "Type 0", "Type 1", "Type 2" ,"Type 2A", "Type 3", "Type S" location: one of "Amsterdam", "Tokyo", "Synnuvale", "Parsippany" server_name: name of the server that is going to be created zerotierNetworkID: zertotier network id ipxe_base: change this to the version you want, use master branch by default """ valid_plan_types = ("Type 0", "Type 1", "Type 2", "Type 2A", "Type 3", "Type S") # FIXME if plan_type not in valid_plan_types: j.exceptions.Input("bad plan type %s. Valid plan type are %s" % (plan_type, ",".join(valid_plan_types))) if zerotierNetworkID: ipxe_url = "%s/%s" % (ipxe_base, zerotierNetworkID) else: ipxe_url = None hostname = server_name # find project id project_ids = [project.id for project in packetnetClient.projects if project.name == project_name] if not project_ids: raise j.exceptions.NotFound("No projects found with name %s" % project_name) project_id = project_ids[0] packetnetClient.project_id = project_id packetnetClient.startDevice( hostname=server_name, plan=plan_type, facility=location, os="ubuntu_17_04", ipxeUrl=ipxe_url, wait=True, remove=False, ) device = packetnetClient.getDevice(server_name) ip_pub = [ netinfo["address"] for netinfo in device.ip_addresses if netinfo["public"] and netinfo["address_family"] == 4 ] while True: try: network = zerotierClient.get_network(network_id=zerotierNetworkID) member = network.member_get(public_ip=ip_pub[0]) ipaddr_priv = member.private_ip break except RuntimeError as e: # case where we don't find the member in zerotier self._log_error(e) time.sleep(1) except IndexError as e: # case were we the member doesn't have a private ip self._log_error("please authorize the server with the public ip %s in the zerotier network" % ip_pub[0]) time.sleep(1) self._log_debug("server found: %s" % device.id) self._log_debug("zerotier IP: %s" % ipaddr_priv) return ip_pub, ipaddr_priv def get_from_itsyouonline( self, name="default", iyo_instance="default", iyo_organization=None, host="localhost", port=6379, reset=False, save=True, ): """ :param name: name for this instance :param iyo_instance: the instance name of the IYO client you will use :param iyo_organization: the organization in IYO to connect :param host: addr of the zos :param port: por tof the zos (for the redis protocol) :param reset: to refresh you'r jwt :param save: if the resulting client will be stored on your bcdb :return: """ if iyo_organization is None: raise RuntimeError("need to specify name of organization.") jwt_name = j.core.text.strip_to_ascii_dense("zos_%s" % iyo_organization) iyo = j.clients.itsyouonline.get(name=iyo_instance) jwt = iyo.jwt_get( name=jwt_name, scope="user:memberof:%s" % iyo_organization, reset=reset ) # there should be enough protection in here to refresh # print(jwt) cl = self.get(name=name, host=host, port=port, password=<PASSWORD>, ssl=True) print(cl) cl.ping() if save: cl.save() return cl def test(self): """ kosmos 'j.clients.zos.test()' :return: """ cl = j.clients.zos.get_from_itsyouonline( name="default", host="10.102.90.219", port=6379, iyo_organization="tf-production", reset=True ) print(cl) print(cl.ping()) # use j.clients.zoscmd... to start a local zos # connect client to zos do quite some tests
0.305905
0.112381
import matplotlib.pyplot as plt import numpy as np from getopt import gnu_getopt as getopt import sys # parse command-line arguments try: optlist,args = getopt(sys.argv[1:], ':', ['verbose']) assert len(args) < 2 except (AssertionError): sys.exit(__doc__) if len(args) > 0: fname = args[0] else: fname = 'STDOUT.0000' numbername, varname='time_tsnumber', 'dynstat_eta_min' #numbername, varname='seaice_tsnumber', 'seaice_heff_max' #numbername, varname='seaice_tsnumber', 'seaice_hsnow_max' niter0=464592 nsteps=48 tsnumber = range(niter0+nsteps,niter0,-1) def get_parms (fname): with open(fname) as f: for line in f: if 'nIter0 = /* Run starting timestep number */' in line: nIter0 = int(next(f).strip().split()[-1]) elif 'nTimeSteps = /* Number of timesteps */' in line: nTimeSteps = int(next(f).strip().split()[-1]) elif 'Model clock timestep' in line: deltaT = float((next(f).strip().split()[-1]).replace('E','e')) elif 'Monitor output interval' in line: interval = float((next(f).strip().split()[-1]).replace('E','e')) return nIter0, nTimeSteps, max(int(interval/deltaT),1) niter0,nsteps,interval=get_parms(fname) tsnumber = range(niter0+nsteps,niter0,-interval) vars=[] for k,mynumber in enumerate(tsnumber): print(k,mynumber) var = [] with open(fname) as fo: for line in fo: if numbername in line and str(mynumber) in line: # print(line) while True: ll=fo.readline() # print(ll) if varname in ll: var.append(float( ll.strip().split()[-1].replace('E','e'))) break # # skip two lines ... # next(fo) # next(fo) # # ... and read the third, which is dynstat_eta_min # ll=fo.readline().strip().split() # var.append(float(ll[-1].replace('E','e'))) if len(var) < 4: break vars.append(var) # convert to numpy array etamin = np.asarray(vars) plt.clf(); plt.plot(tsnumber[:len(vars)],etamin[:,2],'+-',label='chklev 2') plt.plot(tsnumber[:len(vars)],etamin[:,3],'-.',label='chklev 1') plt.xlabel('timestep') plt.ylabel(varname) plt.legend() plt.show() #grep -A6 "(PID.TID 0000.0001) %MON time_tsnumber = 472740" STDOUT.0000 | grep eta_min
readtapemonitor.py
import matplotlib.pyplot as plt import numpy as np from getopt import gnu_getopt as getopt import sys # parse command-line arguments try: optlist,args = getopt(sys.argv[1:], ':', ['verbose']) assert len(args) < 2 except (AssertionError): sys.exit(__doc__) if len(args) > 0: fname = args[0] else: fname = 'STDOUT.0000' numbername, varname='time_tsnumber', 'dynstat_eta_min' #numbername, varname='seaice_tsnumber', 'seaice_heff_max' #numbername, varname='seaice_tsnumber', 'seaice_hsnow_max' niter0=464592 nsteps=48 tsnumber = range(niter0+nsteps,niter0,-1) def get_parms (fname): with open(fname) as f: for line in f: if 'nIter0 = /* Run starting timestep number */' in line: nIter0 = int(next(f).strip().split()[-1]) elif 'nTimeSteps = /* Number of timesteps */' in line: nTimeSteps = int(next(f).strip().split()[-1]) elif 'Model clock timestep' in line: deltaT = float((next(f).strip().split()[-1]).replace('E','e')) elif 'Monitor output interval' in line: interval = float((next(f).strip().split()[-1]).replace('E','e')) return nIter0, nTimeSteps, max(int(interval/deltaT),1) niter0,nsteps,interval=get_parms(fname) tsnumber = range(niter0+nsteps,niter0,-interval) vars=[] for k,mynumber in enumerate(tsnumber): print(k,mynumber) var = [] with open(fname) as fo: for line in fo: if numbername in line and str(mynumber) in line: # print(line) while True: ll=fo.readline() # print(ll) if varname in ll: var.append(float( ll.strip().split()[-1].replace('E','e'))) break # # skip two lines ... # next(fo) # next(fo) # # ... and read the third, which is dynstat_eta_min # ll=fo.readline().strip().split() # var.append(float(ll[-1].replace('E','e'))) if len(var) < 4: break vars.append(var) # convert to numpy array etamin = np.asarray(vars) plt.clf(); plt.plot(tsnumber[:len(vars)],etamin[:,2],'+-',label='chklev 2') plt.plot(tsnumber[:len(vars)],etamin[:,3],'-.',label='chklev 1') plt.xlabel('timestep') plt.ylabel(varname) plt.legend() plt.show() #grep -A6 "(PID.TID 0000.0001) %MON time_tsnumber = 472740" STDOUT.0000 | grep eta_min
0.1069
0.349783
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import random import numpy as np from tensorflow.keras.layers import * from tensorflow.keras.activations import * from tensorflow.keras.models import * from tensorflow.keras.optimizers import * from tensorflow.keras.initializers import * from tensorflow.keras.callbacks import * from DogsCats_Dataset_class import DOGSCATS data = DOGSCATS() data.data_augmentation(augment_size=5000) data.data_preprocessing(preprocess_mode="MinMax") x_train_splitted, x_val, y_train_splitted, y_val = data.get_splitted_train_validation_set() x_train, y_train = data.get_train_set() x_test, y_test = data.get_test_set() num_classes = data.num_classes # Define the CNN def model_fn(optimizer, learning_rate, filter_block1, kernel_size_block1, filter_block2, kernel_size_block2, filter_block3, kernel_size_block3, dense_layer_size, kernel_initializer, bias_initializer): # Input input_img = Input(shape=x_train.shape[1:]) # Conv Block 1 x = Conv2D(filters=filter_block1, kernel_size=kernel_size_block1, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(input_img) x = Activation("relu")(x) x = Conv2D(filters=filter_block1, kernel_size=kernel_size_block1, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Conv Block 2 x = Conv2D(filters=filter_block2, kernel_size=kernel_size_block2, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = Conv2D(filters=filter_block2, kernel_size=kernel_size_block2, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Conv Block 3 x = Conv2D(filters=filter_block3, kernel_size=kernel_size_block3, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = Conv2D(filters=filter_block3, kernel_size=kernel_size_block3, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Dense Part x = Flatten()(x) x = Dense(units=dense_layer_size)(x) x = Activation("relu")(x) x = Dense(units=num_classes)(x) y_pred = Activation("softmax")(x) # Build the model model = Model(inputs=[input_img], outputs=[y_pred]) opt = optimizer(learning_rate=learning_rate) model.compile( loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) return model # Global params epochs = 20 batch_size = 256 optimizer = Adam learning_rate = 0.001 filter_block1 = 32 kernel_size_block1 = 3 filter_block2 = 64 kernel_size_block2 = 3 filter_block3 = 128 kernel_size_block3 = 3 dense_layer_size = 512 # GlorotUniform, GlorotNormal, RandomNormal, RandomUniform, VarianceScaling kernel_initializer = 'GlorotUniform' # default-Wert bias_initializer = 'zeros' # default-Wert rand_model = model_fn(optimizer, learning_rate, filter_block1, kernel_size_block1, filter_block2, kernel_size_block2, filter_block3, kernel_size_block3, dense_layer_size, kernel_initializer, bias_initializer) rand_model.fit( x=x_train_splitted, y=y_train_splitted, verbose=1, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val)) score = rand_model.evaluate( x_test, y_test, verbose=0, batch_size=batch_size) print("Test performance: ", score)
4_DeepLearning-Advanced/1-Gewichte_initialisieren.py
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import random import numpy as np from tensorflow.keras.layers import * from tensorflow.keras.activations import * from tensorflow.keras.models import * from tensorflow.keras.optimizers import * from tensorflow.keras.initializers import * from tensorflow.keras.callbacks import * from DogsCats_Dataset_class import DOGSCATS data = DOGSCATS() data.data_augmentation(augment_size=5000) data.data_preprocessing(preprocess_mode="MinMax") x_train_splitted, x_val, y_train_splitted, y_val = data.get_splitted_train_validation_set() x_train, y_train = data.get_train_set() x_test, y_test = data.get_test_set() num_classes = data.num_classes # Define the CNN def model_fn(optimizer, learning_rate, filter_block1, kernel_size_block1, filter_block2, kernel_size_block2, filter_block3, kernel_size_block3, dense_layer_size, kernel_initializer, bias_initializer): # Input input_img = Input(shape=x_train.shape[1:]) # Conv Block 1 x = Conv2D(filters=filter_block1, kernel_size=kernel_size_block1, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(input_img) x = Activation("relu")(x) x = Conv2D(filters=filter_block1, kernel_size=kernel_size_block1, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Conv Block 2 x = Conv2D(filters=filter_block2, kernel_size=kernel_size_block2, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = Conv2D(filters=filter_block2, kernel_size=kernel_size_block2, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Conv Block 3 x = Conv2D(filters=filter_block3, kernel_size=kernel_size_block3, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = Conv2D(filters=filter_block3, kernel_size=kernel_size_block3, padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer)(x) x = Activation("relu")(x) x = MaxPool2D()(x) # Dense Part x = Flatten()(x) x = Dense(units=dense_layer_size)(x) x = Activation("relu")(x) x = Dense(units=num_classes)(x) y_pred = Activation("softmax")(x) # Build the model model = Model(inputs=[input_img], outputs=[y_pred]) opt = optimizer(learning_rate=learning_rate) model.compile( loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) return model # Global params epochs = 20 batch_size = 256 optimizer = Adam learning_rate = 0.001 filter_block1 = 32 kernel_size_block1 = 3 filter_block2 = 64 kernel_size_block2 = 3 filter_block3 = 128 kernel_size_block3 = 3 dense_layer_size = 512 # GlorotUniform, GlorotNormal, RandomNormal, RandomUniform, VarianceScaling kernel_initializer = 'GlorotUniform' # default-Wert bias_initializer = 'zeros' # default-Wert rand_model = model_fn(optimizer, learning_rate, filter_block1, kernel_size_block1, filter_block2, kernel_size_block2, filter_block3, kernel_size_block3, dense_layer_size, kernel_initializer, bias_initializer) rand_model.fit( x=x_train_splitted, y=y_train_splitted, verbose=1, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val)) score = rand_model.evaluate( x_test, y_test, verbose=0, batch_size=batch_size) print("Test performance: ", score)
0.765681
0.459137
veiculo_lv = {} class Veiculo: #Cadastro do veiculo def __init__(self,tipo_veiculo:str='c',modelo_veiculo:str='s',cor_veiculo:str='pt',placa_veiculo:str='r',tipo_combustivel:str='gc',potencia_motor:str='',ano_veiculo:str='2015',reserva:bool=False,nao_cadastrar:bool=False): ''' ***nao_cadastrar -> Informe "True" caso queria chamar o construtor mas não queira cadastrar nenhum veiculo***\n\n tipo_veiculo -> Carro: "c" / Motocicleta: "m"\n modelo_veiculo -> Carro: Esportiva: "e", Crossover: "c", Jipe: "j", Sedan: "s", Van: "v" / Motocicleta: Esportiva: "e", Trail: "t", Scooter: "s", Off-Road: "or"\n cor_veiculo -> Preto: "pt", Branco: "br", Vermelho: "vm", Verde: "vd", Azul: "az", Amarelo: "am", Cinza: "cz"\n placa_veiculo -> Ex: 1234-ABCD \ "r" para randomizar uma placa\n tipo_combustivel -> Gasolina Comum: "gc", Gasolina aditivada: "ga", Gasolina Premium: "gp", Gasolina Formulada: "gf", Etanol Comum: "ec", Etanol Aditivado: "ea", Diesel Comum: "dc", Diesel Aditivado: "da", Biodiesel: "bd"\n ano_veiculo -> Informar o ano do veiculo como int()\n potencia_motor -> Potência medida em cavalos int() ''' if nao_cadastrar == False: import random as rd import datetime as dt _erro = False __tipo_veiculo = {'c':'Carro','m':'Motocicleta'} __mod_veic_carro = {'e':'Esportivo','c':'Crossover','j':'Jeep','s':'Sedan','v':'Van'} __mod_veic_moto = {'e':'Esportivo','t':'Trail','s':'Scooter','or':'Off-Road'} __cor_veiculo = {'pt':'Preto','br':'Branco','vm':'Vermelho','vd':'Verde','az':'Azul','am':'Amarelo','cz':'Cinza'} __tipo_combustivel = {'gc':'Gasolina Comum','ga':'Gasolina aditivada','gp':'Gasolina Premium','gf':'Gasolina Formulada','ec':'Etanol Comum','ea':'Etanol Aditivado','dc':'Diesel Comum','da':'Diesel Aditivado','bd':'Biodiesel'} self.t_v = tipo_veiculo.lower() self.m_v = modelo_veiculo self.c_v = cor_veiculo self.p_v = placa_veiculo.upper() self.t_c = tipo_combustivel self.a_v = ano_veiculo self.p_m = potencia_motor #Verifica se o tipo de veiculo está correto if self.t_v != '': if self.t_v not in __tipo_veiculo.keys(): print('\033[1;31mTipo de veiculo não encontrado\033[m') _erro = True else: self.t_v = __tipo_veiculo[self.t_v] else: self.t_v = __tipo_veiculo['c'] #Verifica se o modelo do veiculo está correto if self.t_v == 'Carro': if self.m_v != '': if self.m_v not in __mod_veic_carro: print('\033[1;31mModelo de carro não encontrado\033[m') _erro = True else: self.m_v = __mod_veic_carro[self.m_v] else: self.m_v = __mod_veic_carro['s'] else: if self.m_v != '': if self.m_v not in __mod_veic_moto: print('\033[1;31mModelo de moto não encontrado\033[m') _erro = True else: self.m_v = __mod_veic_moto[self.m_v] else: self.m_v = __mod_veic_moto['t'] #Verifica se a cor do veiculo está correta if self.c_v != '': if self.c_v not in __cor_veiculo.keys(): print('\033[1;31mCor inválida\033[m') _erro = True else: self.c_v = __cor_veiculo[self.c_v] else: self.c_v = __cor_veiculo['pt'] #Randomiza uma placa no formato "####-####" com caracteres numéricos e alfabéticos if self.p_v == 'R' or self.p_v == '': rand_placa = [] while len(rand_placa) < 9: nxt_v = rd.randint(0,1) if nxt_v == 0: rand_char = rd.randint(0,9) else: rand_char = rd.choice(['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']) if len(rand_placa) == 3: rand_placa.append(str(rand_char)) rand_placa.append('-') else: rand_placa.append(str(rand_char)) self.p_v = ''.join(rand_placa) #Verifica se a placa informada está correta else: if len(self.p_v) == 9: if '-' in self.p_v and self.p_v.count('-') == 1: for c in self.p_v: if c.isalnum() == False and c != '-': print('\033[1;31mPlaca inválida\033[m') _erro = True else: print('\033[1;31mPlaca inválida\033[m') _erro = True else: print('\033[1;31mPlaca inválida\033[m') _erro = True #Verifica se o tipo de combustível é válido if self.t_c != '': if self.t_c not in __tipo_combustivel.keys(): print('\033[1;31mTipo de gasolina inválida\033[m') _erro = True else: self.t_c = __tipo_combustivel[self.t_c] else: self.t_c = __tipo_combustivel['gc'] #Verifica se o ano do veiculo é válido if self.a_v != '': if str(self.a_v).isnumeric() != True: print('\033[1;31mAno do veiculo inválido\033[m') _erro = True else: self.a_v = int(self.a_v) if dt.date.today().year < self.a_v: print('\033[1;31mAno do veiculo inválido\033[m') _erro = True else: self.a_v = 2015 #Verifica se a potência do veiculo é válida if self.p_m != '': if str(self.p_m).isnumeric() != True: print('\033[1;31mPotência do motor inválida\033[m') _erro = True else: self.p_m = int(self.p_m) if self.p_m <= 0: print('\033[1;31mPotência do motor inválida\033[m') _erro = True else: self.p_m = 110 #Insere o veiculo em um array de veiculos livres caso ele ainda não esteja cadastrado if _erro == False: __ = True for plc in veiculo_lv.keys(): if plc == self.p_v: __ = False break if __ != True: print('\033[1;31mVeiculo já cadastrado\033[m') else: veiculo_lv[self.p_v] = (self.t_v,self.m_v,self.c_v,self.p_m,self.t_c,self.a_v) else: print('Erro no cadastro') def estoque_veiculo(self): ''' Mostra as informações de todos os veiculos\n Informa quais carros estão disponíveis ''' return veiculo_lv
CODE/Veiculo.py
veiculo_lv = {} class Veiculo: #Cadastro do veiculo def __init__(self,tipo_veiculo:str='c',modelo_veiculo:str='s',cor_veiculo:str='pt',placa_veiculo:str='r',tipo_combustivel:str='gc',potencia_motor:str='',ano_veiculo:str='2015',reserva:bool=False,nao_cadastrar:bool=False): ''' ***nao_cadastrar -> Informe "True" caso queria chamar o construtor mas não queira cadastrar nenhum veiculo***\n\n tipo_veiculo -> Carro: "c" / Motocicleta: "m"\n modelo_veiculo -> Carro: Esportiva: "e", Crossover: "c", Jipe: "j", Sedan: "s", Van: "v" / Motocicleta: Esportiva: "e", Trail: "t", Scooter: "s", Off-Road: "or"\n cor_veiculo -> Preto: "pt", Branco: "br", Vermelho: "vm", Verde: "vd", Azul: "az", Amarelo: "am", Cinza: "cz"\n placa_veiculo -> Ex: 1234-ABCD \ "r" para randomizar uma placa\n tipo_combustivel -> Gasolina Comum: "gc", Gasolina aditivada: "ga", Gasolina Premium: "gp", Gasolina Formulada: "gf", Etanol Comum: "ec", Etanol Aditivado: "ea", Diesel Comum: "dc", Diesel Aditivado: "da", Biodiesel: "bd"\n ano_veiculo -> Informar o ano do veiculo como int()\n potencia_motor -> Potência medida em cavalos int() ''' if nao_cadastrar == False: import random as rd import datetime as dt _erro = False __tipo_veiculo = {'c':'Carro','m':'Motocicleta'} __mod_veic_carro = {'e':'Esportivo','c':'Crossover','j':'Jeep','s':'Sedan','v':'Van'} __mod_veic_moto = {'e':'Esportivo','t':'Trail','s':'Scooter','or':'Off-Road'} __cor_veiculo = {'pt':'Preto','br':'Branco','vm':'Vermelho','vd':'Verde','az':'Azul','am':'Amarelo','cz':'Cinza'} __tipo_combustivel = {'gc':'Gasolina Comum','ga':'Gasolina aditivada','gp':'Gasolina Premium','gf':'Gasolina Formulada','ec':'Etanol Comum','ea':'Etanol Aditivado','dc':'Diesel Comum','da':'Diesel Aditivado','bd':'Biodiesel'} self.t_v = tipo_veiculo.lower() self.m_v = modelo_veiculo self.c_v = cor_veiculo self.p_v = placa_veiculo.upper() self.t_c = tipo_combustivel self.a_v = ano_veiculo self.p_m = potencia_motor #Verifica se o tipo de veiculo está correto if self.t_v != '': if self.t_v not in __tipo_veiculo.keys(): print('\033[1;31mTipo de veiculo não encontrado\033[m') _erro = True else: self.t_v = __tipo_veiculo[self.t_v] else: self.t_v = __tipo_veiculo['c'] #Verifica se o modelo do veiculo está correto if self.t_v == 'Carro': if self.m_v != '': if self.m_v not in __mod_veic_carro: print('\033[1;31mModelo de carro não encontrado\033[m') _erro = True else: self.m_v = __mod_veic_carro[self.m_v] else: self.m_v = __mod_veic_carro['s'] else: if self.m_v != '': if self.m_v not in __mod_veic_moto: print('\033[1;31mModelo de moto não encontrado\033[m') _erro = True else: self.m_v = __mod_veic_moto[self.m_v] else: self.m_v = __mod_veic_moto['t'] #Verifica se a cor do veiculo está correta if self.c_v != '': if self.c_v not in __cor_veiculo.keys(): print('\033[1;31mCor inválida\033[m') _erro = True else: self.c_v = __cor_veiculo[self.c_v] else: self.c_v = __cor_veiculo['pt'] #Randomiza uma placa no formato "####-####" com caracteres numéricos e alfabéticos if self.p_v == 'R' or self.p_v == '': rand_placa = [] while len(rand_placa) < 9: nxt_v = rd.randint(0,1) if nxt_v == 0: rand_char = rd.randint(0,9) else: rand_char = rd.choice(['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']) if len(rand_placa) == 3: rand_placa.append(str(rand_char)) rand_placa.append('-') else: rand_placa.append(str(rand_char)) self.p_v = ''.join(rand_placa) #Verifica se a placa informada está correta else: if len(self.p_v) == 9: if '-' in self.p_v and self.p_v.count('-') == 1: for c in self.p_v: if c.isalnum() == False and c != '-': print('\033[1;31mPlaca inválida\033[m') _erro = True else: print('\033[1;31mPlaca inválida\033[m') _erro = True else: print('\033[1;31mPlaca inválida\033[m') _erro = True #Verifica se o tipo de combustível é válido if self.t_c != '': if self.t_c not in __tipo_combustivel.keys(): print('\033[1;31mTipo de gasolina inválida\033[m') _erro = True else: self.t_c = __tipo_combustivel[self.t_c] else: self.t_c = __tipo_combustivel['gc'] #Verifica se o ano do veiculo é válido if self.a_v != '': if str(self.a_v).isnumeric() != True: print('\033[1;31mAno do veiculo inválido\033[m') _erro = True else: self.a_v = int(self.a_v) if dt.date.today().year < self.a_v: print('\033[1;31mAno do veiculo inválido\033[m') _erro = True else: self.a_v = 2015 #Verifica se a potência do veiculo é válida if self.p_m != '': if str(self.p_m).isnumeric() != True: print('\033[1;31mPotência do motor inválida\033[m') _erro = True else: self.p_m = int(self.p_m) if self.p_m <= 0: print('\033[1;31mPotência do motor inválida\033[m') _erro = True else: self.p_m = 110 #Insere o veiculo em um array de veiculos livres caso ele ainda não esteja cadastrado if _erro == False: __ = True for plc in veiculo_lv.keys(): if plc == self.p_v: __ = False break if __ != True: print('\033[1;31mVeiculo já cadastrado\033[m') else: veiculo_lv[self.p_v] = (self.t_v,self.m_v,self.c_v,self.p_m,self.t_c,self.a_v) else: print('Erro no cadastro') def estoque_veiculo(self): ''' Mostra as informações de todos os veiculos\n Informa quais carros estão disponíveis ''' return veiculo_lv
0.086579
0.169543
from pathlib import Path from pickle import dump, load, HIGHEST_PROTOCOL from os.path import exists from googleapiclient.discovery import build, HttpError from src.spacy_utils import PatternNotFoundException from src.semantic_sequence import SemanticSequence SEARCH_REQ_FOLDER = '.searchRequests' # Savefolder of search results class AllKeysReachLimit(Exception): ''' Exception for daily search request limit is reached for all keys. ''' class WebRequester: ''' Abstract class for a textual search api. ''' def search_for_patter(self, pattern: SemanticSequence, qualia_theorem: str) -> [str]: ''' Will place theorem to clue of used by semantic_seq and execute search request. :param pattern: semantic_seq with clue to search :param qualia_theorem: theorem that will be placed in clue of semantic_seq :return: search requests for clue of semantic_seq with theorem ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_results(self, search_request: str) -> int: ''' Return number of results for search_request. :param search_request request :return: number of results for request ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_results_near(self, word_1: str, word_2: str) -> int: ''' Return number of results in which word_1 is near to word_2. :param word_1: first word :param word_2: second word :return: number of results for word_1 near word_2 ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_search_and(self, word_1: str, word_2: str) -> int: ''' Return number of results containing word_1 and word_2. :param word_1: first word :param word_2: second word :return: number of results containing word_1 and word_2 ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') class GoogleRequester(WebRequester): ''' Implementation for the google json api. keys is a list of (API key, Custom Search ID) tuples. key_idx reference current key pair in list. ''' def __init__(self, keys: [(str, str)]): self.keys = keys self.key_idx = 0 self.api_key = self.keys[self.key_idx][0] self.cse_key = self.keys[self.key_idx][1] self.service = build('customsearch', 'v1', developerKey=self.api_key) def search_for_patter(self, pattern: SemanticSequence, qualia_theorem: str) -> [str]: search_string = "\"{}\"".format(pattern.get_search_requests(qualia_theorem)) res = self._get_search_result(search_string) found_items = [] if 'items' in res.keys(): for item in res['items']: for column in ['snippet']: if column in item: found_items.append(item[column]) return found_items def num_results(self, search_request: str): res = self._get_search_result(search_request) hits = int(res['searchInformation']['totalResults']) return hits def num_results_near(self, word_1: str, word_2: str): return self.num_results('{} AROUND(10) {}'.format(word_1, word_2)) def num_search_and(self, word_1: str, word_2: str): return self.num_results('{} {}'.format(word_1, word_2)) def _get_search_result(self, search_string: str): ''' Will load search request from SEARCH_REQ_FOLDER if executed in the past or execute search request and store results to SEARCH_REQ_FOLDER. Automatically use next key from keyfile, if daily limit is reached. :param search_string: search request :raise AllKeysReachLimit If all combination reach the daily limit of 100 :return: search results. ''' path = SEARCH_REQ_FOLDER + '/' + search_string if exists(path): with open(path, 'rb') as file: res = load(file) else: res = None while res is None: try: res = self.service.cse().list(q=search_string, cx=self.cse_key).execute() with open(path, 'wb') as output: dump(res, output, HIGHEST_PROTOCOL) except HttpError as http_error: self._change_key(http_error) return res def _change_key(self, http_error: HttpError): ''' Increase key_idx to use next key. :param http_error: raised by google api client :raise AllKeysReachLimit if all keys reached limit :return: None ''' self.key_idx += 1 if self.key_idx > len(self.keys) - 1: raise AllKeysReachLimit(http_error) self.api_key = self.keys[self.key_idx][0] self.cse_key = self.keys[self.key_idx][1] self.service = build('customsearch', 'v1', developerKey=self.api_key) def read_key_file(filepath: Path) -> [(str, str)]: ''' Load key pairs (API key, Custom Search ID) from text file referenced by filepath. :param filepath: filepath of text file :return: list of (API key, Custom Search ID) pairs ''' keys = [] with open(filepath) as file: keys += [tuple(line.split(' ')) for line in file.read().splitlines() if line and not line.startswith('#')] if len(keys) == 0: raise AttributeError('File {} does not contain keys'.format(filepath)) return keys
src/requester.py
from pathlib import Path from pickle import dump, load, HIGHEST_PROTOCOL from os.path import exists from googleapiclient.discovery import build, HttpError from src.spacy_utils import PatternNotFoundException from src.semantic_sequence import SemanticSequence SEARCH_REQ_FOLDER = '.searchRequests' # Savefolder of search results class AllKeysReachLimit(Exception): ''' Exception for daily search request limit is reached for all keys. ''' class WebRequester: ''' Abstract class for a textual search api. ''' def search_for_patter(self, pattern: SemanticSequence, qualia_theorem: str) -> [str]: ''' Will place theorem to clue of used by semantic_seq and execute search request. :param pattern: semantic_seq with clue to search :param qualia_theorem: theorem that will be placed in clue of semantic_seq :return: search requests for clue of semantic_seq with theorem ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_results(self, search_request: str) -> int: ''' Return number of results for search_request. :param search_request request :return: number of results for request ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_results_near(self, word_1: str, word_2: str) -> int: ''' Return number of results in which word_1 is near to word_2. :param word_1: first word :param word_2: second word :return: number of results for word_1 near word_2 ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') def num_search_and(self, word_1: str, word_2: str) -> int: ''' Return number of results containing word_1 and word_2. :param word_1: first word :param word_2: second word :return: number of results containing word_1 and word_2 ''' raise NotImplementedError('Abstract Class WebRequester has been initiated') class GoogleRequester(WebRequester): ''' Implementation for the google json api. keys is a list of (API key, Custom Search ID) tuples. key_idx reference current key pair in list. ''' def __init__(self, keys: [(str, str)]): self.keys = keys self.key_idx = 0 self.api_key = self.keys[self.key_idx][0] self.cse_key = self.keys[self.key_idx][1] self.service = build('customsearch', 'v1', developerKey=self.api_key) def search_for_patter(self, pattern: SemanticSequence, qualia_theorem: str) -> [str]: search_string = "\"{}\"".format(pattern.get_search_requests(qualia_theorem)) res = self._get_search_result(search_string) found_items = [] if 'items' in res.keys(): for item in res['items']: for column in ['snippet']: if column in item: found_items.append(item[column]) return found_items def num_results(self, search_request: str): res = self._get_search_result(search_request) hits = int(res['searchInformation']['totalResults']) return hits def num_results_near(self, word_1: str, word_2: str): return self.num_results('{} AROUND(10) {}'.format(word_1, word_2)) def num_search_and(self, word_1: str, word_2: str): return self.num_results('{} {}'.format(word_1, word_2)) def _get_search_result(self, search_string: str): ''' Will load search request from SEARCH_REQ_FOLDER if executed in the past or execute search request and store results to SEARCH_REQ_FOLDER. Automatically use next key from keyfile, if daily limit is reached. :param search_string: search request :raise AllKeysReachLimit If all combination reach the daily limit of 100 :return: search results. ''' path = SEARCH_REQ_FOLDER + '/' + search_string if exists(path): with open(path, 'rb') as file: res = load(file) else: res = None while res is None: try: res = self.service.cse().list(q=search_string, cx=self.cse_key).execute() with open(path, 'wb') as output: dump(res, output, HIGHEST_PROTOCOL) except HttpError as http_error: self._change_key(http_error) return res def _change_key(self, http_error: HttpError): ''' Increase key_idx to use next key. :param http_error: raised by google api client :raise AllKeysReachLimit if all keys reached limit :return: None ''' self.key_idx += 1 if self.key_idx > len(self.keys) - 1: raise AllKeysReachLimit(http_error) self.api_key = self.keys[self.key_idx][0] self.cse_key = self.keys[self.key_idx][1] self.service = build('customsearch', 'v1', developerKey=self.api_key) def read_key_file(filepath: Path) -> [(str, str)]: ''' Load key pairs (API key, Custom Search ID) from text file referenced by filepath. :param filepath: filepath of text file :return: list of (API key, Custom Search ID) pairs ''' keys = [] with open(filepath) as file: keys += [tuple(line.split(' ')) for line in file.read().splitlines() if line and not line.startswith('#')] if len(keys) == 0: raise AttributeError('File {} does not contain keys'.format(filepath)) return keys
0.566738
0.296565
import pandas as pd import re from jinja2 import Environment, FileSystemLoader, select_autoescape env = Environment( loader=FileSystemLoader('templates'), autoescape=select_autoescape(['html', 'xml']) ) template = env.get_template("index.html") the_index = pd.read_csv('annotation_index.csv').dropna() class_names = list(the_index['class']) groups = [] for group, group_index in the_index.groupby('group'): rows = [] for i in group_index.itertuples(): claz = i[2] # "class" png_href = i.image page_href = re.sub(r'\.png','.html',png_href) jpg_file = re.sub(r'.*/(\w+)\.png',r'\1.jpg',png_href) jpg_path = f'images/{claz}/{jpg_file}' rows.append({ 'class_name': claz, 'img_src': jpg_path }) group_class_names = [row['class_name'] for row in rows] n = 4 rows = [rows[i:i + n] for i in range(0, len(rows), n)] groups.append({ 'name': group, 'class_names': group_class_names, 'rows': rows, }) group_names = [group['name'] for group in groups] context = { 'is_gallery': True, 'group_names': group_names, 'class_names': class_names, 'groups': groups } with open('html/index.html','w') as fout: print(template.render(context), file=fout) the_pages = pd.read_csv('wiki.csv') for class_name, sdf in the_pages.groupby('class'): with open(f'html/{class_name}.html', 'w') as fout: images = [] for png_href in sdf['image']: html_href = re.sub(r'\.png','.html',png_href) pid = re.sub(r'.*/(\w+)\.png',r'\1',png_href) jpg_file = f'images/{class_name}/{pid}.jpg' images.append({ 'pid': pid, 'src': jpg_file, 'href': html_href, }) context = { 'is_gallery': False, 'class_name': class_name, 'group_names': group_names, 'class_names': class_names, 'images': images, } print(template.render(context), file=fout)
index.py
import pandas as pd import re from jinja2 import Environment, FileSystemLoader, select_autoescape env = Environment( loader=FileSystemLoader('templates'), autoescape=select_autoescape(['html', 'xml']) ) template = env.get_template("index.html") the_index = pd.read_csv('annotation_index.csv').dropna() class_names = list(the_index['class']) groups = [] for group, group_index in the_index.groupby('group'): rows = [] for i in group_index.itertuples(): claz = i[2] # "class" png_href = i.image page_href = re.sub(r'\.png','.html',png_href) jpg_file = re.sub(r'.*/(\w+)\.png',r'\1.jpg',png_href) jpg_path = f'images/{claz}/{jpg_file}' rows.append({ 'class_name': claz, 'img_src': jpg_path }) group_class_names = [row['class_name'] for row in rows] n = 4 rows = [rows[i:i + n] for i in range(0, len(rows), n)] groups.append({ 'name': group, 'class_names': group_class_names, 'rows': rows, }) group_names = [group['name'] for group in groups] context = { 'is_gallery': True, 'group_names': group_names, 'class_names': class_names, 'groups': groups } with open('html/index.html','w') as fout: print(template.render(context), file=fout) the_pages = pd.read_csv('wiki.csv') for class_name, sdf in the_pages.groupby('class'): with open(f'html/{class_name}.html', 'w') as fout: images = [] for png_href in sdf['image']: html_href = re.sub(r'\.png','.html',png_href) pid = re.sub(r'.*/(\w+)\.png',r'\1',png_href) jpg_file = f'images/{class_name}/{pid}.jpg' images.append({ 'pid': pid, 'src': jpg_file, 'href': html_href, }) context = { 'is_gallery': False, 'class_name': class_name, 'group_names': group_names, 'class_names': class_names, 'images': images, } print(template.render(context), file=fout)
0.157752
0.154567
from unittest import mock import io import pytest from django.core.management import call_command from great_components.janitor.management.commands import helpers, settings_shake @pytest.fixture(autouse=True) def mock_get_settings_source_code(): patched = mock.patch.object( helpers, 'get_settings_source_code', return_value='EXAMPLE_A = env.bool("EXAMPLE_A")' ) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_client(): patched = mock.patch('hvac.Client', mock.Mock(is_authenticated=True)) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_get_secrets(): patched = mock.patch.object( helpers, 'get_secrets', return_value={'EXAMPLE_A': True, 'EXAMPLE_B': False} ) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_vulture(): mock_vulture = mock.Mock() mock_vulture().report.return_value = ['FOO_BAR'] patched = mock.patch.object(helpers, 'Vulture', mock_vulture) yield patched.start() patched.stop() def test_settings_shake_obsolete(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'EXAMPLE_A' not in result assert 'EXAMPLE_B' in result def test_settings_shake_redundant(settings): settings.ADMINS = [] out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'ADMINS' in result def test_settings_shake_unused(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'FOO_BAR' in result @mock.patch.object(helpers, 'get_secrets_wizard') def test_obsolete_wizard(mock_get_secrets_wizard, settings): settings.EXAMPLE_A = True mock_get_secrets_wizard.return_value = {'EXAMPLE_A': True, 'EXAMPLE_B': False} out = io.StringIO() call_command( 'settings_shake', wizard=True, token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'EXAMPLE_A' not in result assert 'EXAMPLE_B' in result @mock.patch.object(settings_shake.Command, 'report_obsolete_vault_entries', mock.Mock(return_value=[])) @mock.patch.object(settings_shake.Command, 'report_unused_settings', mock.Mock(return_value=[])) @mock.patch.object(settings_shake.Command, 'report_redundant_settings', mock.Mock(return_value=[])) def test_settings_shake_ok(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'No obsolete vault entries found.' in result assert 'No unused settings found.' in result assert 'No redundant settings found.' in result
tests/janitor/management/commands/test_settings_shake.py
from unittest import mock import io import pytest from django.core.management import call_command from great_components.janitor.management.commands import helpers, settings_shake @pytest.fixture(autouse=True) def mock_get_settings_source_code(): patched = mock.patch.object( helpers, 'get_settings_source_code', return_value='EXAMPLE_A = env.bool("EXAMPLE_A")' ) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_client(): patched = mock.patch('hvac.Client', mock.Mock(is_authenticated=True)) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_get_secrets(): patched = mock.patch.object( helpers, 'get_secrets', return_value={'EXAMPLE_A': True, 'EXAMPLE_B': False} ) yield patched.start() patched.stop() @pytest.fixture(autouse=True) def mock_vulture(): mock_vulture = mock.Mock() mock_vulture().report.return_value = ['FOO_BAR'] patched = mock.patch.object(helpers, 'Vulture', mock_vulture) yield patched.start() patched.stop() def test_settings_shake_obsolete(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'EXAMPLE_A' not in result assert 'EXAMPLE_B' in result def test_settings_shake_redundant(settings): settings.ADMINS = [] out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'ADMINS' in result def test_settings_shake_unused(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'FOO_BAR' in result @mock.patch.object(helpers, 'get_secrets_wizard') def test_obsolete_wizard(mock_get_secrets_wizard, settings): settings.EXAMPLE_A = True mock_get_secrets_wizard.return_value = {'EXAMPLE_A': True, 'EXAMPLE_B': False} out = io.StringIO() call_command( 'settings_shake', wizard=True, token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'EXAMPLE_A' not in result assert 'EXAMPLE_B' in result @mock.patch.object(settings_shake.Command, 'report_obsolete_vault_entries', mock.Mock(return_value=[])) @mock.patch.object(settings_shake.Command, 'report_unused_settings', mock.Mock(return_value=[])) @mock.patch.object(settings_shake.Command, 'report_redundant_settings', mock.Mock(return_value=[])) def test_settings_shake_ok(settings): out = io.StringIO() call_command( 'settings_shake', project='example-project', environment='example-environment', token='secret-token', domain='example.com', stdout=out ) out.seek(0) result = out.read() assert 'No obsolete vault entries found.' in result assert 'No unused settings found.' in result assert 'No redundant settings found.' in result
0.641647
0.359027
from django import VERSION from django.db.models.signals import post_save, pre_save def reset_instance(instance, *args, **kwargs): """ Called on the post_save signal. Calls the instance's _reset_state method """ instance._reset_state() class DirtyFieldsMixin(object): """ Gives dirty field tracking ability to models, also implements a save_dirty method which updates only the dirty fields using QuerySet.update - useful for multi-process or multi-worker setups where save() will actually update all fields, potentially overriding changes by other workers while the current worker has the object open. """ def __init__(self, *args, **kwargs): super(DirtyFieldsMixin, self).__init__(*args, **kwargs) dispatch_uid = '%s-DirtyFieldsMixin-sweeper' % self.__class__.__name__ post_save.connect(reset_instance, sender=self.__class__, dispatch_uid=dispatch_uid) self._reset_state() def _reset_state(self, *args, **kwargs): self._original_state = self._as_dict() def _as_dict(self): # For relations, saves all fk values too so that we can update fk by # id, e.g. obj.foreignkey_id = 4 if self._deferred: return {} return dict([(f.name, f.to_python(getattr(self, f.attname))) for f in self._meta.local_fields]) def get_changed_values(self): return dict([(field, getattr(self, field)) for field in self.dirty_fields]) @property def dirty_fields(self): """ Returns a list of keys that have changed """ if self._deferred: raise TypeError('Cant be used with deferred objects') new_state = self._as_dict() return tuple(k for k, v in self._original_state.iteritems() if v != new_state[k]) @property def is_dirty(self): if self._state.adding: return True return bool(self.dirty_fields) def save_dirty(self): """ An alternative to save, instead writing every field again, only updates the dirty fields via QuerySet.update """ if not self.pk: self.save() updated = 1 else: changed_values = self.get_changed_values() if len(changed_values.keys()) == 0: return False pre_save.send(sender=self.__class__, instance=self) # Detect if updating relationship field_ids directly # If related field object itself has changed then the field_id # also changes, in which case we detect and ignore the field_id # change, otherwise we'll reload the object again later unnecessarily rel_fields = dict([(f.column, f) for f in self._meta.fields if f.rel]) updated_rel_ids = [] for field_name in changed_values.keys(): if field_name in rel_fields.keys(): rel_field = rel_fields[field_name] value = changed_values[rel_field.column] obj_value = getattr(self, rel_field.name).pk del changed_values[rel_field.column] changed_values[rel_field.name] = value if value != obj_value: updated_rel_ids.append(rel_field.column) # Maps db column names back to field names if they differ field_map = dict([(f.column, f.name) for f in self._meta.fields if f.db_column]) for field_from, field_to in field_map.iteritems(): if field_from in changed_values: changed_values[field_to] = changed_values[field_from] del changed_values[field_from] updated = self.__class__.objects.filter(pk=self.pk).update(**changed_values) # Reload updated relationships for field_name in updated_rel_ids: field = rel_fields[field_name] field_pk = getattr(self, field_name) rel_obj = field.related.parent_model.objects.get(pk=field_pk) setattr(self, field.name, rel_obj) self._reset_state() post_save.send(sender=self.__class__, instance=self, created=False) return updated == 1 # Django 1.5 added support for updating only specified fields, this fails in # older versions. if VERSION >= (1, 5): def save(self, *args, **kwargs): if not self._state.adding: kwargs['update_fields'] = self.dirty_fields return super(DirtyFieldsMixin, self).save(*args, **kwargs) DirtyFieldsMixin.save = save
dirtyfields/dirtyfields.py
from django import VERSION from django.db.models.signals import post_save, pre_save def reset_instance(instance, *args, **kwargs): """ Called on the post_save signal. Calls the instance's _reset_state method """ instance._reset_state() class DirtyFieldsMixin(object): """ Gives dirty field tracking ability to models, also implements a save_dirty method which updates only the dirty fields using QuerySet.update - useful for multi-process or multi-worker setups where save() will actually update all fields, potentially overriding changes by other workers while the current worker has the object open. """ def __init__(self, *args, **kwargs): super(DirtyFieldsMixin, self).__init__(*args, **kwargs) dispatch_uid = '%s-DirtyFieldsMixin-sweeper' % self.__class__.__name__ post_save.connect(reset_instance, sender=self.__class__, dispatch_uid=dispatch_uid) self._reset_state() def _reset_state(self, *args, **kwargs): self._original_state = self._as_dict() def _as_dict(self): # For relations, saves all fk values too so that we can update fk by # id, e.g. obj.foreignkey_id = 4 if self._deferred: return {} return dict([(f.name, f.to_python(getattr(self, f.attname))) for f in self._meta.local_fields]) def get_changed_values(self): return dict([(field, getattr(self, field)) for field in self.dirty_fields]) @property def dirty_fields(self): """ Returns a list of keys that have changed """ if self._deferred: raise TypeError('Cant be used with deferred objects') new_state = self._as_dict() return tuple(k for k, v in self._original_state.iteritems() if v != new_state[k]) @property def is_dirty(self): if self._state.adding: return True return bool(self.dirty_fields) def save_dirty(self): """ An alternative to save, instead writing every field again, only updates the dirty fields via QuerySet.update """ if not self.pk: self.save() updated = 1 else: changed_values = self.get_changed_values() if len(changed_values.keys()) == 0: return False pre_save.send(sender=self.__class__, instance=self) # Detect if updating relationship field_ids directly # If related field object itself has changed then the field_id # also changes, in which case we detect and ignore the field_id # change, otherwise we'll reload the object again later unnecessarily rel_fields = dict([(f.column, f) for f in self._meta.fields if f.rel]) updated_rel_ids = [] for field_name in changed_values.keys(): if field_name in rel_fields.keys(): rel_field = rel_fields[field_name] value = changed_values[rel_field.column] obj_value = getattr(self, rel_field.name).pk del changed_values[rel_field.column] changed_values[rel_field.name] = value if value != obj_value: updated_rel_ids.append(rel_field.column) # Maps db column names back to field names if they differ field_map = dict([(f.column, f.name) for f in self._meta.fields if f.db_column]) for field_from, field_to in field_map.iteritems(): if field_from in changed_values: changed_values[field_to] = changed_values[field_from] del changed_values[field_from] updated = self.__class__.objects.filter(pk=self.pk).update(**changed_values) # Reload updated relationships for field_name in updated_rel_ids: field = rel_fields[field_name] field_pk = getattr(self, field_name) rel_obj = field.related.parent_model.objects.get(pk=field_pk) setattr(self, field.name, rel_obj) self._reset_state() post_save.send(sender=self.__class__, instance=self, created=False) return updated == 1 # Django 1.5 added support for updating only specified fields, this fails in # older versions. if VERSION >= (1, 5): def save(self, *args, **kwargs): if not self._state.adding: kwargs['update_fields'] = self.dirty_fields return super(DirtyFieldsMixin, self).save(*args, **kwargs) DirtyFieldsMixin.save = save
0.757256
0.176246
from osmclient.common import utils from osmclient.common import wait as WaitForStatus from osmclient.common.exceptions import ClientException from osmclient.common.exceptions import NotFound import json class SdnController(object): def __init__(self, http=None, client=None): self._http = http self._client = client self._apiName = '/admin' self._apiVersion = '/v1' self._apiResource = '/sdns' self._apiBase = '{}{}{}'.format(self._apiName, self._apiVersion, self._apiResource) # SDNC '--wait' option def _wait(self, id, deleteFlag=False): # Endpoint to get operation status apiUrlStatus = '{}{}{}'.format(self._apiName, self._apiVersion, '/sdns') # Wait for status for SDN instance creation/update/deletion WaitForStatus.wait_for_status( 'SDNC', str(id), WaitForStatus.TIMEOUT_SDNC_OPERATION, apiUrlStatus, self._http.get2_cmd, deleteFlag=deleteFlag) def _get_id_for_wait(self, name): # Returns id of name, or the id itself if given as argument for sdnc in self.list(): if name == sdnc['_id']: return sdnc['_id'] for sdnc in self.list(): if name == sdnc['name']: return sdnc['_id'] return '' def create(self, name, sdn_controller, wait=False): http_code, resp = self._http.post_cmd(endpoint=self._apiBase, postfields_dict=sdn_controller) #print 'HTTP CODE: {}'.format(http_code) #print 'RESP: {}'.format(resp) if http_code in (200, 201, 202, 204): if resp: resp = json.loads(resp) if not resp or 'id' not in resp: raise ClientException('unexpected response from server - {}'.format( resp)) if wait: # Wait for status for SDNC instance creation self._wait(resp.get('id')) print(resp['id']) else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to create SDN controller {} - {}".format(name, msg)) def update(self, name, sdn_controller, wait=False): sdnc = self.get(name) sdnc_id_for_wait = self._get_id_for_wait(name) http_code, resp = self._http.put_cmd(endpoint='{}/{}'.format(self._apiBase,sdnc['_id']), postfields_dict=sdn_controller) # print 'HTTP CODE: {}'.format(http_code) # print 'RESP: {}'.format(resp) if http_code in (200, 201, 202, 204): if wait: # In this case, 'resp' always returns None, so 'resp['id']' cannot be used. # Use the previously obtained id instead. wait_id = sdnc_id_for_wait # Wait for status for VI instance update self._wait(wait_id) else: pass else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to update SDN controller {} - {}".format(name, msg)) def delete(self, name, force=False, wait=False): sdn_controller = self.get(name) sdnc_id_for_wait = self._get_id_for_wait(name) querystring = '' if force: querystring = '?FORCE=True' http_code, resp = self._http.delete_cmd('{}/{}{}'.format(self._apiBase, sdn_controller['_id'], querystring)) #print 'HTTP CODE: {}'.format(http_code) #print 'RESP: {}'.format(resp) if http_code == 202: if wait: # Wait for status for SDNC instance deletion self._wait(sdnc_id_for_wait, deleteFlag=True) else: print('Deletion in progress') elif http_code == 204: print('Deleted') elif resp and 'result' in resp: print('Deleted') else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to delete SDN controller {} - {}".format(name, msg)) def list(self, filter=None): """Returns a list of SDN controllers """ filter_string = '' if filter: filter_string = '?{}'.format(filter) resp = self._http.get_cmd('{}{}'.format(self._apiBase,filter_string)) #print 'RESP: {}'.format(resp) if resp: return resp return list() def get(self, name): """Returns an SDN controller based on name or id """ if utils.validate_uuid4(name): for sdnc in self.list(): if name == sdnc['_id']: return sdnc else: for sdnc in self.list(): if name == sdnc['name']: return sdnc raise NotFound("SDN controller {} not found".format(name))
src/osmclient/sol005/sdncontroller.py
from osmclient.common import utils from osmclient.common import wait as WaitForStatus from osmclient.common.exceptions import ClientException from osmclient.common.exceptions import NotFound import json class SdnController(object): def __init__(self, http=None, client=None): self._http = http self._client = client self._apiName = '/admin' self._apiVersion = '/v1' self._apiResource = '/sdns' self._apiBase = '{}{}{}'.format(self._apiName, self._apiVersion, self._apiResource) # SDNC '--wait' option def _wait(self, id, deleteFlag=False): # Endpoint to get operation status apiUrlStatus = '{}{}{}'.format(self._apiName, self._apiVersion, '/sdns') # Wait for status for SDN instance creation/update/deletion WaitForStatus.wait_for_status( 'SDNC', str(id), WaitForStatus.TIMEOUT_SDNC_OPERATION, apiUrlStatus, self._http.get2_cmd, deleteFlag=deleteFlag) def _get_id_for_wait(self, name): # Returns id of name, or the id itself if given as argument for sdnc in self.list(): if name == sdnc['_id']: return sdnc['_id'] for sdnc in self.list(): if name == sdnc['name']: return sdnc['_id'] return '' def create(self, name, sdn_controller, wait=False): http_code, resp = self._http.post_cmd(endpoint=self._apiBase, postfields_dict=sdn_controller) #print 'HTTP CODE: {}'.format(http_code) #print 'RESP: {}'.format(resp) if http_code in (200, 201, 202, 204): if resp: resp = json.loads(resp) if not resp or 'id' not in resp: raise ClientException('unexpected response from server - {}'.format( resp)) if wait: # Wait for status for SDNC instance creation self._wait(resp.get('id')) print(resp['id']) else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to create SDN controller {} - {}".format(name, msg)) def update(self, name, sdn_controller, wait=False): sdnc = self.get(name) sdnc_id_for_wait = self._get_id_for_wait(name) http_code, resp = self._http.put_cmd(endpoint='{}/{}'.format(self._apiBase,sdnc['_id']), postfields_dict=sdn_controller) # print 'HTTP CODE: {}'.format(http_code) # print 'RESP: {}'.format(resp) if http_code in (200, 201, 202, 204): if wait: # In this case, 'resp' always returns None, so 'resp['id']' cannot be used. # Use the previously obtained id instead. wait_id = sdnc_id_for_wait # Wait for status for VI instance update self._wait(wait_id) else: pass else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to update SDN controller {} - {}".format(name, msg)) def delete(self, name, force=False, wait=False): sdn_controller = self.get(name) sdnc_id_for_wait = self._get_id_for_wait(name) querystring = '' if force: querystring = '?FORCE=True' http_code, resp = self._http.delete_cmd('{}/{}{}'.format(self._apiBase, sdn_controller['_id'], querystring)) #print 'HTTP CODE: {}'.format(http_code) #print 'RESP: {}'.format(resp) if http_code == 202: if wait: # Wait for status for SDNC instance deletion self._wait(sdnc_id_for_wait, deleteFlag=True) else: print('Deletion in progress') elif http_code == 204: print('Deleted') elif resp and 'result' in resp: print('Deleted') else: msg = "" if resp: try: msg = json.loads(resp) except ValueError: msg = resp raise ClientException("failed to delete SDN controller {} - {}".format(name, msg)) def list(self, filter=None): """Returns a list of SDN controllers """ filter_string = '' if filter: filter_string = '?{}'.format(filter) resp = self._http.get_cmd('{}{}'.format(self._apiBase,filter_string)) #print 'RESP: {}'.format(resp) if resp: return resp return list() def get(self, name): """Returns an SDN controller based on name or id """ if utils.validate_uuid4(name): for sdnc in self.list(): if name == sdnc['_id']: return sdnc else: for sdnc in self.list(): if name == sdnc['name']: return sdnc raise NotFound("SDN controller {} not found".format(name))
0.352759
0.040846
from nltk.stem import WordNetLemmatizer import fractions import operator from fuzzywuzzy import fuzz, process import requests import re from ..models import FoodDescription, Tag from . import fpdb lemmer = WordNetLemmatizer() def tokenize(text): """ First splits on r',|\.|and', strips the result, and removes empty tokens :param text: the text to tokenize :return: list of string tokens """ tokens = re.split(r',|\.(?![0-9])|and', text) tokens = [t.strip() for t in tokens] tokens = [t for t in tokens if t is not u''] return tokens def ask_google_for_ndb_no(query): text = requests.get('http://www.google.com/search?q=%s+food' % query).text if 'USDA' not in text: text = requests.get('http://www.google.com/search?q=%s' % query).text if 'USDA' not in text: return None # limit between these two (see html of that url for reference) first = text.find('Sources include:') second = text.find('USDA') if first < 0 or second < 0: return None text = text[first:second] resp = re.search('qlookup%3D[0-9]+', text) if resp is None: return None return int(resp.group(0).replace("qlookup%3D", "")) def realtime_parse(query): """ returns a dictionary of parsed entry dictionary has food item, quantity, and measure """ parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] quantity, parts = get_quantity(parts) item = FoodDescription.query.get(9040) measure = item.measurements[0] return {'item': {'id': item.id, 'desc': item.long_desc}, 'measure': {'id': measure.id, 'desc': measure.description}, 'quantity': quantity} def get_quantity(parts): """ returns a tuple (quantity, parts without quantity) """ quantity = 1 for i, part in enumerate(parts): if re.match(r'[0-9]*\.*[0-9]', part) is not None: try: quantity = float(fractions.Fraction(part)) del parts[i] except: pass return (quantity, parts) def realtime_parse_autocomplete(db, query): parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] quantity, parts = get_quantity(parts) db_query = ' '.join(parts) foods = fpdb.desc_fts(db, db_query, 15) res = [] for f in foods: for ms in f.measurements: res.append({'value': str(quantity) + " " + ms.description + " x " + f.long_desc, 'data': { 'food-id': f.id, 'measure-id': ms.id, 'quantity': quantity }}) return {"suggestions": res} def food_parse(db, query): """ returns a jsonable dict for the autocomplete js library we are using for a text field used to select a food item :param db: :param query: :return: """ parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] db_query = ' '.join(parts) foods = fpdb.desc_fts(db, db_query, 15) res = [] for f in foods: res.append({'value': f.long_desc, 'data': { 'food-id': f.id }}) return {"suggestions": res}
app/fplib/nlp.py
from nltk.stem import WordNetLemmatizer import fractions import operator from fuzzywuzzy import fuzz, process import requests import re from ..models import FoodDescription, Tag from . import fpdb lemmer = WordNetLemmatizer() def tokenize(text): """ First splits on r',|\.|and', strips the result, and removes empty tokens :param text: the text to tokenize :return: list of string tokens """ tokens = re.split(r',|\.(?![0-9])|and', text) tokens = [t.strip() for t in tokens] tokens = [t for t in tokens if t is not u''] return tokens def ask_google_for_ndb_no(query): text = requests.get('http://www.google.com/search?q=%s+food' % query).text if 'USDA' not in text: text = requests.get('http://www.google.com/search?q=%s' % query).text if 'USDA' not in text: return None # limit between these two (see html of that url for reference) first = text.find('Sources include:') second = text.find('USDA') if first < 0 or second < 0: return None text = text[first:second] resp = re.search('qlookup%3D[0-9]+', text) if resp is None: return None return int(resp.group(0).replace("qlookup%3D", "")) def realtime_parse(query): """ returns a dictionary of parsed entry dictionary has food item, quantity, and measure """ parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] quantity, parts = get_quantity(parts) item = FoodDescription.query.get(9040) measure = item.measurements[0] return {'item': {'id': item.id, 'desc': item.long_desc}, 'measure': {'id': measure.id, 'desc': measure.description}, 'quantity': quantity} def get_quantity(parts): """ returns a tuple (quantity, parts without quantity) """ quantity = 1 for i, part in enumerate(parts): if re.match(r'[0-9]*\.*[0-9]', part) is not None: try: quantity = float(fractions.Fraction(part)) del parts[i] except: pass return (quantity, parts) def realtime_parse_autocomplete(db, query): parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] quantity, parts = get_quantity(parts) db_query = ' '.join(parts) foods = fpdb.desc_fts(db, db_query, 15) res = [] for f in foods: for ms in f.measurements: res.append({'value': str(quantity) + " " + ms.description + " x " + f.long_desc, 'data': { 'food-id': f.id, 'measure-id': ms.id, 'quantity': quantity }}) return {"suggestions": res} def food_parse(db, query): """ returns a jsonable dict for the autocomplete js library we are using for a text field used to select a food item :param db: :param query: :return: """ parts = re.split("\s+", query) parts = [lemmer.lemmatize(part) for part in parts] db_query = ' '.join(parts) foods = fpdb.desc_fts(db, db_query, 15) res = [] for f in foods: res.append({'value': f.long_desc, 'data': { 'food-id': f.id }}) return {"suggestions": res}
0.511473
0.257427
import gzip import itertools import os import re import struct import tempfile import typing as ty import urllib.request from fastnumbers import int from filefetcher.manager import BuildTask import lmdb import msgpack import pysam RSID_CAPTURE = re.compile(r'RS=(\d+);?') # The new dbSNP format uses refseq identifiers. Building a lookup based on human friendly chrom/pos/ref/alt # requires converting human identifiers to and from refseq names VERSIONLESS_CHROMS = { 'NC_000001': '1', 'NC_000002': '2', 'NC_000003': '3', 'NC_000004': '4', 'NC_000005': '5', 'NC_000006': '6', 'NC_000007': '7', 'NC_000008': '8', 'NC_000009': '9', 'NC_000010': '10', 'NC_000011': '11', 'NC_000012': '12', 'NC_000013': '13', 'NC_000014': '14', 'NC_000015': '15', 'NC_000016': '16', 'NC_000017': '17', 'NC_000018': '18', 'NC_000019': '19', 'NC_000020': '20', 'NC_000021': '21', 'NC_000022': '22', 'NC_000023': 'X', 'NC_000024': 'Y', 'NC_012920': 'MT', } def make_chrom_to_contigs(tabix_file: pysam.TabixFile) -> dict: """ In order to address a tabix file by position, we need the exact contig name. dbSNP builds use a versioned identifier that changes across builds and versions. This generates a lookup for converting human friendly chromosome names to things that can be used by a particular dbSNP file. It automatically adjusts for small build differences and excludes non-chrom contigs """ return { # Eg '1': 'NC_000001.10', VERSIONLESS_CHROMS[c.split('.', 1)[0]]: c for c in tabix_file.contigs if c.startswith('NC') } def fetch_regions_sequentially(source_fn: str, sample_regions: ty.Tuple[str, int, int]) -> ty.Iterator[str]: """Instead of loading an entire gzip file, create an iterator over a set of regions""" source = pysam.TabixFile(source_fn) human_chrom_to_tabix = make_chrom_to_contigs(source) for region in sample_regions: chrom, start, end = region dbsnp_chrom = human_chrom_to_tabix[chrom] for line in source.fetch(dbsnp_chrom, start, end): yield line def line_parser(row) -> ty.Tuple[str, int, str, str, int]: """For new dbSNP format, builds 152+""" fields = row.split() # the new dbSNP format uses refseq ids + version; convert these to human-readable chromosome names chrom = VERSIONLESS_CHROMS[fields[0].split('.')[0]] pos = int(fields[1]) ref = fields[3] alt = fields[4] # Get the RSID from the VCF info field, in case the id column is ambiguous for some reason rsid = int(RSID_CAPTURE.search(fields[7]).group(1)) return (chrom, pos, ref, alt, rsid) def make_file_iterator(handle: ty.Iterable) -> ty.Iterator[ty.Tuple[str, int, str, str, int]]: """ Parse the set of lines for some iterator (eg over contents of an open text, gz, etc file), and only give back the ones relevant to our chrom/pos/ref/alt use case """ for row in handle: if row.startswith('#'): # Skip header rows continue if not row.startswith('NC_'): # After that, only parse the variants labeled "NC", not the "unplaced scaffold" items raise StopIteration yield line_parser(row) def make_group_iterator(file_iterator) -> ty.Iterable[ty.Tuple[str, int, dict]]: """Create an iterator that returns all possible ref/alt : rsid pairs for that position""" chrom = None for position, position_records in itertools.groupby(file_iterator, key=lambda x: x[1]): # assumes that position is the only thing that will change, else use chr/pos: (x[0], x[1])): position_contents = {} # Then push final lookup for that chr:pos into the database for record in position_records: # The same line can indicate one or more ref/alts chrom, pos, ref, alt, rsid = record ref_alts = ['{}/{}'.format(ref_option, alt_option) for alt_option in alt.split(',') for ref_option in ref.split('.')] for key in ref_alts: position_contents[key] = rsid yield chrom, position, position_contents def make_databases(env) -> dict: known = [ '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y', 'MT' ] return {k: env.open_db(bytes(k, "utf8"), integerkey=True) for k in known} def main(source_fn: str, out_fn: str, n_chroms=25, sample_regions=None): """Perform this task in isolation for any dbsnp file""" if os.path.exists(out_fn): # LMDB would happily append / replace keys, but we want to create these files once and keep file size small raise Exception('The requested output file already exists.') # To reduce disk usage, each chromosome is stored internally as a separate database (the same chrom key info isn't # stored redundantly) env = lmdb.open(out_fn, subdir=False, max_dbs=n_chroms, map_size=25e9) db_handles = make_databases(env) if sample_regions: iterator = fetch_regions_sequentially(source_fn, sample_regions) else: iterator = gzip.open(source_fn, "rt") with env.begin(write=True) as txn: all_lines = make_file_iterator(iterator) group_iterator = make_group_iterator(all_lines) for chrom, position, position_contents in group_iterator: # Value is not a primitive; serialize it efficiently key = struct.pack('I', position) value = msgpack.packb(position_contents, use_bin_type=True) txn.put(key, value, db=db_handles[chrom]) class MakeSnpToRsid(BuildTask): """A packaged filefetcher build task that also downloads the necessary input files""" def __init__(self, genome_build, sample_regions=None): self.genome_build = genome_build self.regions = sample_regions or None def get_assets(self): # Download the appropriate dbsnp file for a given genome build if does not exist # Uses a system temp directory rather than the build folder in case file is needed between runs # FIXME: The directory structure of new dbSNP is still too new to know what will change between releases, so # we don't yet have a generic way to get build information without downloading the files. For # now this is a hardcoded reference. if self.genome_build == 'GRCh37': source_url = 'ftp://ftp.ncbi.nih.gov/snp/redesign/latest_release/VCF/GCF_000001405.25.gz' elif self.genome_build == 'GRCh38': source_url = 'ftp://ftp.ncbi.nih.gov/snp/redesign/latest_release/VCF/GCF_000001405.38.gz' else: raise Exception('Unknown build') dest_fn = os.path.join(tempfile.gettempdir(), os.path.basename(source_url)) if not os.path.exists(dest_fn): # Download assets to a tempfile directory urllib.request.urlretrieve( source_url, dest_fn ) # And also Tabix index urllib.request.urlretrieve( source_url + '.tbi', dest_fn + '.tbi' ) return dest_fn def build(self, manager, item_type: str, build_folder: str, **kwargs): # FIXME: Hardcode dbsnp build until we build a more reliable way to get this info. dbsnp_build = 'b153' source_fn = self.get_assets() print('Building to: ', build_folder) dest_fn = os.path.join( build_folder, '{}_{}_{}.lmdb'.format(item_type, self.genome_build, dbsnp_build) ) main(source_fn, dest_fn, sample_regions=self.regions) return dest_fn, {'dbsnp_build': dbsnp_build}
zorp/loaders/make_rsid_lookup.py
import gzip import itertools import os import re import struct import tempfile import typing as ty import urllib.request from fastnumbers import int from filefetcher.manager import BuildTask import lmdb import msgpack import pysam RSID_CAPTURE = re.compile(r'RS=(\d+);?') # The new dbSNP format uses refseq identifiers. Building a lookup based on human friendly chrom/pos/ref/alt # requires converting human identifiers to and from refseq names VERSIONLESS_CHROMS = { 'NC_000001': '1', 'NC_000002': '2', 'NC_000003': '3', 'NC_000004': '4', 'NC_000005': '5', 'NC_000006': '6', 'NC_000007': '7', 'NC_000008': '8', 'NC_000009': '9', 'NC_000010': '10', 'NC_000011': '11', 'NC_000012': '12', 'NC_000013': '13', 'NC_000014': '14', 'NC_000015': '15', 'NC_000016': '16', 'NC_000017': '17', 'NC_000018': '18', 'NC_000019': '19', 'NC_000020': '20', 'NC_000021': '21', 'NC_000022': '22', 'NC_000023': 'X', 'NC_000024': 'Y', 'NC_012920': 'MT', } def make_chrom_to_contigs(tabix_file: pysam.TabixFile) -> dict: """ In order to address a tabix file by position, we need the exact contig name. dbSNP builds use a versioned identifier that changes across builds and versions. This generates a lookup for converting human friendly chromosome names to things that can be used by a particular dbSNP file. It automatically adjusts for small build differences and excludes non-chrom contigs """ return { # Eg '1': 'NC_000001.10', VERSIONLESS_CHROMS[c.split('.', 1)[0]]: c for c in tabix_file.contigs if c.startswith('NC') } def fetch_regions_sequentially(source_fn: str, sample_regions: ty.Tuple[str, int, int]) -> ty.Iterator[str]: """Instead of loading an entire gzip file, create an iterator over a set of regions""" source = pysam.TabixFile(source_fn) human_chrom_to_tabix = make_chrom_to_contigs(source) for region in sample_regions: chrom, start, end = region dbsnp_chrom = human_chrom_to_tabix[chrom] for line in source.fetch(dbsnp_chrom, start, end): yield line def line_parser(row) -> ty.Tuple[str, int, str, str, int]: """For new dbSNP format, builds 152+""" fields = row.split() # the new dbSNP format uses refseq ids + version; convert these to human-readable chromosome names chrom = VERSIONLESS_CHROMS[fields[0].split('.')[0]] pos = int(fields[1]) ref = fields[3] alt = fields[4] # Get the RSID from the VCF info field, in case the id column is ambiguous for some reason rsid = int(RSID_CAPTURE.search(fields[7]).group(1)) return (chrom, pos, ref, alt, rsid) def make_file_iterator(handle: ty.Iterable) -> ty.Iterator[ty.Tuple[str, int, str, str, int]]: """ Parse the set of lines for some iterator (eg over contents of an open text, gz, etc file), and only give back the ones relevant to our chrom/pos/ref/alt use case """ for row in handle: if row.startswith('#'): # Skip header rows continue if not row.startswith('NC_'): # After that, only parse the variants labeled "NC", not the "unplaced scaffold" items raise StopIteration yield line_parser(row) def make_group_iterator(file_iterator) -> ty.Iterable[ty.Tuple[str, int, dict]]: """Create an iterator that returns all possible ref/alt : rsid pairs for that position""" chrom = None for position, position_records in itertools.groupby(file_iterator, key=lambda x: x[1]): # assumes that position is the only thing that will change, else use chr/pos: (x[0], x[1])): position_contents = {} # Then push final lookup for that chr:pos into the database for record in position_records: # The same line can indicate one or more ref/alts chrom, pos, ref, alt, rsid = record ref_alts = ['{}/{}'.format(ref_option, alt_option) for alt_option in alt.split(',') for ref_option in ref.split('.')] for key in ref_alts: position_contents[key] = rsid yield chrom, position, position_contents def make_databases(env) -> dict: known = [ '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y', 'MT' ] return {k: env.open_db(bytes(k, "utf8"), integerkey=True) for k in known} def main(source_fn: str, out_fn: str, n_chroms=25, sample_regions=None): """Perform this task in isolation for any dbsnp file""" if os.path.exists(out_fn): # LMDB would happily append / replace keys, but we want to create these files once and keep file size small raise Exception('The requested output file already exists.') # To reduce disk usage, each chromosome is stored internally as a separate database (the same chrom key info isn't # stored redundantly) env = lmdb.open(out_fn, subdir=False, max_dbs=n_chroms, map_size=25e9) db_handles = make_databases(env) if sample_regions: iterator = fetch_regions_sequentially(source_fn, sample_regions) else: iterator = gzip.open(source_fn, "rt") with env.begin(write=True) as txn: all_lines = make_file_iterator(iterator) group_iterator = make_group_iterator(all_lines) for chrom, position, position_contents in group_iterator: # Value is not a primitive; serialize it efficiently key = struct.pack('I', position) value = msgpack.packb(position_contents, use_bin_type=True) txn.put(key, value, db=db_handles[chrom]) class MakeSnpToRsid(BuildTask): """A packaged filefetcher build task that also downloads the necessary input files""" def __init__(self, genome_build, sample_regions=None): self.genome_build = genome_build self.regions = sample_regions or None def get_assets(self): # Download the appropriate dbsnp file for a given genome build if does not exist # Uses a system temp directory rather than the build folder in case file is needed between runs # FIXME: The directory structure of new dbSNP is still too new to know what will change between releases, so # we don't yet have a generic way to get build information without downloading the files. For # now this is a hardcoded reference. if self.genome_build == 'GRCh37': source_url = 'ftp://ftp.ncbi.nih.gov/snp/redesign/latest_release/VCF/GCF_000001405.25.gz' elif self.genome_build == 'GRCh38': source_url = 'ftp://ftp.ncbi.nih.gov/snp/redesign/latest_release/VCF/GCF_000001405.38.gz' else: raise Exception('Unknown build') dest_fn = os.path.join(tempfile.gettempdir(), os.path.basename(source_url)) if not os.path.exists(dest_fn): # Download assets to a tempfile directory urllib.request.urlretrieve( source_url, dest_fn ) # And also Tabix index urllib.request.urlretrieve( source_url + '.tbi', dest_fn + '.tbi' ) return dest_fn def build(self, manager, item_type: str, build_folder: str, **kwargs): # FIXME: Hardcode dbsnp build until we build a more reliable way to get this info. dbsnp_build = 'b153' source_fn = self.get_assets() print('Building to: ', build_folder) dest_fn = os.path.join( build_folder, '{}_{}_{}.lmdb'.format(item_type, self.genome_build, dbsnp_build) ) main(source_fn, dest_fn, sample_regions=self.regions) return dest_fn, {'dbsnp_build': dbsnp_build}
0.474631
0.211539
import os import gzip import tarfile import pickle import numpy as np import matplotlib.pyplot as plt from dezero.utils import get_file, cache_dir from dezero.transforms import Compose, Flatten, ToFloat, Normalize # ============================================================================= # Base class # ============================================================================= class Dataset(): def __init__(self, train=True, transform=None, target_transform=None): self.train = train self.transform = transform self.target_transform = target_transform if self.transform is None: self.transform = lambda x: x if self.target_transform is None: self.target_transform = lambda x: x self.data = None self.label = None self.prepare() def __getitem__(self, index): assert np.isscalar(index) if self.label is None: return self.transform(self.data[index]), None else: return self.transform(self.data[index]), self.target_transform( self.label[index]) def __len__(self): return len(self.data) def prepare(self): pass # ============================================================================= # Toy datasets # ============================================================================= def get_spiral(train=True): seed = 1984 if train else 2020 np.random.seed(seed=seed) num_data, num_class, input_dim = 100, 3, 2 data_size = num_class * num_data x = np.zeros((data_size, input_dim), dtype=np.float32) t = np.zeros(data_size, dtype=np.int) for j in range(num_class): for i in range(num_data): rate = i / num_data radius = 1.0 * rate theta = j * 4.0 + 4.0 * rate + np.random.randn() * 0.2 ix = num_data * j + i x[ix] = np.array([radius * np.sin(theta), radius * np.cos(theta)]).flatten() t[ix] = j # Shuffle indices = np.random.permutation(num_data * num_class) x = x[indices] t = t[indices] return x, t class Spiral(Dataset): def prepare(self): self.data, self.label = get_spiral(self.train) # ============================================================================= # MNIST-like dataset: MNIST / CIFAR / # ============================================================================= class MNIST(Dataset): def __init__(self, train=True, transform=Compose([Flatten(), ToFloat(), Normalize(0., 255.)]), target_transform=None): super().__init__(train, transform, target_transform) def prepare(self): url = 'http://yann.lecun.com/exdb/mnist/' train_files = { 'target': 'train-images-idx3-ubyte.gz', 'label': 'train-labels-idx1-ubyte.gz' } test_files = { 'target': 't10k-images-idx3-ubyte.gz', 'label': 't10k-labels-idx1-ubyte.gz' } files = train_files if self.train else test_files data_path = get_file(url + files['target']) label_path = get_file(url + files['label']) self.data = self._load_data(data_path) self.label = self._load_label(label_path) def _load_label(self, filepath): with gzip.open(filepath, 'rb') as f: labels = np.frombuffer(f.read(), np.uint8, offset=8) return labels def _load_data(self, filepath): with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) data = data.reshape(-1, 1, 28, 28) return data def show(self, row=10, col=10): H, W = 28, 28 img = np.zeros((H * row, W * col)) for r in range(row): for c in range(col): img[r * H:(r + 1) * H, c * W:(c + 1) * W] = self.data[np.random.randint( 0, len(self.data) - 1)].reshape(H, W) plt.imshow(img, cmap='gray', interpolation='nearest') plt.axis('off') plt.show() @staticmethod def labels(): return { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9' } # ============================================================================= # Big datasets # ============================================================================= class ImageNet(Dataset): def __init__(self): NotImplemented @staticmethod def labels(): url = 'https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt' path = get_file(url) with open(path, 'r') as f: labels = eval(f.read()) return labels # ============================================================================= # Sequential datasets: SinCurve, Shapekspare # ============================================================================= class SinCurve(Dataset): def prepare(self): num_data = 1000 dtype = np.float64 x = np.linspace(0, 2 * np.pi, num_data) noise_range = (-0.05, 0.05) noise = np.random.uniform(noise_range[0], noise_range[1], size=x.shape) if self.train: y = np.sin(x) + noise else: y = np.cos(x) y = y.astype(dtype) self.data = y[:-1][:, np.newaxis] self.label = y[1:][:, np.newaxis]
dezero/datasets.py
import os import gzip import tarfile import pickle import numpy as np import matplotlib.pyplot as plt from dezero.utils import get_file, cache_dir from dezero.transforms import Compose, Flatten, ToFloat, Normalize # ============================================================================= # Base class # ============================================================================= class Dataset(): def __init__(self, train=True, transform=None, target_transform=None): self.train = train self.transform = transform self.target_transform = target_transform if self.transform is None: self.transform = lambda x: x if self.target_transform is None: self.target_transform = lambda x: x self.data = None self.label = None self.prepare() def __getitem__(self, index): assert np.isscalar(index) if self.label is None: return self.transform(self.data[index]), None else: return self.transform(self.data[index]), self.target_transform( self.label[index]) def __len__(self): return len(self.data) def prepare(self): pass # ============================================================================= # Toy datasets # ============================================================================= def get_spiral(train=True): seed = 1984 if train else 2020 np.random.seed(seed=seed) num_data, num_class, input_dim = 100, 3, 2 data_size = num_class * num_data x = np.zeros((data_size, input_dim), dtype=np.float32) t = np.zeros(data_size, dtype=np.int) for j in range(num_class): for i in range(num_data): rate = i / num_data radius = 1.0 * rate theta = j * 4.0 + 4.0 * rate + np.random.randn() * 0.2 ix = num_data * j + i x[ix] = np.array([radius * np.sin(theta), radius * np.cos(theta)]).flatten() t[ix] = j # Shuffle indices = np.random.permutation(num_data * num_class) x = x[indices] t = t[indices] return x, t class Spiral(Dataset): def prepare(self): self.data, self.label = get_spiral(self.train) # ============================================================================= # MNIST-like dataset: MNIST / CIFAR / # ============================================================================= class MNIST(Dataset): def __init__(self, train=True, transform=Compose([Flatten(), ToFloat(), Normalize(0., 255.)]), target_transform=None): super().__init__(train, transform, target_transform) def prepare(self): url = 'http://yann.lecun.com/exdb/mnist/' train_files = { 'target': 'train-images-idx3-ubyte.gz', 'label': 'train-labels-idx1-ubyte.gz' } test_files = { 'target': 't10k-images-idx3-ubyte.gz', 'label': 't10k-labels-idx1-ubyte.gz' } files = train_files if self.train else test_files data_path = get_file(url + files['target']) label_path = get_file(url + files['label']) self.data = self._load_data(data_path) self.label = self._load_label(label_path) def _load_label(self, filepath): with gzip.open(filepath, 'rb') as f: labels = np.frombuffer(f.read(), np.uint8, offset=8) return labels def _load_data(self, filepath): with gzip.open(filepath, 'rb') as f: data = np.frombuffer(f.read(), np.uint8, offset=16) data = data.reshape(-1, 1, 28, 28) return data def show(self, row=10, col=10): H, W = 28, 28 img = np.zeros((H * row, W * col)) for r in range(row): for c in range(col): img[r * H:(r + 1) * H, c * W:(c + 1) * W] = self.data[np.random.randint( 0, len(self.data) - 1)].reshape(H, W) plt.imshow(img, cmap='gray', interpolation='nearest') plt.axis('off') plt.show() @staticmethod def labels(): return { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9' } # ============================================================================= # Big datasets # ============================================================================= class ImageNet(Dataset): def __init__(self): NotImplemented @staticmethod def labels(): url = 'https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt' path = get_file(url) with open(path, 'r') as f: labels = eval(f.read()) return labels # ============================================================================= # Sequential datasets: SinCurve, Shapekspare # ============================================================================= class SinCurve(Dataset): def prepare(self): num_data = 1000 dtype = np.float64 x = np.linspace(0, 2 * np.pi, num_data) noise_range = (-0.05, 0.05) noise = np.random.uniform(noise_range[0], noise_range[1], size=x.shape) if self.train: y = np.sin(x) + noise else: y = np.cos(x) y = y.astype(dtype) self.data = y[:-1][:, np.newaxis] self.label = y[1:][:, np.newaxis]
0.599016
0.431165
from typing import Dict from base_collectors import JenkinsPluginSourceUpToDatenessCollector, SourceCollector from collector_utilities.type import URL from source_model import Entity, SourceMeasurement, SourceResponses class OWASPDependencyCheckJenkinsPluginSecurityWarnings(SourceCollector): """OWASP Dependency Check Jenkins plugin security warnings collector.""" async def _api_url(self) -> URL: api_url = await super()._api_url() return URL(f"{api_url}/lastSuccessfulBuild/dependency-check-jenkins-pluginResult/api/json?depth=1") async def _landing_url(self, responses: SourceResponses) -> URL: return URL(f"{await super()._api_url()}/lastSuccessfulBuild/dependency-check-jenkins-pluginResult") async def _parse_source_responses(self, responses: SourceResponses) -> SourceMeasurement: json = await responses[0].json() severities = self._parameter("severities") warnings = [warning for warning in json.get("warnings", []) if warning["priority"].lower() in severities] entities: Dict[str, Entity] = {} for warning in warnings: priority = warning["priority"].lower() file_path = warning["fileName"] if file_path in entities: entities[file_path]["nr_vulnerabilities"] = str(int(entities[file_path]["nr_vulnerabilities"]) + 1) entities[file_path]["highest_severity"] = \ self.__highest_severity(str(entities[file_path]["highest_severity"]).lower(), priority).capitalize() else: entities[file_path] = Entity( key=file_path, file_path=file_path, highest_severity=priority.capitalize(), nr_vulnerabilities="1") return SourceMeasurement(entities=list(entities.values())) def __highest_severity(self, severity1: str, severity2: str) -> str: """Return the highest of the two severities.""" severities = self._data_model["sources"][self.source_type]["parameters"]["severities"]["values"] return severity1 if severities.index(severity1) >= severities.index(severity2) else severity2 class OWASPDependencyCheckJenkinsPluginSourceUpToDateness(JenkinsPluginSourceUpToDatenessCollector): """Collector to get the age of the OWASP Dependency Check Jenkins plugin report."""
components/collector/src/source_collectors/api_source_collectors/owasp_dependency_check_jenkins_plugin.py
from typing import Dict from base_collectors import JenkinsPluginSourceUpToDatenessCollector, SourceCollector from collector_utilities.type import URL from source_model import Entity, SourceMeasurement, SourceResponses class OWASPDependencyCheckJenkinsPluginSecurityWarnings(SourceCollector): """OWASP Dependency Check Jenkins plugin security warnings collector.""" async def _api_url(self) -> URL: api_url = await super()._api_url() return URL(f"{api_url}/lastSuccessfulBuild/dependency-check-jenkins-pluginResult/api/json?depth=1") async def _landing_url(self, responses: SourceResponses) -> URL: return URL(f"{await super()._api_url()}/lastSuccessfulBuild/dependency-check-jenkins-pluginResult") async def _parse_source_responses(self, responses: SourceResponses) -> SourceMeasurement: json = await responses[0].json() severities = self._parameter("severities") warnings = [warning for warning in json.get("warnings", []) if warning["priority"].lower() in severities] entities: Dict[str, Entity] = {} for warning in warnings: priority = warning["priority"].lower() file_path = warning["fileName"] if file_path in entities: entities[file_path]["nr_vulnerabilities"] = str(int(entities[file_path]["nr_vulnerabilities"]) + 1) entities[file_path]["highest_severity"] = \ self.__highest_severity(str(entities[file_path]["highest_severity"]).lower(), priority).capitalize() else: entities[file_path] = Entity( key=file_path, file_path=file_path, highest_severity=priority.capitalize(), nr_vulnerabilities="1") return SourceMeasurement(entities=list(entities.values())) def __highest_severity(self, severity1: str, severity2: str) -> str: """Return the highest of the two severities.""" severities = self._data_model["sources"][self.source_type]["parameters"]["severities"]["values"] return severity1 if severities.index(severity1) >= severities.index(severity2) else severity2 class OWASPDependencyCheckJenkinsPluginSourceUpToDateness(JenkinsPluginSourceUpToDatenessCollector): """Collector to get the age of the OWASP Dependency Check Jenkins plugin report."""
0.875628
0.110351
from cliff import lister from osc_lib.command import command from osc_lib import exceptions from osc_lib import utils from osc_lib.utils import tags as _tag from oslo_utils import uuidutils from octaviaclient.osc.v2 import constants as const from octaviaclient.osc.v2 import utils as v2_utils HTTP_METHODS = ['GET', 'POST', 'DELETE', 'PUT', 'HEAD', 'OPTIONS', 'PATCH', 'CONNECT', 'TRACE'] HTTP_VERSIONS = [1.0, 1.1] TYPE_CHOICES = ['PING', 'HTTP', 'TCP', 'HTTPS', 'TLS-HELLO', 'UDP-CONNECT', 'SCTP'] class CreateHealthMonitor(command.ShowOne): """Create a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'pool', metavar='<pool>', help="Set the pool for the health monitor (name or ID)." ) parser.add_argument( '--name', metavar='<name>', help="Set the health monitor name." ) parser.add_argument( '--delay', metavar='<delay>', required=True, help="Set the time in seconds, between sending probes to members." ) parser.add_argument( '--domain-name', metavar='<domain_name>', help=("Set the domain name, which be injected into the HTTP Host " "Header to the backend server for HTTP health check.") ) parser.add_argument( '--expected-codes', metavar='<codes>', help="Set the list of HTTP status codes expected in response from " "the member to declare it healthy." ) parser.add_argument( '--http-method', metavar='{' + ','.join(HTTP_METHODS) + '}', choices=HTTP_METHODS, type=lambda s: s.upper(), # case insensitive help="Set the HTTP method that the health monitor uses for " "requests." ) parser.add_argument( '--http-version', metavar='<http_version>', choices=HTTP_VERSIONS, type=float, help="Set the HTTP version." ) parser.add_argument( '--timeout', metavar='<timeout>', required=True, help="Set the maximum time, in seconds, that a monitor waits to " "connect before it times out. This value must be less than " "the delay value." ) parser.add_argument( '--max-retries', metavar='<max_retries>', type=int, choices=range(1, 10), required=True, help="The number of successful checks before changing the " "operating status of the member to ONLINE." ) parser.add_argument( '--url-path', metavar='<url_path>', help="Set the HTTP URL path of the request sent by the monitor to " "test the health of a backend member." ) parser.add_argument( '--type', metavar='{' + ','.join(TYPE_CHOICES) + '}', required=True, choices=TYPE_CHOICES, type=lambda s: s.upper(), # case insensitive help="Set the health monitor type." ) parser.add_argument( '--max-retries-down', metavar='<max_retries_down>', type=int, choices=range(1, 10), help="Set the number of allowed check failures before changing " "the operating status of the member to ERROR." ) admin_group = parser.add_mutually_exclusive_group() admin_group.add_argument( '--enable', action='store_true', default=True, help="Enable health monitor (default)." ) admin_group.add_argument( '--disable', action='store_true', default=None, help="Disable health monitor." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_create( parser, 'health monitor') return parser def take_action(self, parsed_args): rows = const.MONITOR_ROWS attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) body = {"healthmonitor": attrs} data = self.app.client_manager.load_balancer.health_monitor_create( json=body) if parsed_args.wait: pool = self.app.client_manager.load_balancer.pool_show( data['healthmonitor']['pools'][0]['id']) v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. load_balancer_show), res_id=pool['loadbalancers'][0]['id'] ) data = { 'healthmonitor': ( self.app.client_manager.load_balancer.health_monitor_show( data['healthmonitor']['id'])) } formatters = {'pools': v2_utils.format_list, 'tags': v2_utils.format_list_flat} return (rows, (utils.get_dict_properties(data['healthmonitor'], rows, formatters=formatters))) class DeleteHealthMonitor(command.Command): """Delete a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to delete (name or ID)." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) return parser def take_action(self, parsed_args): attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) health_monitor_id = attrs.pop('health_monitor_id') self.app.client_manager.load_balancer.health_monitor_delete( health_monitor_id=health_monitor_id) if parsed_args.wait: v2_utils.wait_for_delete( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=health_monitor_id ) class ListHealthMonitor(lister.Lister): """List health monitors""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) _tag.add_tag_filtering_option_to_parser(parser, 'health monitor') return parser def take_action(self, parsed_args): columns = const.MONITOR_COLUMNS attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) data = self.app.client_manager.load_balancer.health_monitor_list( **attrs) formatters = {'pools': v2_utils.format_list} return (columns, (utils.get_dict_properties(s, columns, formatters=formatters) for s in data['healthmonitors'])) class ShowHealthMonitor(command.ShowOne): """Show the details of a single health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help='Name or UUID of the health monitor.' ) return parser def take_action(self, parsed_args): rows = const.MONITOR_ROWS data = None if uuidutils.is_uuid_like(parsed_args.health_monitor): try: data = ( self.app.client_manager.load_balancer.health_monitor_show( health_monitor_id=parsed_args.health_monitor)) except exceptions.NotFound: pass if data is None: attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) health_monitor_id = attrs.pop('health_monitor_id') data = self.app.client_manager.load_balancer.health_monitor_show( health_monitor_id=health_monitor_id, ) formatters = {'pools': v2_utils.format_list, 'tags': v2_utils.format_list_flat} return (rows, (utils.get_dict_properties(data, rows, formatters=formatters))) class SetHealthMonitor(command.Command): """Update a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to update (name or ID)." ) parser.add_argument( '--name', metavar='<name>', help="Set health monitor name." ) parser.add_argument( '--delay', metavar='<delay>', help="Set the time in seconds, between sending probes to members." ) parser.add_argument( '--domain-name', metavar='<domain_name>', help=("Set the domain name, which be injected into the HTTP Host " "Header to the backend server for HTTP health check.") ) parser.add_argument( '--expected-codes', metavar='<codes>', help="Set the list of HTTP status codes expected in response from " "the member to declare it healthy." ) parser.add_argument( '--http-method', metavar='{' + ','.join(HTTP_METHODS) + '}', choices=HTTP_METHODS, type=lambda s: s.upper(), # case insensitive help="Set the HTTP method that the health monitor uses for " "requests." ) parser.add_argument( '--http-version', metavar='<http_version>', choices=HTTP_VERSIONS, type=float, help="Set the HTTP version." ) parser.add_argument( '--timeout', metavar='<timeout>', help="Set the maximum time, in seconds, that a monitor waits to " "connect before it times out. This value must be less than " "the delay value." ) parser.add_argument( '--max-retries', metavar='<max_retries>', type=int, choices=range(1, 10), help="Set the number of successful checks before changing the " "operating status of the member to ONLINE." ) parser.add_argument( '--max-retries-down', metavar='<max_retries_down>', type=int, choices=range(1, 10), help="Set the number of allowed check failures before changing " "the operating status of the member to ERROR." ) parser.add_argument( '--url-path', metavar='<url_path>', help="Set the HTTP URL path of the request sent by the monitor to " "test the health of a backend member." ) admin_group = parser.add_mutually_exclusive_group() admin_group.add_argument( '--enable', action='store_true', default=None, help="Enable health monitor." ) admin_group.add_argument( '--disable', action='store_true', default=None, help="Disable health monitor." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_set(parser, 'health monitor') return parser def take_action(self, parsed_args): attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) hm_id = attrs.pop('health_monitor_id') v2_utils.set_tags_for_set( self.app.client_manager.load_balancer.health_monitor_show, hm_id, attrs, clear_tags=parsed_args.no_tag) body = {'healthmonitor': attrs} self.app.client_manager.load_balancer.health_monitor_set( hm_id, json=body) if parsed_args.wait: v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=hm_id ) class UnsetHealthMonitor(command.Command): """Clear health monitor settings""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to update (name or ID)." ) parser.add_argument( '--domain-name', action='store_true', help="Clear the health monitor domain name." ) parser.add_argument( '--expected-codes', action='store_true', help="Reset the health monitor expected codes to the API default." ) parser.add_argument( '--http-method', action='store_true', help="Reset the health monitor HTTP method to the API default." ) parser.add_argument( '--http-version', action='store_true', help="Reset the health monitor HTTP version to the API default." ) parser.add_argument( '--max-retries-down', action='store_true', help="Reset the health monitor max retries down to the API " "default." ) parser.add_argument( '--name', action='store_true', help="Clear the health monitor name." ) parser.add_argument( '--url-path', action='store_true', help="Clear the health monitor URL path." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_unset(parser, 'health monitor') return parser def take_action(self, parsed_args): unset_args = v2_utils.get_unsets(parsed_args) if not unset_args and not parsed_args.all_tag: return hm_id = v2_utils.get_resource_id( self.app.client_manager.load_balancer.health_monitor_list, 'healthmonitors', parsed_args.health_monitor) v2_utils.set_tags_for_unset( self.app.client_manager.load_balancer.health_monitor_show, hm_id, unset_args, clear_tags=parsed_args.all_tag) body = {'healthmonitor': unset_args} self.app.client_manager.load_balancer.health_monitor_set( hm_id, json=body) if parsed_args.wait: v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=hm_id )
octaviaclient/osc/v2/health_monitor.py
from cliff import lister from osc_lib.command import command from osc_lib import exceptions from osc_lib import utils from osc_lib.utils import tags as _tag from oslo_utils import uuidutils from octaviaclient.osc.v2 import constants as const from octaviaclient.osc.v2 import utils as v2_utils HTTP_METHODS = ['GET', 'POST', 'DELETE', 'PUT', 'HEAD', 'OPTIONS', 'PATCH', 'CONNECT', 'TRACE'] HTTP_VERSIONS = [1.0, 1.1] TYPE_CHOICES = ['PING', 'HTTP', 'TCP', 'HTTPS', 'TLS-HELLO', 'UDP-CONNECT', 'SCTP'] class CreateHealthMonitor(command.ShowOne): """Create a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'pool', metavar='<pool>', help="Set the pool for the health monitor (name or ID)." ) parser.add_argument( '--name', metavar='<name>', help="Set the health monitor name." ) parser.add_argument( '--delay', metavar='<delay>', required=True, help="Set the time in seconds, between sending probes to members." ) parser.add_argument( '--domain-name', metavar='<domain_name>', help=("Set the domain name, which be injected into the HTTP Host " "Header to the backend server for HTTP health check.") ) parser.add_argument( '--expected-codes', metavar='<codes>', help="Set the list of HTTP status codes expected in response from " "the member to declare it healthy." ) parser.add_argument( '--http-method', metavar='{' + ','.join(HTTP_METHODS) + '}', choices=HTTP_METHODS, type=lambda s: s.upper(), # case insensitive help="Set the HTTP method that the health monitor uses for " "requests." ) parser.add_argument( '--http-version', metavar='<http_version>', choices=HTTP_VERSIONS, type=float, help="Set the HTTP version." ) parser.add_argument( '--timeout', metavar='<timeout>', required=True, help="Set the maximum time, in seconds, that a monitor waits to " "connect before it times out. This value must be less than " "the delay value." ) parser.add_argument( '--max-retries', metavar='<max_retries>', type=int, choices=range(1, 10), required=True, help="The number of successful checks before changing the " "operating status of the member to ONLINE." ) parser.add_argument( '--url-path', metavar='<url_path>', help="Set the HTTP URL path of the request sent by the monitor to " "test the health of a backend member." ) parser.add_argument( '--type', metavar='{' + ','.join(TYPE_CHOICES) + '}', required=True, choices=TYPE_CHOICES, type=lambda s: s.upper(), # case insensitive help="Set the health monitor type." ) parser.add_argument( '--max-retries-down', metavar='<max_retries_down>', type=int, choices=range(1, 10), help="Set the number of allowed check failures before changing " "the operating status of the member to ERROR." ) admin_group = parser.add_mutually_exclusive_group() admin_group.add_argument( '--enable', action='store_true', default=True, help="Enable health monitor (default)." ) admin_group.add_argument( '--disable', action='store_true', default=None, help="Disable health monitor." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_create( parser, 'health monitor') return parser def take_action(self, parsed_args): rows = const.MONITOR_ROWS attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) body = {"healthmonitor": attrs} data = self.app.client_manager.load_balancer.health_monitor_create( json=body) if parsed_args.wait: pool = self.app.client_manager.load_balancer.pool_show( data['healthmonitor']['pools'][0]['id']) v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. load_balancer_show), res_id=pool['loadbalancers'][0]['id'] ) data = { 'healthmonitor': ( self.app.client_manager.load_balancer.health_monitor_show( data['healthmonitor']['id'])) } formatters = {'pools': v2_utils.format_list, 'tags': v2_utils.format_list_flat} return (rows, (utils.get_dict_properties(data['healthmonitor'], rows, formatters=formatters))) class DeleteHealthMonitor(command.Command): """Delete a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to delete (name or ID)." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) return parser def take_action(self, parsed_args): attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) health_monitor_id = attrs.pop('health_monitor_id') self.app.client_manager.load_balancer.health_monitor_delete( health_monitor_id=health_monitor_id) if parsed_args.wait: v2_utils.wait_for_delete( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=health_monitor_id ) class ListHealthMonitor(lister.Lister): """List health monitors""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) _tag.add_tag_filtering_option_to_parser(parser, 'health monitor') return parser def take_action(self, parsed_args): columns = const.MONITOR_COLUMNS attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) data = self.app.client_manager.load_balancer.health_monitor_list( **attrs) formatters = {'pools': v2_utils.format_list} return (columns, (utils.get_dict_properties(s, columns, formatters=formatters) for s in data['healthmonitors'])) class ShowHealthMonitor(command.ShowOne): """Show the details of a single health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help='Name or UUID of the health monitor.' ) return parser def take_action(self, parsed_args): rows = const.MONITOR_ROWS data = None if uuidutils.is_uuid_like(parsed_args.health_monitor): try: data = ( self.app.client_manager.load_balancer.health_monitor_show( health_monitor_id=parsed_args.health_monitor)) except exceptions.NotFound: pass if data is None: attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) health_monitor_id = attrs.pop('health_monitor_id') data = self.app.client_manager.load_balancer.health_monitor_show( health_monitor_id=health_monitor_id, ) formatters = {'pools': v2_utils.format_list, 'tags': v2_utils.format_list_flat} return (rows, (utils.get_dict_properties(data, rows, formatters=formatters))) class SetHealthMonitor(command.Command): """Update a health monitor""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to update (name or ID)." ) parser.add_argument( '--name', metavar='<name>', help="Set health monitor name." ) parser.add_argument( '--delay', metavar='<delay>', help="Set the time in seconds, between sending probes to members." ) parser.add_argument( '--domain-name', metavar='<domain_name>', help=("Set the domain name, which be injected into the HTTP Host " "Header to the backend server for HTTP health check.") ) parser.add_argument( '--expected-codes', metavar='<codes>', help="Set the list of HTTP status codes expected in response from " "the member to declare it healthy." ) parser.add_argument( '--http-method', metavar='{' + ','.join(HTTP_METHODS) + '}', choices=HTTP_METHODS, type=lambda s: s.upper(), # case insensitive help="Set the HTTP method that the health monitor uses for " "requests." ) parser.add_argument( '--http-version', metavar='<http_version>', choices=HTTP_VERSIONS, type=float, help="Set the HTTP version." ) parser.add_argument( '--timeout', metavar='<timeout>', help="Set the maximum time, in seconds, that a monitor waits to " "connect before it times out. This value must be less than " "the delay value." ) parser.add_argument( '--max-retries', metavar='<max_retries>', type=int, choices=range(1, 10), help="Set the number of successful checks before changing the " "operating status of the member to ONLINE." ) parser.add_argument( '--max-retries-down', metavar='<max_retries_down>', type=int, choices=range(1, 10), help="Set the number of allowed check failures before changing " "the operating status of the member to ERROR." ) parser.add_argument( '--url-path', metavar='<url_path>', help="Set the HTTP URL path of the request sent by the monitor to " "test the health of a backend member." ) admin_group = parser.add_mutually_exclusive_group() admin_group.add_argument( '--enable', action='store_true', default=None, help="Enable health monitor." ) admin_group.add_argument( '--disable', action='store_true', default=None, help="Disable health monitor." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_set(parser, 'health monitor') return parser def take_action(self, parsed_args): attrs = v2_utils.get_health_monitor_attrs(self.app.client_manager, parsed_args) hm_id = attrs.pop('health_monitor_id') v2_utils.set_tags_for_set( self.app.client_manager.load_balancer.health_monitor_show, hm_id, attrs, clear_tags=parsed_args.no_tag) body = {'healthmonitor': attrs} self.app.client_manager.load_balancer.health_monitor_set( hm_id, json=body) if parsed_args.wait: v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=hm_id ) class UnsetHealthMonitor(command.Command): """Clear health monitor settings""" def get_parser(self, prog_name): parser = super().get_parser(prog_name) parser.add_argument( 'health_monitor', metavar='<health_monitor>', help="Health monitor to update (name or ID)." ) parser.add_argument( '--domain-name', action='store_true', help="Clear the health monitor domain name." ) parser.add_argument( '--expected-codes', action='store_true', help="Reset the health monitor expected codes to the API default." ) parser.add_argument( '--http-method', action='store_true', help="Reset the health monitor HTTP method to the API default." ) parser.add_argument( '--http-version', action='store_true', help="Reset the health monitor HTTP version to the API default." ) parser.add_argument( '--max-retries-down', action='store_true', help="Reset the health monitor max retries down to the API " "default." ) parser.add_argument( '--name', action='store_true', help="Clear the health monitor name." ) parser.add_argument( '--url-path', action='store_true', help="Clear the health monitor URL path." ) parser.add_argument( '--wait', action='store_true', help='Wait for action to complete.', ) _tag.add_tag_option_to_parser_for_unset(parser, 'health monitor') return parser def take_action(self, parsed_args): unset_args = v2_utils.get_unsets(parsed_args) if not unset_args and not parsed_args.all_tag: return hm_id = v2_utils.get_resource_id( self.app.client_manager.load_balancer.health_monitor_list, 'healthmonitors', parsed_args.health_monitor) v2_utils.set_tags_for_unset( self.app.client_manager.load_balancer.health_monitor_show, hm_id, unset_args, clear_tags=parsed_args.all_tag) body = {'healthmonitor': unset_args} self.app.client_manager.load_balancer.health_monitor_set( hm_id, json=body) if parsed_args.wait: v2_utils.wait_for_active( status_f=(self.app.client_manager.load_balancer. health_monitor_show), res_id=hm_id )
0.52829
0.116261
from __future__ import absolute_import import errno import io import os import re import requests PNG_TYPE = "image/png" JPEG_TYPE = "image/jpeg" FILE_TYPES = { 'jpg': JPEG_TYPE, 'jpeg': JPEG_TYPE, 'png': PNG_TYPE, } def _ensure_dir(dirname): try: os.mkdir(dirname) except OSError as e: if e.errno != errno.EEXIST: raise class Reporter(object): """Simplistic output to a stream with verbosity support.""" def __init__(self, stream, verbosity): """Init.""" self._stream = stream self.level = verbosity def __call__(self, format_string, level=1, **kwargs): """Call.""" if self.level >= level: self._stream.write(format_string.format(**kwargs) + "\n") self._stream.flush() def show_nth(self, n, step=(1 << 10)): """``True`` if item in sequence should be reported based on level.""" if not self.level: return False factor = step >> (self.level << 1) if not factor: return True return not n % factor def create_collection(reporter, client, auth_client, collection_name, collection_description, data_file, image_folders, xslt_file, columns_file, zegs, dynamic_custom_options=None, image_column='id', path_replace=None): """Create a new collection.""" collection = client.create_collection( collection_name, collection_description, zegs) reporter("Created collection " + collection['dataset_id'], level=0) with open(data_file, 'rb') as f: client.upload_data(collection['dataset_id'], data_file, f) reporter( "Data file {filename} uploaded", level=0, filename=data_file ) imageset_ids = dict() if zegs: # create an imageset for each folder for directory in image_folders: directory_name = get_path_directory_name(directory) imageset_ids[directory_name] = api_upload_folder( reporter, client, auth_client, directory, directory_name, zegs ) # perform this substitution on the .tsv above if the # image filenames are specified in there instead with open(xslt_file, 'rb') as f: text = f.read() if path_replace is not None: text = update_paths( client.project, imageset_ids, text, client.api_url, image_folders, ) bio = io.BytesIO(text) with open('test.xslt', 'wb') as wf: wf.write(text) if dynamic_custom_options: collection['dynamic_custom_options'] = dynamic_custom_options collection['related_imageset_ids'] = [value for key, value in imageset_ids.items()] client.update_collection(collection['id'], collection) client.upload_zegx(collection['id'], bio) reporter("Created zegx template", level=0) else: source={"deepzoom": {"midlevel": 10, "optimize": 'true', "overlap": 1, "quality": 95}} info = {"source": source} client.update_imageset(collection['dz_imageset_id'], info=info) imageset_ids[get_path_directory_name(image_folders[0])] = api_upload_folder( reporter, client, auth_client, image_folders[0], get_path_directory_name(image_folders[0]), zegs, existing_imageset_id=collection['imageset_id'] ) join_ds = client.create_join("Join for " + collection['name'], imageset_ids[get_path_directory_name(image_folders[0])], collection['dataset_id'], join_column=image_column) collection['join_dataset_id'] = join_ds['id'] reporter("Joined images and data", level=0) client.update_collection(collection['id'], collection) # upload a json with the column schema if columns_file is not None: with open(columns_file, 'rb') as f: client.set_columns(f.read(), collection['dataset_id']) def api_upload_folder(reporter, client, auth_client, image_folder, imageset_name, zegs, existing_imageset_id=None): if existing_imageset_id: imageset_id = existing_imageset_id else: reporter("Creating imageset", level=0) imageset = client.create_imageset(imageset_name) imageset_id = imageset['id'] reporter("Created imageset {name}", level=0, name=imageset_name) """Upload all images within a folder to an imageset.""" for filename in os.listdir(image_folder): file_path = os.path.join(image_folder, filename) # the components being the file name and the extension filename_components = os.path.basename(file_path).rsplit('.', 1) if len(filename_components) > 1 and \ filename_components[1].lower() in FILE_TYPES.keys(): with open(file_path, 'rb') as f: i = 3 while i > 0: try: client.upload_image( imageset_id, filename_components[0], f, FILE_TYPES[filename_components[1].lower()] ) reporter( "Imageset: {id}, uploaded {filename}", level=0, id=imageset_id, filename=filename_components[0] ) except requests.exceptions.HTTPError as e: if e.response.status_code == 401: reporter("Requesting new token...", level=0) client.update_token(auth_client.get_user_token()) i -= 1 reporter(str(e)) continue except requests.exceptions.RequestException as e: reporter( "Imageset: {id}, upload failed for {filename}\n{error}", level=0, id=imageset_id, filename=filename_components[0], error=e, ) break return imageset_id def update_paths(project, imageset_ids, text, api_url, image_folders): """Update the paths for all images in the XSLT. The URL needs to instead point to the imageset. """ def foldername_replace(matchobj): return (api_url + "v0/project/{}/imagesets/{}/images/name:{}/data\"" ).format( project, imageset_ids[matchobj.group(1).decode("utf-8")], matchobj.group(2).decode("utf-8") ).encode() directory_names = [get_path_directory_name(folder) for folder in image_folders] pat = (r"({})/(.*?)(\.)?({})?\"").format( r'|'.join(directory_names), r'|'.join(FILE_TYPES.keys()) ).encode() updatedfile = re.sub(pat, foldername_replace, text) with open("test.xslt", 'wb') as testfile: testfile.write(updatedfile) return updatedfile def get_path_directory_name(path): """Get the directory name for a path.""" return os.path.split(path)[-1]
zegami_zeg/run.py
from __future__ import absolute_import import errno import io import os import re import requests PNG_TYPE = "image/png" JPEG_TYPE = "image/jpeg" FILE_TYPES = { 'jpg': JPEG_TYPE, 'jpeg': JPEG_TYPE, 'png': PNG_TYPE, } def _ensure_dir(dirname): try: os.mkdir(dirname) except OSError as e: if e.errno != errno.EEXIST: raise class Reporter(object): """Simplistic output to a stream with verbosity support.""" def __init__(self, stream, verbosity): """Init.""" self._stream = stream self.level = verbosity def __call__(self, format_string, level=1, **kwargs): """Call.""" if self.level >= level: self._stream.write(format_string.format(**kwargs) + "\n") self._stream.flush() def show_nth(self, n, step=(1 << 10)): """``True`` if item in sequence should be reported based on level.""" if not self.level: return False factor = step >> (self.level << 1) if not factor: return True return not n % factor def create_collection(reporter, client, auth_client, collection_name, collection_description, data_file, image_folders, xslt_file, columns_file, zegs, dynamic_custom_options=None, image_column='id', path_replace=None): """Create a new collection.""" collection = client.create_collection( collection_name, collection_description, zegs) reporter("Created collection " + collection['dataset_id'], level=0) with open(data_file, 'rb') as f: client.upload_data(collection['dataset_id'], data_file, f) reporter( "Data file {filename} uploaded", level=0, filename=data_file ) imageset_ids = dict() if zegs: # create an imageset for each folder for directory in image_folders: directory_name = get_path_directory_name(directory) imageset_ids[directory_name] = api_upload_folder( reporter, client, auth_client, directory, directory_name, zegs ) # perform this substitution on the .tsv above if the # image filenames are specified in there instead with open(xslt_file, 'rb') as f: text = f.read() if path_replace is not None: text = update_paths( client.project, imageset_ids, text, client.api_url, image_folders, ) bio = io.BytesIO(text) with open('test.xslt', 'wb') as wf: wf.write(text) if dynamic_custom_options: collection['dynamic_custom_options'] = dynamic_custom_options collection['related_imageset_ids'] = [value for key, value in imageset_ids.items()] client.update_collection(collection['id'], collection) client.upload_zegx(collection['id'], bio) reporter("Created zegx template", level=0) else: source={"deepzoom": {"midlevel": 10, "optimize": 'true', "overlap": 1, "quality": 95}} info = {"source": source} client.update_imageset(collection['dz_imageset_id'], info=info) imageset_ids[get_path_directory_name(image_folders[0])] = api_upload_folder( reporter, client, auth_client, image_folders[0], get_path_directory_name(image_folders[0]), zegs, existing_imageset_id=collection['imageset_id'] ) join_ds = client.create_join("Join for " + collection['name'], imageset_ids[get_path_directory_name(image_folders[0])], collection['dataset_id'], join_column=image_column) collection['join_dataset_id'] = join_ds['id'] reporter("Joined images and data", level=0) client.update_collection(collection['id'], collection) # upload a json with the column schema if columns_file is not None: with open(columns_file, 'rb') as f: client.set_columns(f.read(), collection['dataset_id']) def api_upload_folder(reporter, client, auth_client, image_folder, imageset_name, zegs, existing_imageset_id=None): if existing_imageset_id: imageset_id = existing_imageset_id else: reporter("Creating imageset", level=0) imageset = client.create_imageset(imageset_name) imageset_id = imageset['id'] reporter("Created imageset {name}", level=0, name=imageset_name) """Upload all images within a folder to an imageset.""" for filename in os.listdir(image_folder): file_path = os.path.join(image_folder, filename) # the components being the file name and the extension filename_components = os.path.basename(file_path).rsplit('.', 1) if len(filename_components) > 1 and \ filename_components[1].lower() in FILE_TYPES.keys(): with open(file_path, 'rb') as f: i = 3 while i > 0: try: client.upload_image( imageset_id, filename_components[0], f, FILE_TYPES[filename_components[1].lower()] ) reporter( "Imageset: {id}, uploaded {filename}", level=0, id=imageset_id, filename=filename_components[0] ) except requests.exceptions.HTTPError as e: if e.response.status_code == 401: reporter("Requesting new token...", level=0) client.update_token(auth_client.get_user_token()) i -= 1 reporter(str(e)) continue except requests.exceptions.RequestException as e: reporter( "Imageset: {id}, upload failed for {filename}\n{error}", level=0, id=imageset_id, filename=filename_components[0], error=e, ) break return imageset_id def update_paths(project, imageset_ids, text, api_url, image_folders): """Update the paths for all images in the XSLT. The URL needs to instead point to the imageset. """ def foldername_replace(matchobj): return (api_url + "v0/project/{}/imagesets/{}/images/name:{}/data\"" ).format( project, imageset_ids[matchobj.group(1).decode("utf-8")], matchobj.group(2).decode("utf-8") ).encode() directory_names = [get_path_directory_name(folder) for folder in image_folders] pat = (r"({})/(.*?)(\.)?({})?\"").format( r'|'.join(directory_names), r'|'.join(FILE_TYPES.keys()) ).encode() updatedfile = re.sub(pat, foldername_replace, text) with open("test.xslt", 'wb') as testfile: testfile.write(updatedfile) return updatedfile def get_path_directory_name(path): """Get the directory name for a path.""" return os.path.split(path)[-1]
0.402275
0.139104
import numpy as np import matplotlib.pyplot as plt import data_load import gsw import oceans as oc import Internal_wave_properties_REV as iwp import pandas as pd # Testdata load def internal_wave_properties(save_only=True): ladcp, ctd, bathy = data_load.load_data() rho_neutral = np.genfromtxt('neutral_rho.csv', delimiter=',') strain = np.genfromtxt('strain.csv', delimiter=',') wl_max=350 wl_min=100 lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec,\ etaSpec, aspect, Ek, Ep, Etotal = iwp.frequencyEstimator(ctd, ladcp, bathy,\ rho_neutral,strain, wl_max=500, full_set=True) if not save_only: return lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec, etaSpec, aspect def doppler_shifts(kh, ladcp, avg=1000, bin_size = 512): """ Doppler shift the internal frequency to test for lee waves using the depth averaged floww """ U, V, p_ladcp = oc.loadLADCP(ladcp) maxDepth = 4000 idx_ladcp = p_ladcp[:,-1] <= maxDepth dz = int(np.nanmean(np.gradient(p_ladcp, axis=0))) window = int(np.ceil(avg/dz)) Ubar = [] for u, v in zip(U.T, V.T): mask = np.isfinite(u) u = u[mask] v = v[mask] u = np.nanmean(u[-window:]) v = np.nanmean(v[-window:]) Ubar.append(np.sqrt(u**2 + v**2)) Ubar = np.vstack(Ubar) dshift = [] for cast, ubar in zip(kh.T, Ubar): dshift.append(cast*ubar) dshift = np.vstack(dshift).T return dshift def horizontal_wave_vector_decomposition(Uprime, Vprime, axis=1, nfft=1024): """ Attempt to decompose horizontal wave vector Following methods used in Polzin 2007 (internal waves in eddies or something like that) """ # U'* x b' Uspec = np.fft(Uprime, axis=axis, nfft=nfft) Vspec = np.fft(Vprime, axis=axis, nfft=nfft) theta = [] for Uin, Vin in zip(Uspec, Vspec): u_conj = np.conj(Uin[:,1]) v_prime = Vin[:,1] u_prime = Uin[:,1] v_conj = np.conj(Vin[:,1]) theta.append(np.arctan(2*np.real((u_conj*v_prime)/(u_conj*u_prime - v_conj*v_prime)))/2) theta = np.vstack(theta).T k = -kh*np.cos(theta) k_wave = (2*np.pi/k)*1e-3 l = kh*np.sin(theta) l_wave = (2*np.pi/l)*1e-3 return k, l def lee_wave_tests(kh, omega, N2, ctd, ladcp, dist, depths, error_factor=2, plots=False): """ Testing whether or not the observations can be attributed to lee waves """ S, T, p_ctd, lat, lon = oc.loadCTD(ctd) # k, l = horizontal_wave_vector_decomposition(Uspec, Vspec) dshift = doppler_shifts(kh, ladcp) # Test whether K*U is between N and f f = (np.nanmean(gsw.f(lat))) dshiftTest = np.full_like(kh, np.nan) test_final = np.full_like(kh, np.nan) for i, dump in enumerate(kh.T): N2mean = np.nanmean(N2[:,i]) testA = np.abs(dshift[:,i]**2-f**2) <= f**2 testB = np.abs(dshift[:,i]**2-f**2) <= N2mean test_final[:,i] = np.logical_and(testA, testB) dshiftTest[:,i] = np.logical_and(dshift[:,i]**2 >= f**2, dshift[:,i]**2<= N2mean) dshiftTest2 = dshiftTest == 0 mask = np.logical_not(test_final) kh[mask] = np.nan omega[mask] = np.nan lambdaH[mask] = np.nan k[mask] = np.nan l[mask] = np.nan # kh[dshiftTest2] = np.nan # omega[dshiftTest2] = np.nan # lambdaH[dshiftTest2] = np.nan # k[dshiftTest2] = np.nan # l[dshiftTest2] = np.nan file2save = pd.DataFrame(kh) file2save.index = np.squeeze(depths) file2save.to_excel('Kh_masked.xlsx') file2save = pd.DataFrame(omega) file2save.index = np.squeeze(depths) file2save.to_excel('omega_masked.xlsx') file2save = pd.DataFrame(lambdaH) file2save.index = np.squeeze(depths) file2save.to_excel('lambda_masked.xlsx') np.savetxt('kh_masked2.csv', kh) np.savetxt('k_masked2.csv', k) np.savetxt('l_masked2.csv', l) np.savetxt('omega_masked.csv', omega) # Test phase of velocity and isopycnal perturbations stns = np.arange(1, 1+S.shape[1]) stns = np.expand_dims(stns, 1) stns = np.repeat(stns.T, kh.shape[0], axis=0) np.savetxt('dshift_mask.csv',dshiftTest) if plots: fig = plt.figure() plt.contourf(dist, np.squeeze(p_ladcp), U, cmap='seismic') plt.colorbar() plt.pcolormesh(dist, np.squeeze(depths), dshiftTest, cmap='binary', alpha=.2) plt.fill_between(dist, bathy, 4000, color = '#B4B4B4') plt.ylim(0, 4000) plt.gca().invert_yaxis() plt.title("u' with bins with f < Kh*U < N") plt.xlabel('Distance Along Transect (km)') plt.ylabel('Pressure (dB)') for i in range(U.shape[1]): plt.annotate(str(i+1), (dist[i], 3600)) def energy_flux(Uspec, Vspec, Ek, Ep, ctd, depths, m=300): """ Use to calculate energy flux for a given internal wave following the equations shown in Cusack et al. 2017 energy flux in the direction of the wave (direction of Cg) This function will return the total energy flux and the x,y, and z components of energy flux """ m = 2*np.pi/m S, T, p_ctd, lat, lon = oc.loadCTD(ctd) rho = oc.rhoFromCTD(S, T, p_ctd, lon, lat) maxDepth = 4000 idx_ctd = p_ctd[:,-1] <= maxDepth p_ctd = p_ctd[idx_ctd,:] rho = rho[idx_ctd,:] ctd_bins = oc.binData(rho, p_ctd[:,0], bin_size=512) rho2 = np.vstack([np.nanmean(rho[binIn]) for binIn in ctd_bins]) # Energy Density = Kinetic Energy + Potential Energy E = (Ek + Ep)*np.nanmean(rho2) k, l = horizontal_wave_vector_decomposition(Uspec, Vspec) def momentumFluxes(kh, m, N2,ladcp, z_ctd, bin_size=512, h0=1000): """ Calculating vertical and horizontal momentum fluxes of internal waves within safe range """ dshift = doppler_shifts(kh, ladcp) # Test whether K*U is between N and f f = (np.nanmean(gsw.f(lat))) dshiftTest = np.full_like(kh, np.nan) for i, dump in enumerate(kh.T): N2mean = np.nanmean(N2[:,i]) dshiftTest[:,i] = np.logical_and(dshift[:,i]**2 >= f**2, dshift[:,i]**2<= N2mean) dshiftTest2 = dshiftTest == 0 kh[dshiftTest2] = np.nan maxDepth = 4000 idx_ladcp = z[:,-1] <= maxDepth idx_ctd = z_ctd[:,-1] <= maxDepth z = z[idx_ladcp,:] U = U[idx_ladcp,:] V = V[idx_ladcp,:] rho = rho_neutral[idx_ctd,:] bins = oc.binData(U, z[:,0], bin_size) Umean = np.vstack([np.nanmean(U[binIn,:], axis=0) for binIn in bins]) Vmean = np.vstack([np.nanmean(V[binIn,:], axis=0) for binIn in bins]) Umag = np.sqrt(Umean**2 + Vmean**2) bins = oc.binData(rho, z_ctd[:,0], bin_size) rho0 = np.vstack([np.nanmean(rho[binIn,:], axis=0) for binIn in bins]) tau = .5*kh*rho0*Umag*np.sqrt((N2/Umag**2)-kh**2) np.savetxt('wave_momentum.csv', tau) def perturbation_comparisons(ctd, ladcp, bin_size=512, plots=False): """ Comparison of velocity and density perturbations to see if they are in or out of phase """ # Load ctd data S, T, p_ctd, lat, lon = oc.loadCTD(ctd) # Calculate sigma0 and filter it rho = oc.rhoFromCTD(S, T, p_ctd, lon, lat) rho_poly = [] for cast in rho.T: fitrev = oc.vert_polyFit2(cast, p_ctd[:,0], 100, deg=2) rho_poly.append(fitrev) rho_poly = np.vstack(rho_poly).T rho2 = rho - rho_poly # load ladcp data and filter it U, V, p_ladcp, uup, vup, udo, vdo = oc.loadLADCP(ladcp, full_set=True) uup, vup = oc.velocityFiltered(uup, vup, p_ladcp, deg=1) udo, vdo = oc.velocityFiltered(udo, vdo, p_ladcp, deg=1) U2, V2 = oc.velocityFiltered(U, V, p_ladcp, deg=1) # Apply 100m wide box filter to clean up perturbations for i, dump in enumerate(rho2.T): rho2[:,i] = oc.verticalBoxFilter1(rho2[:,i], p_ctd[:,0], box=100) U2[:,i] = oc.verticalBoxFilter1(U2[:,i], p_ladcp[:,0], box=100) V2[:,i] = oc.verticalBoxFilter1(V2[:,i], p_ladcp[:,0], box=100) uup[:,i] = oc.verticalBoxFilter1(uup[:,i], p_ladcp[:,0], box=100) vup[:,i] = oc.verticalBoxFilter1(vup[:,i], p_ladcp[:,0], box=100) udo[:,i] = oc.verticalBoxFilter1(udo[:,i], p_ladcp[:,0], box=100) vdo[:,i] = oc.verticalBoxFilter1(vdo[:,i], p_ladcp[:,0], box=100) if plots: count = 0 for rho0, u1, u2 in zip(rho2.T, uup.T, udo.T): count += 1 fig = plt.figure(figsize=(3.88, 7.62)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() l1 = ax1.plot(rho0, p_ctd[:,0],'r', label='\rho') l2 = ax2.plot(u1, p_ladcp,'b', label="up'") l3 = ax2.plot(u2, p_ladcp,'k', label="down'") ax2.set_xlabel("u'") ax1.set_xlabel("rho'") ax1.set_ylim((0, 4000)) plt.gca().invert_yaxis() plt.title('station ' + str(count), y=1.1) plt.savefig('figures/perturbation_comparisons/station ' + str(count) + '.png',\ bbox_inches='tight', dpi=400) plt.close()
lee_wave_analysis1.py
import numpy as np import matplotlib.pyplot as plt import data_load import gsw import oceans as oc import Internal_wave_properties_REV as iwp import pandas as pd # Testdata load def internal_wave_properties(save_only=True): ladcp, ctd, bathy = data_load.load_data() rho_neutral = np.genfromtxt('neutral_rho.csv', delimiter=',') strain = np.genfromtxt('strain.csv', delimiter=',') wl_max=350 wl_min=100 lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec,\ etaSpec, aspect, Ek, Ep, Etotal = iwp.frequencyEstimator(ctd, ladcp, bathy,\ rho_neutral,strain, wl_max=500, full_set=True) if not save_only: return lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec, etaSpec, aspect def doppler_shifts(kh, ladcp, avg=1000, bin_size = 512): """ Doppler shift the internal frequency to test for lee waves using the depth averaged floww """ U, V, p_ladcp = oc.loadLADCP(ladcp) maxDepth = 4000 idx_ladcp = p_ladcp[:,-1] <= maxDepth dz = int(np.nanmean(np.gradient(p_ladcp, axis=0))) window = int(np.ceil(avg/dz)) Ubar = [] for u, v in zip(U.T, V.T): mask = np.isfinite(u) u = u[mask] v = v[mask] u = np.nanmean(u[-window:]) v = np.nanmean(v[-window:]) Ubar.append(np.sqrt(u**2 + v**2)) Ubar = np.vstack(Ubar) dshift = [] for cast, ubar in zip(kh.T, Ubar): dshift.append(cast*ubar) dshift = np.vstack(dshift).T return dshift def horizontal_wave_vector_decomposition(Uprime, Vprime, axis=1, nfft=1024): """ Attempt to decompose horizontal wave vector Following methods used in Polzin 2007 (internal waves in eddies or something like that) """ # U'* x b' Uspec = np.fft(Uprime, axis=axis, nfft=nfft) Vspec = np.fft(Vprime, axis=axis, nfft=nfft) theta = [] for Uin, Vin in zip(Uspec, Vspec): u_conj = np.conj(Uin[:,1]) v_prime = Vin[:,1] u_prime = Uin[:,1] v_conj = np.conj(Vin[:,1]) theta.append(np.arctan(2*np.real((u_conj*v_prime)/(u_conj*u_prime - v_conj*v_prime)))/2) theta = np.vstack(theta).T k = -kh*np.cos(theta) k_wave = (2*np.pi/k)*1e-3 l = kh*np.sin(theta) l_wave = (2*np.pi/l)*1e-3 return k, l def lee_wave_tests(kh, omega, N2, ctd, ladcp, dist, depths, error_factor=2, plots=False): """ Testing whether or not the observations can be attributed to lee waves """ S, T, p_ctd, lat, lon = oc.loadCTD(ctd) # k, l = horizontal_wave_vector_decomposition(Uspec, Vspec) dshift = doppler_shifts(kh, ladcp) # Test whether K*U is between N and f f = (np.nanmean(gsw.f(lat))) dshiftTest = np.full_like(kh, np.nan) test_final = np.full_like(kh, np.nan) for i, dump in enumerate(kh.T): N2mean = np.nanmean(N2[:,i]) testA = np.abs(dshift[:,i]**2-f**2) <= f**2 testB = np.abs(dshift[:,i]**2-f**2) <= N2mean test_final[:,i] = np.logical_and(testA, testB) dshiftTest[:,i] = np.logical_and(dshift[:,i]**2 >= f**2, dshift[:,i]**2<= N2mean) dshiftTest2 = dshiftTest == 0 mask = np.logical_not(test_final) kh[mask] = np.nan omega[mask] = np.nan lambdaH[mask] = np.nan k[mask] = np.nan l[mask] = np.nan # kh[dshiftTest2] = np.nan # omega[dshiftTest2] = np.nan # lambdaH[dshiftTest2] = np.nan # k[dshiftTest2] = np.nan # l[dshiftTest2] = np.nan file2save = pd.DataFrame(kh) file2save.index = np.squeeze(depths) file2save.to_excel('Kh_masked.xlsx') file2save = pd.DataFrame(omega) file2save.index = np.squeeze(depths) file2save.to_excel('omega_masked.xlsx') file2save = pd.DataFrame(lambdaH) file2save.index = np.squeeze(depths) file2save.to_excel('lambda_masked.xlsx') np.savetxt('kh_masked2.csv', kh) np.savetxt('k_masked2.csv', k) np.savetxt('l_masked2.csv', l) np.savetxt('omega_masked.csv', omega) # Test phase of velocity and isopycnal perturbations stns = np.arange(1, 1+S.shape[1]) stns = np.expand_dims(stns, 1) stns = np.repeat(stns.T, kh.shape[0], axis=0) np.savetxt('dshift_mask.csv',dshiftTest) if plots: fig = plt.figure() plt.contourf(dist, np.squeeze(p_ladcp), U, cmap='seismic') plt.colorbar() plt.pcolormesh(dist, np.squeeze(depths), dshiftTest, cmap='binary', alpha=.2) plt.fill_between(dist, bathy, 4000, color = '#B4B4B4') plt.ylim(0, 4000) plt.gca().invert_yaxis() plt.title("u' with bins with f < Kh*U < N") plt.xlabel('Distance Along Transect (km)') plt.ylabel('Pressure (dB)') for i in range(U.shape[1]): plt.annotate(str(i+1), (dist[i], 3600)) def energy_flux(Uspec, Vspec, Ek, Ep, ctd, depths, m=300): """ Use to calculate energy flux for a given internal wave following the equations shown in Cusack et al. 2017 energy flux in the direction of the wave (direction of Cg) This function will return the total energy flux and the x,y, and z components of energy flux """ m = 2*np.pi/m S, T, p_ctd, lat, lon = oc.loadCTD(ctd) rho = oc.rhoFromCTD(S, T, p_ctd, lon, lat) maxDepth = 4000 idx_ctd = p_ctd[:,-1] <= maxDepth p_ctd = p_ctd[idx_ctd,:] rho = rho[idx_ctd,:] ctd_bins = oc.binData(rho, p_ctd[:,0], bin_size=512) rho2 = np.vstack([np.nanmean(rho[binIn]) for binIn in ctd_bins]) # Energy Density = Kinetic Energy + Potential Energy E = (Ek + Ep)*np.nanmean(rho2) k, l = horizontal_wave_vector_decomposition(Uspec, Vspec) def momentumFluxes(kh, m, N2,ladcp, z_ctd, bin_size=512, h0=1000): """ Calculating vertical and horizontal momentum fluxes of internal waves within safe range """ dshift = doppler_shifts(kh, ladcp) # Test whether K*U is between N and f f = (np.nanmean(gsw.f(lat))) dshiftTest = np.full_like(kh, np.nan) for i, dump in enumerate(kh.T): N2mean = np.nanmean(N2[:,i]) dshiftTest[:,i] = np.logical_and(dshift[:,i]**2 >= f**2, dshift[:,i]**2<= N2mean) dshiftTest2 = dshiftTest == 0 kh[dshiftTest2] = np.nan maxDepth = 4000 idx_ladcp = z[:,-1] <= maxDepth idx_ctd = z_ctd[:,-1] <= maxDepth z = z[idx_ladcp,:] U = U[idx_ladcp,:] V = V[idx_ladcp,:] rho = rho_neutral[idx_ctd,:] bins = oc.binData(U, z[:,0], bin_size) Umean = np.vstack([np.nanmean(U[binIn,:], axis=0) for binIn in bins]) Vmean = np.vstack([np.nanmean(V[binIn,:], axis=0) for binIn in bins]) Umag = np.sqrt(Umean**2 + Vmean**2) bins = oc.binData(rho, z_ctd[:,0], bin_size) rho0 = np.vstack([np.nanmean(rho[binIn,:], axis=0) for binIn in bins]) tau = .5*kh*rho0*Umag*np.sqrt((N2/Umag**2)-kh**2) np.savetxt('wave_momentum.csv', tau) def perturbation_comparisons(ctd, ladcp, bin_size=512, plots=False): """ Comparison of velocity and density perturbations to see if they are in or out of phase """ # Load ctd data S, T, p_ctd, lat, lon = oc.loadCTD(ctd) # Calculate sigma0 and filter it rho = oc.rhoFromCTD(S, T, p_ctd, lon, lat) rho_poly = [] for cast in rho.T: fitrev = oc.vert_polyFit2(cast, p_ctd[:,0], 100, deg=2) rho_poly.append(fitrev) rho_poly = np.vstack(rho_poly).T rho2 = rho - rho_poly # load ladcp data and filter it U, V, p_ladcp, uup, vup, udo, vdo = oc.loadLADCP(ladcp, full_set=True) uup, vup = oc.velocityFiltered(uup, vup, p_ladcp, deg=1) udo, vdo = oc.velocityFiltered(udo, vdo, p_ladcp, deg=1) U2, V2 = oc.velocityFiltered(U, V, p_ladcp, deg=1) # Apply 100m wide box filter to clean up perturbations for i, dump in enumerate(rho2.T): rho2[:,i] = oc.verticalBoxFilter1(rho2[:,i], p_ctd[:,0], box=100) U2[:,i] = oc.verticalBoxFilter1(U2[:,i], p_ladcp[:,0], box=100) V2[:,i] = oc.verticalBoxFilter1(V2[:,i], p_ladcp[:,0], box=100) uup[:,i] = oc.verticalBoxFilter1(uup[:,i], p_ladcp[:,0], box=100) vup[:,i] = oc.verticalBoxFilter1(vup[:,i], p_ladcp[:,0], box=100) udo[:,i] = oc.verticalBoxFilter1(udo[:,i], p_ladcp[:,0], box=100) vdo[:,i] = oc.verticalBoxFilter1(vdo[:,i], p_ladcp[:,0], box=100) if plots: count = 0 for rho0, u1, u2 in zip(rho2.T, uup.T, udo.T): count += 1 fig = plt.figure(figsize=(3.88, 7.62)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() l1 = ax1.plot(rho0, p_ctd[:,0],'r', label='\rho') l2 = ax2.plot(u1, p_ladcp,'b', label="up'") l3 = ax2.plot(u2, p_ladcp,'k', label="down'") ax2.set_xlabel("u'") ax1.set_xlabel("rho'") ax1.set_ylim((0, 4000)) plt.gca().invert_yaxis() plt.title('station ' + str(count), y=1.1) plt.savefig('figures/perturbation_comparisons/station ' + str(count) + '.png',\ bbox_inches='tight', dpi=400) plt.close()
0.425367
0.465995
import mock from oslo_serialization import jsonutils from oslo_utils import uuidutils import six from senlin.common import consts from senlin.common import exception from senlin.engine import node as nodem from senlin.objects import node as node_obj from senlin.profiles import base as pb from senlin.tests.unit.common import base from senlin.tests.unit.common import utils PROFILE_ID = 'aa5f86b8-e52b-4f2b-828a-4c14c770938d' CLUSTER_ID = '2c5139a6-24ba-4a6f-bd53-a268f61536de' NODE_ID = '60efdaa1-06c2-4fcf-ae44-17a2d85ff3ea' class TestNode(base.SenlinTestCase): def setUp(self): super(TestNode, self).setUp() self.context = utils.dummy_context(project='node_test_project') self.profile = utils.create_profile(self.context, PROFILE_ID) self.cluster = utils.create_cluster(self.context, CLUSTER_ID, PROFILE_ID) def test_node_init(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, role='first_node') self.assertIsNone(node.id) self.assertEqual('node1', node.name) self.assertIsNone(node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) self.assertEqual('', node.user) self.assertEqual('', node.project) self.assertEqual('', node.domain) self.assertEqual(CLUSTER_ID, node.cluster_id) self.assertEqual(-1, node.index) self.assertEqual('first_node', node.role) self.assertIsNone(node.init_at) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) self.assertEqual('INIT', node.status) self.assertEqual('Initializing', node.status_reason) self.assertEqual({}, node.data) self.assertEqual({}, node.metadata) self.assertEqual({}, node.rt) def test_node_init_random_name(self): node = nodem.Node(None, PROFILE_ID, None) self.assertIsNotNone(node.name) self.assertEqual(13, len(node.name)) def test_node_store_init(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, role='first_node', index=1) self.assertIsNone(node.id) node_id = node.store(self.context) self.assertIsNotNone(node_id) node_info = node_obj.Node.get(self.context, node_id) self.assertIsNotNone(node_info) self.assertEqual('node1', node_info.name) self.assertIsNone(node_info.physical_id) self.assertEqual(CLUSTER_ID, node_info.cluster_id) self.assertEqual(PROFILE_ID, node_info.profile_id) self.assertEqual(self.context.user_id, node_info.user) self.assertEqual(self.context.project_id, node_info.project) self.assertEqual(self.context.domain_id, node_info.domain) self.assertEqual(1, node_info.index) self.assertEqual('first_node', node.role) self.assertIsNotNone(node_info.init_at) self.assertIsNone(node_info.created_at) self.assertIsNone(node_info.updated_at) self.assertEqual('INIT', node_info.status) self.assertEqual('Initializing', node_info.status_reason) self.assertEqual({}, node_info.metadata) self.assertEqual({}, node_info.data) def test_node_store_update(self): node = nodem.Node('node1', PROFILE_ID, "", user=self.context.user_id, project=self.context.project_id) node_id = node.store(self.context) node.name = 'new_name' new_node_id = node.store(self.context) self.assertEqual(node_id, new_node_id) def test_node_load(self): ex = self.assertRaises(exception.ResourceNotFound, nodem.Node.load, self.context, 'non-existent', None) self.assertEqual("The node 'non-existent' could not be found.", six.text_type(ex)) x_node_id = 'ee96c490-2dee-40c8-8919-4c64b89e326c' node = utils.create_node(self.context, x_node_id, PROFILE_ID, CLUSTER_ID) node_info = nodem.Node.load(self.context, x_node_id) self.assertEqual(node.id, node_info.id) self.assertEqual(node.name, node_info.name) self.assertEqual(node.physical_id, node_info.physical_id) self.assertEqual(node.cluster_id, node_info.cluster_id) self.assertEqual(node.profile_id, node_info.profile_id) self.assertEqual(node.user, node_info.user) self.assertEqual(node.project, node_info.project) self.assertEqual(node.domain, node_info.domain) self.assertEqual(node.index, node_info.index) self.assertEqual(node.role, node_info.role) self.assertEqual(node.init_at, node_info.init_at) self.assertEqual(node.created_at, node_info.created_at) self.assertEqual(node.updated_at, node_info.updated_at) self.assertEqual(node.status, node_info.status) self.assertEqual(node.status_reason, node_info.status_reason) self.assertEqual(node.metadata, node_info.metadata) self.assertEqual(node.data, node_info.data) self.assertEqual(self.profile.name, node_info.rt['profile'].name) def test_node_load_diff_project(self): x_node_id = 'c06840c5-f4e4-49ae-8143-9da5b4c73f38' utils.create_node(self.context, x_node_id, PROFILE_ID, CLUSTER_ID) new_ctx = utils.dummy_context(project='a-different-project') ex = self.assertRaises(exception.ResourceNotFound, nodem.Node.load, new_ctx, x_node_id, None) self.assertEqual("The node '%s' could not be found." % x_node_id, six.text_type(ex)) res = nodem.Node.load(new_ctx, x_node_id, project_safe=False) self.assertIsNotNone(res) self.assertEqual(x_node_id, res.id) @mock.patch.object(nodem.Node, '_from_object') @mock.patch.object(node_obj.Node, 'get_all') def test_node_load_all(self, mock_get, mock_init): x_obj_1 = mock.Mock() x_obj_2 = mock.Mock() mock_get.return_value = [x_obj_1, x_obj_2] x_node_1 = mock.Mock() x_node_2 = mock.Mock() mock_init.side_effect = [x_node_1, x_node_2] result = nodem.Node.load_all(self.context) self.assertEqual([x_node_1, x_node_2], [n for n in result]) mock_get.assert_called_once_with(self.context, cluster_id=None, limit=None, marker=None, sort=None, filters=None, project_safe=True) mock_init.assert_has_calls([ mock.call(self.context, x_obj_1), mock.call(self.context, x_obj_2)]) def test_node_set_status(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.store(self.context) self.assertEqual(nodem.consts.NS_INIT, node.status) self.assertIsNotNone(node.init_at) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) # create node.set_status(self.context, consts.NS_CREATING, reason='Creation in progress') self.assertEqual('CREATING', node.status) self.assertEqual('Creation in progress', node.status_reason) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) node.set_status(self.context, consts.NS_ACTIVE, reason='Creation succeeded') self.assertEqual('ACTIVE', node.status) self.assertEqual('Creation succeeded', node.status_reason) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) # update node.set_status(self.context, consts.NS_UPDATING, reason='Update in progress') self.assertEqual('UPDATING', node.status) self.assertEqual('Update in progress', node.status_reason) self.assertIsNotNone(node.created_at) node.set_status(self.context, consts.NS_ACTIVE, reason='Update succeeded') self.assertEqual('ACTIVE', node.status) self.assertEqual('Update succeeded', node.status_reason) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) node.set_status(self.context, consts.NS_ACTIVE) self.assertEqual('ACTIVE', node.status) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) # delete node.set_status(self.context, consts.NS_DELETING, reason='Deletion in progress') self.assertEqual('DELETING', node.status) self.assertEqual('Deletion in progress', node.status_reason) self.assertIsNotNone(node.created_at) @mock.patch.object(pb.Profile, 'get_details') def test_node_get_details(self, mock_details): node = nodem.Node('node1', CLUSTER_ID, None) for physical_id in (None, ''): node.physical_id = physical_id self.assertEqual({}, node.get_details(self.context)) self.assertEqual(0, mock_details.call_count) fake_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' node.physical_id = fake_id mock_details.return_value = {'foo': 'bar'} res = node.get_details(self.context) mock_details.assert_called_once_with(self.context, node) self.assertEqual({'foo': 'bar'}, res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'create_object') def test_node_create(self, mock_create, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_create.return_value = physical_id res = node.do_create(self.context) self.assertTrue(res) mock_status.assert_any_call(self.context, consts.NS_CREATING, 'Creation in progress') mock_status.assert_any_call(self.context, consts.NS_ACTIVE, 'Creation succeeded', physical_id=physical_id) @mock.patch.object(nodem.Node, 'set_status') def test_node_create_not_init(self, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.status = 'NOT_INIT' res, reason = node.do_create(self.context) self.assertFalse(res) self.assertEqual('Node must be in INIT status', reason) mock_status.assert_any_call(self.context, consts.NS_ERROR, 'Node must be in INIT status') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'create_object') def test_node_create_not_created(self, mock_create, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_create.side_effect = exception.EResourceCreation( type='PROFILE', message='Boom', resource_id='test_id') res, reason = node.do_create(self.context) self.assertFalse(res) self.assertEqual(str(reason), 'Failed in creating PROFILE: Boom.') mock_status.assert_any_call(self.context, consts.NS_CREATING, 'Creation in progress') mock_status.assert_any_call(self.context, consts.NS_ERROR, 'Failed in creating PROFILE: Boom.', physical_id='test_id') @mock.patch.object(node_obj.Node, 'delete') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete(self, mock_delete, mock_status, mock_db_delete): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() node.id = uuidutils.generate_uuid() mock_db_delete.return_value = True res = node.do_delete(self.context) self.assertTrue(res) mock_delete.assert_called_once_with(self.context, node) mock_db_delete.assert_called_once_with(self.context, node.id) mock_status.assert_called_once_with(self.context, consts.NS_DELETING, 'Deletion in progress') @mock.patch.object(node_obj.Node, 'delete') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete_no_physical_id(self, mock_delete, mock_status, mock_db_delete): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.id = uuidutils.generate_uuid() self.assertIsNone(node.physical_id) mock_db_delete.return_value = True res = node.do_delete(self.context) self.assertTrue(res) mock_status.assert_called_once_with(self.context, consts.NS_DELETING, "Deletion in progress") self.assertTrue(mock_delete.called) mock_db_delete.assert_called_once_with(self.context, node.id) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete_EResourceDeletion(self, mock_delete, mock_status): ex = exception.EResourceDeletion(type='PROFILE', id='NODE_ID', message='Too Bad') mock_delete.side_effect = ex node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() res = node.do_delete(self.context) self.assertFalse(res) mock_delete.assert_called_once_with(self.context, node) mock_status.assert_has_calls([ mock.call(self.context, consts.NS_DELETING, "Deletion in progress"), mock.call(self.context, consts.NS_ERROR, "Failed in deleting PROFILE 'NODE_ID': Too Bad.") ]) @mock.patch.object(node_obj.Node, 'update') @mock.patch.object(pb.Profile, 'update_object') def test_node_update_new_profile(self, mock_update, mock_db): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, physical_id=uuidutils.generate_uuid()) node.id = node.store(self.context) new_id = uuidutils.generate_uuid() utils.create_profile(self.context, new_id) mock_update.return_value = True res = node.do_update(self.context, {'new_profile_id': new_id}) self.assertTrue(res) mock_update.assert_called_once_with(self.context, node, new_id) self.assertEqual(new_id, node.profile_id) self.assertEqual(new_id, node.rt['profile'].id) mock_db.assert_has_calls([ mock.call(self.context, node.id, {'status': consts.NS_UPDATING, 'status_reason': 'Update in progress'}), mock.call(self.context, node.id, {'status': consts.NS_ACTIVE, 'status_reason': 'Update succeeded', 'profile_id': new_id, 'updated_at': mock.ANY}) ]) @mock.patch.object(pb.Profile, 'update_object') @mock.patch.object(node_obj.Node, 'update') def test_node_update_name(self, mock_db, mock_update): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.store(self.context) physical_id = uuidutils.generate_uuid() node.physical_id = physical_id res = node.do_update(self.context, {'name': 'new_name', 'role': 'new_role', 'metadata': {'k': {'m': 'v'}}, 'bogus': 'foo'}) self.assertTrue(res) self.assertEqual('new_name', node.name) mock_db.assert_has_calls([ mock.call(self.context, node.id, {'status': 'UPDATING', 'status_reason': 'Update in progress'}), mock.call(self.context, node.id, {'status': 'ACTIVE', 'status_reason': 'Update succeeded', 'name': 'new_name', 'role': 'new_role', 'metadata': {'k': {'m': 'v'}}, 'updated_at': mock.ANY}) ]) self.assertEqual(0, mock_update.call_count) def test_node_update_not_created(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) self.assertIsNone(node.physical_id) new_profile_id = '71d8f4dd-1ef9-4308-b7ae-03298b04449e' res = node.do_update(self.context, new_profile_id) self.assertFalse(res) @mock.patch.object(pb.Profile, 'update_object') @mock.patch.object(node_obj.Node, 'update') def test_node_update_EResourceUpdate(self, mock_db, mock_update): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() node.id = uuidutils.generate_uuid() ex = exception.EResourceUpdate(type='PROFILE', id='ID', message='reason') mock_update.side_effect = ex new_id = uuidutils.generate_uuid() utils.create_profile(self.context, new_id) res = node.do_update(self.context, {'new_profile_id': new_id}) self.assertFalse(res) self.assertNotEqual(new_id, node.profile_id) mock_db.assert_has_calls([ mock.call( self.context, node.id, {"status": "UPDATING", "status_reason": "Update in progress"} ), mock.call( self.context, node.id, {"status": "ERROR", "status_reason": "Failed in updating PROFILE 'ID': reason.", "updated_at": mock.ANY} ) ]) self.assertEqual(1, mock_update.call_count) @mock.patch.object(node_obj.Node, 'migrate') def test_node_join_same_cluster(self, mock_migrate): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.index = 1 res = node.do_join(self.context, CLUSTER_ID) self.assertTrue(res) self.assertEqual(1, node.index) self.assertIsNone(node.updated_at) self.assertFalse(mock_migrate.called) @mock.patch.object(pb.Profile, 'join_cluster') @mock.patch.object(node_obj.Node, 'migrate') def test_node_join(self, mock_migrate, mock_join_cluster): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_join_cluster.return_value = True cluster_id = 'fb8bca7a-a82b-4442-a40f-92d3e3cfb0b9' res = node.do_join(self.context, cluster_id) self.assertTrue(res) mock_migrate.assert_called_once_with(self.context, node.id, cluster_id, mock.ANY) mock_join_cluster.assert_called_once_with(self.context, node, cluster_id) self.assertEqual(cluster_id, node.cluster_id) self.assertEqual(mock_migrate.return_value.index, node.index) self.assertIsNotNone(node.updated_at) @mock.patch.object(pb.Profile, 'join_cluster') def test_node_join_fail_profile_call(self, mock_join): node = nodem.Node('node1', PROFILE_ID, None, self.context) node.id = uuidutils.generate_uuid() mock_join.return_value = False cluster_id = '<KEY>' res = node.do_join(self.context, cluster_id) self.assertFalse(res) mock_join.assert_called_once_with(self.context, node, cluster_id) self.assertEqual(-1, node.index) @mock.patch.object(node_obj.Node, 'migrate') def test_node_leave_no_cluster(self, mock_migrate): node = nodem.Node('node1', PROFILE_ID, '', self.context) self.assertTrue(node.do_leave(self.context)) self.assertFalse(mock_migrate.called) self.assertEqual('', node.cluster_id) self.assertIsNone(node.updated_at) @mock.patch.object(pb.Profile, 'leave_cluster') @mock.patch.object(node_obj.Node, 'migrate') def test_node_leave(self, mock_migrate, mock_leave_cluster): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_leave_cluster.return_value = True res = node.do_leave(self.context) self.assertTrue(res) self.assertEqual('', node.cluster_id) self.assertIsNotNone(node.updated_at) self.assertEqual(-1, node.index) mock_migrate.assert_called_once_with(self.context, node.id, None, mock.ANY) mock_leave_cluster.assert_called_once_with(self.context, node) @mock.patch.object(pb.Profile, 'leave_cluster') def test_node_leave_fail_update_server_metadata(self, mock_leave): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, index=1) mock_leave.return_value = False res = node.do_leave(self.context) self.assertFalse(res) self.assertNotEqual('', node.cluster_id) self.assertIsNone(node.updated_at) self.assertEqual(1, node.index) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_ACTIVE node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = True res = node.do_check(self.context) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_status.assert_called_once_with(self.context, consts.NS_ACTIVE, 'Check: Node is ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_warning(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_WARNING node.status_reason = 'bad news' node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = True res = node.do_check(self.context) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) msg = ("Check: Physical object is ACTIVE but the node status was " "WARNING. %s") % node.status_reason mock_status.assert_called_once_with(self.context, consts.NS_WARNING, msg) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_not_active(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_WARNING node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = False res = node.do_check(self.context) self.assertTrue(res) mock_status.assert_called_once_with(self.context, consts.NS_ERROR, 'Check: Node is not ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_check_with_exc(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' err = exception.EResourceOperation(op='checking', type='server', id=node.physical_id, message='failed get') mock_check.side_effect = err res = node.do_check(self.context) self.assertFalse(res) mock_status.assert_called_once_with( self.context, consts.NS_ERROR, "Failed in checking server '%s': failed get." % node.physical_id) def test_node_check_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, '') res = node.do_check(self.context) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_no_server(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' err = exception.EServerNotFound(type='server', id=node.physical_id, message='No Server found') mock_check.side_effect = err res = node.do_check(self.context) self.assertTrue(res) mock_status.assert_called_once_with( self.context, consts.NS_ERROR, "Failed in found server '%s': No Server found." % node.physical_id, physical_id=None) @mock.patch.object(pb.Profile, 'healthcheck_object') def test_node_healthcheck(self, mock_healthcheck): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_ACTIVE node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_healthcheck.return_value = True res = node.do_healthcheck(self.context) self.assertTrue(res) mock_healthcheck.assert_called_once_with(self.context, node) def test_node_healthcheck_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, '') res = node.do_healthcheck(self.context) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_new_object(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' # action = node_action.NodeAction(node.id, 'ACTION', self.ctx) mock_recover.return_value = new_id, True mock_status.side_effect = set_status action = mock.Mock() action.inputs = {'operation': 'SWIM'} res = node.do_recover(self.context, action) self.assertTrue(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) self.assertEqual({'recovery': 'RECREATE'}, node.data) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_in_place(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_recover.return_value = node.physical_id, True action = mock.Mock(inputs={}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_recover.assert_called_once_with(self.context, node) self.assertEqual('node1', node.name) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded')]) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_check_active(self, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' node.status = 'ACTIVE' mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = True action = mock.Mock(inputs={'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_status.assert_called_once_with(self.context, consts.NS_ACTIVE, reason='Recover: Node is ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_check_error(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'recreate'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock(inputs={'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_recreate(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={'operation': 'RECREATE', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_check_exception(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.side_effect = exception.EResourceOperation( op='checking', type='server', id=node.physical_id, reason='Boom!' ) action = mock.Mock(inputs={'operation': 'boom', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_recover.return_value = node.physical_id, None action = mock.Mock(inputs={'operation': 'RECREATE'}) res = node.do_recover(self.context, action) self.assertFalse(res) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason='Recovery failed')]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover_with_old_physical_id(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( inputs={'operation': consts.RECOVER_RECREATE, 'check': True}) mock_recover.side_effect = exception.EResourceOperation( op=consts.RECOVER_RECREATE, type='server', id=node.physical_id, resource_id=node.physical_id, reason='Recovery failed', ) res = node.do_recover(self.context, action) self.assertFalse(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) reason = ("Failed in RECREATE server 'd94d6333-82e6-4f87-b7ab-b786776d" "f9d1': Internal error happened.") mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason=six.text_type(reason), physical_id=node.physical_id)]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover_with_new_physical_id(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == consts.NS_ERROR: node.physical_id = new_id node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_status.side_effect = set_status action = mock.Mock(inputs={'operation': consts.RECOVER_RECREATE, 'check': True}) mock_recover.side_effect = exception.EResourceOperation( op=consts.RECOVER_RECREATE, type='server', id=node.physical_id, resource_id=new_id, reason='Recovery failed', ) res = node.do_recover(self.context, action) self.assertFalse(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) reason = ("Failed in RECREATE server 'd94d6333-82e6-4f87-b7ab-b786776d" "f9d1': Internal error happened.") mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason=six.text_type(reason), physical_id=new_id)]) def test_node_recover_no_physical_id_reboot_op(self): node = nodem.Node('node1', PROFILE_ID, None) action = mock.Mock(inputs={'operation': 'REBOOT'}) res = node.do_recover(self.context, action) self.assertFalse(res) def test_node_recover_no_physical_id_rebuild_op(self): node = nodem.Node('node1', PROFILE_ID, None) action = mock.Mock(inputs={'operation': 'REBUILD'}) res = node.do_recover(self.context, action) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_no_physical_id_no_op(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_not_called() mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_no_physical_id_recreate_op(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={'operation': 'RECREATE', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_operation_not_support(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( outputs={}, inputs={'operation': 'foo'}) res = node.do_recover(self.context, action) self.assertEqual({}, action.outputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_operation_not_string(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( outputs={}, inputs={'operation': 'foo'}) res = node.do_recover(self.context, action) self.assertEqual({}, action.outputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_operation(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' x_profile = mock.Mock() x_profile.handle_dance = mock.Mock(return_value=True) node.rt['profile'] = x_profile inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertTrue(res) mock_set_status.assert_has_calls([ mock.call(self.context, consts.NS_OPERATING, reason="Operation 'dance' in progress"), mock.call(self.context, consts.NS_ACTIVE, reason="Operation 'dance' succeeded") ]) x_profile.handle_dance.assert_called_once_with(node, style='tango') def test_node_operation_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, None) inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_operation_failed_op(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' x_profile = mock.Mock() err = exception.EResourceOperation( op='dance', type='container', id='test_id', message='Boom') x_profile.handle_dance = mock.Mock(side_effect=err) node.rt['profile'] = x_profile inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertFalse(res) mock_set_status.assert_has_calls([ mock.call(self.context, consts.NS_OPERATING, reason="Operation 'dance' in progress"), mock.call(self.context, consts.NS_ERROR, reason="Failed in dance container 'test_id': Boom.") ]) x_profile.handle_dance.assert_called_once_with(node, style='tango') def _verify_execution_create_args(self, expected_name, expected_inputs_dict, wfc): wfc.execution_create.assert_called_once_with(mock.ANY, mock.ANY) actual_call_args, call_kwargs = wfc.execution_create.call_args # execution_create parameters are name and inputs actual_call_name, actual_call_inputs = actual_call_args # actual_call_inputs is string representation of a dictionary. # convert actual_call_inputs to json, then dump it back as string # sorted by key final_actual_call_inputs = jsonutils.dumps( jsonutils.loads(actual_call_inputs), sort_keys=True) # dump expected_inputs_dict as string sorted by key final_expected_inputs = jsonutils.dumps( expected_inputs_dict, sort_keys=True) # compare the sorted input strings along with the names self.assertEqual(actual_call_name, expected_name) self.assertEqual(final_actual_call_inputs, final_expected_inputs) def test_run_workflow(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None wfc.workflow_create = mock.Mock() wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': { 'bar': 'baz' }, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } res = node.run_workflow(**options) self.assertTrue(res) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc) def test_run_workflow_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = None res = node.run_workflow() self.assertFalse(res) def test_run_workflow_workflow_is_found(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = mock.Mock(definition={'bar': 'baz'}) wfc.workflow_create = mock.Mock() wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } res = node.run_workflow(**options) self.assertTrue(res) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') self.assertEqual(0, wfc.workflow_create.call_count) final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc) def test_run_workflow_failed_creation(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None err = exception.InternalError(message='boom') wfc.workflow_create.side_effect = err wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': {'bar': 'baz'}, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } ex = self.assertRaises(exception.EResourceOperation, node.run_workflow, **options) self.assertEqual("Failed in executing workflow 'foo': boom.", six.text_type(ex)) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') self.assertEqual(0, wfc.execution_create.call_count) def test_run_workflow_failed_execution(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None wfc.workflow_create = mock.Mock() err = exception.InternalError(message='boom') wfc.execution_create.side_effect = err x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': {'bar': 'baz'}, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } ex = self.assertRaises(exception.EResourceOperation, node.run_workflow, **options) self.assertEqual("Failed in executing workflow 'foo': boom.", six.text_type(ex)) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc)
senlin/tests/unit/engine/test_node.py
import mock from oslo_serialization import jsonutils from oslo_utils import uuidutils import six from senlin.common import consts from senlin.common import exception from senlin.engine import node as nodem from senlin.objects import node as node_obj from senlin.profiles import base as pb from senlin.tests.unit.common import base from senlin.tests.unit.common import utils PROFILE_ID = 'aa5f86b8-e52b-4f2b-828a-4c14c770938d' CLUSTER_ID = '2c5139a6-24ba-4a6f-bd53-a268f61536de' NODE_ID = '60efdaa1-06c2-4fcf-ae44-17a2d85ff3ea' class TestNode(base.SenlinTestCase): def setUp(self): super(TestNode, self).setUp() self.context = utils.dummy_context(project='node_test_project') self.profile = utils.create_profile(self.context, PROFILE_ID) self.cluster = utils.create_cluster(self.context, CLUSTER_ID, PROFILE_ID) def test_node_init(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, role='first_node') self.assertIsNone(node.id) self.assertEqual('node1', node.name) self.assertIsNone(node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) self.assertEqual('', node.user) self.assertEqual('', node.project) self.assertEqual('', node.domain) self.assertEqual(CLUSTER_ID, node.cluster_id) self.assertEqual(-1, node.index) self.assertEqual('first_node', node.role) self.assertIsNone(node.init_at) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) self.assertEqual('INIT', node.status) self.assertEqual('Initializing', node.status_reason) self.assertEqual({}, node.data) self.assertEqual({}, node.metadata) self.assertEqual({}, node.rt) def test_node_init_random_name(self): node = nodem.Node(None, PROFILE_ID, None) self.assertIsNotNone(node.name) self.assertEqual(13, len(node.name)) def test_node_store_init(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, role='first_node', index=1) self.assertIsNone(node.id) node_id = node.store(self.context) self.assertIsNotNone(node_id) node_info = node_obj.Node.get(self.context, node_id) self.assertIsNotNone(node_info) self.assertEqual('node1', node_info.name) self.assertIsNone(node_info.physical_id) self.assertEqual(CLUSTER_ID, node_info.cluster_id) self.assertEqual(PROFILE_ID, node_info.profile_id) self.assertEqual(self.context.user_id, node_info.user) self.assertEqual(self.context.project_id, node_info.project) self.assertEqual(self.context.domain_id, node_info.domain) self.assertEqual(1, node_info.index) self.assertEqual('first_node', node.role) self.assertIsNotNone(node_info.init_at) self.assertIsNone(node_info.created_at) self.assertIsNone(node_info.updated_at) self.assertEqual('INIT', node_info.status) self.assertEqual('Initializing', node_info.status_reason) self.assertEqual({}, node_info.metadata) self.assertEqual({}, node_info.data) def test_node_store_update(self): node = nodem.Node('node1', PROFILE_ID, "", user=self.context.user_id, project=self.context.project_id) node_id = node.store(self.context) node.name = 'new_name' new_node_id = node.store(self.context) self.assertEqual(node_id, new_node_id) def test_node_load(self): ex = self.assertRaises(exception.ResourceNotFound, nodem.Node.load, self.context, 'non-existent', None) self.assertEqual("The node 'non-existent' could not be found.", six.text_type(ex)) x_node_id = 'ee96c490-2dee-40c8-8919-4c64b89e326c' node = utils.create_node(self.context, x_node_id, PROFILE_ID, CLUSTER_ID) node_info = nodem.Node.load(self.context, x_node_id) self.assertEqual(node.id, node_info.id) self.assertEqual(node.name, node_info.name) self.assertEqual(node.physical_id, node_info.physical_id) self.assertEqual(node.cluster_id, node_info.cluster_id) self.assertEqual(node.profile_id, node_info.profile_id) self.assertEqual(node.user, node_info.user) self.assertEqual(node.project, node_info.project) self.assertEqual(node.domain, node_info.domain) self.assertEqual(node.index, node_info.index) self.assertEqual(node.role, node_info.role) self.assertEqual(node.init_at, node_info.init_at) self.assertEqual(node.created_at, node_info.created_at) self.assertEqual(node.updated_at, node_info.updated_at) self.assertEqual(node.status, node_info.status) self.assertEqual(node.status_reason, node_info.status_reason) self.assertEqual(node.metadata, node_info.metadata) self.assertEqual(node.data, node_info.data) self.assertEqual(self.profile.name, node_info.rt['profile'].name) def test_node_load_diff_project(self): x_node_id = 'c06840c5-f4e4-49ae-8143-9da5b4c73f38' utils.create_node(self.context, x_node_id, PROFILE_ID, CLUSTER_ID) new_ctx = utils.dummy_context(project='a-different-project') ex = self.assertRaises(exception.ResourceNotFound, nodem.Node.load, new_ctx, x_node_id, None) self.assertEqual("The node '%s' could not be found." % x_node_id, six.text_type(ex)) res = nodem.Node.load(new_ctx, x_node_id, project_safe=False) self.assertIsNotNone(res) self.assertEqual(x_node_id, res.id) @mock.patch.object(nodem.Node, '_from_object') @mock.patch.object(node_obj.Node, 'get_all') def test_node_load_all(self, mock_get, mock_init): x_obj_1 = mock.Mock() x_obj_2 = mock.Mock() mock_get.return_value = [x_obj_1, x_obj_2] x_node_1 = mock.Mock() x_node_2 = mock.Mock() mock_init.side_effect = [x_node_1, x_node_2] result = nodem.Node.load_all(self.context) self.assertEqual([x_node_1, x_node_2], [n for n in result]) mock_get.assert_called_once_with(self.context, cluster_id=None, limit=None, marker=None, sort=None, filters=None, project_safe=True) mock_init.assert_has_calls([ mock.call(self.context, x_obj_1), mock.call(self.context, x_obj_2)]) def test_node_set_status(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.store(self.context) self.assertEqual(nodem.consts.NS_INIT, node.status) self.assertIsNotNone(node.init_at) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) # create node.set_status(self.context, consts.NS_CREATING, reason='Creation in progress') self.assertEqual('CREATING', node.status) self.assertEqual('Creation in progress', node.status_reason) self.assertIsNone(node.created_at) self.assertIsNone(node.updated_at) node.set_status(self.context, consts.NS_ACTIVE, reason='Creation succeeded') self.assertEqual('ACTIVE', node.status) self.assertEqual('Creation succeeded', node.status_reason) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) # update node.set_status(self.context, consts.NS_UPDATING, reason='Update in progress') self.assertEqual('UPDATING', node.status) self.assertEqual('Update in progress', node.status_reason) self.assertIsNotNone(node.created_at) node.set_status(self.context, consts.NS_ACTIVE, reason='Update succeeded') self.assertEqual('ACTIVE', node.status) self.assertEqual('Update succeeded', node.status_reason) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) node.set_status(self.context, consts.NS_ACTIVE) self.assertEqual('ACTIVE', node.status) self.assertIsNotNone(node.created_at) self.assertIsNotNone(node.updated_at) # delete node.set_status(self.context, consts.NS_DELETING, reason='Deletion in progress') self.assertEqual('DELETING', node.status) self.assertEqual('Deletion in progress', node.status_reason) self.assertIsNotNone(node.created_at) @mock.patch.object(pb.Profile, 'get_details') def test_node_get_details(self, mock_details): node = nodem.Node('node1', CLUSTER_ID, None) for physical_id in (None, ''): node.physical_id = physical_id self.assertEqual({}, node.get_details(self.context)) self.assertEqual(0, mock_details.call_count) fake_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' node.physical_id = fake_id mock_details.return_value = {'foo': 'bar'} res = node.get_details(self.context) mock_details.assert_called_once_with(self.context, node) self.assertEqual({'foo': 'bar'}, res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'create_object') def test_node_create(self, mock_create, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_create.return_value = physical_id res = node.do_create(self.context) self.assertTrue(res) mock_status.assert_any_call(self.context, consts.NS_CREATING, 'Creation in progress') mock_status.assert_any_call(self.context, consts.NS_ACTIVE, 'Creation succeeded', physical_id=physical_id) @mock.patch.object(nodem.Node, 'set_status') def test_node_create_not_init(self, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.status = 'NOT_INIT' res, reason = node.do_create(self.context) self.assertFalse(res) self.assertEqual('Node must be in INIT status', reason) mock_status.assert_any_call(self.context, consts.NS_ERROR, 'Node must be in INIT status') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'create_object') def test_node_create_not_created(self, mock_create, mock_status): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_create.side_effect = exception.EResourceCreation( type='PROFILE', message='Boom', resource_id='test_id') res, reason = node.do_create(self.context) self.assertFalse(res) self.assertEqual(str(reason), 'Failed in creating PROFILE: Boom.') mock_status.assert_any_call(self.context, consts.NS_CREATING, 'Creation in progress') mock_status.assert_any_call(self.context, consts.NS_ERROR, 'Failed in creating PROFILE: Boom.', physical_id='test_id') @mock.patch.object(node_obj.Node, 'delete') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete(self, mock_delete, mock_status, mock_db_delete): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() node.id = uuidutils.generate_uuid() mock_db_delete.return_value = True res = node.do_delete(self.context) self.assertTrue(res) mock_delete.assert_called_once_with(self.context, node) mock_db_delete.assert_called_once_with(self.context, node.id) mock_status.assert_called_once_with(self.context, consts.NS_DELETING, 'Deletion in progress') @mock.patch.object(node_obj.Node, 'delete') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete_no_physical_id(self, mock_delete, mock_status, mock_db_delete): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.id = uuidutils.generate_uuid() self.assertIsNone(node.physical_id) mock_db_delete.return_value = True res = node.do_delete(self.context) self.assertTrue(res) mock_status.assert_called_once_with(self.context, consts.NS_DELETING, "Deletion in progress") self.assertTrue(mock_delete.called) mock_db_delete.assert_called_once_with(self.context, node.id) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'delete_object') def test_node_delete_EResourceDeletion(self, mock_delete, mock_status): ex = exception.EResourceDeletion(type='PROFILE', id='NODE_ID', message='Too Bad') mock_delete.side_effect = ex node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() res = node.do_delete(self.context) self.assertFalse(res) mock_delete.assert_called_once_with(self.context, node) mock_status.assert_has_calls([ mock.call(self.context, consts.NS_DELETING, "Deletion in progress"), mock.call(self.context, consts.NS_ERROR, "Failed in deleting PROFILE 'NODE_ID': Too Bad.") ]) @mock.patch.object(node_obj.Node, 'update') @mock.patch.object(pb.Profile, 'update_object') def test_node_update_new_profile(self, mock_update, mock_db): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, physical_id=uuidutils.generate_uuid()) node.id = node.store(self.context) new_id = uuidutils.generate_uuid() utils.create_profile(self.context, new_id) mock_update.return_value = True res = node.do_update(self.context, {'new_profile_id': new_id}) self.assertTrue(res) mock_update.assert_called_once_with(self.context, node, new_id) self.assertEqual(new_id, node.profile_id) self.assertEqual(new_id, node.rt['profile'].id) mock_db.assert_has_calls([ mock.call(self.context, node.id, {'status': consts.NS_UPDATING, 'status_reason': 'Update in progress'}), mock.call(self.context, node.id, {'status': consts.NS_ACTIVE, 'status_reason': 'Update succeeded', 'profile_id': new_id, 'updated_at': mock.ANY}) ]) @mock.patch.object(pb.Profile, 'update_object') @mock.patch.object(node_obj.Node, 'update') def test_node_update_name(self, mock_db, mock_update): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.store(self.context) physical_id = uuidutils.generate_uuid() node.physical_id = physical_id res = node.do_update(self.context, {'name': 'new_name', 'role': 'new_role', 'metadata': {'k': {'m': 'v'}}, 'bogus': 'foo'}) self.assertTrue(res) self.assertEqual('new_name', node.name) mock_db.assert_has_calls([ mock.call(self.context, node.id, {'status': 'UPDATING', 'status_reason': 'Update in progress'}), mock.call(self.context, node.id, {'status': 'ACTIVE', 'status_reason': 'Update succeeded', 'name': 'new_name', 'role': 'new_role', 'metadata': {'k': {'m': 'v'}}, 'updated_at': mock.ANY}) ]) self.assertEqual(0, mock_update.call_count) def test_node_update_not_created(self): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) self.assertIsNone(node.physical_id) new_profile_id = '71d8f4dd-1ef9-4308-b7ae-03298b04449e' res = node.do_update(self.context, new_profile_id) self.assertFalse(res) @mock.patch.object(pb.Profile, 'update_object') @mock.patch.object(node_obj.Node, 'update') def test_node_update_EResourceUpdate(self, mock_db, mock_update): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.physical_id = uuidutils.generate_uuid() node.id = uuidutils.generate_uuid() ex = exception.EResourceUpdate(type='PROFILE', id='ID', message='reason') mock_update.side_effect = ex new_id = uuidutils.generate_uuid() utils.create_profile(self.context, new_id) res = node.do_update(self.context, {'new_profile_id': new_id}) self.assertFalse(res) self.assertNotEqual(new_id, node.profile_id) mock_db.assert_has_calls([ mock.call( self.context, node.id, {"status": "UPDATING", "status_reason": "Update in progress"} ), mock.call( self.context, node.id, {"status": "ERROR", "status_reason": "Failed in updating PROFILE 'ID': reason.", "updated_at": mock.ANY} ) ]) self.assertEqual(1, mock_update.call_count) @mock.patch.object(node_obj.Node, 'migrate') def test_node_join_same_cluster(self, mock_migrate): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) node.index = 1 res = node.do_join(self.context, CLUSTER_ID) self.assertTrue(res) self.assertEqual(1, node.index) self.assertIsNone(node.updated_at) self.assertFalse(mock_migrate.called) @mock.patch.object(pb.Profile, 'join_cluster') @mock.patch.object(node_obj.Node, 'migrate') def test_node_join(self, mock_migrate, mock_join_cluster): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_join_cluster.return_value = True cluster_id = 'fb8bca7a-a82b-4442-a40f-92d3e3cfb0b9' res = node.do_join(self.context, cluster_id) self.assertTrue(res) mock_migrate.assert_called_once_with(self.context, node.id, cluster_id, mock.ANY) mock_join_cluster.assert_called_once_with(self.context, node, cluster_id) self.assertEqual(cluster_id, node.cluster_id) self.assertEqual(mock_migrate.return_value.index, node.index) self.assertIsNotNone(node.updated_at) @mock.patch.object(pb.Profile, 'join_cluster') def test_node_join_fail_profile_call(self, mock_join): node = nodem.Node('node1', PROFILE_ID, None, self.context) node.id = uuidutils.generate_uuid() mock_join.return_value = False cluster_id = '<KEY>' res = node.do_join(self.context, cluster_id) self.assertFalse(res) mock_join.assert_called_once_with(self.context, node, cluster_id) self.assertEqual(-1, node.index) @mock.patch.object(node_obj.Node, 'migrate') def test_node_leave_no_cluster(self, mock_migrate): node = nodem.Node('node1', PROFILE_ID, '', self.context) self.assertTrue(node.do_leave(self.context)) self.assertFalse(mock_migrate.called) self.assertEqual('', node.cluster_id) self.assertIsNone(node.updated_at) @mock.patch.object(pb.Profile, 'leave_cluster') @mock.patch.object(node_obj.Node, 'migrate') def test_node_leave(self, mock_migrate, mock_leave_cluster): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context) mock_leave_cluster.return_value = True res = node.do_leave(self.context) self.assertTrue(res) self.assertEqual('', node.cluster_id) self.assertIsNotNone(node.updated_at) self.assertEqual(-1, node.index) mock_migrate.assert_called_once_with(self.context, node.id, None, mock.ANY) mock_leave_cluster.assert_called_once_with(self.context, node) @mock.patch.object(pb.Profile, 'leave_cluster') def test_node_leave_fail_update_server_metadata(self, mock_leave): node = nodem.Node('node1', PROFILE_ID, CLUSTER_ID, self.context, index=1) mock_leave.return_value = False res = node.do_leave(self.context) self.assertFalse(res) self.assertNotEqual('', node.cluster_id) self.assertIsNone(node.updated_at) self.assertEqual(1, node.index) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_ACTIVE node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = True res = node.do_check(self.context) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_status.assert_called_once_with(self.context, consts.NS_ACTIVE, 'Check: Node is ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_warning(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_WARNING node.status_reason = 'bad news' node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = True res = node.do_check(self.context) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) msg = ("Check: Physical object is ACTIVE but the node status was " "WARNING. %s") % node.status_reason mock_status.assert_called_once_with(self.context, consts.NS_WARNING, msg) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_not_active(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_WARNING node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_check.return_value = False res = node.do_check(self.context) self.assertTrue(res) mock_status.assert_called_once_with(self.context, consts.NS_ERROR, 'Check: Node is not ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_check_with_exc(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' err = exception.EResourceOperation(op='checking', type='server', id=node.physical_id, message='failed get') mock_check.side_effect = err res = node.do_check(self.context) self.assertFalse(res) mock_status.assert_called_once_with( self.context, consts.NS_ERROR, "Failed in checking server '%s': failed get." % node.physical_id) def test_node_check_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, '') res = node.do_check(self.context) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'check_object') def test_node_check_no_server(self, mock_check, mock_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' err = exception.EServerNotFound(type='server', id=node.physical_id, message='No Server found') mock_check.side_effect = err res = node.do_check(self.context) self.assertTrue(res) mock_status.assert_called_once_with( self.context, consts.NS_ERROR, "Failed in found server '%s': No Server found." % node.physical_id, physical_id=None) @mock.patch.object(pb.Profile, 'healthcheck_object') def test_node_healthcheck(self, mock_healthcheck): node = nodem.Node('node1', PROFILE_ID, '') node.status = consts.NS_ACTIVE node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_healthcheck.return_value = True res = node.do_healthcheck(self.context) self.assertTrue(res) mock_healthcheck.assert_called_once_with(self.context, node) def test_node_healthcheck_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, '') res = node.do_healthcheck(self.context) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_new_object(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' # action = node_action.NodeAction(node.id, 'ACTION', self.ctx) mock_recover.return_value = new_id, True mock_status.side_effect = set_status action = mock.Mock() action.inputs = {'operation': 'SWIM'} res = node.do_recover(self.context, action) self.assertTrue(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) self.assertEqual({'recovery': 'RECREATE'}, node.data) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_in_place(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_recover.return_value = node.physical_id, True action = mock.Mock(inputs={}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_recover.assert_called_once_with(self.context, node) self.assertEqual('node1', node.name) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded')]) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_check_active(self, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' node.status = 'ACTIVE' mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = True action = mock.Mock(inputs={'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_status.assert_called_once_with(self.context, consts.NS_ACTIVE, reason='Recover: Node is ACTIVE.') @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_check_error(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'recreate'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock(inputs={'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_recreate(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={'operation': 'RECREATE', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_check_exception(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.side_effect = exception.EResourceOperation( op='checking', type='server', id=node.physical_id, reason='Boom!' ) action = mock.Mock(inputs={'operation': 'boom', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' mock_recover.return_value = node.physical_id, None action = mock.Mock(inputs={'operation': 'RECREATE'}) res = node.do_recover(self.context, action) self.assertFalse(res) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason='Recovery failed')]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover_with_old_physical_id(self, mock_recover, mock_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( inputs={'operation': consts.RECOVER_RECREATE, 'check': True}) mock_recover.side_effect = exception.EResourceOperation( op=consts.RECOVER_RECREATE, type='server', id=node.physical_id, resource_id=node.physical_id, reason='Recovery failed', ) res = node.do_recover(self.context, action) self.assertFalse(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) reason = ("Failed in RECREATE server 'd94d6333-82e6-4f87-b7ab-b786776d" "f9d1': Internal error happened.") mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason=six.text_type(reason), physical_id=node.physical_id)]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_failed_recover_with_new_physical_id(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == consts.NS_ERROR: node.physical_id = new_id node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_status.side_effect = set_status action = mock.Mock(inputs={'operation': consts.RECOVER_RECREATE, 'check': True}) mock_recover.side_effect = exception.EResourceOperation( op=consts.RECOVER_RECREATE, type='server', id=node.physical_id, resource_id=new_id, reason='Recovery failed', ) res = node.do_recover(self.context, action) self.assertFalse(res) mock_recover.assert_called_once_with( self.context, node, **action.inputs) reason = ("Failed in RECREATE server 'd94d6333-82e6-4f87-b7ab-b786776d" "f9d1': Internal error happened.") mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ERROR, reason=six.text_type(reason), physical_id=new_id)]) def test_node_recover_no_physical_id_reboot_op(self): node = nodem.Node('node1', PROFILE_ID, None) action = mock.Mock(inputs={'operation': 'REBOOT'}) res = node.do_recover(self.context, action) self.assertFalse(res) def test_node_recover_no_physical_id_rebuild_op(self): node = nodem.Node('node1', PROFILE_ID, None) action = mock.Mock(inputs={'operation': 'REBUILD'}) res = node.do_recover(self.context, action) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_no_physical_id_no_op(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_not_called() mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') @mock.patch.object(pb.Profile, 'recover_object') def test_node_recover_no_physical_id_recreate_op(self, mock_recover, mock_status): def set_status(*args, **kwargs): if args[1] == 'ACTIVE': node.physical_id = new_id node.data = {'recovery': 'RECREATE'} node = nodem.Node('node1', PROFILE_ID, '', id='fake') new_id = '166db83b-b4a4-49ef-96a8-6c0fdd882d1a' mock_recover.return_value = new_id, True mock_status.side_effect = set_status mock_check = self.patchobject(pb.Profile, 'check_object') mock_check.return_value = False action = mock.Mock( outputs={}, inputs={'operation': 'RECREATE', 'check': True}) res = node.do_recover(self.context, action) self.assertTrue(res) mock_check.assert_called_once_with(self.context, node) mock_recover.assert_called_once_with( self.context, node, **action.inputs) self.assertEqual('node1', node.name) self.assertEqual(new_id, node.physical_id) self.assertEqual(PROFILE_ID, node.profile_id) mock_status.assert_has_calls([ mock.call(self.context, 'RECOVERING', reason='Recovery in progress'), mock.call(self.context, consts.NS_ACTIVE, reason='Recovery succeeded', physical_id=new_id, data={'recovery': 'RECREATE'})]) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_operation_not_support(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( outputs={}, inputs={'operation': 'foo'}) res = node.do_recover(self.context, action) self.assertEqual({}, action.outputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_recover_operation_not_string(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, None) node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' action = mock.Mock( outputs={}, inputs={'operation': 'foo'}) res = node.do_recover(self.context, action) self.assertEqual({}, action.outputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_operation(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' x_profile = mock.Mock() x_profile.handle_dance = mock.Mock(return_value=True) node.rt['profile'] = x_profile inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertTrue(res) mock_set_status.assert_has_calls([ mock.call(self.context, consts.NS_OPERATING, reason="Operation 'dance' in progress"), mock.call(self.context, consts.NS_ACTIVE, reason="Operation 'dance' succeeded") ]) x_profile.handle_dance.assert_called_once_with(node, style='tango') def test_node_operation_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, None) inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertFalse(res) @mock.patch.object(nodem.Node, 'set_status') def test_node_operation_failed_op(self, mock_set_status): node = nodem.Node('node1', PROFILE_ID, '') node.physical_id = 'd94d6333-82e6-4f87-b7ab-b786776df9d1' x_profile = mock.Mock() err = exception.EResourceOperation( op='dance', type='container', id='test_id', message='Boom') x_profile.handle_dance = mock.Mock(side_effect=err) node.rt['profile'] = x_profile inputs = {'operation': 'dance', 'params': {'style': 'tango'}} res = node.do_operation(self.context, **inputs) self.assertFalse(res) mock_set_status.assert_has_calls([ mock.call(self.context, consts.NS_OPERATING, reason="Operation 'dance' in progress"), mock.call(self.context, consts.NS_ERROR, reason="Failed in dance container 'test_id': Boom.") ]) x_profile.handle_dance.assert_called_once_with(node, style='tango') def _verify_execution_create_args(self, expected_name, expected_inputs_dict, wfc): wfc.execution_create.assert_called_once_with(mock.ANY, mock.ANY) actual_call_args, call_kwargs = wfc.execution_create.call_args # execution_create parameters are name and inputs actual_call_name, actual_call_inputs = actual_call_args # actual_call_inputs is string representation of a dictionary. # convert actual_call_inputs to json, then dump it back as string # sorted by key final_actual_call_inputs = jsonutils.dumps( jsonutils.loads(actual_call_inputs), sort_keys=True) # dump expected_inputs_dict as string sorted by key final_expected_inputs = jsonutils.dumps( expected_inputs_dict, sort_keys=True) # compare the sorted input strings along with the names self.assertEqual(actual_call_name, expected_name) self.assertEqual(final_actual_call_inputs, final_expected_inputs) def test_run_workflow(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None wfc.workflow_create = mock.Mock() wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': { 'bar': 'baz' }, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } res = node.run_workflow(**options) self.assertTrue(res) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc) def test_run_workflow_no_physical_id(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = None res = node.run_workflow() self.assertFalse(res) def test_run_workflow_workflow_is_found(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = mock.Mock(definition={'bar': 'baz'}) wfc.workflow_create = mock.Mock() wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } res = node.run_workflow(**options) self.assertTrue(res) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') self.assertEqual(0, wfc.workflow_create.call_count) final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc) def test_run_workflow_failed_creation(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None err = exception.InternalError(message='boom') wfc.workflow_create.side_effect = err wfc.execution_create = mock.Mock() x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': {'bar': 'baz'}, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } ex = self.assertRaises(exception.EResourceOperation, node.run_workflow, **options) self.assertEqual("Failed in executing workflow 'foo': boom.", six.text_type(ex)) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') self.assertEqual(0, wfc.execution_create.call_count) def test_run_workflow_failed_execution(self): node = nodem.Node('node1', PROFILE_ID, 'FAKE_CLUSTER') node.physical_id = 'FAKE_NODE' wfc = mock.Mock() wfc.workflow_find.return_value = None wfc.workflow_create = mock.Mock() err = exception.InternalError(message='boom') wfc.execution_create.side_effect = err x_profile = mock.Mock() x_profile.workflow = mock.Mock(return_value=wfc) node.rt['profile'] = x_profile options = { 'workflow_name': 'foo', 'inputs': { 'definition': {'bar': 'baz'}, 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } } ex = self.assertRaises(exception.EResourceOperation, node.run_workflow, **options) self.assertEqual("Failed in executing workflow 'foo': boom.", six.text_type(ex)) x_profile.workflow.assert_called_once_with(node) wfc.workflow_find.assert_called_once_with('foo') wfc.workflow_create.assert_called_once_with( {'bar': 'baz'}, scope='private') final_dict = { 'cluster_id': 'FAKE_CLUSTER', 'node_id': 'FAKE_NODE', 'FAKE_KEY1': 'FAKE_VALUE1', 'FAKE_KEY2': 'FAKE_VALUE2', } self._verify_execution_create_args('foo', final_dict, wfc)
0.453504
0.344251
try: import sys import os import click from tabulate import tabulate from utilities_common.util_base import UtilHelper except ImportError as e: raise ImportError("%s - required module not found" % str(e)) VERSION = '2.0' ERROR_PERMISSIONS = 1 ERROR_CHASSIS_LOAD = 2 ERROR_NOT_IMPLEMENTED = 3 ERROR_PDDF_NOT_SUPPORTED = 4 # Global platform-specific chassis class instance platform_chassis = None # Load the helper class helper = UtilHelper() # ==================== CLI commands and groups ==================== # This is our main entrypoint - the main 'pddf_fanutil' command @click.group() def cli(): """pddf_fanutil - Command line utility for providing FAN information""" global platform_chassis if os.geteuid() != 0: click.echo("Root privileges are required for this operation") sys.exit(ERROR_PERMISSIONS) if not helper.check_pddf_mode(): click.echo("PDDF mode should be supported and enabled for this platform for this operation") sys.exit(ERROR_PDDF_NOT_SUPPORTED) # Load platform-specific chassis 2.0 api class platform_chassis = helper.load_platform_chassis() if not platform_chassis: sys.exit(ERROR_CHASSIS_LOAD) # 'version' subcommand @cli.command() def version(): """Display version info""" click.echo("PDDF fanutil version {0}".format(VERSION)) # 'numfans' subcommand @cli.command() def numfans(): """Display number of FANs installed on device""" num_fans = platform_chassis.get_num_fans() click.echo(num_fans) # 'status' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def status(index): """Display FAN status""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'Status'] status_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) status = 'NOT PRESENT' if fan.get_presence(): oper_status = helper.try_get(fan.get_status, 'UNKNOWN') if oper_status is True: status = 'OK' elif oper_status is False: status = 'NOT OK' else: status = oper_status status_table.append([fan_name, status]) if status_table: click.echo(tabulate(status_table, header, tablefmt="simple")) # 'direction' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def direction(index): """Display FAN airflow direction""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'Direction'] dir_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) direction = helper.try_get(fan.get_direction, 'N/A') dir_table.append([fan_name, direction.capitalize()]) if dir_table: click.echo(tabulate(dir_table, header, tablefmt="simple")) # 'speed' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def getspeed(index): """Display FAN speed in RPM""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'SPEED (RPM)'] speed_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) rpm = helper.try_get(fan.get_speed_rpm, 'N/A') speed_table.append([fan_name, rpm]) if speed_table: click.echo(tabulate(speed_table, header, tablefmt="simple")) # 'setspeed' subcommand @cli.command() @click.argument('speed', type=int) def setspeed(speed): """Set FAN speed in percentage""" if speed is None: click.echo("speed value is required") raise click.Abort() fan_list = platform_chassis.get_all_fans() for idx, fan in enumerate(fan_list): try: status = fan.set_speed(speed) except NotImplementedError: click.echo("Set speed API not implemented") sys.exit(0) if not status: click.echo("Failed") sys.exit(1) click.echo("Successful") @cli.group() def debug(): """pddf_fanutil debug commands""" pass @debug.command() def dump_sysfs(): """Dump all Fan related SysFS paths""" fan_list = platform_chassis.get_all_fans() for idx, fan in enumerate(fan_list): status = fan.dump_sysfs() if status: for i in status: click.echo(i) if __name__ == '__main__': cli()
pddf_fanutil/main.py
try: import sys import os import click from tabulate import tabulate from utilities_common.util_base import UtilHelper except ImportError as e: raise ImportError("%s - required module not found" % str(e)) VERSION = '2.0' ERROR_PERMISSIONS = 1 ERROR_CHASSIS_LOAD = 2 ERROR_NOT_IMPLEMENTED = 3 ERROR_PDDF_NOT_SUPPORTED = 4 # Global platform-specific chassis class instance platform_chassis = None # Load the helper class helper = UtilHelper() # ==================== CLI commands and groups ==================== # This is our main entrypoint - the main 'pddf_fanutil' command @click.group() def cli(): """pddf_fanutil - Command line utility for providing FAN information""" global platform_chassis if os.geteuid() != 0: click.echo("Root privileges are required for this operation") sys.exit(ERROR_PERMISSIONS) if not helper.check_pddf_mode(): click.echo("PDDF mode should be supported and enabled for this platform for this operation") sys.exit(ERROR_PDDF_NOT_SUPPORTED) # Load platform-specific chassis 2.0 api class platform_chassis = helper.load_platform_chassis() if not platform_chassis: sys.exit(ERROR_CHASSIS_LOAD) # 'version' subcommand @cli.command() def version(): """Display version info""" click.echo("PDDF fanutil version {0}".format(VERSION)) # 'numfans' subcommand @cli.command() def numfans(): """Display number of FANs installed on device""" num_fans = platform_chassis.get_num_fans() click.echo(num_fans) # 'status' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def status(index): """Display FAN status""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'Status'] status_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) status = 'NOT PRESENT' if fan.get_presence(): oper_status = helper.try_get(fan.get_status, 'UNKNOWN') if oper_status is True: status = 'OK' elif oper_status is False: status = 'NOT OK' else: status = oper_status status_table.append([fan_name, status]) if status_table: click.echo(tabulate(status_table, header, tablefmt="simple")) # 'direction' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def direction(index): """Display FAN airflow direction""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'Direction'] dir_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) direction = helper.try_get(fan.get_direction, 'N/A') dir_table.append([fan_name, direction.capitalize()]) if dir_table: click.echo(tabulate(dir_table, header, tablefmt="simple")) # 'speed' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="Index of FAN (1-based)") def getspeed(index): """Display FAN speed in RPM""" fan_list = [] if (index < 0): fan_list = platform_chassis.get_all_fans() default_index = 0 else: fan_list = platform_chassis.get_fan(index-1) default_index = index-1 header = ['FAN', 'SPEED (RPM)'] speed_table = [] for idx, fan in enumerate(fan_list, default_index): fan_name = helper.try_get(fan.get_name, "Fan {}".format(idx+1)) rpm = helper.try_get(fan.get_speed_rpm, 'N/A') speed_table.append([fan_name, rpm]) if speed_table: click.echo(tabulate(speed_table, header, tablefmt="simple")) # 'setspeed' subcommand @cli.command() @click.argument('speed', type=int) def setspeed(speed): """Set FAN speed in percentage""" if speed is None: click.echo("speed value is required") raise click.Abort() fan_list = platform_chassis.get_all_fans() for idx, fan in enumerate(fan_list): try: status = fan.set_speed(speed) except NotImplementedError: click.echo("Set speed API not implemented") sys.exit(0) if not status: click.echo("Failed") sys.exit(1) click.echo("Successful") @cli.group() def debug(): """pddf_fanutil debug commands""" pass @debug.command() def dump_sysfs(): """Dump all Fan related SysFS paths""" fan_list = platform_chassis.get_all_fans() for idx, fan in enumerate(fan_list): status = fan.dump_sysfs() if status: for i in status: click.echo(i) if __name__ == '__main__': cli()
0.327346
0.07333
import os import re import argparse import pandas as pd import importlib import yaml import copy from zdb.modules.multirun import multidraw from atsge.build_parallel import build_parallel import logging logging.getLogger(__name__).setLevel(logging.INFO) logging.getLogger("atsge.SGEJobSubmitter").setLevel(logging.INFO) logging.getLogger("atsge.WorkingArea").setLevel(logging.INFO) logging.getLogger(__name__).propagate = False logging.getLogger("atsge.SGEJobSubmitter").propagate = False logging.getLogger("atsge.WorkingArea").propagate = False def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("mc", help="Path to MC pandas pickle") parser.add_argument("drawer", help="Path to drawing function") parser.add_argument("cfg", help="Plotting config file") parser.add_argument( "-m", "--mode", default="multiprocessing", type=str, help="Parallelisation: 'multiprocessing', 'sge', 'htcondor'", ) parser.add_argument( "-j", "--ncores", default=0, type=int, help="Number of cores for 'multiprocessing' jobs", ) parser.add_argument( "-n", "--nplots", default=-1, type=int, help="Number of plots to draw. -1 = all", ) parser.add_argument( "-o", "--outdir", default="temp", type=str, help="Output directory", ) return parser.parse_args() def rename_df_index(df, index, rename_list): if df is None: return df indexes = df.index.names tdf = df.reset_index() for new_val, selection in rename_list: tdf.loc[tdf.eval(selection),index] = new_val return tdf.set_index(indexes) def parallel_draw(draw, jobs, options): if len(jobs)==0: return njobs = options.ncores if options.mode in ["multiprocessing"]: njobs = len(jobs)+1 jobs = [ jobs[i:i+len(jobs)//njobs+1] for i in xrange(0, len(jobs), len(jobs)//njobs+1) ] parallel = build_parallel( options.mode, processes=options.ncores, quiet=False, dispatcher_options={"vmem": 6, "walltime": 3*60*60}, ) parallel.begin() try: parallel.communicationChannel.put_multiple([{ 'task': multidraw, 'args': (draw, args), 'kwargs': {}, } for args in jobs]) results = parallel.communicationChannel.receive() except KeyboardInterrupt: parallel.terminate() parallel.end() def main(): options = parse_args() # Setup drawer function module_name, function_name = options.drawer.split(":") draw = getattr(importlib.import_module(module_name), function_name) # open cfg with open(options.cfg, 'r') as f: cfg = yaml.load(f) # Read in dataframes df = pd.read_pickle(options.mc) if options.mc is not None else None df = rename_df_index(df, "parent", [ ("WJetsToENu", "(parent=='WJetsToLNu') & (LeptonIsElectron==1)"), ("WJetsToMuNu", "(parent=='WJetsToLNu') & (LeptonIsMuon==1)"), #("WJetsToTauNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1)"), ("WJetsToTauHNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1) & (nGenTauL==0)"), ("WJetsToTauLNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1) & (nGenTauL==1)"), ("DYJetsToEE", "(parent=='DYJetsToLL') & (LeptonIsElectron==1)"), ("DYJetsToMuMu", "(parent=='DYJetsToLL') & (LeptonIsMuon==1)"), #("DYJetsToTauTau", "(parent=='DYJetsToLL') & (LeptonIsTau==1)"), ("DYJetsToTauHTauH", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==0)"), ("DYJetsToTauHTauL", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==1)"), ("DYJetsToTauLTauL", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==2)"), ]).reset_index(["LeptonIsElectron", "LeptonIsMuon", "LeptonIsTau", "nGenTauL"], drop=True) df = df.groupby(df.index.names).sum() # cutflows cutflows = df.index.get_level_values("selection").unique() # variations varnames = df.index.get_level_values("varname").unique() regex = re.compile("^(?P<varname>[a-zA-Z0-9_]+)_(?P<variation>[a-zA-Z0-9]+)(Up|Down)$") varname_variations = {} for v in varnames: match = regex.search(v) if match: varname = match.group("varname") variation = match.group("variation") if varname not in varname_variations: varname_variations[varname] = [] if variation not in varname_variations[varname]: varname_variations[varname].append(variation) # group into histograms jobs = [] for cutflow in cutflows: for varname, variations in varname_variations.items(): for variation in variations: job_cfg = copy.deepcopy(cfg[variation]) job_cfg.update(cfg.get("defaults", {})) job_cfg.update(cfg.get(cutflow, {})) job_cfg.update(cfg.get(varname, {})) outdir = os.path.join(options.outdir, cutflow, varname) if not os.path.exists(outdir): os.makedirs(outdir) job_cfg["outpath"] = os.path.abspath( os.path.join(outdir, cfg[variation]["outpath"]) ) df_loc = df.loc[ ( (df.index.get_level_values("selection")==cutflow) & (df.index.get_level_values("varname").isin( [varname+"_nominal", varname+"_"+variation+"Up", varname+"_"+variation+"Down"] )) ), : ] jobs.append((df_loc, copy.deepcopy(job_cfg))) if options.nplots >= 0 and options.nplots < len(jobs): jobs = jobs[:options.nplots] parallel_draw(draw, jobs, options) if __name__ == "__main__": main()
zdb/scripts/draw_variation.py
import os import re import argparse import pandas as pd import importlib import yaml import copy from zdb.modules.multirun import multidraw from atsge.build_parallel import build_parallel import logging logging.getLogger(__name__).setLevel(logging.INFO) logging.getLogger("atsge.SGEJobSubmitter").setLevel(logging.INFO) logging.getLogger("atsge.WorkingArea").setLevel(logging.INFO) logging.getLogger(__name__).propagate = False logging.getLogger("atsge.SGEJobSubmitter").propagate = False logging.getLogger("atsge.WorkingArea").propagate = False def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("mc", help="Path to MC pandas pickle") parser.add_argument("drawer", help="Path to drawing function") parser.add_argument("cfg", help="Plotting config file") parser.add_argument( "-m", "--mode", default="multiprocessing", type=str, help="Parallelisation: 'multiprocessing', 'sge', 'htcondor'", ) parser.add_argument( "-j", "--ncores", default=0, type=int, help="Number of cores for 'multiprocessing' jobs", ) parser.add_argument( "-n", "--nplots", default=-1, type=int, help="Number of plots to draw. -1 = all", ) parser.add_argument( "-o", "--outdir", default="temp", type=str, help="Output directory", ) return parser.parse_args() def rename_df_index(df, index, rename_list): if df is None: return df indexes = df.index.names tdf = df.reset_index() for new_val, selection in rename_list: tdf.loc[tdf.eval(selection),index] = new_val return tdf.set_index(indexes) def parallel_draw(draw, jobs, options): if len(jobs)==0: return njobs = options.ncores if options.mode in ["multiprocessing"]: njobs = len(jobs)+1 jobs = [ jobs[i:i+len(jobs)//njobs+1] for i in xrange(0, len(jobs), len(jobs)//njobs+1) ] parallel = build_parallel( options.mode, processes=options.ncores, quiet=False, dispatcher_options={"vmem": 6, "walltime": 3*60*60}, ) parallel.begin() try: parallel.communicationChannel.put_multiple([{ 'task': multidraw, 'args': (draw, args), 'kwargs': {}, } for args in jobs]) results = parallel.communicationChannel.receive() except KeyboardInterrupt: parallel.terminate() parallel.end() def main(): options = parse_args() # Setup drawer function module_name, function_name = options.drawer.split(":") draw = getattr(importlib.import_module(module_name), function_name) # open cfg with open(options.cfg, 'r') as f: cfg = yaml.load(f) # Read in dataframes df = pd.read_pickle(options.mc) if options.mc is not None else None df = rename_df_index(df, "parent", [ ("WJetsToENu", "(parent=='WJetsToLNu') & (LeptonIsElectron==1)"), ("WJetsToMuNu", "(parent=='WJetsToLNu') & (LeptonIsMuon==1)"), #("WJetsToTauNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1)"), ("WJetsToTauHNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1) & (nGenTauL==0)"), ("WJetsToTauLNu", "(parent=='WJetsToLNu') & (LeptonIsTau==1) & (nGenTauL==1)"), ("DYJetsToEE", "(parent=='DYJetsToLL') & (LeptonIsElectron==1)"), ("DYJetsToMuMu", "(parent=='DYJetsToLL') & (LeptonIsMuon==1)"), #("DYJetsToTauTau", "(parent=='DYJetsToLL') & (LeptonIsTau==1)"), ("DYJetsToTauHTauH", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==0)"), ("DYJetsToTauHTauL", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==1)"), ("DYJetsToTauLTauL", "(parent=='DYJetsToLL') & (LeptonIsTau==1) & (nGenTauL==2)"), ]).reset_index(["LeptonIsElectron", "LeptonIsMuon", "LeptonIsTau", "nGenTauL"], drop=True) df = df.groupby(df.index.names).sum() # cutflows cutflows = df.index.get_level_values("selection").unique() # variations varnames = df.index.get_level_values("varname").unique() regex = re.compile("^(?P<varname>[a-zA-Z0-9_]+)_(?P<variation>[a-zA-Z0-9]+)(Up|Down)$") varname_variations = {} for v in varnames: match = regex.search(v) if match: varname = match.group("varname") variation = match.group("variation") if varname not in varname_variations: varname_variations[varname] = [] if variation not in varname_variations[varname]: varname_variations[varname].append(variation) # group into histograms jobs = [] for cutflow in cutflows: for varname, variations in varname_variations.items(): for variation in variations: job_cfg = copy.deepcopy(cfg[variation]) job_cfg.update(cfg.get("defaults", {})) job_cfg.update(cfg.get(cutflow, {})) job_cfg.update(cfg.get(varname, {})) outdir = os.path.join(options.outdir, cutflow, varname) if not os.path.exists(outdir): os.makedirs(outdir) job_cfg["outpath"] = os.path.abspath( os.path.join(outdir, cfg[variation]["outpath"]) ) df_loc = df.loc[ ( (df.index.get_level_values("selection")==cutflow) & (df.index.get_level_values("varname").isin( [varname+"_nominal", varname+"_"+variation+"Up", varname+"_"+variation+"Down"] )) ), : ] jobs.append((df_loc, copy.deepcopy(job_cfg))) if options.nplots >= 0 and options.nplots < len(jobs): jobs = jobs[:options.nplots] parallel_draw(draw, jobs, options) if __name__ == "__main__": main()
0.183228
0.149656
from django.conf import settings from django.utils import translation import pytest from mock import Mock, patch from olympia.amo.tests import TestCase from olympia.amo.utils import from_string from olympia.addons.models import Addon from olympia.translations.templatetags import jinja_helpers from olympia.translations.fields import save_signal from olympia.translations.models import PurifiedTranslation from olympia.translations.tests.testapp.models import TranslatedModel pytestmark = pytest.mark.django_db def test_locale_html(): """Test HTML attributes for languages different than the site language""" testfield = Mock() # same language: no need for attributes this_lang = translation.get_language() testfield.locale = this_lang s = jinja_helpers.locale_html(testfield) assert not s, 'no special HTML attributes for site language' # non-rtl language testfield.locale = 'de' s = jinja_helpers.locale_html(testfield) assert s == ' lang="de" dir="ltr"' # rtl language for lang in settings.LANGUAGES_BIDI: testfield.locale = lang s = jinja_helpers.locale_html(testfield) assert s == ' lang="%s" dir="rtl"' % testfield.locale def test_locale_html_xss(): """Test for nastiness-removal in the transfield's locale""" testfield = Mock() # same language: no need for attributes testfield.locale = '<script>alert(1)</script>' s = jinja_helpers.locale_html(testfield) assert '<script>' not in s assert '&lt;script&gt;alert(1)&lt;/script&gt;' in s def test_empty_locale_html(): """locale_html must still work if field is None.""" s = jinja_helpers.locale_html(None) assert not s, 'locale_html on None must be empty.' def test_truncate_purified_field(): s = '<i>one</i><i>two</i>' t = PurifiedTranslation(localized_string=s) actual = from_string('{{ s|truncate(6) }}').render({'s': t}) assert actual == s def test_truncate_purified_field_xss(): """Truncating should not introduce xss issues.""" s = 'safe <script>alert("omg")</script>' t = PurifiedTranslation(localized_string=s) actual = from_string('{{ s|truncate(100) }}').render({'s': t}) assert actual == 'safe &lt;script&gt;alert("omg")&lt;/script&gt;' actual = from_string('{{ s|truncate(5) }}').render({'s': t}) assert actual == 'safe ...' def test_clean(): # Links are not mangled, bad HTML is escaped, newlines are slimmed. s = '<ul><li><a href="#woo">\n\nyeah</a></li>\n\n<li><script></li></ul>' assert jinja_helpers.clean(s) == ( '<ul><li><a href="#woo">\n\nyeah</a></li><li>&lt;script&gt;</li></ul>') def test_clean_in_template(): s = '<a href="#woo">yeah</a>' assert from_string('{{ s|clean }}').render({'s': s}) == s def test_clean_strip_all_html(): s = '<a href="#woo">yeah</a>' expected = 'yeah' assert from_string('{{ s|clean(true) }}').render({'s': s}) == expected def test_no_links(): template = from_string('{{ s|no_links }}') s = 'a <a href="http://url.link">http://example.com</a>, http://text.link' expected = 'a http://example.com, http://text.link' assert template.render({'s': s}) == expected # Bad markup. s = '<http://bad.markup.com' assert template.render({'s': s}) == '' # Bad markup. s = 'some text <http://bad.markup.com' assert template.render({'s': s}) == 'some text' def test_l10n_menu(): # No remove_locale_url provided. menu = jinja_helpers.l10n_menu({}) assert 'data-rm-locale=""' in menu, menu # Specific remove_locale_url provided (eg for user). menu = jinja_helpers.l10n_menu({}, remove_locale_url='/some/url/') assert 'data-rm-locale="/some/url/"' in menu, menu # Use the remove_locale_url taken from the addon in the context. menu = jinja_helpers.l10n_menu( {'addon': Addon()}, remove_locale_url='some/url/') assert 'data-rm-locale="/en-US/developers/addon/None/rmlocale"' in menu @patch.object(settings, 'AMO_LANGUAGES', ('de', 'en-US', 'es', 'fr', 'pt-BR')) class TestAllLocales(TestCase): def test_all_locales_none(self): addon = None field_name = 'description' assert jinja_helpers.all_locales(addon, field_name) is None addon = Mock() field_name = 'description' del addon.description assert jinja_helpers.all_locales(addon, field_name) is None def test_all_locales(self): obj = TranslatedModel() obj.description = { 'en-US': 'There', 'es': 'Is No', 'fr': 'Spoon' } # Pretend the TranslateModel instance was saved to force Translation # objects to be saved. save_signal(sender=TranslatedModel, instance=obj) result = jinja_helpers.all_locales(obj, 'description') assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span lang="fr">Spoon</span>' in result def test_all_locales_empty(self): obj = TranslatedModel() obj.description = { 'en-US': 'There', 'es': 'Is No', 'fr': '' } # Pretend the TranslateModel instance was saved to force Translation # objects to be saved. save_signal(sender=TranslatedModel, instance=obj) result = jinja_helpers.all_locales(obj, 'description') assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span lang="fr"></span>' in result result = jinja_helpers.all_locales( obj, 'description', prettify_empty=True) assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span class="empty" lang="fr">None</span>' in result
src/olympia/translations/tests/test_helpers.py
from django.conf import settings from django.utils import translation import pytest from mock import Mock, patch from olympia.amo.tests import TestCase from olympia.amo.utils import from_string from olympia.addons.models import Addon from olympia.translations.templatetags import jinja_helpers from olympia.translations.fields import save_signal from olympia.translations.models import PurifiedTranslation from olympia.translations.tests.testapp.models import TranslatedModel pytestmark = pytest.mark.django_db def test_locale_html(): """Test HTML attributes for languages different than the site language""" testfield = Mock() # same language: no need for attributes this_lang = translation.get_language() testfield.locale = this_lang s = jinja_helpers.locale_html(testfield) assert not s, 'no special HTML attributes for site language' # non-rtl language testfield.locale = 'de' s = jinja_helpers.locale_html(testfield) assert s == ' lang="de" dir="ltr"' # rtl language for lang in settings.LANGUAGES_BIDI: testfield.locale = lang s = jinja_helpers.locale_html(testfield) assert s == ' lang="%s" dir="rtl"' % testfield.locale def test_locale_html_xss(): """Test for nastiness-removal in the transfield's locale""" testfield = Mock() # same language: no need for attributes testfield.locale = '<script>alert(1)</script>' s = jinja_helpers.locale_html(testfield) assert '<script>' not in s assert '&lt;script&gt;alert(1)&lt;/script&gt;' in s def test_empty_locale_html(): """locale_html must still work if field is None.""" s = jinja_helpers.locale_html(None) assert not s, 'locale_html on None must be empty.' def test_truncate_purified_field(): s = '<i>one</i><i>two</i>' t = PurifiedTranslation(localized_string=s) actual = from_string('{{ s|truncate(6) }}').render({'s': t}) assert actual == s def test_truncate_purified_field_xss(): """Truncating should not introduce xss issues.""" s = 'safe <script>alert("omg")</script>' t = PurifiedTranslation(localized_string=s) actual = from_string('{{ s|truncate(100) }}').render({'s': t}) assert actual == 'safe &lt;script&gt;alert("omg")&lt;/script&gt;' actual = from_string('{{ s|truncate(5) }}').render({'s': t}) assert actual == 'safe ...' def test_clean(): # Links are not mangled, bad HTML is escaped, newlines are slimmed. s = '<ul><li><a href="#woo">\n\nyeah</a></li>\n\n<li><script></li></ul>' assert jinja_helpers.clean(s) == ( '<ul><li><a href="#woo">\n\nyeah</a></li><li>&lt;script&gt;</li></ul>') def test_clean_in_template(): s = '<a href="#woo">yeah</a>' assert from_string('{{ s|clean }}').render({'s': s}) == s def test_clean_strip_all_html(): s = '<a href="#woo">yeah</a>' expected = 'yeah' assert from_string('{{ s|clean(true) }}').render({'s': s}) == expected def test_no_links(): template = from_string('{{ s|no_links }}') s = 'a <a href="http://url.link">http://example.com</a>, http://text.link' expected = 'a http://example.com, http://text.link' assert template.render({'s': s}) == expected # Bad markup. s = '<http://bad.markup.com' assert template.render({'s': s}) == '' # Bad markup. s = 'some text <http://bad.markup.com' assert template.render({'s': s}) == 'some text' def test_l10n_menu(): # No remove_locale_url provided. menu = jinja_helpers.l10n_menu({}) assert 'data-rm-locale=""' in menu, menu # Specific remove_locale_url provided (eg for user). menu = jinja_helpers.l10n_menu({}, remove_locale_url='/some/url/') assert 'data-rm-locale="/some/url/"' in menu, menu # Use the remove_locale_url taken from the addon in the context. menu = jinja_helpers.l10n_menu( {'addon': Addon()}, remove_locale_url='some/url/') assert 'data-rm-locale="/en-US/developers/addon/None/rmlocale"' in menu @patch.object(settings, 'AMO_LANGUAGES', ('de', 'en-US', 'es', 'fr', 'pt-BR')) class TestAllLocales(TestCase): def test_all_locales_none(self): addon = None field_name = 'description' assert jinja_helpers.all_locales(addon, field_name) is None addon = Mock() field_name = 'description' del addon.description assert jinja_helpers.all_locales(addon, field_name) is None def test_all_locales(self): obj = TranslatedModel() obj.description = { 'en-US': 'There', 'es': 'Is No', 'fr': 'Spoon' } # Pretend the TranslateModel instance was saved to force Translation # objects to be saved. save_signal(sender=TranslatedModel, instance=obj) result = jinja_helpers.all_locales(obj, 'description') assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span lang="fr">Spoon</span>' in result def test_all_locales_empty(self): obj = TranslatedModel() obj.description = { 'en-US': 'There', 'es': 'Is No', 'fr': '' } # Pretend the TranslateModel instance was saved to force Translation # objects to be saved. save_signal(sender=TranslatedModel, instance=obj) result = jinja_helpers.all_locales(obj, 'description') assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span lang="fr"></span>' in result result = jinja_helpers.all_locales( obj, 'description', prettify_empty=True) assert u'<div class="trans" data-name="description">' in result assert u'<span lang="en-us">There</span>' in result assert u'<span lang="es">Is No</span>' in result assert u'<span class="empty" lang="fr">None</span>' in result
0.63624
0.363506
import dash_core_components as dcc import dash_html_components as html import plotly.express as px from dash.dependencies import Input, Output import dash_bootstrap_components as dbc from app import app from apps import theme_explorer as te, text import util """ ===================================================================== Helper functions and components """ df = px.data.gapminder() code = util.get_code_file("dash_bootstrap_templates_app.py") copy_code_div = util.get_copy_code_div(code, id="copy_template_code") # make control panel use_templates = dbc.RadioItems( options=[ {"label": "Use figure templates from dash-bootstrap-templates", "value": 1}, {"label": "Use Plotly default figure template", "value": 2}, ], value=1, id="use_figure_template", ) control_panel_text = dcc.Markdown( text.dash_bootstrap_templates_text, className="border mb-5 p-4" ) # needed because the theme dropdown also updates "css" on Theme Explorer page but not here dummy_output = html.Div(id="css", className='d-none') control_panel = [control_panel_text, te.boostrap_card, use_templates, dummy_output] carousel = dbc.Carousel( ride="carousel", items=[ { "key": "1", "src": "https://user-images.githubusercontent.com/72614349/129459807-30c22ffe-7a8c-44b9-9555-6cfd50ec355b.png", }, { "key": "2", "src": "https://user-images.githubusercontent.com/72614349/129459808-40032148-82e1-47ce-a49a-05e598c69400.png", }, ], ) carousel_text = dcc.Markdown(text.dash_bootstrap_templates_app_text) """ =============================================================================== Layout """ layout = dbc.Container( [ util.header, dbc.Row( [ dbc.Col(control_panel, lg=4, sm=12), dbc.Col( html.Div( id="db_templates_sample_app", className="mx-1 mb-4 shadow p-4", ), lg=8, sm=12, ), ], ), dbc.Row( [ dbc.Col([carousel_text, carousel], lg=4, sm=12), dbc.Col(html.Div(copy_code_div,), lg=8, sm=12,), ], ), ], fluid=True, id="bootstrap_templates", ) """ ===================================================================== Display Sample App based on theme selected """ @app.callback( Output("db_templates_sample_app", "children"), Input("themes", "value"), Input("use_figure_template", "value"), ) def update_graphs(theme, use_template): template = util.url_dbc_themes[theme].lower() if use_template == 1 else {} heading_txt = ( "App with dash-bootstrap-templates" if use_template == 1 else "App with Plotly default figure template" ) heading = html.H3(heading_txt, className="bg-primary text-white p-2") dff = df[df.year.between(1952, 1982)] dff = dff[dff.continent.isin(df.continent.unique()[1:])] line_fig = px.line( dff, x="year", y="gdpPercap", color="continent", line_group="country", template=template, ) dff = dff[dff.year == 1982] scatter_fig = px.scatter( dff, x="lifeExp", y="gdpPercap", size="pop", color="pop", size_max=60, template=template, ).update_traces(marker_opacity=0.8) avg_lifeExp = (dff["lifeExp"] * dff["pop"]).sum() / dff["pop"].sum() map_fig = px.choropleth( dff, locations="iso_alpha", color="lifeExp", title="%.0f World Average Life Expectancy was %.1f years" % (1982, avg_lifeExp), template=template, ) hist_fig = px.histogram( dff, x="lifeExp", nbins=10, title="Life Expectancy", template=template ) graph_height = 300 graphs = html.Div( [ dbc.Row( [ dbc.Col( dcc.Graph(figure=line_fig, style={"height": graph_height}), lg=6 ), dbc.Col( dcc.Graph(figure=scatter_fig, style={"height": graph_height}), lg=6, ), ], className="mt-4", ), dbc.Row( [ dbc.Col( dcc.Graph(figure=hist_fig, style={"height": graph_height}), lg=6 ), dbc.Col( dcc.Graph(figure=map_fig, style={"height": graph_height}), lg=6 ), ], className="mt-4", ), ] ) # These buttons are added to the app just to show the Boostrap theme colors buttons = html.Div( [ dbc.Button("Primary", color="primary", className="mr-1"), dbc.Button("Secondary", color="secondary", className="mr-1"), dbc.Button("Success", color="success", className="mr-1"), dbc.Button("Warning", color="warning", className="mr-1"), dbc.Button("Danger", color="danger", className="mr-1"), dbc.Button("Info", color="info", className="mr-1"), dbc.Button("Light", color="light", className="mr-1"), dbc.Button("Dark", color="dark", className="mr-1"), dbc.Button("Link", color="link"), ], ) return [heading, buttons, graphs] @app.callback( Output("bootstrap_templates", "className"), Input("light_dark", "value"), ) def update_css(value): return "dbc_light" if value == "Light Themes" else "dbc_dark"
apps/bootstrap_templates.py
import dash_core_components as dcc import dash_html_components as html import plotly.express as px from dash.dependencies import Input, Output import dash_bootstrap_components as dbc from app import app from apps import theme_explorer as te, text import util """ ===================================================================== Helper functions and components """ df = px.data.gapminder() code = util.get_code_file("dash_bootstrap_templates_app.py") copy_code_div = util.get_copy_code_div(code, id="copy_template_code") # make control panel use_templates = dbc.RadioItems( options=[ {"label": "Use figure templates from dash-bootstrap-templates", "value": 1}, {"label": "Use Plotly default figure template", "value": 2}, ], value=1, id="use_figure_template", ) control_panel_text = dcc.Markdown( text.dash_bootstrap_templates_text, className="border mb-5 p-4" ) # needed because the theme dropdown also updates "css" on Theme Explorer page but not here dummy_output = html.Div(id="css", className='d-none') control_panel = [control_panel_text, te.boostrap_card, use_templates, dummy_output] carousel = dbc.Carousel( ride="carousel", items=[ { "key": "1", "src": "https://user-images.githubusercontent.com/72614349/129459807-30c22ffe-7a8c-44b9-9555-6cfd50ec355b.png", }, { "key": "2", "src": "https://user-images.githubusercontent.com/72614349/129459808-40032148-82e1-47ce-a49a-05e598c69400.png", }, ], ) carousel_text = dcc.Markdown(text.dash_bootstrap_templates_app_text) """ =============================================================================== Layout """ layout = dbc.Container( [ util.header, dbc.Row( [ dbc.Col(control_panel, lg=4, sm=12), dbc.Col( html.Div( id="db_templates_sample_app", className="mx-1 mb-4 shadow p-4", ), lg=8, sm=12, ), ], ), dbc.Row( [ dbc.Col([carousel_text, carousel], lg=4, sm=12), dbc.Col(html.Div(copy_code_div,), lg=8, sm=12,), ], ), ], fluid=True, id="bootstrap_templates", ) """ ===================================================================== Display Sample App based on theme selected """ @app.callback( Output("db_templates_sample_app", "children"), Input("themes", "value"), Input("use_figure_template", "value"), ) def update_graphs(theme, use_template): template = util.url_dbc_themes[theme].lower() if use_template == 1 else {} heading_txt = ( "App with dash-bootstrap-templates" if use_template == 1 else "App with Plotly default figure template" ) heading = html.H3(heading_txt, className="bg-primary text-white p-2") dff = df[df.year.between(1952, 1982)] dff = dff[dff.continent.isin(df.continent.unique()[1:])] line_fig = px.line( dff, x="year", y="gdpPercap", color="continent", line_group="country", template=template, ) dff = dff[dff.year == 1982] scatter_fig = px.scatter( dff, x="lifeExp", y="gdpPercap", size="pop", color="pop", size_max=60, template=template, ).update_traces(marker_opacity=0.8) avg_lifeExp = (dff["lifeExp"] * dff["pop"]).sum() / dff["pop"].sum() map_fig = px.choropleth( dff, locations="iso_alpha", color="lifeExp", title="%.0f World Average Life Expectancy was %.1f years" % (1982, avg_lifeExp), template=template, ) hist_fig = px.histogram( dff, x="lifeExp", nbins=10, title="Life Expectancy", template=template ) graph_height = 300 graphs = html.Div( [ dbc.Row( [ dbc.Col( dcc.Graph(figure=line_fig, style={"height": graph_height}), lg=6 ), dbc.Col( dcc.Graph(figure=scatter_fig, style={"height": graph_height}), lg=6, ), ], className="mt-4", ), dbc.Row( [ dbc.Col( dcc.Graph(figure=hist_fig, style={"height": graph_height}), lg=6 ), dbc.Col( dcc.Graph(figure=map_fig, style={"height": graph_height}), lg=6 ), ], className="mt-4", ), ] ) # These buttons are added to the app just to show the Boostrap theme colors buttons = html.Div( [ dbc.Button("Primary", color="primary", className="mr-1"), dbc.Button("Secondary", color="secondary", className="mr-1"), dbc.Button("Success", color="success", className="mr-1"), dbc.Button("Warning", color="warning", className="mr-1"), dbc.Button("Danger", color="danger", className="mr-1"), dbc.Button("Info", color="info", className="mr-1"), dbc.Button("Light", color="light", className="mr-1"), dbc.Button("Dark", color="dark", className="mr-1"), dbc.Button("Link", color="link"), ], ) return [heading, buttons, graphs] @app.callback( Output("bootstrap_templates", "className"), Input("light_dark", "value"), ) def update_css(value): return "dbc_light" if value == "Light Themes" else "dbc_dark"
0.656218
0.160661
import networkx as nx import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score import datasets import learning import copy import argparse # argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='cora', help='Datasets: cora, email, ssets') parser.add_argument('--version', default='1', help='version for ssets (1,2,3,4), default 1 for others') parser.add_argument('--result', action='store_true', help='already have the results, want to plot') args = parser.parse_args() def shift_clusters(clusters, found_classes): unique_classes = set(np.unique(clusters)) non_found_classes = list(unique_classes - found_classes) non_found_classes_original = copy.deepcopy(non_found_classes) np.random.shuffle(non_found_classes) m = {non_found_classes_original[i]: non_found_classes[i] for i in range(len(non_found_classes))} new_clusters = [] for cluster in clusters: if cluster in m: new_clusters.append(m[cluster]) else: new_clusters.append(cluster) return np.array(new_clusters) def find_best_clusters(clusters, labels): trail_number = 500 unique_classes = set(np.unique(labels)) found_classes = set() best_clusters = clusters while len(found_classes) < len(unique_classes): clusters = best_clusters best_acc = accuracy_score(labels, clusters.astype(int)) for trial in range(trail_number): shifted_clusters = shift_clusters(clusters, found_classes) acc = accuracy_score(shifted_clusters, labels) if acc > best_acc: print(acc) best_acc = acc best_clusters = shifted_clusters # check matching match_acc = 0 match_number = 0 for class_ in unique_classes - found_classes: pos = labels == class_ acc = accuracy_score(labels[pos], best_clusters[pos]) if acc > match_acc: match_number = class_ match_acc = acc if match_number == 0: break found_classes.add(match_number) print(found_classes) return best_clusters if __name__ == '__main__': if not args.result: if args.dataset == 'ssets': points = datasets.read_points(f'ssets/s{args.version}.txt') labels = datasets.read_labels(f'ssets/s{args.version}-label.pa') plt.scatter(points[:, 0], points[:, 1], c=labels) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show(bbox_inches='tight') else: A = datasets.load_graph_preprocessed(args.dataset, args.version) labels = datasets.load_labels_preprocessed(args.dataset, args.version) # graph draw G = nx.from_numpy_matrix(A.todense()) layout = nx.spring_layout(G) nx.draw_networkx(G, pos=layout, node_color=labels, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show() else: # best results best = { 'cora_1': 25, 'email_1': 24, 'ssets_1': 13, 'ssets_4': 8 } if args.dataset == 'ssets': points = datasets.read_points(f'ssets/s{args.version}.txt') labels = datasets.read_labels(f'ssets/s{args.version}-label.pa') eigv = datasets.load_embeddings(args.dataset, args.version, 'N')[:, :best[f'{args.dataset}_{args.version}']] score, clusters = learning.k_means(eigv, labels, k=len(np.unique(labels))) best_clusters = find_best_clusters(clusters, labels) print(accuracy_score(labels, best_clusters)) plt.scatter(points[:, 0], points[:, 1], c=labels) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show(bbox_inches='tight') plt.scatter(points[:, 0], points[:, 1], c=best_clusters) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph_result.png', bbox_inches='tight') plt.show(bbox_inches='tight') else: A = datasets.load_graph_preprocessed(args.dataset, args.version) eigv = datasets.load_embeddings(args.dataset, args.version, 'N')[:, :best[f'{args.dataset}_{args.version}']] labels = datasets.load_labels_preprocessed(args.dataset, args.version) score, clusters = learning.k_means(eigv, labels, k=len(np.unique(labels))) best_clusters = find_best_clusters(clusters, labels) print(accuracy_score(labels, best_clusters)) # original graph draw G = nx.from_numpy_matrix(A.todense()) layout = nx.spring_layout(G) nx.draw_networkx(G, pos=layout, node_color=labels, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show() # result graph draw nx.draw_networkx(G, pos=layout, node_color=best_clusters, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph_result.png', bbox_inches='tight') plt.show()
plot.py
import networkx as nx import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score import datasets import learning import copy import argparse # argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='cora', help='Datasets: cora, email, ssets') parser.add_argument('--version', default='1', help='version for ssets (1,2,3,4), default 1 for others') parser.add_argument('--result', action='store_true', help='already have the results, want to plot') args = parser.parse_args() def shift_clusters(clusters, found_classes): unique_classes = set(np.unique(clusters)) non_found_classes = list(unique_classes - found_classes) non_found_classes_original = copy.deepcopy(non_found_classes) np.random.shuffle(non_found_classes) m = {non_found_classes_original[i]: non_found_classes[i] for i in range(len(non_found_classes))} new_clusters = [] for cluster in clusters: if cluster in m: new_clusters.append(m[cluster]) else: new_clusters.append(cluster) return np.array(new_clusters) def find_best_clusters(clusters, labels): trail_number = 500 unique_classes = set(np.unique(labels)) found_classes = set() best_clusters = clusters while len(found_classes) < len(unique_classes): clusters = best_clusters best_acc = accuracy_score(labels, clusters.astype(int)) for trial in range(trail_number): shifted_clusters = shift_clusters(clusters, found_classes) acc = accuracy_score(shifted_clusters, labels) if acc > best_acc: print(acc) best_acc = acc best_clusters = shifted_clusters # check matching match_acc = 0 match_number = 0 for class_ in unique_classes - found_classes: pos = labels == class_ acc = accuracy_score(labels[pos], best_clusters[pos]) if acc > match_acc: match_number = class_ match_acc = acc if match_number == 0: break found_classes.add(match_number) print(found_classes) return best_clusters if __name__ == '__main__': if not args.result: if args.dataset == 'ssets': points = datasets.read_points(f'ssets/s{args.version}.txt') labels = datasets.read_labels(f'ssets/s{args.version}-label.pa') plt.scatter(points[:, 0], points[:, 1], c=labels) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show(bbox_inches='tight') else: A = datasets.load_graph_preprocessed(args.dataset, args.version) labels = datasets.load_labels_preprocessed(args.dataset, args.version) # graph draw G = nx.from_numpy_matrix(A.todense()) layout = nx.spring_layout(G) nx.draw_networkx(G, pos=layout, node_color=labels, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show() else: # best results best = { 'cora_1': 25, 'email_1': 24, 'ssets_1': 13, 'ssets_4': 8 } if args.dataset == 'ssets': points = datasets.read_points(f'ssets/s{args.version}.txt') labels = datasets.read_labels(f'ssets/s{args.version}-label.pa') eigv = datasets.load_embeddings(args.dataset, args.version, 'N')[:, :best[f'{args.dataset}_{args.version}']] score, clusters = learning.k_means(eigv, labels, k=len(np.unique(labels))) best_clusters = find_best_clusters(clusters, labels) print(accuracy_score(labels, best_clusters)) plt.scatter(points[:, 0], points[:, 1], c=labels) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show(bbox_inches='tight') plt.scatter(points[:, 0], points[:, 1], c=best_clusters) # plt.title(f'{args.dataset} V{args.version}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph_result.png', bbox_inches='tight') plt.show(bbox_inches='tight') else: A = datasets.load_graph_preprocessed(args.dataset, args.version) eigv = datasets.load_embeddings(args.dataset, args.version, 'N')[:, :best[f'{args.dataset}_{args.version}']] labels = datasets.load_labels_preprocessed(args.dataset, args.version) score, clusters = learning.k_means(eigv, labels, k=len(np.unique(labels))) best_clusters = find_best_clusters(clusters, labels) print(accuracy_score(labels, best_clusters)) # original graph draw G = nx.from_numpy_matrix(A.todense()) layout = nx.spring_layout(G) nx.draw_networkx(G, pos=layout, node_color=labels, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph.png', bbox_inches='tight') plt.show() # result graph draw nx.draw_networkx(G, pos=layout, node_color=best_clusters, node_size=20, with_labels=False) # plt.title(f'{args.dataset}'.upper()) plt.axis('off') plt.savefig(f'{args.dataset}/graph_plots/{args.dataset}_{args.version}_graph_result.png', bbox_inches='tight') plt.show()
0.681303
0.502563
from sfm.decorator import run_if_is_main from learn_mongodb.db_test import col @run_if_is_main(__name__) def prepare_data(): data = [{ "_id": 1, "title": "abc123", "isbn": "0001122223334", "author": {"last": "zzz", "first": "aaa"}, "copies": 5, }] col.insert(data) prepare_data() @run_if_is_main(__name__) def include_specific_fields_in_output_documents(): """只输出title和author两个field。 """ pipeline = [ { "$project": { "full_title": "$title", # 将title的field name换成full_title "author": 1, }, }, ] doc = list(col.aggregate(pipeline))[0] assert set(doc.keys()) == {"_id", "full_title", "author"} include_specific_fields_in_output_documents() @run_if_is_main(__name__) def exclude_id_field(): """跟上例一样, 只不过抛弃掉_id项。 """ pipeline = [ { "$project": { "_id": 0, "title": 1, "author": 1, }, }, ] doc = list(col.aggregate(pipeline))[0] assert set(doc.keys()) == {"title", "author"} exclude_id_field() @run_if_is_main(__name__) def include_computed_fields(): """对文档进行计算之后输出。本例中主要将isbn拆分为了几个子field。 关于string aggregation operations, 请参考: http://docs.mongodb.org/manual/reference/operator/aggregation-string/ """ pipeline = [ { "$project": { "title": 1, "isbn": { "prefix": {"$substr": ["$isbn", 0, 3]}, "group": {"$substr": ["$isbn", 3, 2]}, "publisher": {"$substr": ["$isbn", 5, 4]}, "title": {"$substr": ["$isbn", 9, 3]}, "checkDigit": {"$substr": ["$isbn", 12, 1]} }, "lastName": "$author.last", "copiesSold": "$copies", }, }, ] doc = list(col.aggregate(pipeline))[0] assert doc == { "_id": 1, "copiesSold": 5, "isbn": { "checkDigit": "4", "group": "11", "prefix": "000", "publisher": "2222", "title": "333" }, "lastName": "zzz", "title": "abc123" } include_computed_fields()
learn_mongodb/p3_aggregation/p2_project.py
from sfm.decorator import run_if_is_main from learn_mongodb.db_test import col @run_if_is_main(__name__) def prepare_data(): data = [{ "_id": 1, "title": "abc123", "isbn": "0001122223334", "author": {"last": "zzz", "first": "aaa"}, "copies": 5, }] col.insert(data) prepare_data() @run_if_is_main(__name__) def include_specific_fields_in_output_documents(): """只输出title和author两个field。 """ pipeline = [ { "$project": { "full_title": "$title", # 将title的field name换成full_title "author": 1, }, }, ] doc = list(col.aggregate(pipeline))[0] assert set(doc.keys()) == {"_id", "full_title", "author"} include_specific_fields_in_output_documents() @run_if_is_main(__name__) def exclude_id_field(): """跟上例一样, 只不过抛弃掉_id项。 """ pipeline = [ { "$project": { "_id": 0, "title": 1, "author": 1, }, }, ] doc = list(col.aggregate(pipeline))[0] assert set(doc.keys()) == {"title", "author"} exclude_id_field() @run_if_is_main(__name__) def include_computed_fields(): """对文档进行计算之后输出。本例中主要将isbn拆分为了几个子field。 关于string aggregation operations, 请参考: http://docs.mongodb.org/manual/reference/operator/aggregation-string/ """ pipeline = [ { "$project": { "title": 1, "isbn": { "prefix": {"$substr": ["$isbn", 0, 3]}, "group": {"$substr": ["$isbn", 3, 2]}, "publisher": {"$substr": ["$isbn", 5, 4]}, "title": {"$substr": ["$isbn", 9, 3]}, "checkDigit": {"$substr": ["$isbn", 12, 1]} }, "lastName": "$author.last", "copiesSold": "$copies", }, }, ] doc = list(col.aggregate(pipeline))[0] assert doc == { "_id": 1, "copiesSold": 5, "isbn": { "checkDigit": "4", "group": "11", "prefix": "000", "publisher": "2222", "title": "333" }, "lastName": "zzz", "title": "abc123" } include_computed_fields()
0.413359
0.420719