code
stringlengths
2k
1.04M
repo_path
stringlengths
5
517
parsed_code
stringlengths
0
1.04M
quality_prob
float64
0.02
0.95
learning_prob
float64
0.02
0.93
"""Module to keep login and logout command.""" from contextlib import contextmanager import six from ..core.commands import AbstractCommand from ..core.signals import post_logout from ..core.commands.arg_types import boolean_yes_no from ..core.exceptions import OptionNotSetException from ..core.api import AuthyTokenIssue from .managers import AccountManager # pylint: disable=abstract-method class BaseAccountCommand(AbstractCommand): """Base class for login and logout commands.""" def __init__(self, app, app_args, cmd_name=None): """Construct new instance.""" super(BaseAccountCommand, self).__init__(app, app_args, cmd_name) self.manager = AccountManager(self.config) class LoginCommand(BaseAccountCommand): """sign into the Termius Cloud""" # pylint: disable=no-self-use def prompt_username(self): """Ask username prompt.""" return six.moves.input('Username: ') # pylint: disable=no-self-use def prompt_authy_token(self): """Ask authy token prompt.""" return six.moves.input('Authy token: ') def extend_parser(self, parser): """Add more arguments to parser.""" parser.add_argument('-u', '--username', metavar='USERNAME') parser.add_argument('-p', '--password', metavar='PASSWORD') return parser def take_action(self, parsed_args): """Process CLI call.""" username = parsed_args.username or self.prompt_username() password = parsed_args.password or self.prompt_password() with on_clean_when_logout(self, self.manager): try: self.manager.login(username, password) except AuthyTokenIssue: authy_token = self.prompt_authy_token() self.manager.login(username, password, authy_token=authy_token) self.log.info('\nSigned in successfully') class LogoutCommand(BaseAccountCommand): """sign out of the Termius Cloud""" def take_action(self, _): """Process CLI call.""" with on_clean_when_logout(self, self.manager): self.manager.logout() self.log.info('Signed out') class SettingsCommand(BaseAccountCommand): """update the account settings""" def extend_parser(self, parser): """Add more arguments to parser.""" parser.add_argument( '--synchronize-key', action='store', type=boolean_yes_no, choices=(False, True), default=True, help='enable/disable ssh keys and identities sync' ) parser.add_argument( '--agent-forwarding', action='store', type=boolean_yes_no, choices=(False, True), default=True, help='enable/disable agent forwarding' ) return parser def take_action(self, args): """Process CLI call.""" settings = { k: getattr(args, k) for k in ('synchronize_key', 'agent_forwarding') } self.manager.set_settings(settings) self.log.info('Settings updated') @contextmanager def on_clean_when_logout(command, manager): """Monitor is account changed and call data clean.""" try: old_username = manager.username except OptionNotSetException: old_username = None yield try: new_username = manager.username except OptionNotSetException: new_username = None is_username_changed = ( old_username and old_username != new_username ) if is_username_changed: post_logout.send(command, command=command, email=old_username)
termius/account/commands.py
"""Module to keep login and logout command.""" from contextlib import contextmanager import six from ..core.commands import AbstractCommand from ..core.signals import post_logout from ..core.commands.arg_types import boolean_yes_no from ..core.exceptions import OptionNotSetException from ..core.api import AuthyTokenIssue from .managers import AccountManager # pylint: disable=abstract-method class BaseAccountCommand(AbstractCommand): """Base class for login and logout commands.""" def __init__(self, app, app_args, cmd_name=None): """Construct new instance.""" super(BaseAccountCommand, self).__init__(app, app_args, cmd_name) self.manager = AccountManager(self.config) class LoginCommand(BaseAccountCommand): """sign into the Termius Cloud""" # pylint: disable=no-self-use def prompt_username(self): """Ask username prompt.""" return six.moves.input('Username: ') # pylint: disable=no-self-use def prompt_authy_token(self): """Ask authy token prompt.""" return six.moves.input('Authy token: ') def extend_parser(self, parser): """Add more arguments to parser.""" parser.add_argument('-u', '--username', metavar='USERNAME') parser.add_argument('-p', '--password', metavar='PASSWORD') return parser def take_action(self, parsed_args): """Process CLI call.""" username = parsed_args.username or self.prompt_username() password = parsed_args.password or self.prompt_password() with on_clean_when_logout(self, self.manager): try: self.manager.login(username, password) except AuthyTokenIssue: authy_token = self.prompt_authy_token() self.manager.login(username, password, authy_token=authy_token) self.log.info('\nSigned in successfully') class LogoutCommand(BaseAccountCommand): """sign out of the Termius Cloud""" def take_action(self, _): """Process CLI call.""" with on_clean_when_logout(self, self.manager): self.manager.logout() self.log.info('Signed out') class SettingsCommand(BaseAccountCommand): """update the account settings""" def extend_parser(self, parser): """Add more arguments to parser.""" parser.add_argument( '--synchronize-key', action='store', type=boolean_yes_no, choices=(False, True), default=True, help='enable/disable ssh keys and identities sync' ) parser.add_argument( '--agent-forwarding', action='store', type=boolean_yes_no, choices=(False, True), default=True, help='enable/disable agent forwarding' ) return parser def take_action(self, args): """Process CLI call.""" settings = { k: getattr(args, k) for k in ('synchronize_key', 'agent_forwarding') } self.manager.set_settings(settings) self.log.info('Settings updated') @contextmanager def on_clean_when_logout(command, manager): """Monitor is account changed and call data clean.""" try: old_username = manager.username except OptionNotSetException: old_username = None yield try: new_username = manager.username except OptionNotSetException: new_username = None is_username_changed = ( old_username and old_username != new_username ) if is_username_changed: post_logout.send(command, command=command, email=old_username)
0.653127
0.122786
from typing import List from src.models.inference.base_prediction import BasePrediction from src.models.inference.representation import BoundingBox from src.models.storage.batch import Batch from src.models.storage.frame import Frame class Prediction(BasePrediction): """ Data model used to store the predicted values of the model Arguments: frame (Frame): Frame in which the predictions are made """ def __init__(self, frame: Frame, labels: List[str], scores: List[float], boxes: List[BoundingBox] = None): self._boxes = boxes self._labels = labels self._frame = frame self._scores = scores @property def boxes(self): return self._boxes @property def labels(self): return self._labels @property def frame(self): return self._frame @property def scores(self): return self._scores @staticmethod def predictions_from_batch_and_lists(batch: Batch, predictions: List[List[str]], scores: List[List[float]], boxes: List[ List[BoundingBox]] = None): """ Factory method for returning a list of Prediction objects from identified values Arguments: batch (Batch): frame batch for which the predictions belong to predictions (List[List[str]]): List of prediction labels per frame in batch scores (List[List[float]]): List of prediction scores per frame in batch boxes (List[List[BoundingBox]]): List of bounding boxes associated with predictions Returns: List[Prediction] """ assert len(batch.frames) == len(predictions) assert len(batch.frames) == len(scores) if boxes is not None: assert len(batch.frames) == len(boxes) predictions_ = [] for i in range(len(batch.frames)): prediction_boxes = boxes[i] if boxes is not None else None predictions_.append( Prediction(batch.frames[i], predictions[i], scores[i], boxes=prediction_boxes)) return predictions_ def __eq__(self, other): if isinstance(self, type(other)): return self.boxes == other.boxes and \ self.frame == other.frame and \ self.scores == other.scores and \ self.labels == other.labels return other in self def __contains__(self, item): return item in self.labels
src/models/inference/classifier_prediction.py
from typing import List from src.models.inference.base_prediction import BasePrediction from src.models.inference.representation import BoundingBox from src.models.storage.batch import Batch from src.models.storage.frame import Frame class Prediction(BasePrediction): """ Data model used to store the predicted values of the model Arguments: frame (Frame): Frame in which the predictions are made """ def __init__(self, frame: Frame, labels: List[str], scores: List[float], boxes: List[BoundingBox] = None): self._boxes = boxes self._labels = labels self._frame = frame self._scores = scores @property def boxes(self): return self._boxes @property def labels(self): return self._labels @property def frame(self): return self._frame @property def scores(self): return self._scores @staticmethod def predictions_from_batch_and_lists(batch: Batch, predictions: List[List[str]], scores: List[List[float]], boxes: List[ List[BoundingBox]] = None): """ Factory method for returning a list of Prediction objects from identified values Arguments: batch (Batch): frame batch for which the predictions belong to predictions (List[List[str]]): List of prediction labels per frame in batch scores (List[List[float]]): List of prediction scores per frame in batch boxes (List[List[BoundingBox]]): List of bounding boxes associated with predictions Returns: List[Prediction] """ assert len(batch.frames) == len(predictions) assert len(batch.frames) == len(scores) if boxes is not None: assert len(batch.frames) == len(boxes) predictions_ = [] for i in range(len(batch.frames)): prediction_boxes = boxes[i] if boxes is not None else None predictions_.append( Prediction(batch.frames[i], predictions[i], scores[i], boxes=prediction_boxes)) return predictions_ def __eq__(self, other): if isinstance(self, type(other)): return self.boxes == other.boxes and \ self.frame == other.frame and \ self.scores == other.scores and \ self.labels == other.labels return other in self def __contains__(self, item): return item in self.labels
0.930142
0.664877
from tensorflow import keras import tensorflow as tf import archs from utils import data_utils, train_utils, augment, argmanager from utils.loss import multinomial_nll import numpy as np import random import string import math import os import json def subsample_nonpeak_data(nonpeak_seqs, nonpeak_cts, peak_data_size, negative_sampling_ratio): #Randomly samples a portion of the non-peak data to use in training num_nonpeak_samples = int(negative_sampling_ratio * peak_data_size) nonpeak_indices_to_keep = np.random.choice(len(nonpeak_seqs), size=num_nonpeak_samples, replace=False) nonpeak_seqs = nonpeak_seqs[nonpeak_indices_to_keep] nonpeak_cts = nonpeak_cts[nonpeak_indices_to_keep] return nonpeak_seqs, nonpeak_cts class BatchGenerator(keras.utils.Sequence): """ This generator randomly crops (=jitter) and revcomps training examples for every epoch """ def __init__(self, peak_seqs, nonpeak_seqs, peak_cts, nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size): """ seqs: B x L' x 4 cts: B x M' inputlen: int (L <= L'), L' is greater to allow for cropping (= jittering) outputlen: int (M <= M'), M' is greater to allow for cropping (= jittering) batch_size: int (B) """ self.peak_seqs, self.nonpeak_seqs = peak_seqs, nonpeak_seqs self.peak_cts, self.nonpeak_cts = peak_cts, nonpeak_cts self.negative_sampling = negative_sampling self.negative_sampling_ratio = negative_sampling_ratio self.inputlen = inputlen self.outputlen = outputlen self.batch_size = batch_size # random crop training data to the desired sizes, revcomp augmentation self.crop_revcomp_data() def __len__(self): return math.ceil(self.seqs.shape[0]/self.batch_size) def crop_revcomp_data(self): # random crop training data to inputlen and outputlen (with corresponding offsets), revcomp augmentation # shuffle required since otherwise peaks and nonpeaks will be together #Sample a fraction of the negative samples according to the specified ratio if self.negative_sampling: self.sampled_nonpeak_seqs, self.sampled_nonpeak_cts = subsample_nonpeak_data(self.nonpeak_seqs, self.nonpeak_cts, len(self.peak_seqs), self.negative_sampling_ratio) self.seqs = np.vstack([self.peak_seqs, self.sampled_nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.sampled_nonpeak_cts]) else: self.seqs = np.vstack([self.peak_seqs, self.nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.nonpeak_cts]) self.cur_seqs, self.cur_cts = augment.crop_revcomp_augment( self.seqs, self.cts, self.inputlen, self.outputlen, shuffle=True ) def __getitem__(self, idx): batch_seq = self.cur_seqs[idx*self.batch_size:(idx+1)*self.batch_size] batch_cts = self.cur_cts[idx*self.batch_size:(idx+1)*self.batch_size] return batch_seq, [batch_cts, np.log(1+batch_cts.sum(-1, keepdims=True))] def on_epoch_end(self): self.crop_revcomp_data() def train_loop(model, inputlen, outputlen, train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, val_peak_seqs, val_nonpeak_seqs, val_peak_cts, val_nonpeak_cts, negative_sampling, negative_sampling_ratio, batch_size, epochs, early_stop, output_prefix): if negative_sampling: np.random.seed(1248) val_nonpeak_seqs, val_nonpeak_cts = subsample_nonpeak_data(val_nonpeak_seqs, val_nonpeak_cts, len(val_peak_seqs), negative_sampling_ratio) val_seqs = np.vstack([val_peak_seqs, val_nonpeak_seqs]) val_cts = np.vstack([val_peak_cts, val_nonpeak_cts]) # need generator to crop and revcomp aug training examples, but not for # validation. train_generator = BatchGenerator(train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size) callbacks = train_utils.get_callbacks(early_stop, output_prefix) history = model.fit(train_generator, epochs=epochs, validation_data=(val_seqs, [val_cts, np.log(1+val_cts.sum(-1, keepdims=True))]), callbacks=callbacks) return history def main(): args = argmanager.fetch_train_args() print(args) if os.path.exists("{}.h5".format(args.output_prefix)): raise OSError('File {}.h5 already exists'.format(args.output_prefix)) # load data train_peaks_seqs, train_peaks_cts, train_nonpeaks_seqs, train_nonpeaks_cts,\ val_peaks_seqs, val_peaks_cts, val_nonpeaks_seqs, val_nonpeaks_cts = \ data_utils.load_train_val_data( args.peaks, args.nonpeaks, args.genome, args.bigwig, args.val_chr, args.test_chr, args.inputlen, args.outputlen, args.max_jitter, outlier=0.9999 ) # compute loss weight factor for counts loss counts_loss_weight = train_utils.get_counts_stat(train_peaks_cts, args.outputlen) * args.counts_weight print("\nCounts loss weight : {:.2f}\n".format(counts_loss_weight)) # prepare model model = archs.bpnet_seq(args.inputlen, args.outputlen, args.filters, args.ndil) opt = keras.optimizers.Adam(learning_rate=args.learning_rate) model.compile( optimizer=opt, loss=[multinomial_nll, 'mse'], loss_weights = [1, counts_loss_weight] ) history = train_loop(model, args.inputlen, args.outputlen, train_peaks_seqs, train_nonpeaks_seqs, train_peaks_cts, train_nonpeaks_cts, val_peaks_seqs, val_nonpeaks_seqs, val_peaks_cts, val_nonpeaks_cts, args.negative_sampling, args.negative_sampling_ratio, args.batch_size, args.epochs, args.early_stop, args.output_prefix) with open("{}.history.json".format(args.output_prefix), "w") as f: json.dump(history.history, f, ensure_ascii=False, indent=4) if __name__=="__main__": main()
src/train.py
from tensorflow import keras import tensorflow as tf import archs from utils import data_utils, train_utils, augment, argmanager from utils.loss import multinomial_nll import numpy as np import random import string import math import os import json def subsample_nonpeak_data(nonpeak_seqs, nonpeak_cts, peak_data_size, negative_sampling_ratio): #Randomly samples a portion of the non-peak data to use in training num_nonpeak_samples = int(negative_sampling_ratio * peak_data_size) nonpeak_indices_to_keep = np.random.choice(len(nonpeak_seqs), size=num_nonpeak_samples, replace=False) nonpeak_seqs = nonpeak_seqs[nonpeak_indices_to_keep] nonpeak_cts = nonpeak_cts[nonpeak_indices_to_keep] return nonpeak_seqs, nonpeak_cts class BatchGenerator(keras.utils.Sequence): """ This generator randomly crops (=jitter) and revcomps training examples for every epoch """ def __init__(self, peak_seqs, nonpeak_seqs, peak_cts, nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size): """ seqs: B x L' x 4 cts: B x M' inputlen: int (L <= L'), L' is greater to allow for cropping (= jittering) outputlen: int (M <= M'), M' is greater to allow for cropping (= jittering) batch_size: int (B) """ self.peak_seqs, self.nonpeak_seqs = peak_seqs, nonpeak_seqs self.peak_cts, self.nonpeak_cts = peak_cts, nonpeak_cts self.negative_sampling = negative_sampling self.negative_sampling_ratio = negative_sampling_ratio self.inputlen = inputlen self.outputlen = outputlen self.batch_size = batch_size # random crop training data to the desired sizes, revcomp augmentation self.crop_revcomp_data() def __len__(self): return math.ceil(self.seqs.shape[0]/self.batch_size) def crop_revcomp_data(self): # random crop training data to inputlen and outputlen (with corresponding offsets), revcomp augmentation # shuffle required since otherwise peaks and nonpeaks will be together #Sample a fraction of the negative samples according to the specified ratio if self.negative_sampling: self.sampled_nonpeak_seqs, self.sampled_nonpeak_cts = subsample_nonpeak_data(self.nonpeak_seqs, self.nonpeak_cts, len(self.peak_seqs), self.negative_sampling_ratio) self.seqs = np.vstack([self.peak_seqs, self.sampled_nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.sampled_nonpeak_cts]) else: self.seqs = np.vstack([self.peak_seqs, self.nonpeak_seqs]) self.cts = np.vstack([self.peak_cts, self.nonpeak_cts]) self.cur_seqs, self.cur_cts = augment.crop_revcomp_augment( self.seqs, self.cts, self.inputlen, self.outputlen, shuffle=True ) def __getitem__(self, idx): batch_seq = self.cur_seqs[idx*self.batch_size:(idx+1)*self.batch_size] batch_cts = self.cur_cts[idx*self.batch_size:(idx+1)*self.batch_size] return batch_seq, [batch_cts, np.log(1+batch_cts.sum(-1, keepdims=True))] def on_epoch_end(self): self.crop_revcomp_data() def train_loop(model, inputlen, outputlen, train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, val_peak_seqs, val_nonpeak_seqs, val_peak_cts, val_nonpeak_cts, negative_sampling, negative_sampling_ratio, batch_size, epochs, early_stop, output_prefix): if negative_sampling: np.random.seed(1248) val_nonpeak_seqs, val_nonpeak_cts = subsample_nonpeak_data(val_nonpeak_seqs, val_nonpeak_cts, len(val_peak_seqs), negative_sampling_ratio) val_seqs = np.vstack([val_peak_seqs, val_nonpeak_seqs]) val_cts = np.vstack([val_peak_cts, val_nonpeak_cts]) # need generator to crop and revcomp aug training examples, but not for # validation. train_generator = BatchGenerator(train_peak_seqs, train_nonpeak_seqs, train_peak_cts, train_nonpeak_cts, negative_sampling, negative_sampling_ratio, inputlen, outputlen, batch_size) callbacks = train_utils.get_callbacks(early_stop, output_prefix) history = model.fit(train_generator, epochs=epochs, validation_data=(val_seqs, [val_cts, np.log(1+val_cts.sum(-1, keepdims=True))]), callbacks=callbacks) return history def main(): args = argmanager.fetch_train_args() print(args) if os.path.exists("{}.h5".format(args.output_prefix)): raise OSError('File {}.h5 already exists'.format(args.output_prefix)) # load data train_peaks_seqs, train_peaks_cts, train_nonpeaks_seqs, train_nonpeaks_cts,\ val_peaks_seqs, val_peaks_cts, val_nonpeaks_seqs, val_nonpeaks_cts = \ data_utils.load_train_val_data( args.peaks, args.nonpeaks, args.genome, args.bigwig, args.val_chr, args.test_chr, args.inputlen, args.outputlen, args.max_jitter, outlier=0.9999 ) # compute loss weight factor for counts loss counts_loss_weight = train_utils.get_counts_stat(train_peaks_cts, args.outputlen) * args.counts_weight print("\nCounts loss weight : {:.2f}\n".format(counts_loss_weight)) # prepare model model = archs.bpnet_seq(args.inputlen, args.outputlen, args.filters, args.ndil) opt = keras.optimizers.Adam(learning_rate=args.learning_rate) model.compile( optimizer=opt, loss=[multinomial_nll, 'mse'], loss_weights = [1, counts_loss_weight] ) history = train_loop(model, args.inputlen, args.outputlen, train_peaks_seqs, train_nonpeaks_seqs, train_peaks_cts, train_nonpeaks_cts, val_peaks_seqs, val_nonpeaks_seqs, val_peaks_cts, val_nonpeaks_cts, args.negative_sampling, args.negative_sampling_ratio, args.batch_size, args.epochs, args.early_stop, args.output_prefix) with open("{}.history.json".format(args.output_prefix), "w") as f: json.dump(history.history, f, ensure_ascii=False, indent=4) if __name__=="__main__": main()
0.780453
0.473049
def tournament_scores(lst) countA = 0 countB = 0 countC = 0 countD = 0 goalA = 0 goalB = 0 goalC = 0 goalD = 0 concededgoalA = 0 concededgoalB = 0 concededgoalC = 0 concededgoalD = 0 for i in lst if i.split()[1] i.split()[3] if i.split()[4] == A countA +=3 goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B countB +=3 goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C countC +=3 goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D countD +=3 goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) if i.split()[0] == A goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) elif i.split()[1] i.split()[3] if i.split()[0] == A countA +=3 goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B countB +=3 goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C countC +=3 goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D countD +=3 goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) if i.split()[4] == A goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) else if i.split()[0] == A countA +=1 goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B countB +=1 goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C countC +=1 goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D countD +=1 goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) if i.split()[4] == A countA +=1 goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B countB +=1 goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C countC +=1 goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D countD +=1 goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) minusA = goalA - concededgoalA minusB = goalB - concededgoalB minusC = goalC - concededgoalC minusD = goalD - concededgoalD a1 = [A, countA, goalA, minusA] a2 = [B, countB, goalB, minusB] a3 = [C, countC, goalC, minusC] a4 = [D, countD, goalD, minusD] result = [a1, a2, a3, a4] sorted_result = sorted(result, key=lambda R (R[1], R[2], R[3]), reverse = True) print(sorted_result) return sorted_result
Data Science and Machine Learning/Machine-Learning-In-Python-THOROUGH/EXAMPLES/EDABIT/EXPERT/001_100/07_football_tournement_scores.py
def tournament_scores(lst) countA = 0 countB = 0 countC = 0 countD = 0 goalA = 0 goalB = 0 goalC = 0 goalD = 0 concededgoalA = 0 concededgoalB = 0 concededgoalC = 0 concededgoalD = 0 for i in lst if i.split()[1] i.split()[3] if i.split()[4] == A countA +=3 goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B countB +=3 goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C countC +=3 goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D countD +=3 goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) if i.split()[0] == A goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) elif i.split()[1] i.split()[3] if i.split()[0] == A countA +=3 goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B countB +=3 goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C countC +=3 goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D countD +=3 goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) if i.split()[4] == A goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) else if i.split()[0] == A countA +=1 goalA = goalA + int(i.split()[1]) concededgoalA = concededgoalA + int(i.split()[3]) elif i.split()[0] == B countB +=1 goalB = goalB + int(i.split()[1]) concededgoalB = concededgoalB + int(i.split()[3]) elif i.split()[0] == C countC +=1 goalC = goalC + int(i.split()[1]) concededgoalC = concededgoalC + int(i.split()[3]) elif i.split()[0] == D countD +=1 goalD = goalD + int(i.split()[1]) concededgoalD = concededgoalD + int(i.split()[3]) if i.split()[4] == A countA +=1 goalA = goalA + int(i.split()[3]) concededgoalA = concededgoalA + int(i.split()[1]) elif i.split()[4] == B countB +=1 goalB = goalB + int(i.split()[3]) concededgoalB = concededgoalB + int(i.split()[1]) elif i.split()[4] == C countC +=1 goalC = goalC + int(i.split()[3]) concededgoalC = concededgoalC + int(i.split()[1]) elif i.split()[4] == D countD +=1 goalD = goalD + int(i.split()[3]) concededgoalD = concededgoalD + int(i.split()[1]) minusA = goalA - concededgoalA minusB = goalB - concededgoalB minusC = goalC - concededgoalC minusD = goalD - concededgoalD a1 = [A, countA, goalA, minusA] a2 = [B, countB, goalB, minusB] a3 = [C, countC, goalC, minusC] a4 = [D, countD, goalD, minusD] result = [a1, a2, a3, a4] sorted_result = sorted(result, key=lambda R (R[1], R[2], R[3]), reverse = True) print(sorted_result) return sorted_result
0.159315
0.637652
import re from ..ebuild import atom, cpv, errors, restricts from ..restrictions import packages, values from ..restrictions.util import collect_package_restrictions valid_globbing = re.compile(r"^(?:[\w+-.]+|(?<!\*)\*)+$").match class ParseError(ValueError): """Raised if parsing a restriction expression failed.""" def comma_separated_containment(attr, values_kls=frozenset, token_kls=str): """Helper for parsing comma-separated strings to a ContainmentMatch2. :param attr: name of the attribute. :return: a parse function: takes a string of comma-separated values, returns a :obj:`packages.PackageRestriction` matching packages that have any of those values in the attribute passed to this function. """ def _parse(value): return packages.PackageRestriction( attr, values.ContainmentMatch2( values_kls(token_kls(piece.strip()) for piece in value.split(',')) ) ) return _parse def convert_glob(token): if token in ('*', ''): return None elif '*' not in token: return values.StrExactMatch(token) elif not valid_globbing(token): raise ParseError( "globs must be composed of [\\w-.+], with optional " f"'*'- {token!r} is disallowed however") pattern = re.escape(token).replace('\\*', '.*') pattern = f"^{pattern}$" return values.StrRegex(pattern, match=True) def collect_ops(text): i = 0 while i < len(text) and text[i] in ("<", "=", ">", "~"): i += 1 return text[0:i], text[i:] def parse_match(text): """generate appropriate restriction for text Parsing basically breaks it down into chunks split by /, with each chunk allowing for prefix/postfix globbing- note that a postfixed glob on package token is treated as package attribute matching, not as necessarily a version match. If only one chunk is found, it's treated as a package chunk. Finally, it supports a nonstandard variation of atom syntax where the category can be dropped. Examples: - `*`: match all - `dev-*/*`: category must start with 'dev-' - `dev-*`: package must start with 'dev-' - `*-apps/portage*`: category must end in '-apps', package must start with 'portage' - `>=portage-2.1`: atom syntax, package 'portage', version greater then or equal to '2.1' - dev-qt/*:5: all Qt 5 libs - boost:0/1.60: all packages named boost with a slot/subslot of 0/1.60.0 :param text: string to attempt to parse :type text: string :return: :obj:`pkgcore.restrictions.packages` derivative """ orig_text = text = text.strip() if "!" in text: raise ParseError( f"'!' or any form of blockers make no sense in this usage: {text!r}") restrictions = [] if '::' in text: text, repo_id = text.rsplit('::', 1) restrictions.append(restricts.RepositoryDep(repo_id)) if ':' in text: text, slot = text.rsplit(':', 1) slot, _sep, subslot = slot.partition('/') if slot: if '*' in slot: if r := convert_glob(slot): restrictions.append(packages.PackageRestriction("slot", r)) else: restrictions.append(restricts.SlotDep(slot)) if subslot: if '*' in subslot: if r := convert_glob(subslot): restrictions.append(packages.PackageRestriction("subslot", r)) else: restrictions.append(restricts.SubSlotDep(subslot)) tsplit = text.rsplit("/", 1) if len(tsplit) == 1: ops, text = collect_ops(text) if not ops: if "*" in text: if r := convert_glob(text): restrictions.append(packages.PackageRestriction("package", r)) else: restrictions.append(packages.AlwaysTrue) if len(restrictions) == 1: return restrictions[0] return packages.AndRestriction(*restrictions) elif text.startswith("*"): raise ParseError( f"cannot do prefix glob matches with version ops: {orig_text}") # ok... fake category. whee. try: r = list(collect_package_restrictions( atom.atom(f"{ops}category/{text}").restrictions, attrs=("category",), invert=True)) except errors.MalformedAtom as e: e.atom = orig_text raise ParseError(str(e)) from e if not restrictions and len(r) == 1: return r[0] restrictions.extend(r) return packages.AndRestriction(*restrictions) elif text[0] in atom.valid_ops or '*' not in text: # possibly a valid atom object try: return atom.atom(orig_text) except errors.MalformedAtom as e: if '*' not in text: raise ParseError(str(e)) from e # support globbed targets with version restrictions return packages.AndRestriction(*parse_globbed_version(text, orig_text)) r = list(map(convert_glob, tsplit)) if not r[0] and not r[1]: restrictions.append(packages.AlwaysTrue) elif not r[0]: restrictions.append(packages.PackageRestriction("package", r[1])) elif not r[1]: restrictions.append(packages.PackageRestriction("category", r[0])) else: restrictions.extend(( packages.PackageRestriction("category", r[0]), packages.PackageRestriction("package", r[1]), )) if len(restrictions) == 1: return restrictions[0] return packages.AndRestriction(*restrictions) def parse_globbed_version(text, orig_text): """Support parsing globbed targets with limited version restrictions. For example, '>=*/alsa-*-1.1.7' would match all packages named 'alsa-*' that are version 1.1.7 or greater. """ restrictions = [] # find longest matching op op = max(x for x in atom.valid_ops if text.startswith(x)) text = text[len(op):] # determine pkg version chunks = text.rsplit('-', 1) if len(chunks) == 1: raise ParseError(f'missing valid package version: {orig_text!r}') version_txt = chunks[-1] version = cpv.isvalid_version_re.match(version_txt) if not version: if '*' in version_txt: raise ParseError( f'operator {op!r} invalid with globbed version: {version_txt!r}') raise ParseError(f'missing valid package version: {orig_text!r}') restrictions.append(restricts.VersionMatch(op, version.group(0))) # parse the remaining chunk restrictions.append(parse_match(chunks[0])) return restrictions def parse_pv(repo, text): """Return a CPV instance from either a cpv or a pv string. If a pv is passed it needs to match a single cpv in repo. """ try: return cpv.CPV.versioned(text) except errors.InvalidCPV: restrict = parse_match(f"={text}") result = None for match in repo.itermatch(restrict): if result is not None: raise ParseError( f"multiple matches for {text} ({result.cpvstr}, {match.cpvstr})") result = match if result is None: raise ParseError(f"no matches for {text}") return cpv.CPV(result.category, result.package, result.version) parse_funcs = { 'match': parse_match, }
src/pkgcore/util/parserestrict.py
import re from ..ebuild import atom, cpv, errors, restricts from ..restrictions import packages, values from ..restrictions.util import collect_package_restrictions valid_globbing = re.compile(r"^(?:[\w+-.]+|(?<!\*)\*)+$").match class ParseError(ValueError): """Raised if parsing a restriction expression failed.""" def comma_separated_containment(attr, values_kls=frozenset, token_kls=str): """Helper for parsing comma-separated strings to a ContainmentMatch2. :param attr: name of the attribute. :return: a parse function: takes a string of comma-separated values, returns a :obj:`packages.PackageRestriction` matching packages that have any of those values in the attribute passed to this function. """ def _parse(value): return packages.PackageRestriction( attr, values.ContainmentMatch2( values_kls(token_kls(piece.strip()) for piece in value.split(',')) ) ) return _parse def convert_glob(token): if token in ('*', ''): return None elif '*' not in token: return values.StrExactMatch(token) elif not valid_globbing(token): raise ParseError( "globs must be composed of [\\w-.+], with optional " f"'*'- {token!r} is disallowed however") pattern = re.escape(token).replace('\\*', '.*') pattern = f"^{pattern}$" return values.StrRegex(pattern, match=True) def collect_ops(text): i = 0 while i < len(text) and text[i] in ("<", "=", ">", "~"): i += 1 return text[0:i], text[i:] def parse_match(text): """generate appropriate restriction for text Parsing basically breaks it down into chunks split by /, with each chunk allowing for prefix/postfix globbing- note that a postfixed glob on package token is treated as package attribute matching, not as necessarily a version match. If only one chunk is found, it's treated as a package chunk. Finally, it supports a nonstandard variation of atom syntax where the category can be dropped. Examples: - `*`: match all - `dev-*/*`: category must start with 'dev-' - `dev-*`: package must start with 'dev-' - `*-apps/portage*`: category must end in '-apps', package must start with 'portage' - `>=portage-2.1`: atom syntax, package 'portage', version greater then or equal to '2.1' - dev-qt/*:5: all Qt 5 libs - boost:0/1.60: all packages named boost with a slot/subslot of 0/1.60.0 :param text: string to attempt to parse :type text: string :return: :obj:`pkgcore.restrictions.packages` derivative """ orig_text = text = text.strip() if "!" in text: raise ParseError( f"'!' or any form of blockers make no sense in this usage: {text!r}") restrictions = [] if '::' in text: text, repo_id = text.rsplit('::', 1) restrictions.append(restricts.RepositoryDep(repo_id)) if ':' in text: text, slot = text.rsplit(':', 1) slot, _sep, subslot = slot.partition('/') if slot: if '*' in slot: if r := convert_glob(slot): restrictions.append(packages.PackageRestriction("slot", r)) else: restrictions.append(restricts.SlotDep(slot)) if subslot: if '*' in subslot: if r := convert_glob(subslot): restrictions.append(packages.PackageRestriction("subslot", r)) else: restrictions.append(restricts.SubSlotDep(subslot)) tsplit = text.rsplit("/", 1) if len(tsplit) == 1: ops, text = collect_ops(text) if not ops: if "*" in text: if r := convert_glob(text): restrictions.append(packages.PackageRestriction("package", r)) else: restrictions.append(packages.AlwaysTrue) if len(restrictions) == 1: return restrictions[0] return packages.AndRestriction(*restrictions) elif text.startswith("*"): raise ParseError( f"cannot do prefix glob matches with version ops: {orig_text}") # ok... fake category. whee. try: r = list(collect_package_restrictions( atom.atom(f"{ops}category/{text}").restrictions, attrs=("category",), invert=True)) except errors.MalformedAtom as e: e.atom = orig_text raise ParseError(str(e)) from e if not restrictions and len(r) == 1: return r[0] restrictions.extend(r) return packages.AndRestriction(*restrictions) elif text[0] in atom.valid_ops or '*' not in text: # possibly a valid atom object try: return atom.atom(orig_text) except errors.MalformedAtom as e: if '*' not in text: raise ParseError(str(e)) from e # support globbed targets with version restrictions return packages.AndRestriction(*parse_globbed_version(text, orig_text)) r = list(map(convert_glob, tsplit)) if not r[0] and not r[1]: restrictions.append(packages.AlwaysTrue) elif not r[0]: restrictions.append(packages.PackageRestriction("package", r[1])) elif not r[1]: restrictions.append(packages.PackageRestriction("category", r[0])) else: restrictions.extend(( packages.PackageRestriction("category", r[0]), packages.PackageRestriction("package", r[1]), )) if len(restrictions) == 1: return restrictions[0] return packages.AndRestriction(*restrictions) def parse_globbed_version(text, orig_text): """Support parsing globbed targets with limited version restrictions. For example, '>=*/alsa-*-1.1.7' would match all packages named 'alsa-*' that are version 1.1.7 or greater. """ restrictions = [] # find longest matching op op = max(x for x in atom.valid_ops if text.startswith(x)) text = text[len(op):] # determine pkg version chunks = text.rsplit('-', 1) if len(chunks) == 1: raise ParseError(f'missing valid package version: {orig_text!r}') version_txt = chunks[-1] version = cpv.isvalid_version_re.match(version_txt) if not version: if '*' in version_txt: raise ParseError( f'operator {op!r} invalid with globbed version: {version_txt!r}') raise ParseError(f'missing valid package version: {orig_text!r}') restrictions.append(restricts.VersionMatch(op, version.group(0))) # parse the remaining chunk restrictions.append(parse_match(chunks[0])) return restrictions def parse_pv(repo, text): """Return a CPV instance from either a cpv or a pv string. If a pv is passed it needs to match a single cpv in repo. """ try: return cpv.CPV.versioned(text) except errors.InvalidCPV: restrict = parse_match(f"={text}") result = None for match in repo.itermatch(restrict): if result is not None: raise ParseError( f"multiple matches for {text} ({result.cpvstr}, {match.cpvstr})") result = match if result is None: raise ParseError(f"no matches for {text}") return cpv.CPV(result.category, result.package, result.version) parse_funcs = { 'match': parse_match, }
0.698844
0.356951
import torch def videoset_train_collate(batch): videos, vmasks, labels = [], [], [] for item, label in batch: videos.append(item[0]) vmasks.append(item[1]) labels.append(label) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(labels, dim=0)) def videoset_emb_collate(batch): video_batch, mask_batch, vid_batch = [], [], [] for video, mask, vid in batch: video_batch.append(video) mask_batch.append(mask) vid_batch.append(vid) return (torch.cat(video_batch, dim=0), torch.cat(mask_batch, dim=0), vid_batch) def vaset_train_collate(batch): videos, vmasks, audios, amasks, labels = [], [], [], [], [] for item, label in batch: videos.append(item[0]) vmasks.append(item[1]) audios.append(item[2]) amasks.append(item[3]) labels.append(label) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(audios, dim=0), torch.cat(amasks, dim=0), torch.cat(labels, dim=0)) def vaset_emb_collate(batch): videos, vmasks, audios, amasks, vid_batch = [], [], [], [], [] for video, vmask, audio, amask, vid in batch: videos.append(video) vmasks.append(vmask) audios.append(audio) amasks.append(amask) vid_batch.append(vid) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(audios, dim=0), torch.cat(amasks, dim=0), vid_batch) def vtset_train_collate(batch): videos, vmasks, texts, tmasks, labels = [], [], [], [], [] for item in batch: videos.append(item[0]) vmasks.append(item[1]) texts.append(item[2]) tmasks.append(item[3]) labels.append(item[4]) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(texts, dim=0), torch.cat(tmasks, dim=0), torch.cat(labels, dim=0)) def vtset_emb_collate(batch): videos, vmasks, texts, tmasks, vid_batch = [], [], [], [], [] for video, vmask, text, tmask, vid in batch: videos.append(video) vmasks.append(vmask) texts.append(text) tmasks.append(tmask) vid_batch.append(vid) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(texts, dim=0), torch.cat(tmasks, dim=0), vid_batch)
dataloader/collate.py
import torch def videoset_train_collate(batch): videos, vmasks, labels = [], [], [] for item, label in batch: videos.append(item[0]) vmasks.append(item[1]) labels.append(label) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(labels, dim=0)) def videoset_emb_collate(batch): video_batch, mask_batch, vid_batch = [], [], [] for video, mask, vid in batch: video_batch.append(video) mask_batch.append(mask) vid_batch.append(vid) return (torch.cat(video_batch, dim=0), torch.cat(mask_batch, dim=0), vid_batch) def vaset_train_collate(batch): videos, vmasks, audios, amasks, labels = [], [], [], [], [] for item, label in batch: videos.append(item[0]) vmasks.append(item[1]) audios.append(item[2]) amasks.append(item[3]) labels.append(label) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(audios, dim=0), torch.cat(amasks, dim=0), torch.cat(labels, dim=0)) def vaset_emb_collate(batch): videos, vmasks, audios, amasks, vid_batch = [], [], [], [], [] for video, vmask, audio, amask, vid in batch: videos.append(video) vmasks.append(vmask) audios.append(audio) amasks.append(amask) vid_batch.append(vid) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(audios, dim=0), torch.cat(amasks, dim=0), vid_batch) def vtset_train_collate(batch): videos, vmasks, texts, tmasks, labels = [], [], [], [], [] for item in batch: videos.append(item[0]) vmasks.append(item[1]) texts.append(item[2]) tmasks.append(item[3]) labels.append(item[4]) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(texts, dim=0), torch.cat(tmasks, dim=0), torch.cat(labels, dim=0)) def vtset_emb_collate(batch): videos, vmasks, texts, tmasks, vid_batch = [], [], [], [], [] for video, vmask, text, tmask, vid in batch: videos.append(video) vmasks.append(vmask) texts.append(text) tmasks.append(tmask) vid_batch.append(vid) return (torch.cat(videos, dim=0), torch.cat(vmasks, dim=0), torch.cat(texts, dim=0), torch.cat(tmasks, dim=0), vid_batch)
0.462473
0.423995
import sys sys.path.insert(0, "../../Sknet/") import sknet import os import numpy as np import time import tensorflow as tf from sknet import ops,layers import argparse parser = argparse.ArgumentParser() parser.add_argument('--data_augmentation', type=int) parser.add_argument('--dataset', type=str) parser.add_argument('--model', type=str) parser.add_argument('--epsilon', type=float) parser.add_argument('-n', type=int) parser.add_argument('--gamma', type=float) parser.add_argument('--lr', type=float) args = parser.parse_args() DATA_AUGMENTATION = args.data_augmentation EPSILON = args.epsilon DATASET = args.dataset MODEL = args.model GAMMA = args.gamma N = args.n LR = args.lr # Data Loading #------------- if DATASET=='cifar10': dataset = sknet.datasets.load_cifar10() elif DATASET=='mnist': dataset = sknet.datasets.load_mnist() elif DATASET=='svhn': dataset = sknet.datasets.load_svhn() elif DATASET=='cifar100': dataset = sknet.datasets.load_cifar100() dataset['indicator/train_set'] = np.concatenate([np.ones(len(dataset['images/train_set'])), np.zeros(len(dataset['images/test_set']))]) dataset['indicator/test_set'] = np.zeros(4000) dataset['images/train_set'] = np.concatenate([dataset['images/train_set'], dataset['images/test_set']],0) dataset['labels/train_set'] = np.concatenate([dataset['labels/train_set'], dataset['labels/test_set']],0) if "valid_set" not in dataset.sets: dataset.split_set("train_set","valid_set",0.15) preprocess = sknet.datasets.Standardize().fit(dataset['images/train_set']) dataset['images/train_set'] = preprocess.transform(dataset['images/train_set']) dataset['images/test_set'] = preprocess.transform(dataset['images/test_set']) dataset['images/valid_set'] = preprocess.transform(dataset['images/valid_set']) options = {'train_set': "random_see_all", 'valid_set': 'continuous', 'test_set': 'continuous'} dataset.create_placeholders(32, options, device="/cpu:0") const = (2*EPSILON)**(1./2) # Create Network #--------------- dnn = sknet.Network() if DATA_AUGMENTATION: start = 2 dnn.append(sknet.ops.RandomAxisReverse(dataset.images, axis=[-1])) if DATASET == 'fashion': dnn.append(sknet.ops.RandomCrop(dnn[-1], (28, 28), pad=(6, 6), seed=10)) elif DATASET in ['cifar10', 'cifar100', 'svhn']: dnn.append(sknet.ops.RandomCrop(dnn[-1], (32, 32), pad=(8, 8), seed=10)) else: dnn.append(dataset.images) start = 1 noise = tf.nn.l2_normalize(tf.random_normal(dnn[-1].get_shape().as_list()), (1, 2, 3))*EPSILON dnn.append(ops.Concat([dnn[-1],dnn[-1]+noise],axis=0)) if MODEL == 'cnn': sknet.networks.ConvLarge(dnn, noise=NOISE) elif MODEL == 'simpleresnet': sknet.networks.Resnet(dnn, D=4, W=1, block=sknet.layers.ResBlockV2) elif MODEL == 'resnet': sknet.networks.Resnet(dnn, D=10, W=1, block=sknet.layers.ResBlockV2) elif MODEL == 'wideresnet': sknet.networks.Resnet(dnn, D=6, W=2, block=sknet.layers.ResBlockV2) dnn.append(sknet.ops.Dense(dnn[-1], dataset.n_classes)) # accuracy and loss vvv = tf.reshape(tf.cast(dataset.indicator, tf.float32), (-1, 1, 1, 1)) def compute_row(i): onehot = tf.ones((64 ,1))*tf.expand_dims(tf.one_hot(i, dataset.n_classes), 0) grad = tf.gradients(dnn[-1], dnn[start], onehot)[0] return tf.reduce_mean(tf.sqrt(tf.reduce_sum((1-vvv)*tf.square((grad[:32]-grad[32:])/EPSILON), [1, 2, 3])+0.0001)) prediction = dnn[-1] hessian = tf.sqrt(tf.reduce_sum(tf.map_fn(compute_row, tf.range(dataset.n_classes), dtype=tf.float32))+0.0001) accu = sknet.losses.streaming_mean(sknet.losses.accuracy(dataset.labels, dnn[-1][:32])) vvv = tf.cast(tf.reshape(dataset.indicator, (-1, 1)), tf.float32) loss = sknet.losses.crossentropy_logits(dataset.labels, vvv*dnn[-1][:32]) +\ GAMMA*hessian # optimizer and updates B = dataset.N_BATCH('train_set') lr = sknet.schedules.PiecewiseConstant(LR, {70*B: LR/3, 120*B: LR/9}) optimizer = sknet.optimizers.Adam(loss, dnn.variables(trainable=True), lr) minimizer = tf.group(*optimizer.updates, *dnn.updates) reset = tf.group(optimizer.reset_variables_op, dnn.reset_variables_op) # Workers train = sknet.Worker(minimizer, loss=loss, accu=accu, hessian=hessian, context='train_set', to_print=loss, feed_dict=dnn.deter_dict(False)) test = sknet.Worker(loss=loss, accu=accu, hessian=hessian, context='test_set', to_print=accu, feed_dict=dnn.deter_dict(True)) valid = sknet.Worker(loss=loss, accu=accu, hessian=hessian, context='valid_set', to_print=accu, feed_dict=dnn.deter_dict(True)) # Pipeline workplace = sknet.utils.Workplace(dataset=dataset) path = '/mnt/drive1/rbalSpace/Hessian/acttest_{}_{}_{}_{}_{}_{}_{}_{}.h5' #path = '/mnt/project2/rb42Data/BatchNorm/pretrain_{}_{}_{}_{}_{}.h5' for run in range(5): workplace.init_file(path.format(MODEL, DATASET, EPSILON, DATA_AUGMENTATION, N, GAMMA, LR, run)) workplace.execute_worker((train, valid, test), repeat=150) workplace.session.run(reset) dnn = sknet.Network()
REGUL/run_test.py
import sys sys.path.insert(0, "../../Sknet/") import sknet import os import numpy as np import time import tensorflow as tf from sknet import ops,layers import argparse parser = argparse.ArgumentParser() parser.add_argument('--data_augmentation', type=int) parser.add_argument('--dataset', type=str) parser.add_argument('--model', type=str) parser.add_argument('--epsilon', type=float) parser.add_argument('-n', type=int) parser.add_argument('--gamma', type=float) parser.add_argument('--lr', type=float) args = parser.parse_args() DATA_AUGMENTATION = args.data_augmentation EPSILON = args.epsilon DATASET = args.dataset MODEL = args.model GAMMA = args.gamma N = args.n LR = args.lr # Data Loading #------------- if DATASET=='cifar10': dataset = sknet.datasets.load_cifar10() elif DATASET=='mnist': dataset = sknet.datasets.load_mnist() elif DATASET=='svhn': dataset = sknet.datasets.load_svhn() elif DATASET=='cifar100': dataset = sknet.datasets.load_cifar100() dataset['indicator/train_set'] = np.concatenate([np.ones(len(dataset['images/train_set'])), np.zeros(len(dataset['images/test_set']))]) dataset['indicator/test_set'] = np.zeros(4000) dataset['images/train_set'] = np.concatenate([dataset['images/train_set'], dataset['images/test_set']],0) dataset['labels/train_set'] = np.concatenate([dataset['labels/train_set'], dataset['labels/test_set']],0) if "valid_set" not in dataset.sets: dataset.split_set("train_set","valid_set",0.15) preprocess = sknet.datasets.Standardize().fit(dataset['images/train_set']) dataset['images/train_set'] = preprocess.transform(dataset['images/train_set']) dataset['images/test_set'] = preprocess.transform(dataset['images/test_set']) dataset['images/valid_set'] = preprocess.transform(dataset['images/valid_set']) options = {'train_set': "random_see_all", 'valid_set': 'continuous', 'test_set': 'continuous'} dataset.create_placeholders(32, options, device="/cpu:0") const = (2*EPSILON)**(1./2) # Create Network #--------------- dnn = sknet.Network() if DATA_AUGMENTATION: start = 2 dnn.append(sknet.ops.RandomAxisReverse(dataset.images, axis=[-1])) if DATASET == 'fashion': dnn.append(sknet.ops.RandomCrop(dnn[-1], (28, 28), pad=(6, 6), seed=10)) elif DATASET in ['cifar10', 'cifar100', 'svhn']: dnn.append(sknet.ops.RandomCrop(dnn[-1], (32, 32), pad=(8, 8), seed=10)) else: dnn.append(dataset.images) start = 1 noise = tf.nn.l2_normalize(tf.random_normal(dnn[-1].get_shape().as_list()), (1, 2, 3))*EPSILON dnn.append(ops.Concat([dnn[-1],dnn[-1]+noise],axis=0)) if MODEL == 'cnn': sknet.networks.ConvLarge(dnn, noise=NOISE) elif MODEL == 'simpleresnet': sknet.networks.Resnet(dnn, D=4, W=1, block=sknet.layers.ResBlockV2) elif MODEL == 'resnet': sknet.networks.Resnet(dnn, D=10, W=1, block=sknet.layers.ResBlockV2) elif MODEL == 'wideresnet': sknet.networks.Resnet(dnn, D=6, W=2, block=sknet.layers.ResBlockV2) dnn.append(sknet.ops.Dense(dnn[-1], dataset.n_classes)) # accuracy and loss vvv = tf.reshape(tf.cast(dataset.indicator, tf.float32), (-1, 1, 1, 1)) def compute_row(i): onehot = tf.ones((64 ,1))*tf.expand_dims(tf.one_hot(i, dataset.n_classes), 0) grad = tf.gradients(dnn[-1], dnn[start], onehot)[0] return tf.reduce_mean(tf.sqrt(tf.reduce_sum((1-vvv)*tf.square((grad[:32]-grad[32:])/EPSILON), [1, 2, 3])+0.0001)) prediction = dnn[-1] hessian = tf.sqrt(tf.reduce_sum(tf.map_fn(compute_row, tf.range(dataset.n_classes), dtype=tf.float32))+0.0001) accu = sknet.losses.streaming_mean(sknet.losses.accuracy(dataset.labels, dnn[-1][:32])) vvv = tf.cast(tf.reshape(dataset.indicator, (-1, 1)), tf.float32) loss = sknet.losses.crossentropy_logits(dataset.labels, vvv*dnn[-1][:32]) +\ GAMMA*hessian # optimizer and updates B = dataset.N_BATCH('train_set') lr = sknet.schedules.PiecewiseConstant(LR, {70*B: LR/3, 120*B: LR/9}) optimizer = sknet.optimizers.Adam(loss, dnn.variables(trainable=True), lr) minimizer = tf.group(*optimizer.updates, *dnn.updates) reset = tf.group(optimizer.reset_variables_op, dnn.reset_variables_op) # Workers train = sknet.Worker(minimizer, loss=loss, accu=accu, hessian=hessian, context='train_set', to_print=loss, feed_dict=dnn.deter_dict(False)) test = sknet.Worker(loss=loss, accu=accu, hessian=hessian, context='test_set', to_print=accu, feed_dict=dnn.deter_dict(True)) valid = sknet.Worker(loss=loss, accu=accu, hessian=hessian, context='valid_set', to_print=accu, feed_dict=dnn.deter_dict(True)) # Pipeline workplace = sknet.utils.Workplace(dataset=dataset) path = '/mnt/drive1/rbalSpace/Hessian/acttest_{}_{}_{}_{}_{}_{}_{}_{}.h5' #path = '/mnt/project2/rb42Data/BatchNorm/pretrain_{}_{}_{}_{}_{}.h5' for run in range(5): workplace.init_file(path.format(MODEL, DATASET, EPSILON, DATA_AUGMENTATION, N, GAMMA, LR, run)) workplace.execute_worker((train, valid, test), repeat=150) workplace.session.run(reset) dnn = sknet.Network()
0.439507
0.163746
from datetime import datetime from datetime import timedelta import pytz import time import numpy as np import json import pandas as pd from fitness_all import fitnessOfPath import random from scipy.stats import truncnorm from matplotlib import pyplot as plt def evaluate_fitness_of_all(generation,sessions,travel_time,daysotw,timezones,dictionary): m = np.size(generation,1) total_time = [] for i in range(m): gen_time = 0 path = generation.astype(int) path = path[:,i] listpath = str(path.tolist()) if listpath in dictionary: fitness_path = dictionary[listpath] else: fitness_path = fitnessOfPath(path,sessions,travel_time,daysotw,timezones) dictionary[listpath] = fitness_path total_time.append(fitness_path) return total_time def runExperiment(cross_percent_ordered,cross_percent_swap,mutat_percent,num_gen,gen_size,tourneykeep,dictionary,sessions,travel_time,daysotw,timezones,all_history,all_fitness,all_times,xopts,fopts,all_iterations): start = time.time() tourny_size = 2 num_temples = len(timezones) old_gen = np.zeros((num_temples,gen_size)) parents = np.zeros((2,)) children = np.zeros((num_temples,2)) for i in range(gen_size): col = np.random.permutation(num_temples) old_gen[:,i] = np.transpose(col) initial_gen = old_gen initial_fit = evaluate_fitness_of_all(old_gen, sessions, travel_time, daysotw, timezones, dictionary) prev_fit = np.array(initial_fit) # Generation For Loop fitness_history = [] best_history = [] prev_fit_one_behind = 20000000000000000 end_timer = 0 for gen in range(num_gen): # Child Generation For loop old_fit = prev_fit.tolist() # Do a tournament new_gen = np.zeros((num_temples,gen_size*2)) for i in range(int(gen_size)): # Two tournaments for the two parents for j in range(2): # Select Parents (By fitness) (Tournament Style) tourny_participants = random.sample(list(range(gen_size)), tourny_size) arg = np.argmin(np.array(old_fit)[tourny_participants]) if(np.random.rand(1)>tourneykeep): del tourny_participants[arg] parents[j] = np.copy(tourny_participants[0]) else: parents[j]= np.copy(tourny_participants[arg]) children[:,0] = np.copy(old_gen[:,np.copy(int(parents[0]))]) children[:,1] = np.copy(old_gen[:,np.copy(int(parents[1]))]) if end_timer > 200: if np.array_equal(children[:,0],children[:,1]): children[:,1] = np.random.permutation(num_temples) #Crossover (Uniform) (With chromosome repair) for j in range(num_temples): #Iterate through the genes of the children. # TODO preallocate random numbers in the beginning if np.random.rand(1) < cross_percent_swap: #Store the genes temp1 = np.copy(children[j][0]) #Temporarily store child one's gene temp2 = np.copy(children[j][1]) #Child one gene swap and chromosome repair gene_loc_1 = np.argwhere(children[:,0]==temp2).flatten()[0] #Find the location of the gene to be swapped gene_loc_2 = np.argwhere(children[:,1]==temp1).flatten()[0] children[gene_loc_1][0] = np.copy(temp1) children[j][0] = np.copy(temp2) children[gene_loc_2][1] = np.copy(temp2) children[j][1] = np.copy(temp1) #Ordered Crossover crossover_values = [] for j in range(num_temples): #Iterate through the genes of the children. if np.random.rand(1) < cross_percent_ordered: crossover_values.append(j) # array of the order of the values of the first parent if len(crossover_values) != 0: child1 = children[:,0] child2 = children[:,1] indices1 = np.sort([np.where(child1==cv)[0][0] for cv in crossover_values]) indices2 = np.sort([np.where(child2==cv)[0][0] for cv in crossover_values]) temp1 = np.copy(child1) temp2 = np.copy(child2) child1[indices1] = np.copy(temp2[indices2]) child2[indices2] = np.copy(temp1[indices1]) #Mutation (Uniform) for chil in range(2): for j in range(num_temples): #Iterate through the genes of the children. if np.random.rand(1) < mutat_percent: # Child gene insertion mutated_value = np.random.randint(0,num_temples) if mutated_value == children[j,chil]: continue gene_loc_mutate = np.argwhere(children[:,chil]==mutated_value).flatten()[0] child = children[:,chil] updated_child = np.insert(child,j,mutated_value) if j > gene_loc_mutate: child = np.delete(updated_child,gene_loc_mutate) else: child = np.delete(updated_child,gene_loc_mutate+1) children[:,chil] = np.copy(child) #Store Children into new generation new_gen[:,2*(i+1)-2] = np.copy(children[:,0]) new_gen[:,2*(i+1)-1] = np.copy(children[:,1]) #Elitism (Pick top N) current_gen = np.concatenate((old_gen,new_gen),axis=1); #Concatenate together for fitness function new_fit = evaluate_fitness_of_all(new_gen, sessions, travel_time, daysotw, timezones, dictionary) current_gen_fit = old_fit+new_fit winners = np.array(current_gen_fit).argsort()[:gen_size] old_gen = np.copy(current_gen[:,winners]) prev_fit = np.copy(np.array(current_gen_fit)[winners]) I = np.argmin(current_gen_fit) fit_now = current_gen_fit[I] fitness_history.append(fit_now) best_history.append(current_gen[:,I].tolist()) print(gen) # Check if the GA is in a local optimum for too long if fit_now < prev_fit_one_behind: prev_fit_one_behind = fit_now end_timer = 0 else: if end_timer > 400: end_timer = 0 else: end_timer += 1 if gen%100: print(fit_now) final_gen = old_gen final_fit = evaluate_fitness_of_all(old_gen, sessions, travel_time, daysotw, timezones, dictionary) I = np.argmin(final_fit) fit_opt = final_fit[I] xopt = final_gen[:,I]+1 endtime = time.time() all_iterations.append(gen) all_history.append(best_history) all_fitness.append(fitness_history) all_times.append(endtime-start) xopts.append(xopt.tolist()) fopts.append(fit_opt) print(gen)
Project2/python/geneticAlgorithm.py
from datetime import datetime from datetime import timedelta import pytz import time import numpy as np import json import pandas as pd from fitness_all import fitnessOfPath import random from scipy.stats import truncnorm from matplotlib import pyplot as plt def evaluate_fitness_of_all(generation,sessions,travel_time,daysotw,timezones,dictionary): m = np.size(generation,1) total_time = [] for i in range(m): gen_time = 0 path = generation.astype(int) path = path[:,i] listpath = str(path.tolist()) if listpath in dictionary: fitness_path = dictionary[listpath] else: fitness_path = fitnessOfPath(path,sessions,travel_time,daysotw,timezones) dictionary[listpath] = fitness_path total_time.append(fitness_path) return total_time def runExperiment(cross_percent_ordered,cross_percent_swap,mutat_percent,num_gen,gen_size,tourneykeep,dictionary,sessions,travel_time,daysotw,timezones,all_history,all_fitness,all_times,xopts,fopts,all_iterations): start = time.time() tourny_size = 2 num_temples = len(timezones) old_gen = np.zeros((num_temples,gen_size)) parents = np.zeros((2,)) children = np.zeros((num_temples,2)) for i in range(gen_size): col = np.random.permutation(num_temples) old_gen[:,i] = np.transpose(col) initial_gen = old_gen initial_fit = evaluate_fitness_of_all(old_gen, sessions, travel_time, daysotw, timezones, dictionary) prev_fit = np.array(initial_fit) # Generation For Loop fitness_history = [] best_history = [] prev_fit_one_behind = 20000000000000000 end_timer = 0 for gen in range(num_gen): # Child Generation For loop old_fit = prev_fit.tolist() # Do a tournament new_gen = np.zeros((num_temples,gen_size*2)) for i in range(int(gen_size)): # Two tournaments for the two parents for j in range(2): # Select Parents (By fitness) (Tournament Style) tourny_participants = random.sample(list(range(gen_size)), tourny_size) arg = np.argmin(np.array(old_fit)[tourny_participants]) if(np.random.rand(1)>tourneykeep): del tourny_participants[arg] parents[j] = np.copy(tourny_participants[0]) else: parents[j]= np.copy(tourny_participants[arg]) children[:,0] = np.copy(old_gen[:,np.copy(int(parents[0]))]) children[:,1] = np.copy(old_gen[:,np.copy(int(parents[1]))]) if end_timer > 200: if np.array_equal(children[:,0],children[:,1]): children[:,1] = np.random.permutation(num_temples) #Crossover (Uniform) (With chromosome repair) for j in range(num_temples): #Iterate through the genes of the children. # TODO preallocate random numbers in the beginning if np.random.rand(1) < cross_percent_swap: #Store the genes temp1 = np.copy(children[j][0]) #Temporarily store child one's gene temp2 = np.copy(children[j][1]) #Child one gene swap and chromosome repair gene_loc_1 = np.argwhere(children[:,0]==temp2).flatten()[0] #Find the location of the gene to be swapped gene_loc_2 = np.argwhere(children[:,1]==temp1).flatten()[0] children[gene_loc_1][0] = np.copy(temp1) children[j][0] = np.copy(temp2) children[gene_loc_2][1] = np.copy(temp2) children[j][1] = np.copy(temp1) #Ordered Crossover crossover_values = [] for j in range(num_temples): #Iterate through the genes of the children. if np.random.rand(1) < cross_percent_ordered: crossover_values.append(j) # array of the order of the values of the first parent if len(crossover_values) != 0: child1 = children[:,0] child2 = children[:,1] indices1 = np.sort([np.where(child1==cv)[0][0] for cv in crossover_values]) indices2 = np.sort([np.where(child2==cv)[0][0] for cv in crossover_values]) temp1 = np.copy(child1) temp2 = np.copy(child2) child1[indices1] = np.copy(temp2[indices2]) child2[indices2] = np.copy(temp1[indices1]) #Mutation (Uniform) for chil in range(2): for j in range(num_temples): #Iterate through the genes of the children. if np.random.rand(1) < mutat_percent: # Child gene insertion mutated_value = np.random.randint(0,num_temples) if mutated_value == children[j,chil]: continue gene_loc_mutate = np.argwhere(children[:,chil]==mutated_value).flatten()[0] child = children[:,chil] updated_child = np.insert(child,j,mutated_value) if j > gene_loc_mutate: child = np.delete(updated_child,gene_loc_mutate) else: child = np.delete(updated_child,gene_loc_mutate+1) children[:,chil] = np.copy(child) #Store Children into new generation new_gen[:,2*(i+1)-2] = np.copy(children[:,0]) new_gen[:,2*(i+1)-1] = np.copy(children[:,1]) #Elitism (Pick top N) current_gen = np.concatenate((old_gen,new_gen),axis=1); #Concatenate together for fitness function new_fit = evaluate_fitness_of_all(new_gen, sessions, travel_time, daysotw, timezones, dictionary) current_gen_fit = old_fit+new_fit winners = np.array(current_gen_fit).argsort()[:gen_size] old_gen = np.copy(current_gen[:,winners]) prev_fit = np.copy(np.array(current_gen_fit)[winners]) I = np.argmin(current_gen_fit) fit_now = current_gen_fit[I] fitness_history.append(fit_now) best_history.append(current_gen[:,I].tolist()) print(gen) # Check if the GA is in a local optimum for too long if fit_now < prev_fit_one_behind: prev_fit_one_behind = fit_now end_timer = 0 else: if end_timer > 400: end_timer = 0 else: end_timer += 1 if gen%100: print(fit_now) final_gen = old_gen final_fit = evaluate_fitness_of_all(old_gen, sessions, travel_time, daysotw, timezones, dictionary) I = np.argmin(final_fit) fit_opt = final_fit[I] xopt = final_gen[:,I]+1 endtime = time.time() all_iterations.append(gen) all_history.append(best_history) all_fitness.append(fitness_history) all_times.append(endtime-start) xopts.append(xopt.tolist()) fopts.append(fit_opt) print(gen)
0.154631
0.26429
import logging from typing import Optional import grpc import redis from dgad.grpc import classification_pb2, classification_pb2_grpc class RedisWorker: def __init__( self, redis_host: str, redis_port: int, redis_set: str, grpc_host: str, grpc_port: str, ): self.redis_client = redis.Redis(redis_host, redis_port) self.redis_set = redis_set self.grpc_host = grpc_host self.grpc_port = grpc_port self.counter = 0 def run(self) -> None: while True: domain = self.__redis_get_domain_to_classify__() if domain: binary_classification = self.classify_domain(domain) self.counter += self.__redis_store_classification__( domain, binary_classification ) if self.counter % 100 == 0: logging.critical( "todo: %s, done: %s", self.redis_client.scard(self.redis_set), self.redis_client.dbsize(), ) logging.debug("%s: %s", domain, binary_classification) else: logging.info("waiting for domains...") def classify_domain(self, domain: str) -> str: with grpc.insecure_channel(f"{self.grpc_host}:{self.grpc_port}") as channel: stub = classification_pb2_grpc.ClassifierStub(channel) response = stub.GetClassification( classification_pb2.Domain(fqdn=domain), wait_for_ready=True ) return str(response.binary_classification) def __redis_get_domain_to_classify__(self) -> Optional[str]: domain = self.redis_client.spop(name=self.redis_set) if domain: return str(domain.decode("UTF-8")) else: return None def __redis_store_classification__( self, domain: str, binary_classification: str ) -> int: return int(self.redis_client.set(name=domain, value=binary_classification)) # type: ignore[arg-type]
redis-worker/dgad_redis_worker/worker.py
import logging from typing import Optional import grpc import redis from dgad.grpc import classification_pb2, classification_pb2_grpc class RedisWorker: def __init__( self, redis_host: str, redis_port: int, redis_set: str, grpc_host: str, grpc_port: str, ): self.redis_client = redis.Redis(redis_host, redis_port) self.redis_set = redis_set self.grpc_host = grpc_host self.grpc_port = grpc_port self.counter = 0 def run(self) -> None: while True: domain = self.__redis_get_domain_to_classify__() if domain: binary_classification = self.classify_domain(domain) self.counter += self.__redis_store_classification__( domain, binary_classification ) if self.counter % 100 == 0: logging.critical( "todo: %s, done: %s", self.redis_client.scard(self.redis_set), self.redis_client.dbsize(), ) logging.debug("%s: %s", domain, binary_classification) else: logging.info("waiting for domains...") def classify_domain(self, domain: str) -> str: with grpc.insecure_channel(f"{self.grpc_host}:{self.grpc_port}") as channel: stub = classification_pb2_grpc.ClassifierStub(channel) response = stub.GetClassification( classification_pb2.Domain(fqdn=domain), wait_for_ready=True ) return str(response.binary_classification) def __redis_get_domain_to_classify__(self) -> Optional[str]: domain = self.redis_client.spop(name=self.redis_set) if domain: return str(domain.decode("UTF-8")) else: return None def __redis_store_classification__( self, domain: str, binary_classification: str ) -> int: return int(self.redis_client.set(name=domain, value=binary_classification)) # type: ignore[arg-type]
0.762778
0.156846
from pogle_math import Vector, Matrix4x4, Transform __author__ = '<NAME>' __copyright__ = "Copyright 2013, The Python OpenGL Engine" __license__ = "Closed Source" __version__ = "0.0.1" __email__ = "<EMAIL>" __status__ = "Prototype" class Light(object): def __init__(self, pos=Vector(0.0, 0.0, 0.0)): self.position = pos class Camera(object): def __init__(self, proj=None, view=None): if proj is None: proj = Matrix4x4() self.proj = proj if view is None: view = Matrix4x4() self.view = view self._follow_viewport = False def lookat(self, eye, center=Vector(0, 0, 0), up=Vector(0, 1, 0)): self.view = Matrix4x4.lookat(eye, center, up) @staticmethod def perspective(fovy, near, far): cam = Camera(Matrix4x4.perspective(fovy, 1.0, near, far)) cam._near = near cam._fovy = fovy cam._far = far cam._follow_viewport = True return cam @staticmethod def ortho(near, far, width, height): return Camera(Matrix4x4.ortho(near, far, width, height)) class Scene(object): """ A scene is a container for all your objects. Basically, it contains a root node to be rendered, a camera and 0 to 3 directional lights. """ def __init__(self, camera=None): if camera is None: camera = Camera() self.passes = [] self.camera = camera self.lights = [] self._nodes = [] def register_pass(self, pass_): assert pass_ not in self.passes self.passes.append(pass_) def unregister_pass(self, pass_): assert pass_ in self.passes self.passes.remove(pass_) def add_node(self, node): assert node.scene == None, 'The node is already attached to a scene' self._nodes.append(node) node.scene = self self.mark_renderlist_as_dirty() def mark_renderlist_as_dirty(self): for p in self.passes: p.mark_renderlist_as_dirty() def remove_node(self, node): assert node.scene == self, 'The node is not attached to this scene' self._nodes.remove(node) node.scene = None self.mark_renderlist_as_dirty() def add_light(self, light): self.lights.append(light) def get_nodes(self, flag): """ A method returning a list of all nodes having the flag 'flag' flag -- The flag that must be present on all nodes returned """ match = [] for n in self._nodes: if n.has_flag(flag): match.append(n) return match def get_nodes_i(self, flag): """ A generator method returning all nodes having the flag 'flag' flag -- The flag that must be present on all nodes returned """ for n in self._nodes: if n.has_flag(flag): yield n def __len__(self): return len(self._nodes) @property def nodes(self): return self._nodes class SceneNode(object): NODE_HAS_GEOMETRY = 1 """ A basic base class for all node types """ def __init__(self, transform=None, flags=0x00000000): self.name = '' self.flags = flags # Trick to avoid the one default arg instanciation for all # If the default arg == Tranform(), every node which doesn't # specify the transform arg, will use the shared object created # on file parsing! Not what we want here. if transform is None: transform = Transform() self.transform = transform self.scene = None def has_flag(self, flag): return (self.flags & flag) != 0
pogle/pogle_scene.py
from pogle_math import Vector, Matrix4x4, Transform __author__ = '<NAME>' __copyright__ = "Copyright 2013, The Python OpenGL Engine" __license__ = "Closed Source" __version__ = "0.0.1" __email__ = "<EMAIL>" __status__ = "Prototype" class Light(object): def __init__(self, pos=Vector(0.0, 0.0, 0.0)): self.position = pos class Camera(object): def __init__(self, proj=None, view=None): if proj is None: proj = Matrix4x4() self.proj = proj if view is None: view = Matrix4x4() self.view = view self._follow_viewport = False def lookat(self, eye, center=Vector(0, 0, 0), up=Vector(0, 1, 0)): self.view = Matrix4x4.lookat(eye, center, up) @staticmethod def perspective(fovy, near, far): cam = Camera(Matrix4x4.perspective(fovy, 1.0, near, far)) cam._near = near cam._fovy = fovy cam._far = far cam._follow_viewport = True return cam @staticmethod def ortho(near, far, width, height): return Camera(Matrix4x4.ortho(near, far, width, height)) class Scene(object): """ A scene is a container for all your objects. Basically, it contains a root node to be rendered, a camera and 0 to 3 directional lights. """ def __init__(self, camera=None): if camera is None: camera = Camera() self.passes = [] self.camera = camera self.lights = [] self._nodes = [] def register_pass(self, pass_): assert pass_ not in self.passes self.passes.append(pass_) def unregister_pass(self, pass_): assert pass_ in self.passes self.passes.remove(pass_) def add_node(self, node): assert node.scene == None, 'The node is already attached to a scene' self._nodes.append(node) node.scene = self self.mark_renderlist_as_dirty() def mark_renderlist_as_dirty(self): for p in self.passes: p.mark_renderlist_as_dirty() def remove_node(self, node): assert node.scene == self, 'The node is not attached to this scene' self._nodes.remove(node) node.scene = None self.mark_renderlist_as_dirty() def add_light(self, light): self.lights.append(light) def get_nodes(self, flag): """ A method returning a list of all nodes having the flag 'flag' flag -- The flag that must be present on all nodes returned """ match = [] for n in self._nodes: if n.has_flag(flag): match.append(n) return match def get_nodes_i(self, flag): """ A generator method returning all nodes having the flag 'flag' flag -- The flag that must be present on all nodes returned """ for n in self._nodes: if n.has_flag(flag): yield n def __len__(self): return len(self._nodes) @property def nodes(self): return self._nodes class SceneNode(object): NODE_HAS_GEOMETRY = 1 """ A basic base class for all node types """ def __init__(self, transform=None, flags=0x00000000): self.name = '' self.flags = flags # Trick to avoid the one default arg instanciation for all # If the default arg == Tranform(), every node which doesn't # specify the transform arg, will use the shared object created # on file parsing! Not what we want here. if transform is None: transform = Transform() self.transform = transform self.scene = None def has_flag(self, flag): return (self.flags & flag) != 0
0.599368
0.217234
import pytest import icat import icat.config from icat.ids import DataSelection from conftest import getConfig @pytest.fixture(scope="module") def client(setupicat): client, conf = getConfig() client.login(conf.auth, conf.credentials) return client # parameter lists param_ids = [ ([42], [], []), ([], [47,11], []), ([], [], [6,666,66]), ([42], [47,11], [6,666,66]), ] param_queries = [ ("Investigation [name = '10100601-ST']"), ("Dataset <-> Investigation [name = '10100601-ST']"), ("Datafile <-> Dataset <-> Investigation [name = '10100601-ST']"), ("SELECT dc FROM DataCollection dc " "INCLUDE dc.dataCollectionDatafiles AS dcdf, dcdf.datafile, " "dc.dataCollectionDatasets AS dcds, dcds.dataset"), ] def get_obj_ids(objs): """Return a tuple (invIds, dsIds, dfIds) from a list of objects. """ invIds = set() dsIds = set() dfIds = set() for o in objs: if o.BeanName == "Investigation": invIds.add(o.id) elif o.BeanName == "Dataset": dsIds.add(o.id) elif o.BeanName == "Datafile": dfIds.add(o.id) elif o.BeanName == "DataCollection": for dcds in o.dataCollectionDatasets: if dcds.dataset: dsIds.add(dcds.dataset.id) for dcdf in o.dataCollectionDatafiles: if dcdf.datafile: dfIds.add(dcdf.datafile.id) else: raise ValueError("Invalid object <%r>" % o) return (invIds, dsIds, dfIds) @pytest.mark.parametrize(("invIds", "dsIds", "dfIds"), param_ids) def test_id_dict(invIds, dsIds, dfIds): """Initialize a DataSelection from a dict with object ids. """ objs = { 'investigationIds': invIds, 'datasetIds': dsIds, 'datafileIds': dfIds } selection = DataSelection(objs) assert selection.invIds == set(invIds) assert selection.dsIds == set(dsIds) assert selection.dfIds == set(dfIds) @pytest.mark.parametrize(("query"), param_queries) def test_objlist(client, query): """Initialize a DataSelection from a list of objects. """ objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) selection = DataSelection(objs) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds def test_entitylist(client): """Initialize a DataSelection from an EntityList. The constructor of DataSelection used to be overly strict such that only lists of objects have been accepted, but other sequence types such as an EntityList have been rejected. (Fixed in 957b0c0.) """ query = "Investigation INCLUDE Dataset [name = '10100601-ST']" inv = client.assertedSearch(query)[0] objs = inv.datasets assert not isinstance(objs, list) invIds, dsIds, dfIds = get_obj_ids(objs) selection = DataSelection(objs) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("query"), param_queries) def test_set(client, query): """Initialize a DataSelection from a set of objects. Newer versions of python-icat allow a DataSelection to be created from any iterator of objects (not from a Mapping though), in particular from a set. """ objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) s = set(objs) selection = DataSelection(s) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("query"), param_queries) def test_generator(client, query): """Initialize a DataSelection from a generator of objects. Newer versions of python-icat allow a DataSelection to be created from any iterator of objects (not from a Mapping though), in particular from a generator. """ def objgenerator(it): """Admittedly stupid example for a generator function. """ for o in it: yield o objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) g = objgenerator(objs) selection = DataSelection(g) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("invIds", "dsIds", "dfIds"), param_ids) def test_selection(invIds, dsIds, dfIds): """Initialize a DataSelection from another DataSelection. """ objs = { 'investigationIds': invIds, 'datasetIds': dsIds, 'datafileIds': dfIds } sel1 = DataSelection(objs) assert sel1.invIds == set(invIds) assert sel1.dsIds == set(dsIds) assert sel1.dfIds == set(dfIds) sel2 = DataSelection(sel1) assert sel2.invIds == set(invIds) assert sel2.dsIds == set(dsIds) assert sel2.dfIds == set(dfIds)
tests/test_07_dataselection.py
import pytest import icat import icat.config from icat.ids import DataSelection from conftest import getConfig @pytest.fixture(scope="module") def client(setupicat): client, conf = getConfig() client.login(conf.auth, conf.credentials) return client # parameter lists param_ids = [ ([42], [], []), ([], [47,11], []), ([], [], [6,666,66]), ([42], [47,11], [6,666,66]), ] param_queries = [ ("Investigation [name = '10100601-ST']"), ("Dataset <-> Investigation [name = '10100601-ST']"), ("Datafile <-> Dataset <-> Investigation [name = '10100601-ST']"), ("SELECT dc FROM DataCollection dc " "INCLUDE dc.dataCollectionDatafiles AS dcdf, dcdf.datafile, " "dc.dataCollectionDatasets AS dcds, dcds.dataset"), ] def get_obj_ids(objs): """Return a tuple (invIds, dsIds, dfIds) from a list of objects. """ invIds = set() dsIds = set() dfIds = set() for o in objs: if o.BeanName == "Investigation": invIds.add(o.id) elif o.BeanName == "Dataset": dsIds.add(o.id) elif o.BeanName == "Datafile": dfIds.add(o.id) elif o.BeanName == "DataCollection": for dcds in o.dataCollectionDatasets: if dcds.dataset: dsIds.add(dcds.dataset.id) for dcdf in o.dataCollectionDatafiles: if dcdf.datafile: dfIds.add(dcdf.datafile.id) else: raise ValueError("Invalid object <%r>" % o) return (invIds, dsIds, dfIds) @pytest.mark.parametrize(("invIds", "dsIds", "dfIds"), param_ids) def test_id_dict(invIds, dsIds, dfIds): """Initialize a DataSelection from a dict with object ids. """ objs = { 'investigationIds': invIds, 'datasetIds': dsIds, 'datafileIds': dfIds } selection = DataSelection(objs) assert selection.invIds == set(invIds) assert selection.dsIds == set(dsIds) assert selection.dfIds == set(dfIds) @pytest.mark.parametrize(("query"), param_queries) def test_objlist(client, query): """Initialize a DataSelection from a list of objects. """ objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) selection = DataSelection(objs) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds def test_entitylist(client): """Initialize a DataSelection from an EntityList. The constructor of DataSelection used to be overly strict such that only lists of objects have been accepted, but other sequence types such as an EntityList have been rejected. (Fixed in 957b0c0.) """ query = "Investigation INCLUDE Dataset [name = '10100601-ST']" inv = client.assertedSearch(query)[0] objs = inv.datasets assert not isinstance(objs, list) invIds, dsIds, dfIds = get_obj_ids(objs) selection = DataSelection(objs) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("query"), param_queries) def test_set(client, query): """Initialize a DataSelection from a set of objects. Newer versions of python-icat allow a DataSelection to be created from any iterator of objects (not from a Mapping though), in particular from a set. """ objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) s = set(objs) selection = DataSelection(s) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("query"), param_queries) def test_generator(client, query): """Initialize a DataSelection from a generator of objects. Newer versions of python-icat allow a DataSelection to be created from any iterator of objects (not from a Mapping though), in particular from a generator. """ def objgenerator(it): """Admittedly stupid example for a generator function. """ for o in it: yield o objs = client.search(query) invIds, dsIds, dfIds = get_obj_ids(objs) g = objgenerator(objs) selection = DataSelection(g) assert selection.invIds == invIds assert selection.dsIds == dsIds assert selection.dfIds == dfIds @pytest.mark.parametrize(("invIds", "dsIds", "dfIds"), param_ids) def test_selection(invIds, dsIds, dfIds): """Initialize a DataSelection from another DataSelection. """ objs = { 'investigationIds': invIds, 'datasetIds': dsIds, 'datafileIds': dfIds } sel1 = DataSelection(objs) assert sel1.invIds == set(invIds) assert sel1.dsIds == set(dsIds) assert sel1.dfIds == set(dfIds) sel2 = DataSelection(sel1) assert sel2.invIds == set(invIds) assert sel2.dsIds == set(dsIds) assert sel2.dfIds == set(dfIds)
0.568176
0.455078
# pylint: enable=line-too-long from unittest import TestCase from unittest import main as launch_tests from unittest.mock import patch from PyFunceble.abstracts import Version class TestVersion(TestCase): """ Tests of PyFunceble.abstracts.Version """ def test_split_version(self): """ Tests the case that we want to split the version. """ given = "1.0.0.dev (Hello, World!)" expected = ["1", "0", "0"] actual = Version.split_versions(given) self.assertEqual(expected, actual) def test_split_version_with_non_digits(self): """ Tests the case that we want to split the version but also have the code name. """ given = "1.0.0.dev (Hello, World!)" expected = (["1", "0", "0"], "dev (Hello, World!)") actual = Version.split_versions(given, return_non_digits=True) self.assertEqual(expected, actual) def test_literal_comparison(self): """ Tests the literal comparison. """ given = "1.0.0.dev (Hello, World!)" expected = True actual = Version.literally_compare(given, given) self.assertEqual(expected, actual) def test_literal_comparison_different(self): """ Tests the litaral comparison for the case that both given version are different. """ given = "1.0.0.dev (Hello, World!)" expected = False actual = Version.literally_compare(given, given.replace(".", "_")) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "1.0.0.dev (Hello, World)") def test_compare_local_version_is_same(self): """ Tests the comparison for the case that the local version is older. """ given = "1.0.0.dev (Hello, World)" expected = None actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "1.50.0.dev (Hello, World)") def test_compare_local_version_is_older(self): """ Tests the comparison for the case that the local version is older. """ given = "2.34.0.dev (Hello, World)" expected = True actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0.dev (Hello, World)") def test_compare_local_version_is_newer(self): """ Tests the comparison for the case that the local version is older. """ given = "1.15.0.dev (Hello, World)" expected = False actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0.dev (Hello, World)") def test_is_local_dev(self): """ Tests if the local version is the dev one. """ expected = True actual = Version.is_local_dev() self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0. (Hello, World)") def test_is_not_local_dev(self): """ Tests if the local version is the not the dev one. """ expected = False actual = Version.is_local_dev() self.assertEqual(expected, actual) if __name__ == "__main__": launch_tests()
tests/test_abstracts_package.py
# pylint: enable=line-too-long from unittest import TestCase from unittest import main as launch_tests from unittest.mock import patch from PyFunceble.abstracts import Version class TestVersion(TestCase): """ Tests of PyFunceble.abstracts.Version """ def test_split_version(self): """ Tests the case that we want to split the version. """ given = "1.0.0.dev (Hello, World!)" expected = ["1", "0", "0"] actual = Version.split_versions(given) self.assertEqual(expected, actual) def test_split_version_with_non_digits(self): """ Tests the case that we want to split the version but also have the code name. """ given = "1.0.0.dev (Hello, World!)" expected = (["1", "0", "0"], "dev (Hello, World!)") actual = Version.split_versions(given, return_non_digits=True) self.assertEqual(expected, actual) def test_literal_comparison(self): """ Tests the literal comparison. """ given = "1.0.0.dev (Hello, World!)" expected = True actual = Version.literally_compare(given, given) self.assertEqual(expected, actual) def test_literal_comparison_different(self): """ Tests the litaral comparison for the case that both given version are different. """ given = "1.0.0.dev (Hello, World!)" expected = False actual = Version.literally_compare(given, given.replace(".", "_")) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "1.0.0.dev (Hello, World)") def test_compare_local_version_is_same(self): """ Tests the comparison for the case that the local version is older. """ given = "1.0.0.dev (Hello, World)" expected = None actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "1.50.0.dev (Hello, World)") def test_compare_local_version_is_older(self): """ Tests the comparison for the case that the local version is older. """ given = "2.34.0.dev (Hello, World)" expected = True actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0.dev (Hello, World)") def test_compare_local_version_is_newer(self): """ Tests the comparison for the case that the local version is older. """ given = "1.15.0.dev (Hello, World)" expected = False actual = Version.compare(given) self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0.dev (Hello, World)") def test_is_local_dev(self): """ Tests if the local version is the dev one. """ expected = True actual = Version.is_local_dev() self.assertEqual(expected, actual) @patch("PyFunceble.abstracts.Package.VERSION", "2.10.0. (Hello, World)") def test_is_not_local_dev(self): """ Tests if the local version is the not the dev one. """ expected = False actual = Version.is_local_dev() self.assertEqual(expected, actual) if __name__ == "__main__": launch_tests()
0.850313
0.686941
import time import utime import machine # tuodaan koko kirjasto from machine import Pin from umqttsimple import MQTTClient import network import gc gc.enable() # aktivoidaan automaattinen roskankeruu # asetetaan hitaampi kellotus 20MHz, 40MHz, 80Mhz, 160MHz or 240MHz machine.freq(80000000) print ("Prosessorin nopeus asetettu: %s" %machine.freq()) # Raspberry WiFi on huono ja lisaksi raspin pitaa pingata ESP32 jotta yhteys toimii! sta_if = network.WLAN(network.STA_IF) # tuodaan parametrit tiedostosta parametrit.py from parametrit import CLIENT_ID, MQTT_SERVERI, MQTT_PORTTI, MQTT_KAYTTAJA, \ MQTT_SALASANA, PIR_PINNI, AIHE_LIIKETUNNISTIN client = MQTTClient(CLIENT_ID, MQTT_SERVERI, MQTT_PORTTI, MQTT_KAYTTAJA, MQTT_SALASANA) # Liikesensorin pinni pir = Pin(PIR_PINNI, Pin.IN) def ratkaise_aika(): (vuosi, kuukausi, kkpaiva, tunti, minuutti, sekunti, viikonpva, vuosipaiva) = utime.localtime() paivat = {0: "Ma", 1: "Ti", 2: "Ke", 3: "To", 4: "Pe", 5: "La", 6: "Su"} kuukaudet = {1: "Tam", 2: "Hel", 3: "Maa", 4: "Huh", 5: "Tou", 6: "Kes", 7: "Hei", 8: "Elo", 9: "Syy", 10: "Lok", 11: "Mar", 12: "Jou"} #.format(paivat[viikonpva]), format(kuukaudet[kuukausi]), aika = "%s.%s.%s klo %s:%s:%s" % (kkpaiva, kuukausi, \ vuosi, "{:02d}".format(tunti), "{:02d}".format(minuutti), "{:02d}".format(sekunti)) return aika def mqtt_palvelin_yhdista(): aika = ratkaise_aika() if sta_if.isconnected(): try: client.set_callback(viestin_saapuessa) client.connect() client.subscribe(AIHE_LIIKETUNNISTIN) except OSError as e: print("% s: Ei voida yhdistaa! " % aika) restart_and_reconnect() return False return True else: print("%s: Yhteys on poikki! " % aika) restart_and_reconnect() return False def viestin_saapuessa(): ''' Tämä on turha, mutta voisi käyttää tilanteessa jossa mqtt-viesti saapuu''' vilkuta_ledi(1) return def laheta_pir(status): aika = ratkaise_aika() if sta_if.isconnected(): try: client.publish(AIHE_LIIKETUNNISTIN, str(status)) # 1 = liiketta, 0 = liike loppunut except OSError as e: print("% s: Ei voida yhdistaa! " % aika) restart_and_reconnect() return False return True else: print("%s: Yhteys on poikki! " % aika) restart_and_reconnect() return False def vilkuta_ledi(kertaa): ledipinni = machine.Pin(2, machine.Pin.OUT) for i in range(kertaa): ledipinni.on() utime.sleep_ms(100) ledipinni.off() utime.sleep_ms(100) return def restart_and_reconnect(): aika = ratkaise_aika() print('%s: Ongelmia. Boottaillaan 5s kuluttua.' % aika) vilkuta_ledi(10) time.sleep(5) machine.reset() # resetoidaan def alustus(): # alustus mqtt_palvelin_yhdista() def seuraa_liiketta(): alustus() on_aika = utime.time() off_aika = utime.time() ilmoitettu_on = False ilmoitettu_off = False while True: pir_tila = pir.value() if (pir_tila == 0) and (ilmoitettu_off == False): ''' Nollataan ilmoitus''' off_aika = utime.time() print("Ilmoitettu liikkeen lopusta. Liike kesti %s" %(off_aika - on_aika)) laheta_pir(0) ilmoitettu_off = True ilmoitettu_on = False elif (pir_tila == 1) and (ilmoitettu_on == False): ''' Liikettä havaittu !''' on_aika = utime.time() print("Ilmoitetaan liikkeesta!") laheta_pir(1) ilmoitettu_on = True ilmoitettu_off = False # lasketaan prosessorin kuormaa time.sleep(0.01) if __name__ == "__main__": seuraa_liiketta()
esp32-liiketunnistus/main.py
import time import utime import machine # tuodaan koko kirjasto from machine import Pin from umqttsimple import MQTTClient import network import gc gc.enable() # aktivoidaan automaattinen roskankeruu # asetetaan hitaampi kellotus 20MHz, 40MHz, 80Mhz, 160MHz or 240MHz machine.freq(80000000) print ("Prosessorin nopeus asetettu: %s" %machine.freq()) # Raspberry WiFi on huono ja lisaksi raspin pitaa pingata ESP32 jotta yhteys toimii! sta_if = network.WLAN(network.STA_IF) # tuodaan parametrit tiedostosta parametrit.py from parametrit import CLIENT_ID, MQTT_SERVERI, MQTT_PORTTI, MQTT_KAYTTAJA, \ MQTT_SALASANA, PIR_PINNI, AIHE_LIIKETUNNISTIN client = MQTTClient(CLIENT_ID, MQTT_SERVERI, MQTT_PORTTI, MQTT_KAYTTAJA, MQTT_SALASANA) # Liikesensorin pinni pir = Pin(PIR_PINNI, Pin.IN) def ratkaise_aika(): (vuosi, kuukausi, kkpaiva, tunti, minuutti, sekunti, viikonpva, vuosipaiva) = utime.localtime() paivat = {0: "Ma", 1: "Ti", 2: "Ke", 3: "To", 4: "Pe", 5: "La", 6: "Su"} kuukaudet = {1: "Tam", 2: "Hel", 3: "Maa", 4: "Huh", 5: "Tou", 6: "Kes", 7: "Hei", 8: "Elo", 9: "Syy", 10: "Lok", 11: "Mar", 12: "Jou"} #.format(paivat[viikonpva]), format(kuukaudet[kuukausi]), aika = "%s.%s.%s klo %s:%s:%s" % (kkpaiva, kuukausi, \ vuosi, "{:02d}".format(tunti), "{:02d}".format(minuutti), "{:02d}".format(sekunti)) return aika def mqtt_palvelin_yhdista(): aika = ratkaise_aika() if sta_if.isconnected(): try: client.set_callback(viestin_saapuessa) client.connect() client.subscribe(AIHE_LIIKETUNNISTIN) except OSError as e: print("% s: Ei voida yhdistaa! " % aika) restart_and_reconnect() return False return True else: print("%s: Yhteys on poikki! " % aika) restart_and_reconnect() return False def viestin_saapuessa(): ''' Tämä on turha, mutta voisi käyttää tilanteessa jossa mqtt-viesti saapuu''' vilkuta_ledi(1) return def laheta_pir(status): aika = ratkaise_aika() if sta_if.isconnected(): try: client.publish(AIHE_LIIKETUNNISTIN, str(status)) # 1 = liiketta, 0 = liike loppunut except OSError as e: print("% s: Ei voida yhdistaa! " % aika) restart_and_reconnect() return False return True else: print("%s: Yhteys on poikki! " % aika) restart_and_reconnect() return False def vilkuta_ledi(kertaa): ledipinni = machine.Pin(2, machine.Pin.OUT) for i in range(kertaa): ledipinni.on() utime.sleep_ms(100) ledipinni.off() utime.sleep_ms(100) return def restart_and_reconnect(): aika = ratkaise_aika() print('%s: Ongelmia. Boottaillaan 5s kuluttua.' % aika) vilkuta_ledi(10) time.sleep(5) machine.reset() # resetoidaan def alustus(): # alustus mqtt_palvelin_yhdista() def seuraa_liiketta(): alustus() on_aika = utime.time() off_aika = utime.time() ilmoitettu_on = False ilmoitettu_off = False while True: pir_tila = pir.value() if (pir_tila == 0) and (ilmoitettu_off == False): ''' Nollataan ilmoitus''' off_aika = utime.time() print("Ilmoitettu liikkeen lopusta. Liike kesti %s" %(off_aika - on_aika)) laheta_pir(0) ilmoitettu_off = True ilmoitettu_on = False elif (pir_tila == 1) and (ilmoitettu_on == False): ''' Liikettä havaittu !''' on_aika = utime.time() print("Ilmoitetaan liikkeesta!") laheta_pir(1) ilmoitettu_on = True ilmoitettu_off = False # lasketaan prosessorin kuormaa time.sleep(0.01) if __name__ == "__main__": seuraa_liiketta()
0.17621
0.136551
import sys, socket from struct import * def carry_around_add(a, b): c = a + b return (c & 0xffff) + (c >> 16) def checksum(msg): s = 0 for i in range(0, len(msg), 2): w = (ord(msg[i]) << 8 ) + ord(msg[i+1]) s = carry_around_add(s, w) return ~s & 0xffff try: s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) except socket.error,msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() ip_source = '127.0.0.1' #本机IP ip_dest = '127.0.0.1' #也可以用域名:socket.gethostbyname('www.microsoft.com') #填写ip header ip_ver = 4 # ipv4 ip_ihl = 5 # Header Length =5, 表示无options部分 ip_dscp = 0 # 以前叫tos,现在叫dscp ip_total_len = 0 # left for kernel to fill ip_id = 22222 # fragment相关,随便写个 ip_frag_offset = 0 # fragment相关 ip_ttl = 255 # *nix下TTL一般是255 ip_protocol = socket.IPPROTO_ICMP # 表示后面接的是tcp数据 ip_checksum = 0 # left for kernel to fill ip_saddr = socket.inet_pton(socket.AF_INET, ip_source) # 两边的ip地址 ip_daddr = socket.inet_pton(socket.AF_INET, ip_dest) ip_ver_ihl = (ip_ver << 4) + ip_ihl # 俩4-bit数据合并成一个字节 # 按上面描述的结构,构建ip header。 ip_header = pack('!BBHHHBBH4s4s' , ip_ver_ihl, ip_dscp, ip_total_len, ip_id, ip_frag_offset, ip_ttl, ip_protocol, ip_checksum, ip_saddr, ip_daddr) icmp_type = 128 # Icmp包的类型及代码 类型8 代码0 icmp_checksum = 0 # icmp包校验和 icmp_id = 0 # Icmp包标识符 icmp_seq = 0 # ICMP包的序列号 # 按上面描述的结构,构建icmp_header。 icmp_header = pack('!HHHH' , icmp_type, icmp_checksum, icmp_id) # 写点东西作为data部分(可选) payload_data = 'wordpress.youran.me' # 构建pseudo ip header psh_saddr = ip_saddr psh_daddr = ip_daddr psh_reserved = 0 psh_protocol = ip_protocol psh_tcp_len = len(icmp_header) + len(payload_data) psh = pack('!4s4sBBH', psh_saddr, psh_daddr, psh_reserved, psh_protocol, psh_tcp_len) # 创建最终用于checksum的内容 chk = psh + icmp_header + payload_data # 必要时追加1字节的padding if len(chk) % 2 != 0: chk += '\0' icmp_checksum = checksum(chk) # 重新构建tcp_header,把checksum结果填进去 icmp_header = pack('!HHHH' , icmp_type, icmp_checksum, icmp_id) # 最终的tcp/ip packet! packet = ip_header + icmp_header + payload_data # 发送出去 i = 0 while True: i = i+1 s.sendto(packet, (ip_dest, 0)) if i ==1000000: break © 2018 GitHub, Inc.
attack/smuf-attack.py
import sys, socket from struct import * def carry_around_add(a, b): c = a + b return (c & 0xffff) + (c >> 16) def checksum(msg): s = 0 for i in range(0, len(msg), 2): w = (ord(msg[i]) << 8 ) + ord(msg[i+1]) s = carry_around_add(s, w) return ~s & 0xffff try: s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) except socket.error,msg: print 'Socket could not be created. Error Code : ' + str(msg[0]) + ' Message ' + msg[1] sys.exit() ip_source = '127.0.0.1' #本机IP ip_dest = '127.0.0.1' #也可以用域名:socket.gethostbyname('www.microsoft.com') #填写ip header ip_ver = 4 # ipv4 ip_ihl = 5 # Header Length =5, 表示无options部分 ip_dscp = 0 # 以前叫tos,现在叫dscp ip_total_len = 0 # left for kernel to fill ip_id = 22222 # fragment相关,随便写个 ip_frag_offset = 0 # fragment相关 ip_ttl = 255 # *nix下TTL一般是255 ip_protocol = socket.IPPROTO_ICMP # 表示后面接的是tcp数据 ip_checksum = 0 # left for kernel to fill ip_saddr = socket.inet_pton(socket.AF_INET, ip_source) # 两边的ip地址 ip_daddr = socket.inet_pton(socket.AF_INET, ip_dest) ip_ver_ihl = (ip_ver << 4) + ip_ihl # 俩4-bit数据合并成一个字节 # 按上面描述的结构,构建ip header。 ip_header = pack('!BBHHHBBH4s4s' , ip_ver_ihl, ip_dscp, ip_total_len, ip_id, ip_frag_offset, ip_ttl, ip_protocol, ip_checksum, ip_saddr, ip_daddr) icmp_type = 128 # Icmp包的类型及代码 类型8 代码0 icmp_checksum = 0 # icmp包校验和 icmp_id = 0 # Icmp包标识符 icmp_seq = 0 # ICMP包的序列号 # 按上面描述的结构,构建icmp_header。 icmp_header = pack('!HHHH' , icmp_type, icmp_checksum, icmp_id) # 写点东西作为data部分(可选) payload_data = 'wordpress.youran.me' # 构建pseudo ip header psh_saddr = ip_saddr psh_daddr = ip_daddr psh_reserved = 0 psh_protocol = ip_protocol psh_tcp_len = len(icmp_header) + len(payload_data) psh = pack('!4s4sBBH', psh_saddr, psh_daddr, psh_reserved, psh_protocol, psh_tcp_len) # 创建最终用于checksum的内容 chk = psh + icmp_header + payload_data # 必要时追加1字节的padding if len(chk) % 2 != 0: chk += '\0' icmp_checksum = checksum(chk) # 重新构建tcp_header,把checksum结果填进去 icmp_header = pack('!HHHH' , icmp_type, icmp_checksum, icmp_id) # 最终的tcp/ip packet! packet = ip_header + icmp_header + payload_data # 发送出去 i = 0 while True: i = i+1 s.sendto(packet, (ip_dest, 0)) if i ==1000000: break © 2018 GitHub, Inc.
0.070901
0.078607
from django.core.exceptions import ValidationError import cyder.base.tests from cyder.cydns.domain.models import Domain from cyder.cydns.nameserver.models import Nameserver from cyder.cydns.mx.models import MX from cyder.cydns.srv.models import SRV from cyder.cydns.txt.models import TXT from cyder.cydns.ptr.models import PTR from cyder.cydns.cname.models import CNAME from cyder.cydns.address_record.models import AddressRecord from cyder.cydhcp.interface.static_intr.models import StaticInterface from cyder.cydns.ip.utils import ip_to_domain_name from cyder.cydns.tests.utils import create_fake_zone from cyder.core.system.models import System class CNAMETests(cyder.base.tests.TestCase): def create_domain(self, name, ip_type=None, delegated=False): if ip_type is None: ip_type = '4' if name in ('arpa', 'in-addr.arpa', 'ip6.arpa'): pass else: name = ip_to_domain_name(name, ip_type=ip_type) d = Domain(name=name, delegated=delegated) d.clean() self.assertTrue(d.is_reverse) return d def setUp(self): self.g = create_fake_zone("gz", suffix="") self.c_g = create_fake_zone("coo.gz", suffix="") self.d = create_fake_zone("dz", suffix="") self.r1 = create_fake_zone("10.in-addr.arpa", suffix="") self.r1.save() self.s = System() self.s.save() def do_add(self, label, domain, data): cn = CNAME(label=label, domain=domain, target=data) cn.full_clean() cn.save() cn.save() self.assertTrue(cn.details()) cs = CNAME.objects.filter( label=label, domain=domain, target=data) self.assertEqual(len(cs), 1) return cn def test_add(self): label = "foo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "boo" domain = self.c_g data = "foo.foo.com" self.do_add(label, domain, data) label = "fo1" domain = self.g data = "foo.com" self.do_add(label, domain, data) self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) label = "hooo" domain = self.g data = "foo.com" self.do_add(label, domain, data) def test1_add_glob(self): label = "*foo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "*" domain = self.c_g data = "foo.foo.com" self.do_add(label, domain, data) label = "*.fo1" domain = self.g data = "foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) label = "*sadfasfd-asdf" domain = self.g data = "foo.com" self.do_add(label, domain, data) def test2_add_glob(self): label = "*coo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "*" domain = self.c_g data = "foo.com" self.do_add(label, domain, data) def test_soa_condition(self): label = "" domain = self.c_g data = "foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) def test_add_bad(self): label = "" domain = self.g data = "..foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) def test_add_mx_with_cname(self): label = "cnamederp1" domain = self.c_g data = "foo.com" fqdn = label + '.' + domain.name mx_data = {'label': '', 'domain': self.c_g, 'server': fqdn, 'priority': 2, 'ttl': 2222} mx = MX(**mx_data) mx.save() cn = CNAME(label=label, domain=domain, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = AddressRecord.objects.get_or_create( label=label, domain=dom, ip_type='4', ip_str="172.16.58.3") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_exists_upper_case(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = AddressRecord.objects.get_or_create( label=label, domain=dom, ip_type='4', ip_str="172.16.58.3") cn = CNAME(label=label.title(), domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create( label=label, domain=dom, target=data ) rec = AddressRecord(label=label, domain=dom, ip_str="172.16.58.3") self.assertRaises(ValidationError, rec.save) def test_srv_exists(self): label = "_testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = SRV.objects.get_or_create( label=label, domain=dom, target="asdf", port=2, priority=2, weight=4) cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_srv_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create( label=label, domain=dom, target=data) rec = SRV(label=label, domain=dom, target="asdf", port=2, priority=2, weight=4) self.assertRaises(ValidationError, rec.save) def test_txt_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = TXT.objects.get_or_create( label=label, domain=dom, txt_data="asdf") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_txt_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() rec = TXT(label=label, domain=dom, txt_data="asdf1") self.assertRaises(ValidationError, rec.save) def test_mx_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = MX.objects.get_or_create( label=label, domain=dom, server="asdf", priority=123, ttl=123) cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_mx_cname_exists(self): # Duplicate test? label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() rec = MX(label=label, domain=dom, server="asdf1", priority=123, ttl=123) self.assertRaises(ValidationError, rec.save) def test_ns_exists(self): # Duplicate test? data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec = Nameserver(domain=dom, server="asdf1") rec.save() cn = CNAME(label='', domain=dom, target=data) self.assertRaises(ValidationError, cn.clean) def test_ns_cname_exists(self): # Duplicate test? data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label='', domain=dom, target=data) cn.full_clean() cn.save() rec = Nameserver(domain=dom, server="asdf1") self.assertRaises(ValidationError, rec.save) def test_intr_exists(self): label = "tdfestyfoo" data = "waasdft" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") intr = StaticInterface(label=label, domain=dom, ip_str="10.0.0.1", ip_type='4', system=self.s, mac="11:22:33:44:55:66") intr.clean() intr.save() cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_intr_cname_exists(self): # Duplicate test? label = "tesafstyfoo" data = "wadfakt" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() intr = StaticInterface( label=label, domain=dom, ip_str="10.0.0.2", ip_type='4', system=self.s, mac="00:11:22:33:44:55" ) self.assertRaises(ValidationError, intr.clean) cn.label = "differentlabel" cn.save() intr.clean() intr.save() def test_ptr_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec = PTR(ip_str="10.193.1.1", ip_type='4', name='testyfoo.what.cd') rec.full_clean() rec.save() cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_ptr_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create(label=label, domain=dom, target=data) rec = PTR(ip_str="10.193.1.1", ip_type='4', name='testyfoo.what.cd') self.assertRaises(ValidationError, rec.clean) def test_cname_point_to_itself(self): label = "foopy" data = "foopy.what.cd" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.clean)
cyder/cydns/cname/tests/test_models.py
from django.core.exceptions import ValidationError import cyder.base.tests from cyder.cydns.domain.models import Domain from cyder.cydns.nameserver.models import Nameserver from cyder.cydns.mx.models import MX from cyder.cydns.srv.models import SRV from cyder.cydns.txt.models import TXT from cyder.cydns.ptr.models import PTR from cyder.cydns.cname.models import CNAME from cyder.cydns.address_record.models import AddressRecord from cyder.cydhcp.interface.static_intr.models import StaticInterface from cyder.cydns.ip.utils import ip_to_domain_name from cyder.cydns.tests.utils import create_fake_zone from cyder.core.system.models import System class CNAMETests(cyder.base.tests.TestCase): def create_domain(self, name, ip_type=None, delegated=False): if ip_type is None: ip_type = '4' if name in ('arpa', 'in-addr.arpa', 'ip6.arpa'): pass else: name = ip_to_domain_name(name, ip_type=ip_type) d = Domain(name=name, delegated=delegated) d.clean() self.assertTrue(d.is_reverse) return d def setUp(self): self.g = create_fake_zone("gz", suffix="") self.c_g = create_fake_zone("coo.gz", suffix="") self.d = create_fake_zone("dz", suffix="") self.r1 = create_fake_zone("10.in-addr.arpa", suffix="") self.r1.save() self.s = System() self.s.save() def do_add(self, label, domain, data): cn = CNAME(label=label, domain=domain, target=data) cn.full_clean() cn.save() cn.save() self.assertTrue(cn.details()) cs = CNAME.objects.filter( label=label, domain=domain, target=data) self.assertEqual(len(cs), 1) return cn def test_add(self): label = "foo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "boo" domain = self.c_g data = "foo.foo.com" self.do_add(label, domain, data) label = "fo1" domain = self.g data = "foo.com" self.do_add(label, domain, data) self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) label = "hooo" domain = self.g data = "foo.com" self.do_add(label, domain, data) def test1_add_glob(self): label = "*foo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "*" domain = self.c_g data = "foo.foo.com" self.do_add(label, domain, data) label = "*.fo1" domain = self.g data = "foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) label = "*sadfasfd-asdf" domain = self.g data = "foo.com" self.do_add(label, domain, data) def test2_add_glob(self): label = "*coo" domain = self.g data = "foo.com" self.do_add(label, domain, data) label = "*" domain = self.c_g data = "foo.com" self.do_add(label, domain, data) def test_soa_condition(self): label = "" domain = self.c_g data = "foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) def test_add_bad(self): label = "" domain = self.g data = "..foo.com" self.assertRaises(ValidationError, self.do_add, *(label, domain, data)) def test_add_mx_with_cname(self): label = "cnamederp1" domain = self.c_g data = "foo.com" fqdn = label + '.' + domain.name mx_data = {'label': '', 'domain': self.c_g, 'server': fqdn, 'priority': 2, 'ttl': 2222} mx = MX(**mx_data) mx.save() cn = CNAME(label=label, domain=domain, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = AddressRecord.objects.get_or_create( label=label, domain=dom, ip_type='4', ip_str="172.16.58.3") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_exists_upper_case(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = AddressRecord.objects.get_or_create( label=label, domain=dom, ip_type='4', ip_str="172.16.58.3") cn = CNAME(label=label.title(), domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_address_record_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create( label=label, domain=dom, target=data ) rec = AddressRecord(label=label, domain=dom, ip_str="172.16.58.3") self.assertRaises(ValidationError, rec.save) def test_srv_exists(self): label = "_testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = SRV.objects.get_or_create( label=label, domain=dom, target="asdf", port=2, priority=2, weight=4) cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_srv_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create( label=label, domain=dom, target=data) rec = SRV(label=label, domain=dom, target="asdf", port=2, priority=2, weight=4) self.assertRaises(ValidationError, rec.save) def test_txt_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = TXT.objects.get_or_create( label=label, domain=dom, txt_data="asdf") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_txt_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() rec = TXT(label=label, domain=dom, txt_data="asdf1") self.assertRaises(ValidationError, rec.save) def test_mx_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec, _ = MX.objects.get_or_create( label=label, domain=dom, server="asdf", priority=123, ttl=123) cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_mx_cname_exists(self): # Duplicate test? label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() rec = MX(label=label, domain=dom, server="asdf1", priority=123, ttl=123) self.assertRaises(ValidationError, rec.save) def test_ns_exists(self): # Duplicate test? data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec = Nameserver(domain=dom, server="asdf1") rec.save() cn = CNAME(label='', domain=dom, target=data) self.assertRaises(ValidationError, cn.clean) def test_ns_cname_exists(self): # Duplicate test? data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label='', domain=dom, target=data) cn.full_clean() cn.save() rec = Nameserver(domain=dom, server="asdf1") self.assertRaises(ValidationError, rec.save) def test_intr_exists(self): label = "tdfestyfoo" data = "waasdft" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") intr = StaticInterface(label=label, domain=dom, ip_str="10.0.0.1", ip_type='4', system=self.s, mac="11:22:33:44:55:66") intr.clean() intr.save() cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_intr_cname_exists(self): # Duplicate test? label = "tesafstyfoo" data = "wadfakt" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn, _ = CNAME.objects.get_or_create( label=label, domain=dom, target=data) cn.full_clean() cn.save() intr = StaticInterface( label=label, domain=dom, ip_str="10.0.0.2", ip_type='4', system=self.s, mac="00:11:22:33:44:55" ) self.assertRaises(ValidationError, intr.clean) cn.label = "differentlabel" cn.save() intr.clean() intr.save() def test_ptr_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") rec = PTR(ip_str="10.193.1.1", ip_type='4', name='testyfoo.what.cd') rec.full_clean() rec.save() cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.full_clean) def test_ptr_cname_exists(self): label = "testyfoo" data = "wat" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") CNAME.objects.get_or_create(label=label, domain=dom, target=data) rec = PTR(ip_str="10.193.1.1", ip_type='4', name='testyfoo.what.cd') self.assertRaises(ValidationError, rec.clean) def test_cname_point_to_itself(self): label = "foopy" data = "foopy.what.cd" dom, _ = Domain.objects.get_or_create(name="cd") dom, _ = Domain.objects.get_or_create(name="what.cd") cn = CNAME(label=label, domain=dom, target=data) self.assertRaises(ValidationError, cn.clean)
0.624523
0.283918
from flask import render_template, request, redirect, session, Blueprint import uuid from crud import client from crud import producer app = Blueprint("login", "app") @app.route('/', methods=['GET', 'POST']) def index(): if "cpf" in session: return redirect("/main") elif "cnpj" in session: return render_template("main_producer.html") else: return render_template("index.html") @app.route('/access', methods=['GET', 'POST']) def access(): if request.method == 'POST': if request.form['index'] == "Login": try: CPF = request.form['CPF'] password = request.form['password'] login_approve = client.read(CPF, password) for rows in login_approve: session_cpf = rows[1] session_id = rows[0] if session_cpf != None: session['cpf'] = session_cpf session['uuid'] = str(uuid.uuid4()) session['id'] = session_id else: print("Don't have credentials") return redirect("/main") except Exception as e: return render_template("index_denied.html") elif request.form['index'] == "Registrar": return render_template("register.html") else: return render_template("producer_login.html") @app.route('/access_producer', methods=['GET', 'POST']) def access_producer(): if request.method == 'POST': if request.form['index'] == "Login": try: CNPJ = request.form['CNPJ'] password = request.form['password'] login_approve = producer.read(CNPJ, password) for rows in login_approve: session_cnpj = rows[1] session_id = rows[0] if session_cnpj != None: session['cnpj'] = session_cnpj session['id'] = session_id else: print("Don't have credentials") return render_template("main_producer.html") except Exception as e: return render_template("producer_login_denied.html") else: return render_template("register_producer.html") @app.route('/logout') def logout(): session.pop('cpf', None) session.pop('cnpj', None) session.pop('id', None) session.pop('uuid', None) return redirect("/", code=302)
api/login.py
from flask import render_template, request, redirect, session, Blueprint import uuid from crud import client from crud import producer app = Blueprint("login", "app") @app.route('/', methods=['GET', 'POST']) def index(): if "cpf" in session: return redirect("/main") elif "cnpj" in session: return render_template("main_producer.html") else: return render_template("index.html") @app.route('/access', methods=['GET', 'POST']) def access(): if request.method == 'POST': if request.form['index'] == "Login": try: CPF = request.form['CPF'] password = request.form['password'] login_approve = client.read(CPF, password) for rows in login_approve: session_cpf = rows[1] session_id = rows[0] if session_cpf != None: session['cpf'] = session_cpf session['uuid'] = str(uuid.uuid4()) session['id'] = session_id else: print("Don't have credentials") return redirect("/main") except Exception as e: return render_template("index_denied.html") elif request.form['index'] == "Registrar": return render_template("register.html") else: return render_template("producer_login.html") @app.route('/access_producer', methods=['GET', 'POST']) def access_producer(): if request.method == 'POST': if request.form['index'] == "Login": try: CNPJ = request.form['CNPJ'] password = request.form['password'] login_approve = producer.read(CNPJ, password) for rows in login_approve: session_cnpj = rows[1] session_id = rows[0] if session_cnpj != None: session['cnpj'] = session_cnpj session['id'] = session_id else: print("Don't have credentials") return render_template("main_producer.html") except Exception as e: return render_template("producer_login_denied.html") else: return render_template("register_producer.html") @app.route('/logout') def logout(): session.pop('cpf', None) session.pop('cnpj', None) session.pop('id', None) session.pop('uuid', None) return redirect("/", code=302)
0.249082
0.052207
from django.db import models, transaction from django.contrib.contenttypes.fields import GenericRelation from django.core.exceptions import ValidationError from mezzanine.pages.page_processors import processor_for from hs_core.models import BaseResource, ResourceManager, resource_processor, CoreMetaData, \ AbstractMetaDataElement # TODO Deprecated class ScriptResource(BaseResource): objects = ResourceManager('ScriptResource') discovery_content_type = 'Script' # used during discovery class Meta: proxy = True verbose_name = 'Script Resource' @classmethod def get_supported_upload_file_types(cls): # one file type is supported return ".r", ".py", ".m" @classmethod def get_metadata_class(cls): return ScriptMetaData processor_for(ScriptResource)(resource_processor) class ScriptSpecificMetadata(AbstractMetaDataElement): term = "ScriptSpecificMetadata" # program language scriptLanguage = models.CharField(verbose_name='Programming Language', blank=True, max_length=100, default='R', help_text='The programming language that the script is written in') # language version languageVersion = models.CharField(verbose_name='Programming Language Version', blank=True, max_length=255, help_text='The software version of the script') # script version scriptVersion = models.CharField(verbose_name='Script Version', max_length=255, blank=True, default='1.0', help_text='The software version or build number of the script') # dependencies scriptDependencies = models.CharField(verbose_name='Dependencies', blank=True, max_length=400, help_text='Dependencies for the script (externally-imported packages)') # release date scriptReleaseDate = models.DateTimeField(verbose_name='Release Date', null=True, blank=True, help_text='The date that this version of the script was released') # repository scriptCodeRepository = models.URLField(verbose_name='Script Repository', blank=True, max_length=255, help_text='A URL to the source code repository (e.g. git, mercurial, svn)') class Meta: # ScriptSpecificMetadata element is not repeatable unique_together = ("content_type", "object_id") class ScriptMetaData(CoreMetaData): scriptspecificmetadata = GenericRelation(ScriptSpecificMetadata) @property def resource(self): return ScriptResource.objects.filter(object_id=self.id).first() @property def program(self): return self.scriptspecificmetadata.all().first() @property def script_specific_metadata(self): return self.program @property def serializer(self): """Return an instance of rest_framework Serializer for self """ from .serializers import ScriptMetaDataSerializer return ScriptMetaDataSerializer(self) @classmethod def parse_for_bulk_update(cls, metadata, parsed_metadata): """Overriding the base class method""" CoreMetaData.parse_for_bulk_update(metadata, parsed_metadata) keys_to_update = list(metadata.keys()) if 'scriptspecificmetadata' in keys_to_update: parsed_metadata.append({"scriptspecificmetadata": metadata.pop('scriptspecificmetadata')}) @classmethod def get_supported_element_names(cls): elements = super(ScriptMetaData, cls).get_supported_element_names() elements.append('ScriptSpecificMetadata') return elements def has_all_required_elements(self): if self.get_required_missing_elements(): return False return True def get_required_missing_elements(self): # show missing required meta missing_required_elements = super(ScriptMetaData, self).get_required_missing_elements() if not self.program: missing_required_elements.append('Script Language') missing_required_elements.append('Programming Language Version') else: if not self.program.scriptLanguage: missing_required_elements.append('Script Language') if not self.program.languageVersion: missing_required_elements.append('Programming Language Version') return missing_required_elements def update(self, metadata, user): # overriding the base class update method for bulk update of metadata from .forms import ScriptFormValidation super(ScriptMetaData, self).update(metadata, user) attribute_mappings = {'scriptspecificmetadata': 'program'} with transaction.atomic(): # update/create non-repeatable element for element_name in list(attribute_mappings.keys()): for dict_item in metadata: if element_name in dict_item: validation_form = ScriptFormValidation(dict_item[element_name]) if not validation_form.is_valid(): err_string = self.get_form_errors_as_string(validation_form) raise ValidationError(err_string) element_property_name = attribute_mappings[element_name] self.update_non_repeatable_element(element_name, metadata, element_property_name) break from . import receivers # never delete this otherwise none of the receiver function will work
hs_script_resource/models.py
from django.db import models, transaction from django.contrib.contenttypes.fields import GenericRelation from django.core.exceptions import ValidationError from mezzanine.pages.page_processors import processor_for from hs_core.models import BaseResource, ResourceManager, resource_processor, CoreMetaData, \ AbstractMetaDataElement # TODO Deprecated class ScriptResource(BaseResource): objects = ResourceManager('ScriptResource') discovery_content_type = 'Script' # used during discovery class Meta: proxy = True verbose_name = 'Script Resource' @classmethod def get_supported_upload_file_types(cls): # one file type is supported return ".r", ".py", ".m" @classmethod def get_metadata_class(cls): return ScriptMetaData processor_for(ScriptResource)(resource_processor) class ScriptSpecificMetadata(AbstractMetaDataElement): term = "ScriptSpecificMetadata" # program language scriptLanguage = models.CharField(verbose_name='Programming Language', blank=True, max_length=100, default='R', help_text='The programming language that the script is written in') # language version languageVersion = models.CharField(verbose_name='Programming Language Version', blank=True, max_length=255, help_text='The software version of the script') # script version scriptVersion = models.CharField(verbose_name='Script Version', max_length=255, blank=True, default='1.0', help_text='The software version or build number of the script') # dependencies scriptDependencies = models.CharField(verbose_name='Dependencies', blank=True, max_length=400, help_text='Dependencies for the script (externally-imported packages)') # release date scriptReleaseDate = models.DateTimeField(verbose_name='Release Date', null=True, blank=True, help_text='The date that this version of the script was released') # repository scriptCodeRepository = models.URLField(verbose_name='Script Repository', blank=True, max_length=255, help_text='A URL to the source code repository (e.g. git, mercurial, svn)') class Meta: # ScriptSpecificMetadata element is not repeatable unique_together = ("content_type", "object_id") class ScriptMetaData(CoreMetaData): scriptspecificmetadata = GenericRelation(ScriptSpecificMetadata) @property def resource(self): return ScriptResource.objects.filter(object_id=self.id).first() @property def program(self): return self.scriptspecificmetadata.all().first() @property def script_specific_metadata(self): return self.program @property def serializer(self): """Return an instance of rest_framework Serializer for self """ from .serializers import ScriptMetaDataSerializer return ScriptMetaDataSerializer(self) @classmethod def parse_for_bulk_update(cls, metadata, parsed_metadata): """Overriding the base class method""" CoreMetaData.parse_for_bulk_update(metadata, parsed_metadata) keys_to_update = list(metadata.keys()) if 'scriptspecificmetadata' in keys_to_update: parsed_metadata.append({"scriptspecificmetadata": metadata.pop('scriptspecificmetadata')}) @classmethod def get_supported_element_names(cls): elements = super(ScriptMetaData, cls).get_supported_element_names() elements.append('ScriptSpecificMetadata') return elements def has_all_required_elements(self): if self.get_required_missing_elements(): return False return True def get_required_missing_elements(self): # show missing required meta missing_required_elements = super(ScriptMetaData, self).get_required_missing_elements() if not self.program: missing_required_elements.append('Script Language') missing_required_elements.append('Programming Language Version') else: if not self.program.scriptLanguage: missing_required_elements.append('Script Language') if not self.program.languageVersion: missing_required_elements.append('Programming Language Version') return missing_required_elements def update(self, metadata, user): # overriding the base class update method for bulk update of metadata from .forms import ScriptFormValidation super(ScriptMetaData, self).update(metadata, user) attribute_mappings = {'scriptspecificmetadata': 'program'} with transaction.atomic(): # update/create non-repeatable element for element_name in list(attribute_mappings.keys()): for dict_item in metadata: if element_name in dict_item: validation_form = ScriptFormValidation(dict_item[element_name]) if not validation_form.is_valid(): err_string = self.get_form_errors_as_string(validation_form) raise ValidationError(err_string) element_property_name = attribute_mappings[element_name] self.update_non_repeatable_element(element_name, metadata, element_property_name) break from . import receivers # never delete this otherwise none of the receiver function will work
0.495606
0.057705
class VerticeInvalidoException(Exception): pass class ArestaInvalidaException(Exception): pass class MatrizInvalidaException(Exception): pass class Grafo: QTDE_MAX_SEPARADOR = 1 SEPARADOR_ARESTA = '-' __maior_vertice = 0 def __init__(self, V=None, M=None): ''' Constrói um objeto do tipo Grafo. Se nenhum parâmetro for passado, cria um Grafo vazio. Se houver alguma aresta ou algum vértice inválido, uma exceção é lançada. :param V: Uma lista dos vértices (ou nodos) do grafo. :param V: Uma matriz de adjacência que guarda as arestas do grafo. Cada entrada da matriz tem um inteiro que indica a quantidade de arestas que ligam aqueles vértices ''' if V == None: V = list() if M == None: M = list() for v in V: if not (Grafo.verticeValido(v)): raise VerticeInvalidoException('O vértice ' + v + ' é inválido') if len(v) > self.__maior_vertice: self.__maior_vertice = len(v) self.N = list(V) self.pesos = {} if M == []: for k in range(len(V)): M.append(list()) for l in range(len(V)): if k > l: M[k].append('-') else: M[k].append(0) if len(M) != len(V): raise MatrizInvalidaException('A matriz passada como parâmetro não tem o tamanho correto') for c in M: if len(c) != len(V): raise MatrizInvalidaException('A matriz passada como parâmetro não tem o tamanho correto') for i in range(len(V)): for j in range(len(V)): ''' Verifica se os índices passados como parâmetro representam um elemento da matriz abaixo da diagonal principal. Além disso, verifica se o referido elemento é um traço "-". Isso indica que a matriz é não direcionada e foi construída corretamente. ''' if i > j and not (M[i][j] == '-'): raise MatrizInvalidaException('A matriz não representa uma matriz não direcionada') aresta = V[i] + Grafo.SEPARADOR_ARESTA + V[j] if not (self.arestaValida(aresta)): raise ArestaInvalidaException('A aresta ' + aresta + ' é inválida') self.M = list(M) def arestaValida(self, aresta=''): ''' Verifica se uma aresta passada como parâmetro está dentro do padrão estabelecido. Uma aresta é representada por um string com o formato a-b, onde: a é um substring de aresta que é o nome de um vértice adjacente à aresta. - é um caractere separador. Uma aresta só pode ter um único caractere como esse. b é um substring de aresta que é o nome do outro vértice adjacente à aresta. Além disso, uma aresta só é válida se conectar dois vértices existentes no grafo. :param aresta: A aresta que se quer verificar se está no formato correto. :return: Um valor booleano que indica se a aresta está no formato correto. ''' # Não pode haver mais de um caractere separador if aresta.count(Grafo.SEPARADOR_ARESTA) != Grafo.QTDE_MAX_SEPARADOR: return False # Índice do elemento separador i_traco = aresta.index(Grafo.SEPARADOR_ARESTA) # O caractere separador não pode ser o primeiro ou o último caractere da aresta if i_traco == 0 or aresta[-1] == Grafo.SEPARADOR_ARESTA: return False if not (self.existeVertice(aresta[:i_traco])) or not (self.existeVertice(aresta[i_traco + 1:])): return False return True @classmethod def verticeValido(self, vertice: str): ''' Verifica se um vértice passado como parâmetro está dentro do padrão estabelecido. Um vértice é um string qualquer que não pode ser vazio e nem conter o caractere separador. :param vertice: Um string que representa o vértice a ser analisado. :return: Um valor booleano que indica se o vértice está no formato correto. ''' return vertice != '' and vertice.count(Grafo.SEPARADOR_ARESTA) == 0 def existeVertice(self, vertice: str): ''' Verifica se um vértice passado como parâmetro pertence ao grafo. :param vertice: O vértice que deve ser verificado. :return: Um valor booleano que indica se o vértice existe no grafo. ''' return Grafo.verticeValido(vertice) and self.N.count(vertice) > 0 def __primeiro_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o vértice X :param a: a aresta a ser analisada :return: O primeiro vértice da aresta ''' return a[0:a.index(Grafo.SEPARADOR_ARESTA)] def __segundo_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o vértice Y :param a: A aresta a ser analisada :return: O segundo vértice da aresta ''' return a[a.index(Grafo.SEPARADOR_ARESTA) + 1:] def __indice_primeiro_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o índice do vértice X na lista de vértices :param a: A aresta a ser analisada :return: O índice do primeiro vértice da aresta na lista de vértices ''' return self.N.index(self.__primeiro_vertice_aresta(a)) def __indice_segundo_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o índice do vértice Y na lista de vértices :param a: A aresta a ser analisada :return: O índice do segundo vértice da aresta na lista de vértices ''' return self.N.index(self.__segundo_vertice_aresta(a)) def existeAresta(self, a: str): ''' Verifica se uma aresta passada como parâmetro pertence ao grafo. :param aresta: A aresta a ser verificada :return: Um valor booleano que indica se a aresta existe no grafo. ''' existe = False if Grafo.arestaValida(self, a): for i in range(len(self.M)): for j in range(len(self.M)): if self.M[self.__indice_primeiro_vertice_aresta(a)][self.__indice_segundo_vertice_aresta(a)]: existe = True return existe def adicionaVertice(self, v): ''' Inclui um vértice no grafo se ele estiver no formato correto. :param v: O vértice a ser incluído no grafo. :raises VerticeInvalidoException se o vértice já existe ou se ele não estiver no formato válido. ''' if v in self.N: raise VerticeInvalidoException('O vértice {} já existe'.format(v)) if self.verticeValido(v): if len(v) > self.__maior_vertice: self.__maior_vertice = len(v) self.N.append(v) # Adiciona vértice na lista de vértices self.M.append([]) # Adiciona a linha for k in range(len(self.N)): if k != len(self.N) - 1: self.M[k].append(0) # adiciona os elementos da coluna do vértice self.M[self.N.index(v)].append('-') # adiciona os elementos da linha do vértice else: self.M[self.N.index(v)].append(0) # adiciona um zero no último elemento da linha else: raise VerticeInvalidoException('O vértice ' + v + ' é inválido') def adicionaAresta(self, a, peso): ''' Adiciona uma aresta ao grafo no formato X-Y, onde X é o primeiro vértice e Y é o segundo vértice :param a: a aresta no formato correto :raise: lança uma exceção caso a aresta não estiver em um formato válido ''' if self.arestaValida(a): i_a1 = self.__indice_primeiro_vertice_aresta(a) i_a2 = self.__indice_segundo_vertice_aresta(a) if i_a1 < i_a2: self.M[i_a1][i_a2] += 1 else: self.M[i_a2][i_a1] += 1 else: raise ArestaInvalidaException('A aresta {} é inválida'.format(a)) self.pesos[a] = peso def remove_aresta(self, a): ''' Remove uma aresta ao grafo no formato X-Y, onde X é o primeiro vértice e Y é o segundo vértice :param a: a aresta no formato correto :raise: lança uma exceção caso a aresta não estiver em um formato válido ''' if self.arestaValida(a): if self.existeAresta(a): i_a1 = self.__indice_primeiro_vertice_aresta(a) i_a2 = self.__indice_segundo_vertice_aresta(a) if i_a1 < i_a2: self.M[i_a1][i_a2] -= 1 else: self.M[i_a2][i_a1] -= 1 else: raise ArestaInvalidaException('A aresta {} é inválida'.format(a)) def vertices_nao_adjacentes(self): not_adj = [] for i in range(len(self.N)): for j in range(len(self.N)): if self.M[i][j] == 0: aresta = self.N[i] + "-" + self.N[j] not_adj.append(aresta) return not_adj def ha_laco(self): for i in range(len(self.M)): if self.M[i][i] > 0: return True return False def ha_paralelas(self): for i in range(len(self.M)): for j in range(len(self.M)): if self.M[i][j] != '-' and self.M[i][j] > 1: return True return False def arestas_sobre_vertice(self, vertice): sobre_vertice = [] '''for i in range(len(self.N)): for j in range(len(self.N)): if self.N[i] == vertice and self.M[i][j] != '-'and i != j and self.M[i][j] > 0: aresta = vertice+"-"+self.N[j] sobre_vertice.append(aresta) if self.N[j] == vertice and self.M[i][j] != '-' and i != j and self.M[i][j] > 0: aresta = vertice+'-'+self.N[i] sobre_vertice.append(aresta) elif self.N[i] == vertice and self.M[i][j] != '-' and i == j and self.M[i][j] > 0: aresta = vertice + '-' + self.N[i] sobre_vertice.append(aresta)''' index = 0 for i in range(len(self.N)): if self.N[i] == vertice: index = i for i in range(len(self.N)): if self.M[index][i] != '-' and self.M[index][i] > 0: for j in range(self.M[index][i]): aresta = vertice + "-" + self.N[i] sobre_vertice.append(aresta) if self.M[i][index] != '-' and self.M[i][index] > 0: for j in range(self.M[i][index]): aresta = vertice + "-" + self.N[i] sobre_vertice.append(aresta) return sobre_vertice def eh_completo(self): completo = True for i in range(len(self.M)): for j in range(len(self.M)): if self.M[i][j] != '-' and self.M[i][j] >= 1 and i != j: completo = True elif self.M[i][j] != '-' and self.M[i][j] == 0 and i != j: return False return completo def grau(self, vertice): index = 1 soma = 0 soma_diagonal = 0 for i in range(len(self.N)): for j in range(len(self.N)): if self.N[i] == vertice or self.N[j] == vertice and i != j: if self.M[i][j] != "-": soma += self.M[i][j] return soma def Kruskal(self): vertice_permanente = [] arvore = [] pesos = [] for i in self.pesos: pesos.append(self.pesos[i]) c = 0 pesos.sort() while len(pesos) != 0: minimo = min(pesos) for i in self.pesos: if self.pesos[i] == minimo and i[0] not in vertice_permanente: vertice_permanente.append(i[0]) arvore.append(i) while minimo in pesos: pesos.remove(minimo) c += 1 return arvore def __str__(self): ''' Fornece uma representação do tipo String do grafo. O String contém um sequência dos vértices separados por vírgula, seguido de uma sequência das arestas no formato padrão. :return: Uma string que representa o grafo ''' # Dá o espaçamento correto de acordo com o tamanho do string do maior vértice espaco = ' ' * (self.__maior_vertice) grafo_str = espaco + ' ' for v in range(len(self.N)): grafo_str += self.N[v] if v < (len(self.N) - 1): # Só coloca o espaço se não for o último vértice grafo_str += ' ' grafo_str += '\n' for l in range(len(self.M)): grafo_str += self.N[l] + ' ' for c in range(len(self.M)): grafo_str += str(self.M[l][c]) + ' ' grafo_str += '\n' return grafo_str
Graphs/Kruskal algorithm/grafo_adj_nao_dir.py
class VerticeInvalidoException(Exception): pass class ArestaInvalidaException(Exception): pass class MatrizInvalidaException(Exception): pass class Grafo: QTDE_MAX_SEPARADOR = 1 SEPARADOR_ARESTA = '-' __maior_vertice = 0 def __init__(self, V=None, M=None): ''' Constrói um objeto do tipo Grafo. Se nenhum parâmetro for passado, cria um Grafo vazio. Se houver alguma aresta ou algum vértice inválido, uma exceção é lançada. :param V: Uma lista dos vértices (ou nodos) do grafo. :param V: Uma matriz de adjacência que guarda as arestas do grafo. Cada entrada da matriz tem um inteiro que indica a quantidade de arestas que ligam aqueles vértices ''' if V == None: V = list() if M == None: M = list() for v in V: if not (Grafo.verticeValido(v)): raise VerticeInvalidoException('O vértice ' + v + ' é inválido') if len(v) > self.__maior_vertice: self.__maior_vertice = len(v) self.N = list(V) self.pesos = {} if M == []: for k in range(len(V)): M.append(list()) for l in range(len(V)): if k > l: M[k].append('-') else: M[k].append(0) if len(M) != len(V): raise MatrizInvalidaException('A matriz passada como parâmetro não tem o tamanho correto') for c in M: if len(c) != len(V): raise MatrizInvalidaException('A matriz passada como parâmetro não tem o tamanho correto') for i in range(len(V)): for j in range(len(V)): ''' Verifica se os índices passados como parâmetro representam um elemento da matriz abaixo da diagonal principal. Além disso, verifica se o referido elemento é um traço "-". Isso indica que a matriz é não direcionada e foi construída corretamente. ''' if i > j and not (M[i][j] == '-'): raise MatrizInvalidaException('A matriz não representa uma matriz não direcionada') aresta = V[i] + Grafo.SEPARADOR_ARESTA + V[j] if not (self.arestaValida(aresta)): raise ArestaInvalidaException('A aresta ' + aresta + ' é inválida') self.M = list(M) def arestaValida(self, aresta=''): ''' Verifica se uma aresta passada como parâmetro está dentro do padrão estabelecido. Uma aresta é representada por um string com o formato a-b, onde: a é um substring de aresta que é o nome de um vértice adjacente à aresta. - é um caractere separador. Uma aresta só pode ter um único caractere como esse. b é um substring de aresta que é o nome do outro vértice adjacente à aresta. Além disso, uma aresta só é válida se conectar dois vértices existentes no grafo. :param aresta: A aresta que se quer verificar se está no formato correto. :return: Um valor booleano que indica se a aresta está no formato correto. ''' # Não pode haver mais de um caractere separador if aresta.count(Grafo.SEPARADOR_ARESTA) != Grafo.QTDE_MAX_SEPARADOR: return False # Índice do elemento separador i_traco = aresta.index(Grafo.SEPARADOR_ARESTA) # O caractere separador não pode ser o primeiro ou o último caractere da aresta if i_traco == 0 or aresta[-1] == Grafo.SEPARADOR_ARESTA: return False if not (self.existeVertice(aresta[:i_traco])) or not (self.existeVertice(aresta[i_traco + 1:])): return False return True @classmethod def verticeValido(self, vertice: str): ''' Verifica se um vértice passado como parâmetro está dentro do padrão estabelecido. Um vértice é um string qualquer que não pode ser vazio e nem conter o caractere separador. :param vertice: Um string que representa o vértice a ser analisado. :return: Um valor booleano que indica se o vértice está no formato correto. ''' return vertice != '' and vertice.count(Grafo.SEPARADOR_ARESTA) == 0 def existeVertice(self, vertice: str): ''' Verifica se um vértice passado como parâmetro pertence ao grafo. :param vertice: O vértice que deve ser verificado. :return: Um valor booleano que indica se o vértice existe no grafo. ''' return Grafo.verticeValido(vertice) and self.N.count(vertice) > 0 def __primeiro_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o vértice X :param a: a aresta a ser analisada :return: O primeiro vértice da aresta ''' return a[0:a.index(Grafo.SEPARADOR_ARESTA)] def __segundo_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o vértice Y :param a: A aresta a ser analisada :return: O segundo vértice da aresta ''' return a[a.index(Grafo.SEPARADOR_ARESTA) + 1:] def __indice_primeiro_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o índice do vértice X na lista de vértices :param a: A aresta a ser analisada :return: O índice do primeiro vértice da aresta na lista de vértices ''' return self.N.index(self.__primeiro_vertice_aresta(a)) def __indice_segundo_vertice_aresta(self, a: str): ''' Dada uma aresta no formato X-Y, retorna o índice do vértice Y na lista de vértices :param a: A aresta a ser analisada :return: O índice do segundo vértice da aresta na lista de vértices ''' return self.N.index(self.__segundo_vertice_aresta(a)) def existeAresta(self, a: str): ''' Verifica se uma aresta passada como parâmetro pertence ao grafo. :param aresta: A aresta a ser verificada :return: Um valor booleano que indica se a aresta existe no grafo. ''' existe = False if Grafo.arestaValida(self, a): for i in range(len(self.M)): for j in range(len(self.M)): if self.M[self.__indice_primeiro_vertice_aresta(a)][self.__indice_segundo_vertice_aresta(a)]: existe = True return existe def adicionaVertice(self, v): ''' Inclui um vértice no grafo se ele estiver no formato correto. :param v: O vértice a ser incluído no grafo. :raises VerticeInvalidoException se o vértice já existe ou se ele não estiver no formato válido. ''' if v in self.N: raise VerticeInvalidoException('O vértice {} já existe'.format(v)) if self.verticeValido(v): if len(v) > self.__maior_vertice: self.__maior_vertice = len(v) self.N.append(v) # Adiciona vértice na lista de vértices self.M.append([]) # Adiciona a linha for k in range(len(self.N)): if k != len(self.N) - 1: self.M[k].append(0) # adiciona os elementos da coluna do vértice self.M[self.N.index(v)].append('-') # adiciona os elementos da linha do vértice else: self.M[self.N.index(v)].append(0) # adiciona um zero no último elemento da linha else: raise VerticeInvalidoException('O vértice ' + v + ' é inválido') def adicionaAresta(self, a, peso): ''' Adiciona uma aresta ao grafo no formato X-Y, onde X é o primeiro vértice e Y é o segundo vértice :param a: a aresta no formato correto :raise: lança uma exceção caso a aresta não estiver em um formato válido ''' if self.arestaValida(a): i_a1 = self.__indice_primeiro_vertice_aresta(a) i_a2 = self.__indice_segundo_vertice_aresta(a) if i_a1 < i_a2: self.M[i_a1][i_a2] += 1 else: self.M[i_a2][i_a1] += 1 else: raise ArestaInvalidaException('A aresta {} é inválida'.format(a)) self.pesos[a] = peso def remove_aresta(self, a): ''' Remove uma aresta ao grafo no formato X-Y, onde X é o primeiro vértice e Y é o segundo vértice :param a: a aresta no formato correto :raise: lança uma exceção caso a aresta não estiver em um formato válido ''' if self.arestaValida(a): if self.existeAresta(a): i_a1 = self.__indice_primeiro_vertice_aresta(a) i_a2 = self.__indice_segundo_vertice_aresta(a) if i_a1 < i_a2: self.M[i_a1][i_a2] -= 1 else: self.M[i_a2][i_a1] -= 1 else: raise ArestaInvalidaException('A aresta {} é inválida'.format(a)) def vertices_nao_adjacentes(self): not_adj = [] for i in range(len(self.N)): for j in range(len(self.N)): if self.M[i][j] == 0: aresta = self.N[i] + "-" + self.N[j] not_adj.append(aresta) return not_adj def ha_laco(self): for i in range(len(self.M)): if self.M[i][i] > 0: return True return False def ha_paralelas(self): for i in range(len(self.M)): for j in range(len(self.M)): if self.M[i][j] != '-' and self.M[i][j] > 1: return True return False def arestas_sobre_vertice(self, vertice): sobre_vertice = [] '''for i in range(len(self.N)): for j in range(len(self.N)): if self.N[i] == vertice and self.M[i][j] != '-'and i != j and self.M[i][j] > 0: aresta = vertice+"-"+self.N[j] sobre_vertice.append(aresta) if self.N[j] == vertice and self.M[i][j] != '-' and i != j and self.M[i][j] > 0: aresta = vertice+'-'+self.N[i] sobre_vertice.append(aresta) elif self.N[i] == vertice and self.M[i][j] != '-' and i == j and self.M[i][j] > 0: aresta = vertice + '-' + self.N[i] sobre_vertice.append(aresta)''' index = 0 for i in range(len(self.N)): if self.N[i] == vertice: index = i for i in range(len(self.N)): if self.M[index][i] != '-' and self.M[index][i] > 0: for j in range(self.M[index][i]): aresta = vertice + "-" + self.N[i] sobre_vertice.append(aresta) if self.M[i][index] != '-' and self.M[i][index] > 0: for j in range(self.M[i][index]): aresta = vertice + "-" + self.N[i] sobre_vertice.append(aresta) return sobre_vertice def eh_completo(self): completo = True for i in range(len(self.M)): for j in range(len(self.M)): if self.M[i][j] != '-' and self.M[i][j] >= 1 and i != j: completo = True elif self.M[i][j] != '-' and self.M[i][j] == 0 and i != j: return False return completo def grau(self, vertice): index = 1 soma = 0 soma_diagonal = 0 for i in range(len(self.N)): for j in range(len(self.N)): if self.N[i] == vertice or self.N[j] == vertice and i != j: if self.M[i][j] != "-": soma += self.M[i][j] return soma def Kruskal(self): vertice_permanente = [] arvore = [] pesos = [] for i in self.pesos: pesos.append(self.pesos[i]) c = 0 pesos.sort() while len(pesos) != 0: minimo = min(pesos) for i in self.pesos: if self.pesos[i] == minimo and i[0] not in vertice_permanente: vertice_permanente.append(i[0]) arvore.append(i) while minimo in pesos: pesos.remove(minimo) c += 1 return arvore def __str__(self): ''' Fornece uma representação do tipo String do grafo. O String contém um sequência dos vértices separados por vírgula, seguido de uma sequência das arestas no formato padrão. :return: Uma string que representa o grafo ''' # Dá o espaçamento correto de acordo com o tamanho do string do maior vértice espaco = ' ' * (self.__maior_vertice) grafo_str = espaco + ' ' for v in range(len(self.N)): grafo_str += self.N[v] if v < (len(self.N) - 1): # Só coloca o espaço se não for o último vértice grafo_str += ' ' grafo_str += '\n' for l in range(len(self.M)): grafo_str += self.N[l] + ' ' for c in range(len(self.M)): grafo_str += str(self.M[l][c]) + ' ' grafo_str += '\n' return grafo_str
0.434221
0.441553
import sys, struct import numpy as np def read_one_data_block(data, header, indices, fid): """Reads one 60-sample data block from fid into data, at the location indicated by indices.""" # In version 1.2, we moved from saving timestamps as unsigned # integers to signed integers to accommodate negative (adjusted) # timestamps for pretrigger data[' if (header['version']['major'] == 1 and header['version']['minor'] >= 2) or (header['version']['major'] > 1): data['t_amplifier'][indices['amplifier']:(indices['amplifier']+60)] = np.array(struct.unpack('<' + 'i' *60, fid.read(240))) else: data['t_amplifier'][indices['amplifier']:(indices['amplifier']+60)] = np.array(struct.unpack('<' + 'I' *60, fid.read(240))) if header['num_amplifier_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=60 * header['num_amplifier_channels']) data['amplifier_data'][range(header['num_amplifier_channels']), indices['amplifier']:(indices['amplifier']+60)] = tmp.reshape(header['num_amplifier_channels'], 60) if header['num_aux_input_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=15 * header['num_aux_input_channels']) data['aux_input_data'][range(header['num_aux_input_channels']), indices['aux_input']:(indices['aux_input']+15)] = tmp.reshape(header['num_aux_input_channels'], 15) if header['num_supply_voltage_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=1 * header['num_supply_voltage_channels']) data['supply_voltage_data'][range(header['num_supply_voltage_channels']), indices['supply_voltage']:(indices['supply_voltage']+1)] = tmp.reshape(header['num_supply_voltage_channels'], 1) if header['num_temp_sensor_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=1 * header['num_temp_sensor_channels']) data['temp_sensor_data'][range(header['num_temp_sensor_channels']), indices['supply_voltage']:(indices['supply_voltage']+1)] = tmp.reshape(header['num_temp_sensor_channels'], 1) if header['num_board_adc_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=60 * header['num_board_adc_channels']) data['board_adc_data'][range(header['num_board_adc_channels']), indices['board_adc']:(indices['board_adc']+60)] = tmp.reshape(header['num_board_adc_channels'], 60) if header['num_board_dig_in_channels'] > 0: data['board_dig_in_raw'][indices['board_dig_in']:(indices['board_dig_in']+60)] = np.array(struct.unpack('<' + 'H' *60, fid.read(120))) if header['num_board_dig_out_channels'] > 0: data['board_dig_out_raw'][indices['board_dig_out']:(indices['board_dig_out']+60)] = np.array(struct.unpack('<' + 'H' *60, fid.read(120)))
pyspike/intanutil/read_one_data_block.py
import sys, struct import numpy as np def read_one_data_block(data, header, indices, fid): """Reads one 60-sample data block from fid into data, at the location indicated by indices.""" # In version 1.2, we moved from saving timestamps as unsigned # integers to signed integers to accommodate negative (adjusted) # timestamps for pretrigger data[' if (header['version']['major'] == 1 and header['version']['minor'] >= 2) or (header['version']['major'] > 1): data['t_amplifier'][indices['amplifier']:(indices['amplifier']+60)] = np.array(struct.unpack('<' + 'i' *60, fid.read(240))) else: data['t_amplifier'][indices['amplifier']:(indices['amplifier']+60)] = np.array(struct.unpack('<' + 'I' *60, fid.read(240))) if header['num_amplifier_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=60 * header['num_amplifier_channels']) data['amplifier_data'][range(header['num_amplifier_channels']), indices['amplifier']:(indices['amplifier']+60)] = tmp.reshape(header['num_amplifier_channels'], 60) if header['num_aux_input_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=15 * header['num_aux_input_channels']) data['aux_input_data'][range(header['num_aux_input_channels']), indices['aux_input']:(indices['aux_input']+15)] = tmp.reshape(header['num_aux_input_channels'], 15) if header['num_supply_voltage_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=1 * header['num_supply_voltage_channels']) data['supply_voltage_data'][range(header['num_supply_voltage_channels']), indices['supply_voltage']:(indices['supply_voltage']+1)] = tmp.reshape(header['num_supply_voltage_channels'], 1) if header['num_temp_sensor_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=1 * header['num_temp_sensor_channels']) data['temp_sensor_data'][range(header['num_temp_sensor_channels']), indices['supply_voltage']:(indices['supply_voltage']+1)] = tmp.reshape(header['num_temp_sensor_channels'], 1) if header['num_board_adc_channels'] > 0: tmp = np.fromfile(fid, dtype='uint16', count=60 * header['num_board_adc_channels']) data['board_adc_data'][range(header['num_board_adc_channels']), indices['board_adc']:(indices['board_adc']+60)] = tmp.reshape(header['num_board_adc_channels'], 60) if header['num_board_dig_in_channels'] > 0: data['board_dig_in_raw'][indices['board_dig_in']:(indices['board_dig_in']+60)] = np.array(struct.unpack('<' + 'H' *60, fid.read(120))) if header['num_board_dig_out_channels'] > 0: data['board_dig_out_raw'][indices['board_dig_out']:(indices['board_dig_out']+60)] = np.array(struct.unpack('<' + 'H' *60, fid.read(120)))
0.385837
0.29146
import pandas as pd def exclude_the_min_row_sum(feature_count_table, feature_count_start_column, feature_count_end_column, min_row, output_file): feature_count_table_df = pd.read_table(feature_count_table) matrix_value = _extract_value_matrix(feature_count_table_df, feature_count_start_column, feature_count_end_column) colum_with_gene_name = _extract_gene_matrix(feature_count_table_df) attribute_matrix = _extract_attributes(feature_count_table_df, feature_count_start_column) min_row_sum(matrix_value, attribute_matrix, colum_with_gene_name, min_row, output_file) def _extract_value_matrix(feature_count_table_df, feature_count_start_column, feature_count_end_column): return feature_count_table_df.iloc[:, feature_count_start_column:( feature_count_end_column)] def _extract_gene_matrix(feature_count_table_df): gene_column = feature_count_table_df[list(filter( lambda col: col.startswith("Attributes"), feature_count_table_df.columns))] return gene_column def _extract_attributes(feature_count_table_df, feature_count_start_column): return feature_count_table_df.iloc[:, : feature_count_start_column] def min_row_sum(value_matrix, attribute_matrix, gene_column, min_row, output_file): gene_table_final = [] combined_df_ext = pd.concat([attribute_matrix, value_matrix], axis=1) summed_values = value_matrix.sum(axis=1) combined_df = pd.concat([gene_column, summed_values], axis=1) combined_df.columns = ['Attributes', 'sum_of_values'] selected_df = combined_df[~(combined_df['sum_of_values'] <= min_row)] selected_df.reset_index(drop=True, inplace=True) my_keys = selected_df['Attributes'].tolist() for index, row in combined_df_ext.iterrows(): gene = row["Attributes"] if gene in my_keys: gene_table_final.append(row) df_with_min_row_samples = pd.DataFrame(gene_table_final) df_with_min_row_samples.reset_index(drop=True, inplace=True) df_with_min_row_samples.to_csv(output_file, sep='\t', index=0)
graditudelib/min_row_sum.py
import pandas as pd def exclude_the_min_row_sum(feature_count_table, feature_count_start_column, feature_count_end_column, min_row, output_file): feature_count_table_df = pd.read_table(feature_count_table) matrix_value = _extract_value_matrix(feature_count_table_df, feature_count_start_column, feature_count_end_column) colum_with_gene_name = _extract_gene_matrix(feature_count_table_df) attribute_matrix = _extract_attributes(feature_count_table_df, feature_count_start_column) min_row_sum(matrix_value, attribute_matrix, colum_with_gene_name, min_row, output_file) def _extract_value_matrix(feature_count_table_df, feature_count_start_column, feature_count_end_column): return feature_count_table_df.iloc[:, feature_count_start_column:( feature_count_end_column)] def _extract_gene_matrix(feature_count_table_df): gene_column = feature_count_table_df[list(filter( lambda col: col.startswith("Attributes"), feature_count_table_df.columns))] return gene_column def _extract_attributes(feature_count_table_df, feature_count_start_column): return feature_count_table_df.iloc[:, : feature_count_start_column] def min_row_sum(value_matrix, attribute_matrix, gene_column, min_row, output_file): gene_table_final = [] combined_df_ext = pd.concat([attribute_matrix, value_matrix], axis=1) summed_values = value_matrix.sum(axis=1) combined_df = pd.concat([gene_column, summed_values], axis=1) combined_df.columns = ['Attributes', 'sum_of_values'] selected_df = combined_df[~(combined_df['sum_of_values'] <= min_row)] selected_df.reset_index(drop=True, inplace=True) my_keys = selected_df['Attributes'].tolist() for index, row in combined_df_ext.iterrows(): gene = row["Attributes"] if gene in my_keys: gene_table_final.append(row) df_with_min_row_samples = pd.DataFrame(gene_table_final) df_with_min_row_samples.reset_index(drop=True, inplace=True) df_with_min_row_samples.to_csv(output_file, sep='\t', index=0)
0.371935
0.338842
import abc from bokeh.document import Document from bokeh.io import export_png, export_svgs from bokeh.layouts import column, gridplot, row from bokeh.models import Spacer class BasePanel(object): """ Base class for all panels. """ def __init__(self): self.layout = None self.doc = None self.handlers = None self.glyph_map = None self.figure_map = None self.figures = None # TODO: improve self.added_figures = [] self.added_overlays = [] self.added_overlay_figures = [] self.added_annotations = [] self.added_annotation_figures = [] self.modifiers = [] @abc.abstractmethod def make_layout(self): """ Make the layout. """ @abc.abstractmethod def show(self, *args, **kwargs): """ Show the layout. """ def _export(self, func, backend, filename): """ Export. """ backends = [] for f in self.figures: if hasattr(f, "output_backend"): backends.append(f.output_backend) f.output_backend = backend func(self.layout, filename=filename) for f in self.figures: if hasattr(f, "output_backend"): f.output_backend = backends.pop(0) def export(self, filename, mode="auto"): """ Export the layout as as png or svg file. Parameters ---------- filename : str The path of the exported file. mode : 'auto', 'png' or 'svg', default 'auto' Whether to export as png or svg. Note that multi-figure layouts will be split into individual files for each figure in the svg mode. 'auto' will try to determine the mode automatically from the file extension. """ if self.layout is None: self.make_layout() if mode == "auto": mode = filename.split(".")[-1] if mode not in ("png", "svg"): raise ValueError( "Could not determine mode from file extension" ) if mode == "png": # TODO: TEST for c in self.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = None self._export(export_png, "canvas", filename) # TODO: TEST for c in self.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = self.toolbar_location elif mode == "svg": self._export(export_svgs, "svg", filename) else: raise ValueError("Unrecognized mode") def make_doc(self): """ Make the document. """ self.doc = Document() self.doc.theme = self.theme self.doc.add_root(row(self.layout)) def copy(self, with_data=False): """ Create a copy of this instance. Parameters ---------- with_data : bool, default False If true, also copy the data. Returns ------- new : xrview.core.panel.BasePanel The copied object. """ from copy import copy new = self.__new__(type(self)) new.__dict__ = { k: (copy(v) if (k != "data" or with_data) else v) for k, v in self.__dict__.items() } return new class GridPlot(BasePanel): """ Base class for grid plots. """ def __init__(self, panels, ncols=1, toolbar_location="above"): """ Constructor. """ self.panels = panels self.ncols = ncols self.toolbar_location = toolbar_location self.make_layout() def make_layout(self): """ Make the layout. """ self.figures = [] for p in self.panels: if p.layout is None: p.make_layout() # TODO: TEST for c in p.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = None self.figures += p.figures self.layout = gridplot( [p.layout for p in self.panels], ncols=self.ncols, toolbar_location=self.toolbar_location, ) return self.layout class SpacerPanel(BasePanel): """ Base class for spacers. """ def __init__(self): """ Constructor. """ self.figures = [Spacer()] self.make_layout() def make_layout(self): """ Make the layout. """ self.layout = column(*self.figures) return self.layout
xrview/core/panel.py
import abc from bokeh.document import Document from bokeh.io import export_png, export_svgs from bokeh.layouts import column, gridplot, row from bokeh.models import Spacer class BasePanel(object): """ Base class for all panels. """ def __init__(self): self.layout = None self.doc = None self.handlers = None self.glyph_map = None self.figure_map = None self.figures = None # TODO: improve self.added_figures = [] self.added_overlays = [] self.added_overlay_figures = [] self.added_annotations = [] self.added_annotation_figures = [] self.modifiers = [] @abc.abstractmethod def make_layout(self): """ Make the layout. """ @abc.abstractmethod def show(self, *args, **kwargs): """ Show the layout. """ def _export(self, func, backend, filename): """ Export. """ backends = [] for f in self.figures: if hasattr(f, "output_backend"): backends.append(f.output_backend) f.output_backend = backend func(self.layout, filename=filename) for f in self.figures: if hasattr(f, "output_backend"): f.output_backend = backends.pop(0) def export(self, filename, mode="auto"): """ Export the layout as as png or svg file. Parameters ---------- filename : str The path of the exported file. mode : 'auto', 'png' or 'svg', default 'auto' Whether to export as png or svg. Note that multi-figure layouts will be split into individual files for each figure in the svg mode. 'auto' will try to determine the mode automatically from the file extension. """ if self.layout is None: self.make_layout() if mode == "auto": mode = filename.split(".")[-1] if mode not in ("png", "svg"): raise ValueError( "Could not determine mode from file extension" ) if mode == "png": # TODO: TEST for c in self.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = None self._export(export_png, "canvas", filename) # TODO: TEST for c in self.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = self.toolbar_location elif mode == "svg": self._export(export_svgs, "svg", filename) else: raise ValueError("Unrecognized mode") def make_doc(self): """ Make the document. """ self.doc = Document() self.doc.theme = self.theme self.doc.add_root(row(self.layout)) def copy(self, with_data=False): """ Create a copy of this instance. Parameters ---------- with_data : bool, default False If true, also copy the data. Returns ------- new : xrview.core.panel.BasePanel The copied object. """ from copy import copy new = self.__new__(type(self)) new.__dict__ = { k: (copy(v) if (k != "data" or with_data) else v) for k, v in self.__dict__.items() } return new class GridPlot(BasePanel): """ Base class for grid plots. """ def __init__(self, panels, ncols=1, toolbar_location="above"): """ Constructor. """ self.panels = panels self.ncols = ncols self.toolbar_location = toolbar_location self.make_layout() def make_layout(self): """ Make the layout. """ self.figures = [] for p in self.panels: if p.layout is None: p.make_layout() # TODO: TEST for c in p.layout.children: if hasattr(c, "toolbar_location"): c.toolbar_location = None self.figures += p.figures self.layout = gridplot( [p.layout for p in self.panels], ncols=self.ncols, toolbar_location=self.toolbar_location, ) return self.layout class SpacerPanel(BasePanel): """ Base class for spacers. """ def __init__(self): """ Constructor. """ self.figures = [Spacer()] self.make_layout() def make_layout(self): """ Make the layout. """ self.layout = column(*self.figures) return self.layout
0.457137
0.291397
from __future__ import print_function from __future__ import absolute_import from __future__ import division import compas_rhino from ._shapeartist import ShapeArtist class PolyhedronArtist(ShapeArtist): """Artist for drawing polyhedron shapes. Parameters ---------- shape : :class:`compas.geometry.Polyhedron` A COMPAS polyhedron. Notes ----- See :class:`compas_rhino.artists.ShapeArtist` for all other parameters. Examples -------- .. code-block:: python import random from compas.geometry import Pointcloud from compas.geometry import Polyhedron from compas.geometry import Translation from compas.utilities import i_to_rgb import compas_rhino from compas_rhino.artists import PolyhedronArtist pcl = Pointcloud.from_bounds(10, 10, 10, 100) tpl = Polyhedron.from_platonicsolid(12) compas_rhino.clear_layer("Test::PolyhedronArtist") for point in pcl.points: polyhedron = tpl.transformed(Translation.from_vector(point)) artist = PolyhedronArtist(polyhedron, color=i_to_rgb(random.random()), layer="Test::PolyhedronArtist") artist.draw() """ def draw(self, show_vertices=False, show_edges=False, show_faces=True, join_faces=True): """Draw the polyhedron associated with the artist. Parameters ---------- show_vertices : bool, optional Default is ``False``. show_edges : bool, optional Default is ``False``. show_faces : bool, optional Default is ``True``. join_faces : bool, optional Default is ``True``. Returns ------- list The GUIDs of the objects created in Rhino. """ vertices = [list(vertex) for vertex in self.shape.vertices] guids = [] if show_vertices: points = [{'pos': point, 'color': self.color, 'name': str(index)} for index, point in enumerate(vertices)] guids += compas_rhino.draw_points(points, layer=self.layer, clear=False, redraw=False) if show_edges: edges = self.shape.edges lines = [{'start': vertices[i], 'end': vertices[j], 'color': self.color} for i, j in edges] guids += compas_rhino.draw_lines(lines, layer=self.layer, clear=False, redraw=False) if show_faces: faces = self.shape.faces if join_faces: guid = compas_rhino.draw_mesh(vertices, faces, layer=self.layer, name=self.name, color=self.color, disjoint=True) guids.append(guid) else: polygons = [{'points': [vertices[index] for index in face], 'color': self.color} for face in faces] guids += compas_rhino.draw_faces(polygons, layer=self.layer, clear=False, redraw=False) self._guids = guids return guids # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
src/compas_rhino/artists/polyhedronartist.py
from __future__ import print_function from __future__ import absolute_import from __future__ import division import compas_rhino from ._shapeartist import ShapeArtist class PolyhedronArtist(ShapeArtist): """Artist for drawing polyhedron shapes. Parameters ---------- shape : :class:`compas.geometry.Polyhedron` A COMPAS polyhedron. Notes ----- See :class:`compas_rhino.artists.ShapeArtist` for all other parameters. Examples -------- .. code-block:: python import random from compas.geometry import Pointcloud from compas.geometry import Polyhedron from compas.geometry import Translation from compas.utilities import i_to_rgb import compas_rhino from compas_rhino.artists import PolyhedronArtist pcl = Pointcloud.from_bounds(10, 10, 10, 100) tpl = Polyhedron.from_platonicsolid(12) compas_rhino.clear_layer("Test::PolyhedronArtist") for point in pcl.points: polyhedron = tpl.transformed(Translation.from_vector(point)) artist = PolyhedronArtist(polyhedron, color=i_to_rgb(random.random()), layer="Test::PolyhedronArtist") artist.draw() """ def draw(self, show_vertices=False, show_edges=False, show_faces=True, join_faces=True): """Draw the polyhedron associated with the artist. Parameters ---------- show_vertices : bool, optional Default is ``False``. show_edges : bool, optional Default is ``False``. show_faces : bool, optional Default is ``True``. join_faces : bool, optional Default is ``True``. Returns ------- list The GUIDs of the objects created in Rhino. """ vertices = [list(vertex) for vertex in self.shape.vertices] guids = [] if show_vertices: points = [{'pos': point, 'color': self.color, 'name': str(index)} for index, point in enumerate(vertices)] guids += compas_rhino.draw_points(points, layer=self.layer, clear=False, redraw=False) if show_edges: edges = self.shape.edges lines = [{'start': vertices[i], 'end': vertices[j], 'color': self.color} for i, j in edges] guids += compas_rhino.draw_lines(lines, layer=self.layer, clear=False, redraw=False) if show_faces: faces = self.shape.faces if join_faces: guid = compas_rhino.draw_mesh(vertices, faces, layer=self.layer, name=self.name, color=self.color, disjoint=True) guids.append(guid) else: polygons = [{'points': [vertices[index] for index in face], 'color': self.color} for face in faces] guids += compas_rhino.draw_faces(polygons, layer=self.layer, clear=False, redraw=False) self._guids = guids return guids # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
0.898711
0.38549
import torch from torch import nn from fastNLP.core.batch import Batch from fastNLP.core.dataset import DataSet from fastNLP.core.metrics import _prepare_metrics from fastNLP.core.sampler import SequentialSampler from fastNLP.core.utils import CheckError from fastNLP.core.utils import _build_args from fastNLP.core.utils import _check_loss_evaluate from fastNLP.core.utils import _move_dict_value_to_device from fastNLP.core.utils import get_func_signature class Tester(object): """An collection of model inference and evaluation of performance, used over validation/dev set and test set. :param DataSet data: a validation/development set :param torch.nn.modules.module model: a PyTorch model :param MetricBase metrics: a metric object or a list of metrics (List[MetricBase]) :param int batch_size: batch size for validation :param bool use_cuda: whether to use CUDA in validation. :param int verbose: the number of steps after which an information is printed. """ def __init__(self, data, model, metrics, batch_size=16, use_cuda=False, verbose=1): super(Tester, self).__init__() if not isinstance(data, DataSet): raise TypeError(f"The type of data must be `fastNLP.DataSet`, got `{type(data)}`.") if not isinstance(model, nn.Module): raise TypeError(f"The type of model must be `torch.nn.Module`, got `{type(model)}`.") self.metrics = _prepare_metrics(metrics) self.data = data self.use_cuda = use_cuda self.batch_size = batch_size self.verbose = verbose if torch.cuda.is_available() and self.use_cuda: self._model = model.cuda() else: self._model = model self._model_device = model.parameters().__next__().device # check predict if hasattr(self._model, 'predict'): self._predict_func = self._model.predict if not callable(self._predict_func): _model_name = model.__class__.__name__ raise TypeError(f"`{_model_name}.predict` must be callable to be used " f"for evaluation, not `{type(self._predict_func)}`.") else: self._predict_func = self._model.forward def test(self): """Start test or validation. :return eval_results: a dictionary whose keys are the class name of metrics to use, values are the evaluation results of these metrics. """ # turn on the testing mode; clean up the history network = self._model self._mode(network, is_test=True) data_iterator = Batch(self.data, self.batch_size, sampler=SequentialSampler(), as_numpy=False) eval_results = {} try: with torch.no_grad(): for batch_x, batch_y in data_iterator: _move_dict_value_to_device(batch_x, batch_y, device=self._model_device) pred_dict = self._data_forward(self._predict_func, batch_x) if not isinstance(pred_dict, dict): raise TypeError(f"The return value of {get_func_signature(self._predict_func)} " f"must be `dict`, got {type(pred_dict)}.") for metric in self.metrics: metric(pred_dict, batch_y) for metric in self.metrics: eval_result = metric.get_metric() if not isinstance(eval_result, dict): raise TypeError(f"The return value of {get_func_signature(metric.get_metric)} must be " f"`dict`, got {type(eval_result)}") metric_name = metric.__class__.__name__ eval_results[metric_name] = eval_result except CheckError as e: prev_func_signature = get_func_signature(self._predict_func) _check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature, check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y, dataset=self.data, check_level=0) if self.verbose >= 1: print("[tester] \n{}".format(self._format_eval_results(eval_results))) self._mode(network, is_test=False) return eval_results def _mode(self, model, is_test=False): """Train mode or Test mode. This is for PyTorch currently. :param model: a PyTorch model :param is_test: bool, whether in test mode or not. """ if is_test: model.eval() else: model.train() def _data_forward(self, func, x): """A forward pass of the model. """ x = _build_args(func, **x) y = func(**x) return y def _format_eval_results(self, results): """Override this method to support more print formats. :param results: dict, (str: float) is (metrics name: value) """ _str = '' for metric_name, metric_result in results.items(): _str += metric_name + ': ' _str += ", ".join([str(key) + "=" + str(value) for key, value in metric_result.items()]) _str += '\n' return _str[:-1]
fastNLP/core/tester.py
import torch from torch import nn from fastNLP.core.batch import Batch from fastNLP.core.dataset import DataSet from fastNLP.core.metrics import _prepare_metrics from fastNLP.core.sampler import SequentialSampler from fastNLP.core.utils import CheckError from fastNLP.core.utils import _build_args from fastNLP.core.utils import _check_loss_evaluate from fastNLP.core.utils import _move_dict_value_to_device from fastNLP.core.utils import get_func_signature class Tester(object): """An collection of model inference and evaluation of performance, used over validation/dev set and test set. :param DataSet data: a validation/development set :param torch.nn.modules.module model: a PyTorch model :param MetricBase metrics: a metric object or a list of metrics (List[MetricBase]) :param int batch_size: batch size for validation :param bool use_cuda: whether to use CUDA in validation. :param int verbose: the number of steps after which an information is printed. """ def __init__(self, data, model, metrics, batch_size=16, use_cuda=False, verbose=1): super(Tester, self).__init__() if not isinstance(data, DataSet): raise TypeError(f"The type of data must be `fastNLP.DataSet`, got `{type(data)}`.") if not isinstance(model, nn.Module): raise TypeError(f"The type of model must be `torch.nn.Module`, got `{type(model)}`.") self.metrics = _prepare_metrics(metrics) self.data = data self.use_cuda = use_cuda self.batch_size = batch_size self.verbose = verbose if torch.cuda.is_available() and self.use_cuda: self._model = model.cuda() else: self._model = model self._model_device = model.parameters().__next__().device # check predict if hasattr(self._model, 'predict'): self._predict_func = self._model.predict if not callable(self._predict_func): _model_name = model.__class__.__name__ raise TypeError(f"`{_model_name}.predict` must be callable to be used " f"for evaluation, not `{type(self._predict_func)}`.") else: self._predict_func = self._model.forward def test(self): """Start test or validation. :return eval_results: a dictionary whose keys are the class name of metrics to use, values are the evaluation results of these metrics. """ # turn on the testing mode; clean up the history network = self._model self._mode(network, is_test=True) data_iterator = Batch(self.data, self.batch_size, sampler=SequentialSampler(), as_numpy=False) eval_results = {} try: with torch.no_grad(): for batch_x, batch_y in data_iterator: _move_dict_value_to_device(batch_x, batch_y, device=self._model_device) pred_dict = self._data_forward(self._predict_func, batch_x) if not isinstance(pred_dict, dict): raise TypeError(f"The return value of {get_func_signature(self._predict_func)} " f"must be `dict`, got {type(pred_dict)}.") for metric in self.metrics: metric(pred_dict, batch_y) for metric in self.metrics: eval_result = metric.get_metric() if not isinstance(eval_result, dict): raise TypeError(f"The return value of {get_func_signature(metric.get_metric)} must be " f"`dict`, got {type(eval_result)}") metric_name = metric.__class__.__name__ eval_results[metric_name] = eval_result except CheckError as e: prev_func_signature = get_func_signature(self._predict_func) _check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature, check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y, dataset=self.data, check_level=0) if self.verbose >= 1: print("[tester] \n{}".format(self._format_eval_results(eval_results))) self._mode(network, is_test=False) return eval_results def _mode(self, model, is_test=False): """Train mode or Test mode. This is for PyTorch currently. :param model: a PyTorch model :param is_test: bool, whether in test mode or not. """ if is_test: model.eval() else: model.train() def _data_forward(self, func, x): """A forward pass of the model. """ x = _build_args(func, **x) y = func(**x) return y def _format_eval_results(self, results): """Override this method to support more print formats. :param results: dict, (str: float) is (metrics name: value) """ _str = '' for metric_name, metric_result in results.items(): _str += metric_name + ': ' _str += ", ".join([str(key) + "=" + str(value) for key, value in metric_result.items()]) _str += '\n' return _str[:-1]
0.929015
0.394114
import os, sys, abc, re from errand.util import which, shellcmd class Compiler(abc.ABC): """Parent class for all compiler classes """ def __init__(self, path, flags): self.path = path self.flags = flags self.version = None def isavail(self): if self.version is None: self.set_version(self.get_version()) return (self.path is not None and os.path.isfile(self.path) and self.version is not None) def set_version(self, version): if version and self.check_version(version): self.version = version @abc.abstractmethod def get_option(self, **kwargs): linker = kwargs.pop("linker", True) opt = " ".join(self.flags) if self.flags else "" if linker is False: opt += " -c " return opt def get_version(self): ver = shellcmd("%s --version" % self.path).stdout.decode() return ver.strip() if ver else None @abc.abstractmethod def check_version(self, version): return False class Cpp_Compiler(Compiler): def __init__(self, path, flags): super(Cpp_Compiler, self).__init__(path, flags) class Fortran_Compiler(Compiler): def __init__(self, path, flags): super(Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-J %s " % moddir return opt + super(Fortran_Compiler, self).get_option(**kwargs) class AppleClang_Cpp_Compiler(Cpp_Compiler): libext = "dylib" def __init__(self, path, flags): if path is None: path = which("clang++") super(AppleClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-dynamiclib -fPIC " + super(AppleClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Apple clang version") class Gnu_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("g++") super(Gnu_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared -fPIC " + super(Gnu_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("g++ (GCC)") class AmdClang_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("clang") super(AmdClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(AmdClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("clang version") and "roc" in version class Pgi_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("pgc++") super(Pgi_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(Pgi_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("pgc++") and "PGI" in version class CrayClang_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("CC") if path is None: path = which("clang++") if path is None: path = which("crayCC") super(CrayClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(CrayClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Cray clang version") class IbmXl_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("xlc++") super(IbmXl_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(IbmXl_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("IBM XL C/C++") class Pthread_Gnu_Cpp_Compiler(Gnu_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_Gnu_Cpp_Compiler, self).get_option(**kwargs) class Pthread_CrayClang_Cpp_Compiler(CrayClang_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_CrayClang_Cpp_Compiler, self).get_option(**kwargs) class Pthread_AmdClang_Cpp_Compiler(AmdClang_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_AmdClang_Cpp_Compiler, self).get_option(**kwargs) class Pthread_Pgi_Cpp_Compiler(Pgi_Cpp_Compiler): def get_option(self, **kwargs): return "-lpthread " + super(Pthread_Pgi_Cpp_Compiler, self).get_option(**kwargs) class Pthread_AppleClang_Cpp_Compiler(AppleClang_Cpp_Compiler): def get_option(self, **kwargs): return "-lpthread " + super(Pthread_AppleClang_Cpp_Compiler, self).get_option(**kwargs) class OpenAcc_Gnu_Cpp_Compiler(Pthread_Gnu_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_Gnu_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-fopenacc " + super(OpenAcc_Gnu_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): pat = re.compile(r"(?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d)+") match = pat.search(version) if not match: return False return int(match.group("major")) >= 10 class OpenAcc_CrayClang_Cpp_Compiler(Pthread_CrayClang_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_CrayClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-h pragma=acc " + super(OpenAcc_CrayClang_Cpp_Compiler, self).get_option(**kwargs)) class OpenAcc_Pgi_Cpp_Compiler(Pthread_Pgi_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_Pgi_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-acc " + super(OpenAcc_Pgi_Cpp_Compiler, self).get_option(**kwargs)) class Cuda_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("nvcc") super(Cuda_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("--compiler-options '-fPIC' --shared " + super(Cuda_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): return version.startswith("nvcc: NVIDIA") class Hip_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("hipcc") super(Hip_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-fPIC --shared " + super(Hip_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): return version.startswith("HIP version") class Gnu_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("gfortran") super(Gnu_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared -fPIC " + opt + super(Gnu_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("GNU Fortran") class AmdFlang_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("flang") super(AmdFlang_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared " + opt + super(AmdFlang_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("flang-new version") and "roc" in version class Cray_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("ftn") if path is None: path = which("crayftn") super(Cray_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared " + opt + super(Cray_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Cray Fortran") class AppleGnu_Fortran_Compiler(Gnu_Fortran_Compiler): libext = "dylib" def check_version(self, version): return sys.platform == "darwin" and super(AppleGnu_Fortran_Compiler, self).check_version(version) class IbmXl_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("xlf2008_r") if path is None: path = which("xlf2008") if path is None: path = which("xlf2003_r") if path is None: path = which("xlf2003") if path is None: path = which("xlf95_r") if path is None: path = which("xlf95") if path is None: path = which("xlf90_r") if path is None: path = which("xlf90") super(IbmXl_Fortran_Compiler, self).__init__(path, flags) def get_version(self): ver = shellcmd("%s -qversion" % self.path).stdout.decode() return ver.strip() if ver else None def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-qmoddir=%s " % moddir return "-qmkshrobj " + opt + super(IbmXl_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("IBM XL Fortran") class Pgi_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("pgfortran") super(Pgi_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-module %s " % moddir return "-shared -fpic " + opt + super(Pgi_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("pgfortran") and "PGI" in version class Compilers(object): def __init__(self, backend, compile): self.clist = [] clist = [] if backend in ("pthread", "c++"): clist = [Pthread_Gnu_Cpp_Compiler, Pthread_CrayClang_Cpp_Compiler, Pthread_AmdClang_Cpp_Compiler, Pthread_Pgi_Cpp_Compiler, Pthread_AppleClang_Cpp_Compiler] elif backend == "cuda": clist = [Cuda_Cpp_Compiler] elif backend == "hip": clist = [Hip_Cpp_Compiler] elif backend == "openacc-c++": clist = [OpenAcc_Gnu_Cpp_Compiler, OpenAcc_CrayClang_Cpp_Compiler, OpenAcc_Pgi_Cpp_Compiler] elif backend == "fortran": clist = [AmdFlang_Fortran_Compiler, Cray_Fortran_Compiler, Pgi_Fortran_Compiler, IbmXl_Fortran_Compiler, AppleGnu_Fortran_Compiler, Gnu_Fortran_Compiler] else: raise Exception("Compiler for '%s' is not supported." % backend) for cls in clist: try: if compile: path = which(compile[0]) if path: self.clist.append(cls(path, compile[1:])) else: self.clist.append(cls(None, None)) except Exception as err: pass def isavail(self): return self.select_one() is not None def select_one(self): for comp in self.clist: if comp.isavail(): return comp def select_many(self): comps = [] for comp in self.clist: if comp.isavail(): comps.append(comp) return comps
errand/compiler.py
import os, sys, abc, re from errand.util import which, shellcmd class Compiler(abc.ABC): """Parent class for all compiler classes """ def __init__(self, path, flags): self.path = path self.flags = flags self.version = None def isavail(self): if self.version is None: self.set_version(self.get_version()) return (self.path is not None and os.path.isfile(self.path) and self.version is not None) def set_version(self, version): if version and self.check_version(version): self.version = version @abc.abstractmethod def get_option(self, **kwargs): linker = kwargs.pop("linker", True) opt = " ".join(self.flags) if self.flags else "" if linker is False: opt += " -c " return opt def get_version(self): ver = shellcmd("%s --version" % self.path).stdout.decode() return ver.strip() if ver else None @abc.abstractmethod def check_version(self, version): return False class Cpp_Compiler(Compiler): def __init__(self, path, flags): super(Cpp_Compiler, self).__init__(path, flags) class Fortran_Compiler(Compiler): def __init__(self, path, flags): super(Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-J %s " % moddir return opt + super(Fortran_Compiler, self).get_option(**kwargs) class AppleClang_Cpp_Compiler(Cpp_Compiler): libext = "dylib" def __init__(self, path, flags): if path is None: path = which("clang++") super(AppleClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-dynamiclib -fPIC " + super(AppleClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Apple clang version") class Gnu_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("g++") super(Gnu_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared -fPIC " + super(Gnu_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("g++ (GCC)") class AmdClang_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("clang") super(AmdClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(AmdClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("clang version") and "roc" in version class Pgi_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("pgc++") super(Pgi_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(Pgi_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("pgc++") and "PGI" in version class CrayClang_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("CC") if path is None: path = which("clang++") if path is None: path = which("crayCC") super(CrayClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(CrayClang_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Cray clang version") class IbmXl_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("xlc++") super(IbmXl_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return "-shared " + super(IbmXl_Cpp_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("IBM XL C/C++") class Pthread_Gnu_Cpp_Compiler(Gnu_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_Gnu_Cpp_Compiler, self).get_option(**kwargs) class Pthread_CrayClang_Cpp_Compiler(CrayClang_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_CrayClang_Cpp_Compiler, self).get_option(**kwargs) class Pthread_AmdClang_Cpp_Compiler(AmdClang_Cpp_Compiler): def get_option(self, **kwargs): return "-pthread " + super(Pthread_AmdClang_Cpp_Compiler, self).get_option(**kwargs) class Pthread_Pgi_Cpp_Compiler(Pgi_Cpp_Compiler): def get_option(self, **kwargs): return "-lpthread " + super(Pthread_Pgi_Cpp_Compiler, self).get_option(**kwargs) class Pthread_AppleClang_Cpp_Compiler(AppleClang_Cpp_Compiler): def get_option(self, **kwargs): return "-lpthread " + super(Pthread_AppleClang_Cpp_Compiler, self).get_option(**kwargs) class OpenAcc_Gnu_Cpp_Compiler(Pthread_Gnu_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_Gnu_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-fopenacc " + super(OpenAcc_Gnu_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): pat = re.compile(r"(?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d)+") match = pat.search(version) if not match: return False return int(match.group("major")) >= 10 class OpenAcc_CrayClang_Cpp_Compiler(Pthread_CrayClang_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_CrayClang_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-h pragma=acc " + super(OpenAcc_CrayClang_Cpp_Compiler, self).get_option(**kwargs)) class OpenAcc_Pgi_Cpp_Compiler(Pthread_Pgi_Cpp_Compiler): def __init__(self, path, flags): super(OpenAcc_Pgi_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-acc " + super(OpenAcc_Pgi_Cpp_Compiler, self).get_option(**kwargs)) class Cuda_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("nvcc") super(Cuda_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("--compiler-options '-fPIC' --shared " + super(Cuda_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): return version.startswith("nvcc: NVIDIA") class Hip_Cpp_Compiler(Cpp_Compiler): def __init__(self, path, flags): if path is None: path = which("hipcc") super(Hip_Cpp_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): return ("-fPIC --shared " + super(Hip_Cpp_Compiler, self).get_option(**kwargs)) def check_version(self, version): return version.startswith("HIP version") class Gnu_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("gfortran") super(Gnu_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared -fPIC " + opt + super(Gnu_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("GNU Fortran") class AmdFlang_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("flang") super(AmdFlang_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared " + opt + super(AmdFlang_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("flang-new version") and "roc" in version class Cray_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("ftn") if path is None: path = which("crayftn") super(Cray_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " return "-shared " + opt + super(Cray_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("Cray Fortran") class AppleGnu_Fortran_Compiler(Gnu_Fortran_Compiler): libext = "dylib" def check_version(self, version): return sys.platform == "darwin" and super(AppleGnu_Fortran_Compiler, self).check_version(version) class IbmXl_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("xlf2008_r") if path is None: path = which("xlf2008") if path is None: path = which("xlf2003_r") if path is None: path = which("xlf2003") if path is None: path = which("xlf95_r") if path is None: path = which("xlf95") if path is None: path = which("xlf90_r") if path is None: path = which("xlf90") super(IbmXl_Fortran_Compiler, self).__init__(path, flags) def get_version(self): ver = shellcmd("%s -qversion" % self.path).stdout.decode() return ver.strip() if ver else None def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-qmoddir=%s " % moddir return "-qmkshrobj " + opt + super(IbmXl_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("IBM XL Fortran") class Pgi_Fortran_Compiler(Fortran_Compiler): def __init__(self, path, flags): if path is None: path = which("pgfortran") super(Pgi_Fortran_Compiler, self).__init__(path, flags) def get_option(self, **kwargs): opt = " " moddir = kwargs.pop("moddir", None) if moddir: opt = "-module %s " % moddir return "-shared -fpic " + opt + super(Pgi_Fortran_Compiler, self).get_option(**kwargs) def check_version(self, version): return version.startswith("pgfortran") and "PGI" in version class Compilers(object): def __init__(self, backend, compile): self.clist = [] clist = [] if backend in ("pthread", "c++"): clist = [Pthread_Gnu_Cpp_Compiler, Pthread_CrayClang_Cpp_Compiler, Pthread_AmdClang_Cpp_Compiler, Pthread_Pgi_Cpp_Compiler, Pthread_AppleClang_Cpp_Compiler] elif backend == "cuda": clist = [Cuda_Cpp_Compiler] elif backend == "hip": clist = [Hip_Cpp_Compiler] elif backend == "openacc-c++": clist = [OpenAcc_Gnu_Cpp_Compiler, OpenAcc_CrayClang_Cpp_Compiler, OpenAcc_Pgi_Cpp_Compiler] elif backend == "fortran": clist = [AmdFlang_Fortran_Compiler, Cray_Fortran_Compiler, Pgi_Fortran_Compiler, IbmXl_Fortran_Compiler, AppleGnu_Fortran_Compiler, Gnu_Fortran_Compiler] else: raise Exception("Compiler for '%s' is not supported." % backend) for cls in clist: try: if compile: path = which(compile[0]) if path: self.clist.append(cls(path, compile[1:])) else: self.clist.append(cls(None, None)) except Exception as err: pass def isavail(self): return self.select_one() is not None def select_one(self): for comp in self.clist: if comp.isavail(): return comp def select_many(self): comps = [] for comp in self.clist: if comp.isavail(): comps.append(comp) return comps
0.468061
0.102305
import pytest from aiida_siesta.utils.pao_manager import PaoManager def test_set_from_ion(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si') pao_man.set_from_ion(ion) assert pao_man.name == "Si" assert pao_man._gen_dict is not None assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995, 2: 3.1566}}} assert pao_man._conf_dict == {} def test_validator_and_get_pao_block(): pao_man = PaoManager() with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man.name = "Si" with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man._gen_dict = {3: {0: {1: 4.05}}} with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man._pol_dict = {} assert pao_man.get_pao_block() == "Si 1\n n=3 0 1\n 7.65335" pao_man._gen_dict = {} with pytest.raises(RuntimeError): pao_man.get_pao_block() def test_confinements_features(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man.name == "Si" assert pao_man._gen_dict is not None assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995, 2: 3.1566}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}, 'E': {3: {0: [2.0, 0.3]}}} assert pao_man.get_pao_block() == 'Si 2\n n=3 0 2 E 2.0 0.3 \n 5.965078\t 4.419101\n n=3 1 2 P 2 Q 3.0 0.5 0.01 \n 7.659398\t 5.13417' def test_pao_size(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si') pao_man.set_from_ion(ion) assert pao_man.pao_size() == "DZDP" def test_change_all_radius(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} pao_man.change_all_radius(2) assert pao_man._gen_dict == {3: {0: {1: 4.131}}} assert pao_man._pol_dict == {3: {0: {1: 4.131}}} def test_reset_radius(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.reset_radius("Bohr",0.0,3,1,2) pao_man.reset_radius("Bohr",0.0,3,0,1) assert pao_man._gen_dict == {3: {0: {1: 0.0}}} assert pao_man._pol_dict == {3: {0: {1: 0.0}}} def test_add_polarization(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.add_polarization(3,1) pao_man.add_polarization(3,0) assert pao_man._pol_dict == {3: {0: {1: 4.05, 2: 0.0}}} assert pao_man.pao_size() == "SZDP" def test_remove_polarization(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05, 2: 0.0}}} with pytest.raises(ValueError): pao_man.remove_polarization(3,1) pao_man.remove_polarization(3,0) assert pao_man._pol_dict == {3: {0: {1: 4.05}}} assert pao_man.pao_size() == "SZP" pao_man.remove_polarization(3,0) assert pao_man._pol_dict == {} assert pao_man.pao_size() == "SZ" def test_add_orbital(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.add_orbital("Bohr",0.0,3,1,2) pao_man.add_orbital("Bohr",0.0,3,0,2) assert pao_man._gen_dict == {3: {0: {1: 4.05, 2: 0.0}}} assert pao_man.pao_size() == "DZP" def test_remove_orbital(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05, 2: 0.0}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.remove_orbital(3,1,1) with pytest.raises(ValueError): pao_man.remove_orbital(3,0,1) pao_man.remove_orbital(3,0,2) assert pao_man._gen_dict == {3: {0: {1: 4.05}}} assert pao_man._pol_dict == {3: {0: {1: 4.05}}} assert pao_man.pao_size() == "SZP" pao_man.remove_orbital(3,0,1) assert pao_man._gen_dict == {} assert pao_man._pol_dict == {} def test_remove_polarization_occu(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} pao_man.remove_polarization(3,1) assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995}}} assert pao_man._pol_occu == {3: {1: {1: 0.0}}} pao_man.remove_polarization(3,1) assert pao_man._pol_dict == {} assert pao_man._pol_occu == {} def test_remove_orbital_occu_and_conf(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man._gen_occu == {3: {0: {1: 2.0, 2: 0.0}, 1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'E': {3: {0: [2.0, 0.3]}}, 'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,0,2) assert pao_man._gen_occu == {3: {0: {1: 2.0}, 1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'E': {3: {0: [2.0, 0.3]}}, 'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,0,1) assert pao_man._gen_occu == {3: {1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,1,2) assert pao_man._gen_occu == {3: {1: {1: 2.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,1,1) assert pao_man._gen_occu == {} assert pao_man._pol_occu == {} assert pao_man._conf_dict == {}
tests/utils/test_pao_manager.py
import pytest from aiida_siesta.utils.pao_manager import PaoManager def test_set_from_ion(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si') pao_man.set_from_ion(ion) assert pao_man.name == "Si" assert pao_man._gen_dict is not None assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995, 2: 3.1566}}} assert pao_man._conf_dict == {} def test_validator_and_get_pao_block(): pao_man = PaoManager() with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man.name = "Si" with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man._gen_dict = {3: {0: {1: 4.05}}} with pytest.raises(RuntimeError): pao_man.get_pao_block() pao_man._pol_dict = {} assert pao_man.get_pao_block() == "Si 1\n n=3 0 1\n 7.65335" pao_man._gen_dict = {} with pytest.raises(RuntimeError): pao_man.get_pao_block() def test_confinements_features(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man.name == "Si" assert pao_man._gen_dict is not None assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995, 2: 3.1566}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}, 'E': {3: {0: [2.0, 0.3]}}} assert pao_man.get_pao_block() == 'Si 2\n n=3 0 2 E 2.0 0.3 \n 5.965078\t 4.419101\n n=3 1 2 P 2 Q 3.0 0.5 0.01 \n 7.659398\t 5.13417' def test_pao_size(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si') pao_man.set_from_ion(ion) assert pao_man.pao_size() == "DZDP" def test_change_all_radius(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} pao_man.change_all_radius(2) assert pao_man._gen_dict == {3: {0: {1: 4.131}}} assert pao_man._pol_dict == {3: {0: {1: 4.131}}} def test_reset_radius(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.reset_radius("Bohr",0.0,3,1,2) pao_man.reset_radius("Bohr",0.0,3,0,1) assert pao_man._gen_dict == {3: {0: {1: 0.0}}} assert pao_man._pol_dict == {3: {0: {1: 0.0}}} def test_add_polarization(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.add_polarization(3,1) pao_man.add_polarization(3,0) assert pao_man._pol_dict == {3: {0: {1: 4.05, 2: 0.0}}} assert pao_man.pao_size() == "SZDP" def test_remove_polarization(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05, 2: 0.0}}} with pytest.raises(ValueError): pao_man.remove_polarization(3,1) pao_man.remove_polarization(3,0) assert pao_man._pol_dict == {3: {0: {1: 4.05}}} assert pao_man.pao_size() == "SZP" pao_man.remove_polarization(3,0) assert pao_man._pol_dict == {} assert pao_man.pao_size() == "SZ" def test_add_orbital(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.add_orbital("Bohr",0.0,3,1,2) pao_man.add_orbital("Bohr",0.0,3,0,2) assert pao_man._gen_dict == {3: {0: {1: 4.05, 2: 0.0}}} assert pao_man.pao_size() == "DZP" def test_remove_orbital(): pao_man = PaoManager() pao_man.name = "Si" pao_man._gen_dict = {3: {0: {1: 4.05, 2: 0.0}}} pao_man._pol_dict = {3: {0: {1: 4.05}}} with pytest.raises(ValueError): pao_man.remove_orbital(3,1,1) with pytest.raises(ValueError): pao_man.remove_orbital(3,0,1) pao_man.remove_orbital(3,0,2) assert pao_man._gen_dict == {3: {0: {1: 4.05}}} assert pao_man._pol_dict == {3: {0: {1: 4.05}}} assert pao_man.pao_size() == "SZP" pao_man.remove_orbital(3,0,1) assert pao_man._gen_dict == {} assert pao_man._pol_dict == {} def test_remove_polarization_occu(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} pao_man.remove_polarization(3,1) assert pao_man._pol_dict == {3: {1: {1: 4.0531999999999995}}} assert pao_man._pol_occu == {3: {1: {1: 0.0}}} pao_man.remove_polarization(3,1) assert pao_man._pol_dict == {} assert pao_man._pol_occu == {} def test_remove_orbital_occu_and_conf(generate_ion_data): pao_man = PaoManager() ion = generate_ion_data('Si_with_conf') pao_man.set_from_ion(ion) assert pao_man._gen_occu == {3: {0: {1: 2.0, 2: 0.0}, 1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'E': {3: {0: [2.0, 0.3]}}, 'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,0,2) assert pao_man._gen_occu == {3: {0: {1: 2.0}, 1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'E': {3: {0: [2.0, 0.3]}}, 'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,0,1) assert pao_man._gen_occu == {3: {1: {1: 2.0, 2: 0.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,1,2) assert pao_man._gen_occu == {3: {1: {1: 2.0}}} assert pao_man._pol_occu == {3: {1: {1: 0.0, 2: 0.0}}} assert pao_man._conf_dict == {'Q': {3: {1: [3.0, 0.5, 0.01]}}} pao_man.remove_orbital(3,1,1) assert pao_man._gen_occu == {} assert pao_man._pol_occu == {} assert pao_man._conf_dict == {}
0.632957
0.683268
from string import Template import numpy as np import pycuda.autoinit from pycuda.compiler import SourceModule from pycuda.gpuarray import GPUArray, to_gpu from .utils import all_arrays_to_gpu, parse_cu_files_to_string def batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox, grid_shape, sampling_scheme ): """Compile the CUDA kernel that given the features and the camera matrices estimates the similarities between the features, performs the marched voxels along its ray and does the mapping from depth planes to voxel centers. Arguments: ---------- M: int, maximum number of marched voxels along ray D: int, depth planes (discretization steps) N: int, number of views F: int, feature size (from the Multi-View CNN) H: int, image height W: int, image width, padding: int, the number of zero-padded pixels around the image to estimate the features from the Multi-View CNN bbox: np.array((6,), dtype=np.float32), the coordinates of the bbox that enclose the scene grid_shape: np.array((3,), dtype=np.int32), the dimensionality of the voxel grid sampling_scheme: string, specification of the sampling scheme """ # Set the paths to the files that will be used to construct the cuda kernel file_paths = [ "ray_tracing.cu", "utils.cu", "planes_voxels_mapping.cu", "feature_similarities.cu", "sampling_schemes.cu" ] cu_source_code = parse_cu_files_to_string(file_paths) tpl = Template(cu_source_code + """ __global__ void batch_mvcnn_planes_voxels_with_ray_marching( int n_rays, int * ray_idxs, float * features, float * P, float * P_inv, float * camera_center, float * voxel_grid, int * ray_voxel_indices, int * ray_voxel_count, float * S_new ) { // Compute the thread int r = threadIdx.x + blockDim.x * blockIdx.x; if (r >= n_rays) return; // Estimate the ray_start and ray_end for the current pixel float ray_start[3], ray_end[3]; $sampling_scheme( ray_idxs[r], P_inv, camera_center, ray_start, ray_end ); // Compute the similarities between features float S[$depth_planes]; compute_similarities_per_ray( features, P, ray_start, ray_end, S ); // Estimate the ray_voxel_indices and the ray_voxel_count voxel_traversal( ray_start, ray_end, ray_voxel_indices + r*$max_voxels*3, ray_voxel_count + r ); // Map the depth planes to voxel centers planes_voxels_mapping( voxel_grid, ray_voxel_indices + 3*$max_voxels*r, ray_voxel_count + r, ray_start, ray_end, S, S_new + $max_voxels*r ); } """) mod = SourceModule(tpl.substitute( max_voxels=M, depth_planes=D, n_views=N, padding=padding, features_dimensions=F, width=W, height=H, grid_x=grid_shape[0], grid_y=grid_shape[1], grid_z=grid_shape[2], bbox_min_x=bbox[0], bbox_min_y=bbox[1], bbox_min_z=bbox[2], bbox_max_x=bbox[3], bbox_max_y=bbox[4], bbox_max_z=bbox[5], sampling_scheme=sampling_scheme )) cuda_fp = mod.get_function("batch_mvcnn_planes_voxels_with_ray_marching") cuda_fp.prepare("i" + "P"*9) @all_arrays_to_gpu def fp( ray_idxs, features, P, P_inv, camera_center, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, threads=2048 ): # Assert everything is the right size, shape and dtype assert S_new.shape[1] == M assert len(ray_voxel_count.shape) == 1 assert np.float32 == S_new.dtype assert np.int32 == ray_voxel_count.dtype # Determine the grid and block arguments n_rays = len(S_new) blocks = n_rays / threads + int(n_rays % threads != 0) cuda_fp.prepared_call( (threads, 1), (blocks, 1, 1), np.int32(n_rays), ray_idxs.gpudata, features.gpudata, P.gpudata, P_inv.gpudata, camera_center.gpudata, voxel_grid.gpudata, ray_voxel_indices.gpudata, ray_voxel_count.gpudata, S_new.gpudata ) return fp def batch_mvcnn_voxel_traversal_with_ray_marching_with_depth_estimation( M, D, N, F, H, W, padding, bbox, grid_shape, sampling_scheme ): """Compile the CUDA kernel that given the features and the camera matrices estimates the similarities between the features, performs the marched voxels along its ray and does the mapping from depth planes to voxel centers. Finally directly convert the per voxel depth distribution to a depth map Arguments: ---------- M: int, maximum number of marched voxels along ray D: int, depth planes (discretization steps) N: int, number of views F: int, feature size (from the Multi-View CNN) H: int, image height W: int, image width, padding: int, the number of zero-padded pixels around the image to estimate the features from the Multi-View CNN bbox: np.array((6,), dtype=np.float32), the coordinates of the bbox that enclose the scene grid_shape: np.array((3,), dtype=np.int32), the dimensionality of the voxel grid sampling_scheme: string, specification of the sampling scheme """ # Set the paths to the files that will be used to construct the cuda kernel file_paths = [ "ray_tracing.cu", "utils.cu", "planes_voxels_mapping.cu", "feature_similarities.cu", "sampling_schemes.cu" ] cu_source_code = parse_cu_files_to_string(file_paths) tpl = Template(cu_source_code + """ __global__ void batch_mvcnn_planes_voxels_with_ray_marchingi_with_depth( int n_rays, int * ray_idxs, float * features, float * P, float * P_inv, float * camera_center, float * voxel_grid, int * ray_voxel_indices, int * ray_voxel_count, float * S_new, float * depth_map ) { // Compute the thread int r = threadIdx.x + blockDim.x * blockIdx.x; if (r >= n_rays) return; // Estimate the ray_start and ray_end for the current pixel float ray_start[3], ray_end[3]; $sampling_scheme( ray_idxs[r], P_inv, camera_center, ray_start, ray_end ); // Compute the similarities between features float S[$depth_planes]; compute_similarities_per_ray( features, P, ray_start, ray_end, S ); // Estimate the ray_voxel_indices and the ray_voxel_count voxel_traversal( ray_start, ray_end, ray_voxel_indices + r*$max_voxels*3, ray_voxel_count + r ); // Map the depth planes to voxel centers planes_voxels_mapping( voxel_grid, ray_voxel_indices + 3*$max_voxels*r, ray_voxel_count + r, ray_start, ray_end, S, S_new + $max_voxels*r ); // We need to find the voxel center with the highest probability // based on the S_new float * Sr = S_new + r*$max_voxels; float max = -INFINITY; int max_idx = 0; for (int i=0; i<$max_voxels; i++) { if (Sr[i] > max) { max_idx = i; max = Sr[i]; } } // Associate the voxel_center with id max_idx with a 3D point in // world coordinates int idx_x, idx_y, idx_z; int dim_x = 3*$grid_y*$grid_z; int dim_y = 3*$grid_z; int dim_z = 3; idx_x = ray_voxel_indices[3*$max_voxels*r + 3*max_idx]; idx_y = ray_voxel_indices[3*$max_voxels*r + 3*max_idx + 1]; idx_z = ray_voxel_indices[3*$max_voxels*r + 3*max_idx + 2]; float point[3]; for (int i=0; i<3; i++) { point[i] = voxel_grid[idx_x*dim_x + idx_y*dim_y + idx_z*dim_z + i]; } // Get the distance from the camera center float sum = 0.0; for (int i=0; i<3; i++) { sum += pow(point[i] - camera_center[i], 2); } depth_map[r] = sqrt(sum); } """) mod = SourceModule(tpl.substitute( max_voxels=M, depth_planes=D, n_views=N, padding=padding, features_dimensions=F, width=W, height=H, grid_x=grid_shape[0], grid_y=grid_shape[1], grid_z=grid_shape[2], bbox_min_x=bbox[0], bbox_min_y=bbox[1], bbox_min_z=bbox[2], bbox_max_x=bbox[3], bbox_max_y=bbox[4], bbox_max_z=bbox[5], sampling_scheme=sampling_scheme )) cuda_fp = mod.get_function("batch_mvcnn_planes_voxels_with_ray_marchingi_with_depth") cuda_fp.prepare("i" + "P"*10) @all_arrays_to_gpu def fp( ray_idxs, features, P, P_inv, camera_center, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, depth_map, threads=2048 ): # Assert everything is the right size, shape and dtype assert S_new.shape[1] == M assert len(ray_voxel_count.shape) == 1 assert np.float32 == S_new.dtype assert np.int32 == ray_voxel_count.dtype # Determine the grid and block arguments n_rays = len(S_new) blocks = n_rays / threads + int(n_rays % threads != 0) cuda_fp.prepared_call( (threads, 1), (blocks, 1, 1), np.int32(n_rays), ray_idxs.gpudata, features.gpudata, P.gpudata, P_inv.gpudata, camera_center.gpudata, voxel_grid.gpudata, ray_voxel_indices.gpudata, ray_voxel_count.gpudata, S_new.gpudata, depth_map.gpudata ) return fp def perform_mvcnn_with_ray_marching_and_voxel_mapping( ray_idxs, features, P, P_inv, camera_center, bbox, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, padding, depth_planes, batch_size=80000, sampling_scheme="sample_in_bbox" ): # Extract the numbers of views (N), the maximum number of marched voxels # (M), the depth planes (D), the image height and the image width _, M, _ = ray_voxel_indices.shape D = depth_planes N, Fh, Fw, F = features.shape H = Fh - padding - 1 W = Fw - padding - 1 # Make sure that P is a list assert len(P) == N # Move to GPU to save some time frome copying features_gpu = to_gpu(features.ravel()) ray_idxs_gpu = to_gpu(ray_idxs.astype(np.int32)) P_gpu = to_gpu(np.array(P).ravel()) P_inv_gpu = to_gpu(P_inv.ravel()) camera_center_gpu = to_gpu(camera_center) s_gpu = to_gpu( np.zeros((batch_size, M), dtype=np.float32) ) ray_voxel_count_gpu = to_gpu( np.zeros((batch_size,), dtype=np.int32) ) ray_voxel_indices_gpu = to_gpu( np.zeros((batch_size, M, 3), dtype=np.int32) ) fp = batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox.ravel(), np.array(voxel_grid.shape[1:]), sampling_scheme ) voxel_grid = voxel_grid.transpose(1, 2, 3, 0).ravel() # Start iterationg over the batch of rays for i in range(0, len(ray_idxs), batch_size): ray_voxel_indices_gpu.fill(0) ray_voxel_count_gpu.fill(0) s_gpu.fill(0) fp( ray_idxs_gpu[i:i+batch_size], features_gpu, P_gpu, P_inv_gpu, camera_center_gpu, voxel_grid, ray_voxel_indices_gpu, ray_voxel_count_gpu, s_gpu, ) idxs = ray_idxs[i:i+batch_size] ray_voxel_indices[idxs] = ray_voxel_indices_gpu.get()[:len(idxs)] ray_voxel_count[idxs] = ray_voxel_count_gpu.get()[:len(idxs)] S_new[idxs] = s_gpu.get()[:len(idxs)] def perform_mvcnn_with_ray_marching_and_voxel_mapping( ray_idxs, features, P, P_inv, camera_center, bbox, voxel_grid, padding, depth_planes, batch_size=80000, sampling_scheme="sample_in_bbox" ): # Extract the numbers of views (N), the maximum number of marched voxels # (M), the depth planes (D), the image height and the image width _, M, _ = ray_voxel_indices.shape D = depth_planes N, Fh, Fw, F = features.shape H = Fh - padding - 1 W = Fw - padding - 1 # Make sure that P is a list assert len(P) == N # Move to GPU to save some time frome copying features_gpu = to_gpu(features.ravel()) ray_idxs_gpu = to_gpu(ray_idxs.astype(np.int32)) P_gpu = to_gpu(np.array(P).ravel()) P_inv_gpu = to_gpu(P_inv.ravel()) camera_center_gpu = to_gpu(camera_center) s_gpu = to_gpu( np.zeros((batch_size, M), dtype=np.float32) ) ray_voxel_count_gpu = to_gpu( np.zeros((batch_size,), dtype=np.int32) ) ray_voxel_indices_gpu = to_gpu( np.zeros((batch_size, M, 3), dtype=np.int32) ) depth_map = to_gpu( np.zeros(H*W, dtype-np.float32) ) fp = batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox.ravel(), np.array(voxel_grid.shape[1:]), sampling_scheme ) voxel_grid = voxel_grid.transpose(1, 2, 3, 0).ravel() # Start iterationg over the batch of rays for i in range(0, len(ray_idxs), batch_size): ray_voxel_indices_gpu.fill(0) ray_voxel_count_gpu.fill(0) s_gpu.fill(0) fp( ray_idxs_gpu[i:i+batch_size], features_gpu, P_gpu, P_inv_gpu, camera_center_gpu, voxel_grid, ray_voxel_indices_gpu, ray_voxel_count_gpu, s_gpu, depth_map ) return depth_map.get().reshape(W, H).T
raynet/cuda_implementations/mvcnn_with_ray_marching_and_voxels_mapping.py
from string import Template import numpy as np import pycuda.autoinit from pycuda.compiler import SourceModule from pycuda.gpuarray import GPUArray, to_gpu from .utils import all_arrays_to_gpu, parse_cu_files_to_string def batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox, grid_shape, sampling_scheme ): """Compile the CUDA kernel that given the features and the camera matrices estimates the similarities between the features, performs the marched voxels along its ray and does the mapping from depth planes to voxel centers. Arguments: ---------- M: int, maximum number of marched voxels along ray D: int, depth planes (discretization steps) N: int, number of views F: int, feature size (from the Multi-View CNN) H: int, image height W: int, image width, padding: int, the number of zero-padded pixels around the image to estimate the features from the Multi-View CNN bbox: np.array((6,), dtype=np.float32), the coordinates of the bbox that enclose the scene grid_shape: np.array((3,), dtype=np.int32), the dimensionality of the voxel grid sampling_scheme: string, specification of the sampling scheme """ # Set the paths to the files that will be used to construct the cuda kernel file_paths = [ "ray_tracing.cu", "utils.cu", "planes_voxels_mapping.cu", "feature_similarities.cu", "sampling_schemes.cu" ] cu_source_code = parse_cu_files_to_string(file_paths) tpl = Template(cu_source_code + """ __global__ void batch_mvcnn_planes_voxels_with_ray_marching( int n_rays, int * ray_idxs, float * features, float * P, float * P_inv, float * camera_center, float * voxel_grid, int * ray_voxel_indices, int * ray_voxel_count, float * S_new ) { // Compute the thread int r = threadIdx.x + blockDim.x * blockIdx.x; if (r >= n_rays) return; // Estimate the ray_start and ray_end for the current pixel float ray_start[3], ray_end[3]; $sampling_scheme( ray_idxs[r], P_inv, camera_center, ray_start, ray_end ); // Compute the similarities between features float S[$depth_planes]; compute_similarities_per_ray( features, P, ray_start, ray_end, S ); // Estimate the ray_voxel_indices and the ray_voxel_count voxel_traversal( ray_start, ray_end, ray_voxel_indices + r*$max_voxels*3, ray_voxel_count + r ); // Map the depth planes to voxel centers planes_voxels_mapping( voxel_grid, ray_voxel_indices + 3*$max_voxels*r, ray_voxel_count + r, ray_start, ray_end, S, S_new + $max_voxels*r ); } """) mod = SourceModule(tpl.substitute( max_voxels=M, depth_planes=D, n_views=N, padding=padding, features_dimensions=F, width=W, height=H, grid_x=grid_shape[0], grid_y=grid_shape[1], grid_z=grid_shape[2], bbox_min_x=bbox[0], bbox_min_y=bbox[1], bbox_min_z=bbox[2], bbox_max_x=bbox[3], bbox_max_y=bbox[4], bbox_max_z=bbox[5], sampling_scheme=sampling_scheme )) cuda_fp = mod.get_function("batch_mvcnn_planes_voxels_with_ray_marching") cuda_fp.prepare("i" + "P"*9) @all_arrays_to_gpu def fp( ray_idxs, features, P, P_inv, camera_center, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, threads=2048 ): # Assert everything is the right size, shape and dtype assert S_new.shape[1] == M assert len(ray_voxel_count.shape) == 1 assert np.float32 == S_new.dtype assert np.int32 == ray_voxel_count.dtype # Determine the grid and block arguments n_rays = len(S_new) blocks = n_rays / threads + int(n_rays % threads != 0) cuda_fp.prepared_call( (threads, 1), (blocks, 1, 1), np.int32(n_rays), ray_idxs.gpudata, features.gpudata, P.gpudata, P_inv.gpudata, camera_center.gpudata, voxel_grid.gpudata, ray_voxel_indices.gpudata, ray_voxel_count.gpudata, S_new.gpudata ) return fp def batch_mvcnn_voxel_traversal_with_ray_marching_with_depth_estimation( M, D, N, F, H, W, padding, bbox, grid_shape, sampling_scheme ): """Compile the CUDA kernel that given the features and the camera matrices estimates the similarities between the features, performs the marched voxels along its ray and does the mapping from depth planes to voxel centers. Finally directly convert the per voxel depth distribution to a depth map Arguments: ---------- M: int, maximum number of marched voxels along ray D: int, depth planes (discretization steps) N: int, number of views F: int, feature size (from the Multi-View CNN) H: int, image height W: int, image width, padding: int, the number of zero-padded pixels around the image to estimate the features from the Multi-View CNN bbox: np.array((6,), dtype=np.float32), the coordinates of the bbox that enclose the scene grid_shape: np.array((3,), dtype=np.int32), the dimensionality of the voxel grid sampling_scheme: string, specification of the sampling scheme """ # Set the paths to the files that will be used to construct the cuda kernel file_paths = [ "ray_tracing.cu", "utils.cu", "planes_voxels_mapping.cu", "feature_similarities.cu", "sampling_schemes.cu" ] cu_source_code = parse_cu_files_to_string(file_paths) tpl = Template(cu_source_code + """ __global__ void batch_mvcnn_planes_voxels_with_ray_marchingi_with_depth( int n_rays, int * ray_idxs, float * features, float * P, float * P_inv, float * camera_center, float * voxel_grid, int * ray_voxel_indices, int * ray_voxel_count, float * S_new, float * depth_map ) { // Compute the thread int r = threadIdx.x + blockDim.x * blockIdx.x; if (r >= n_rays) return; // Estimate the ray_start and ray_end for the current pixel float ray_start[3], ray_end[3]; $sampling_scheme( ray_idxs[r], P_inv, camera_center, ray_start, ray_end ); // Compute the similarities between features float S[$depth_planes]; compute_similarities_per_ray( features, P, ray_start, ray_end, S ); // Estimate the ray_voxel_indices and the ray_voxel_count voxel_traversal( ray_start, ray_end, ray_voxel_indices + r*$max_voxels*3, ray_voxel_count + r ); // Map the depth planes to voxel centers planes_voxels_mapping( voxel_grid, ray_voxel_indices + 3*$max_voxels*r, ray_voxel_count + r, ray_start, ray_end, S, S_new + $max_voxels*r ); // We need to find the voxel center with the highest probability // based on the S_new float * Sr = S_new + r*$max_voxels; float max = -INFINITY; int max_idx = 0; for (int i=0; i<$max_voxels; i++) { if (Sr[i] > max) { max_idx = i; max = Sr[i]; } } // Associate the voxel_center with id max_idx with a 3D point in // world coordinates int idx_x, idx_y, idx_z; int dim_x = 3*$grid_y*$grid_z; int dim_y = 3*$grid_z; int dim_z = 3; idx_x = ray_voxel_indices[3*$max_voxels*r + 3*max_idx]; idx_y = ray_voxel_indices[3*$max_voxels*r + 3*max_idx + 1]; idx_z = ray_voxel_indices[3*$max_voxels*r + 3*max_idx + 2]; float point[3]; for (int i=0; i<3; i++) { point[i] = voxel_grid[idx_x*dim_x + idx_y*dim_y + idx_z*dim_z + i]; } // Get the distance from the camera center float sum = 0.0; for (int i=0; i<3; i++) { sum += pow(point[i] - camera_center[i], 2); } depth_map[r] = sqrt(sum); } """) mod = SourceModule(tpl.substitute( max_voxels=M, depth_planes=D, n_views=N, padding=padding, features_dimensions=F, width=W, height=H, grid_x=grid_shape[0], grid_y=grid_shape[1], grid_z=grid_shape[2], bbox_min_x=bbox[0], bbox_min_y=bbox[1], bbox_min_z=bbox[2], bbox_max_x=bbox[3], bbox_max_y=bbox[4], bbox_max_z=bbox[5], sampling_scheme=sampling_scheme )) cuda_fp = mod.get_function("batch_mvcnn_planes_voxels_with_ray_marchingi_with_depth") cuda_fp.prepare("i" + "P"*10) @all_arrays_to_gpu def fp( ray_idxs, features, P, P_inv, camera_center, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, depth_map, threads=2048 ): # Assert everything is the right size, shape and dtype assert S_new.shape[1] == M assert len(ray_voxel_count.shape) == 1 assert np.float32 == S_new.dtype assert np.int32 == ray_voxel_count.dtype # Determine the grid and block arguments n_rays = len(S_new) blocks = n_rays / threads + int(n_rays % threads != 0) cuda_fp.prepared_call( (threads, 1), (blocks, 1, 1), np.int32(n_rays), ray_idxs.gpudata, features.gpudata, P.gpudata, P_inv.gpudata, camera_center.gpudata, voxel_grid.gpudata, ray_voxel_indices.gpudata, ray_voxel_count.gpudata, S_new.gpudata, depth_map.gpudata ) return fp def perform_mvcnn_with_ray_marching_and_voxel_mapping( ray_idxs, features, P, P_inv, camera_center, bbox, voxel_grid, ray_voxel_indices, ray_voxel_count, S_new, padding, depth_planes, batch_size=80000, sampling_scheme="sample_in_bbox" ): # Extract the numbers of views (N), the maximum number of marched voxels # (M), the depth planes (D), the image height and the image width _, M, _ = ray_voxel_indices.shape D = depth_planes N, Fh, Fw, F = features.shape H = Fh - padding - 1 W = Fw - padding - 1 # Make sure that P is a list assert len(P) == N # Move to GPU to save some time frome copying features_gpu = to_gpu(features.ravel()) ray_idxs_gpu = to_gpu(ray_idxs.astype(np.int32)) P_gpu = to_gpu(np.array(P).ravel()) P_inv_gpu = to_gpu(P_inv.ravel()) camera_center_gpu = to_gpu(camera_center) s_gpu = to_gpu( np.zeros((batch_size, M), dtype=np.float32) ) ray_voxel_count_gpu = to_gpu( np.zeros((batch_size,), dtype=np.int32) ) ray_voxel_indices_gpu = to_gpu( np.zeros((batch_size, M, 3), dtype=np.int32) ) fp = batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox.ravel(), np.array(voxel_grid.shape[1:]), sampling_scheme ) voxel_grid = voxel_grid.transpose(1, 2, 3, 0).ravel() # Start iterationg over the batch of rays for i in range(0, len(ray_idxs), batch_size): ray_voxel_indices_gpu.fill(0) ray_voxel_count_gpu.fill(0) s_gpu.fill(0) fp( ray_idxs_gpu[i:i+batch_size], features_gpu, P_gpu, P_inv_gpu, camera_center_gpu, voxel_grid, ray_voxel_indices_gpu, ray_voxel_count_gpu, s_gpu, ) idxs = ray_idxs[i:i+batch_size] ray_voxel_indices[idxs] = ray_voxel_indices_gpu.get()[:len(idxs)] ray_voxel_count[idxs] = ray_voxel_count_gpu.get()[:len(idxs)] S_new[idxs] = s_gpu.get()[:len(idxs)] def perform_mvcnn_with_ray_marching_and_voxel_mapping( ray_idxs, features, P, P_inv, camera_center, bbox, voxel_grid, padding, depth_planes, batch_size=80000, sampling_scheme="sample_in_bbox" ): # Extract the numbers of views (N), the maximum number of marched voxels # (M), the depth planes (D), the image height and the image width _, M, _ = ray_voxel_indices.shape D = depth_planes N, Fh, Fw, F = features.shape H = Fh - padding - 1 W = Fw - padding - 1 # Make sure that P is a list assert len(P) == N # Move to GPU to save some time frome copying features_gpu = to_gpu(features.ravel()) ray_idxs_gpu = to_gpu(ray_idxs.astype(np.int32)) P_gpu = to_gpu(np.array(P).ravel()) P_inv_gpu = to_gpu(P_inv.ravel()) camera_center_gpu = to_gpu(camera_center) s_gpu = to_gpu( np.zeros((batch_size, M), dtype=np.float32) ) ray_voxel_count_gpu = to_gpu( np.zeros((batch_size,), dtype=np.int32) ) ray_voxel_indices_gpu = to_gpu( np.zeros((batch_size, M, 3), dtype=np.int32) ) depth_map = to_gpu( np.zeros(H*W, dtype-np.float32) ) fp = batch_mvcnn_voxel_traversal_with_ray_marching( M, D, N, F, H, W, padding, bbox.ravel(), np.array(voxel_grid.shape[1:]), sampling_scheme ) voxel_grid = voxel_grid.transpose(1, 2, 3, 0).ravel() # Start iterationg over the batch of rays for i in range(0, len(ray_idxs), batch_size): ray_voxel_indices_gpu.fill(0) ray_voxel_count_gpu.fill(0) s_gpu.fill(0) fp( ray_idxs_gpu[i:i+batch_size], features_gpu, P_gpu, P_inv_gpu, camera_center_gpu, voxel_grid, ray_voxel_indices_gpu, ray_voxel_count_gpu, s_gpu, depth_map ) return depth_map.get().reshape(W, H).T
0.902526
0.61396
import sys import pkgutil as pkg # pip install PyQt5 to install the library from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QLineEdit, QTextEdit, QListWidget, QComboBox, QVBoxLayout, QHBoxLayout from PyQt5.QtCore import QStringListModel, QFile, QTextStream, Qt from PyQt5.QtGui import QIcon import PyQt5.QtWidgets import PyQt5.QtSql import PyQt5.QtMultimedia import PyQt5.QtWebEngineWidgets import PyQt5.QtWebEngine import PyQt5.QtWebEngineCore import PyQt5.QtPositioning import PyQt5.QtNetwork # Based on your imported modules class HelperText(QTextEdit): def __init__(self, obj): super().__init__() self.setStyleSheet(''' background-color: white; color: black; font-size: 35px; ''') self.resize(1200, 1000) self.setWindowTitle('Help Information') self.setReadOnly(True) help_text = obj.__doc__ self.setText(help_text) class PythonNavigator(QWidget): def __init__(self): super().__init__() self.resize(1600, 1200) self.setWindowTitle('Qt Module Navigation') self.setWindowIcon(self.style().standardIcon(0)) self.module_object = None self.model = None self.layout = QVBoxLayout() available_modules = ('QtWidgets', 'QtCore', 'QtGui', 'QtSql', 'QtNetwork', 'QtPositioning', 'QtWebEngine', 'QtWebEngineCore', 'QtWebEngineWidgets') # combobox widget self.comboModules = QComboBox() self.comboModules.addItems(available_modules) self.comboModules.currentIndexChanged.connect(self.updateModuleList) self.layout.addWidget(self.comboModules) self.search = QLineEdit() self.search.textChanged.connect(self.filter_items) self.layout.addWidget(self.search) layoutLabels = QHBoxLayout() self.layout.addLayout(layoutLabels) self.labelSelectedClass = QLabel('Selected Class: ') self.labelSelectedMemeber= QLabel('Selected Memeber: ') layoutLabels.addWidget(self.labelSelectedClass) layoutLabels.addWidget(self.labelSelectedMemeber) layoutListWidgets = QHBoxLayout() self.layout.addLayout(layoutListWidgets) self.listWidgetClasses = QListWidget() self.listWidgetClasses.verticalScrollBar().setStyleSheet('width: 35px') self.listWidgetClasses.itemSelectionChanged.connect(self.updateClassList) self.listWidgetClasses.doubleClicked.connect(lambda : self.displayHelper('class')) layoutListWidgets.addWidget(self.listWidgetClasses) self.listWidgetMemebers = QListWidget() self.listWidgetMemebers.verticalScrollBar().setStyleSheet('width: 35px') self.listWidgetMemebers.itemSelectionChanged.connect(self.updateMemeberlabel) self.listWidgetMemebers.doubleClicked.connect(lambda : self.displayHelper('member')) layoutListWidgets.addWidget(self.listWidgetMemebers) layoutStatus = QHBoxLayout() self.status = QLabel() buyMeACoffee = QLabel("Buy Me a Coffee --> " + "<a href=\"https://www.paypal.com/paypalme/jiejenn/5\" style=\"color:#d4fcfb\">Click Me</a>") buyMeACoffee.setTextFormat(Qt.RichText) buyMeACoffee.setTextInteractionFlags(Qt.TextBrowserInteraction) buyMeACoffee.setOpenExternalLinks(True) buyMeACoffee.setStyleSheet('color: #ffffff') appVersion = QLabel('Created by <NAME> (v1.2)') layoutStatus.addWidget(self.status) layoutStatus.addStretch() layoutStatus.addWidget(buyMeACoffee, alignment=Qt.AlignRight) layoutStatus.addWidget(appVersion, alignment=Qt.AlignRight) self.layout.addLayout(layoutStatus) self.setLayout(self.layout) self.updateModuleList() def displayHelper(self, by_type: str): if by_type == 'class': class_name = self.listWidgetClasses.currentItem().text() obj = getattr(self.module_object, class_name) elif by_type == 'member': class_name = self.listWidgetClasses.currentItem().text() memeber_name = self.listWidgetMemebers.currentItem().text() obj = getattr(getattr(self.module_object, class_name), memeber_name) else: self.status.setText('No information available') return self.help = HelperText(obj) self.help.show() def updateMemeberlabel(self): try: member_name = self.listWidgetMemebers.currentItem().text() self.labelSelectedMemeber.setText('Selected Memeber: {0}'.format(member_name)) except Exception as e: self.status.setText(str(e)) def updateClassList(self): self.listWidgetMemebers.clear() class_name = self.listWidgetClasses.currentItem().text() try: obj = getattr(self.module_object, class_name) except AttributeError as e: self.status.setText(str(e)) return self.listWidgetMemebers.addItems(dir(obj)) self.status.clear() try: self.labelSelectedClass.setText('Selected Class: {0}'.format(class_name)) except Excepion as e: self.status.setText(str(e)) def updateModuleList(self): module_name = self.comboModules.currentText() self.module_object = sys.modules.get('PyQt5.' + module_name) self.reset_fields() if self.module_object is None: self.status.setText('Information is not available') return module_dir = dir(self.module_object) self.model = QStringListModel() self.model.setStringList(module_dir) self.listWidgetClasses.addItems(module_dir) self.status.clear() def reset_fields(self): self.listWidgetClasses.clear() self.listWidgetMemebers.clear() self.labelSelectedClass.setText('Selected Class: ') self.labelSelectedMemeber.setText('Selected Memeber: ') def filter_items(self): filtered_text = str(self.search.text()).lower() if self.model: for row in range(self.model.rowCount()): if filtered_text in str(self.model.index(row).data()).lower(): self.listWidgetClasses.setRowHidden(row, False) else: self.listWidgetClasses.setRowHidden(row, True) if __name__ == '__main__': app = QApplication(sys.argv) css_file = QFile(r'dark_theme (4k).css') css_file.open(QFile.ReadOnly) stream = QTextStream(css_file) pyNavigator = PythonNavigator() pyNavigator.setStyleSheet(stream.readAll()) pyNavigator.show() try: sys.exit(app.exec_()) except SystemExit: print('Closing Window...')
pyqt5_module_navigator.py
import sys import pkgutil as pkg # pip install PyQt5 to install the library from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QLineEdit, QTextEdit, QListWidget, QComboBox, QVBoxLayout, QHBoxLayout from PyQt5.QtCore import QStringListModel, QFile, QTextStream, Qt from PyQt5.QtGui import QIcon import PyQt5.QtWidgets import PyQt5.QtSql import PyQt5.QtMultimedia import PyQt5.QtWebEngineWidgets import PyQt5.QtWebEngine import PyQt5.QtWebEngineCore import PyQt5.QtPositioning import PyQt5.QtNetwork # Based on your imported modules class HelperText(QTextEdit): def __init__(self, obj): super().__init__() self.setStyleSheet(''' background-color: white; color: black; font-size: 35px; ''') self.resize(1200, 1000) self.setWindowTitle('Help Information') self.setReadOnly(True) help_text = obj.__doc__ self.setText(help_text) class PythonNavigator(QWidget): def __init__(self): super().__init__() self.resize(1600, 1200) self.setWindowTitle('Qt Module Navigation') self.setWindowIcon(self.style().standardIcon(0)) self.module_object = None self.model = None self.layout = QVBoxLayout() available_modules = ('QtWidgets', 'QtCore', 'QtGui', 'QtSql', 'QtNetwork', 'QtPositioning', 'QtWebEngine', 'QtWebEngineCore', 'QtWebEngineWidgets') # combobox widget self.comboModules = QComboBox() self.comboModules.addItems(available_modules) self.comboModules.currentIndexChanged.connect(self.updateModuleList) self.layout.addWidget(self.comboModules) self.search = QLineEdit() self.search.textChanged.connect(self.filter_items) self.layout.addWidget(self.search) layoutLabels = QHBoxLayout() self.layout.addLayout(layoutLabels) self.labelSelectedClass = QLabel('Selected Class: ') self.labelSelectedMemeber= QLabel('Selected Memeber: ') layoutLabels.addWidget(self.labelSelectedClass) layoutLabels.addWidget(self.labelSelectedMemeber) layoutListWidgets = QHBoxLayout() self.layout.addLayout(layoutListWidgets) self.listWidgetClasses = QListWidget() self.listWidgetClasses.verticalScrollBar().setStyleSheet('width: 35px') self.listWidgetClasses.itemSelectionChanged.connect(self.updateClassList) self.listWidgetClasses.doubleClicked.connect(lambda : self.displayHelper('class')) layoutListWidgets.addWidget(self.listWidgetClasses) self.listWidgetMemebers = QListWidget() self.listWidgetMemebers.verticalScrollBar().setStyleSheet('width: 35px') self.listWidgetMemebers.itemSelectionChanged.connect(self.updateMemeberlabel) self.listWidgetMemebers.doubleClicked.connect(lambda : self.displayHelper('member')) layoutListWidgets.addWidget(self.listWidgetMemebers) layoutStatus = QHBoxLayout() self.status = QLabel() buyMeACoffee = QLabel("Buy Me a Coffee --> " + "<a href=\"https://www.paypal.com/paypalme/jiejenn/5\" style=\"color:#d4fcfb\">Click Me</a>") buyMeACoffee.setTextFormat(Qt.RichText) buyMeACoffee.setTextInteractionFlags(Qt.TextBrowserInteraction) buyMeACoffee.setOpenExternalLinks(True) buyMeACoffee.setStyleSheet('color: #ffffff') appVersion = QLabel('Created by <NAME> (v1.2)') layoutStatus.addWidget(self.status) layoutStatus.addStretch() layoutStatus.addWidget(buyMeACoffee, alignment=Qt.AlignRight) layoutStatus.addWidget(appVersion, alignment=Qt.AlignRight) self.layout.addLayout(layoutStatus) self.setLayout(self.layout) self.updateModuleList() def displayHelper(self, by_type: str): if by_type == 'class': class_name = self.listWidgetClasses.currentItem().text() obj = getattr(self.module_object, class_name) elif by_type == 'member': class_name = self.listWidgetClasses.currentItem().text() memeber_name = self.listWidgetMemebers.currentItem().text() obj = getattr(getattr(self.module_object, class_name), memeber_name) else: self.status.setText('No information available') return self.help = HelperText(obj) self.help.show() def updateMemeberlabel(self): try: member_name = self.listWidgetMemebers.currentItem().text() self.labelSelectedMemeber.setText('Selected Memeber: {0}'.format(member_name)) except Exception as e: self.status.setText(str(e)) def updateClassList(self): self.listWidgetMemebers.clear() class_name = self.listWidgetClasses.currentItem().text() try: obj = getattr(self.module_object, class_name) except AttributeError as e: self.status.setText(str(e)) return self.listWidgetMemebers.addItems(dir(obj)) self.status.clear() try: self.labelSelectedClass.setText('Selected Class: {0}'.format(class_name)) except Excepion as e: self.status.setText(str(e)) def updateModuleList(self): module_name = self.comboModules.currentText() self.module_object = sys.modules.get('PyQt5.' + module_name) self.reset_fields() if self.module_object is None: self.status.setText('Information is not available') return module_dir = dir(self.module_object) self.model = QStringListModel() self.model.setStringList(module_dir) self.listWidgetClasses.addItems(module_dir) self.status.clear() def reset_fields(self): self.listWidgetClasses.clear() self.listWidgetMemebers.clear() self.labelSelectedClass.setText('Selected Class: ') self.labelSelectedMemeber.setText('Selected Memeber: ') def filter_items(self): filtered_text = str(self.search.text()).lower() if self.model: for row in range(self.model.rowCount()): if filtered_text in str(self.model.index(row).data()).lower(): self.listWidgetClasses.setRowHidden(row, False) else: self.listWidgetClasses.setRowHidden(row, True) if __name__ == '__main__': app = QApplication(sys.argv) css_file = QFile(r'dark_theme (4k).css') css_file.open(QFile.ReadOnly) stream = QTextStream(css_file) pyNavigator = PythonNavigator() pyNavigator.setStyleSheet(stream.readAll()) pyNavigator.show() try: sys.exit(app.exec_()) except SystemExit: print('Closing Window...')
0.181916
0.063715
import os import pandas as pd import geopandas as gpd files = ['prop_urban_2000_2010.csv', 'pop_women_2010.csv', 'pop_men_2010.csv', 'idhm_2000_2010.csv', 'estimativas_pop.csv', 'interest_real.csv', 'num_people_age_gender_AP_2010.csv', 'qualification_APs_2010.csv', 'firms_by_APs2010_t0_full.csv', 'firms_by_APs2010_t1_full.csv', 'average_num_members_families_2010.csv' ] def read_data(path, sep=';'): return pd.read_csv(path, sep=sep) def read_mun(data, municipalities, col='cod_mun'): return data[data[col].isin(municipalities)] def read_data_aps(data, municipalities, col='AP'): return data[data[col].astype(str).str[:7].isin([str(m) for m in municipalities])] def descriptive_stats(data, col): print(col) print('max', data[col].max()) print('min', data[col].min()) print('mean', data[col].mean()) print('std', data[col].std()) print('obs', len(data[col])) print('\n') if __name__ == '__main__': p = 'input' acp = 'BRASILIA' mun = pd.read_csv('input/ACPs_MUN_CODES.csv', sep=';') mun = mun[mun['ACPs'] == acp].cod_mun.to_list() f0 = read_data(os.path.join(p, files[0])) f0 = read_mun(f0, mun) descriptive_stats(f0, '2010') f1 = read_data(os.path.join(p, files[1])) f1 = read_mun(f1, mun) f1c = f1.drop('cod_mun', axis=1) f2 = read_data(os.path.join(p, files[2])) f2 = read_mun(f2, mun) f2c = f2.drop('cod_mun', axis=1) f3 = read_data(os.path.join(p, files[3])) f3 = read_mun(f3, [2010], 'year') f3 = read_mun(f3, mun) descriptive_stats(f3, 'idhm') f4 = read_data(os.path.join(p, files[4]), ',') f4 = read_mun(f4, mun, 'mun_code') f4c = f4.drop('mun_code', axis=1) f5 = read_data(os.path.join(p, files[5]), ';') f5d = f5.loc[:240] descriptive_stats(f5d, 'mortgage') f6 = read_data(os.path.join(p, files[6]), ';') f6 = read_mun(f6, mun, 'AREAP') descriptive_stats(f6, 'num_people') f7 = read_data(os.path.join(p, files[7]), ',') f7 = read_data_aps(f7, mun, 'code') f7c = f7.drop('code', axis=1) f8 = read_data(os.path.join(p, files[8])) f9 = read_data(os.path.join(p, files[9])) f8 = read_data_aps(f8, mun, 'AP') f9 = read_data_aps(f9, mun, 'AP') descriptive_stats(f8, 'num_firms') descriptive_stats(f9, 'num_firms') f10 = read_data(os.path.join(p, files[10]), ',') f10 = read_data_aps(f10, mun, 'AREAP') descriptive_stats(f10, 'avg_num_people') p1 = 'shapes/2010/areas/DF.shp' geo_df = gpd.read_file(os.path.join(p, p1)) p2 = 'shapes/2010/areas/GO.shp' geo_go = gpd.read_file(os.path.join(p, p2)) geo_go = read_data_aps(geo_go, mun, 'mun_code') # STATE-LEVEL, GENDER years = ['age', '2021', '2022', '2023', '2024', '2025', '2026', '2027', '2028', '2029', '2030'] out = pd.DataFrame() for state in ['DF', 'GO']: p3 = f'fertility/fertility_{state}.csv' t = pd.read_csv(os.path.join(p, p3), ';') t = t.drop(years, axis=1) out = pd.concat([out, t], axis=0) # Mortality years = ['age', '2021', '2022', '2023', '2024', '2025', '2026', '2027', '2028', '2029', '2030'] out = pd.DataFrame() for state in ['DF', 'GO']: for sex in ['men', 'women']: p3 = f'mortality/mortality_{sex}_{state}.csv' t = pd.read_csv(os.path.join(p, p3), ';') t = t.drop(years, axis=1) out = pd.concat([out, t], axis=0) # FPM out = pd.DataFrame() for state in ['DF', 'GO']: p3 = f'fpm/{state}.csv' t = pd.read_csv(os.path.join(p, p3), ',') t = read_mun(t, mun, 'cod') out = pd.concat([out, t], axis=0)
auxiliary/read_input_data.py
import os import pandas as pd import geopandas as gpd files = ['prop_urban_2000_2010.csv', 'pop_women_2010.csv', 'pop_men_2010.csv', 'idhm_2000_2010.csv', 'estimativas_pop.csv', 'interest_real.csv', 'num_people_age_gender_AP_2010.csv', 'qualification_APs_2010.csv', 'firms_by_APs2010_t0_full.csv', 'firms_by_APs2010_t1_full.csv', 'average_num_members_families_2010.csv' ] def read_data(path, sep=';'): return pd.read_csv(path, sep=sep) def read_mun(data, municipalities, col='cod_mun'): return data[data[col].isin(municipalities)] def read_data_aps(data, municipalities, col='AP'): return data[data[col].astype(str).str[:7].isin([str(m) for m in municipalities])] def descriptive_stats(data, col): print(col) print('max', data[col].max()) print('min', data[col].min()) print('mean', data[col].mean()) print('std', data[col].std()) print('obs', len(data[col])) print('\n') if __name__ == '__main__': p = 'input' acp = 'BRASILIA' mun = pd.read_csv('input/ACPs_MUN_CODES.csv', sep=';') mun = mun[mun['ACPs'] == acp].cod_mun.to_list() f0 = read_data(os.path.join(p, files[0])) f0 = read_mun(f0, mun) descriptive_stats(f0, '2010') f1 = read_data(os.path.join(p, files[1])) f1 = read_mun(f1, mun) f1c = f1.drop('cod_mun', axis=1) f2 = read_data(os.path.join(p, files[2])) f2 = read_mun(f2, mun) f2c = f2.drop('cod_mun', axis=1) f3 = read_data(os.path.join(p, files[3])) f3 = read_mun(f3, [2010], 'year') f3 = read_mun(f3, mun) descriptive_stats(f3, 'idhm') f4 = read_data(os.path.join(p, files[4]), ',') f4 = read_mun(f4, mun, 'mun_code') f4c = f4.drop('mun_code', axis=1) f5 = read_data(os.path.join(p, files[5]), ';') f5d = f5.loc[:240] descriptive_stats(f5d, 'mortgage') f6 = read_data(os.path.join(p, files[6]), ';') f6 = read_mun(f6, mun, 'AREAP') descriptive_stats(f6, 'num_people') f7 = read_data(os.path.join(p, files[7]), ',') f7 = read_data_aps(f7, mun, 'code') f7c = f7.drop('code', axis=1) f8 = read_data(os.path.join(p, files[8])) f9 = read_data(os.path.join(p, files[9])) f8 = read_data_aps(f8, mun, 'AP') f9 = read_data_aps(f9, mun, 'AP') descriptive_stats(f8, 'num_firms') descriptive_stats(f9, 'num_firms') f10 = read_data(os.path.join(p, files[10]), ',') f10 = read_data_aps(f10, mun, 'AREAP') descriptive_stats(f10, 'avg_num_people') p1 = 'shapes/2010/areas/DF.shp' geo_df = gpd.read_file(os.path.join(p, p1)) p2 = 'shapes/2010/areas/GO.shp' geo_go = gpd.read_file(os.path.join(p, p2)) geo_go = read_data_aps(geo_go, mun, 'mun_code') # STATE-LEVEL, GENDER years = ['age', '2021', '2022', '2023', '2024', '2025', '2026', '2027', '2028', '2029', '2030'] out = pd.DataFrame() for state in ['DF', 'GO']: p3 = f'fertility/fertility_{state}.csv' t = pd.read_csv(os.path.join(p, p3), ';') t = t.drop(years, axis=1) out = pd.concat([out, t], axis=0) # Mortality years = ['age', '2021', '2022', '2023', '2024', '2025', '2026', '2027', '2028', '2029', '2030'] out = pd.DataFrame() for state in ['DF', 'GO']: for sex in ['men', 'women']: p3 = f'mortality/mortality_{sex}_{state}.csv' t = pd.read_csv(os.path.join(p, p3), ';') t = t.drop(years, axis=1) out = pd.concat([out, t], axis=0) # FPM out = pd.DataFrame() for state in ['DF', 'GO']: p3 = f'fpm/{state}.csv' t = pd.read_csv(os.path.join(p, p3), ',') t = read_mun(t, mun, 'cod') out = pd.concat([out, t], axis=0)
0.272025
0.229298
from unittest import mock from django.apps import apps from django.test import SimpleTestCase, TestCase from wagtail.core import blocks from wagtail.core.models import Page from wagtail.tests.testapp.models import StreamPage from v1.tests.wagtail_pages.helpers import save_new_page from v1.util.migrations import ( get_streamfield_data, is_page, migrate_block, migrate_page_types_and_fields, migrate_stream_field, migrate_streamfield_data, set_streamfield_data, ) class MigrationsUtilTestCase(TestCase): def setUp(self): self.root = Page.objects.get(slug="cfgov") self.page = StreamPage(title="Test Page", slug="testpage") save_new_page(self.page, self.root) set_streamfield_data( self.page, "body", [{"type": "text", "value": "some text"}] ) self.revision = self.page.save_revision() self.page.save() def test_is_page_page(self): """Test that a page is verifably a page""" self.assertTrue(is_page(self.page)) def test_is_page_revision(self): """Test that a revision is verifiably not a page""" self.assertFalse(is_page(self.revision)) def test_get_streamfield_data_page(self): """Test that get_streamfield_data fetches the data correctly from a page object.""" data = get_streamfield_data(self.page, "body") self.assertEqual(data[0]["type"], "text") self.assertEqual(data[0]["value"], "some text") def test_get_streamfield_data_revision(self): """Test that get_streamfield_data fetches the data correctly from a revision object.""" data = get_streamfield_data(self.revision, "body") self.assertEqual(data[0]["type"], "text") self.assertEqual(data[0]["value"], "some text") def test_get_streamfield_data_revision_no_field(self): """Test that get an empty list for fields that don't exist on revisions""" data = get_streamfield_data(self.revision, "notbody") self.assertEqual(data, []) def test_set_streamfield_data_page(self): """Test that set_streamfield_data correctly sets data for a given page and saves the page.""" new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.page, "body", new_data) data = self.page.body.raw_data self.assertEqual(data[0]["value"], "new text") def test_set_streamfield_data_revision(self): """Test that set_streamfield_data correctly sets data for a given revision and saves the page.""" new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.revision, "body", new_data) data = self.revision.as_page_object().body.raw_data self.assertEqual(data[0]["value"], "new text") def test_set_streamfield_data_page_without_committing(self): """Test that set_streamfield_data correctly sets data for a given page and saves the page.""" self.page.save = mock.Mock() new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.page, "body", new_data, commit=False) self.assertEqual(self.page.save.mock_calls, []) def test_migrate_stream_field_page(self): """Test that the migrate_stream_field function correctly gets old data, calls the mapper function, and stores new data based on the mapper results.""" # Mock the field mapper migration function. We'll inspect the # call to this and ensure the return value makes it to # set_streamfield_data. mapper = mock.Mock(return_value="new text") migrate_stream_field(self.page, "body", "text", mapper) mapper.assert_called_with(self.page, "some text") data = self.page.body.raw_data self.assertEqual(data[0]["value"], "new text") def test_migrate_stream_field_revision(self): """Test that the migrate_stream_field function correctly gets old data, calls the mapper function, and stores new data based on the mapper results.""" # Mock the field mapper migration function. We'll inspect the # call to this and ensure the return value makes it to # set_streamfield_data. mapper = mock.Mock(return_value="new text") migrate_stream_field(self.revision, "body", "text", mapper) mapper.assert_called_with(self.revision, "some text") data = self.revision.as_page_object().body.raw_data self.assertEqual(data[0]["value"], "new text") @mock.patch("v1.util.migrations.set_streamfield_data") def test_migrate_stream_field_not_migrated( self, mock_set_streamfield_data ): """Test that the migrate_stream_field function correctly ignores a field that does not have the correct type and shouldn't be migrated.""" mapper = mock.Mock() migrate_stream_field(self.page, "body", "other_type", mapper) # The mapper should not be called mapper.assert_not_called() # set_streamfield_data should not be called mock_set_streamfield_data.assert_not_called() @mock.patch("v1.util.migrations.migrate_stream_field") def test_migrate_page_types_and_fields(self, mock_migrate_stream_field): """Test that the migrate_page_types_and_fields function correctly calls the migrate_stream_field function with the appropriate values from the list of page types and fields.""" mapper = mock.Mock() page_types_and_fields = [ ("tests", "StreamPage", "body", "text"), ] migrate_page_types_and_fields(apps, page_types_and_fields, mapper) # Check that migrate_stream_field was correct called with the page mock_migrate_stream_field.assert_any_call( self.page, "body", "text", mapper ) # Check that the revision lookup happened correctly and that the # revision stream field was correctly migrated. mock_migrate_stream_field.assert_any_call( self.revision, "body", "text", mapper ) class ChildStructBlock(blocks.StructBlock): text = blocks.CharBlock() class ChildStreamBlock(blocks.StreamBlock): text = blocks.CharBlock() class TestStreamBlock(blocks.StreamBlock): text = blocks.CharBlock() texts = blocks.ListBlock(blocks.CharBlock()) struct = ChildStructBlock() stream = ChildStreamBlock() class MigrateDataTests(SimpleTestCase): def setUp(self): self.page = "mock" self.original_data = [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ] self.block = TestStreamBlock() self.value = self.block.to_python(self.original_data) self.data = self.value.raw_data @staticmethod def mapper(page_or_revision, data): return "mapped" def test_migrate_data_empty_block_path(self): modified_data, migrated = migrate_streamfield_data( self.page, "", self.data, self.mapper ) self.assertFalse(migrated) self.assertSequenceEqual(modified_data, self.original_data) def test_migrate_data_invalid_block_path(self): modified_data, migrated = migrate_streamfield_data( self.page, "invalid", self.data, self.mapper ) self.assertFalse(migrated) self.assertSequenceEqual(modified_data, self.original_data) def test_migrate_data_raises_valueerror_on_bad_data(self): with self.assertRaises(ValueError): migrate_streamfield_data( self.page, ("parent", "child"), [{"type": "parent", "value": "invalid"}], self.mapper, ) def test_migrate_data_top_level_block(self): modified_data, migrated = migrate_streamfield_data( self.page, "text", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "mapped"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_listblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "texts", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["mapped", "mapped", "mapped"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_structblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "struct", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": "mapped"}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_structblock_child(self): modified_data, migrated = migrate_streamfield_data( self.page, ("struct", "text"), self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "mapped"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_streamblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "stream", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, {"type": "stream", "value": "mapped"}, ], ) def test_migrate_data_streamblock_child(self): modified_data, migrated = migrate_streamfield_data( self.page, ("stream", "text"), self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "mapped"}, {"type": "text", "value": "mapped"}, ], }, ], ) def test_migrate_block_migrated_true_if_data_is_modified(self): def mapper_modifies_data(page_or_revision, data): data["b"] = "d" return data modified_data, migrated = migrate_block( self.page, ["a"], {"a": {"b": "c"}}, mapper_modifies_data ) self.assertTrue(migrated) self.assertEqual(modified_data, {"a": {"b": "d"}}) def test_migrate_block_migrated_false_if_data_is_modified(self): def mapper_leaves_data_alone(page_or_revision, data): return data modified_data, migrated = migrate_block( self.page, ["a"], {"a": {"b": "c"}}, mapper_leaves_data_alone ) self.assertFalse(migrated) self.assertEqual(modified_data, {"a": {"b": "c"}})
cfgov/v1/tests/util/test_migrations.py
from unittest import mock from django.apps import apps from django.test import SimpleTestCase, TestCase from wagtail.core import blocks from wagtail.core.models import Page from wagtail.tests.testapp.models import StreamPage from v1.tests.wagtail_pages.helpers import save_new_page from v1.util.migrations import ( get_streamfield_data, is_page, migrate_block, migrate_page_types_and_fields, migrate_stream_field, migrate_streamfield_data, set_streamfield_data, ) class MigrationsUtilTestCase(TestCase): def setUp(self): self.root = Page.objects.get(slug="cfgov") self.page = StreamPage(title="Test Page", slug="testpage") save_new_page(self.page, self.root) set_streamfield_data( self.page, "body", [{"type": "text", "value": "some text"}] ) self.revision = self.page.save_revision() self.page.save() def test_is_page_page(self): """Test that a page is verifably a page""" self.assertTrue(is_page(self.page)) def test_is_page_revision(self): """Test that a revision is verifiably not a page""" self.assertFalse(is_page(self.revision)) def test_get_streamfield_data_page(self): """Test that get_streamfield_data fetches the data correctly from a page object.""" data = get_streamfield_data(self.page, "body") self.assertEqual(data[0]["type"], "text") self.assertEqual(data[0]["value"], "some text") def test_get_streamfield_data_revision(self): """Test that get_streamfield_data fetches the data correctly from a revision object.""" data = get_streamfield_data(self.revision, "body") self.assertEqual(data[0]["type"], "text") self.assertEqual(data[0]["value"], "some text") def test_get_streamfield_data_revision_no_field(self): """Test that get an empty list for fields that don't exist on revisions""" data = get_streamfield_data(self.revision, "notbody") self.assertEqual(data, []) def test_set_streamfield_data_page(self): """Test that set_streamfield_data correctly sets data for a given page and saves the page.""" new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.page, "body", new_data) data = self.page.body.raw_data self.assertEqual(data[0]["value"], "new text") def test_set_streamfield_data_revision(self): """Test that set_streamfield_data correctly sets data for a given revision and saves the page.""" new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.revision, "body", new_data) data = self.revision.as_page_object().body.raw_data self.assertEqual(data[0]["value"], "new text") def test_set_streamfield_data_page_without_committing(self): """Test that set_streamfield_data correctly sets data for a given page and saves the page.""" self.page.save = mock.Mock() new_data = [{"type": "text", "value": "new text"}] set_streamfield_data(self.page, "body", new_data, commit=False) self.assertEqual(self.page.save.mock_calls, []) def test_migrate_stream_field_page(self): """Test that the migrate_stream_field function correctly gets old data, calls the mapper function, and stores new data based on the mapper results.""" # Mock the field mapper migration function. We'll inspect the # call to this and ensure the return value makes it to # set_streamfield_data. mapper = mock.Mock(return_value="new text") migrate_stream_field(self.page, "body", "text", mapper) mapper.assert_called_with(self.page, "some text") data = self.page.body.raw_data self.assertEqual(data[0]["value"], "new text") def test_migrate_stream_field_revision(self): """Test that the migrate_stream_field function correctly gets old data, calls the mapper function, and stores new data based on the mapper results.""" # Mock the field mapper migration function. We'll inspect the # call to this and ensure the return value makes it to # set_streamfield_data. mapper = mock.Mock(return_value="new text") migrate_stream_field(self.revision, "body", "text", mapper) mapper.assert_called_with(self.revision, "some text") data = self.revision.as_page_object().body.raw_data self.assertEqual(data[0]["value"], "new text") @mock.patch("v1.util.migrations.set_streamfield_data") def test_migrate_stream_field_not_migrated( self, mock_set_streamfield_data ): """Test that the migrate_stream_field function correctly ignores a field that does not have the correct type and shouldn't be migrated.""" mapper = mock.Mock() migrate_stream_field(self.page, "body", "other_type", mapper) # The mapper should not be called mapper.assert_not_called() # set_streamfield_data should not be called mock_set_streamfield_data.assert_not_called() @mock.patch("v1.util.migrations.migrate_stream_field") def test_migrate_page_types_and_fields(self, mock_migrate_stream_field): """Test that the migrate_page_types_and_fields function correctly calls the migrate_stream_field function with the appropriate values from the list of page types and fields.""" mapper = mock.Mock() page_types_and_fields = [ ("tests", "StreamPage", "body", "text"), ] migrate_page_types_and_fields(apps, page_types_and_fields, mapper) # Check that migrate_stream_field was correct called with the page mock_migrate_stream_field.assert_any_call( self.page, "body", "text", mapper ) # Check that the revision lookup happened correctly and that the # revision stream field was correctly migrated. mock_migrate_stream_field.assert_any_call( self.revision, "body", "text", mapper ) class ChildStructBlock(blocks.StructBlock): text = blocks.CharBlock() class ChildStreamBlock(blocks.StreamBlock): text = blocks.CharBlock() class TestStreamBlock(blocks.StreamBlock): text = blocks.CharBlock() texts = blocks.ListBlock(blocks.CharBlock()) struct = ChildStructBlock() stream = ChildStreamBlock() class MigrateDataTests(SimpleTestCase): def setUp(self): self.page = "mock" self.original_data = [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ] self.block = TestStreamBlock() self.value = self.block.to_python(self.original_data) self.data = self.value.raw_data @staticmethod def mapper(page_or_revision, data): return "mapped" def test_migrate_data_empty_block_path(self): modified_data, migrated = migrate_streamfield_data( self.page, "", self.data, self.mapper ) self.assertFalse(migrated) self.assertSequenceEqual(modified_data, self.original_data) def test_migrate_data_invalid_block_path(self): modified_data, migrated = migrate_streamfield_data( self.page, "invalid", self.data, self.mapper ) self.assertFalse(migrated) self.assertSequenceEqual(modified_data, self.original_data) def test_migrate_data_raises_valueerror_on_bad_data(self): with self.assertRaises(ValueError): migrate_streamfield_data( self.page, ("parent", "child"), [{"type": "parent", "value": "invalid"}], self.mapper, ) def test_migrate_data_top_level_block(self): modified_data, migrated = migrate_streamfield_data( self.page, "text", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "mapped"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_listblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "texts", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["mapped", "mapped", "mapped"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_structblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "struct", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": "mapped"}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_structblock_child(self): modified_data, migrated = migrate_streamfield_data( self.page, ("struct", "text"), self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "mapped"}}, { "type": "stream", "value": [ {"type": "text", "value": "foo"}, {"type": "text", "value": "bar"}, ], }, ], ) def test_migrate_data_streamblock(self): modified_data, migrated = migrate_streamfield_data( self.page, "stream", self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, {"type": "stream", "value": "mapped"}, ], ) def test_migrate_data_streamblock_child(self): modified_data, migrated = migrate_streamfield_data( self.page, ("stream", "text"), self.data, self.mapper ) self.assertTrue(migrated) self.assertSequenceEqual( modified_data, [ {"type": "text", "value": "foo"}, {"type": "texts", "value": ["foo", "bar", "baz"]}, {"type": "struct", "value": {"text": "bar"}}, { "type": "stream", "value": [ {"type": "text", "value": "mapped"}, {"type": "text", "value": "mapped"}, ], }, ], ) def test_migrate_block_migrated_true_if_data_is_modified(self): def mapper_modifies_data(page_or_revision, data): data["b"] = "d" return data modified_data, migrated = migrate_block( self.page, ["a"], {"a": {"b": "c"}}, mapper_modifies_data ) self.assertTrue(migrated) self.assertEqual(modified_data, {"a": {"b": "d"}}) def test_migrate_block_migrated_false_if_data_is_modified(self): def mapper_leaves_data_alone(page_or_revision, data): return data modified_data, migrated = migrate_block( self.page, ["a"], {"a": {"b": "c"}}, mapper_leaves_data_alone ) self.assertFalse(migrated) self.assertEqual(modified_data, {"a": {"b": "c"}})
0.781622
0.408395
import pandas as pd from humor_features.utils import * class HumorFeatures: def __init__(self, dataset = None): self.df = dataset self.df["text"] = self.df["text"].str.replace("!"," !",regex = False) self.df["text"] = self.df["text"].str.replace("?"," ?",regex = False) self.df["text"] = self.df["text"].str.replace("."," .",regex = False) self.df["text"] = self.df["text"].str.replace(","," ,",regex = False) self.df['textSeq'] = self.df["text"].apply(lambda ind:text_to_word_sequence(ind,filters='%\n\t01245679',lower=False, split=' ')) self.df['textSeq'] = self.df['textSeq'].apply(lambda ind:[word for word in ind if not word in stopwords.words()]) self.df['textSeq'] = self.df['textSeq'].apply(lambda ind:lemmatizeSeq(ind)) #self.df['lenSeq'] = self.df["textSeq"].apply(lambda ind: len(ind)) ## Structure def getNumWords(self): self.df['nbOfWords'] = self.df["textSeq"].apply(lambda ind:len(np.unique(ind))) return self def getMeanWordLength(self): self.df['meanWordLength'] = self.df["textSeq"].apply(lambda ind:getMeanWordLength(ind)) return self def getTags(self): self.df['tags'] = self.df["textSeq"].apply(lambda ind: np.array(pos_tag(ind,tagset='universal'))) self.df['tagsNameChange'] = self.df['tags'].apply(lambda tagSeq: np.apply_along_axis(tagRenamer,1,tagSeq) ) self.df['tagged'] = self.df["textSeq"].apply(lambda ind: FreqDist(tag for (word,tag) in pos_tag(ind,tagset='universal'))) return self def getGrammarRatios(self): self.df[['Adj ratio','Adv ratio','Noun ratio','Verb ratio']] = pd.DataFrame(self.df['tagged'].apply(getRatios).tolist(), index= self.df.index) return self def getPuncCount(self): self.df[['N. commas','N. fullStops','N. exclamation','N. qstMark']] = pd.DataFrame(self.df['textSeq'].apply(getPuncCount).tolist(),index = self.df.index) return self def getEmojiScore(self): self.df["EmojisScore"] = self.df['text'].apply(emojiScorer) return self def getLaughExprCount(self): self.df['laughingExpr'] = self.df['text'].apply(getLaughingExprCounter) return self def getStructure(self): return self.getNumWords().getMeanWordLength().getTags().getGrammarRatios().getPuncCount().getEmojiScore().getLaughExprCount() ## Frequency def getFreqMeanMin(self): self.df[["freqMean","freqMin"]] = pd.DataFrame(self.df['textSeq'].apply(getWordsFreq).tolist(),index = self.df.index) return self def getFreqGap(self): self.df["freqGap"] = self.df['freqMean'] - self.df['freqMin'] return self def getFreq(self): return self.getFreqMeanMin().getFreqGap() ## Written - Spoken def getSpokenFreqs(self): self.df[["freqSpokenMean", "freqSpokenMin"]] = pd.DataFrame(self.df['textSeq'].apply(getSpokenSeq).tolist(),index = self.df.index) return self def getWrittenFreqs(self): self.df[["freqWrittenMean", "freqWrittenMin"]] = pd.DataFrame(self.df['textSeq'].apply(getWrittenSeq).tolist(),index = self.df.index) return self def getWrittenFreqGap(self): self.df["freqWrittenGap"] = self.df['freqWrittenMean'] - self.df['freqWrittenMin'] return self def getSpokenFreqGap(self): self.df["freqSpokenGap"] = self.df['freqSpokenMean'] - self.df['freqSpokenMin'] return self def getWrittenSpoken(self): return self.getSpokenFreqs().getWrittenFreqs().getWrittenFreqGap().getSpokenFreqGap() ## Synonyms def getSynoLowerGreater(self): self.df[["synoLower","synoGreater","wordLowestSyno","wordGreatestSyno"]] = pd.DataFrame(self.df["textSeq"].apply(getSynoFeaturesSeq).tolist(),index = self.df.index) return self def getSynoGaps(self): self.df["synoLowerGap"] = self.df["wordLowestSyno"] - self.df["synoLower"] self.df["synoGreaterGap"] = self.df["wordGreatestSyno"] - self.df["synoGreater"] return self def getSyno(self): return self.getSynoLowerGreater().getSynoGaps() ## Sentiment def getPSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['posSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[0] ) return self def getNSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['negSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[1] ) return self def getObjSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['objSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[2] ) return self def getPSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['posSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[0] ) return self def getNSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['negSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[1] ) return self def getObjSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['objSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[2] ) return self def getPNSentiGap(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns and not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) if not 'posSentiSum' in self.df.columns: getPSentiSum() if not 'negSentiSum' in self.df.columns: getNSentiSum() self.df['posNegGap'] = self.df["posSentiSum"] + self.df["negSentiSum"] return self def getSentiment(self): return self.getPSentiSum().getNSentiSum().getObjSentiSum().getPSentiMean().getNSentiMean().getObjSentiMean().getPNSentiGap() ## Synsets def getSynsets(self): self.df[["synsetMean","synsetMax","synsetGap"]] = pd.DataFrame(self.df["textSeq"].apply(getSynsetsMeanMaxGap).tolist(),index = self.df.index) return self def getAllFeatures(self): return self.getStructure().getFreq().getWrittenSpoken().getSyno().getSynsets().getSentiment().df
humor_features/HumorFeatures.py
import pandas as pd from humor_features.utils import * class HumorFeatures: def __init__(self, dataset = None): self.df = dataset self.df["text"] = self.df["text"].str.replace("!"," !",regex = False) self.df["text"] = self.df["text"].str.replace("?"," ?",regex = False) self.df["text"] = self.df["text"].str.replace("."," .",regex = False) self.df["text"] = self.df["text"].str.replace(","," ,",regex = False) self.df['textSeq'] = self.df["text"].apply(lambda ind:text_to_word_sequence(ind,filters='%\n\t01245679',lower=False, split=' ')) self.df['textSeq'] = self.df['textSeq'].apply(lambda ind:[word for word in ind if not word in stopwords.words()]) self.df['textSeq'] = self.df['textSeq'].apply(lambda ind:lemmatizeSeq(ind)) #self.df['lenSeq'] = self.df["textSeq"].apply(lambda ind: len(ind)) ## Structure def getNumWords(self): self.df['nbOfWords'] = self.df["textSeq"].apply(lambda ind:len(np.unique(ind))) return self def getMeanWordLength(self): self.df['meanWordLength'] = self.df["textSeq"].apply(lambda ind:getMeanWordLength(ind)) return self def getTags(self): self.df['tags'] = self.df["textSeq"].apply(lambda ind: np.array(pos_tag(ind,tagset='universal'))) self.df['tagsNameChange'] = self.df['tags'].apply(lambda tagSeq: np.apply_along_axis(tagRenamer,1,tagSeq) ) self.df['tagged'] = self.df["textSeq"].apply(lambda ind: FreqDist(tag for (word,tag) in pos_tag(ind,tagset='universal'))) return self def getGrammarRatios(self): self.df[['Adj ratio','Adv ratio','Noun ratio','Verb ratio']] = pd.DataFrame(self.df['tagged'].apply(getRatios).tolist(), index= self.df.index) return self def getPuncCount(self): self.df[['N. commas','N. fullStops','N. exclamation','N. qstMark']] = pd.DataFrame(self.df['textSeq'].apply(getPuncCount).tolist(),index = self.df.index) return self def getEmojiScore(self): self.df["EmojisScore"] = self.df['text'].apply(emojiScorer) return self def getLaughExprCount(self): self.df['laughingExpr'] = self.df['text'].apply(getLaughingExprCounter) return self def getStructure(self): return self.getNumWords().getMeanWordLength().getTags().getGrammarRatios().getPuncCount().getEmojiScore().getLaughExprCount() ## Frequency def getFreqMeanMin(self): self.df[["freqMean","freqMin"]] = pd.DataFrame(self.df['textSeq'].apply(getWordsFreq).tolist(),index = self.df.index) return self def getFreqGap(self): self.df["freqGap"] = self.df['freqMean'] - self.df['freqMin'] return self def getFreq(self): return self.getFreqMeanMin().getFreqGap() ## Written - Spoken def getSpokenFreqs(self): self.df[["freqSpokenMean", "freqSpokenMin"]] = pd.DataFrame(self.df['textSeq'].apply(getSpokenSeq).tolist(),index = self.df.index) return self def getWrittenFreqs(self): self.df[["freqWrittenMean", "freqWrittenMin"]] = pd.DataFrame(self.df['textSeq'].apply(getWrittenSeq).tolist(),index = self.df.index) return self def getWrittenFreqGap(self): self.df["freqWrittenGap"] = self.df['freqWrittenMean'] - self.df['freqWrittenMin'] return self def getSpokenFreqGap(self): self.df["freqSpokenGap"] = self.df['freqSpokenMean'] - self.df['freqSpokenMin'] return self def getWrittenSpoken(self): return self.getSpokenFreqs().getWrittenFreqs().getWrittenFreqGap().getSpokenFreqGap() ## Synonyms def getSynoLowerGreater(self): self.df[["synoLower","synoGreater","wordLowestSyno","wordGreatestSyno"]] = pd.DataFrame(self.df["textSeq"].apply(getSynoFeaturesSeq).tolist(),index = self.df.index) return self def getSynoGaps(self): self.df["synoLowerGap"] = self.df["wordLowestSyno"] - self.df["synoLower"] self.df["synoGreaterGap"] = self.df["wordGreatestSyno"] - self.df["synoGreater"] return self def getSyno(self): return self.getSynoLowerGreater().getSynoGaps() ## Sentiment def getPSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['posSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[0] ) return self def getNSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['negSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[1] ) return self def getObjSentiSum(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) self.df['objSentiSum'] = self.df["posNegObjSentiSum"].apply(lambda ind:ind[2] ) return self def getPSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['posSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[0] ) return self def getNSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['negSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[1] ) return self def getObjSentiMean(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns or not 'posNegObjSentiMean' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiMean"] = self.df['posNegObjSenti'].apply(lambda ind:ind.mean(axis=0) ) self.df['objSentiMean'] = self.df["posNegObjSentiMean"].apply(lambda ind:ind[2] ) return self def getPNSentiGap(self): if not 'tags' in self.df.columns: self.getTags() if not 'posNegObjSenti' in self.df.columns and not 'posNegObjSentiSum' in self.df.columns: self.df['posNegObjSenti'] = self.df['tagsNameChange'].apply(lambda tagSeq: np.apply_along_axis(sentimentFeatures,1,tagSeq) ) self.df["posNegObjSentiSum"] = self.df['posNegObjSenti'].apply(lambda ind:ind.sum(axis=0) ) if not 'posSentiSum' in self.df.columns: getPSentiSum() if not 'negSentiSum' in self.df.columns: getNSentiSum() self.df['posNegGap'] = self.df["posSentiSum"] + self.df["negSentiSum"] return self def getSentiment(self): return self.getPSentiSum().getNSentiSum().getObjSentiSum().getPSentiMean().getNSentiMean().getObjSentiMean().getPNSentiGap() ## Synsets def getSynsets(self): self.df[["synsetMean","synsetMax","synsetGap"]] = pd.DataFrame(self.df["textSeq"].apply(getSynsetsMeanMaxGap).tolist(),index = self.df.index) return self def getAllFeatures(self): return self.getStructure().getFreq().getWrittenSpoken().getSyno().getSynsets().getSentiment().df
0.458591
0.171616
import argparse from typing import List, Union import pandas as pd from zvt.contract import IntervalLevel from zvt.utils.pd_utils import pd_is_not_null from zvt.utils.time_utils import now_pd_timestamp from zvt.api import get_entities, Stock from zvt.api.quote import get_zen_factor_schema from zvt.factors.factor import Accumulator, Transformer from zvt.factors.technical_factor import TechnicalFactor def is_including(s1: pd.Series, s2: pd.Series): if (s1['high'] >= s2['high']) and (s1['low'] <= s2['low']): return True if (s1['high'] <= s2['high']) and (s1['low'] >= s2['low']): return True return False def get_current_state(s1: pd.Series, s2: pd.Series, pre_state=0): # 上涨 if (s1['high'] > s2['high']) and (s1['low'] > s2['low']): return 1 # 下跌 if (s1['high'] < s2['high']) and (s1['low'] < s2['low']): return -1 # 震荡(包含关系) return pre_state class ZenAccumulator(Accumulator): def acc(self, input_df, acc_df) -> pd.DataFrame: if pd_is_not_null(acc_df): input_df = input_df[~input_df['id'].isin(acc_df['id'])] input_df = input_df.copy() for entity_id, df in input_df.groupby(level=0): pre_index = None pre_item = None current_state = 0 pre_state = 0 for index, item in df.iterrows(): if pre_item is not None: current_state = get_current_state(item, pre_item, current_state) input_df.loc[index, 'tmp_bi_state'] = current_state if (current_state != 0 and pre_state != 0) and current_state != pre_state: # -1 -> 1 if current_state == 1: input_df.loc[pre_index, 'tmp_di'] = True # 1 -> -1 if current_state == -1: input_df.loc[pre_index, 'tmp_ding'] = True pre_index = index pre_item = item pre_state = current_state print(input_df) self.logger.info('finish calculating :{}'.format(entity_id)) if pd_is_not_null(acc_df): if pd_is_not_null(input_df): df = input_df[set(acc_df.columns) & set(input_df.columns)] acc_df = acc_df.append(df) acc_df = acc_df.sort_index(level=[0, 1]) else: acc_df = input_df return acc_df class ZenFactor(TechnicalFactor): def __init__(self, entity_ids: List[str] = None, entity_type: str = 'stock', exchanges: List[str] = ['sh', 'sz'], codes: List[str] = None, the_timestamp: Union[str, pd.Timestamp] = None, start_timestamp: Union[str, pd.Timestamp] = None, end_timestamp: Union[str, pd.Timestamp] = None, columns: List = None, filters: List = None, order: object = None, limit: int = None, provider: str = 'joinquant', level: Union[str, IntervalLevel] = IntervalLevel.LEVEL_1DAY, category_field: str = 'entity_id', time_field: str = 'timestamp', computing_window: int = None, keep_all_timestamp: bool = False, fill_method: str = 'ffill', effective_number: int = 10, need_persist: bool = False, dry_run: bool = True) -> None: self.factor_schema = get_zen_factor_schema(entity_type=entity_type, level=level) transformer: Transformer = None acc = ZenAccumulator() super().__init__(entity_ids, entity_type, exchanges, codes, the_timestamp, start_timestamp, end_timestamp, columns, filters, order, limit, provider, level, category_field, time_field, computing_window, keep_all_timestamp, fill_method, effective_number, transformer, acc, need_persist, dry_run) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--level', help='trading level', default='1d', choices=[item.value for item in IntervalLevel]) parser.add_argument('--start', help='start code', default='000001') parser.add_argument('--end', help='end code', default='000005') args = parser.parse_args() level = IntervalLevel(args.level) start = args.start end = args.end entities = get_entities(provider='eastmoney', entity_type='stock', columns=[Stock.entity_id, Stock.code], filters=[Stock.code >= start, Stock.code < end]) codes = entities.index.to_list() factor = ZenFactor(codes=codes, start_timestamp='2005-01-01', end_timestamp=now_pd_timestamp(), level=level)
zvt/factors/zen/zen_factor.py
import argparse from typing import List, Union import pandas as pd from zvt.contract import IntervalLevel from zvt.utils.pd_utils import pd_is_not_null from zvt.utils.time_utils import now_pd_timestamp from zvt.api import get_entities, Stock from zvt.api.quote import get_zen_factor_schema from zvt.factors.factor import Accumulator, Transformer from zvt.factors.technical_factor import TechnicalFactor def is_including(s1: pd.Series, s2: pd.Series): if (s1['high'] >= s2['high']) and (s1['low'] <= s2['low']): return True if (s1['high'] <= s2['high']) and (s1['low'] >= s2['low']): return True return False def get_current_state(s1: pd.Series, s2: pd.Series, pre_state=0): # 上涨 if (s1['high'] > s2['high']) and (s1['low'] > s2['low']): return 1 # 下跌 if (s1['high'] < s2['high']) and (s1['low'] < s2['low']): return -1 # 震荡(包含关系) return pre_state class ZenAccumulator(Accumulator): def acc(self, input_df, acc_df) -> pd.DataFrame: if pd_is_not_null(acc_df): input_df = input_df[~input_df['id'].isin(acc_df['id'])] input_df = input_df.copy() for entity_id, df in input_df.groupby(level=0): pre_index = None pre_item = None current_state = 0 pre_state = 0 for index, item in df.iterrows(): if pre_item is not None: current_state = get_current_state(item, pre_item, current_state) input_df.loc[index, 'tmp_bi_state'] = current_state if (current_state != 0 and pre_state != 0) and current_state != pre_state: # -1 -> 1 if current_state == 1: input_df.loc[pre_index, 'tmp_di'] = True # 1 -> -1 if current_state == -1: input_df.loc[pre_index, 'tmp_ding'] = True pre_index = index pre_item = item pre_state = current_state print(input_df) self.logger.info('finish calculating :{}'.format(entity_id)) if pd_is_not_null(acc_df): if pd_is_not_null(input_df): df = input_df[set(acc_df.columns) & set(input_df.columns)] acc_df = acc_df.append(df) acc_df = acc_df.sort_index(level=[0, 1]) else: acc_df = input_df return acc_df class ZenFactor(TechnicalFactor): def __init__(self, entity_ids: List[str] = None, entity_type: str = 'stock', exchanges: List[str] = ['sh', 'sz'], codes: List[str] = None, the_timestamp: Union[str, pd.Timestamp] = None, start_timestamp: Union[str, pd.Timestamp] = None, end_timestamp: Union[str, pd.Timestamp] = None, columns: List = None, filters: List = None, order: object = None, limit: int = None, provider: str = 'joinquant', level: Union[str, IntervalLevel] = IntervalLevel.LEVEL_1DAY, category_field: str = 'entity_id', time_field: str = 'timestamp', computing_window: int = None, keep_all_timestamp: bool = False, fill_method: str = 'ffill', effective_number: int = 10, need_persist: bool = False, dry_run: bool = True) -> None: self.factor_schema = get_zen_factor_schema(entity_type=entity_type, level=level) transformer: Transformer = None acc = ZenAccumulator() super().__init__(entity_ids, entity_type, exchanges, codes, the_timestamp, start_timestamp, end_timestamp, columns, filters, order, limit, provider, level, category_field, time_field, computing_window, keep_all_timestamp, fill_method, effective_number, transformer, acc, need_persist, dry_run) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--level', help='trading level', default='1d', choices=[item.value for item in IntervalLevel]) parser.add_argument('--start', help='start code', default='000001') parser.add_argument('--end', help='end code', default='000005') args = parser.parse_args() level = IntervalLevel(args.level) start = args.start end = args.end entities = get_entities(provider='eastmoney', entity_type='stock', columns=[Stock.entity_id, Stock.code], filters=[Stock.code >= start, Stock.code < end]) codes = entities.index.to_list() factor = ZenFactor(codes=codes, start_timestamp='2005-01-01', end_timestamp=now_pd_timestamp(), level=level)
0.506347
0.296215
import pytest from open_city_profile.consts import ( SERVICE_CONNECTION_ALREADY_EXISTS_ERROR, SERVICE_NOT_IDENTIFIED_ERROR, ) from open_city_profile.tests.asserts import assert_match_error_code from services.enums import ServiceType from services.tests.factories import ProfileFactory, ServiceConnectionFactory @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_can_query_own_services( user_gql_client, service, allowed_data_field_factory ): profile = ProfileFactory(user=user_gql_client.user) first_field = allowed_data_field_factory() second_field = allowed_data_field_factory() allowed_data_field_factory() service.allowed_data_fields.add(first_field) service.allowed_data_fields.add(second_field) ServiceConnectionFactory(profile=profile, service=service) query = """ { myProfile { serviceConnections { edges { node { service { type name title description allowedDataFields { edges { node { fieldName label } } } } } } } } } """ expected_data = { "myProfile": { "serviceConnections": { "edges": [ { "node": { "service": { "type": service.service_type.name, "name": service.name, "title": service.title, "description": service.description, "allowedDataFields": { "edges": [ { "node": { "fieldName": first_field.field_name, "label": first_field.label, } }, { "node": { "fieldName": second_field.field_name, "label": second_field.label, } }, ] }, } } } ] } } } executed = user_gql_client.execute(query) assert executed["data"] == expected_data @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_can_add_service(user_gql_client, service): ProfileFactory(user=user_gql_client.user) # service object with type is included in query just to ensure that it has NO affect query = """ mutation { addServiceConnection(input: { serviceConnection: { service: { type: GODCHILDREN_OF_CULTURE } enabled: false } }) { serviceConnection { service { type name } enabled } } } """ expected_data = { "addServiceConnection": { "serviceConnection": { "service": {"type": service.service_type.name, "name": service.name}, "enabled": False, } } } executed = user_gql_client.execute(query, service=service) assert executed["data"] == expected_data @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_cannot_add_service_multiple_times_mutation( user_gql_client, service ): ProfileFactory(user=user_gql_client.user) query = """ mutation { addServiceConnection(input: { serviceConnection: { } }) { serviceConnection { service { type name } } } } """ expected_data = { "addServiceConnection": { "serviceConnection": { "service": {"type": service.service_type.name, "name": service.name} } } } executed = user_gql_client.execute(query, service=service) assert dict(executed["data"]) == expected_data assert "errors" not in executed # do the mutation again executed = user_gql_client.execute(query, service=service) assert "errors" in executed assert "code" in executed["errors"][0]["extensions"] assert ( executed["errors"][0]["extensions"]["code"] == SERVICE_CONNECTION_ALREADY_EXISTS_ERROR ) def test_not_identifying_service_for_add_service_connection_produces_service_not_identified_error( user_gql_client, ): ProfileFactory(user=user_gql_client.user) query = """ mutation { addServiceConnection(input: { serviceConnection: { } }) { serviceConnection { service { type name } } } } """ executed = user_gql_client.execute(query, service=None) assert_match_error_code(executed, SERVICE_NOT_IDENTIFIED_ERROR) def test_normal_user_can_query_own_services_gdpr_api_scopes( user_gql_client, service_factory, ): query_scope = "query_scope" delete_scope = "delete_scope" service = service_factory( service_type=ServiceType.BERTH, gdpr_query_scope=query_scope, gdpr_delete_scope=delete_scope, ) profile = ProfileFactory(user=user_gql_client.user) ServiceConnectionFactory(profile=profile, service=service) query = """ { myProfile { serviceConnections { edges { node { service { type name gdprQueryScope gdprDeleteScope } } } } } } """ expected_data = { "myProfile": { "serviceConnections": { "edges": [ { "node": { "service": { "type": service.service_type.name, "name": service.name, "gdprQueryScope": query_scope, "gdprDeleteScope": delete_scope, } } } ] } } } executed = user_gql_client.execute(query) assert dict(executed["data"]) == expected_data
services/tests/test_services_graphql_api.py
import pytest from open_city_profile.consts import ( SERVICE_CONNECTION_ALREADY_EXISTS_ERROR, SERVICE_NOT_IDENTIFIED_ERROR, ) from open_city_profile.tests.asserts import assert_match_error_code from services.enums import ServiceType from services.tests.factories import ProfileFactory, ServiceConnectionFactory @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_can_query_own_services( user_gql_client, service, allowed_data_field_factory ): profile = ProfileFactory(user=user_gql_client.user) first_field = allowed_data_field_factory() second_field = allowed_data_field_factory() allowed_data_field_factory() service.allowed_data_fields.add(first_field) service.allowed_data_fields.add(second_field) ServiceConnectionFactory(profile=profile, service=service) query = """ { myProfile { serviceConnections { edges { node { service { type name title description allowedDataFields { edges { node { fieldName label } } } } } } } } } """ expected_data = { "myProfile": { "serviceConnections": { "edges": [ { "node": { "service": { "type": service.service_type.name, "name": service.name, "title": service.title, "description": service.description, "allowedDataFields": { "edges": [ { "node": { "fieldName": first_field.field_name, "label": first_field.label, } }, { "node": { "fieldName": second_field.field_name, "label": second_field.label, } }, ] }, } } } ] } } } executed = user_gql_client.execute(query) assert executed["data"] == expected_data @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_can_add_service(user_gql_client, service): ProfileFactory(user=user_gql_client.user) # service object with type is included in query just to ensure that it has NO affect query = """ mutation { addServiceConnection(input: { serviceConnection: { service: { type: GODCHILDREN_OF_CULTURE } enabled: false } }) { serviceConnection { service { type name } enabled } } } """ expected_data = { "addServiceConnection": { "serviceConnection": { "service": {"type": service.service_type.name, "name": service.name}, "enabled": False, } } } executed = user_gql_client.execute(query, service=service) assert executed["data"] == expected_data @pytest.mark.parametrize("service__service_type", [ServiceType.BERTH]) def test_normal_user_cannot_add_service_multiple_times_mutation( user_gql_client, service ): ProfileFactory(user=user_gql_client.user) query = """ mutation { addServiceConnection(input: { serviceConnection: { } }) { serviceConnection { service { type name } } } } """ expected_data = { "addServiceConnection": { "serviceConnection": { "service": {"type": service.service_type.name, "name": service.name} } } } executed = user_gql_client.execute(query, service=service) assert dict(executed["data"]) == expected_data assert "errors" not in executed # do the mutation again executed = user_gql_client.execute(query, service=service) assert "errors" in executed assert "code" in executed["errors"][0]["extensions"] assert ( executed["errors"][0]["extensions"]["code"] == SERVICE_CONNECTION_ALREADY_EXISTS_ERROR ) def test_not_identifying_service_for_add_service_connection_produces_service_not_identified_error( user_gql_client, ): ProfileFactory(user=user_gql_client.user) query = """ mutation { addServiceConnection(input: { serviceConnection: { } }) { serviceConnection { service { type name } } } } """ executed = user_gql_client.execute(query, service=None) assert_match_error_code(executed, SERVICE_NOT_IDENTIFIED_ERROR) def test_normal_user_can_query_own_services_gdpr_api_scopes( user_gql_client, service_factory, ): query_scope = "query_scope" delete_scope = "delete_scope" service = service_factory( service_type=ServiceType.BERTH, gdpr_query_scope=query_scope, gdpr_delete_scope=delete_scope, ) profile = ProfileFactory(user=user_gql_client.user) ServiceConnectionFactory(profile=profile, service=service) query = """ { myProfile { serviceConnections { edges { node { service { type name gdprQueryScope gdprDeleteScope } } } } } } """ expected_data = { "myProfile": { "serviceConnections": { "edges": [ { "node": { "service": { "type": service.service_type.name, "name": service.name, "gdprQueryScope": query_scope, "gdprDeleteScope": delete_scope, } } } ] } } } executed = user_gql_client.execute(query) assert dict(executed["data"]) == expected_data
0.582372
0.363534
import os import rospy import rospkg import tensorflow as tf import numpy as np import cv2 from PIL import Image, ImageFont, ImageDraw from abc import ABCMeta, abstractmethod from styx_msgs.msg import TrafficLight from light_classification.tl_classifier import TLClassifier class SSDTLClassifier(TLClassifier): __metaclass__ = ABCMeta @staticmethod def get_state_count_threshold(last_state): if last_state == TrafficLight.RED: # High threshold for accelerating return 3 # Low threshold for stopping return 1 @staticmethod def _convert_box_coords(boxes, height, width): """ Converts bounding boxes from normalized coordinates (0 to 1), to image coordinates """ box_coords = np.zeros_like(boxes) box_coords[:, 0] = boxes[:, 0] * height box_coords[:, 1] = boxes[:, 1] * width box_coords[:, 2] = boxes[:, 2] * height box_coords[:, 3] = boxes[:, 3] * width return box_coords @staticmethod def _load_graph(graph_file): """Loads a frozen inference graph""" graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(graph_file, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return graph def _filter_boxes(self, boxes, scores, classes): """ Filters boxes with scores less than confidence threshold """ n = len(classes) idxs = [] for i in range(n): if scores[i] >= self.confidence: idxs.append(i) boxes = boxes[idxs, ...] scores = scores[idxs, ...] classes = classes[idxs, ...] return boxes, scores, classes def _get_debug_image(self, image, boxes, scores, classes): """Draws detected bounding boxes""" if classes.size == 0: return image pil_image = Image.fromarray(image) width, height = pil_image.size box_coords = self._convert_box_coords(boxes, height, width) font = ImageFont.truetype(font=os.path.join(self.package_root_path,'config/FiraMono-Medium.otf'), size=np.floor(3e-2 * pil_image.size[1] + 0.5).astype('int32')) thickness = (pil_image.size[0] + pil_image.size[1]) // 300 draw = ImageDraw.Draw(pil_image) for i, c in enumerate(classes): score = scores[i] predicted_class = self.labels_dict[c] box = box_coords[i] label = '{} {:.2f}'.format(predicted_class, score) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(pil_image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(pil_image.size[0], np.floor(right + 0.5).astype('int32')) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for j in range(thickness): draw.rectangle([left + j, top + j, right - j, bottom - j], outline=self.labels_dict[c]) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.labels_dict[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) return np.asarray(pil_image) def _classify(self, image): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image_resized = cv2.resize(image, (300, 300)) image_np = np.expand_dims(np.asarray(image_resized, dtype=np.uint8), 0) # Actual detection (boxes, scores, classes) = self.sess.run([self.detection_boxes, self.detection_scores, self.detection_classes], feed_dict={self.image_tensor: image_np}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) boxes, scores, classes = self._filter_boxes(boxes, scores, classes) for i, c in enumerate(classes): rospy.logdebug('class = %s, score = %s', self.labels_dict[c], str(scores[i])) if classes.size == 0: traffic_light = TrafficLight.UNKNOWN else: i = np.argmax(scores) if classes[i] == 2: traffic_light = TrafficLight.RED elif classes[i] == 3: traffic_light = TrafficLight.YELLOW elif classes[i] == 1: traffic_light = TrafficLight.GREEN else: traffic_light = TrafficLight.UNKNOWN if self.is_debug: # create a debug image with bounding boxes and labels debug_image = self._get_debug_image(image, boxes, scores, classes) return traffic_light, debug_image return traffic_light, None @abstractmethod def __init__(self, is_debug, model_path, confidence): super(SSDTLClassifier, self).__init__(self.__class__.__name__, is_debug) # Model path self.package_root_path = rospkg.RosPack().get_path('tl_detector') model_path = os.path.join(self.package_root_path, model_path) # Set confidence self.confidence = confidence # Labels dictionary self.labels_dict = {1: 'Green', 2: 'Red', 3: 'Yellow', 4: 'Unknown'} # Load frozen graph of trained model self.detection_graph = self._load_graph(model_path) # Get tensors self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') # Create session self.sess = tf.Session(graph=self.detection_graph) @TLClassifier.register_subclass('ssd-sim') class SSDSimTLClassifier(SSDTLClassifier): def __init__(self, is_debug): super(SSDSimTLClassifier, self).__init__(is_debug, 'models/ssd-sim.pb', 0.8) @TLClassifier.register_subclass('ssd-real') class SSDRealTLClassifier(SSDTLClassifier): def __init__(self, is_debug): super(SSDRealTLClassifier, self).__init__(is_debug, 'models/ssd-real.pb', 0.5)
ros/src/tl_detector/light_classification/ssd_tl_classifier.py
import os import rospy import rospkg import tensorflow as tf import numpy as np import cv2 from PIL import Image, ImageFont, ImageDraw from abc import ABCMeta, abstractmethod from styx_msgs.msg import TrafficLight from light_classification.tl_classifier import TLClassifier class SSDTLClassifier(TLClassifier): __metaclass__ = ABCMeta @staticmethod def get_state_count_threshold(last_state): if last_state == TrafficLight.RED: # High threshold for accelerating return 3 # Low threshold for stopping return 1 @staticmethod def _convert_box_coords(boxes, height, width): """ Converts bounding boxes from normalized coordinates (0 to 1), to image coordinates """ box_coords = np.zeros_like(boxes) box_coords[:, 0] = boxes[:, 0] * height box_coords[:, 1] = boxes[:, 1] * width box_coords[:, 2] = boxes[:, 2] * height box_coords[:, 3] = boxes[:, 3] * width return box_coords @staticmethod def _load_graph(graph_file): """Loads a frozen inference graph""" graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(graph_file, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return graph def _filter_boxes(self, boxes, scores, classes): """ Filters boxes with scores less than confidence threshold """ n = len(classes) idxs = [] for i in range(n): if scores[i] >= self.confidence: idxs.append(i) boxes = boxes[idxs, ...] scores = scores[idxs, ...] classes = classes[idxs, ...] return boxes, scores, classes def _get_debug_image(self, image, boxes, scores, classes): """Draws detected bounding boxes""" if classes.size == 0: return image pil_image = Image.fromarray(image) width, height = pil_image.size box_coords = self._convert_box_coords(boxes, height, width) font = ImageFont.truetype(font=os.path.join(self.package_root_path,'config/FiraMono-Medium.otf'), size=np.floor(3e-2 * pil_image.size[1] + 0.5).astype('int32')) thickness = (pil_image.size[0] + pil_image.size[1]) // 300 draw = ImageDraw.Draw(pil_image) for i, c in enumerate(classes): score = scores[i] predicted_class = self.labels_dict[c] box = box_coords[i] label = '{} {:.2f}'.format(predicted_class, score) label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(pil_image.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(pil_image.size[0], np.floor(right + 0.5).astype('int32')) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for j in range(thickness): draw.rectangle([left + j, top + j, right - j, bottom - j], outline=self.labels_dict[c]) draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.labels_dict[c]) draw.text(text_origin, label, fill=(0, 0, 0), font=font) return np.asarray(pil_image) def _classify(self, image): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image_resized = cv2.resize(image, (300, 300)) image_np = np.expand_dims(np.asarray(image_resized, dtype=np.uint8), 0) # Actual detection (boxes, scores, classes) = self.sess.run([self.detection_boxes, self.detection_scores, self.detection_classes], feed_dict={self.image_tensor: image_np}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) boxes, scores, classes = self._filter_boxes(boxes, scores, classes) for i, c in enumerate(classes): rospy.logdebug('class = %s, score = %s', self.labels_dict[c], str(scores[i])) if classes.size == 0: traffic_light = TrafficLight.UNKNOWN else: i = np.argmax(scores) if classes[i] == 2: traffic_light = TrafficLight.RED elif classes[i] == 3: traffic_light = TrafficLight.YELLOW elif classes[i] == 1: traffic_light = TrafficLight.GREEN else: traffic_light = TrafficLight.UNKNOWN if self.is_debug: # create a debug image with bounding boxes and labels debug_image = self._get_debug_image(image, boxes, scores, classes) return traffic_light, debug_image return traffic_light, None @abstractmethod def __init__(self, is_debug, model_path, confidence): super(SSDTLClassifier, self).__init__(self.__class__.__name__, is_debug) # Model path self.package_root_path = rospkg.RosPack().get_path('tl_detector') model_path = os.path.join(self.package_root_path, model_path) # Set confidence self.confidence = confidence # Labels dictionary self.labels_dict = {1: 'Green', 2: 'Red', 3: 'Yellow', 4: 'Unknown'} # Load frozen graph of trained model self.detection_graph = self._load_graph(model_path) # Get tensors self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') # Create session self.sess = tf.Session(graph=self.detection_graph) @TLClassifier.register_subclass('ssd-sim') class SSDSimTLClassifier(SSDTLClassifier): def __init__(self, is_debug): super(SSDSimTLClassifier, self).__init__(is_debug, 'models/ssd-sim.pb', 0.8) @TLClassifier.register_subclass('ssd-real') class SSDRealTLClassifier(SSDTLClassifier): def __init__(self, is_debug): super(SSDRealTLClassifier, self).__init__(is_debug, 'models/ssd-real.pb', 0.5)
0.731059
0.362264
__author__ = "<NAME> <<EMAIL>>" import re import collections from time import sleep from unicon.bases.routers.services import BaseService from unicon.core.errors import SubCommandFailure, StateMachineError from unicon.eal.dialogs import Dialog, Statement from unicon.plugins.generic.statements import GenericStatements, \ authentication_statement_list from unicon.plugins.confd.patterns import ConfdPatterns from unicon.plugins.generic import GenericUtils from .service_statements import reload_statement_list, \ reload_continue_statement_list utils = GenericUtils() statements = GenericStatements() class Reload(BaseService): """Service to reload the device. Arguments: reload_command: reload command to be issued. default is "system reload" on config mode. dialog: Dialog which include list of Statements for additional dialogs prompted by reload command, in-case it is not in the current list. timeout: Timeout value in sec, Default value is {} sec Returns: Console log output of connected via serial console, if connected via SSH returns connect log raises SubCommandFailure on failure Example :: .. code-block:: python csp.reload() """ def __init__(self, connection, context, **kwargs): super().__init__(connection, context, **kwargs) self.start_state = 'cisco_exec' self.end_state = 'cisco_exec' self.service_name = 'reload' self.timeout = connection.settings.RELOAD_TIMEOUT self.__doc__ = self.__doc__.format(connection.settings.RELOAD_TIMEOUT) def call_service(self, reload_command='system reboot', dialog=Dialog([]), timeout=None, *args, **kwargs): con = self.connection timeout = timeout or self.timeout fmt_msg = "+++ reloading %s " \ " with reload_command '%s' " \ "and timeout %s +++" con.log.info(fmt_msg % (self.connection.hostname, reload_command, timeout)) if not isinstance(dialog, Dialog): raise SubCommandFailure( "dialog passed must be an instance of Dialog") if self.context.get('console'): dialog = self.service_dialog(service_dialog=dialog) dialog += Dialog(authentication_statement_list) dialog += Dialog(reload_continue_statement_list) con.spawn.sendline(reload_command) try: self.result = dialog.process(con.spawn, timeout=timeout, prompt_recovery=self.prompt_recovery, context=self.context) except Exception as err: raise SubCommandFailure("Reload failed %s" % err) if self.result: self.result = utils.remove_ansi_escape_codes(self.result.match_output) else: con.log.warning('Did not detect a console session, will try to reconnect...') dialog = Dialog(reload_statement_list) con.spawn.sendline(reload_command) dialog.process(con.spawn, timeout=timeout, prompt_recovery=self.prompt_recovery, context=self.context) con.expect('.+') con.log.warning('Disconnecting...') con.disconnect() for x in range(3): con.log.warning('Waiting for {} seconds'.format(con.settings.RELOAD_WAIT)) sleep(con.settings.RELOAD_WAIT) con.log.warning('Trying to connect... attempt #{}'.format(x+1)) try: output = con.connect() self.result = output except: con.log.warning('Connection failed') if con.connected: break if not con.connected: raise SubCommandFailure('Reload failed - could not reconnect')
src/unicon/plugins/confd/csp/service_implementation.py
__author__ = "<NAME> <<EMAIL>>" import re import collections from time import sleep from unicon.bases.routers.services import BaseService from unicon.core.errors import SubCommandFailure, StateMachineError from unicon.eal.dialogs import Dialog, Statement from unicon.plugins.generic.statements import GenericStatements, \ authentication_statement_list from unicon.plugins.confd.patterns import ConfdPatterns from unicon.plugins.generic import GenericUtils from .service_statements import reload_statement_list, \ reload_continue_statement_list utils = GenericUtils() statements = GenericStatements() class Reload(BaseService): """Service to reload the device. Arguments: reload_command: reload command to be issued. default is "system reload" on config mode. dialog: Dialog which include list of Statements for additional dialogs prompted by reload command, in-case it is not in the current list. timeout: Timeout value in sec, Default value is {} sec Returns: Console log output of connected via serial console, if connected via SSH returns connect log raises SubCommandFailure on failure Example :: .. code-block:: python csp.reload() """ def __init__(self, connection, context, **kwargs): super().__init__(connection, context, **kwargs) self.start_state = 'cisco_exec' self.end_state = 'cisco_exec' self.service_name = 'reload' self.timeout = connection.settings.RELOAD_TIMEOUT self.__doc__ = self.__doc__.format(connection.settings.RELOAD_TIMEOUT) def call_service(self, reload_command='system reboot', dialog=Dialog([]), timeout=None, *args, **kwargs): con = self.connection timeout = timeout or self.timeout fmt_msg = "+++ reloading %s " \ " with reload_command '%s' " \ "and timeout %s +++" con.log.info(fmt_msg % (self.connection.hostname, reload_command, timeout)) if not isinstance(dialog, Dialog): raise SubCommandFailure( "dialog passed must be an instance of Dialog") if self.context.get('console'): dialog = self.service_dialog(service_dialog=dialog) dialog += Dialog(authentication_statement_list) dialog += Dialog(reload_continue_statement_list) con.spawn.sendline(reload_command) try: self.result = dialog.process(con.spawn, timeout=timeout, prompt_recovery=self.prompt_recovery, context=self.context) except Exception as err: raise SubCommandFailure("Reload failed %s" % err) if self.result: self.result = utils.remove_ansi_escape_codes(self.result.match_output) else: con.log.warning('Did not detect a console session, will try to reconnect...') dialog = Dialog(reload_statement_list) con.spawn.sendline(reload_command) dialog.process(con.spawn, timeout=timeout, prompt_recovery=self.prompt_recovery, context=self.context) con.expect('.+') con.log.warning('Disconnecting...') con.disconnect() for x in range(3): con.log.warning('Waiting for {} seconds'.format(con.settings.RELOAD_WAIT)) sleep(con.settings.RELOAD_WAIT) con.log.warning('Trying to connect... attempt #{}'.format(x+1)) try: output = con.connect() self.result = output except: con.log.warning('Connection failed') if con.connected: break if not con.connected: raise SubCommandFailure('Reload failed - could not reconnect')
0.460532
0.063482
from datetime import datetime, timedelta import pandas as pd import flask from sqlalchemy import extract, asc, desc, func, text from app import db, app today = datetime.today() first_of_this_month = today.replace(day=1, hour=0, minute=0, second=0, microsecond=0) last_of_prev_month = first_of_this_month - timedelta(days=1) first_of_prev_month = last_of_prev_month.replace(day=1) minus_13_months = (first_of_this_month - timedelta(days=390)).replace(day=1) class Account(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) accName = db.Column(db.String, unique=True, nullable=False) #transactions = db.relationship('Transaction', backref=db.backref('trans', lazy=True)) def __repr__(self): return '<Account {}>'.format(self.accName) def create_one(newAccName): stmt = Account(accName=newAccName) db.session.add(stmt) db.session.commit() def one_acc(accountid): return Account.query.filter_by(id = accountid).first() '''def list_acc(): q1 = db.session.query(Transaction.acc_id, Transaction.amount.label('balance'), Transaction.traDate)\ .distinct(Transaction.acc_id)\ .outerjoin(Tag)\ .filter(Tag.isBlnc==True)\ .order_by(Transaction.acc_id, Transaction.traDate.desc())\ .subquery() q2 = db.session.query(Account.id, Account.accName, func.max(func.TO_CHAR(Transaction.uplDate,'YYYY-MM-DD')).label('upldate'))\ .outerjoin(Transaction)\ .group_by(Account.id, Account.accName)\ .subquery() return db.session.query(q2.c.id, q2.c.accName, q2.c.upldate, q1.c.balance)\ .outerjoin(q1, q2.c.id == q1.c.acc_id)''' def list_acc(): cte = db.session.query(Transaction.acc_id\ ,Transaction.amount.label('balance')\ ,func.row_number().over(partition_by=Transaction.acc_id, order_by=desc(Transaction.traDate)).label("rn"))\ .outerjoin(Tag)\ .filter(Tag.isBlnc==1)\ .cte() q1 = db.session.query(cte.c.acc_id, cte.c.balance).filter(cte.c.rn == 1).subquery() q2 = db.session.query(Account.id, Account.accName, func.max(func.date(Transaction.uplDate)).label('upldate'))\ .outerjoin(Transaction)\ .group_by(Account.id, Account.accName)\ .subquery() return db.session.query(q2.c.id, q2.c.accName, q2.c.upldate, q1.c.balance)\ .outerjoin(q1, q2.c.id == q1.c.acc_id) class Transaction(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) traDate = db.Column(db.Date, nullable=False) amount = db.Column(db.Float, nullable=False) desc = db.Column(db.String, nullable=False) card = db.Column(db.String(1), nullable=False) tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'), nullable=True) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) uplDate = db.Column(db.DateTime, nullable=False, default=datetime.now) confirmed = db.Column(db.Boolean, nullable=True, default=False) def __repr__(self): return '<Transaction {}>'.format(self.desc) def create_one(tDate, tAmnt, tDesc, tag, acc, card, confrm): stmt = Transaction(traDate=tDate, amount=tAmnt, desc=tDesc, card=card, tag_id=tag, acc_id=acc, confirmed=confrm) db.session.add(stmt) db.session.commit() def update_trans(tid, traDate, amount, desc, tag): stmt = Transaction.query.filter_by(id=tid).first() stmt.traDate = traDate stmt.amount = amount stmt.desc = desc stmt.tag_id = tag stmt.confirmed = True db.session.commit() def update_trans_amount(tid, amount): stmt = Transaction.query.filter_by(id=tid).first() stmt.amount = amount db.session.commit() def update_desc(account_id, desc_from, desc_to): db.session.query(Transaction)\ .filter(Transaction.desc.like('%'+ desc_from +'%'))\ .update({Transaction.desc: func.replace(Transaction.desc, desc_from, desc_to)} ,synchronize_session=False) db.session.commit() def delete_trans(tid): stmt = Transaction.query.filter_by(id=tid).first() db.session.delete(stmt) db.session.commit() def cnt_all(account_id): return Transaction.query.with_entities(func.count(Transaction.id).label('cnt'))\ .filter(Transaction.acc_id == account_id).one_or_none() def cnt_new(account_id): return Transaction.query.with_entities(func.count(Transaction.id).label('cnt'))\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == False).one_or_none() def cnt_avg_sum_filtered(account_id, date_from, date_to, sel_tags): return Transaction.query\ .with_entities(func.count(Transaction.amount).label('a_cnt'), func.avg(Transaction.amount).label('a_avg'), func.sum(Transaction.amount).label('a_sum'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.tag_id.in_(sel_tags)).one_or_none() def list_filtered(account_id, date_from, date_to, sel_tags): return Transaction.query.filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.tag_id.in_(sel_tags))\ .order_by(Transaction.traDate.desc(), Transaction.amount) def cnt_avg_sum_filtered_new(account_id, date_from, date_to): return Transaction.query\ .with_entities(func.count(Transaction.amount).label('a_cnt'), func.avg(Transaction.amount).label('a_avg'), func.sum(Transaction.amount).label('a_sum'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.confirmed == False).one_or_none() def list_filtered_new(account_id, date_from, date_to): return Transaction.query.filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.confirmed == False)\ .order_by(Transaction.traDate.desc(), Transaction.amount) def list_latest_uploads_by_card(account_id, card): return db.session.query(Transaction.card, Transaction.desc, Transaction.traDate, Transaction.amount)\ .filter(Transaction.acc_id == account_id, Transaction.card == card)\ .order_by(Transaction.traDate.desc()).limit(3).all() def first_date(account_id): return db.session.query(db.func.min(Transaction.traDate)).filter(Transaction.acc_id==account_id).scalar() or today def last_date(account_id): return db.session.query(db.func.max(Transaction.traDate)).filter(Transaction.acc_id==account_id).scalar() or today def count_months(account_id): return db.session.query(func.TO_CHAR(Transaction.traDate,'YYYYMM'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate < first_of_this_month)\ .distinct().count() def max_year(account_id): return Transaction.query\ .with_entities(extract('year',func.max(Transaction.traDate).label('max_year')))\ .filter(Transaction.acc_id == account_id).scalar() def list_year(account_id): return db.session.query(extract('year',Transaction.traDate).label('year'))\ .filter(Transaction.acc_id == account_id).distinct().order_by(desc('year')) def chart_header(column_name, account_id): subquery = db.session.query(Tag.tgr_id).filter(getattr(Tag, column_name)==True, Taggroup.acc_id==account_id) return db.session.query(Taggroup.gName, Taggroup.gColor)\ .filter(Taggroup.id.in_(subquery))\ .order_by(Taggroup.gName) def chart_data(account_id, column_name, months): first_of_n_month = (first_of_this_month - timedelta(days=months*30)).replace(day=1) q = db.session.query(Taggroup.gName ,func.TO_CHAR(Transaction.traDate,'YYYYMM').label('orderByCol')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth')\ ,func.SUM(Transaction.amount).label('total'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id\ ,Transaction.confirmed == True\ ,Transaction.traDate >= first_of_n_month\ ,Transaction.traDate < first_of_this_month\ ,getattr(Tag, column_name)==True)\ .group_by(Taggroup.gName\ ,func.TO_CHAR(Transaction.traDate,'YYYYMM')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth'))\ .order_by('orderByCol',Taggroup.gName) #get unique groups g = [] prev_val = '' for row in q: if row.gName != prev_val: g.append(row.gName) prev_val = row.gName #create months/group with default value m = {} prev_val = '' for row in q: if row.mnth != prev_val: m[row.mnth] = {g_:0 for g_ in g} prev_val = row.mnth #replace values in dict if exists in q for row in q: for key in m: for mk in m[key]: if row.mnth==key and mk==row.gName : m[key][mk] = row.total return m def get_dates(what_year_): what_year = int(what_year_) prev_year = what_year - 1 prev_month_num = last_of_prev_month.strftime("%m") prev_month = int(prev_month_num) - 1 if int(prev_month_num) > 1 else 12 year_num = last_of_prev_month.strftime("%Y") which_year = year_num if int(year_num) == what_year else prev_year which_month = prev_month_num if int(year_num) == what_year else prev_month end_12_month = last_of_prev_month.replace(year=what_year) start_12_month = (end_12_month - timedelta(days=360)).replace(day=1) return what_year, prev_year, which_year, which_month, start_12_month, end_12_month def get_stats_year(account_id, what_year, lbl1, lbl2): return db.session.query(Tag.tgr_id.label(lbl1), func.SUM(Transaction.amount).label(lbl2))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False, extract('year',Transaction.traDate)==what_year)\ .group_by(Tag.tgr_id).subquery() def get_statsDate(what_year): gd = Transaction.get_dates(what_year) fopm = first_of_prev_month.replace(year=int(gd[2])) lopm = last_of_prev_month.replace(year=int(gd[2])) return [str(gd[1])+'-01-01', str(gd[1])+'-12-31', str(gd[0])+'-01-01', str(gd[0])+'-12-31', str(fopm), str(lopm)] def get_stat_year(account_id, what_year): gd = Transaction.get_dates(what_year) tg = Taggroup.list_tgroup_id_inSum(account_id) q1 = db.session.query(Tag.tgr_id.label('tag1'), Taggroup.gName.label('Category'), Taggroup.gColor.label('color'), func.SUM(Transaction.amount).label('Total'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False, extract('year',Transaction.traDate)<=gd[0])\ .group_by(Tag.tgr_id, Taggroup.gName, Taggroup.gColor)\ .order_by(Tag.tgr_id).subquery() q2 = Transaction.get_stats_year(account_id, gd[1], 'tag2', 'Prev_Year') q3 = Transaction.get_stats_year(account_id, gd[0], 'tag3', 'This_Year') month_count = Transaction.count_months(account_id) if Transaction.count_months(account_id) < 12 else 12 q4 = db.session.query(Tag.tgr_id.label('tag4'), func.SUM(Transaction.amount/month_count).label('Avg_Month'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Transaction.traDate>=gd[4], Transaction.traDate<gd[5])\ .group_by(Tag.tgr_id).subquery() q5 = db.session.query(Tag.tgr_id.label('tag5'), func.SUM(Transaction.amount).label('Prev_Month'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, extract('year',Transaction.traDate)==gd[2], extract('month',Transaction.traDate)==gd[3])\ .group_by(Tag.tgr_id).subquery() return db.session.query(q1.c.Category, q1.c.tag1, q1.c.Total, q2.c.Prev_Year, q3.c.This_Year, (100*(q3.c.This_Year/q2.c.Prev_Year)).label('%_YTD'), q4.c.Avg_Month, q5.c.Prev_Month, q1.c.color)\ .outerjoin(q2, q1.c.tag1 == q2.c.tag2)\ .outerjoin(q3, q1.c.tag1 == q3.c.tag3)\ .outerjoin(q4, q1.c.tag1 == q4.c.tag4)\ .outerjoin(q5, q1.c.tag1 == q5.c.tag5)\ .order_by(q1.c.tag1) def get_stat_year_df(account_id, what_year): tg = Taggroup.list_tgroup_id_inSum(account_id) q = Transaction.get_stat_year(account_id, what_year) df = pd.read_sql_query(q.statement, db.session.bind) #transform valies from object to float pd.options.display.float_format = '{:.2f}'.format #exclude BILLS from summary s = df.mask(~df['tag1'].isin(tg)).drop('tag1',1).sum() #calculate '% YTD' s.loc['%_YTD'] = 100*(s['This_Year'] / s['Prev_Year']) #replace calculated value in specific position df.loc[len(df)] = s #replace summarised categ name df = df.fillna({'Category':'Summary','tag1':0,'color':''}) #replace 'NaN' to '0', then limit decimals to 2 return df.fillna(0).round(2) def get_stat_year_by_year(account_id): tg = Taggroup.list_tgroup_id_inSum(account_id) q = db.session.query( Tag.tgr_id.label('tag')\ , Taggroup.gName.label('Category')\ , Transaction.traDate.label('date')\ , Transaction.amount)\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False)\ .order_by(Tag.tgr_id) df = pd.read_sql_query(q.statement, db.session.bind) #add column 'year' based on 'date' df['Year'] = pd.DatetimeIndex(df['date']).year #groupby df = df.groupby(['tag','Category','Year']).sum() #pivot df = pd.pivot_table(df, values = 'amount', index=['Category','tag'], columns = 'Year')\ .sort_values(by=['tag'], ascending=True) #add column 'Total', to sum horizontally, per category df.insert(loc=0, column='Total', value=df.sum(axis=1)) #add row 'Summary' to sum columns, except BILLS df.loc['Summary'] = df.query("tag in @tg").sum() #change FLOAT values to INT return df.fillna(0).astype(int) def chart_in_out(account_id): sum_in = Transaction.query.with_entities(func.ABS(func.SUM(Transaction.amount)))\ .outerjoin(Tag)\ .filter(Transaction.acc_id == account_id, Transaction.amount > 0 \ , Tag.isBlnc == False \ , Transaction.traDate>=first_of_prev_month, Transaction.traDate<first_of_this_month)\ .scalar() sum_out = Transaction.query.with_entities(func.ABS(func.SUM(Transaction.amount)))\ .outerjoin(Tag)\ .filter(Transaction.acc_id == account_id, Transaction.amount < 0 \ , Tag.isBlnc == False \ , Transaction.traDate>=first_of_prev_month, Transaction.traDate<first_of_this_month)\ .scalar() return sum_in if sum_in is not None else 0, sum_out if sum_out is not None else 0 def chart_monthly_trend(account_id): tag_inSum = Tag.list_tag_id_inSum(account_id) month_by_month = db.session.query(\ func.TO_CHAR(Transaction.traDate,'YYYYMM').label('orderByCol')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth')\ ,func.SUM(Transaction.amount).label('total')\ ,func.TEXT('Dummy').label('D'))\ .filter(Transaction.tag_id.in_(tag_inSum), Transaction.traDate>=minus_13_months, Transaction.traDate<first_of_this_month)\ .group_by(func.TO_CHAR(Transaction.traDate,'YYYYMM'),func.TO_CHAR(Transaction.traDate,'MON'),func.TEXT('Dummy'))\ .subquery() month_count = Transaction.count_months(account_id) if Transaction.count_months(account_id) < 13 else 13 month_avg = db.session.query(\ func.TEXT('AvgYear').label('orderByCol')\ ,func.TEXT('AvgMonth').label('MON')\ ,func.SUM(Transaction.amount/month_count).label('total_avg')\ ,func.TEXT('Dummy').label('D'))\ .filter(Transaction.tag_id.in_(tag_inSum), Transaction.traDate>=minus_13_months, Transaction.traDate<first_of_this_month)\ .subquery() return db.session.query(month_by_month.c.orderByCol, month_by_month.c.mnth, month_by_month.c.total, month_avg.c.total_avg)\ .outerjoin(month_by_month, month_by_month.c.D == month_avg.c.D)\ .order_by(month_by_month.c.orderByCol) class Taggroup(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) gName = db.Column(db.String, nullable=False) gColor = db.Column(db.String(11), nullable=False) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<TagGroup {}>'.format(self.gName) def insert_tag_group(g_name, color, accid): stmt = Taggroup(gName=g_name, gColor=color, acc_id=accid) db.session.add(stmt) db.session.commit() newid = stmt.id def update_tag_group(gid, g_name, color): stmt = Taggroup.query.filter_by(id=gid).first() stmt.gName = g_name stmt.gColor = color db.session.commit() def delete_tag_group(gid): stmt = Taggroup.query.filter_by(id=gid).first() db.session.delete(stmt) db.session.commit() def list_tgroup(account_id): return Taggroup.query.filter(Taggroup.acc_id == account_id).order_by(Taggroup.id) def list_tgroup_id(account_id): q = db.session.query(Taggroup.id).filter(Taggroup.acc_id==account_id).order_by(Taggroup.id).all() return [val for val, in q] def list_tgroup_id_one(account_id): return db.session.query(Taggroup.id).filter(Taggroup.acc_id==account_id).order_by(Taggroup.id.desc()).first() def list_count(account_id): return db.session.query(db.func.count(Taggroup.id)).filter(Taggroup.acc_id==account_id).scalar() def list_tgroup_id_inSum(account_id): q = db.session.query(Taggroup.id)\ .outerjoin(Tag)\ .filter(Tag.inSum==True, Taggroup.acc_id==account_id)\ .distinct() return [val for val, in q] class Tag(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) tName = db.Column(db.String, nullable=False) tgr_id = db.Column(db.Integer, db.ForeignKey('taggroup.id'), nullable=False) isBlnc = db.Column(db.Boolean, nullable=False, default=0) inSum = db.Column(db.Boolean, nullable=False, default=1) chart1 = db.Column(db.Boolean, nullable=False, default=0) chart2 = db.Column(db.Boolean, nullable=False, default=0) chart3 = db.Column(db.Boolean, nullable=False, default=0) def __repr__(self): return '<Tag {}>'.format(self.tName) def insert_tag(t_name, g_id, balance, summary, c1, c2, c3): stmt = Tag(tName=t_name, tgr_id=g_id, isBlnc=balance, inSum=summary, chart1=c1, chart2=c2, chart3=c3) db.session.add(stmt) db.session.commit() def update_tag(tid, t_name, g_id, balance, summary, c1, c2, c3): stmt = Tag.query.filter_by(id=tid).first() stmt.tName = t_name stmt.tgr_id = g_id stmt.isBlnc = balance stmt.inSum = summary stmt.chart1 = c1 stmt.chart2 = c2 stmt.chart3 = c3 db.session.commit() def delete_tag(tid): stmt = Tag.query.filter_by(id=tid).first() db.session.delete(stmt) db.session.commit() def list_tag(account_id): return db.session.query(Tag.id ,Tag.tName ,Tag.tgr_id ,Tag.isBlnc ,Tag.inSum ,Tag.chart1 ,Tag.chart2 ,Tag.chart3)\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id)\ .order_by(Tag.tgr_id, Tag.id) def list_tag_id(account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id) return [val for val, in q] def list_tag_id_of_group(grpid,account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Tag.tgr_id==grpid, Taggroup.acc_id==account_id) return [val for val, in q] def list_tag_id_inSum(account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Tag.inSum==True, Taggroup.acc_id==account_id) return [val for val, in q] def list_count(account_id): return db.session.query(db.func.count(Tag.id))\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id).scalar() class Condition(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) cName = db.Column(db.String, nullable=False) tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'), nullable=False) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<Condition {}>'.format(self.cName) def insert_cond(cname, tag, accid): stmt = Condition(cName=cname, tag_id=tag, acc_id=accid) db.session.add(stmt) db.session.commit() def update_cond(cid, cName, tag): stmt = Condition.query.filter_by(id=cid).first() stmt.cName = cName stmt.tag_id = tag db.session.commit() def delete_cond(cid): stmt = Condition.query.filter_by(id=cid).first() db.session.delete(stmt) db.session.commit() def list_cond(account_id): return db.session.query(Condition.id, Condition.cName, Condition.tag_id)\ .outerjoin(Tag, Condition.tag_id == Tag.id)\ .filter(Condition.acc_id == account_id)\ .order_by(Tag.tgr_id, Condition.tag_id, Condition.id) def list_count(account_id): return db.session.query(db.func.count(Condition.id)).filter(Condition.acc_id==account_id).scalar() class Description(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) descfrom = db.Column(db.String, nullable=False) descto = db.Column(db.String, nullable=True) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<Condition {}>'.format(self.descfrom) def insert_desc(descfrom, descto, accid): stmt = Description(descfrom=descfrom, descto=descto, acc_id=accid) db.session.add(stmt) db.session.commit() def update_desc(id, descfrom, descto): stmt = Description.query.filter_by(id=id).first() stmt.descfrom = descfrom stmt.descto = descto db.session.commit() def delete_desc(id): stmt = Description.query.filter_by(id=id).first() db.session.delete(stmt) db.session.commit() def list_desc(account_id): return Description.query.filter(Description.acc_id == account_id).order_by(Description.descfrom) def list_count(account_id): return db.session.query(db.func.count(Description.id)).filter(Description.acc_id==account_id).scalar() #create all tables based on models above with app.app_context(): db.create_all()
app/models_postgresql.py
from datetime import datetime, timedelta import pandas as pd import flask from sqlalchemy import extract, asc, desc, func, text from app import db, app today = datetime.today() first_of_this_month = today.replace(day=1, hour=0, minute=0, second=0, microsecond=0) last_of_prev_month = first_of_this_month - timedelta(days=1) first_of_prev_month = last_of_prev_month.replace(day=1) minus_13_months = (first_of_this_month - timedelta(days=390)).replace(day=1) class Account(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) accName = db.Column(db.String, unique=True, nullable=False) #transactions = db.relationship('Transaction', backref=db.backref('trans', lazy=True)) def __repr__(self): return '<Account {}>'.format(self.accName) def create_one(newAccName): stmt = Account(accName=newAccName) db.session.add(stmt) db.session.commit() def one_acc(accountid): return Account.query.filter_by(id = accountid).first() '''def list_acc(): q1 = db.session.query(Transaction.acc_id, Transaction.amount.label('balance'), Transaction.traDate)\ .distinct(Transaction.acc_id)\ .outerjoin(Tag)\ .filter(Tag.isBlnc==True)\ .order_by(Transaction.acc_id, Transaction.traDate.desc())\ .subquery() q2 = db.session.query(Account.id, Account.accName, func.max(func.TO_CHAR(Transaction.uplDate,'YYYY-MM-DD')).label('upldate'))\ .outerjoin(Transaction)\ .group_by(Account.id, Account.accName)\ .subquery() return db.session.query(q2.c.id, q2.c.accName, q2.c.upldate, q1.c.balance)\ .outerjoin(q1, q2.c.id == q1.c.acc_id)''' def list_acc(): cte = db.session.query(Transaction.acc_id\ ,Transaction.amount.label('balance')\ ,func.row_number().over(partition_by=Transaction.acc_id, order_by=desc(Transaction.traDate)).label("rn"))\ .outerjoin(Tag)\ .filter(Tag.isBlnc==1)\ .cte() q1 = db.session.query(cte.c.acc_id, cte.c.balance).filter(cte.c.rn == 1).subquery() q2 = db.session.query(Account.id, Account.accName, func.max(func.date(Transaction.uplDate)).label('upldate'))\ .outerjoin(Transaction)\ .group_by(Account.id, Account.accName)\ .subquery() return db.session.query(q2.c.id, q2.c.accName, q2.c.upldate, q1.c.balance)\ .outerjoin(q1, q2.c.id == q1.c.acc_id) class Transaction(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) traDate = db.Column(db.Date, nullable=False) amount = db.Column(db.Float, nullable=False) desc = db.Column(db.String, nullable=False) card = db.Column(db.String(1), nullable=False) tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'), nullable=True) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) uplDate = db.Column(db.DateTime, nullable=False, default=datetime.now) confirmed = db.Column(db.Boolean, nullable=True, default=False) def __repr__(self): return '<Transaction {}>'.format(self.desc) def create_one(tDate, tAmnt, tDesc, tag, acc, card, confrm): stmt = Transaction(traDate=tDate, amount=tAmnt, desc=tDesc, card=card, tag_id=tag, acc_id=acc, confirmed=confrm) db.session.add(stmt) db.session.commit() def update_trans(tid, traDate, amount, desc, tag): stmt = Transaction.query.filter_by(id=tid).first() stmt.traDate = traDate stmt.amount = amount stmt.desc = desc stmt.tag_id = tag stmt.confirmed = True db.session.commit() def update_trans_amount(tid, amount): stmt = Transaction.query.filter_by(id=tid).first() stmt.amount = amount db.session.commit() def update_desc(account_id, desc_from, desc_to): db.session.query(Transaction)\ .filter(Transaction.desc.like('%'+ desc_from +'%'))\ .update({Transaction.desc: func.replace(Transaction.desc, desc_from, desc_to)} ,synchronize_session=False) db.session.commit() def delete_trans(tid): stmt = Transaction.query.filter_by(id=tid).first() db.session.delete(stmt) db.session.commit() def cnt_all(account_id): return Transaction.query.with_entities(func.count(Transaction.id).label('cnt'))\ .filter(Transaction.acc_id == account_id).one_or_none() def cnt_new(account_id): return Transaction.query.with_entities(func.count(Transaction.id).label('cnt'))\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == False).one_or_none() def cnt_avg_sum_filtered(account_id, date_from, date_to, sel_tags): return Transaction.query\ .with_entities(func.count(Transaction.amount).label('a_cnt'), func.avg(Transaction.amount).label('a_avg'), func.sum(Transaction.amount).label('a_sum'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.tag_id.in_(sel_tags)).one_or_none() def list_filtered(account_id, date_from, date_to, sel_tags): return Transaction.query.filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.tag_id.in_(sel_tags))\ .order_by(Transaction.traDate.desc(), Transaction.amount) def cnt_avg_sum_filtered_new(account_id, date_from, date_to): return Transaction.query\ .with_entities(func.count(Transaction.amount).label('a_cnt'), func.avg(Transaction.amount).label('a_avg'), func.sum(Transaction.amount).label('a_sum'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.confirmed == False).one_or_none() def list_filtered_new(account_id, date_from, date_to): return Transaction.query.filter(Transaction.acc_id == account_id, Transaction.traDate >= date_from, Transaction.traDate <= date_to, Transaction.confirmed == False)\ .order_by(Transaction.traDate.desc(), Transaction.amount) def list_latest_uploads_by_card(account_id, card): return db.session.query(Transaction.card, Transaction.desc, Transaction.traDate, Transaction.amount)\ .filter(Transaction.acc_id == account_id, Transaction.card == card)\ .order_by(Transaction.traDate.desc()).limit(3).all() def first_date(account_id): return db.session.query(db.func.min(Transaction.traDate)).filter(Transaction.acc_id==account_id).scalar() or today def last_date(account_id): return db.session.query(db.func.max(Transaction.traDate)).filter(Transaction.acc_id==account_id).scalar() or today def count_months(account_id): return db.session.query(func.TO_CHAR(Transaction.traDate,'YYYYMM'))\ .filter(Transaction.acc_id == account_id, Transaction.traDate < first_of_this_month)\ .distinct().count() def max_year(account_id): return Transaction.query\ .with_entities(extract('year',func.max(Transaction.traDate).label('max_year')))\ .filter(Transaction.acc_id == account_id).scalar() def list_year(account_id): return db.session.query(extract('year',Transaction.traDate).label('year'))\ .filter(Transaction.acc_id == account_id).distinct().order_by(desc('year')) def chart_header(column_name, account_id): subquery = db.session.query(Tag.tgr_id).filter(getattr(Tag, column_name)==True, Taggroup.acc_id==account_id) return db.session.query(Taggroup.gName, Taggroup.gColor)\ .filter(Taggroup.id.in_(subquery))\ .order_by(Taggroup.gName) def chart_data(account_id, column_name, months): first_of_n_month = (first_of_this_month - timedelta(days=months*30)).replace(day=1) q = db.session.query(Taggroup.gName ,func.TO_CHAR(Transaction.traDate,'YYYYMM').label('orderByCol')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth')\ ,func.SUM(Transaction.amount).label('total'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id\ ,Transaction.confirmed == True\ ,Transaction.traDate >= first_of_n_month\ ,Transaction.traDate < first_of_this_month\ ,getattr(Tag, column_name)==True)\ .group_by(Taggroup.gName\ ,func.TO_CHAR(Transaction.traDate,'YYYYMM')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth'))\ .order_by('orderByCol',Taggroup.gName) #get unique groups g = [] prev_val = '' for row in q: if row.gName != prev_val: g.append(row.gName) prev_val = row.gName #create months/group with default value m = {} prev_val = '' for row in q: if row.mnth != prev_val: m[row.mnth] = {g_:0 for g_ in g} prev_val = row.mnth #replace values in dict if exists in q for row in q: for key in m: for mk in m[key]: if row.mnth==key and mk==row.gName : m[key][mk] = row.total return m def get_dates(what_year_): what_year = int(what_year_) prev_year = what_year - 1 prev_month_num = last_of_prev_month.strftime("%m") prev_month = int(prev_month_num) - 1 if int(prev_month_num) > 1 else 12 year_num = last_of_prev_month.strftime("%Y") which_year = year_num if int(year_num) == what_year else prev_year which_month = prev_month_num if int(year_num) == what_year else prev_month end_12_month = last_of_prev_month.replace(year=what_year) start_12_month = (end_12_month - timedelta(days=360)).replace(day=1) return what_year, prev_year, which_year, which_month, start_12_month, end_12_month def get_stats_year(account_id, what_year, lbl1, lbl2): return db.session.query(Tag.tgr_id.label(lbl1), func.SUM(Transaction.amount).label(lbl2))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False, extract('year',Transaction.traDate)==what_year)\ .group_by(Tag.tgr_id).subquery() def get_statsDate(what_year): gd = Transaction.get_dates(what_year) fopm = first_of_prev_month.replace(year=int(gd[2])) lopm = last_of_prev_month.replace(year=int(gd[2])) return [str(gd[1])+'-01-01', str(gd[1])+'-12-31', str(gd[0])+'-01-01', str(gd[0])+'-12-31', str(fopm), str(lopm)] def get_stat_year(account_id, what_year): gd = Transaction.get_dates(what_year) tg = Taggroup.list_tgroup_id_inSum(account_id) q1 = db.session.query(Tag.tgr_id.label('tag1'), Taggroup.gName.label('Category'), Taggroup.gColor.label('color'), func.SUM(Transaction.amount).label('Total'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False, extract('year',Transaction.traDate)<=gd[0])\ .group_by(Tag.tgr_id, Taggroup.gName, Taggroup.gColor)\ .order_by(Tag.tgr_id).subquery() q2 = Transaction.get_stats_year(account_id, gd[1], 'tag2', 'Prev_Year') q3 = Transaction.get_stats_year(account_id, gd[0], 'tag3', 'This_Year') month_count = Transaction.count_months(account_id) if Transaction.count_months(account_id) < 12 else 12 q4 = db.session.query(Tag.tgr_id.label('tag4'), func.SUM(Transaction.amount/month_count).label('Avg_Month'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Transaction.traDate>=gd[4], Transaction.traDate<gd[5])\ .group_by(Tag.tgr_id).subquery() q5 = db.session.query(Tag.tgr_id.label('tag5'), func.SUM(Transaction.amount).label('Prev_Month'))\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, extract('year',Transaction.traDate)==gd[2], extract('month',Transaction.traDate)==gd[3])\ .group_by(Tag.tgr_id).subquery() return db.session.query(q1.c.Category, q1.c.tag1, q1.c.Total, q2.c.Prev_Year, q3.c.This_Year, (100*(q3.c.This_Year/q2.c.Prev_Year)).label('%_YTD'), q4.c.Avg_Month, q5.c.Prev_Month, q1.c.color)\ .outerjoin(q2, q1.c.tag1 == q2.c.tag2)\ .outerjoin(q3, q1.c.tag1 == q3.c.tag3)\ .outerjoin(q4, q1.c.tag1 == q4.c.tag4)\ .outerjoin(q5, q1.c.tag1 == q5.c.tag5)\ .order_by(q1.c.tag1) def get_stat_year_df(account_id, what_year): tg = Taggroup.list_tgroup_id_inSum(account_id) q = Transaction.get_stat_year(account_id, what_year) df = pd.read_sql_query(q.statement, db.session.bind) #transform valies from object to float pd.options.display.float_format = '{:.2f}'.format #exclude BILLS from summary s = df.mask(~df['tag1'].isin(tg)).drop('tag1',1).sum() #calculate '% YTD' s.loc['%_YTD'] = 100*(s['This_Year'] / s['Prev_Year']) #replace calculated value in specific position df.loc[len(df)] = s #replace summarised categ name df = df.fillna({'Category':'Summary','tag1':0,'color':''}) #replace 'NaN' to '0', then limit decimals to 2 return df.fillna(0).round(2) def get_stat_year_by_year(account_id): tg = Taggroup.list_tgroup_id_inSum(account_id) q = db.session.query( Tag.tgr_id.label('tag')\ , Taggroup.gName.label('Category')\ , Transaction.traDate.label('date')\ , Transaction.amount)\ .outerjoin(Tag, Transaction.tag_id == Tag.id)\ .outerjoin(Taggroup, Taggroup.id == Tag.tgr_id)\ .filter(Transaction.acc_id == account_id, Transaction.confirmed == True, Tag.isBlnc == False)\ .order_by(Tag.tgr_id) df = pd.read_sql_query(q.statement, db.session.bind) #add column 'year' based on 'date' df['Year'] = pd.DatetimeIndex(df['date']).year #groupby df = df.groupby(['tag','Category','Year']).sum() #pivot df = pd.pivot_table(df, values = 'amount', index=['Category','tag'], columns = 'Year')\ .sort_values(by=['tag'], ascending=True) #add column 'Total', to sum horizontally, per category df.insert(loc=0, column='Total', value=df.sum(axis=1)) #add row 'Summary' to sum columns, except BILLS df.loc['Summary'] = df.query("tag in @tg").sum() #change FLOAT values to INT return df.fillna(0).astype(int) def chart_in_out(account_id): sum_in = Transaction.query.with_entities(func.ABS(func.SUM(Transaction.amount)))\ .outerjoin(Tag)\ .filter(Transaction.acc_id == account_id, Transaction.amount > 0 \ , Tag.isBlnc == False \ , Transaction.traDate>=first_of_prev_month, Transaction.traDate<first_of_this_month)\ .scalar() sum_out = Transaction.query.with_entities(func.ABS(func.SUM(Transaction.amount)))\ .outerjoin(Tag)\ .filter(Transaction.acc_id == account_id, Transaction.amount < 0 \ , Tag.isBlnc == False \ , Transaction.traDate>=first_of_prev_month, Transaction.traDate<first_of_this_month)\ .scalar() return sum_in if sum_in is not None else 0, sum_out if sum_out is not None else 0 def chart_monthly_trend(account_id): tag_inSum = Tag.list_tag_id_inSum(account_id) month_by_month = db.session.query(\ func.TO_CHAR(Transaction.traDate,'YYYYMM').label('orderByCol')\ ,func.TO_CHAR(Transaction.traDate,'MON').label('mnth')\ ,func.SUM(Transaction.amount).label('total')\ ,func.TEXT('Dummy').label('D'))\ .filter(Transaction.tag_id.in_(tag_inSum), Transaction.traDate>=minus_13_months, Transaction.traDate<first_of_this_month)\ .group_by(func.TO_CHAR(Transaction.traDate,'YYYYMM'),func.TO_CHAR(Transaction.traDate,'MON'),func.TEXT('Dummy'))\ .subquery() month_count = Transaction.count_months(account_id) if Transaction.count_months(account_id) < 13 else 13 month_avg = db.session.query(\ func.TEXT('AvgYear').label('orderByCol')\ ,func.TEXT('AvgMonth').label('MON')\ ,func.SUM(Transaction.amount/month_count).label('total_avg')\ ,func.TEXT('Dummy').label('D'))\ .filter(Transaction.tag_id.in_(tag_inSum), Transaction.traDate>=minus_13_months, Transaction.traDate<first_of_this_month)\ .subquery() return db.session.query(month_by_month.c.orderByCol, month_by_month.c.mnth, month_by_month.c.total, month_avg.c.total_avg)\ .outerjoin(month_by_month, month_by_month.c.D == month_avg.c.D)\ .order_by(month_by_month.c.orderByCol) class Taggroup(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) gName = db.Column(db.String, nullable=False) gColor = db.Column(db.String(11), nullable=False) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<TagGroup {}>'.format(self.gName) def insert_tag_group(g_name, color, accid): stmt = Taggroup(gName=g_name, gColor=color, acc_id=accid) db.session.add(stmt) db.session.commit() newid = stmt.id def update_tag_group(gid, g_name, color): stmt = Taggroup.query.filter_by(id=gid).first() stmt.gName = g_name stmt.gColor = color db.session.commit() def delete_tag_group(gid): stmt = Taggroup.query.filter_by(id=gid).first() db.session.delete(stmt) db.session.commit() def list_tgroup(account_id): return Taggroup.query.filter(Taggroup.acc_id == account_id).order_by(Taggroup.id) def list_tgroup_id(account_id): q = db.session.query(Taggroup.id).filter(Taggroup.acc_id==account_id).order_by(Taggroup.id).all() return [val for val, in q] def list_tgroup_id_one(account_id): return db.session.query(Taggroup.id).filter(Taggroup.acc_id==account_id).order_by(Taggroup.id.desc()).first() def list_count(account_id): return db.session.query(db.func.count(Taggroup.id)).filter(Taggroup.acc_id==account_id).scalar() def list_tgroup_id_inSum(account_id): q = db.session.query(Taggroup.id)\ .outerjoin(Tag)\ .filter(Tag.inSum==True, Taggroup.acc_id==account_id)\ .distinct() return [val for val, in q] class Tag(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) tName = db.Column(db.String, nullable=False) tgr_id = db.Column(db.Integer, db.ForeignKey('taggroup.id'), nullable=False) isBlnc = db.Column(db.Boolean, nullable=False, default=0) inSum = db.Column(db.Boolean, nullable=False, default=1) chart1 = db.Column(db.Boolean, nullable=False, default=0) chart2 = db.Column(db.Boolean, nullable=False, default=0) chart3 = db.Column(db.Boolean, nullable=False, default=0) def __repr__(self): return '<Tag {}>'.format(self.tName) def insert_tag(t_name, g_id, balance, summary, c1, c2, c3): stmt = Tag(tName=t_name, tgr_id=g_id, isBlnc=balance, inSum=summary, chart1=c1, chart2=c2, chart3=c3) db.session.add(stmt) db.session.commit() def update_tag(tid, t_name, g_id, balance, summary, c1, c2, c3): stmt = Tag.query.filter_by(id=tid).first() stmt.tName = t_name stmt.tgr_id = g_id stmt.isBlnc = balance stmt.inSum = summary stmt.chart1 = c1 stmt.chart2 = c2 stmt.chart3 = c3 db.session.commit() def delete_tag(tid): stmt = Tag.query.filter_by(id=tid).first() db.session.delete(stmt) db.session.commit() def list_tag(account_id): return db.session.query(Tag.id ,Tag.tName ,Tag.tgr_id ,Tag.isBlnc ,Tag.inSum ,Tag.chart1 ,Tag.chart2 ,Tag.chart3)\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id)\ .order_by(Tag.tgr_id, Tag.id) def list_tag_id(account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id) return [val for val, in q] def list_tag_id_of_group(grpid,account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Tag.tgr_id==grpid, Taggroup.acc_id==account_id) return [val for val, in q] def list_tag_id_inSum(account_id): q = db.session.query(Tag.id)\ .outerjoin(Taggroup)\ .filter(Tag.inSum==True, Taggroup.acc_id==account_id) return [val for val, in q] def list_count(account_id): return db.session.query(db.func.count(Tag.id))\ .outerjoin(Taggroup)\ .filter(Taggroup.acc_id==account_id).scalar() class Condition(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) cName = db.Column(db.String, nullable=False) tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'), nullable=False) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<Condition {}>'.format(self.cName) def insert_cond(cname, tag, accid): stmt = Condition(cName=cname, tag_id=tag, acc_id=accid) db.session.add(stmt) db.session.commit() def update_cond(cid, cName, tag): stmt = Condition.query.filter_by(id=cid).first() stmt.cName = cName stmt.tag_id = tag db.session.commit() def delete_cond(cid): stmt = Condition.query.filter_by(id=cid).first() db.session.delete(stmt) db.session.commit() def list_cond(account_id): return db.session.query(Condition.id, Condition.cName, Condition.tag_id)\ .outerjoin(Tag, Condition.tag_id == Tag.id)\ .filter(Condition.acc_id == account_id)\ .order_by(Tag.tgr_id, Condition.tag_id, Condition.id) def list_count(account_id): return db.session.query(db.func.count(Condition.id)).filter(Condition.acc_id==account_id).scalar() class Description(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) descfrom = db.Column(db.String, nullable=False) descto = db.Column(db.String, nullable=True) acc_id = db.Column(db.Integer, db.ForeignKey('account.id'), nullable=False) def __repr__(self): return '<Condition {}>'.format(self.descfrom) def insert_desc(descfrom, descto, accid): stmt = Description(descfrom=descfrom, descto=descto, acc_id=accid) db.session.add(stmt) db.session.commit() def update_desc(id, descfrom, descto): stmt = Description.query.filter_by(id=id).first() stmt.descfrom = descfrom stmt.descto = descto db.session.commit() def delete_desc(id): stmt = Description.query.filter_by(id=id).first() db.session.delete(stmt) db.session.commit() def list_desc(account_id): return Description.query.filter(Description.acc_id == account_id).order_by(Description.descfrom) def list_count(account_id): return db.session.query(db.func.count(Description.id)).filter(Description.acc_id==account_id).scalar() #create all tables based on models above with app.app_context(): db.create_all()
0.393385
0.147034
import rospy from geometry_msgs.msg import Twist from std_msgs.msg import Float64 from std_msgs.msg import Bool import math pubLeft = rospy.Publisher('/setpoint_left', Float64, queue_size=10) pubRigth = rospy.Publisher('/setpoint_right', Float64, queue_size=10) pubFront = rospy.Publisher('/setpoint_front', Float64, queue_size=10) pubBack = rospy.Publisher('/setpoint_back', Float64, queue_size=10) pubEnableLeft = rospy.Publisher('/left_wheel/left_wheel_pid_activate', Bool, queue_size=10) pubEnableRigth = rospy.Publisher('/right_wheel/right_wheel_pid_activate', Bool, queue_size=10) pubEnableFront = rospy.Publisher('/front_wheel/front_wheel_pid_activate', Bool, queue_size=10) pubEnableBack = rospy.Publisher('/back_wheel/back_wheel_pid_activate', Bool, queue_size=10) velMinima = 0.3 def setDesiredVel(data): #print "Me llego mensaje Twist:\n Lineal:\n X: ",data.linear.x,"\n Y: ",data.linear.y,"\n Z: ",data.linear.z,"\n ANGULAR:\n X: ",data.angular.x,"\n Y: ",data.angular.y,"\n Z: ",data.angular.z #ANALIZAR EL CASO EN EL QUE EL MENSAJE EN X ES IGUAL AL Y, ENTONCES DOS RUEDAS SE ANULAN Y FUNCIONAN SOLO DOS... radioRobot = 0.45 vectorDeseado = [[data.linear.x],[data.linear.y],[data.angular.z * radioRobot]] matrizMotores = [[-1*math.sin(0.785398),math.cos(0.785398),1],[-1*math.sin(2.35619),math.cos(2.35619),1],[-1*math.sin(3.92699),math.cos(3.92699),1],[-1*math.sin(5.49779),math.cos(5.49779),1]] velMotores=[[0],[0],[0],[0]] for columna in range(0,len(vectorDeseado)): for fila in range(0,len(matrizMotores)): velMotores[fila][0] += matrizMotores[fila][columna] * vectorDeseado[columna][0] menor = False """ if(abs(data.linear.x) != abs(data.linear.y) or abs(data.angular.z) != 0): for i in range(0,4): print("IF num: " + str(i) + " vel: " + str(velMotores[i][0])) if( ((velMotores[i][0] > (velMinima*-1)) and (velMotores[i][0] < velMinima)) ): menor = True break else: for i in range(0,4): print("ELSE num: " + str(i) + " vel: " + str(velMotores[i][0])) if( (velMotores[i][0] > (velMinima*-1)) and (velMotores[i][0] < velMinima) ): if( (velMotores[i][0] > 0.1) or (velMotores[i][0] < -0.1) ): menor = True break """ if(not menor): pubEnableLeft.publish(True) pubEnableRigth.publish(True) pubEnableFront.publish(True) pubEnableBack.publish(True) pubLeft.publish(velMotores[0][0]) pubFront.publish(velMotores[1][0]) pubRigth.publish(velMotores[2][0]) pubBack.publish(velMotores[3][0]) else: pubLeft.publish(0) pubFront.publish(0) pubRigth.publish(0) pubBack.publish(0) def listener(): rospy.init_node('PID_General', anonymous=True) rospy.Subscriber("/cmd_vel", Twist, setDesiredVel) rospy.spin() if __name__ == '__main__': try: listener() except rospy.ROSInterruptException: pass
src/hermesIII/src/PID_general.py
import rospy from geometry_msgs.msg import Twist from std_msgs.msg import Float64 from std_msgs.msg import Bool import math pubLeft = rospy.Publisher('/setpoint_left', Float64, queue_size=10) pubRigth = rospy.Publisher('/setpoint_right', Float64, queue_size=10) pubFront = rospy.Publisher('/setpoint_front', Float64, queue_size=10) pubBack = rospy.Publisher('/setpoint_back', Float64, queue_size=10) pubEnableLeft = rospy.Publisher('/left_wheel/left_wheel_pid_activate', Bool, queue_size=10) pubEnableRigth = rospy.Publisher('/right_wheel/right_wheel_pid_activate', Bool, queue_size=10) pubEnableFront = rospy.Publisher('/front_wheel/front_wheel_pid_activate', Bool, queue_size=10) pubEnableBack = rospy.Publisher('/back_wheel/back_wheel_pid_activate', Bool, queue_size=10) velMinima = 0.3 def setDesiredVel(data): #print "Me llego mensaje Twist:\n Lineal:\n X: ",data.linear.x,"\n Y: ",data.linear.y,"\n Z: ",data.linear.z,"\n ANGULAR:\n X: ",data.angular.x,"\n Y: ",data.angular.y,"\n Z: ",data.angular.z #ANALIZAR EL CASO EN EL QUE EL MENSAJE EN X ES IGUAL AL Y, ENTONCES DOS RUEDAS SE ANULAN Y FUNCIONAN SOLO DOS... radioRobot = 0.45 vectorDeseado = [[data.linear.x],[data.linear.y],[data.angular.z * radioRobot]] matrizMotores = [[-1*math.sin(0.785398),math.cos(0.785398),1],[-1*math.sin(2.35619),math.cos(2.35619),1],[-1*math.sin(3.92699),math.cos(3.92699),1],[-1*math.sin(5.49779),math.cos(5.49779),1]] velMotores=[[0],[0],[0],[0]] for columna in range(0,len(vectorDeseado)): for fila in range(0,len(matrizMotores)): velMotores[fila][0] += matrizMotores[fila][columna] * vectorDeseado[columna][0] menor = False """ if(abs(data.linear.x) != abs(data.linear.y) or abs(data.angular.z) != 0): for i in range(0,4): print("IF num: " + str(i) + " vel: " + str(velMotores[i][0])) if( ((velMotores[i][0] > (velMinima*-1)) and (velMotores[i][0] < velMinima)) ): menor = True break else: for i in range(0,4): print("ELSE num: " + str(i) + " vel: " + str(velMotores[i][0])) if( (velMotores[i][0] > (velMinima*-1)) and (velMotores[i][0] < velMinima) ): if( (velMotores[i][0] > 0.1) or (velMotores[i][0] < -0.1) ): menor = True break """ if(not menor): pubEnableLeft.publish(True) pubEnableRigth.publish(True) pubEnableFront.publish(True) pubEnableBack.publish(True) pubLeft.publish(velMotores[0][0]) pubFront.publish(velMotores[1][0]) pubRigth.publish(velMotores[2][0]) pubBack.publish(velMotores[3][0]) else: pubLeft.publish(0) pubFront.publish(0) pubRigth.publish(0) pubBack.publish(0) def listener(): rospy.init_node('PID_General', anonymous=True) rospy.Subscriber("/cmd_vel", Twist, setDesiredVel) rospy.spin() if __name__ == '__main__': try: listener() except rospy.ROSInterruptException: pass
0.127151
0.135604
from typing import List from pydantic import BaseModel, Field from models.domain.resource import ResourceType from models.domain.resource_template import ResourceTemplate, Parameter def get_sample_workspace_template_object(template_name: str = "tre-workspace-vanilla") -> ResourceTemplate: return ResourceTemplate( id="a7a7a7bd-7f4e-4a4e-b970-dc86a6b31dfb", name=template_name, description="vanilla workspace bundle", version="0.1.0", parameters=[ Parameter(name="azure_location", type="string"), Parameter(name="tre_id", type="string"), Parameter(name="workspace_id", type="string"), Parameter(name="address_space", type="string", default="10.2.1.0/24", description="VNet address space for the workspace services") ], resourceType=ResourceType.Workspace, current=True, ) def get_sample_workspace_template() -> dict: return get_sample_workspace_template_object().dict() class WorkspaceTemplateNamesInList(BaseModel): templateNames: List[str] class Config: schema_extra = { "example": { "templateNames": ["tre-workspace-vanilla", "tre-workspace-base"] } } class WorkspaceTemplateInCreate(BaseModel): name: str = Field(title="Name of workspace template") version: str = Field(title="Version of workspace template") description: str = Field(title=" Description of workspace template") parameters: List[Parameter] = Field([], title="Workspace template parameters", description="Values for the parameters required by the workspace template") current: bool = Field(title="Mark this version as current") class Config: schema_extra = { "example": { "name": "my-tre-workspace", "version": "0.0.1", "description": "workspace template for great product", "parameters": [{ "name": "azure_location", "type": "string" }], "current": "true" } } class WorkspaceTemplateInResponse(BaseModel): workspaceTemplate: ResourceTemplate class Config: schema_extra = { "example": { "resourceTemplateId": "49a7445c-aae6-41ec-a539-30dfa90ab1ae", "workspaceTemplate": get_sample_workspace_template() } }
management_api_app/models/schemas/workspace_template.py
from typing import List from pydantic import BaseModel, Field from models.domain.resource import ResourceType from models.domain.resource_template import ResourceTemplate, Parameter def get_sample_workspace_template_object(template_name: str = "tre-workspace-vanilla") -> ResourceTemplate: return ResourceTemplate( id="a7a7a7bd-7f4e-4a4e-b970-dc86a6b31dfb", name=template_name, description="vanilla workspace bundle", version="0.1.0", parameters=[ Parameter(name="azure_location", type="string"), Parameter(name="tre_id", type="string"), Parameter(name="workspace_id", type="string"), Parameter(name="address_space", type="string", default="10.2.1.0/24", description="VNet address space for the workspace services") ], resourceType=ResourceType.Workspace, current=True, ) def get_sample_workspace_template() -> dict: return get_sample_workspace_template_object().dict() class WorkspaceTemplateNamesInList(BaseModel): templateNames: List[str] class Config: schema_extra = { "example": { "templateNames": ["tre-workspace-vanilla", "tre-workspace-base"] } } class WorkspaceTemplateInCreate(BaseModel): name: str = Field(title="Name of workspace template") version: str = Field(title="Version of workspace template") description: str = Field(title=" Description of workspace template") parameters: List[Parameter] = Field([], title="Workspace template parameters", description="Values for the parameters required by the workspace template") current: bool = Field(title="Mark this version as current") class Config: schema_extra = { "example": { "name": "my-tre-workspace", "version": "0.0.1", "description": "workspace template for great product", "parameters": [{ "name": "azure_location", "type": "string" }], "current": "true" } } class WorkspaceTemplateInResponse(BaseModel): workspaceTemplate: ResourceTemplate class Config: schema_extra = { "example": { "resourceTemplateId": "49a7445c-aae6-41ec-a539-30dfa90ab1ae", "workspaceTemplate": get_sample_workspace_template() } }
0.842215
0.255762
import argparse import os import sys import datetime import re import time import numpy as np from config import Config import utils import model as modellib from dataset import NOCSDataset # Root directory of the project ROOT_DIR = os.getcwd() # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Path to COCO trained weights COCO_MODEL_PATH = os.path.join(MODEL_DIR, "mask_rcnn_coco.h5") class ScenesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "ShapeNetTOI" OBJ_MODEL_DIR = os.path.join(ROOT_DIR, 'data', 'obj_models') # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 6 # background + 6 object categories MEAN_PIXEL = np.array([[ 120.66209412, 114.70348358, 105.81269836]]) IMAGE_MIN_DIM = 480 IMAGE_MAX_DIM = 640 RPN_ANCHOR_SCALES = (16, 32, 48, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 64 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 1000 # use small validation steps since the epoch is small VALIDATION_STEPS = 50 WEIGHT_DECAY = 0.0001 LEARNING_RATE = 0.001 LEARNING_MOMENTUM = 0.9 COORD_LOSS_SCALE = 1 COORD_USE_BINS = True if COORD_USE_BINS: COORD_NUM_BINS = 32 else: COORD_REGRESS_LOSS = 'Soft_L1' COORD_SHARE_WEIGHTS = False COORD_USE_DELTA = False COORD_POOL_SIZE = 14 COORD_SHAPE = [28, 28] USE_BN = True # if COORD_SHARE_WEIGHTS: # USE_BN = False USE_SYMMETRY_LOSS = True RESNET = "resnet50" TRAINING_AUGMENTATION = True SOURCE_WEIGHT = [3, 1, 1] #'ShapeNetTOI', 'Real', 'coco' class InferenceConfig(ScenesConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', default='0', type=str) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES']=args.gpu print('Using GPU {}.'.format(args.gpu)) config = ScenesConfig() config.display() # dataset directories #camera_dir = os.path.join('/6PACK/My_NOCS','data', 'camera') camera_dir = os.path.join('/6PACK/My_NOCS','data') real_dir = os.path.join('/6PACK/My_NOCS','data', 'real') coco_dir = os.path.join('/6PACK/My_NOCS','data', 'coco') # real classes coco_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] synset_names = ['BG', #0 'bottle', #1 'bowl', #2 'camera', #3 'can', #4 'laptop',#5 'mug'#6 ] class_map = { 'bottle': 'bottle', 'bowl':'bowl', 'cup':'mug', 'laptop': 'laptop', } coco_cls_ids = [] for coco_cls in class_map: ind = coco_names.index(coco_cls) coco_cls_ids.append(ind) config.display() # Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR) # Which weights to start with? init_with = "coco" # imagenet, coco, or last if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last()[1], by_name=True) # Train the head branches # Passing layers="heads" freezes all layers except the head # layers. You can also pass a regular expression to select # which layers to train by name pattern. dataset_train = NOCSDataset(synset_names, 'train', config) dataset_train.load_camera_scenes(camera_dir) dataset_train.load_real_scenes(real_dir) dataset_train.load_coco(coco_dir, "train", class_names=class_map.keys()) dataset_train.prepare(class_map) # Validation dataset dataset_val = NOCSDataset(synset_names, 'val', config) dataset_val.load_camera_scenes(camera_dir) dataset_val.prepare(class_map) #print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=100, layers_name='heads') # Training - Stage 2 # Finetune layers from ResNet stage 4 and up print("Training Resnet layer 4+") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE/10, epochs=130, layers_name='4+') # Training - Stage 3 # Finetune layers from ResNet stage 3 and up print("Training Resnet layer 3+") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE/100, epochs=400, layers_name='all')
research/6D_Pose/nocs_train.py
import argparse import os import sys import datetime import re import time import numpy as np from config import Config import utils import model as modellib from dataset import NOCSDataset # Root directory of the project ROOT_DIR = os.getcwd() # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Path to COCO trained weights COCO_MODEL_PATH = os.path.join(MODEL_DIR, "mask_rcnn_coco.h5") class ScenesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "ShapeNetTOI" OBJ_MODEL_DIR = os.path.join(ROOT_DIR, 'data', 'obj_models') # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 1 + 6 # background + 6 object categories MEAN_PIXEL = np.array([[ 120.66209412, 114.70348358, 105.81269836]]) IMAGE_MIN_DIM = 480 IMAGE_MAX_DIM = 640 RPN_ANCHOR_SCALES = (16, 32, 48, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 64 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 1000 # use small validation steps since the epoch is small VALIDATION_STEPS = 50 WEIGHT_DECAY = 0.0001 LEARNING_RATE = 0.001 LEARNING_MOMENTUM = 0.9 COORD_LOSS_SCALE = 1 COORD_USE_BINS = True if COORD_USE_BINS: COORD_NUM_BINS = 32 else: COORD_REGRESS_LOSS = 'Soft_L1' COORD_SHARE_WEIGHTS = False COORD_USE_DELTA = False COORD_POOL_SIZE = 14 COORD_SHAPE = [28, 28] USE_BN = True # if COORD_SHARE_WEIGHTS: # USE_BN = False USE_SYMMETRY_LOSS = True RESNET = "resnet50" TRAINING_AUGMENTATION = True SOURCE_WEIGHT = [3, 1, 1] #'ShapeNetTOI', 'Real', 'coco' class InferenceConfig(ScenesConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', default='0', type=str) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES']=args.gpu print('Using GPU {}.'.format(args.gpu)) config = ScenesConfig() config.display() # dataset directories #camera_dir = os.path.join('/6PACK/My_NOCS','data', 'camera') camera_dir = os.path.join('/6PACK/My_NOCS','data') real_dir = os.path.join('/6PACK/My_NOCS','data', 'real') coco_dir = os.path.join('/6PACK/My_NOCS','data', 'coco') # real classes coco_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] synset_names = ['BG', #0 'bottle', #1 'bowl', #2 'camera', #3 'can', #4 'laptop',#5 'mug'#6 ] class_map = { 'bottle': 'bottle', 'bowl':'bowl', 'cup':'mug', 'laptop': 'laptop', } coco_cls_ids = [] for coco_cls in class_map: ind = coco_names.index(coco_cls) coco_cls_ids.append(ind) config.display() # Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR) # Which weights to start with? init_with = "coco" # imagenet, coco, or last if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last()[1], by_name=True) # Train the head branches # Passing layers="heads" freezes all layers except the head # layers. You can also pass a regular expression to select # which layers to train by name pattern. dataset_train = NOCSDataset(synset_names, 'train', config) dataset_train.load_camera_scenes(camera_dir) dataset_train.load_real_scenes(real_dir) dataset_train.load_coco(coco_dir, "train", class_names=class_map.keys()) dataset_train.prepare(class_map) # Validation dataset dataset_val = NOCSDataset(synset_names, 'val', config) dataset_val.load_camera_scenes(camera_dir) dataset_val.prepare(class_map) #print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=100, layers_name='heads') # Training - Stage 2 # Finetune layers from ResNet stage 4 and up print("Training Resnet layer 4+") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE/10, epochs=130, layers_name='4+') # Training - Stage 3 # Finetune layers from ResNet stage 3 and up print("Training Resnet layer 3+") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE/100, epochs=400, layers_name='all')
0.365796
0.301264
import requests def dataset_definition(connection, dataset_id, fields=None, verbose=False): """Get the definition of a dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. fields(list, optional): Specifies object types to be returned. Possible values include tables, columns, attributes, and metrics. If no value is set, attributes and metrics are returned. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.get(url=connection.base_url + '/datasets/' + dataset_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, params={'fields': fields}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def create_dataset(connection, body, verbose=False): """Create a single-table dataset from external data uploaded to the MicroStrategy Intelligence Server. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. body (str): JSON-formatted definition of the dataset. Generated by `utils.formjson()`. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def update_dataset(connection, dataset_id, table_name, update_policy, body, verbose=False, table_id=None): """Update a single-table dataset with external data uploaded to the MicroStrategy Intelligence Server. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. table_id (str): Identifier of the table to update within the MicroStrategy dataset. update_policy (str): Update operation type: 'Add' (inserts new, unique rows), 'Update' (updates data in existing rows and columns), 'Upsert' (updates existing data and inserts new rows), 'Replace' (similar to truncate, replaces the existing data with new data). body (str): JSON-formatted definition of the dataset. Generated by `utils.formjson()`. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.patch(url=connection.base_url + '/datasets/' + dataset_id + '/tables/' + table_name, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id, 'updatePolicy': update_policy}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def delete_dataset(connection, dataset_id, verbose=False): """Delete a dataset previously created using the REST API. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.delete(url=connection.base_url + '/objects/' + dataset_id + '?type=3', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def create_multitable_dataset(connection, body, verbose=False): """Create the definition of a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/models', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def upload_session(connection, dataset_id, body, verbose=False): """Create a multi-table dataset upload session. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def upload(connection, dataset_id, session_id, body, verbose=False): """Upload data to a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer of the server session used for collecting uploaded data. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.put(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish(connection, dataset_id, session_id, verbose=False): """Publish a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id + '/publish', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish_status(connection, dataset_id, session_id, verbose=False): """Get multi-table dataset publication status. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.get(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id + '/publishStatus', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish_cancel(connection, dataset_id, session_id, verbose=False): """Delete a multi-table dataset upload session and cancel publication. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.delete(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response
mstrio/api/datasets.py
import requests def dataset_definition(connection, dataset_id, fields=None, verbose=False): """Get the definition of a dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. fields(list, optional): Specifies object types to be returned. Possible values include tables, columns, attributes, and metrics. If no value is set, attributes and metrics are returned. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.get(url=connection.base_url + '/datasets/' + dataset_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, params={'fields': fields}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def create_dataset(connection, body, verbose=False): """Create a single-table dataset from external data uploaded to the MicroStrategy Intelligence Server. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. body (str): JSON-formatted definition of the dataset. Generated by `utils.formjson()`. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def update_dataset(connection, dataset_id, table_name, update_policy, body, verbose=False, table_id=None): """Update a single-table dataset with external data uploaded to the MicroStrategy Intelligence Server. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. table_id (str): Identifier of the table to update within the MicroStrategy dataset. update_policy (str): Update operation type: 'Add' (inserts new, unique rows), 'Update' (updates data in existing rows and columns), 'Upsert' (updates existing data and inserts new rows), 'Replace' (similar to truncate, replaces the existing data with new data). body (str): JSON-formatted definition of the dataset. Generated by `utils.formjson()`. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.patch(url=connection.base_url + '/datasets/' + dataset_id + '/tables/' + table_name, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id, 'updatePolicy': update_policy}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def delete_dataset(connection, dataset_id, verbose=False): """Delete a dataset previously created using the REST API. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.delete(url=connection.base_url + '/objects/' + dataset_id + '?type=3', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def create_multitable_dataset(connection, body, verbose=False): """Create the definition of a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/models', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def upload_session(connection, dataset_id, body, verbose=False): """Create a multi-table dataset upload session. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def upload(connection, dataset_id, session_id, body, verbose=False): """Upload data to a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer of the server session used for collecting uploaded data. body (dict): JSON-formatted payload containing the body of the request. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.put(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, json=body, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish(connection, dataset_id, session_id, verbose=False): """Publish a multi-table dataset. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.post(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id + '/publish', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish_status(connection, dataset_id, session_id, verbose=False): """Get multi-table dataset publication status. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.get(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id + '/publishStatus', headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response def publish_cancel(connection, dataset_id, session_id, verbose=False): """Delete a multi-table dataset upload session and cancel publication. Args: connection (object): MicroStrategy connection object returned by `microstrategy.Connection()`. dataset_id (str): Identifier of a pre-existing dataset. Used when updating a pre-existing dataset. session_id (str): Identifer for the server session used for collecting uploaded data. verbose (bool, optional): Verbosity of server responses; defaults to False. Returns: HTTP response object returned by the MicroStrategy REST server """ response = requests.delete(url=connection.base_url + '/datasets/' + dataset_id + '/uploadSessions/' + session_id, headers={'X-MSTR-AuthToken': connection.auth_token, 'X-MSTR-ProjectID': connection.project_id}, cookies=connection.cookies, verify=connection.ssl_verify) if verbose: print(response.url) return response
0.856558
0.375907
"""This module contains a Google Cloud Speech Hook.""" from typing import Dict, Optional, Sequence, Union from google.api_core.retry import Retry from google.cloud.speech_v1 import SpeechClient from google.cloud.speech_v1.types import RecognitionAudio, RecognitionConfig from airflow.providers.google.common.consts import CLIENT_INFO from airflow.providers.google.common.hooks.base_google import GoogleBaseHook class CloudSpeechToTextHook(GoogleBaseHook): """ Hook for Google Cloud Speech API. :param gcp_conn_id: The connection ID to use when fetching connection info. :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. """ def __init__( self, gcp_conn_id: str = "google_cloud_default", delegate_to: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, ) -> None: super().__init__( gcp_conn_id=gcp_conn_id, delegate_to=delegate_to, impersonation_chain=impersonation_chain, ) self._client = None def get_conn(self) -> SpeechClient: """ Retrieves connection to Cloud Speech. :return: Google Cloud Speech client object. :rtype: google.cloud.speech_v1.SpeechClient """ if not self._client: self._client = SpeechClient(credentials=self._get_credentials(), client_info=CLIENT_INFO) return self._client @GoogleBaseHook.quota_retry() def recognize_speech( self, config: Union[Dict, RecognitionConfig], audio: Union[Dict, RecognitionAudio], retry: Optional[Retry] = None, timeout: Optional[float] = None, ): """ Recognizes audio input :param config: information to the recognizer that specifies how to process the request. https://googleapis.github.io/google-cloud-python/latest/speech/gapic/v1/types.html#google.cloud.speech_v1.types.RecognitionConfig :param audio: audio data to be recognized https://googleapis.github.io/google-cloud-python/latest/speech/gapic/v1/types.html#google.cloud.speech_v1.types.RecognitionAudio :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. """ client = self.get_conn() response = client.recognize(config=config, audio=audio, retry=retry, timeout=timeout) self.log.info("Recognised speech: %s", response) return response
airflow/providers/google/cloud/hooks/speech_to_text.py
"""This module contains a Google Cloud Speech Hook.""" from typing import Dict, Optional, Sequence, Union from google.api_core.retry import Retry from google.cloud.speech_v1 import SpeechClient from google.cloud.speech_v1.types import RecognitionAudio, RecognitionConfig from airflow.providers.google.common.consts import CLIENT_INFO from airflow.providers.google.common.hooks.base_google import GoogleBaseHook class CloudSpeechToTextHook(GoogleBaseHook): """ Hook for Google Cloud Speech API. :param gcp_conn_id: The connection ID to use when fetching connection info. :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. """ def __init__( self, gcp_conn_id: str = "google_cloud_default", delegate_to: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, ) -> None: super().__init__( gcp_conn_id=gcp_conn_id, delegate_to=delegate_to, impersonation_chain=impersonation_chain, ) self._client = None def get_conn(self) -> SpeechClient: """ Retrieves connection to Cloud Speech. :return: Google Cloud Speech client object. :rtype: google.cloud.speech_v1.SpeechClient """ if not self._client: self._client = SpeechClient(credentials=self._get_credentials(), client_info=CLIENT_INFO) return self._client @GoogleBaseHook.quota_retry() def recognize_speech( self, config: Union[Dict, RecognitionConfig], audio: Union[Dict, RecognitionAudio], retry: Optional[Retry] = None, timeout: Optional[float] = None, ): """ Recognizes audio input :param config: information to the recognizer that specifies how to process the request. https://googleapis.github.io/google-cloud-python/latest/speech/gapic/v1/types.html#google.cloud.speech_v1.types.RecognitionConfig :param audio: audio data to be recognized https://googleapis.github.io/google-cloud-python/latest/speech/gapic/v1/types.html#google.cloud.speech_v1.types.RecognitionAudio :param retry: (Optional) A retry object used to retry requests. If None is specified, requests will not be retried. :param timeout: (Optional) The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt. """ client = self.get_conn() response = client.recognize(config=config, audio=audio, retry=retry, timeout=timeout) self.log.info("Recognised speech: %s", response) return response
0.952431
0.42471
from netapp.connection import NaConnection from nis_get_iter_key_td import NisGetIterKeyTd # 2 properties from nis_domain_config_info import NisDomainConfigInfo # 4 properties class NisConnection(NaConnection): def nis_get(self, nis_domain, desired_attributes=None): """ Get NIS domain configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param desired_attributes: Specify the attributes that should be returned. If not present, all attributes for which information is available will be returned. If present, only the desired attributes for which information is available will be returned. """ return self.request( "nis-get", { 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'desired_attributes': [ desired_attributes, 'desired-attributes', [ NisDomainConfigInfo, 'None' ], False ], }, { 'attributes': [ NisDomainConfigInfo, False ], } ) def nis_destroy(self, nis_domain): """ Destroy an existing NIS configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' """ return self.request( "nis-destroy", { 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], }, { } ) def nis_modify(self, nis_domain, is_active=None, nis_servers=None): """ Modify the attributes of NIS configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param is_active: Specifies whether the NIS domain configuration is active or inactive. :param nis_servers: Specifies the IP address of one or more NIS servers in the domain. """ return self.request( "nis-modify", { 'is_active': [ is_active, 'is-active', [ bool, 'None' ], False ], 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'nis_servers': [ nis_servers, 'nis-servers', [ basestring, 'ip-address' ], True ], }, { } ) def nis_create(self, is_active, nis_domain, nis_servers, return_record=None): """ Create an NIS domain configuration. Multiple NIS domains can be configured on a single Vserver, but only one NIS domain can be active at any given time. :param is_active: Specifies whether the NIS domain configuration is active or inactive. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param nis_servers: Specifies the IP address of one or more NIS servers in the domain. :param return_record: If set to true, returns the NIS domain configuration on successful creation. Default: false """ return self.request( "nis-create", { 'is_active': [ is_active, 'is-active', [ bool, 'None' ], False ], 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'nis_servers': [ nis_servers, 'nis-servers', [ basestring, 'ip-address' ], True ], 'return_record': [ return_record, 'return-record', [ bool, 'None' ], False ], }, { 'result': [ NisDomainConfigInfo, False ], } ) def nis_get_iter(self, max_records=None, query=None, tag=None, desired_attributes=None): """ Iterate over a list of NIS configurations. :param max_records: The maximum number of records to return in this call. Default: 20 :param query: A query that specifies which objects to return. A query could be specified on any number of attributes in the NIS domain configuration object. All NIS domain configuration objects matching this query up to 'max-records' will be returned. :param tag: Specify the tag from the last call. It is usually not specified for the first call. For subsequent calls, copy values from the 'next-tag' obtained from the previous call. :param desired_attributes: Specify the attributes that should be returned. If not present, all attributes for which information is available will be returned. If present, only the desired attributes for which information is available will be returned. """ return self.request( "nis-get-iter", { 'max_records': max_records, 'query': [ query, 'query', [ NisDomainConfigInfo, 'None' ], False ], 'tag': tag, 'desired_attributes': [ desired_attributes, 'desired-attributes', [ NisDomainConfigInfo, 'None' ], False ], }, { 'attributes-list': [ NisDomainConfigInfo, True ], } )
generated-libraries/python/netapp/nis/__init__.py
from netapp.connection import NaConnection from nis_get_iter_key_td import NisGetIterKeyTd # 2 properties from nis_domain_config_info import NisDomainConfigInfo # 4 properties class NisConnection(NaConnection): def nis_get(self, nis_domain, desired_attributes=None): """ Get NIS domain configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param desired_attributes: Specify the attributes that should be returned. If not present, all attributes for which information is available will be returned. If present, only the desired attributes for which information is available will be returned. """ return self.request( "nis-get", { 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'desired_attributes': [ desired_attributes, 'desired-attributes', [ NisDomainConfigInfo, 'None' ], False ], }, { 'attributes': [ NisDomainConfigInfo, False ], } ) def nis_destroy(self, nis_domain): """ Destroy an existing NIS configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' """ return self.request( "nis-destroy", { 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], }, { } ) def nis_modify(self, nis_domain, is_active=None, nis_servers=None): """ Modify the attributes of NIS configuration. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param is_active: Specifies whether the NIS domain configuration is active or inactive. :param nis_servers: Specifies the IP address of one or more NIS servers in the domain. """ return self.request( "nis-modify", { 'is_active': [ is_active, 'is-active', [ bool, 'None' ], False ], 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'nis_servers': [ nis_servers, 'nis-servers', [ basestring, 'ip-address' ], True ], }, { } ) def nis_create(self, is_active, nis_domain, nis_servers, return_record=None): """ Create an NIS domain configuration. Multiple NIS domains can be configured on a single Vserver, but only one NIS domain can be active at any given time. :param is_active: Specifies whether the NIS domain configuration is active or inactive. :param nis_domain: Specifies the NIS domain. For example: 'example.com' :param nis_servers: Specifies the IP address of one or more NIS servers in the domain. :param return_record: If set to true, returns the NIS domain configuration on successful creation. Default: false """ return self.request( "nis-create", { 'is_active': [ is_active, 'is-active', [ bool, 'None' ], False ], 'nis_domain': [ nis_domain, 'nis-domain', [ basestring, 'None' ], False ], 'nis_servers': [ nis_servers, 'nis-servers', [ basestring, 'ip-address' ], True ], 'return_record': [ return_record, 'return-record', [ bool, 'None' ], False ], }, { 'result': [ NisDomainConfigInfo, False ], } ) def nis_get_iter(self, max_records=None, query=None, tag=None, desired_attributes=None): """ Iterate over a list of NIS configurations. :param max_records: The maximum number of records to return in this call. Default: 20 :param query: A query that specifies which objects to return. A query could be specified on any number of attributes in the NIS domain configuration object. All NIS domain configuration objects matching this query up to 'max-records' will be returned. :param tag: Specify the tag from the last call. It is usually not specified for the first call. For subsequent calls, copy values from the 'next-tag' obtained from the previous call. :param desired_attributes: Specify the attributes that should be returned. If not present, all attributes for which information is available will be returned. If present, only the desired attributes for which information is available will be returned. """ return self.request( "nis-get-iter", { 'max_records': max_records, 'query': [ query, 'query', [ NisDomainConfigInfo, 'None' ], False ], 'tag': tag, 'desired_attributes': [ desired_attributes, 'desired-attributes', [ NisDomainConfigInfo, 'None' ], False ], }, { 'attributes-list': [ NisDomainConfigInfo, True ], } )
0.874064
0.390766
from typing import List import numpy as np from braket.default_simulator.operation import GateOperation, Observable class Simulation: """ This class tracks the evolution of a quantum system with `qubit_count` qubits. The state of system the evolves by application of `GateOperation`s using the `evolve()` method. """ def __init__(self, qubit_count: int, shots: int): r""" Args: qubit_count (int): The number of qubits being simulated. All the qubits start in the :math:`\ket{\mathbf{0}}` computational basis state. shots (int): The number of samples to take from the simulation. If set to 0, only results that do not require sampling, such as density matrix or expectation, are generated. """ self._qubit_count = qubit_count self._shots = shots @property def qubit_count(self) -> int: """int: The number of qubits being simulated by the simulation.""" return self._qubit_count @property def shots(self) -> int: """ int: The number of samples to take from the simulation. 0 means no samples are taken, and results that require sampling to calculate cannot be returned. """ return self._shots def evolve(self, operations: List[GateOperation]) -> None: """Evolves the state of the simulation under the action of the specified gate operations. Args: operations (List[GateOperation]): Gate operations to apply for evolving the state of the simulation. Note: This method mutates the state of the simulation. """ raise NotImplementedError("evolve has not been implemented.") def expectation(self, observable: Observable) -> float: """The expected value of the observable in the given state. Args: observable (Observable): The observable to measure. Returns: float: The expected value of the observable. """ raise NotImplementedError("expectation has not been implemented.") def retrieve_samples(self) -> List[int]: """Retrieves samples of states from the state of the simulation, based on the probabilities. Returns: List[int]: List of states sampled according to their probabilities in the state. Each integer represents the decimal encoding of the corresponding computational basis state. """ raise NotImplementedError("retrieve_samples has not been implemented.") @property def probabilities(self) -> np.ndarray: """np.ndarray: The probabilities of each computational basis state.""" raise NotImplementedError("probabilities has not been implemented.")
src/braket/default_simulator/simulation.py
from typing import List import numpy as np from braket.default_simulator.operation import GateOperation, Observable class Simulation: """ This class tracks the evolution of a quantum system with `qubit_count` qubits. The state of system the evolves by application of `GateOperation`s using the `evolve()` method. """ def __init__(self, qubit_count: int, shots: int): r""" Args: qubit_count (int): The number of qubits being simulated. All the qubits start in the :math:`\ket{\mathbf{0}}` computational basis state. shots (int): The number of samples to take from the simulation. If set to 0, only results that do not require sampling, such as density matrix or expectation, are generated. """ self._qubit_count = qubit_count self._shots = shots @property def qubit_count(self) -> int: """int: The number of qubits being simulated by the simulation.""" return self._qubit_count @property def shots(self) -> int: """ int: The number of samples to take from the simulation. 0 means no samples are taken, and results that require sampling to calculate cannot be returned. """ return self._shots def evolve(self, operations: List[GateOperation]) -> None: """Evolves the state of the simulation under the action of the specified gate operations. Args: operations (List[GateOperation]): Gate operations to apply for evolving the state of the simulation. Note: This method mutates the state of the simulation. """ raise NotImplementedError("evolve has not been implemented.") def expectation(self, observable: Observable) -> float: """The expected value of the observable in the given state. Args: observable (Observable): The observable to measure. Returns: float: The expected value of the observable. """ raise NotImplementedError("expectation has not been implemented.") def retrieve_samples(self) -> List[int]: """Retrieves samples of states from the state of the simulation, based on the probabilities. Returns: List[int]: List of states sampled according to their probabilities in the state. Each integer represents the decimal encoding of the corresponding computational basis state. """ raise NotImplementedError("retrieve_samples has not been implemented.") @property def probabilities(self) -> np.ndarray: """np.ndarray: The probabilities of each computational basis state.""" raise NotImplementedError("probabilities has not been implemented.")
0.974288
0.835886
import torch import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from collections import defaultdict def mean_of_attention_heads(matrix, out_dim): chunks = torch.split(matrix, out_dim, dim=1) return torch.mean(torch.stack(chunks), dim=0) def latent_dim_participation_in_clusters(latent_data, labels): latent_diff = np.zeros(shape=(latent_data.shape[1], len(set(labels)) + 1)) for l_dim in range(latent_data.shape[1]): cells_in_dim = latent_data[:, l_dim] l_dim_mean = np.mean(cells_in_dim) l_dim_std = np.std(cells_in_dim) variable_cells_larger = np.where(cells_in_dim > l_dim_mean + l_dim_std) variable_cells_smaller = np.where(cells_in_dim < l_dim_mean - l_dim_std) labels_larger = labels[variable_cells_larger] labels_smaller = labels[variable_cells_smaller] variable_labels = np.concatenate((labels_larger, labels_smaller), axis=None) cluster_count = {x: list(variable_labels).count(x) for x in labels} counter_per_cluster = np.array(list(cluster_count.values())) / len(variable_labels) counter_per_cluster = np.around(counter_per_cluster * 100.0, decimals=2) latent_diff[l_dim][1:] = counter_per_cluster latent_diff[l_dim][0] = int(l_dim) cluster_label = [str(i) for i in np.unique(labels)] latent_diff = pd.DataFrame(latent_diff, columns=['Latent dimension'] + cluster_label) latent_diff['Latent dimension'] = latent_diff['Latent dimension'].astype(int) latent_diff = latent_diff.melt(id_vars=['Latent dimension'], value_vars=cluster_label, var_name='Cluster', value_name='Percentage') sns.set(font_scale=2.5) sns.set_style("whitegrid") g = sns.catplot(x='Cluster', y='Percentage', col='Latent dimension', data=latent_diff, palette=sns.color_palette("hls", len(set(labels))), col_wrap=5, kind="bar", ci=None, aspect=1.3, legend_out=True) for ax in g.axes: ax.set_xticklabels(sorted(set(labels))) plt.setp(ax.get_xticklabels(), visible=True) for ax in g.axes.flatten(): ax.tick_params(labelbottom=True) return latent_diff def _indices_of_top_k(arr, k): return np.argpartition(arr, -k)[-k:] def select_genes_by_latent_dim(matrix, latent_dim, top_k): corresponding_to_latent_dim = matrix[:, latent_dim] return _indices_of_top_k(corresponding_to_latent_dim.detach().numpy(), top_k) def merged_count(list_of_tuples): counter = defaultdict(int) for lst in list_of_tuples: for tup in lst: counter[tup[0]] += tup[1] return counter
cellvgae/utils/top_genes.py
import torch import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from collections import defaultdict def mean_of_attention_heads(matrix, out_dim): chunks = torch.split(matrix, out_dim, dim=1) return torch.mean(torch.stack(chunks), dim=0) def latent_dim_participation_in_clusters(latent_data, labels): latent_diff = np.zeros(shape=(latent_data.shape[1], len(set(labels)) + 1)) for l_dim in range(latent_data.shape[1]): cells_in_dim = latent_data[:, l_dim] l_dim_mean = np.mean(cells_in_dim) l_dim_std = np.std(cells_in_dim) variable_cells_larger = np.where(cells_in_dim > l_dim_mean + l_dim_std) variable_cells_smaller = np.where(cells_in_dim < l_dim_mean - l_dim_std) labels_larger = labels[variable_cells_larger] labels_smaller = labels[variable_cells_smaller] variable_labels = np.concatenate((labels_larger, labels_smaller), axis=None) cluster_count = {x: list(variable_labels).count(x) for x in labels} counter_per_cluster = np.array(list(cluster_count.values())) / len(variable_labels) counter_per_cluster = np.around(counter_per_cluster * 100.0, decimals=2) latent_diff[l_dim][1:] = counter_per_cluster latent_diff[l_dim][0] = int(l_dim) cluster_label = [str(i) for i in np.unique(labels)] latent_diff = pd.DataFrame(latent_diff, columns=['Latent dimension'] + cluster_label) latent_diff['Latent dimension'] = latent_diff['Latent dimension'].astype(int) latent_diff = latent_diff.melt(id_vars=['Latent dimension'], value_vars=cluster_label, var_name='Cluster', value_name='Percentage') sns.set(font_scale=2.5) sns.set_style("whitegrid") g = sns.catplot(x='Cluster', y='Percentage', col='Latent dimension', data=latent_diff, palette=sns.color_palette("hls", len(set(labels))), col_wrap=5, kind="bar", ci=None, aspect=1.3, legend_out=True) for ax in g.axes: ax.set_xticklabels(sorted(set(labels))) plt.setp(ax.get_xticklabels(), visible=True) for ax in g.axes.flatten(): ax.tick_params(labelbottom=True) return latent_diff def _indices_of_top_k(arr, k): return np.argpartition(arr, -k)[-k:] def select_genes_by_latent_dim(matrix, latent_dim, top_k): corresponding_to_latent_dim = matrix[:, latent_dim] return _indices_of_top_k(corresponding_to_latent_dim.detach().numpy(), top_k) def merged_count(list_of_tuples): counter = defaultdict(int) for lst in list_of_tuples: for tup in lst: counter[tup[0]] += tup[1] return counter
0.742422
0.574723
import numpy as np import random import keras class QLearning_NN(): def __init__(self,rl_params,weights_save_dir): self.parameters = dict(rl_params) self.weights_save_dir = weights_save_dir self.parameters['output_length'] = len(self.parameters['actions']) self.epoch = 0 self.replay,self.replay_index = [],0 self.itr,self.avg_loss,self.avg_score = 0,0,0 self.train_hist = None self.log = {'avg_loss':[],'final_score':[],'state':[],'cross_score':[],'epoch':[]} def random_seed(self,seed): random.seed(seed) def generate_nn(self): self.model = keras.models.Sequential() weights_init = keras.initializers.Constant(value=0.1) #'lecun_uniform' activation = None self.model.add(keras.layers.Dense(20, kernel_initializer=weights_init, input_shape=(self.parameters['state_dimension'],), activation=activation)) self.model.add(keras.layers.LeakyReLU(alpha=self.parameters['leak_alpha'])) self.model.add(keras.layers.Dense(self.parameters['output_length'], kernel_initializer=weights_init, activation=activation)) self.model.add(keras.layers.LeakyReLU(alpha=self.parameters['leak_alpha'])) # I found Adam is more stable(than SGD/RMSprop) in handling new samples of (X,y) and overfitting, it does still oscillate but in a more subtle manner optim = keras.optimizers.Adam(lr=self.parameters['lr_alpha'], beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) #lr_alpha=0.001 self.model.compile(optimizer=optim, loss='mse') def load_weights(self,weights): self.model.load_weights(weights) def take_action(self,agent,dt,epsilon_override=None): sensor_readings = np.array(agent.get_sensor_reading()) q_vals = self.model.predict(sensor_readings.reshape(1,self.parameters['state_dimension']),batch_size=1,verbose=0) if epsilon_override is not None: epsilon = epsilon_override else: epsilon = self.parameters['epsilon'] if (random.random() > epsilon): action = random.randint(0,self.parameters['output_length']-1) else: action = (np.argmax(q_vals)) v,s = self.parameters['actions'][action] agent.set_velocity(v) agent.set_steering(s) agent.update(dt) return sensor_readings,action def reward_function(self,agent): if agent.state == 'timeup': reward = self.parameters['timeup_reward'] elif agent.state == 'collided': reward = self.parameters['collision_reward'] elif agent.state == 'destination': reward = self.parameters['destination_reward'] else: #reward = 0 #reward = agent.score # Encourages the car to MOVE, not necessarily forward, infact moving in circles is encouraged #reward = -30+agent.score # Encourages the car to crash and end its misery #reward = -1 # To factor in time but encourages the car to crash and end its misery. Useful if destination reward is high reward = 1 if agent.score-agent.prev_score>0 else -1 return reward def train_nn(self,sensor_readings,action,reward,new_sensor_readings,agent_state): if (len(self.replay)<self.parameters['buffer_length']): self.replay.append((sensor_readings,action,reward,new_sensor_readings,agent_state)) else: self.replay_index += 1 if self.replay_index>=self.parameters['buffer_length']: self.replay_index=0 self.replay[self.replay_index] = ((sensor_readings,action,reward,new_sensor_readings,agent_state)) if (len(self.replay)>self.parameters['replay_start_at']): minibatch = random.sample(self.replay, self.parameters['minibatchsize']) mb_len = len(minibatch) old_states = np.zeros(shape=(mb_len, self.parameters['state_dimension'])) old_actions = np.zeros(shape=(mb_len,)) rewards = np.zeros(shape=(mb_len,)) new_states = np.zeros(shape=(mb_len, self.parameters['state_dimension'])) car_state = [] for i, m in enumerate(minibatch): old_state_m, action_m, reward_m, new_state_m, car_state_m = m old_states[i, :] = old_state_m[...] old_actions[i] = action_m rewards[i] = reward_m new_states[i, :] = new_state_m[...] car_state.append(car_state_m) car_state = np.array(car_state) old_qvals = self.model.predict(old_states, batch_size=mb_len) new_qvals = self.model.predict(new_states, batch_size=mb_len) maxQs = np.max(new_qvals, axis=1) y = old_qvals non_term_inds = np.where(car_state == 'running')[0] #non_term_inds = np.concatenate((non_term_inds,np.where(car_state == 'destination')[0])) term_inds = np.where(car_state == 'timeup')[0] term_inds = np.concatenate((term_inds,np.where(car_state == 'collided')[0])) term_inds = np.concatenate((term_inds,np.where(car_state == 'destination')[0])) y[non_term_inds, old_actions[non_term_inds].astype(int)] = rewards[non_term_inds] + (self.parameters['gamma'] * maxQs[non_term_inds]) y[term_inds, old_actions[term_inds].astype(int)] = rewards[term_inds] X_train = old_states y_train = y self.train_hist = self.model.fit(X_train, y_train, batch_size=self.parameters['batchsize'], epochs=1, verbose=0) def check_terminal_state_and_log(self,agent,env): self.itr += 1 self.avg_loss = 0 if self.train_hist is None else (self.avg_loss+self.train_hist.history['loss'][0]) terminal_state,debug_data = None,None if agent.state=='collided' or agent.state=='destination' or agent.state=='timeup': self.epoch += 1 if (len(self.replay)>=self.parameters['replay_start_at']) and self.parameters['epsilon']<self.parameters['max_epsilon']: self.parameters['epsilon'] += self.parameters['epsilon_step'] self.avg_loss /= self.itr self.log['avg_loss'].append(self.avg_loss) self.log['final_score'].append(agent.score) self.log['state'].append(agent.state) if self.avg_loss==0: self.log['cross_score'].append(0) else: self.log['cross_score'].append(agent.score*(1/self.avg_loss)) self.log['epoch'].append(self.epoch) if self.epoch%5==0: self.avg_score = sum(self.log['final_score'][self.epoch-5:self.epoch])/5 np.save('./log',self.log) self.model.save_weights(self.weights_save_dir+'rlcar_epoch_'+str(self.epoch).zfill(5)) print 'Epoch ',self.epoch,'Epsilon=',self.parameters['epsilon'],'Run=',agent.state,'Avg score=',self.avg_score,'Avg loss=',self.avg_loss debug_data = '[Training]\n'+'Epoch '+str(self.epoch)+'\nEpsilon='+str(self.parameters['epsilon'])+'\nRun='+str(agent.state)+'\nAvg score='+'{:.2f}'.format(self.avg_score)+'\nAvg loss='+str(self.avg_loss) self.avg_loss,self.itr = 0,0 terminal_state = agent.get_state() agent.reset() if self.parameters['random_car_position']==True: agent.set_state([1+env.route[0].x+(env.track_width*1.2*(random.random()-0.5)),env.route[0].y+(env.track_width*1.2*(random.random()-0.5)),env.start_angle+(random.random()-0.5)]) return terminal_state,debug_data,self.log['epoch'],self.log['avg_loss'],self.log['final_score'],self.log['cross_score'] def check_terminal_state(self,agent): terminal_state = None if agent.state=='collided' or agent.state=='destination' or agent.state=='timeup': terminal_state = agent.state agent.reset() return terminal_state def learn_step(self,agent,env,dt): sensor_values,action_taken = self.take_action(agent,dt) env.compute_interaction([agent]) new_sensor_values = np.array(agent.get_sensor_reading()) reward = self.reward_function(agent) self.train_nn(sensor_values,action_taken,reward,new_sensor_values,agent.state) return self.check_terminal_state_and_log(agent,env) def run_step(self,agent,env,dt): self.take_action(agent,dt,epsilon_override=1.0) return self.check_terminal_state(agent)
RL.py
import numpy as np import random import keras class QLearning_NN(): def __init__(self,rl_params,weights_save_dir): self.parameters = dict(rl_params) self.weights_save_dir = weights_save_dir self.parameters['output_length'] = len(self.parameters['actions']) self.epoch = 0 self.replay,self.replay_index = [],0 self.itr,self.avg_loss,self.avg_score = 0,0,0 self.train_hist = None self.log = {'avg_loss':[],'final_score':[],'state':[],'cross_score':[],'epoch':[]} def random_seed(self,seed): random.seed(seed) def generate_nn(self): self.model = keras.models.Sequential() weights_init = keras.initializers.Constant(value=0.1) #'lecun_uniform' activation = None self.model.add(keras.layers.Dense(20, kernel_initializer=weights_init, input_shape=(self.parameters['state_dimension'],), activation=activation)) self.model.add(keras.layers.LeakyReLU(alpha=self.parameters['leak_alpha'])) self.model.add(keras.layers.Dense(self.parameters['output_length'], kernel_initializer=weights_init, activation=activation)) self.model.add(keras.layers.LeakyReLU(alpha=self.parameters['leak_alpha'])) # I found Adam is more stable(than SGD/RMSprop) in handling new samples of (X,y) and overfitting, it does still oscillate but in a more subtle manner optim = keras.optimizers.Adam(lr=self.parameters['lr_alpha'], beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) #lr_alpha=0.001 self.model.compile(optimizer=optim, loss='mse') def load_weights(self,weights): self.model.load_weights(weights) def take_action(self,agent,dt,epsilon_override=None): sensor_readings = np.array(agent.get_sensor_reading()) q_vals = self.model.predict(sensor_readings.reshape(1,self.parameters['state_dimension']),batch_size=1,verbose=0) if epsilon_override is not None: epsilon = epsilon_override else: epsilon = self.parameters['epsilon'] if (random.random() > epsilon): action = random.randint(0,self.parameters['output_length']-1) else: action = (np.argmax(q_vals)) v,s = self.parameters['actions'][action] agent.set_velocity(v) agent.set_steering(s) agent.update(dt) return sensor_readings,action def reward_function(self,agent): if agent.state == 'timeup': reward = self.parameters['timeup_reward'] elif agent.state == 'collided': reward = self.parameters['collision_reward'] elif agent.state == 'destination': reward = self.parameters['destination_reward'] else: #reward = 0 #reward = agent.score # Encourages the car to MOVE, not necessarily forward, infact moving in circles is encouraged #reward = -30+agent.score # Encourages the car to crash and end its misery #reward = -1 # To factor in time but encourages the car to crash and end its misery. Useful if destination reward is high reward = 1 if agent.score-agent.prev_score>0 else -1 return reward def train_nn(self,sensor_readings,action,reward,new_sensor_readings,agent_state): if (len(self.replay)<self.parameters['buffer_length']): self.replay.append((sensor_readings,action,reward,new_sensor_readings,agent_state)) else: self.replay_index += 1 if self.replay_index>=self.parameters['buffer_length']: self.replay_index=0 self.replay[self.replay_index] = ((sensor_readings,action,reward,new_sensor_readings,agent_state)) if (len(self.replay)>self.parameters['replay_start_at']): minibatch = random.sample(self.replay, self.parameters['minibatchsize']) mb_len = len(minibatch) old_states = np.zeros(shape=(mb_len, self.parameters['state_dimension'])) old_actions = np.zeros(shape=(mb_len,)) rewards = np.zeros(shape=(mb_len,)) new_states = np.zeros(shape=(mb_len, self.parameters['state_dimension'])) car_state = [] for i, m in enumerate(minibatch): old_state_m, action_m, reward_m, new_state_m, car_state_m = m old_states[i, :] = old_state_m[...] old_actions[i] = action_m rewards[i] = reward_m new_states[i, :] = new_state_m[...] car_state.append(car_state_m) car_state = np.array(car_state) old_qvals = self.model.predict(old_states, batch_size=mb_len) new_qvals = self.model.predict(new_states, batch_size=mb_len) maxQs = np.max(new_qvals, axis=1) y = old_qvals non_term_inds = np.where(car_state == 'running')[0] #non_term_inds = np.concatenate((non_term_inds,np.where(car_state == 'destination')[0])) term_inds = np.where(car_state == 'timeup')[0] term_inds = np.concatenate((term_inds,np.where(car_state == 'collided')[0])) term_inds = np.concatenate((term_inds,np.where(car_state == 'destination')[0])) y[non_term_inds, old_actions[non_term_inds].astype(int)] = rewards[non_term_inds] + (self.parameters['gamma'] * maxQs[non_term_inds]) y[term_inds, old_actions[term_inds].astype(int)] = rewards[term_inds] X_train = old_states y_train = y self.train_hist = self.model.fit(X_train, y_train, batch_size=self.parameters['batchsize'], epochs=1, verbose=0) def check_terminal_state_and_log(self,agent,env): self.itr += 1 self.avg_loss = 0 if self.train_hist is None else (self.avg_loss+self.train_hist.history['loss'][0]) terminal_state,debug_data = None,None if agent.state=='collided' or agent.state=='destination' or agent.state=='timeup': self.epoch += 1 if (len(self.replay)>=self.parameters['replay_start_at']) and self.parameters['epsilon']<self.parameters['max_epsilon']: self.parameters['epsilon'] += self.parameters['epsilon_step'] self.avg_loss /= self.itr self.log['avg_loss'].append(self.avg_loss) self.log['final_score'].append(agent.score) self.log['state'].append(agent.state) if self.avg_loss==0: self.log['cross_score'].append(0) else: self.log['cross_score'].append(agent.score*(1/self.avg_loss)) self.log['epoch'].append(self.epoch) if self.epoch%5==0: self.avg_score = sum(self.log['final_score'][self.epoch-5:self.epoch])/5 np.save('./log',self.log) self.model.save_weights(self.weights_save_dir+'rlcar_epoch_'+str(self.epoch).zfill(5)) print 'Epoch ',self.epoch,'Epsilon=',self.parameters['epsilon'],'Run=',agent.state,'Avg score=',self.avg_score,'Avg loss=',self.avg_loss debug_data = '[Training]\n'+'Epoch '+str(self.epoch)+'\nEpsilon='+str(self.parameters['epsilon'])+'\nRun='+str(agent.state)+'\nAvg score='+'{:.2f}'.format(self.avg_score)+'\nAvg loss='+str(self.avg_loss) self.avg_loss,self.itr = 0,0 terminal_state = agent.get_state() agent.reset() if self.parameters['random_car_position']==True: agent.set_state([1+env.route[0].x+(env.track_width*1.2*(random.random()-0.5)),env.route[0].y+(env.track_width*1.2*(random.random()-0.5)),env.start_angle+(random.random()-0.5)]) return terminal_state,debug_data,self.log['epoch'],self.log['avg_loss'],self.log['final_score'],self.log['cross_score'] def check_terminal_state(self,agent): terminal_state = None if agent.state=='collided' or agent.state=='destination' or agent.state=='timeup': terminal_state = agent.state agent.reset() return terminal_state def learn_step(self,agent,env,dt): sensor_values,action_taken = self.take_action(agent,dt) env.compute_interaction([agent]) new_sensor_values = np.array(agent.get_sensor_reading()) reward = self.reward_function(agent) self.train_nn(sensor_values,action_taken,reward,new_sensor_values,agent.state) return self.check_terminal_state_and_log(agent,env) def run_step(self,agent,env,dt): self.take_action(agent,dt,epsilon_override=1.0) return self.check_terminal_state(agent)
0.562898
0.232997
import re from os.path import join import glob import os import pandas as pd from datetime import date import pygal from pygal.style import BlueStyle from pygal.style import DarkGreenBlueStyle from pygal.style import TurquoiseStyle from pygal.style import CleanStyle from collections import Counter from pygal.style import LightenStyle def get_data(): with open("../data/romanistik-stellen_datensatz_2014-2021.csv", "r", encoding="utf8") as infile: data = pd.read_csv(infile, sep="\t") print(data.head()) return data def prepare_data(data): # Filter down to useable data data = data.fillna(0) data = data.loc[:,["include", "dauer_cat", "domain_ling"]] data = data[data["include"] == 1] data = data[data["domain_ling"] == 1] print(data.head()) n = data.shape[0] print("Anzahl der Datenpunkte", n) from collections import Counter data = dict(Counter(list(data.loc[:,"dauer_cat"]))) print(data) return data,n def viz(data,n): dark_lighten_style = LightenStyle('#700925', step=10, font_family="FreeSans", label_font_size = 12, major_label_font_size = 12, value_label_font_size = 12, value_font_size = 12, title_font_size = 16) chart = pygal.HorizontalBar( style=dark_lighten_style, print_values = True, show_legend = False, legend_at_bottom = True, legend_at_bottom_columns = 9, legend_box_size=24, range = (0,50)) chart.title = "Vertragslaufzeiten (nur Linguistik)" chart.x_title = "Anteile der Vertragslaufzeiten in Prozent (n="+str(n)+")" chart.y_title = "Monate" chart.x_labels = ["unb.", "66+", "~60", "~48", "~36", "~24", "~12", "1-6"] chart.add("Laufzeiten", [data["unb."]/n*100, data["66+"]/n*100, data["~60"]/n*100, data["~48"]/n*100, data["~36"]/n*100, data["~24"]/n*100, data["~12"]/n*100, data["1-6"]/n*100,], formatter=lambda x: '{:.1f}%'.format(x)) chart.render_to_file("../img/romanistik_laufzeit-fachgebiet-ling.svg") def main(): data = get_data() data,n = prepare_data(data) viz(data,n) main()
code/viz_laufzeit_fachgebiet_ling.py
import re from os.path import join import glob import os import pandas as pd from datetime import date import pygal from pygal.style import BlueStyle from pygal.style import DarkGreenBlueStyle from pygal.style import TurquoiseStyle from pygal.style import CleanStyle from collections import Counter from pygal.style import LightenStyle def get_data(): with open("../data/romanistik-stellen_datensatz_2014-2021.csv", "r", encoding="utf8") as infile: data = pd.read_csv(infile, sep="\t") print(data.head()) return data def prepare_data(data): # Filter down to useable data data = data.fillna(0) data = data.loc[:,["include", "dauer_cat", "domain_ling"]] data = data[data["include"] == 1] data = data[data["domain_ling"] == 1] print(data.head()) n = data.shape[0] print("Anzahl der Datenpunkte", n) from collections import Counter data = dict(Counter(list(data.loc[:,"dauer_cat"]))) print(data) return data,n def viz(data,n): dark_lighten_style = LightenStyle('#700925', step=10, font_family="FreeSans", label_font_size = 12, major_label_font_size = 12, value_label_font_size = 12, value_font_size = 12, title_font_size = 16) chart = pygal.HorizontalBar( style=dark_lighten_style, print_values = True, show_legend = False, legend_at_bottom = True, legend_at_bottom_columns = 9, legend_box_size=24, range = (0,50)) chart.title = "Vertragslaufzeiten (nur Linguistik)" chart.x_title = "Anteile der Vertragslaufzeiten in Prozent (n="+str(n)+")" chart.y_title = "Monate" chart.x_labels = ["unb.", "66+", "~60", "~48", "~36", "~24", "~12", "1-6"] chart.add("Laufzeiten", [data["unb."]/n*100, data["66+"]/n*100, data["~60"]/n*100, data["~48"]/n*100, data["~36"]/n*100, data["~24"]/n*100, data["~12"]/n*100, data["1-6"]/n*100,], formatter=lambda x: '{:.1f}%'.format(x)) chart.render_to_file("../img/romanistik_laufzeit-fachgebiet-ling.svg") def main(): data = get_data() data,n = prepare_data(data) viz(data,n) main()
0.144239
0.1811
import torch import torch.nn as nn import torch.nn.functional as F import pydicom import numpy as np import cv2 import re import glob import os, os.path as osp from PIL import Image from torch.utils.data import Dataset, Sampler from .utils import _isnone from .crop_tta import crop_tta, resize_for_crop import numpy as np def square_crop(img, random=True): h, w = img.shape[:2] if h == w: return img s = min(h, w) short_side = 0 if h<w else 1 xc, yc = h//2, w//2 if random: offset = np.abs(h-w) offset = np.random.randint(-offset, offset) if short_side: xc += offset//2 else: yc += offset//2 x1, y1 = xc-s//2, yc-s//2 x1, y1 = max(0,x1), max(0,y1) img_crop = img[x1:x1+s, y1:y1+s] if img_crop.shape[0] != img_crop.shape[1]: print(f'Shape is {img_crop.shape}') return img return img_crop def generate_crops(img, num_crops=10): h, w = img.shape[:2] if h == w: return [img] s = min(h, w) short_side = 0 if h<w else 1 xc, yc = h//2, w//2 offset = np.abs(h-w) offsets = np.unique(np.linspace(-offset+1, offset-1, num_crops).astype('int')) crops = [] for off in offsets: if short_side: new_xc = xc-off//2 x1, y1 = new_xc-s//2, yc-s//2 else: new_yc = yc-off//2 x1, y1 = xc-s//2, new_yc-s//2 x1, y1 = max(0,x1), max(0,y1) crops += [img[x1:x1+s, y1:y1+s]] if crops[-1].shape[0] != crops[-1].shape[1]: print(f'Shape is {crops[-1].shape}') print(img.shape) print(x1, y1, s) crops[-1] = img return crops class SkinDataset(Dataset): def __init__(self, imgfiles, labels, meta=None, square=False, square_tta=None, crop_tta=None, pad=None, resize=None, transform=None, crop=None, preprocessor=None, flip=False, verbose=True, test_mode=False, jsd=False, onehot=False): self.imgfiles = imgfiles self.labels = labels self.meta = meta self.square = square self.square_tta = square_tta self.crop_tta = crop_tta self.pad = pad self.resize = resize self.transform = transform self.crop = crop if self.crop: self.crop_size = (self.crop.transforms[0].height, self.crop.transforms[0].width) self.preprocessor = preprocessor self.flip = flip self.verbose = verbose self.test_mode = test_mode self.jsd = jsd self.onehot = onehot def process_image(self, X, jsd=False): if self.pad: X = self.pad(X) if self.resize: X = self.resize(image=X)['image'] if self.transform and not jsd: X = self.transform(image=X)['image'] if self.crop and not self.test_mode: X = resize_for_crop(X, crop_size=self.crop_size) X = self.crop(image=X)['image'] if self.preprocessor: X = self.preprocessor.preprocess(X) return X.transpose(2, 0, 1) def get(self, i): try: X = cv2.imread(self.imgfiles[i]) if _isnone(X): X = cv2.imread(self.imgfiles[i].replace('jpg','png')) if _isnone(X): return None if not _isnone(self.meta): X = {'img': X} X.update(self.meta[i]) return X except Exception as e: if self.verbose: print(e) return None @staticmethod def flip_array(X, mode): if mode == 0: X = X[:,::-1] elif mode == 1: X = X[:,:,::-1] elif mode == 2: X = X[:,::-1,::-1] elif mode == 3 and X.shape[-1] == X.shape[-2]: X = X.transpose(0,2,1) X = np.ascontiguousarray(X) return X def __len__(self): return len(self.imgfiles) def __getitem__(self, i): X = self.get(i) while _isnone(X): if self.verbose: print('Failed to read {} !'.format(self.imgfiles[i])) i = np.random.randint(len(self)) X = self.get(i) if self.test_mode and self.square_tta: if isinstance(X, dict): X['img'] = generate_crops(X['img'], num_crops=self.square_tta) X['img'] = np.asarray([self.process_image(_) for _ in X['img']]) for k,v in X.items(): if k == 'img': continue X[k] = np.repeat(np.expand_dims(v, axis=0), X['img'].shape[0], axis=0) else: X = generate_crops(X, num_crops=self.square_tta) X = np.asarray([self.process_image(_) for _ in X]) elif self.test_mode and self.crop_tta: if isinstance(X, dict): X['img'] = crop_tta(X['img'], crop_size=self.crop_size, num_crops=self.crop_tta) X['img'] = np.asarray([self.process_image(_) for _ in X['img']]) for k,v in X.items(): if k == 'img': continue X[k] = np.repeat(np.expand_dims(v, axis=0), X['img'].shape[0], axis=0) else: X = crop_tta(X, crop_size=self.crop_size, num_crops=self.crop_tta) X = np.asarray([self.process_image(_) for _ in X]) else: if isinstance(X, dict): if self.square: X['img'] = square_crop(X['img'], random=not self.test_mode) if self.jsd: raise Exception('JSD not supported when using metadata') X['img'] = self.process_image(X['img']) else: if self.square: X = square_crop(X, random=not self.test_mode) if self.jsd and not self.test_mode: X_orig = X.copy() X = self.process_image(X) if self.jsd and not self.test_mode: # Additional aug X_aug = self.process_image(X_orig) X_orig = self.process_image(X_orig, jsd=True) if self.onehot and not self.test_mode: onehot_y = { 0: [1.,0.,0.], 1: [0.,1.,0.], 2: [0.,0.,1.] } y = self.labels[i] if isinstance(y, str): y = y.split(',') y = [float(_) for _ in y] else: y = onehot_y[int(y)] if len(y) == 1: y = onehot_y[int(y[0])] else: y = self.labels[i] if isinstance(y, str): y = float(y) if self.flip and not self.test_mode: # X.shape = (C, H, W) mode = np.random.randint(5) if isinstance(X, dict): X['img'] = self.flip_array(X['img'], mode) else: X = self.flip_array(X, mode) if self.jsd and not self.test_mode: X_aug = self.flip_array(X_aug, mode) X_orig = self.flip_array(X_orig, mode) if isinstance(X, dict): X = {k: torch.tensor(v) for k,v in X.items()} else: X = torch.tensor(X) if self.jsd and not self.test_mode: X = (torch.tensor(X_orig), torch.tensor(X), torch.tensor(X_aug)) y = torch.tensor(y) return X, y class SiameseDataset(Dataset): def __init__(self, imgfiles, labels, pad=None, resize=None, transform=None, crop=None, preprocessor=None, flip=False, verbose=True, test_mode=False): self.imgfiles = imgfiles self.labels = labels self.pad = pad self.resize = resize self.transform = transform self.crop = crop self.preprocessor = preprocessor self.flip = flip self.verbose = verbose self.test_mode = test_mode self.posfiles = [self.imgfiles[i] for i in range(len(self.imgfiles)) if self.labels[i] == 1] self.negfiles = [self.imgfiles[i] for i in range(len(self.imgfiles)) if self.labels[i] == 0] self.get = self.get_test if self.test_mode else self.get_train def process_image(self, X): if self.pad: X = self.pad(X) if self.resize: X = self.resize(image=X)['image'] if self.transform: X = self.transform(image=X)['image'] if self.crop: X = self.crop(image=X)['image'] if self.preprocessor: X = self.preprocessor.preprocess(X) return X.transpose(2, 0, 1) def _read_image(self, fp): X = cv2.imread(fp) if _isnone(X): X = cv2.imread(fp.replace('jpg','png')) return X def get_test(self, i): try: return self._read_image(self.imgfiles[i]) except Exception as e: if self.verbose: print(e) return None def get_train(self, i): try: pair_type = np.random.randint(4) if pair_type <= 1: X1 = self._read_image(np.random.choice(self.posfiles)) X2 = self._read_image(np.random.choice(self.negfiles)) elif pair_type == 2: X1 = self._read_image(np.random.choice(self.posfiles)) X2 = self._read_image(np.random.choice(self.posfiles)) elif pair_type == 3: X1 = self._read_image(np.random.choice(self.negfiles)) X2 = self._read_image(np.random.choice(self.negfiles)) return [X1, X2], pair_type except Exception as e: if self.verbose: print(e) return None def __len__(self): return len(self.imgfiles) def __getitem__(self, i): X = self.get(i) while _isnone(X): if self.verbose: print('Failed to read {} !'.format(self.imgfiles[i])) i = np.random.randint(len(self)) X = self.get(i) if self.test_mode: X = self.process_image(X) y = self.labels[i] else: X, pair_type = X X = np.asarray([self.process_image(_) for _ in X]) if pair_type <= 1: y = 0 # different else: y = 1 # same if self.flip and not self.test_mode: # X.shape = (2, C, H, W) mode = np.random.randint(5) if mode == 0: X = X[...,::-1] elif mode == 1: X = X[...,::-1,:] elif mode == 2: X = X[...,::-1,::-1] elif mode == 3 and X.shape[-1] == X.shape[-2]: X = X.swapaxes(-1, -2) X = np.ascontiguousarray(X) X = torch.tensor(X) y = torch.tensor(y) return X, y class Upsampler(Sampler): def __init__(self, dataset, upsample_factor=25): super().__init__(data_source=dataset) self.labels = np.asarray(dataset.labels) self.num_pos = np.sum(self.labels >= 0.5) self.num_neg = np.sum(self.labels < 0.5) self.upsample_factor = upsample_factor self.length = self.num_neg + upsample_factor * self.num_pos def __len__(self): return self.length def __iter__(self): indices = [] indices += list(np.where(self.labels < 0.5)[0]) indices += list(np.random.choice(np.where(self.labels >= 0.5)[0], self.upsample_factor * self.num_pos, replace=True)) indices = np.random.permutation(indices) return iter(indices.tolist()) class BalancedSampler(Sampler): def __init__(self, dataset, weights=[2,1], pos_label=1): super().__init__(data_source=dataset) self.labels = np.asarray(dataset.labels) self.pos_label = pos_label self.num_pos = np.sum(self.labels == pos_label) self.num_neg = np.sum(self.labels != pos_label) # weights ordered as [neg, pos] self.weights = np.asarray(weights) self.weights = self.weights / np.sum(self.weights) self.length = len(dataset.imgfiles) def __len__(self): return self.length def __iter__(self): indices = [] sample_neg = int(self.length * self.weights[0]) sample_pos = int(self.length * self.weights[1]) indices += list(np.random.choice(np.where(self.labels == self.pos_label)[0], sample_pos, replace=self.num_pos<sample_pos)) indices += list(np.random.choice(np.where(self.labels != self.pos_label)[0], sample_neg, replace=self.num_neg<sample_neg)) indices = np.random.permutation(indices) return iter(indices.tolist()) class BenignSampler(Sampler): def __init__(self, dataset, probas=None, weights=[2,1], pos_label=1): super().__init__(data_source=dataset) self.dataset = dataset # store self.labels = np.asarray(dataset.labels) self.imgfiles = np.asarray(dataset.imgfiles) self.pos_label = pos_label # Need to map image file to indices self.img2index = {i : index for index, i in enumerate(self.imgfiles)} self.negfiles = [im for i, im in enumerate(self.imgfiles) if self.labels[i] != pos_label] self.num_pos = np.sum(self.labels == pos_label) self.num_neg = np.sum(self.labels != pos_label) # weights ordered as [neg, pos] self.weights = np.asarray(weights) self.weights = self.weights / np.sum(self.weights) self.length = self.num_pos * 4 if type(probas) == type(None): # Assign equal weight to all benigns p = 1.0 / len(self.negfiles) probas = {i : p for i in self.negfiles} self.probas = probas def __len__(self): return self.length def __iter__(self): indices = [] probas = {self.img2index[k] : v for k,v in self.probas.items()} sample_neg = int(self.length * self.weights[0]) sample_pos = int(self.length * self.weights[1]) indices += list(np.random.choice(np.where(self.labels == self.pos_label)[0], sample_pos, replace=self.num_pos<sample_pos)) # For negatives, sample based on weight keys = [*probas] values = np.asarray([probas[k] for k in keys]) indices += list(np.random.choice(keys, sample_neg, replace=sample_neg>len(keys), p=values)) indices = np.random.permutation(indices) return iter(indices.tolist())
src/factory/data/datasets.py
import torch import torch.nn as nn import torch.nn.functional as F import pydicom import numpy as np import cv2 import re import glob import os, os.path as osp from PIL import Image from torch.utils.data import Dataset, Sampler from .utils import _isnone from .crop_tta import crop_tta, resize_for_crop import numpy as np def square_crop(img, random=True): h, w = img.shape[:2] if h == w: return img s = min(h, w) short_side = 0 if h<w else 1 xc, yc = h//2, w//2 if random: offset = np.abs(h-w) offset = np.random.randint(-offset, offset) if short_side: xc += offset//2 else: yc += offset//2 x1, y1 = xc-s//2, yc-s//2 x1, y1 = max(0,x1), max(0,y1) img_crop = img[x1:x1+s, y1:y1+s] if img_crop.shape[0] != img_crop.shape[1]: print(f'Shape is {img_crop.shape}') return img return img_crop def generate_crops(img, num_crops=10): h, w = img.shape[:2] if h == w: return [img] s = min(h, w) short_side = 0 if h<w else 1 xc, yc = h//2, w//2 offset = np.abs(h-w) offsets = np.unique(np.linspace(-offset+1, offset-1, num_crops).astype('int')) crops = [] for off in offsets: if short_side: new_xc = xc-off//2 x1, y1 = new_xc-s//2, yc-s//2 else: new_yc = yc-off//2 x1, y1 = xc-s//2, new_yc-s//2 x1, y1 = max(0,x1), max(0,y1) crops += [img[x1:x1+s, y1:y1+s]] if crops[-1].shape[0] != crops[-1].shape[1]: print(f'Shape is {crops[-1].shape}') print(img.shape) print(x1, y1, s) crops[-1] = img return crops class SkinDataset(Dataset): def __init__(self, imgfiles, labels, meta=None, square=False, square_tta=None, crop_tta=None, pad=None, resize=None, transform=None, crop=None, preprocessor=None, flip=False, verbose=True, test_mode=False, jsd=False, onehot=False): self.imgfiles = imgfiles self.labels = labels self.meta = meta self.square = square self.square_tta = square_tta self.crop_tta = crop_tta self.pad = pad self.resize = resize self.transform = transform self.crop = crop if self.crop: self.crop_size = (self.crop.transforms[0].height, self.crop.transforms[0].width) self.preprocessor = preprocessor self.flip = flip self.verbose = verbose self.test_mode = test_mode self.jsd = jsd self.onehot = onehot def process_image(self, X, jsd=False): if self.pad: X = self.pad(X) if self.resize: X = self.resize(image=X)['image'] if self.transform and not jsd: X = self.transform(image=X)['image'] if self.crop and not self.test_mode: X = resize_for_crop(X, crop_size=self.crop_size) X = self.crop(image=X)['image'] if self.preprocessor: X = self.preprocessor.preprocess(X) return X.transpose(2, 0, 1) def get(self, i): try: X = cv2.imread(self.imgfiles[i]) if _isnone(X): X = cv2.imread(self.imgfiles[i].replace('jpg','png')) if _isnone(X): return None if not _isnone(self.meta): X = {'img': X} X.update(self.meta[i]) return X except Exception as e: if self.verbose: print(e) return None @staticmethod def flip_array(X, mode): if mode == 0: X = X[:,::-1] elif mode == 1: X = X[:,:,::-1] elif mode == 2: X = X[:,::-1,::-1] elif mode == 3 and X.shape[-1] == X.shape[-2]: X = X.transpose(0,2,1) X = np.ascontiguousarray(X) return X def __len__(self): return len(self.imgfiles) def __getitem__(self, i): X = self.get(i) while _isnone(X): if self.verbose: print('Failed to read {} !'.format(self.imgfiles[i])) i = np.random.randint(len(self)) X = self.get(i) if self.test_mode and self.square_tta: if isinstance(X, dict): X['img'] = generate_crops(X['img'], num_crops=self.square_tta) X['img'] = np.asarray([self.process_image(_) for _ in X['img']]) for k,v in X.items(): if k == 'img': continue X[k] = np.repeat(np.expand_dims(v, axis=0), X['img'].shape[0], axis=0) else: X = generate_crops(X, num_crops=self.square_tta) X = np.asarray([self.process_image(_) for _ in X]) elif self.test_mode and self.crop_tta: if isinstance(X, dict): X['img'] = crop_tta(X['img'], crop_size=self.crop_size, num_crops=self.crop_tta) X['img'] = np.asarray([self.process_image(_) for _ in X['img']]) for k,v in X.items(): if k == 'img': continue X[k] = np.repeat(np.expand_dims(v, axis=0), X['img'].shape[0], axis=0) else: X = crop_tta(X, crop_size=self.crop_size, num_crops=self.crop_tta) X = np.asarray([self.process_image(_) for _ in X]) else: if isinstance(X, dict): if self.square: X['img'] = square_crop(X['img'], random=not self.test_mode) if self.jsd: raise Exception('JSD not supported when using metadata') X['img'] = self.process_image(X['img']) else: if self.square: X = square_crop(X, random=not self.test_mode) if self.jsd and not self.test_mode: X_orig = X.copy() X = self.process_image(X) if self.jsd and not self.test_mode: # Additional aug X_aug = self.process_image(X_orig) X_orig = self.process_image(X_orig, jsd=True) if self.onehot and not self.test_mode: onehot_y = { 0: [1.,0.,0.], 1: [0.,1.,0.], 2: [0.,0.,1.] } y = self.labels[i] if isinstance(y, str): y = y.split(',') y = [float(_) for _ in y] else: y = onehot_y[int(y)] if len(y) == 1: y = onehot_y[int(y[0])] else: y = self.labels[i] if isinstance(y, str): y = float(y) if self.flip and not self.test_mode: # X.shape = (C, H, W) mode = np.random.randint(5) if isinstance(X, dict): X['img'] = self.flip_array(X['img'], mode) else: X = self.flip_array(X, mode) if self.jsd and not self.test_mode: X_aug = self.flip_array(X_aug, mode) X_orig = self.flip_array(X_orig, mode) if isinstance(X, dict): X = {k: torch.tensor(v) for k,v in X.items()} else: X = torch.tensor(X) if self.jsd and not self.test_mode: X = (torch.tensor(X_orig), torch.tensor(X), torch.tensor(X_aug)) y = torch.tensor(y) return X, y class SiameseDataset(Dataset): def __init__(self, imgfiles, labels, pad=None, resize=None, transform=None, crop=None, preprocessor=None, flip=False, verbose=True, test_mode=False): self.imgfiles = imgfiles self.labels = labels self.pad = pad self.resize = resize self.transform = transform self.crop = crop self.preprocessor = preprocessor self.flip = flip self.verbose = verbose self.test_mode = test_mode self.posfiles = [self.imgfiles[i] for i in range(len(self.imgfiles)) if self.labels[i] == 1] self.negfiles = [self.imgfiles[i] for i in range(len(self.imgfiles)) if self.labels[i] == 0] self.get = self.get_test if self.test_mode else self.get_train def process_image(self, X): if self.pad: X = self.pad(X) if self.resize: X = self.resize(image=X)['image'] if self.transform: X = self.transform(image=X)['image'] if self.crop: X = self.crop(image=X)['image'] if self.preprocessor: X = self.preprocessor.preprocess(X) return X.transpose(2, 0, 1) def _read_image(self, fp): X = cv2.imread(fp) if _isnone(X): X = cv2.imread(fp.replace('jpg','png')) return X def get_test(self, i): try: return self._read_image(self.imgfiles[i]) except Exception as e: if self.verbose: print(e) return None def get_train(self, i): try: pair_type = np.random.randint(4) if pair_type <= 1: X1 = self._read_image(np.random.choice(self.posfiles)) X2 = self._read_image(np.random.choice(self.negfiles)) elif pair_type == 2: X1 = self._read_image(np.random.choice(self.posfiles)) X2 = self._read_image(np.random.choice(self.posfiles)) elif pair_type == 3: X1 = self._read_image(np.random.choice(self.negfiles)) X2 = self._read_image(np.random.choice(self.negfiles)) return [X1, X2], pair_type except Exception as e: if self.verbose: print(e) return None def __len__(self): return len(self.imgfiles) def __getitem__(self, i): X = self.get(i) while _isnone(X): if self.verbose: print('Failed to read {} !'.format(self.imgfiles[i])) i = np.random.randint(len(self)) X = self.get(i) if self.test_mode: X = self.process_image(X) y = self.labels[i] else: X, pair_type = X X = np.asarray([self.process_image(_) for _ in X]) if pair_type <= 1: y = 0 # different else: y = 1 # same if self.flip and not self.test_mode: # X.shape = (2, C, H, W) mode = np.random.randint(5) if mode == 0: X = X[...,::-1] elif mode == 1: X = X[...,::-1,:] elif mode == 2: X = X[...,::-1,::-1] elif mode == 3 and X.shape[-1] == X.shape[-2]: X = X.swapaxes(-1, -2) X = np.ascontiguousarray(X) X = torch.tensor(X) y = torch.tensor(y) return X, y class Upsampler(Sampler): def __init__(self, dataset, upsample_factor=25): super().__init__(data_source=dataset) self.labels = np.asarray(dataset.labels) self.num_pos = np.sum(self.labels >= 0.5) self.num_neg = np.sum(self.labels < 0.5) self.upsample_factor = upsample_factor self.length = self.num_neg + upsample_factor * self.num_pos def __len__(self): return self.length def __iter__(self): indices = [] indices += list(np.where(self.labels < 0.5)[0]) indices += list(np.random.choice(np.where(self.labels >= 0.5)[0], self.upsample_factor * self.num_pos, replace=True)) indices = np.random.permutation(indices) return iter(indices.tolist()) class BalancedSampler(Sampler): def __init__(self, dataset, weights=[2,1], pos_label=1): super().__init__(data_source=dataset) self.labels = np.asarray(dataset.labels) self.pos_label = pos_label self.num_pos = np.sum(self.labels == pos_label) self.num_neg = np.sum(self.labels != pos_label) # weights ordered as [neg, pos] self.weights = np.asarray(weights) self.weights = self.weights / np.sum(self.weights) self.length = len(dataset.imgfiles) def __len__(self): return self.length def __iter__(self): indices = [] sample_neg = int(self.length * self.weights[0]) sample_pos = int(self.length * self.weights[1]) indices += list(np.random.choice(np.where(self.labels == self.pos_label)[0], sample_pos, replace=self.num_pos<sample_pos)) indices += list(np.random.choice(np.where(self.labels != self.pos_label)[0], sample_neg, replace=self.num_neg<sample_neg)) indices = np.random.permutation(indices) return iter(indices.tolist()) class BenignSampler(Sampler): def __init__(self, dataset, probas=None, weights=[2,1], pos_label=1): super().__init__(data_source=dataset) self.dataset = dataset # store self.labels = np.asarray(dataset.labels) self.imgfiles = np.asarray(dataset.imgfiles) self.pos_label = pos_label # Need to map image file to indices self.img2index = {i : index for index, i in enumerate(self.imgfiles)} self.negfiles = [im for i, im in enumerate(self.imgfiles) if self.labels[i] != pos_label] self.num_pos = np.sum(self.labels == pos_label) self.num_neg = np.sum(self.labels != pos_label) # weights ordered as [neg, pos] self.weights = np.asarray(weights) self.weights = self.weights / np.sum(self.weights) self.length = self.num_pos * 4 if type(probas) == type(None): # Assign equal weight to all benigns p = 1.0 / len(self.negfiles) probas = {i : p for i in self.negfiles} self.probas = probas def __len__(self): return self.length def __iter__(self): indices = [] probas = {self.img2index[k] : v for k,v in self.probas.items()} sample_neg = int(self.length * self.weights[0]) sample_pos = int(self.length * self.weights[1]) indices += list(np.random.choice(np.where(self.labels == self.pos_label)[0], sample_pos, replace=self.num_pos<sample_pos)) # For negatives, sample based on weight keys = [*probas] values = np.asarray([probas[k] for k in keys]) indices += list(np.random.choice(keys, sample_neg, replace=sample_neg>len(keys), p=values)) indices = np.random.permutation(indices) return iter(indices.tolist())
0.393152
0.282295
import os import json import base64 import gzip import boto3 from satstac import Collection, Item from stac_updater import utils sns_client = boto3.client('sns') s3_res = boto3.resource('s3') ACCOUNT_ID = boto3.client('sts').get_caller_identity()['Account'] REGION = os.getenv('REGION') NOTIFICATION_TOPIC = os.getenv('NOTIFICATION_TOPIC') def kickoff(event, context): event_source = os.getenv('EVENT_SOURCE') # Load payload based on event source if event_source == "s3": bucket = event['Records'][0]['s3']['bucket']['name'] key = event['Records'][0]['s3']['object']['key'] content_object = s3_res.Object(bucket, key) file_content = content_object.get()['Body'].read().decode('utf-8') payload = json.loads(file_content) elif event_source == "sns": payload = json.loads(event['Records'][0]['Sns']['Message']) else: # Default is lambda payload = event print(payload) try: coll_name = payload['properties']['collection'] except KeyError: coll_name = payload['collection'] sns_client.publish( TopicArn=f"arn:aws:sns:{REGION}:{ACCOUNT_ID}:newStacItemTopic", Message=json.dumps(payload), MessageAttributes={ 'collection': { 'DataType': 'String', 'StringValue': coll_name } } ) def update_collection(event, context): collection_root = os.getenv('COLLECTION_ROOT') path = os.getenv('PATH') filename = os.getenv('FILENAME') item_count = len(event['Records']) stac_links = [] for record in event['Records']: stac_item = json.loads(record['body']) print(stac_item) col = Collection.open(collection_root) collection_name = col.id kwargs = {'item': Item(stac_item)} if path: kwargs.update({'path': '$' + '/$'.join(path.split('/'))}) if filename: kwargs.update({'filename': '$' + '/$'.join(filename.split('/'))}) print(kwargs) col.add_item(**kwargs) col.save() stac_links.append(kwargs['item'].links('self')[0]) # Send message to SNS Topic if enabled if NOTIFICATION_TOPIC: kwargs = utils.stac_to_sns(kwargs['item'].data) kwargs.update({ 'TopicArn': f"arn:aws:sns:{REGION}:{ACCOUNT_ID}:{NOTIFICATION_TOPIC}" }) sns_client.publish(**kwargs) print(f"LOGS CollectionName: {collection_name}\tItemCount: {item_count}\tItemLinks: {stac_links}") def es_log_ingest(event, context): from stac_updater import logging cw_data = event['awslogs']['data'] compressed_payload = base64.b64decode(cw_data) uncompressed_payload = gzip.decompress(compressed_payload) payload = json.loads(uncompressed_payload) # Index to ES logging.index_logs(payload)
stac_updater/handler.py
import os import json import base64 import gzip import boto3 from satstac import Collection, Item from stac_updater import utils sns_client = boto3.client('sns') s3_res = boto3.resource('s3') ACCOUNT_ID = boto3.client('sts').get_caller_identity()['Account'] REGION = os.getenv('REGION') NOTIFICATION_TOPIC = os.getenv('NOTIFICATION_TOPIC') def kickoff(event, context): event_source = os.getenv('EVENT_SOURCE') # Load payload based on event source if event_source == "s3": bucket = event['Records'][0]['s3']['bucket']['name'] key = event['Records'][0]['s3']['object']['key'] content_object = s3_res.Object(bucket, key) file_content = content_object.get()['Body'].read().decode('utf-8') payload = json.loads(file_content) elif event_source == "sns": payload = json.loads(event['Records'][0]['Sns']['Message']) else: # Default is lambda payload = event print(payload) try: coll_name = payload['properties']['collection'] except KeyError: coll_name = payload['collection'] sns_client.publish( TopicArn=f"arn:aws:sns:{REGION}:{ACCOUNT_ID}:newStacItemTopic", Message=json.dumps(payload), MessageAttributes={ 'collection': { 'DataType': 'String', 'StringValue': coll_name } } ) def update_collection(event, context): collection_root = os.getenv('COLLECTION_ROOT') path = os.getenv('PATH') filename = os.getenv('FILENAME') item_count = len(event['Records']) stac_links = [] for record in event['Records']: stac_item = json.loads(record['body']) print(stac_item) col = Collection.open(collection_root) collection_name = col.id kwargs = {'item': Item(stac_item)} if path: kwargs.update({'path': '$' + '/$'.join(path.split('/'))}) if filename: kwargs.update({'filename': '$' + '/$'.join(filename.split('/'))}) print(kwargs) col.add_item(**kwargs) col.save() stac_links.append(kwargs['item'].links('self')[0]) # Send message to SNS Topic if enabled if NOTIFICATION_TOPIC: kwargs = utils.stac_to_sns(kwargs['item'].data) kwargs.update({ 'TopicArn': f"arn:aws:sns:{REGION}:{ACCOUNT_ID}:{NOTIFICATION_TOPIC}" }) sns_client.publish(**kwargs) print(f"LOGS CollectionName: {collection_name}\tItemCount: {item_count}\tItemLinks: {stac_links}") def es_log_ingest(event, context): from stac_updater import logging cw_data = event['awslogs']['data'] compressed_payload = base64.b64decode(cw_data) uncompressed_payload = gzip.decompress(compressed_payload) payload = json.loads(uncompressed_payload) # Index to ES logging.index_logs(payload)
0.222278
0.047162
# use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from tdkbVariables import *; from FWUpgradeUtility import * #Test component to be tested obj = tdklib.TDKScriptingLibrary("fwupgradehal","1"); obj1 = tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with corresponding DUT Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_FWUPGRADEHAL_SetDownloadUrl'); obj1.configureTestCase(ip,port,'TS_FWUPGRADEHAL_SetDownloadUrl'); #Get the result of connection with test component and DUT loadmodulestatus =obj.getLoadModuleResult(); loadmodulestatus1 =obj1.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus ; print "[LIB LOAD STATUS] : %s" %loadmodulestatus1 ; if "SUCCESS" in loadmodulestatus.upper() and "SUCCESS" in loadmodulestatus1.upper(): obj.setLoadModuleStatus("SUCCESS"); obj1.setLoadModuleStatus("SUCCESS"); expectedresult = "SUCCESS"; tdkTestObj, actualresult, FirmwareFilename = get_FirmwareFilename(obj1); if (expectedresult in actualresult) and (FirmwareFilename != " "): #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1 : Fetch the Firmware Filename and Firmware Location URL successfully from config file"; print "EXPECTED RESULT 1 : Firmware Filename and Firmware Location URL should be fetched successfully"; print "ACTUAL RESULT 1 : Firmware Details are fetched successfully"; print "Firmware Location URL : %s" %FirmwareLocationURL; print "FirmwareFilename : %s" %FirmwareFilename; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep("FWUPGRADEHAL_Set_Download_Url"); tdkTestObj.addParameter("URL",FirmwareLocationURL); tdkTestObj.addParameter("filename",FirmwareFilename); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult : #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Set the Download URL and Filename using the HAL API fwupgrade_hal_set_download_url()"; print "EXPECTED RESULT 2: Should set the Download url: %s and Filename: %s" %(FirmwareLocationURL, FirmwareFilename); print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep("FWUPGRADEHAL_Get_Download_Url"); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult : #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3: Get the Download URL and Filename using the HAL API fwupgrade_hal_get_download_url()"; print "EXPECTED RESULT 3: Should get the Download URL and Filename"; print "ACTUAL RESULT 3: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; url=details.split(" ")[2] url = url[:-1] fwName=details.split(" ")[5] if url == FirmwareLocationURL and fwName == FirmwareFilename: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 4: Verify the Download URL and Filename"; print "EXPECTED RESULT 4: Should get the Download URL and Filename same as the set value"; print "Download URL is %s and Filename is %s" %(url , fwName ) print "ACTUAL RESULT 4: The Download URL and Filename are same as the set value" #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 4: Verify the Download URL and Filename"; print "EXPECTED RESULT 4: Should get the Download URL and Filename same as the set value"; print "Download URL is %s and Filename is %s" %(url , fwName ) print "ACTUAL RESULT 4: The Download URL and Filename are not the same as the set value" #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3: Get the Download URL and Filename using the HAL API fwupgrade_hal_get_download_url()"; print "EXPECTED RESULT 3: Should get the Download URL and Filename"; print "ACTUAL RESULT 3: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Set the Download URL and Filename using the HAL API fwupgrade_hal_set_download_url()"; print "EXPECTED RESULT 2: Should set the Download url: %s and Filename: %s" %(FirmwareLocationURL, FirmwareFilename); print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1 : Fetch the Firmware Filename and Firmware Location URL successfully from config file"; print "EXPECTED RESULT 1 : Firmware Filename and Firmware Location URL should be fetched successfully"; print "ACTUAL RESULT 1 : Firmware Details are not fetched successfully"; print "Firmware Location URL : %s" %FirmwareLocationURL; print "FirmwareFilename : %s" %FirmwareFilename; print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("fwupgradehal"); obj1.unloadModule("sysutil"); else: print "Failed to load the module"; obj.setLoadModuleStatus("FAILURE"); obj1.setLoadModuleStatus("FAILURE"); print "Module loading failed";
testscripts/RDKB/component/FWUpgradeHAL/TS_FWUPGRADEHAL_SetDownloadUrl.py
# use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from tdkbVariables import *; from FWUpgradeUtility import * #Test component to be tested obj = tdklib.TDKScriptingLibrary("fwupgradehal","1"); obj1 = tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with corresponding DUT Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_FWUPGRADEHAL_SetDownloadUrl'); obj1.configureTestCase(ip,port,'TS_FWUPGRADEHAL_SetDownloadUrl'); #Get the result of connection with test component and DUT loadmodulestatus =obj.getLoadModuleResult(); loadmodulestatus1 =obj1.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %loadmodulestatus ; print "[LIB LOAD STATUS] : %s" %loadmodulestatus1 ; if "SUCCESS" in loadmodulestatus.upper() and "SUCCESS" in loadmodulestatus1.upper(): obj.setLoadModuleStatus("SUCCESS"); obj1.setLoadModuleStatus("SUCCESS"); expectedresult = "SUCCESS"; tdkTestObj, actualresult, FirmwareFilename = get_FirmwareFilename(obj1); if (expectedresult in actualresult) and (FirmwareFilename != " "): #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1 : Fetch the Firmware Filename and Firmware Location URL successfully from config file"; print "EXPECTED RESULT 1 : Firmware Filename and Firmware Location URL should be fetched successfully"; print "ACTUAL RESULT 1 : Firmware Details are fetched successfully"; print "Firmware Location URL : %s" %FirmwareLocationURL; print "FirmwareFilename : %s" %FirmwareFilename; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep("FWUPGRADEHAL_Set_Download_Url"); tdkTestObj.addParameter("URL",FirmwareLocationURL); tdkTestObj.addParameter("filename",FirmwareFilename); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult : #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Set the Download URL and Filename using the HAL API fwupgrade_hal_set_download_url()"; print "EXPECTED RESULT 2: Should set the Download url: %s and Filename: %s" %(FirmwareLocationURL, FirmwareFilename); print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj = obj.createTestStep("FWUPGRADEHAL_Get_Download_Url"); expectedresult="SUCCESS"; tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult : #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3: Get the Download URL and Filename using the HAL API fwupgrade_hal_get_download_url()"; print "EXPECTED RESULT 3: Should get the Download URL and Filename"; print "ACTUAL RESULT 3: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; url=details.split(" ")[2] url = url[:-1] fwName=details.split(" ")[5] if url == FirmwareLocationURL and fwName == FirmwareFilename: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 4: Verify the Download URL and Filename"; print "EXPECTED RESULT 4: Should get the Download URL and Filename same as the set value"; print "Download URL is %s and Filename is %s" %(url , fwName ) print "ACTUAL RESULT 4: The Download URL and Filename are same as the set value" #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 4: Verify the Download URL and Filename"; print "EXPECTED RESULT 4: Should get the Download URL and Filename same as the set value"; print "Download URL is %s and Filename is %s" %(url , fwName ) print "ACTUAL RESULT 4: The Download URL and Filename are not the same as the set value" #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3: Get the Download URL and Filename using the HAL API fwupgrade_hal_get_download_url()"; print "EXPECTED RESULT 3: Should get the Download URL and Filename"; print "ACTUAL RESULT 3: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Set the Download URL and Filename using the HAL API fwupgrade_hal_set_download_url()"; print "EXPECTED RESULT 2: Should set the Download url: %s and Filename: %s" %(FirmwareLocationURL, FirmwareFilename); print "ACTUAL RESULT 2: %s" %details; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1 : Fetch the Firmware Filename and Firmware Location URL successfully from config file"; print "EXPECTED RESULT 1 : Firmware Filename and Firmware Location URL should be fetched successfully"; print "ACTUAL RESULT 1 : Firmware Details are not fetched successfully"; print "Firmware Location URL : %s" %FirmwareLocationURL; print "FirmwareFilename : %s" %FirmwareFilename; print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("fwupgradehal"); obj1.unloadModule("sysutil"); else: print "Failed to load the module"; obj.setLoadModuleStatus("FAILURE"); obj1.setLoadModuleStatus("FAILURE"); print "Module loading failed";
0.327668
0.252695
import itertools import warnings # 3rd-party modules import holoviews as hv from holoviews import opts, dim from holoviews.operation.datashader import datashade, bundle_graph import networkx as nx import pandas as pd # My handwritten modules from .s3_utils import savefig from . import knn from . import sourmash_utils # don't warn me about too many figures open import matplotlib.pyplot as plt plt.rcParams.update({'figure.max_open_warning': 0}) KSIZES = 9, 12, 15, 21 LOG2SKETCHSIZES = 10, 12, 14, 16 MOLECULES = 'dna', 'protein' COLOR_COLS = ['species', 'cell_label', ] PALETTES = dict(species='Set2', cell_label='tab20') SKETCH_ID_TEMPLATE = 'molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}' N_NEIGHBORS = 5 def build_graph_and_plot(data, metadata, n_neighbors, color_cols, palettes, figure_folder, figure_prefix, title): with warnings.catch_warnings(): warnings.simplefilter("ignore") graph = knn.nearest_neighbor_graph(data, metadata, n_neighbors=n_neighbors, color_cols=color_cols, palettes=palettes) pos = nx.spring_layout(graph, seed=0) for label in color_cols: fig, ax = plt.subplots() with warnings.catch_warnings(): warnings.simplefilter("ignore") knn.draw_graph(graph, edge_color='black', label_col=label, pos=pos) ax.set_title(title) figure_suffix = f'graph_nneighbors-{n_neighbors}_colorby-{label}' png = f'{figure_folder}/{figure_prefix}_{figure_suffix}.png' savefig(fig, png, dpi=150) return graph, pos def get_similarity_graphs(csv_template, metadata, figure_folder, groupby='species', ksizes=KSIZES, log2sketchsizes=LOG2SKETCHSIZES, molecules=MOLECULES, sketch_id_template=SKETCH_ID_TEMPLATE, n_neighbors=N_NEIGHBORS, plaidplot=False, palettes=PALETTES, color_cols=COLOR_COLS, verbose=False, make_within_groupby_graphs=False): """Read similarity csvs and create holoviews graphs Parameters ---------- csv_template : str format-string to insert molecule, ksize, and log2sketchsize values into to get csv. e.g.: 'similarities_molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}.csv' metadata : pandas.DataFrame Sample-by-feature metadata encoding additional information about samples, such as species, cell type label, or tissue groupby : str Which column of the metadata to groupby to get sub-graphs for ksizes : tuple of int Which k-mer sizes to look for similarity files for, default (9, 12, 15, 21) log2sketchsizes : tuple of int Which log2 sketch sizes to look for similarity files for, default (10, 12, 14, 16) molecules : tuple of str Which molecules to use, default both 'dna' and 'protein' sketch_id_template : str String to use as a unique identifier for the sketch, e.g. 'molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}' plaidplot : bool If true, make a clustered heatmap with the sides labeled with the color_cols palettes : dict Column name (must be in 'metadata') to palette name mapping color_cols : list Column names in 'metadata' to color by Returns ------- graph_dict : dict of holoviews.Graph (molecule, ksize, log2sketchsize) : holoviews.Graph mapping for all similarity matrices found. To be used by 'draw_holoviews_graphs' """ # Strip the final slash because it makes s3 stuff weird figure_folder = figure_folder.rstrip('/') iterable = itertools.product(molecules, ksizes, log2sketchsizes) graph_dict = {} categories = metadata[color_cols] for molecule, ksize, log2sketchsize in iterable: template_kwargs = dict(molecule=molecule, ksize=ksize, log2sketchsize=log2sketchsize) sketch_id = sketch_id_template.format(**template_kwargs) if verbose: print(sketch_id.replace('-', ": ").replace("_", ", ")) csv = csv_template.format(**template_kwargs) try: similarities = pd.read_csv(csv) except FileNotFoundError: warnings.warn(f"file {csv} not found") # File doesn't exist yet continue similarities.index = similarities.columns if verbose: print(f"\tsimilarities.shape: {similarities.shape}") title = f"molecule: {molecule}, ksize: {ksize}, " \ f"log2sketchsize: {log2sketchsize}" if plaidplot: try: g = sourmash_utils.plaidplot(similarities, metric='cosine', row_categories=categories, col_categories=categories, row_palette=palettes, col_palette=palettes) g.fig.suptitle(title) png = f'{figure_folder}/{sketch_id}_plaidplot.png' savefig(g, png, dpi=150) except FloatingPointError: warnings.warn("\tCouldn't compute linkage -- no plaidplot " \ "generated") graph, pos = build_graph_and_plot(similarities, metadata, n_neighbors, color_cols, palettes, figure_folder, sketch_id, title) # hv.extension('matplotlib') graph_hv = hv.Graph.from_networkx(graph, pos) graph_hv = graph_hv.opts(node_size=10, edge_line_width=1, cmap='Set2', node_color=dim(groupby), node_line_color='gray') bundled = bundle_graph(graph_hv) # hv.save(bundled, '.pdf', backend='matplotlib') graph_dict[(molecule, ksize, log2sketchsize)] = bundled if make_within_groupby_graphs: # make within-group (e.g. within-species) graphs for species, df in metadata.groupby(groupby): data = similarities.loc[df.index, df.index] figure_prefix = f"{sketch_id}_{species}" graph_title = f"{title} ({species})" build_graph_and_plot( data, df, n_neighbors, color_cols, palettes, figure_folder, figure_prefix, graph_title) return graph_dict def draw_holoviews_graphs(graph_dict): # use first key to determine default settings first_key = list(graph_dict.keys())[0] molecule, ksize, log2sketchsize = first_key hv.extension('bokeh') defaults = dict(width=400, height=400, padding=0.1) hv.opts.defaults( opts.EdgePaths(**defaults), opts.Graph(**defaults), opts.Nodes(**defaults)) kdims = [ hv.Dimension(('molecule', "molecule"), default=molecule), hv.Dimension(('ksize', "k-mer size"), default=ksize), hv.Dimension(('log2_num_hashes', "$\log_2$ num hashes"), default=log2sketchsize), ] kwargs = dict(width=800, height=800, xaxis=None, yaxis=None) opts.defaults(opts.Nodes(**kwargs), opts.Graph(**kwargs)) kwargs = dict(node_size=10, edge_line_width=1, cmap='Set2', node_color=dim("species"), node_line_color='gray', width=600, height=600, xaxis=None, yaxis=None) holomap = hv.HoloMap(graph_dict, kdims=kdims) holomap.opts(opts.Graph(**kwargs)) return holomap
khtools/holoviews.py
import itertools import warnings # 3rd-party modules import holoviews as hv from holoviews import opts, dim from holoviews.operation.datashader import datashade, bundle_graph import networkx as nx import pandas as pd # My handwritten modules from .s3_utils import savefig from . import knn from . import sourmash_utils # don't warn me about too many figures open import matplotlib.pyplot as plt plt.rcParams.update({'figure.max_open_warning': 0}) KSIZES = 9, 12, 15, 21 LOG2SKETCHSIZES = 10, 12, 14, 16 MOLECULES = 'dna', 'protein' COLOR_COLS = ['species', 'cell_label', ] PALETTES = dict(species='Set2', cell_label='tab20') SKETCH_ID_TEMPLATE = 'molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}' N_NEIGHBORS = 5 def build_graph_and_plot(data, metadata, n_neighbors, color_cols, palettes, figure_folder, figure_prefix, title): with warnings.catch_warnings(): warnings.simplefilter("ignore") graph = knn.nearest_neighbor_graph(data, metadata, n_neighbors=n_neighbors, color_cols=color_cols, palettes=palettes) pos = nx.spring_layout(graph, seed=0) for label in color_cols: fig, ax = plt.subplots() with warnings.catch_warnings(): warnings.simplefilter("ignore") knn.draw_graph(graph, edge_color='black', label_col=label, pos=pos) ax.set_title(title) figure_suffix = f'graph_nneighbors-{n_neighbors}_colorby-{label}' png = f'{figure_folder}/{figure_prefix}_{figure_suffix}.png' savefig(fig, png, dpi=150) return graph, pos def get_similarity_graphs(csv_template, metadata, figure_folder, groupby='species', ksizes=KSIZES, log2sketchsizes=LOG2SKETCHSIZES, molecules=MOLECULES, sketch_id_template=SKETCH_ID_TEMPLATE, n_neighbors=N_NEIGHBORS, plaidplot=False, palettes=PALETTES, color_cols=COLOR_COLS, verbose=False, make_within_groupby_graphs=False): """Read similarity csvs and create holoviews graphs Parameters ---------- csv_template : str format-string to insert molecule, ksize, and log2sketchsize values into to get csv. e.g.: 'similarities_molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}.csv' metadata : pandas.DataFrame Sample-by-feature metadata encoding additional information about samples, such as species, cell type label, or tissue groupby : str Which column of the metadata to groupby to get sub-graphs for ksizes : tuple of int Which k-mer sizes to look for similarity files for, default (9, 12, 15, 21) log2sketchsizes : tuple of int Which log2 sketch sizes to look for similarity files for, default (10, 12, 14, 16) molecules : tuple of str Which molecules to use, default both 'dna' and 'protein' sketch_id_template : str String to use as a unique identifier for the sketch, e.g. 'molecule-{molecule}_ksize-{ksize}_log2sketchsize-{log2sketchsize}' plaidplot : bool If true, make a clustered heatmap with the sides labeled with the color_cols palettes : dict Column name (must be in 'metadata') to palette name mapping color_cols : list Column names in 'metadata' to color by Returns ------- graph_dict : dict of holoviews.Graph (molecule, ksize, log2sketchsize) : holoviews.Graph mapping for all similarity matrices found. To be used by 'draw_holoviews_graphs' """ # Strip the final slash because it makes s3 stuff weird figure_folder = figure_folder.rstrip('/') iterable = itertools.product(molecules, ksizes, log2sketchsizes) graph_dict = {} categories = metadata[color_cols] for molecule, ksize, log2sketchsize in iterable: template_kwargs = dict(molecule=molecule, ksize=ksize, log2sketchsize=log2sketchsize) sketch_id = sketch_id_template.format(**template_kwargs) if verbose: print(sketch_id.replace('-', ": ").replace("_", ", ")) csv = csv_template.format(**template_kwargs) try: similarities = pd.read_csv(csv) except FileNotFoundError: warnings.warn(f"file {csv} not found") # File doesn't exist yet continue similarities.index = similarities.columns if verbose: print(f"\tsimilarities.shape: {similarities.shape}") title = f"molecule: {molecule}, ksize: {ksize}, " \ f"log2sketchsize: {log2sketchsize}" if plaidplot: try: g = sourmash_utils.plaidplot(similarities, metric='cosine', row_categories=categories, col_categories=categories, row_palette=palettes, col_palette=palettes) g.fig.suptitle(title) png = f'{figure_folder}/{sketch_id}_plaidplot.png' savefig(g, png, dpi=150) except FloatingPointError: warnings.warn("\tCouldn't compute linkage -- no plaidplot " \ "generated") graph, pos = build_graph_and_plot(similarities, metadata, n_neighbors, color_cols, palettes, figure_folder, sketch_id, title) # hv.extension('matplotlib') graph_hv = hv.Graph.from_networkx(graph, pos) graph_hv = graph_hv.opts(node_size=10, edge_line_width=1, cmap='Set2', node_color=dim(groupby), node_line_color='gray') bundled = bundle_graph(graph_hv) # hv.save(bundled, '.pdf', backend='matplotlib') graph_dict[(molecule, ksize, log2sketchsize)] = bundled if make_within_groupby_graphs: # make within-group (e.g. within-species) graphs for species, df in metadata.groupby(groupby): data = similarities.loc[df.index, df.index] figure_prefix = f"{sketch_id}_{species}" graph_title = f"{title} ({species})" build_graph_and_plot( data, df, n_neighbors, color_cols, palettes, figure_folder, figure_prefix, graph_title) return graph_dict def draw_holoviews_graphs(graph_dict): # use first key to determine default settings first_key = list(graph_dict.keys())[0] molecule, ksize, log2sketchsize = first_key hv.extension('bokeh') defaults = dict(width=400, height=400, padding=0.1) hv.opts.defaults( opts.EdgePaths(**defaults), opts.Graph(**defaults), opts.Nodes(**defaults)) kdims = [ hv.Dimension(('molecule', "molecule"), default=molecule), hv.Dimension(('ksize', "k-mer size"), default=ksize), hv.Dimension(('log2_num_hashes', "$\log_2$ num hashes"), default=log2sketchsize), ] kwargs = dict(width=800, height=800, xaxis=None, yaxis=None) opts.defaults(opts.Nodes(**kwargs), opts.Graph(**kwargs)) kwargs = dict(node_size=10, edge_line_width=1, cmap='Set2', node_color=dim("species"), node_line_color='gray', width=600, height=600, xaxis=None, yaxis=None) holomap = hv.HoloMap(graph_dict, kdims=kdims) holomap.opts(opts.Graph(**kwargs)) return holomap
0.495117
0.297585
INPUT_FILE = 'input.txt' def sin(angle): angle %= 360 if angle == 0 or angle == 180: return 0 elif angle == 90: return 1 elif angle == 270: return -1 raise ValueError('Only the multiples of the right angle are supported.') def cos(angle): return sin(angle + 90) def rotation_x(angle, vec): return [ vec[0], cos(angle) * vec[1] + -sin(angle) * vec[2], sin(angle) * vec[1] + cos(angle) * vec[2], ] def rotation_y(angle, vec): return [ cos(angle) * vec[0] + sin(angle) * vec[2], vec[1], -sin(angle) * vec[0] + cos(angle) * vec[2], ] def rotation_z(angle, vec): return [ cos(angle) * vec[0] + -sin(angle) * vec[1], sin(angle) * vec[0] + cos(angle) * vec[1], vec[2], ] def rotation_xyz(angle_x, angle_y, angle_z, vec): return rotation_z(angle_z, rotation_y(angle_y, rotation_x(angle_x, vec))) def abs(value): if value >= 0: return value else: return -value def sign(value): if value >= 0: return 1 elif value < 0: return -1 def main(): with open(INPUT_FILE, 'r') as file: scanners = file.read().strip().split('\n\n') for i, scanner in enumerate(scanners): scanners[i] = [tuple(map(int, line.split(','))) for line in scanner.split('\n')[1:]] rotations = set() transformations = set() for angle1 in [0, 90, 180, 270]: for angle2 in [0, 90, 180, 270]: for angle3 in [0, 90, 180, 270]: vec = rotation_xyz(angle1, angle2, angle3, [1, 2, 3]) rotations.add(tuple(vec)) for transformation in rotations: indexes = tuple([abs(component) - 1 for component in transformation]) signs = tuple([sign(component) for component in transformation]) transformations.add((indexes, signs)) known = set(scanners.pop(0)) # first scanner is our origin point (0, 0, 0) scanner_positions = [(0, 0, 0)] while scanners: matched = False for scanner in scanners: for transformation in transformations: indexes, signs = transformation nx, ny, nz = indexes s1, s2, s3 = signs rotated = [(s1 * beacon[nx], s2 * beacon[ny], s3 * beacon[nz]) for beacon in scanner] for reading in known: for beacon in rotated: dx, dy, dz = [b_i - r_i for b_i, r_i in zip(beacon, reading)] translated = set([(x - dx, y - dy, z - dz) for candidate in rotated for x, y, z in [candidate]]) common_points = known.intersection(translated) if len(common_points) >= 12: scanner_position = tuple( [r_i + -b_i for b_i, r_i in zip(beacon, reading)] ) scanner_positions.append(scanner_position) known = known.union(translated) matched = True break if matched: break if matched: break if matched: break if matched: scanners.remove(scanner) else: print('Went through all, no match – something is wrong!') break distances = [] for index, scanner1 in enumerate(scanner_positions): for scanner2 in scanner_positions[index + 1:]: L1 = sum([abs(s1_i - s2_i) for s1_i, s2_i in zip(scanner1, scanner2)]) distances.append(L1) print(max(distances)) if __name__ == '__main__': main()
year-2021/day-19/part-2.py
INPUT_FILE = 'input.txt' def sin(angle): angle %= 360 if angle == 0 or angle == 180: return 0 elif angle == 90: return 1 elif angle == 270: return -1 raise ValueError('Only the multiples of the right angle are supported.') def cos(angle): return sin(angle + 90) def rotation_x(angle, vec): return [ vec[0], cos(angle) * vec[1] + -sin(angle) * vec[2], sin(angle) * vec[1] + cos(angle) * vec[2], ] def rotation_y(angle, vec): return [ cos(angle) * vec[0] + sin(angle) * vec[2], vec[1], -sin(angle) * vec[0] + cos(angle) * vec[2], ] def rotation_z(angle, vec): return [ cos(angle) * vec[0] + -sin(angle) * vec[1], sin(angle) * vec[0] + cos(angle) * vec[1], vec[2], ] def rotation_xyz(angle_x, angle_y, angle_z, vec): return rotation_z(angle_z, rotation_y(angle_y, rotation_x(angle_x, vec))) def abs(value): if value >= 0: return value else: return -value def sign(value): if value >= 0: return 1 elif value < 0: return -1 def main(): with open(INPUT_FILE, 'r') as file: scanners = file.read().strip().split('\n\n') for i, scanner in enumerate(scanners): scanners[i] = [tuple(map(int, line.split(','))) for line in scanner.split('\n')[1:]] rotations = set() transformations = set() for angle1 in [0, 90, 180, 270]: for angle2 in [0, 90, 180, 270]: for angle3 in [0, 90, 180, 270]: vec = rotation_xyz(angle1, angle2, angle3, [1, 2, 3]) rotations.add(tuple(vec)) for transformation in rotations: indexes = tuple([abs(component) - 1 for component in transformation]) signs = tuple([sign(component) for component in transformation]) transformations.add((indexes, signs)) known = set(scanners.pop(0)) # first scanner is our origin point (0, 0, 0) scanner_positions = [(0, 0, 0)] while scanners: matched = False for scanner in scanners: for transformation in transformations: indexes, signs = transformation nx, ny, nz = indexes s1, s2, s3 = signs rotated = [(s1 * beacon[nx], s2 * beacon[ny], s3 * beacon[nz]) for beacon in scanner] for reading in known: for beacon in rotated: dx, dy, dz = [b_i - r_i for b_i, r_i in zip(beacon, reading)] translated = set([(x - dx, y - dy, z - dz) for candidate in rotated for x, y, z in [candidate]]) common_points = known.intersection(translated) if len(common_points) >= 12: scanner_position = tuple( [r_i + -b_i for b_i, r_i in zip(beacon, reading)] ) scanner_positions.append(scanner_position) known = known.union(translated) matched = True break if matched: break if matched: break if matched: break if matched: scanners.remove(scanner) else: print('Went through all, no match – something is wrong!') break distances = [] for index, scanner1 in enumerate(scanner_positions): for scanner2 in scanner_positions[index + 1:]: L1 = sum([abs(s1_i - s2_i) for s1_i, s2_i in zip(scanner1, scanner2)]) distances.append(L1) print(max(distances)) if __name__ == '__main__': main()
0.625667
0.678806
from neutron_lib.api import converters as conv from neutron_lib.api import extensions from neutron_lib import constants as nlib_const from gbpservice.neutron.extensions import group_policy as gp # Extended attributes for Group Policy resource to map to Neutron constructs EXTENDED_ATTRIBUTES_2_0 = { gp.POLICY_TARGETS: { 'port_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'fixed_ips': {'allow_post': True, 'allow_put': True, 'default': nlib_const.ATTR_NOT_SPECIFIED, 'convert_list_to': conv.convert_kvp_list_to_dict, 'validate': {'type:fixed_ips': None}, 'enforce_policy': True, 'is_visible': True}, }, gp.POLICY_TARGET_GROUPS: { 'subnets': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, }, gp.L2_POLICIES: { 'network_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, }, gp.L3_POLICIES: { 'address_scope_v4_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'address_scope_v6_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'subnetpools_v4': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, 'subnetpools_v6': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, 'routers': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, }, gp.EXTERNAL_SEGMENTS: { 'subnet_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, }, gp.NAT_POOLS: { 'subnet_id': {'allow_post': False, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, } } class Group_policy_mapping(extensions.ExtensionDescriptor): @classmethod def get_name(cls): return "Group Policy Abstraction Mapping to Neutron Resources" @classmethod def get_alias(cls): return "group-policy-mapping" @classmethod def get_description(cls): return "Extension for Group Policy Abstraction Mapping" @classmethod def get_namespace(cls): return "https://wiki.openstack.org/wiki/Neutron/gp/v2.0/" @classmethod def get_updated(cls): return "2014-03-03T12:00:00-00:00" def get_extended_resources(self, version): if version == "2.0": return EXTENDED_ATTRIBUTES_2_0 else: return {} @classmethod def get_plugin_interface(cls): return gp.GroupPolicyPluginBase
gbpservice/neutron/extensions/group_policy_mapping.py
from neutron_lib.api import converters as conv from neutron_lib.api import extensions from neutron_lib import constants as nlib_const from gbpservice.neutron.extensions import group_policy as gp # Extended attributes for Group Policy resource to map to Neutron constructs EXTENDED_ATTRIBUTES_2_0 = { gp.POLICY_TARGETS: { 'port_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'fixed_ips': {'allow_post': True, 'allow_put': True, 'default': nlib_const.ATTR_NOT_SPECIFIED, 'convert_list_to': conv.convert_kvp_list_to_dict, 'validate': {'type:fixed_ips': None}, 'enforce_policy': True, 'is_visible': True}, }, gp.POLICY_TARGET_GROUPS: { 'subnets': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, }, gp.L2_POLICIES: { 'network_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, }, gp.L3_POLICIES: { 'address_scope_v4_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'address_scope_v6_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, 'subnetpools_v4': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, 'subnetpools_v6': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, 'routers': {'allow_post': True, 'allow_put': True, 'validate': {'type:uuid_list': None}, 'convert_to': conv.convert_none_to_empty_list, 'is_visible': True, 'default': None}, }, gp.EXTERNAL_SEGMENTS: { 'subnet_id': {'allow_post': True, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, }, gp.NAT_POOLS: { 'subnet_id': {'allow_post': False, 'allow_put': False, 'validate': {'type:uuid_or_none': None}, 'is_visible': True, 'default': None}, } } class Group_policy_mapping(extensions.ExtensionDescriptor): @classmethod def get_name(cls): return "Group Policy Abstraction Mapping to Neutron Resources" @classmethod def get_alias(cls): return "group-policy-mapping" @classmethod def get_description(cls): return "Extension for Group Policy Abstraction Mapping" @classmethod def get_namespace(cls): return "https://wiki.openstack.org/wiki/Neutron/gp/v2.0/" @classmethod def get_updated(cls): return "2014-03-03T12:00:00-00:00" def get_extended_resources(self, version): if version == "2.0": return EXTENDED_ATTRIBUTES_2_0 else: return {} @classmethod def get_plugin_interface(cls): return gp.GroupPolicyPluginBase
0.604866
0.156491
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import argparse import caffe import constants import logging import mxnet as mx import numpy as np import os import sys from caffe import layers from create_caffe_layers import get_caffe_layer from parse_mxnet_symbol import MxnetParser sys.path.append('/incubator-mxnet/example/ssd/tools/caffe_converter') import caffe_parser # noqa FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() - %(levelname)-5s ] %(message)s" logging.basicConfig(format=FORMAT, level=logging.INFO) logger = logging.getLogger(__name__) INPUT_DIMS = constants.INPUT_DIMS class MxNetToCaffe(object): """Convert trained model from mxnet to caffe. Attributes: caffe_prototxt (str): filename of the caffe prototxt caffe_weights (str): filename of the caffe weights binary epoch (str): mxnet epoch number of model to read weights from net (caffe.net): caffe net object that is constructed prefix (str): prefix of mxnet model name """ def __init__(self, prefix, epoch, caffe_prototxt=None, caffe_weights=None): self.prefix = prefix self.epoch = epoch self.caffe_prototxt = caffe_prototxt if \ caffe_prototxt else 'caffe_models/deploy.prototxt' self.caffe_weights = caffe_weights if \ caffe_weights else '{}_{}.caffemodel'.format(prefix, epoch) if not os.path.isdir(os.path.dirname(self.caffe_prototxt)): os.makedirs(os.path.dirname(self.caffe_prototxt)) self.caffe_net = None self.convert() def __parse_network(self): """Parse mxnet network and generate corresponding caffe layers. """ # Create caffe network caffe_graph = caffe.NetSpec() caffe_graph.data = layers.Input( input_param={'shape': {'dim': [1, 3, INPUT_DIMS[0], INPUT_DIMS[1]]}}) # Assign layers from mxnet for layer in MxnetParser(self.prefix + '-symbol.json'): # Note: name needs to be specified explicitly to reconcile differences in mxnet and caffe norm ops. # In caffe norm includes a scaling parameter, in mxnet these are two consecutive ops. # So output of the caffe norm op needs to be named based on the scale op name in mxnet. caffe_layer = get_caffe_layer(layer, caffe_graph, input_dims=INPUT_DIMS) if layer['type'] == 'L2Normalization': layer['name'] = 'broadcast_mul0' if layer['type'] == 'SoftmaxOutput': layer['name'] = 'cls_prob' if caffe_layer: logger.info("Converting {}".format(layer['type'])) caffe_graph[layer['name']] = caffe_layer else: logger.info("Skipping {}".format(layer['type'])) logger.info('Writing deploy protoxt file to {}.'.format(self.caffe_prototxt)) with open(self.caffe_prototxt, 'w') as caffe_file: caffe_file.write(str(caffe_graph.to_proto())) def __assign_weights(self): """Assign learnable network weights. Network hyper-parameters are assumed to be already set in a previous step. Raises: ValueError: Unknown batchnorm convention """ # Load caffe prototxt and set up caffe network self.caffe_net = caffe.Net(self.caffe_prototxt, caffe.TEST) layer_names = self.caffe_net._layer_names layers = self.caffe_net.layers layer_iter = caffe_parser.layer_iter(layers, layer_names) # Load mxnet model sym, arg_params, aux_params = mx.model.load_checkpoint( self.prefix, self.epoch) first_conv = True for layer_name, layer_type, layer_blobs in layer_iter: if layer_type == 'Normalize': assert len(layer_blobs) == 1 weight_name = [key for key in arg_params.keys() if key.endswith('_scale')][0] layer_blobs[0].data[:] = np.squeeze(arg_params[weight_name].asnumpy()) elif layer_type in ('Convolution', 'InnerProduct'): wmat_dim = list(layer_blobs[0].shape) weight_name = layer_name + "_weight" wmat = arg_params[weight_name].asnumpy().reshape(wmat_dim) channels = wmat_dim[1] if channels == 3 or channels == 4: # RGB or RGBA if first_conv: # Swapping RGB in mxnet into BGR of caffe wmat[:, [0, 2], :, :] = wmat[:, [2, 0], :, :] first_conv = False assert wmat.flags['C_CONTIGUOUS'] logger.info('Converting layer {0}, wmat shape = {1}.'.format( layer_name, wmat.shape)) if weight_name not in arg_params: raise ValueError(weight_name + ' not found in arg_params.') layer_blobs[0].data[:] = wmat if len(layer_blobs) == 2: bias_name = layer_name + "_bias" if bias_name not in arg_params: raise ValueError(bias_name + ' not found in arg_params.') bias = arg_params[bias_name].asnumpy() assert bias.flags['C_CONTIGUOUS'] layer_blobs[1].data[:] = np.squeeze(bias) logger.info(', bias shape = {}.'.format(bias.shape)) else: # Layers with no parameters logger.info('\tSkipping layer {} of type {}'.format( layer_name, layer_type)) assert len(layer_blobs) == 0 def convert(self): """ Converts mxnet model to caffe model. Reads through mxnet symbol definition json file and generates corresponding deploy.prototxt. Assigns weights from mxnet params file to .caffemodel file. """ self.__parse_network() self.__assign_weights() logger.info('Saving caffe model in {}'.format(self.caffe_weights)) self.caffe_net.save(self.caffe_weights) if __name__ == '__main__': # pragma: no cover parser = argparse.ArgumentParser() parser.add_argument("prefix", type=str, help="prefix of mxnet model") parser.add_argument("epoch", type=int, help="epoch number of mxnet model") parser.add_argument("caffe_prototxt", type=str, help="filename of caffe deploy prototxt") parser.add_argument("caffemodel_name", type=str, help="Name of caffe weights file to save") args = parser.parse_args() MxNetToCaffe(args.prefix, args.epoch, args.caffe_prototxt, args.caffemodel_name)
mxnet_to_caffe.py
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import argparse import caffe import constants import logging import mxnet as mx import numpy as np import os import sys from caffe import layers from create_caffe_layers import get_caffe_layer from parse_mxnet_symbol import MxnetParser sys.path.append('/incubator-mxnet/example/ssd/tools/caffe_converter') import caffe_parser # noqa FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() - %(levelname)-5s ] %(message)s" logging.basicConfig(format=FORMAT, level=logging.INFO) logger = logging.getLogger(__name__) INPUT_DIMS = constants.INPUT_DIMS class MxNetToCaffe(object): """Convert trained model from mxnet to caffe. Attributes: caffe_prototxt (str): filename of the caffe prototxt caffe_weights (str): filename of the caffe weights binary epoch (str): mxnet epoch number of model to read weights from net (caffe.net): caffe net object that is constructed prefix (str): prefix of mxnet model name """ def __init__(self, prefix, epoch, caffe_prototxt=None, caffe_weights=None): self.prefix = prefix self.epoch = epoch self.caffe_prototxt = caffe_prototxt if \ caffe_prototxt else 'caffe_models/deploy.prototxt' self.caffe_weights = caffe_weights if \ caffe_weights else '{}_{}.caffemodel'.format(prefix, epoch) if not os.path.isdir(os.path.dirname(self.caffe_prototxt)): os.makedirs(os.path.dirname(self.caffe_prototxt)) self.caffe_net = None self.convert() def __parse_network(self): """Parse mxnet network and generate corresponding caffe layers. """ # Create caffe network caffe_graph = caffe.NetSpec() caffe_graph.data = layers.Input( input_param={'shape': {'dim': [1, 3, INPUT_DIMS[0], INPUT_DIMS[1]]}}) # Assign layers from mxnet for layer in MxnetParser(self.prefix + '-symbol.json'): # Note: name needs to be specified explicitly to reconcile differences in mxnet and caffe norm ops. # In caffe norm includes a scaling parameter, in mxnet these are two consecutive ops. # So output of the caffe norm op needs to be named based on the scale op name in mxnet. caffe_layer = get_caffe_layer(layer, caffe_graph, input_dims=INPUT_DIMS) if layer['type'] == 'L2Normalization': layer['name'] = 'broadcast_mul0' if layer['type'] == 'SoftmaxOutput': layer['name'] = 'cls_prob' if caffe_layer: logger.info("Converting {}".format(layer['type'])) caffe_graph[layer['name']] = caffe_layer else: logger.info("Skipping {}".format(layer['type'])) logger.info('Writing deploy protoxt file to {}.'.format(self.caffe_prototxt)) with open(self.caffe_prototxt, 'w') as caffe_file: caffe_file.write(str(caffe_graph.to_proto())) def __assign_weights(self): """Assign learnable network weights. Network hyper-parameters are assumed to be already set in a previous step. Raises: ValueError: Unknown batchnorm convention """ # Load caffe prototxt and set up caffe network self.caffe_net = caffe.Net(self.caffe_prototxt, caffe.TEST) layer_names = self.caffe_net._layer_names layers = self.caffe_net.layers layer_iter = caffe_parser.layer_iter(layers, layer_names) # Load mxnet model sym, arg_params, aux_params = mx.model.load_checkpoint( self.prefix, self.epoch) first_conv = True for layer_name, layer_type, layer_blobs in layer_iter: if layer_type == 'Normalize': assert len(layer_blobs) == 1 weight_name = [key for key in arg_params.keys() if key.endswith('_scale')][0] layer_blobs[0].data[:] = np.squeeze(arg_params[weight_name].asnumpy()) elif layer_type in ('Convolution', 'InnerProduct'): wmat_dim = list(layer_blobs[0].shape) weight_name = layer_name + "_weight" wmat = arg_params[weight_name].asnumpy().reshape(wmat_dim) channels = wmat_dim[1] if channels == 3 or channels == 4: # RGB or RGBA if first_conv: # Swapping RGB in mxnet into BGR of caffe wmat[:, [0, 2], :, :] = wmat[:, [2, 0], :, :] first_conv = False assert wmat.flags['C_CONTIGUOUS'] logger.info('Converting layer {0}, wmat shape = {1}.'.format( layer_name, wmat.shape)) if weight_name not in arg_params: raise ValueError(weight_name + ' not found in arg_params.') layer_blobs[0].data[:] = wmat if len(layer_blobs) == 2: bias_name = layer_name + "_bias" if bias_name not in arg_params: raise ValueError(bias_name + ' not found in arg_params.') bias = arg_params[bias_name].asnumpy() assert bias.flags['C_CONTIGUOUS'] layer_blobs[1].data[:] = np.squeeze(bias) logger.info(', bias shape = {}.'.format(bias.shape)) else: # Layers with no parameters logger.info('\tSkipping layer {} of type {}'.format( layer_name, layer_type)) assert len(layer_blobs) == 0 def convert(self): """ Converts mxnet model to caffe model. Reads through mxnet symbol definition json file and generates corresponding deploy.prototxt. Assigns weights from mxnet params file to .caffemodel file. """ self.__parse_network() self.__assign_weights() logger.info('Saving caffe model in {}'.format(self.caffe_weights)) self.caffe_net.save(self.caffe_weights) if __name__ == '__main__': # pragma: no cover parser = argparse.ArgumentParser() parser.add_argument("prefix", type=str, help="prefix of mxnet model") parser.add_argument("epoch", type=int, help="epoch number of mxnet model") parser.add_argument("caffe_prototxt", type=str, help="filename of caffe deploy prototxt") parser.add_argument("caffemodel_name", type=str, help="Name of caffe weights file to save") args = parser.parse_args() MxNetToCaffe(args.prefix, args.epoch, args.caffe_prototxt, args.caffemodel_name)
0.794265
0.309963
import common import numpy as np data = common.read_file('2017/21/data.txt') lines = data.splitlines() repetitions = 5 # part 1 repetitions = 18 # part 2 def parse_rule(rule): segments = rule.split(' ') pattern_lines = segments[0].split('/') result_lines = segments[2].split('/') def interpret_characters(lines): return [ [1 if x == '#' else 0 for x in line] for line in lines ] pattern_lines = interpret_characters(pattern_lines) result_lines = interpret_characters(result_lines) return len(pattern_lines), np.array(pattern_lines), np.array(result_lines) all_rules = [parse_rule(x) for x in lines] def transform_rules(rules): for rule in rules: yield rule rot = np.rot90(rule[1]) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) flipped = np.fliplr(rule[1]) yield (rule[0], flipped, rule[2]) rot = np.rot90(flipped) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) all_rules = list(transform_rules(all_rules)) rules_2 = [x for x in all_rules if x[0] == 2] rules_3 = [x for x in all_rules if x[0] == 3] def eq(w1: np.ndarray, w2: np.ndarray): return (w1 == w2).all() board = np.array([[0, 1, 0], [0, 0, 1], [1, 1, 1]]) for i in range(repetitions): print(i) side = 2 if (len(board) % 2) == 0 else 3 rules = rules_2 if side == 2 else rules_3 new_side = side + 1 new_len = len(board) + int(len(board) / side) result = np.zeros((new_len, new_len)) for y in range(0, int(len(board) / side)): for x in range(0, int(len(board) / side)): _y = y * side _x = x * side __y = y * new_side __x = x * new_side slc = board[_y:_y + side, _x:_x + side] # NOTE: this is kinda slow, bot got me the result in under 5min, so I'm leaving it for r in rules: if eq(r[1], slc): result[__y:__y + new_side, __x:__x + new_side] = r[2] break board = result print(np.count_nonzero(board))
2017/21/solution.py
import common import numpy as np data = common.read_file('2017/21/data.txt') lines = data.splitlines() repetitions = 5 # part 1 repetitions = 18 # part 2 def parse_rule(rule): segments = rule.split(' ') pattern_lines = segments[0].split('/') result_lines = segments[2].split('/') def interpret_characters(lines): return [ [1 if x == '#' else 0 for x in line] for line in lines ] pattern_lines = interpret_characters(pattern_lines) result_lines = interpret_characters(result_lines) return len(pattern_lines), np.array(pattern_lines), np.array(result_lines) all_rules = [parse_rule(x) for x in lines] def transform_rules(rules): for rule in rules: yield rule rot = np.rot90(rule[1]) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) flipped = np.fliplr(rule[1]) yield (rule[0], flipped, rule[2]) rot = np.rot90(flipped) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) rot = np.rot90(rot) yield (rule[0], rot, rule[2]) all_rules = list(transform_rules(all_rules)) rules_2 = [x for x in all_rules if x[0] == 2] rules_3 = [x for x in all_rules if x[0] == 3] def eq(w1: np.ndarray, w2: np.ndarray): return (w1 == w2).all() board = np.array([[0, 1, 0], [0, 0, 1], [1, 1, 1]]) for i in range(repetitions): print(i) side = 2 if (len(board) % 2) == 0 else 3 rules = rules_2 if side == 2 else rules_3 new_side = side + 1 new_len = len(board) + int(len(board) / side) result = np.zeros((new_len, new_len)) for y in range(0, int(len(board) / side)): for x in range(0, int(len(board) / side)): _y = y * side _x = x * side __y = y * new_side __x = x * new_side slc = board[_y:_y + side, _x:_x + side] # NOTE: this is kinda slow, bot got me the result in under 5min, so I'm leaving it for r in rules: if eq(r[1], slc): result[__y:__y + new_side, __x:__x + new_side] = r[2] break board = result print(np.count_nonzero(board))
0.272702
0.458652
import asyncio from asyncio import Future, PriorityQueue from typing import (AsyncIterable, Awaitable, Deque, Dict, Iterable, List, Optional, Set, Tuple, Union) from collections import deque from time import monotonic import anyio from asyncio_rlock import RLock from asyncio_throttle import Throttler from async_timeout import timeout as timeout_ from ircstates import Emit, Channel, ChannelUser from ircstates.numerics import * from ircstates.server import ServerDisconnectedException from ircstates.names import Name from irctokens import build, Line, tokenise from .ircv3 import (CAPContext, sts_transmute, CAP_ECHO, CAP_SASL, CAP_LABEL, LABEL_TAG_MAP, resume_transmute) from .sasl import SASLContext, SASLResult from .matching import (ResponseOr, Responses, Response, ANY, SELF, MASK_SELF, Folded) from .asyncs import MaybeAwait, WaitFor from .struct import Whois from .params import ConnectionParams, SASLParams, STSPolicy, ResumePolicy from .interface import (IBot, ICapability, IServer, SentLine, SendPriority, IMatchResponse) from .interface import ITCPTransport, ITCPReader, ITCPWriter THROTTLE_RATE = 4 # lines THROTTLE_TIME = 2 # seconds PING_TIMEOUT = 60 # seconds WAIT_TIMEOUT = 20 # seconds JOIN_ERR_FIRST = [ ERR_NOSUCHCHANNEL, ERR_BADCHANNAME, ERR_UNAVAILRESOURCE, ERR_TOOMANYCHANNELS, ERR_BANNEDFROMCHAN, ERR_INVITEONLYCHAN, ERR_BADCHANNELKEY, ERR_NEEDREGGEDNICK, ERR_THROTTLE ] class Server(IServer): _reader: ITCPReader _writer: ITCPWriter params: ConnectionParams def __init__(self, bot: IBot, name: str): super().__init__(name) self.bot = bot self.disconnected = False self.throttle = Throttler(rate_limit=100, period=1) self.sasl_state = SASLResult.NONE self.last_read = monotonic() self._sent_count: int = 0 self._send_queue: PriorityQueue[SentLine] = PriorityQueue() self.desired_caps: Set[ICapability] = set([]) self._read_queue: Deque[Line] = deque() self._process_queue: Deque[Tuple[Line, Optional[Emit]]] = deque() self._ping_sent = False self._read_lguard = RLock() self.read_lock = self._read_lguard self._read_lwork = asyncio.Lock() self._wait_for = asyncio.Event() self._pending_who: Deque[str] = deque() self._alt_nicks: List[str] = [] def hostmask(self) -> str: hostmask = self.nickname if not self.username is None: hostmask += f"!{self.username}" if not self.hostname is None: hostmask += f"@{self.hostname}" return hostmask def send_raw(self, line: str, priority=SendPriority.DEFAULT ) -> Awaitable[SentLine]: return self.send(tokenise(line), priority) def send(self, line: Line, priority=SendPriority.DEFAULT ) -> Awaitable[SentLine]: self.line_presend(line) sent_line = SentLine(self._sent_count, priority, line) self._sent_count += 1 label = self.cap_available(CAP_LABEL) if not label is None: tag = LABEL_TAG_MAP[label] if line.tags is None or not tag in line.tags: if line.tags is None: line.tags = {} line.tags[tag] = str(sent_line.id) self._send_queue.put_nowait(sent_line) return sent_line.future def set_throttle(self, rate: int, time: float): self.throttle.rate_limit = rate self.throttle.period = time def server_address(self) -> Tuple[str, int]: return self._writer.get_peer() async def connect(self, transport: ITCPTransport, params: ConnectionParams): await sts_transmute(params) await resume_transmute(params) reader, writer = await transport.connect( params.host, params.port, tls =params.tls, bindhost =params.bindhost) self._reader = reader self._writer = writer self.params = params await self.handshake() async def disconnect(self): if not self._writer is None: await self._writer.close() self._writer = None self._read_queue.clear() async def handshake(self): nickname = self.params.nickname username = self.params.username or nickname realname = self.params.realname or nickname alt_nicks = self.params.alt_nicknames if not alt_nicks: alt_nicks = [nickname+"_"*i for i in range(1, 4)] self._alt_nicks = alt_nicks # these must remain non-awaited; reading hasn't started yet if not self.params.password is None: self.send(build("PASS", [self.params.password])) self.send(build("CAP", ["LS", "302"])) self.send(build("NICK", [nickname])) self.send(build("USER", [username, "0", "*", realname])) # to be overridden def line_preread(self, line: Line): pass def line_presend(self, line: Line): pass async def line_read(self, line: Line): pass async def line_send(self, line: Line): pass async def sts_policy(self, sts: STSPolicy): pass async def resume_policy(self, resume: ResumePolicy): pass # /to be overriden async def _on_read(self, line: Line, emit: Optional[Emit]): if line.command == "PING": await self.send(build("PONG", line.params)) elif line.command == RPL_ENDOFWHO: chan = self.casefold(line.params[1]) if (self._pending_who and self._pending_who[0] == chan): self._pending_who.popleft() await self._next_who() elif (line.command in { ERR_NICKNAMEINUSE, ERR_ERRONEUSNICKNAME, ERR_UNAVAILRESOURCE } and not self.registered): if self._alt_nicks: nick = self._alt_nicks.pop(0) await self.send(build("NICK", [nick])) else: await self.send(build("QUIT")) elif line.command in [RPL_ENDOFMOTD, ERR_NOMOTD]: # we didn't get the nickname we wanted. watch for it if we can if not self.nickname == self.params.nickname: target = self.params.nickname if self.isupport.monitor is not None: await self.send(build("MONITOR", ["+", target])) elif self.isupport.watch is not None: await self.send(build("WATCH", [f"+{target}"])) # has someone just stopped using the nickname we want? elif line.command == RPL_LOGOFF: await self._check_regain([line.params[1]]) elif line.command == RPL_MONOFFLINE: await self._check_regain(line.params[1].split(",")) elif (line.command in ["NICK", "QUIT"] and line.source is not None): await self._check_regain([line.hostmask.nickname]) elif emit is not None: if emit.command == RPL_WELCOME: await self.send(build("WHO", [self.nickname])) self.set_throttle(THROTTLE_RATE, THROTTLE_TIME) if self.params.autojoin: await self._batch_joins(self.params.autojoin) elif emit.command == "CAP": if emit.subcommand == "NEW": await self._cap_ls(emit) elif (emit.subcommand == "LS" and emit.finished): if not self.registered: await CAPContext(self).handshake() else: await self._cap_ls(emit) elif emit.command == "JOIN": if emit.self and not emit.channel is None: chan = emit.channel.name_lower await self.send(build("MODE", [chan])) modes = "".join(self.isupport.chanmodes.a_modes) await self.send(build("MODE", [chan, f"+{modes}"])) self._pending_who.append(chan) if len(self._pending_who) == 1: await self._next_who() await self.line_read(line) async def _check_regain(self, nicks: List[str]): for nick in nicks: if (self.casefold_equals(nick, self.params.nickname) and not self.nickname == self.params.nickname): await self.send(build("NICK", [self.params.nickname])) async def _batch_joins(self, channels: List[str], batch_n: int=10): #TODO: do as many JOINs in one line as we can fit #TODO: channel keys for i in range(0, len(channels), batch_n): batch = channels[i:i+batch_n] await self.send(build("JOIN", [",".join(batch)])) async def _next_who(self): if self._pending_who: chan = self._pending_who[0] if self.isupport.whox: await self.send(self.prepare_whox(chan)) else: await self.send(build("WHO", [chan])) async def _read_line(self, timeout: float) -> Optional[Line]: while True: if self._read_queue: return self._read_queue.popleft() try: async with timeout_(timeout): data = await self._reader.read(1024) except asyncio.TimeoutError: return None self.last_read = monotonic() lines = self.recv(data) for line in lines: self.line_preread(line) self._read_queue.append(line) async def _read_lines(self): while True: async with self._read_lguard: pass if not self._process_queue: async with self._read_lwork: read_aw = self._read_line(PING_TIMEOUT) dones, notdones = await asyncio.wait( [read_aw, self._wait_for.wait()], return_when=asyncio.FIRST_COMPLETED ) self._wait_for.clear() for done in dones: if isinstance(done.result(), Line): self._ping_sent = False line = done.result() emit = self.parse_tokens(line) self._process_queue.append((line, emit)) elif done.result() is None: if not self._ping_sent: await self.send(build("PING", ["hello"])) self._ping_sent = True else: await self.disconnect() raise ServerDisconnectedException() for notdone in notdones: notdone.cancel() else: line, emit = self._process_queue.popleft() await self._on_read(line, emit) async def wait_for(self, response: Union[IMatchResponse, Set[IMatchResponse]], sent_aw: Optional[Awaitable[SentLine]]=None, timeout: float=WAIT_TIMEOUT ) -> Line: response_obj: IMatchResponse if isinstance(response, set): response_obj = ResponseOr(*response) else: response_obj = response async with self._read_lguard: self._wait_for.set() async with self._read_lwork: async with timeout_(timeout): while True: line = await self._read_line(timeout) if line: self._ping_sent = False emit = self.parse_tokens(line) self._process_queue.append((line, emit)) if response_obj.match(self, line): return line async def _on_send_line(self, line: Line): if (line.command in ["PRIVMSG", "NOTICE", "TAGMSG"] and not self.cap_agreed(CAP_ECHO)): new_line = line.with_source(self.hostmask()) self._read_queue.append(new_line) async def _send_lines(self): while True: lines: List[SentLine] = [] while (not lines or (len(lines) < 5 and self._send_queue.qsize() > 0)): prio_line = await self._send_queue.get() lines.append(prio_line) for line in lines: async with self.throttle: self._writer.write( f"{line.line.format()}\r\n".encode("utf8")) await self._writer.drain() for line in lines: await self._on_send_line(line.line) await self.line_send(line.line) line.future.set_result(line) # CAP-related def cap_agreed(self, capability: ICapability) -> bool: return bool(self.cap_available(capability)) def cap_available(self, capability: ICapability) -> Optional[str]: return capability.available(self.agreed_caps) async def _cap_ls(self, emit: Emit): if not emit.tokens is None: tokens: Dict[str, str] = {} for token in emit.tokens: key, _, value = token.partition("=") tokens[key] = value await CAPContext(self).on_ls(tokens) async def sasl_auth(self, params: SASLParams) -> bool: if (self.sasl_state == SASLResult.NONE and self.cap_agreed(CAP_SASL)): res = await SASLContext(self).from_params(params) self.sasl_state = res return True else: return False # /CAP-related def send_nick(self, new_nick: str) -> Awaitable[bool]: fut = self.send(build("NICK", [new_nick])) async def _assure() -> bool: line = await self.wait_for({ Response("NICK", [Folded(new_nick)], source=MASK_SELF), Responses([ ERR_BANNICKCHANGE, ERR_NICKTOOFAST, ERR_CANTCHANGENICK ], [ANY]), Responses([ ERR_NICKNAMEINUSE, ERR_ERRONEUSNICKNAME, ERR_UNAVAILRESOURCE ], [ANY, Folded(new_nick)]) }, fut) return line.command == "NICK" return MaybeAwait(_assure) def send_join(self, name: str, key: Optional[str]=None ) -> Awaitable[Channel]: fut = self.send_joins([name], [] if key is None else [key]) async def _assure(): channels = await fut return channels[0] return MaybeAwait(_assure) def send_part(self, name: str): fut = self.send(build("PART", [name])) async def _assure(): line = await self.wait_for( Response("PART", [Folded(name)], source=MASK_SELF), fut ) return return MaybeAwait(_assure) def send_joins(self, names: List[str], keys: List[str]=[] ) -> Awaitable[List[Channel]]: folded_names = [self.casefold(name) for name in names] if not keys: fut = self.send(build("JOIN", [",".join(names)])) else: fut = self.send(build("JOIN", [",".join(names)]+keys)) async def _assure(): channels: List[Channel] = [] while folded_names: line = await self.wait_for({ Response(RPL_CHANNELMODEIS, [ANY, ANY]), Responses(JOIN_ERR_FIRST, [ANY, ANY]), Response(ERR_USERONCHANNEL, [ANY, SELF, ANY]), Response(ERR_LINKCHANNEL, [ANY, ANY, ANY]) }, fut) chan: Optional[str] = None if line.command == RPL_CHANNELMODEIS: chan = line.params[1] elif line.command in JOIN_ERR_FIRST: chan = line.params[1] elif line.command == ERR_USERONCHANNEL: chan = line.params[2] elif line.command == ERR_LINKCHANNEL: #XXX i dont like this chan = line.params[2] await self.wait_for( Response(RPL_CHANNELMODEIS, [ANY, Folded(chan)]) ) channels.append(self.channels[self.casefold(chan)]) continue if chan is not None: folded = self.casefold(chan) if folded in folded_names: folded_names.remove(folded) channels.append(self.channels[folded]) return channels return MaybeAwait(_assure) def send_message(self, target: str, message: str ) -> Awaitable[Optional[str]]: fut = self.send(build("PRIVMSG", [target, message])) async def _assure(): line = await self.wait_for( Response("PRIVMSG", [Folded(target), ANY], source=MASK_SELF), fut ) if line.command == "PRIVMSG": return line.params[1] else: return None return MaybeAwait(_assure) def send_whois(self, target: str, remote: bool=False ) -> Awaitable[Optional[Whois]]: args = [target] if remote: args.append(target) fut = self.send(build("WHOIS", args)) async def _assure() -> Optional[Whois]: folded = self.casefold(target) params = [ANY, Folded(folded)] obj = Whois() while True: line = await self.wait_for(Responses([ ERR_NOSUCHNICK, ERR_NOSUCHSERVER, RPL_WHOISUSER, RPL_WHOISSERVER, RPL_WHOISOPERATOR, RPL_WHOISIDLE, RPL_WHOISCHANNELS, RPL_WHOISHOST, RPL_WHOISACCOUNT, RPL_WHOISSECURE, RPL_ENDOFWHOIS ], params), fut) if line.command in [ERR_NOSUCHNICK, ERR_NOSUCHSERVER]: return None elif line.command == RPL_WHOISUSER: nick, user, host, _, real = line.params[1:] obj.nickname = nick obj.username = user obj.hostname = host obj.realname = real elif line.command == RPL_WHOISIDLE: idle, signon, _ = line.params[2:] obj.idle = int(idle) obj.signon = int(signon) elif line.command == RPL_WHOISACCOUNT: obj.account = line.params[2] elif line.command == RPL_WHOISCHANNELS: channels = list(filter(bool, line.params[2].split(" "))) if obj.channels is None: obj.channels = [] for i, channel in enumerate(channels): symbols = "" while channel[0] in self.isupport.prefix.prefixes: symbols += channel[0] channel = channel[1:] channel_user = ChannelUser( Name(obj.nickname, folded), Name(channel, self.casefold(channel)) ) for symbol in symbols: mode = self.isupport.prefix.from_prefix(symbol) if mode is not None: channel_user.modes.add(mode) obj.channels.append(channel_user) elif line.command == RPL_ENDOFWHOIS: return obj return MaybeAwait(_assure)
ircrobots/server.py
import asyncio from asyncio import Future, PriorityQueue from typing import (AsyncIterable, Awaitable, Deque, Dict, Iterable, List, Optional, Set, Tuple, Union) from collections import deque from time import monotonic import anyio from asyncio_rlock import RLock from asyncio_throttle import Throttler from async_timeout import timeout as timeout_ from ircstates import Emit, Channel, ChannelUser from ircstates.numerics import * from ircstates.server import ServerDisconnectedException from ircstates.names import Name from irctokens import build, Line, tokenise from .ircv3 import (CAPContext, sts_transmute, CAP_ECHO, CAP_SASL, CAP_LABEL, LABEL_TAG_MAP, resume_transmute) from .sasl import SASLContext, SASLResult from .matching import (ResponseOr, Responses, Response, ANY, SELF, MASK_SELF, Folded) from .asyncs import MaybeAwait, WaitFor from .struct import Whois from .params import ConnectionParams, SASLParams, STSPolicy, ResumePolicy from .interface import (IBot, ICapability, IServer, SentLine, SendPriority, IMatchResponse) from .interface import ITCPTransport, ITCPReader, ITCPWriter THROTTLE_RATE = 4 # lines THROTTLE_TIME = 2 # seconds PING_TIMEOUT = 60 # seconds WAIT_TIMEOUT = 20 # seconds JOIN_ERR_FIRST = [ ERR_NOSUCHCHANNEL, ERR_BADCHANNAME, ERR_UNAVAILRESOURCE, ERR_TOOMANYCHANNELS, ERR_BANNEDFROMCHAN, ERR_INVITEONLYCHAN, ERR_BADCHANNELKEY, ERR_NEEDREGGEDNICK, ERR_THROTTLE ] class Server(IServer): _reader: ITCPReader _writer: ITCPWriter params: ConnectionParams def __init__(self, bot: IBot, name: str): super().__init__(name) self.bot = bot self.disconnected = False self.throttle = Throttler(rate_limit=100, period=1) self.sasl_state = SASLResult.NONE self.last_read = monotonic() self._sent_count: int = 0 self._send_queue: PriorityQueue[SentLine] = PriorityQueue() self.desired_caps: Set[ICapability] = set([]) self._read_queue: Deque[Line] = deque() self._process_queue: Deque[Tuple[Line, Optional[Emit]]] = deque() self._ping_sent = False self._read_lguard = RLock() self.read_lock = self._read_lguard self._read_lwork = asyncio.Lock() self._wait_for = asyncio.Event() self._pending_who: Deque[str] = deque() self._alt_nicks: List[str] = [] def hostmask(self) -> str: hostmask = self.nickname if not self.username is None: hostmask += f"!{self.username}" if not self.hostname is None: hostmask += f"@{self.hostname}" return hostmask def send_raw(self, line: str, priority=SendPriority.DEFAULT ) -> Awaitable[SentLine]: return self.send(tokenise(line), priority) def send(self, line: Line, priority=SendPriority.DEFAULT ) -> Awaitable[SentLine]: self.line_presend(line) sent_line = SentLine(self._sent_count, priority, line) self._sent_count += 1 label = self.cap_available(CAP_LABEL) if not label is None: tag = LABEL_TAG_MAP[label] if line.tags is None or not tag in line.tags: if line.tags is None: line.tags = {} line.tags[tag] = str(sent_line.id) self._send_queue.put_nowait(sent_line) return sent_line.future def set_throttle(self, rate: int, time: float): self.throttle.rate_limit = rate self.throttle.period = time def server_address(self) -> Tuple[str, int]: return self._writer.get_peer() async def connect(self, transport: ITCPTransport, params: ConnectionParams): await sts_transmute(params) await resume_transmute(params) reader, writer = await transport.connect( params.host, params.port, tls =params.tls, bindhost =params.bindhost) self._reader = reader self._writer = writer self.params = params await self.handshake() async def disconnect(self): if not self._writer is None: await self._writer.close() self._writer = None self._read_queue.clear() async def handshake(self): nickname = self.params.nickname username = self.params.username or nickname realname = self.params.realname or nickname alt_nicks = self.params.alt_nicknames if not alt_nicks: alt_nicks = [nickname+"_"*i for i in range(1, 4)] self._alt_nicks = alt_nicks # these must remain non-awaited; reading hasn't started yet if not self.params.password is None: self.send(build("PASS", [self.params.password])) self.send(build("CAP", ["LS", "302"])) self.send(build("NICK", [nickname])) self.send(build("USER", [username, "0", "*", realname])) # to be overridden def line_preread(self, line: Line): pass def line_presend(self, line: Line): pass async def line_read(self, line: Line): pass async def line_send(self, line: Line): pass async def sts_policy(self, sts: STSPolicy): pass async def resume_policy(self, resume: ResumePolicy): pass # /to be overriden async def _on_read(self, line: Line, emit: Optional[Emit]): if line.command == "PING": await self.send(build("PONG", line.params)) elif line.command == RPL_ENDOFWHO: chan = self.casefold(line.params[1]) if (self._pending_who and self._pending_who[0] == chan): self._pending_who.popleft() await self._next_who() elif (line.command in { ERR_NICKNAMEINUSE, ERR_ERRONEUSNICKNAME, ERR_UNAVAILRESOURCE } and not self.registered): if self._alt_nicks: nick = self._alt_nicks.pop(0) await self.send(build("NICK", [nick])) else: await self.send(build("QUIT")) elif line.command in [RPL_ENDOFMOTD, ERR_NOMOTD]: # we didn't get the nickname we wanted. watch for it if we can if not self.nickname == self.params.nickname: target = self.params.nickname if self.isupport.monitor is not None: await self.send(build("MONITOR", ["+", target])) elif self.isupport.watch is not None: await self.send(build("WATCH", [f"+{target}"])) # has someone just stopped using the nickname we want? elif line.command == RPL_LOGOFF: await self._check_regain([line.params[1]]) elif line.command == RPL_MONOFFLINE: await self._check_regain(line.params[1].split(",")) elif (line.command in ["NICK", "QUIT"] and line.source is not None): await self._check_regain([line.hostmask.nickname]) elif emit is not None: if emit.command == RPL_WELCOME: await self.send(build("WHO", [self.nickname])) self.set_throttle(THROTTLE_RATE, THROTTLE_TIME) if self.params.autojoin: await self._batch_joins(self.params.autojoin) elif emit.command == "CAP": if emit.subcommand == "NEW": await self._cap_ls(emit) elif (emit.subcommand == "LS" and emit.finished): if not self.registered: await CAPContext(self).handshake() else: await self._cap_ls(emit) elif emit.command == "JOIN": if emit.self and not emit.channel is None: chan = emit.channel.name_lower await self.send(build("MODE", [chan])) modes = "".join(self.isupport.chanmodes.a_modes) await self.send(build("MODE", [chan, f"+{modes}"])) self._pending_who.append(chan) if len(self._pending_who) == 1: await self._next_who() await self.line_read(line) async def _check_regain(self, nicks: List[str]): for nick in nicks: if (self.casefold_equals(nick, self.params.nickname) and not self.nickname == self.params.nickname): await self.send(build("NICK", [self.params.nickname])) async def _batch_joins(self, channels: List[str], batch_n: int=10): #TODO: do as many JOINs in one line as we can fit #TODO: channel keys for i in range(0, len(channels), batch_n): batch = channels[i:i+batch_n] await self.send(build("JOIN", [",".join(batch)])) async def _next_who(self): if self._pending_who: chan = self._pending_who[0] if self.isupport.whox: await self.send(self.prepare_whox(chan)) else: await self.send(build("WHO", [chan])) async def _read_line(self, timeout: float) -> Optional[Line]: while True: if self._read_queue: return self._read_queue.popleft() try: async with timeout_(timeout): data = await self._reader.read(1024) except asyncio.TimeoutError: return None self.last_read = monotonic() lines = self.recv(data) for line in lines: self.line_preread(line) self._read_queue.append(line) async def _read_lines(self): while True: async with self._read_lguard: pass if not self._process_queue: async with self._read_lwork: read_aw = self._read_line(PING_TIMEOUT) dones, notdones = await asyncio.wait( [read_aw, self._wait_for.wait()], return_when=asyncio.FIRST_COMPLETED ) self._wait_for.clear() for done in dones: if isinstance(done.result(), Line): self._ping_sent = False line = done.result() emit = self.parse_tokens(line) self._process_queue.append((line, emit)) elif done.result() is None: if not self._ping_sent: await self.send(build("PING", ["hello"])) self._ping_sent = True else: await self.disconnect() raise ServerDisconnectedException() for notdone in notdones: notdone.cancel() else: line, emit = self._process_queue.popleft() await self._on_read(line, emit) async def wait_for(self, response: Union[IMatchResponse, Set[IMatchResponse]], sent_aw: Optional[Awaitable[SentLine]]=None, timeout: float=WAIT_TIMEOUT ) -> Line: response_obj: IMatchResponse if isinstance(response, set): response_obj = ResponseOr(*response) else: response_obj = response async with self._read_lguard: self._wait_for.set() async with self._read_lwork: async with timeout_(timeout): while True: line = await self._read_line(timeout) if line: self._ping_sent = False emit = self.parse_tokens(line) self._process_queue.append((line, emit)) if response_obj.match(self, line): return line async def _on_send_line(self, line: Line): if (line.command in ["PRIVMSG", "NOTICE", "TAGMSG"] and not self.cap_agreed(CAP_ECHO)): new_line = line.with_source(self.hostmask()) self._read_queue.append(new_line) async def _send_lines(self): while True: lines: List[SentLine] = [] while (not lines or (len(lines) < 5 and self._send_queue.qsize() > 0)): prio_line = await self._send_queue.get() lines.append(prio_line) for line in lines: async with self.throttle: self._writer.write( f"{line.line.format()}\r\n".encode("utf8")) await self._writer.drain() for line in lines: await self._on_send_line(line.line) await self.line_send(line.line) line.future.set_result(line) # CAP-related def cap_agreed(self, capability: ICapability) -> bool: return bool(self.cap_available(capability)) def cap_available(self, capability: ICapability) -> Optional[str]: return capability.available(self.agreed_caps) async def _cap_ls(self, emit: Emit): if not emit.tokens is None: tokens: Dict[str, str] = {} for token in emit.tokens: key, _, value = token.partition("=") tokens[key] = value await CAPContext(self).on_ls(tokens) async def sasl_auth(self, params: SASLParams) -> bool: if (self.sasl_state == SASLResult.NONE and self.cap_agreed(CAP_SASL)): res = await SASLContext(self).from_params(params) self.sasl_state = res return True else: return False # /CAP-related def send_nick(self, new_nick: str) -> Awaitable[bool]: fut = self.send(build("NICK", [new_nick])) async def _assure() -> bool: line = await self.wait_for({ Response("NICK", [Folded(new_nick)], source=MASK_SELF), Responses([ ERR_BANNICKCHANGE, ERR_NICKTOOFAST, ERR_CANTCHANGENICK ], [ANY]), Responses([ ERR_NICKNAMEINUSE, ERR_ERRONEUSNICKNAME, ERR_UNAVAILRESOURCE ], [ANY, Folded(new_nick)]) }, fut) return line.command == "NICK" return MaybeAwait(_assure) def send_join(self, name: str, key: Optional[str]=None ) -> Awaitable[Channel]: fut = self.send_joins([name], [] if key is None else [key]) async def _assure(): channels = await fut return channels[0] return MaybeAwait(_assure) def send_part(self, name: str): fut = self.send(build("PART", [name])) async def _assure(): line = await self.wait_for( Response("PART", [Folded(name)], source=MASK_SELF), fut ) return return MaybeAwait(_assure) def send_joins(self, names: List[str], keys: List[str]=[] ) -> Awaitable[List[Channel]]: folded_names = [self.casefold(name) for name in names] if not keys: fut = self.send(build("JOIN", [",".join(names)])) else: fut = self.send(build("JOIN", [",".join(names)]+keys)) async def _assure(): channels: List[Channel] = [] while folded_names: line = await self.wait_for({ Response(RPL_CHANNELMODEIS, [ANY, ANY]), Responses(JOIN_ERR_FIRST, [ANY, ANY]), Response(ERR_USERONCHANNEL, [ANY, SELF, ANY]), Response(ERR_LINKCHANNEL, [ANY, ANY, ANY]) }, fut) chan: Optional[str] = None if line.command == RPL_CHANNELMODEIS: chan = line.params[1] elif line.command in JOIN_ERR_FIRST: chan = line.params[1] elif line.command == ERR_USERONCHANNEL: chan = line.params[2] elif line.command == ERR_LINKCHANNEL: #XXX i dont like this chan = line.params[2] await self.wait_for( Response(RPL_CHANNELMODEIS, [ANY, Folded(chan)]) ) channels.append(self.channels[self.casefold(chan)]) continue if chan is not None: folded = self.casefold(chan) if folded in folded_names: folded_names.remove(folded) channels.append(self.channels[folded]) return channels return MaybeAwait(_assure) def send_message(self, target: str, message: str ) -> Awaitable[Optional[str]]: fut = self.send(build("PRIVMSG", [target, message])) async def _assure(): line = await self.wait_for( Response("PRIVMSG", [Folded(target), ANY], source=MASK_SELF), fut ) if line.command == "PRIVMSG": return line.params[1] else: return None return MaybeAwait(_assure) def send_whois(self, target: str, remote: bool=False ) -> Awaitable[Optional[Whois]]: args = [target] if remote: args.append(target) fut = self.send(build("WHOIS", args)) async def _assure() -> Optional[Whois]: folded = self.casefold(target) params = [ANY, Folded(folded)] obj = Whois() while True: line = await self.wait_for(Responses([ ERR_NOSUCHNICK, ERR_NOSUCHSERVER, RPL_WHOISUSER, RPL_WHOISSERVER, RPL_WHOISOPERATOR, RPL_WHOISIDLE, RPL_WHOISCHANNELS, RPL_WHOISHOST, RPL_WHOISACCOUNT, RPL_WHOISSECURE, RPL_ENDOFWHOIS ], params), fut) if line.command in [ERR_NOSUCHNICK, ERR_NOSUCHSERVER]: return None elif line.command == RPL_WHOISUSER: nick, user, host, _, real = line.params[1:] obj.nickname = nick obj.username = user obj.hostname = host obj.realname = real elif line.command == RPL_WHOISIDLE: idle, signon, _ = line.params[2:] obj.idle = int(idle) obj.signon = int(signon) elif line.command == RPL_WHOISACCOUNT: obj.account = line.params[2] elif line.command == RPL_WHOISCHANNELS: channels = list(filter(bool, line.params[2].split(" "))) if obj.channels is None: obj.channels = [] for i, channel in enumerate(channels): symbols = "" while channel[0] in self.isupport.prefix.prefixes: symbols += channel[0] channel = channel[1:] channel_user = ChannelUser( Name(obj.nickname, folded), Name(channel, self.casefold(channel)) ) for symbol in symbols: mode = self.isupport.prefix.from_prefix(symbol) if mode is not None: channel_user.modes.add(mode) obj.channels.append(channel_user) elif line.command == RPL_ENDOFWHOIS: return obj return MaybeAwait(_assure)
0.550728
0.075687
import os from typing import Optional from .imagelist import ImageList from ._util import download as download_data, check_exits class COCO70(ImageList): """COCO-70 dataset is a large-scale classification dataset (1000 images per class) created from `COCO <https://cocodataset.org/>`_ Dataset. It is used to explore the effect of fine-tuning with a large amount of data. Args: root (str): Root directory of dataset split (str, optional): The dataset split, supports ``train``, or ``test``. sample_rate (int): The sampling rates to sample random ``training`` images for each category. Choices include 100, 50, 30, 15. Default: 100. download (bool, optional): If true, downloads the dataset from the internet and puts it \ in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a \ transformed version. E.g, :class:`torchvision.transforms.RandomCrop`. target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: In `root`, there will exist following files after downloading. :: train/ test/ image_list/ train_100.txt train_50.txt train_30.txt train_15.txt test.txt """ download_list = [ ("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/d2ffb62fe3d140f1a73c/?dl=1"), ("train", "train.tgz", "https://cloud.tsinghua.edu.cn/f/e0dc4368342948c5bb2a/?dl=1"), ("test", "test.tgz", "https://cloud.tsinghua.edu.cn/f/59393a55c818429fb8d1/?dl=1"), ] image_list = { "train": "image_list/train_100.txt", "train100": "image_list/train_100.txt", "train50": "image_list/train_50.txt", "train30": "image_list/train_30.txt", "train15": "image_list/train_15.txt", "test": "image_list/test.txt", "test100": "image_list/test.txt", } CLASSES =['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'skis', 'kite', 'baseball_bat', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'teddy_bear'] def __init__(self, root: str, split: str, sample_rate: Optional[int] =100, download: Optional[bool] = False, **kwargs): if split == 'train': list_name = 'train' + str(sample_rate) assert list_name in self.image_list data_list_file = os.path.join(root, self.image_list[list_name]) else: data_list_file = os.path.join(root, self.image_list['test']) if download: list(map(lambda args: download_data(root, *args), self.download_list)) else: list(map(lambda file_name, _: check_exits(root, file_name), self.download_list)) super(COCO70, self).__init__(root, COCO70.CLASSES, data_list_file=data_list_file, **kwargs)
common/vision/datasets/coco70.py
import os from typing import Optional from .imagelist import ImageList from ._util import download as download_data, check_exits class COCO70(ImageList): """COCO-70 dataset is a large-scale classification dataset (1000 images per class) created from `COCO <https://cocodataset.org/>`_ Dataset. It is used to explore the effect of fine-tuning with a large amount of data. Args: root (str): Root directory of dataset split (str, optional): The dataset split, supports ``train``, or ``test``. sample_rate (int): The sampling rates to sample random ``training`` images for each category. Choices include 100, 50, 30, 15. Default: 100. download (bool, optional): If true, downloads the dataset from the internet and puts it \ in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a \ transformed version. E.g, :class:`torchvision.transforms.RandomCrop`. target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: In `root`, there will exist following files after downloading. :: train/ test/ image_list/ train_100.txt train_50.txt train_30.txt train_15.txt test.txt """ download_list = [ ("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/d2ffb62fe3d140f1a73c/?dl=1"), ("train", "train.tgz", "https://cloud.tsinghua.edu.cn/f/e0dc4368342948c5bb2a/?dl=1"), ("test", "test.tgz", "https://cloud.tsinghua.edu.cn/f/59393a55c818429fb8d1/?dl=1"), ] image_list = { "train": "image_list/train_100.txt", "train100": "image_list/train_100.txt", "train50": "image_list/train_50.txt", "train30": "image_list/train_30.txt", "train15": "image_list/train_15.txt", "test": "image_list/test.txt", "test100": "image_list/test.txt", } CLASSES =['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'skis', 'kite', 'baseball_bat', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'teddy_bear'] def __init__(self, root: str, split: str, sample_rate: Optional[int] =100, download: Optional[bool] = False, **kwargs): if split == 'train': list_name = 'train' + str(sample_rate) assert list_name in self.image_list data_list_file = os.path.join(root, self.image_list[list_name]) else: data_list_file = os.path.join(root, self.image_list['test']) if download: list(map(lambda args: download_data(root, *args), self.download_list)) else: list(map(lambda file_name, _: check_exits(root, file_name), self.download_list)) super(COCO70, self).__init__(root, COCO70.CLASSES, data_list_file=data_list_file, **kwargs)
0.822653
0.459986
import pandas from bitstring import ReadError from .base_parser_class import InteropBinParser class InteropControlMetrics(InteropBinParser): __version = 0.1 supported_versions = [1] codename = 'control' def _init_variables(self): self.data = { 'lane': [], 'tile': [], 'read': [], 'control_str': [], 'index_str': [], 'clusters': [] } def parse_binary(self): bs = self.bs # Control Metrics (ControlMetricsOut.bin) # Contains pull out information for Illumina in-line sample controls # Format: # byte 0: file version number (1) bytes (variable length): record: # 2 bytes: lane number (uint16) # 2 bytes: tile number (uint16) # 2 bytes: read number (uint16) # 2 bytes: number bytes X for control name(uint16) # X bytes: control name string (string in UTF8Encoding) # 2 bytes: number bytes Y for index name(uint16) # Y bytes: index name string (string in UTF8Encoding) # 4 bytes: num of clusters identified as control (uint32) self.apparent_file_version = bs.read('uintle:8') # version number of binary self.check_version(self.apparent_file_version) try: while True: self.data['lane'].append(bs.read('uintle:16')) self.data['tile'].append(bs.read('uintle:16')) self.data['read'].append(bs.read('uintle:16')) # next 2 bytes: expected control name length in bytes. nextbytes = bs.read('uintle:16') self.data['control_str'].append(bs.read('bytes:%i' % (nextbytes))) # next 2 bytes: expected index name length in bytes. nextbytes = bs.read('uintle:16') self.data['index_str'].append(bs.read('bytes:%i' % (nextbytes))) self.data['clusters'].append(bs.read('uintle:32')) except ReadError: pass self.df = pandas.DataFrame(self.data) def __str__(self): #TODO: to_str (improve output) out = "%s\n" % self.df.head() return out if __name__=='__main__': import sys try: filename = sys.argv[1] except: print( "supply path to ExtractionMetrics.bin" ) sys.exit() CM = InteropControlMetrics(filename) print(CM)
illuminate/control_metrics.py
import pandas from bitstring import ReadError from .base_parser_class import InteropBinParser class InteropControlMetrics(InteropBinParser): __version = 0.1 supported_versions = [1] codename = 'control' def _init_variables(self): self.data = { 'lane': [], 'tile': [], 'read': [], 'control_str': [], 'index_str': [], 'clusters': [] } def parse_binary(self): bs = self.bs # Control Metrics (ControlMetricsOut.bin) # Contains pull out information for Illumina in-line sample controls # Format: # byte 0: file version number (1) bytes (variable length): record: # 2 bytes: lane number (uint16) # 2 bytes: tile number (uint16) # 2 bytes: read number (uint16) # 2 bytes: number bytes X for control name(uint16) # X bytes: control name string (string in UTF8Encoding) # 2 bytes: number bytes Y for index name(uint16) # Y bytes: index name string (string in UTF8Encoding) # 4 bytes: num of clusters identified as control (uint32) self.apparent_file_version = bs.read('uintle:8') # version number of binary self.check_version(self.apparent_file_version) try: while True: self.data['lane'].append(bs.read('uintle:16')) self.data['tile'].append(bs.read('uintle:16')) self.data['read'].append(bs.read('uintle:16')) # next 2 bytes: expected control name length in bytes. nextbytes = bs.read('uintle:16') self.data['control_str'].append(bs.read('bytes:%i' % (nextbytes))) # next 2 bytes: expected index name length in bytes. nextbytes = bs.read('uintle:16') self.data['index_str'].append(bs.read('bytes:%i' % (nextbytes))) self.data['clusters'].append(bs.read('uintle:32')) except ReadError: pass self.df = pandas.DataFrame(self.data) def __str__(self): #TODO: to_str (improve output) out = "%s\n" % self.df.head() return out if __name__=='__main__': import sys try: filename = sys.argv[1] except: print( "supply path to ExtractionMetrics.bin" ) sys.exit() CM = InteropControlMetrics(filename) print(CM)
0.390011
0.22448
from cafe.drivers.unittest.decorators import tags from cloudcafe.common.tools.datagen import rand_name from cloudcafe.compute.common.exceptions import BadRequest, ItemNotFound from cloudroast.compute.fixtures import ComputeAdminFixture class DeleteFlavorTest(ComputeAdminFixture): @classmethod def setUpClass(cls): """ Perform actions that setup the necessary resources for testing The following resources are created during this setup: - A public flavor with a name starting with 'flavor', 64MB of RAM, 1 vcpu, 10GB disk space The created flavor is then deleted. """ super(DeleteFlavorTest, cls).setUpClass() cls.flavor_name = rand_name('flavor') cls.flavor = cls.admin_flavors_client.create_flavor( name=cls.flavor_name, ram='64', vcpus='1', disk='10', is_public=True).entity cls.admin_flavors_client.delete_flavor(cls.flavor.id) @tags(type='positive', net='no') def test_get_deleted_flavor(self): """ Perform actions that allow for the cleanup of any generated resources Validate that the detailed information of the flavor created and deleted during setup can be accessed. """ self.admin_flavors_client.get_flavor_details(self.flavor.id) @tags(type='negative', net='no') def test_create_server_from_deleted_flavor(self): """ Test that a deleted flavor cannot be used to create an instance Validate that you receive an 'Bad Request' error when a user attempts to create an instance with a flavor created and deleted during setup. The following assertions occur: - The create instance requests raises a 'Bad Request' error """ with self.assertRaises(BadRequest): self.server_behaviors.create_active_server( flavor_ref=self.flavor.id) @tags(type='negative', net='no') def test_delete_deleted_flavor_fails(self): """ Test that a previously deleted flavor cannot be deleted Validate that you receive an 'Item Not Found' error when a user attempts to delete the flavor that was created and deleted during setup. The following assertions occur: - The delete flavor requests raises a 'Item not Found' error """ with self.assertRaises(ItemNotFound): self.admin_flavors_client.delete_flavor(self.flavor.id)
cloudroast/compute/admin_api/flavors/test_delete_flavor.py
from cafe.drivers.unittest.decorators import tags from cloudcafe.common.tools.datagen import rand_name from cloudcafe.compute.common.exceptions import BadRequest, ItemNotFound from cloudroast.compute.fixtures import ComputeAdminFixture class DeleteFlavorTest(ComputeAdminFixture): @classmethod def setUpClass(cls): """ Perform actions that setup the necessary resources for testing The following resources are created during this setup: - A public flavor with a name starting with 'flavor', 64MB of RAM, 1 vcpu, 10GB disk space The created flavor is then deleted. """ super(DeleteFlavorTest, cls).setUpClass() cls.flavor_name = rand_name('flavor') cls.flavor = cls.admin_flavors_client.create_flavor( name=cls.flavor_name, ram='64', vcpus='1', disk='10', is_public=True).entity cls.admin_flavors_client.delete_flavor(cls.flavor.id) @tags(type='positive', net='no') def test_get_deleted_flavor(self): """ Perform actions that allow for the cleanup of any generated resources Validate that the detailed information of the flavor created and deleted during setup can be accessed. """ self.admin_flavors_client.get_flavor_details(self.flavor.id) @tags(type='negative', net='no') def test_create_server_from_deleted_flavor(self): """ Test that a deleted flavor cannot be used to create an instance Validate that you receive an 'Bad Request' error when a user attempts to create an instance with a flavor created and deleted during setup. The following assertions occur: - The create instance requests raises a 'Bad Request' error """ with self.assertRaises(BadRequest): self.server_behaviors.create_active_server( flavor_ref=self.flavor.id) @tags(type='negative', net='no') def test_delete_deleted_flavor_fails(self): """ Test that a previously deleted flavor cannot be deleted Validate that you receive an 'Item Not Found' error when a user attempts to delete the flavor that was created and deleted during setup. The following assertions occur: - The delete flavor requests raises a 'Item not Found' error """ with self.assertRaises(ItemNotFound): self.admin_flavors_client.delete_flavor(self.flavor.id)
0.741206
0.308229
from __future__ import absolute_import, division, print_function, unicode_literals from itertools import chain from nose.tools import eq_, raises from six.moves import xrange from smarkets.streaming_api.framing import ( frame_decode_all, frame_encode, IncompleteULEB128, uleb128_decode, uleb128_encode, ) test_data = ( (0x00000000, b'\x00'), (0x0000007F, b'\x7F'), (0x00000080, b'\x80\x01'), (624485, b'\xE5\x8E\x26'), (268435202, b'\x82\xFE\xFF\x7F'), ) def test_dumps(): for value, string in test_data: yield check_dumps, value, string def check_dumps(value, string): eq_(uleb128_encode(value), string) def test_loads(): for value, string in test_data: yield check_loads, bytearray(string), value def check_loads(byte_array, value): eq_(uleb128_decode(byte_array), (value, len(byte_array))) def test_loads_and_dumps_are_consistent(): for i in chain( xrange(2 ** 18), xrange(2 ** 20, 2 ** 26, 33333), xrange(2 ** 26, 2 ** 32, 777777), ): byte_dump = uleb128_encode(i) eq_(uleb128_decode(byte_dump), (i, len(byte_dump))) @raises(ValueError) def test_uleb128_encode_fails_on_negative_number(): uleb128_encode(-1) def test_uleb128_decode_fails_on_invalid_input(): byte_array = uleb128_encode(12345678) for i in xrange(len(byte_array)): yield check_uleb128_decode_fails_on_invalid_input, byte_array[:i] @raises(IncompleteULEB128) def check_uleb128_decode_fails_on_invalid_input(input_): uleb128_decode(input_) def test_frame_encode(): for input_, output in ( (b'', b'\x00\x00\x00\x00'), (b'a', b'\x01a\x00\x00'), (b'ab', b'\x02ab\x00'), (b'abc', b'\x03abc'), (b'abcd', b'\x04abcd'), ): yield check_frame_encode, bytearray(input_), output def check_frame_encode(byte_array, output): frame = bytearray() frame_encode(frame, byte_array) eq_(frame, output) def test_frame_decode_all(): for input_, output in ( # frame matches the boundary (b'', ([], b'')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd', ([b'a', b'ab', b'abc', b'abcd'], b'')), # ends with complete header but only part of a message (b'\x03ab', ([], b'\x03ab')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd\x03ab', ([b'a', b'ab', b'abc', b'abcd'], b'\x03ab')), (b'\x05abcd', ([], b'\x05abcd')), # ends with incomplete header (b'\x80', ([], b'\x80')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd\x03ab', ([b'a', b'ab', b'abc', b'abcd'], b'\x03ab')), # 4(or more)-byte incomplete header is a special case because it reaches the minimum frame size # so let's make sure decoding doesn't fail at header decoding stage (b'\x80\x80\x80\x80', ([], b'\x80\x80\x80\x80')), (b'\x80\x80\x80\x80\x80', ([], b'\x80\x80\x80\x80\x80')), # regression: if the second frame is shorter, we still want to decode both... (b'\x05abcde\x03abc', ([b'abcde', b'abc'], b'')), ): yield check_frame_decode_all, bytearray(input_), output def check_frame_decode_all(byte_array, output): eq_(frame_decode_all(byte_array), output)
smarkets/tests/streaming_api/framing.py
from __future__ import absolute_import, division, print_function, unicode_literals from itertools import chain from nose.tools import eq_, raises from six.moves import xrange from smarkets.streaming_api.framing import ( frame_decode_all, frame_encode, IncompleteULEB128, uleb128_decode, uleb128_encode, ) test_data = ( (0x00000000, b'\x00'), (0x0000007F, b'\x7F'), (0x00000080, b'\x80\x01'), (624485, b'\xE5\x8E\x26'), (268435202, b'\x82\xFE\xFF\x7F'), ) def test_dumps(): for value, string in test_data: yield check_dumps, value, string def check_dumps(value, string): eq_(uleb128_encode(value), string) def test_loads(): for value, string in test_data: yield check_loads, bytearray(string), value def check_loads(byte_array, value): eq_(uleb128_decode(byte_array), (value, len(byte_array))) def test_loads_and_dumps_are_consistent(): for i in chain( xrange(2 ** 18), xrange(2 ** 20, 2 ** 26, 33333), xrange(2 ** 26, 2 ** 32, 777777), ): byte_dump = uleb128_encode(i) eq_(uleb128_decode(byte_dump), (i, len(byte_dump))) @raises(ValueError) def test_uleb128_encode_fails_on_negative_number(): uleb128_encode(-1) def test_uleb128_decode_fails_on_invalid_input(): byte_array = uleb128_encode(12345678) for i in xrange(len(byte_array)): yield check_uleb128_decode_fails_on_invalid_input, byte_array[:i] @raises(IncompleteULEB128) def check_uleb128_decode_fails_on_invalid_input(input_): uleb128_decode(input_) def test_frame_encode(): for input_, output in ( (b'', b'\x00\x00\x00\x00'), (b'a', b'\x01a\x00\x00'), (b'ab', b'\x02ab\x00'), (b'abc', b'\x03abc'), (b'abcd', b'\x04abcd'), ): yield check_frame_encode, bytearray(input_), output def check_frame_encode(byte_array, output): frame = bytearray() frame_encode(frame, byte_array) eq_(frame, output) def test_frame_decode_all(): for input_, output in ( # frame matches the boundary (b'', ([], b'')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd', ([b'a', b'ab', b'abc', b'abcd'], b'')), # ends with complete header but only part of a message (b'\x03ab', ([], b'\x03ab')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd\x03ab', ([b'a', b'ab', b'abc', b'abcd'], b'\x03ab')), (b'\x05abcd', ([], b'\x05abcd')), # ends with incomplete header (b'\x80', ([], b'\x80')), (b'\x01a\x00\x00\x02ab\x00\x03abc\x04abcd\x03ab', ([b'a', b'ab', b'abc', b'abcd'], b'\x03ab')), # 4(or more)-byte incomplete header is a special case because it reaches the minimum frame size # so let's make sure decoding doesn't fail at header decoding stage (b'\x80\x80\x80\x80', ([], b'\x80\x80\x80\x80')), (b'\x80\x80\x80\x80\x80', ([], b'\x80\x80\x80\x80\x80')), # regression: if the second frame is shorter, we still want to decode both... (b'\x05abcde\x03abc', ([b'abcde', b'abc'], b'')), ): yield check_frame_decode_all, bytearray(input_), output def check_frame_decode_all(byte_array, output): eq_(frame_decode_all(byte_array), output)
0.736685
0.30641
import komand import time from .schema import UsersAddedRemovedFromGroupInput, UsersAddedRemovedFromGroupOutput, Input, Output, Component # Custom imports below from komand.exceptions import PluginException from komand_okta.util import helpers class UsersAddedRemovedFromGroup(komand.Trigger): def __init__(self): super(self.__class__, self).__init__( name='users_added_removed_from_group', description=Component.DESCRIPTION, input=UsersAddedRemovedFromGroupInput(), output=UsersAddedRemovedFromGroupOutput()) def run(self, params={}): """Run the trigger""" group_list = params.get(Input.GROUP_IDS) okta_url = self.connection.okta_url current_list = list() group_names = list() for group in group_list: api = f"{okta_url}/api/v1/groups/{group}/users" # Build a reference list to check for updates against response = self.connection.session.get(api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double-check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) data = komand.helper.clean(data) current_list.append({group: data}) # Get group names group_name_api = f"{okta_url}/api/v1/groups/{group}" response = self.connection.session.get(group_name_api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) group_names.append(data["profile"]["name"]) while True: new_list = list() for group in group_list: api = f"{okta_url}/api/v1/groups/{group}/users" response = self.connection.session.get(api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) data = komand.helper.clean(data) new_list.append({group: data}) added = list() removed = list() for index, value in enumerate(group_list): # Find added group members added_users = [] for new_user in new_list[index][value]: found = False for old_user in current_list[index][value]: if new_user["id"] == old_user["id"]: found = True if not found: added_users.append(new_user) # Find removed group members removed_users = [] for old_user in current_list[index][value]: found = False for new_user in new_list[index][value]: if old_user["id"] == new_user["id"]: found = True if not found: removed_users.append(old_user) if added_users: added.append({"group_name": group_names[index], "group_id": value, "users": added_users}) if removed_users: removed.append({"group_name": group_names[index], "group_id": value, "users": removed_users}) if added and removed: self.logger.info("Users added and removed, sending to orchestrator.") self.send({Output.USERS_ADDED_FROM_GROUPS: added, Output.USERS_REMOVED_FROM_GROUPS: removed}) elif added and not removed: self.logger.info("Users added, sending to orchestrator.") self.send({Output.USERS_ADDED_FROM_GROUPS: added, Output.USERS_REMOVED_FROM_GROUPS: []}) elif removed and not added: self.logger.info("Users removed, sending to orchestrator.") self.send({Output.USERS_REMOVED_FROM_GROUPS: removed, Output.USERS_ADDED_FROM_GROUPS: []}) current_list = new_list sleep_time = params.get(Input.INTERVAL, 300) self.logger.info(f"Loop complete, sleeping for {sleep_time}...") time.sleep(sleep_time)
okta/komand_okta/triggers/users_added_removed_from_group/trigger.py
import komand import time from .schema import UsersAddedRemovedFromGroupInput, UsersAddedRemovedFromGroupOutput, Input, Output, Component # Custom imports below from komand.exceptions import PluginException from komand_okta.util import helpers class UsersAddedRemovedFromGroup(komand.Trigger): def __init__(self): super(self.__class__, self).__init__( name='users_added_removed_from_group', description=Component.DESCRIPTION, input=UsersAddedRemovedFromGroupInput(), output=UsersAddedRemovedFromGroupOutput()) def run(self, params={}): """Run the trigger""" group_list = params.get(Input.GROUP_IDS) okta_url = self.connection.okta_url current_list = list() group_names = list() for group in group_list: api = f"{okta_url}/api/v1/groups/{group}/users" # Build a reference list to check for updates against response = self.connection.session.get(api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double-check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) data = komand.helper.clean(data) current_list.append({group: data}) # Get group names group_name_api = f"{okta_url}/api/v1/groups/{group}" response = self.connection.session.get(group_name_api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) group_names.append(data["profile"]["name"]) while True: new_list = list() for group in group_list: api = f"{okta_url}/api/v1/groups/{group}/users" response = self.connection.session.get(api) try: data = response.json() except ValueError: raise PluginException(cause='Returned data was not in JSON format.', assistance="Double check that group ID's are all valid.", data=response.text) helpers.raise_based_on_error_code(response) data = komand.helper.clean(data) new_list.append({group: data}) added = list() removed = list() for index, value in enumerate(group_list): # Find added group members added_users = [] for new_user in new_list[index][value]: found = False for old_user in current_list[index][value]: if new_user["id"] == old_user["id"]: found = True if not found: added_users.append(new_user) # Find removed group members removed_users = [] for old_user in current_list[index][value]: found = False for new_user in new_list[index][value]: if old_user["id"] == new_user["id"]: found = True if not found: removed_users.append(old_user) if added_users: added.append({"group_name": group_names[index], "group_id": value, "users": added_users}) if removed_users: removed.append({"group_name": group_names[index], "group_id": value, "users": removed_users}) if added and removed: self.logger.info("Users added and removed, sending to orchestrator.") self.send({Output.USERS_ADDED_FROM_GROUPS: added, Output.USERS_REMOVED_FROM_GROUPS: removed}) elif added and not removed: self.logger.info("Users added, sending to orchestrator.") self.send({Output.USERS_ADDED_FROM_GROUPS: added, Output.USERS_REMOVED_FROM_GROUPS: []}) elif removed and not added: self.logger.info("Users removed, sending to orchestrator.") self.send({Output.USERS_REMOVED_FROM_GROUPS: removed, Output.USERS_ADDED_FROM_GROUPS: []}) current_list = new_list sleep_time = params.get(Input.INTERVAL, 300) self.logger.info(f"Loop complete, sleeping for {sleep_time}...") time.sleep(sleep_time)
0.389663
0.113826
import re import os import json import argparse import traceback import subprocess """ This tool will invoke checked-c-convert on a compile_commands.json database. It contains some work-arounds for cmake+nmake generated compile_commands.json files, where the files are malformed. """ SLASH = os.sep # to separate multiple commands in a line CMD_SEP = " ;" DEFAULT_ARGS = ["-dump-stats", "-output-postfix=checked"] if os.name == "nt": DEFAULT_ARGS.append("-extra-arg-before=--driver-mode=cl") CMD_SEP = " &" def getCheckedCArgs(argument_list): """ Convert the compilation arguments (include folder and #defines) to checked C format. :param argument_list: list of compiler argument. :return: argument string """ clang_x_args = [] for curr_arg in argument_list: if curr_arg.startswith("-D") or curr_arg.startswith("-I"): clang_x_args.append('-extra-arg=' + curr_arg) return clang_x_args def tryFixUp(s): """ Fix-up for a failure between cmake and nmake. """ b = open(s, 'r').read() b = re.sub(r'@<<\n', "", b) b = re.sub(r'\n<<', "", b) f = open(s, 'w') f.write(b) f.close() return def runMain(args): runs = 0 cmds = None while runs < 2: runs = runs + 1 try: cmds = json.load(open(args.compile_commands, 'r')) except: traceback.print_exc() tryFixUp(args.compile_commands) if cmds == None: print "failed" return s = set() for i in cmds: file_to_add = i['file'] compiler_args = "" target_directory = "" if file_to_add.endswith(".cpp"): continue # Checked C extension doesn't support cpp files yet # BEAR uses relative paths for 'file' rather than absolute paths. It also # has a field called 'arguments' instead of 'command' in the cmake style. # Use that to detect BEAR and add the directory. if 'arguments' in i and not 'command' in i: # BEAR. Need to add directory. file_to_add = i['directory'] + SLASH + file_to_add # get the compiler arguments compiler_args = getCheckedCArgs(i["arguments"]) # get the directory used during compilation. target_directory = i['directory'] file_to_add = os.path.realpath(file_to_add) s.add((frozenset(compiler_args), target_directory, file_to_add)) prog_name = args.prog_name f = open('convert.sh', 'w') for compiler_args, target_directory, src_file in s: args = [] # get the command to change the working directory change_dir_cmd = "" if len(target_directory) > 0: change_dir_cmd = "cd " + target_directory + CMD_SEP else: # default working directory target_directory = os.getcwd() args.append(prog_name) if len(compiler_args) > 0: args.extend(list(compiler_args)) args.extend(DEFAULT_ARGS) args.append(src_file) print str(args) subprocess.check_call(args, cwd=target_directory) # prepend the command to change the working directory. if len(change_dir_cmd) > 0: args = [change_dir_cmd] + args f.write(" \\\n".join(args)) f.write("\n") f.close() return if __name__ == '__main__': parser = argparse.ArgumentParser("runner") parser.add_argument("compile_commands", type=str) parser.add_argument("prog_name", type=str) args = parser.parse_args() runMain(args)
tools/checked-c-convert/utils/convert-commands.py
import re import os import json import argparse import traceback import subprocess """ This tool will invoke checked-c-convert on a compile_commands.json database. It contains some work-arounds for cmake+nmake generated compile_commands.json files, where the files are malformed. """ SLASH = os.sep # to separate multiple commands in a line CMD_SEP = " ;" DEFAULT_ARGS = ["-dump-stats", "-output-postfix=checked"] if os.name == "nt": DEFAULT_ARGS.append("-extra-arg-before=--driver-mode=cl") CMD_SEP = " &" def getCheckedCArgs(argument_list): """ Convert the compilation arguments (include folder and #defines) to checked C format. :param argument_list: list of compiler argument. :return: argument string """ clang_x_args = [] for curr_arg in argument_list: if curr_arg.startswith("-D") or curr_arg.startswith("-I"): clang_x_args.append('-extra-arg=' + curr_arg) return clang_x_args def tryFixUp(s): """ Fix-up for a failure between cmake and nmake. """ b = open(s, 'r').read() b = re.sub(r'@<<\n', "", b) b = re.sub(r'\n<<', "", b) f = open(s, 'w') f.write(b) f.close() return def runMain(args): runs = 0 cmds = None while runs < 2: runs = runs + 1 try: cmds = json.load(open(args.compile_commands, 'r')) except: traceback.print_exc() tryFixUp(args.compile_commands) if cmds == None: print "failed" return s = set() for i in cmds: file_to_add = i['file'] compiler_args = "" target_directory = "" if file_to_add.endswith(".cpp"): continue # Checked C extension doesn't support cpp files yet # BEAR uses relative paths for 'file' rather than absolute paths. It also # has a field called 'arguments' instead of 'command' in the cmake style. # Use that to detect BEAR and add the directory. if 'arguments' in i and not 'command' in i: # BEAR. Need to add directory. file_to_add = i['directory'] + SLASH + file_to_add # get the compiler arguments compiler_args = getCheckedCArgs(i["arguments"]) # get the directory used during compilation. target_directory = i['directory'] file_to_add = os.path.realpath(file_to_add) s.add((frozenset(compiler_args), target_directory, file_to_add)) prog_name = args.prog_name f = open('convert.sh', 'w') for compiler_args, target_directory, src_file in s: args = [] # get the command to change the working directory change_dir_cmd = "" if len(target_directory) > 0: change_dir_cmd = "cd " + target_directory + CMD_SEP else: # default working directory target_directory = os.getcwd() args.append(prog_name) if len(compiler_args) > 0: args.extend(list(compiler_args)) args.extend(DEFAULT_ARGS) args.append(src_file) print str(args) subprocess.check_call(args, cwd=target_directory) # prepend the command to change the working directory. if len(change_dir_cmd) > 0: args = [change_dir_cmd] + args f.write(" \\\n".join(args)) f.write("\n") f.close() return if __name__ == '__main__': parser = argparse.ArgumentParser("runner") parser.add_argument("compile_commands", type=str) parser.add_argument("prog_name", type=str) args = parser.parse_args() runMain(args)
0.216342
0.083965
import sys # insert at 1, 0 is the script path (or '' in REPL) sys.path.insert(1, '../') # %% from exh import * from exh.exts.focus import * # %% """ # Construction and evaluation """ f = Focus(a | b, [b]) assignment = np.array([ [True, True], [True, False], [False, True], [False, False] ]) assert((f.evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} ) == (a | b).evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} )).all() ) assert(not (f.evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} ) == (a & b).evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} )).all() ) # %% """ # Alternative calculation """ scale = FocusScales() assert( scale.alternatives_to([f]) == [b] ) assert( scale.alternatives_to([f]) != [a | b] ) # %% """ # Exhaustification ## Simple cases """ # Test if FocusScales is now default (importing the extention should make it default) assert(any(isinstance(s, FocusScales) for s in Exh(a).e.scales.scales)) # %% g = Focus(a, alts = [b, c]) exhg = Exh(g, scales = FocusScales()) assert( exhg.alts == [ g, b, c ] ) universe = Universe(f = exhg) assert(universe.equivalent(exhg, a & ~b & ~c)) # %% g = Focus(a | b, alts = [a & b]) exhg = Exh(g, scales = FocusScales()) assert( exhg.alts == [ g, Focus(a, alts=[a & b]), Focus(b, alts=[a & b]), a & b ] ) universe = Universe(f = exhg) assert(universe.equivalent(exhg, (a | b) & ~(a & b))) # %% """ ## Exhaustification across operators """ apple = Pred(name = "A", depends = ["x"]) cantaloupe = Pred(name = "C", depends = ["x"]) h = Ex > Focus(apple, alts = [cantaloupe]) exhh = Exh(h, scales = FocusScales()) complex_universe = Universe(f = h) assert(complex_universe.equivalent( exhh, (Ex > apple) & ~(Ex > cantaloupe) )) assert(not complex_universe.equivalent( exhh, Ex > apple )) # %% """ Not A """ prop_universe = Universe(fs = [a, b, c]) exhf = Exh(~Focus(a, alts = [c]), scales = FocusScales(), subst = False) assert(exhf.alts == [~Focus(a, alts = [c]), ~c]) assert(prop_universe.equivalent( exhf, ~a & c )) # %% """ Recursive exh """ prej = Focus(a, alts = [c]) fst_exh = Exh(prej, scales = FocusScales()) snd_exh = Exh(fst_exh, scales = FocusScales ()) assert( fst_exh.alts == [prej, c] ) assert( snd_exh.alts == [Exh(prej), Exh(c)] ) assert(prop_universe.equivalent( snd_exh, a & ~c )) # %%
tests/focus.py
import sys # insert at 1, 0 is the script path (or '' in REPL) sys.path.insert(1, '../') # %% from exh import * from exh.exts.focus import * # %% """ # Construction and evaluation """ f = Focus(a | b, [b]) assignment = np.array([ [True, True], [True, False], [False, True], [False, False] ]) assert((f.evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} ) == (a | b).evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} )).all() ) assert(not (f.evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} ) == (a & b).evaluate_aux( vm = f.vars(), assignment = assignment, variables = {} )).all() ) # %% """ # Alternative calculation """ scale = FocusScales() assert( scale.alternatives_to([f]) == [b] ) assert( scale.alternatives_to([f]) != [a | b] ) # %% """ # Exhaustification ## Simple cases """ # Test if FocusScales is now default (importing the extention should make it default) assert(any(isinstance(s, FocusScales) for s in Exh(a).e.scales.scales)) # %% g = Focus(a, alts = [b, c]) exhg = Exh(g, scales = FocusScales()) assert( exhg.alts == [ g, b, c ] ) universe = Universe(f = exhg) assert(universe.equivalent(exhg, a & ~b & ~c)) # %% g = Focus(a | b, alts = [a & b]) exhg = Exh(g, scales = FocusScales()) assert( exhg.alts == [ g, Focus(a, alts=[a & b]), Focus(b, alts=[a & b]), a & b ] ) universe = Universe(f = exhg) assert(universe.equivalent(exhg, (a | b) & ~(a & b))) # %% """ ## Exhaustification across operators """ apple = Pred(name = "A", depends = ["x"]) cantaloupe = Pred(name = "C", depends = ["x"]) h = Ex > Focus(apple, alts = [cantaloupe]) exhh = Exh(h, scales = FocusScales()) complex_universe = Universe(f = h) assert(complex_universe.equivalent( exhh, (Ex > apple) & ~(Ex > cantaloupe) )) assert(not complex_universe.equivalent( exhh, Ex > apple )) # %% """ Not A """ prop_universe = Universe(fs = [a, b, c]) exhf = Exh(~Focus(a, alts = [c]), scales = FocusScales(), subst = False) assert(exhf.alts == [~Focus(a, alts = [c]), ~c]) assert(prop_universe.equivalent( exhf, ~a & c )) # %% """ Recursive exh """ prej = Focus(a, alts = [c]) fst_exh = Exh(prej, scales = FocusScales()) snd_exh = Exh(fst_exh, scales = FocusScales ()) assert( fst_exh.alts == [prej, c] ) assert( snd_exh.alts == [Exh(prej), Exh(c)] ) assert(prop_universe.equivalent( snd_exh, a & ~c )) # %%
0.286568
0.565839
__all__ = [ 'DataLoaderTask', 'SimpleDataLoaderTask', 'TrainTask', 'SimpleTrainTask' ] from abc import abstractmethod from copy import deepcopy from logging import Logger from typing import List, Text, Tuple, Dict, Any from ..mixin import value from ..storages.basic import Storage from ..tasks.containers import Task from ..typedef import Definition, Profile from ..typedef import Return try: import torch from torch import nn from torch import optim from torch.utils import data from ignite import engine from ignite import metrics from ignite.utils import convert_tensor except ImportError as ie: raise RuntimeError('Tasks in module tasker.contrib.torch needs pytorch and pytorch-ignite modules') class DataLoaderTask(Task): """ <i>tasker.contrib.torch.DataLoaderTask</i> The fundamental task construction to provide data loaders. Please declare the prefix of data loader in shared storage in reference field of meta definitions. Examples: ```toml # Data loader of validation. [[__meta__]] reference = "cifar_loader.CIFARDataLoaderTask:validate" include = false path = "" profile = "validate_loader" execute = true # Data Loader of training. [[__meta__]] reference = "conv_train.ConvTrainTask:train" include = false path = "" profile = "train" execute = true ``` """ def __init__(self, _type: Text = None): if _type is None: self.PROVIDE_KEY = 'loader' else: self.PROVIDE_KEY = f'{_type}_loader' def invoke(self, profile: Profile, shared: Storage, logger: Logger) -> int: dataset = self.create_dataset(profile.dataset, shared, logger) assert isinstance(dataset, data.Dataset) loader_params = dict(profile.loader) loader_params['dataset'] = dataset assert profile.sampler_type in ('sampler', 'batch_sampler', 'none') if profile.sampler_type != 'none': loader_params[profile.sampler_type] = self.create_sampler( dataset, profile.sampler_type == 'batch_sampler', profile.loader, shared, logger ) if profile.sampler_type == 'batch_sampler': if 'batch_size' in loader_params: loader_params.pop('batch_size') if 'shuffle' in loader_params: loader_params.pop('shuffle') if 'sampler' in loader_params: loader_params.pop('sampler') if 'drop_last' in loader_params: loader_params.pop('drop_last') shared[self.PROVIDE_KEY] = data.DataLoader(**loader_params) return Return.SUCCESS.value def require(self) -> List[Text]: return [] def provide(self) -> List[Text]: return [self.PROVIDE_KEY] def remove(self) -> List[Text]: return [] @classmethod def define(cls) -> List[Definition]: """ ```toml __schema__ = "tasker.contrib.torch.DataLoaderTask" sampler_type = "" [loader] batch_size = 0 shuffle = true num_workers = 0 pin_memory = true drop_last = true ``` """ return [ value('dataset', list, cls.define_dataset()), value('loader', list, [ value('batch_size', int), value('shuffle', bool), value('num_workers', int), value('pin_memory', bool), value('drop_last', bool), ]), value('sampler_type', str), value('sampler', list, cls.define_sampler()) ] @abstractmethod def create_dataset(self, profile: Profile, shared: Storage, logger: Logger) -> data.Dataset: """ The function to create dataset instance with defined profile. Args: profile: Runtime profile defined in TOML file of dataset. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: A new dataset instance. """ raise NotImplementedError('Please create the dataset in create_dataset') @classmethod @abstractmethod def define_dataset(cls): """ A profile template of dataset need to be implemented by user. Returns: Definition of dataset profile. """ raise NotImplementedError('Please define the dataset profile in define_dataset') @abstractmethod def create_sampler(self, dataset: data.Dataset, batch_sampler: bool, profile: Profile, shared: Storage, logger: Logger): """ The function to create sampler instance with defined profile. Args: dataset: The dataset instance need to be loaded. batch_sampler: Whether to use batch_sampler. profile: Runtime profile defined in TOML file of sampler or batch sampler. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: A new sampler or batch sampler instance. """ if batch_sampler: raise NotImplementedError('Please create the batch sampler in create_sampler') else: raise NotImplementedError('Please create the sampler in create_sampler') @classmethod @abstractmethod def define_sampler(cls): raise NotImplementedError('Please define the sampler or batch sampler profile in define_sampler') class SimpleDataLoaderTask(DataLoaderTask): """ <i>tasker.contrib.torch.SimpleDataLoaderTask</i> An easy to use base class of task for providing data loader. You can create data loader only with reference of dataset and related profile. """ def create_dataset(self, profile: Profile, shared: Storage, logger: Logger) -> data.Dataset: dataset_cls = profile.reference return dataset_cls(**profile.kwargs) @classmethod def define_dataset(cls): return [ value('reference', str), value('kwargs', list, []) ] def create_sampler(self, dataset: data.Dataset, batch_sampler: bool, profile: Profile, shared: Storage, logger: Logger): return None @classmethod def define_sampler(cls): return [] class TrainTask(Task): """ <i>tasker.contrib.torch.TrainTask</i> The fundamental task construction to train a model by provided data loaders. You need to run a task providing two data loaders named "train_loader" and "validate_loader" in shared storage before this task as well as the trained model will be stored into "\\<something\\>_model" or "model" label in shared storage. However, many actions should be redefined by user when implementing `TrainTask`. You can also implement [SimpleTrainTask][tasker.contrib.torch.SimpleTrainTask] to boost your development. If you want to store the model with a prefix, please fill the prefix name into the first parameter when referencing it. """ def __init__(self, *args, **kwargs): if len(args) >= 1: self.prefix = args[0] else: self.prefix = None def invoke(self, profile: Profile, shared: Storage, logger: Logger) -> int: torch.manual_seed(profile.seed if 'seed' in profile else 0x3a4e) if 'model' in profile: device = profile.device if 'device' in profile else 'cpu' model = self.create_model(profile.model, shared, logger).to(device) else: raise RuntimeError('Missing profile field "model" to define the model.') if 'train_loader' in shared: train_loader: torch.utils.data.DataLoader = shared['train_loader'] else: raise RuntimeError('Missing shared object "train_loader" to provide training sets.') if 'validate_loader' in shared: validate_loader: torch.utils.data.DataLoader = shared['validate_loader'] else: raise RuntimeError('Missing shared object "validate_loader" to provide validating sets.') if 'optimizer' in profile: optimizer, lr_scheduler = self.create_optimizer(profile.optimizer, shared, logger, model) else: raise RuntimeError('Missing profile field "optimizer" to define the optimizer.') if 'loss_function' in profile: loss_function = self.create_loss_function(profile.loss_function, shared, logger) else: raise RuntimeError('Missing profile field "loss_function" to define the loss function.') trainer = self.create_trainer( profile, shared, logger, model, loss_function, optimizer, lr_scheduler, profile.train_output_transform if 'train_output_transform' in profile else lambda x, y, y_pred, loss: loss.item() ) evaluator = self.create_evaluator( profile, shared, logger, model, loss_function, optimizer, lr_scheduler, profile.evaluate_output_transform if 'evaluate_output_transform' in profile else lambda x, y, y_pred: ( y_pred, y) ) context = {} @evaluator.on(engine.Events.COMPLETED) def display_metrics(_engine: engine.Engine): logger.info('EVALUATE EPOCH {} | {}'.format(trainer.state.epoch, ' | '.join(map( lambda it: '{}: {}'.format(it[0], repr(it[1]).replace('\n', ' ')), _engine.state.metrics.items(), )))) @evaluator.on(engine.Events.COMPLETED) def store_model(_engine: engine.Engine): if 'compare_metric' not in context: context['compare_metric'] = float('-inf') if 'compare_by' not in profile or len(profile.compare_by) == 0: compare_by = 'loss' sign = '-' else: compare_by = profile.compare_by if compare_by[0] in '+-': sign = compare_by[0] compare_by = compare_by[1:] else: sign = '+' if compare_by not in _engine.state.metrics: logger.warning(f'Not found "{compare_by}" in metrics. Fall back to loss.') compare_by = 'loss' sign = '-' metric_value = _engine.state.metrics[compare_by] if sign == '-': metric_value = -metric_value if metric_value > context['compare_metric']: context['compare_metric'] = metric_value shared[self._model_key] = deepcopy(model.eval()) logger.info(f'Stored the model with {compare_by} of {metric_value}.') @trainer.on(engine.Events.ITERATION_COMPLETED( every=int(len(train_loader) * (profile.loss_display if 'loss_display' in profile else 0.1)) )) def display_loss(_engine: engine.Engine): epoch_iteration = _engine.state.iteration % _engine.state.epoch_length if epoch_iteration == 0: epoch_iteration = _engine.state.epoch_length logger.info('TRAIN EPOCH {} ITERATION {} | output: {}'.format( _engine.state.epoch, epoch_iteration, _engine.state.output )) @trainer.on(engine.Events.EPOCH_COMPLETED) def evaluate(_engine: engine.Engine): evaluator.run( validate_loader, ) self.register_handlers(profile, shared, logger, model, trainer, evaluator, context) trainer.run( train_loader, max_epochs=profile.max_epochs if 'max_epochs' in profile else 100, ) return Return.SUCCESS @property def _model_key(self): return 'model' if self.prefix is None else f'{self.prefix}_model' def require(self) -> List[Text]: """ The task requires 2 items, including "train_loader" and "validate_loader. Returns: "train_loader" and "validate_loader" """ return [ 'train_loader', 'validate_loader', ] def provide(self) -> List[Text]: """ The task provides 1 item, including "model" or "\\<something\\>_model". Returns: "model" or "\\<something\\>_model" """ return [ self._model_key ] def remove(self) -> List[Text]: """ This task removes nothing. Returns: nothing """ return [] @classmethod def define(cls) -> List[Definition]: """ Define the schema of `TrainTask`. Returns: Schema of `TrainTask`. Examples: See Also [Train AlexNet on Place 365 dataset](https://github.com/chenrz925/waterch-tasker/blob/master/examples/place365_alexnet.toml) """ return [ value('model', list, [ value('reference', str), value('kwargs', list, []) ]), value('loss_function', list, [ value('reference', str), value('kwargs', list, []) ]), value('metrics', list, []), value('optimizer', list, [ value('reference', str), value('kwargs', list, []), value('scheduler', list, [ value('reference', str), value('kwargs', list) ]) ]) ] @abstractmethod def create_model(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ Implement `create_model` to build the PyTorch model. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "model" in the task profile. """ raise NotImplementedError('Please create the model in create_model') @abstractmethod def create_loss_function(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ Implement `create_loss_function` to build the PyTorch loss function. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "loss_function" in the task profile. """ raise NotImplementedError('Please create the loss function in create_loss_function') @abstractmethod def create_optimizer(self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, **kwargs) -> optim.Optimizer: """ Implement `create_optimizer` to build the PyTorch optimizer. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "optimizer" in the task profile. """ raise NotImplementedError('Please create the optimizer in create_optimizer') def prepare_train_batch( self, profile: Profile, shared: Storage, logger: Logger, batch: Tuple[torch.Tensor], device: Text, non_blocking: bool = False ): """ Preparing batch of samples when training. Implement this function to customize. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. batch: Raw batch provided by the data loader. device: Which device of the batch. non_blocking: Whether the action of moving the batch is blocking. Returns: Prepared batch. """ x, y = batch return ( convert_tensor(x, device=torch.device(device), non_blocking=non_blocking), convert_tensor(y, device=torch.device(device), non_blocking=non_blocking), ) def prepare_validate_batch( self, profile: Profile, shared: Storage, logger: Logger, batch: Tuple[torch.Tensor], device: Text, non_blocking: bool = False ): """ Preparing batch of samples when validating. Implement this function to customize. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. batch: Raw batch provided by the data loader. device: Which device of the batch. non_blocking: Whether the action of moving the batch is blocking. Returns: Prepared batch. """ x, y = batch return ( convert_tensor(x, device=torch.device(device), non_blocking=non_blocking), convert_tensor(y, device=torch.device(device), non_blocking=non_blocking), ) def create_trainer( self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, loss_function: nn.Module, optimizer: optim.Optimizer, lr_scheduler: Any, output_transform=lambda x, y, y_pred, loss: loss.item(), **kwargs ) -> engine.Engine: """ Build the trainer engine. Re-implement this function when you want to customize the updating actions of training. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. loss_function: The loss function to train. optimizer: The optimizer to train. lr_scheduler: The scheduler to control the learning rate. output_transform: The action to transform the output of the model. Returns: The trainer engine. """ if 'device' in profile: device_type = profile.device else: device_type = 'cpu' if 'non_blocking' in profile: non_blocking = profile.non_blocking else: non_blocking = False if 'deterministic' in profile: deterministic = profile.deterministic else: deterministic = False def _update(_engine: engine.Engine, _batch: Tuple[torch.Tensor]): model.train() optimizer.zero_grad() x, y = self.prepare_train_batch(profile, shared, logger, _batch, device=device_type, non_blocking=non_blocking) y_pred = model(x) loss = loss_function(y_pred, y) loss.backward() optimizer.step() if lr_scheduler is not None: lr_scheduler.step(loss) return output_transform(x, y, y_pred, loss) trainer = engine.Engine(_update) if not deterministic else engine.DeterministicEngine(_update) return trainer def register_metrics( self, profile: Profile, shared: Storage, logger: Logger, _metrics: Dict ): """ Register the metric methods. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. _metrics: The metrics dictionary to register. Returns: The metrics dictionary. """ return _metrics def register_handlers(self, profile, shared, logger, model, trainer, evaluator, context): """ Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. trainer: The trainer of the model. evaluator: The evaluator of the model. context: The context dictionary to store states in handlers. Returns: Nothing. """ pass def create_evaluator( self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, loss_function: nn.Module, optimizer: optim.Optimizer, lr_scheduler: Any, output_transform=lambda x, y, y_pred: (y_pred, y), **kwargs ) -> engine.Engine: """ Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. loss_function: The loss function to train. optimizer: The optimizer to train. lr_scheduler: The scheduler to control the learning rate. output_transform: The action to transform the output of the model. Returns: The evaluator engine. """ if 'device' in profile: device_type = profile.device else: device_type = 'cpu' if 'non_blocking' in profile: non_blocking = profile.non_blocking else: non_blocking = False if 'deterministic' in profile: deterministic = profile.deterministic else: deterministic = False _metrics = {} self.register_metrics(profile, shared, logger, _metrics) def _inference(_engine: engine.Engine, _batch: Tuple[torch.Tensor]): model.eval() with torch.no_grad(): x, y = self.prepare_validate_batch(profile, shared, logger, _batch, device=device_type, non_blocking=non_blocking) y_pred = model(x) return output_transform(x, y, y_pred) evaluator = engine.DeterministicEngine(_inference) if deterministic else engine.Engine(_inference) for name, metric in _metrics.items(): metric.attach(evaluator, name) return evaluator class SimpleTrainTask(TrainTask): """ <i>tasker.contrib.torch.SimpleTrainTask</i> An easy to use base class of task for training model. You can create model only with reference of dataset and related profile. Examples: See Also [Train AlexNet on Place 365 dataset](https://github.com/chenrz925/waterch-tasker/blob/master/examples/place365_alexnet.toml) """ def create_model(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ You can build the model class implementing [`Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module). And the parameters of the model class can be passed by `kwargs`. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: New model instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, nn.Module): logger.warning('Referenced class is not a subclass of torch.nn.Module.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the model profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} model = clz(**kwargs) return model def create_loss_function(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ You can build the loss function class implementing [`Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module). And the parameters of the model class can be passed by `kwargs`. All loss functions provided PyTorch officially can be referenced. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: New model instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, nn.Module): logger.warning('Referenced class is not a subclass of torch.nn.Module.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the loss_function profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} loss_function = clz(**kwargs) return loss_function def create_optimizer(self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, **kwargs) -> Tuple[ optim.Optimizer, Any]: """ You can build the optimizer class implementing [`Optimizer`](https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer). And the parameters of the optimizer class can be passed by `kwargs`. All optimizers provided PyTorch officially can be referenced. You can also build a learning rate scheduler through `lr_scheduler` field. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. Returns: New optimizer instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, optim.Optimizer): logger.warning('Referenced class is not a subclass of torch.optim.Optimizer.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the optimizer profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} optimizer = clz(model.parameters(), **kwargs) if 'lr_scheduler' in profile: if 'reference' in profile.lr_scheduler: lr_scheduler_clz = profile.lr_scheduler.reference if 'kwargs' in profile.lr_scheduler: lr_scheduler_kwargs = profile.lr_scheduler.kwargs else: lr_scheduler_kwargs = {} lr_scheduler = lr_scheduler_clz(optimizer, **lr_scheduler_kwargs) else: lr_scheduler = None else: lr_scheduler = None return optimizer, lr_scheduler def register_metrics( self, profile: Profile, shared: Storage, logger: Logger, _metrics: Dict ): """ Register the metric methods. In `SimpleTrainTask`, all the metrics can be initialized in profile by "M" type field. Examples: Register accuracy as metric method. ```toml accuracy = '$M$ignite.metrics.Accuracy' ``` Register F1 macro as metric method. ```toml f1macro = '1$M$tasker.contrib.torch.FBetaMacro$I' ``` Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. _metrics: The metrics dictionary to register. Returns: The metrics dictionary. """ _metrics['loss'] = metrics.Loss(self.create_loss_function(profile.loss_function, shared, logger)) if 'metrics' in profile: _metrics.update(profile.metrics) return _metrics
src/tasker/contrib/torch.py
__all__ = [ 'DataLoaderTask', 'SimpleDataLoaderTask', 'TrainTask', 'SimpleTrainTask' ] from abc import abstractmethod from copy import deepcopy from logging import Logger from typing import List, Text, Tuple, Dict, Any from ..mixin import value from ..storages.basic import Storage from ..tasks.containers import Task from ..typedef import Definition, Profile from ..typedef import Return try: import torch from torch import nn from torch import optim from torch.utils import data from ignite import engine from ignite import metrics from ignite.utils import convert_tensor except ImportError as ie: raise RuntimeError('Tasks in module tasker.contrib.torch needs pytorch and pytorch-ignite modules') class DataLoaderTask(Task): """ <i>tasker.contrib.torch.DataLoaderTask</i> The fundamental task construction to provide data loaders. Please declare the prefix of data loader in shared storage in reference field of meta definitions. Examples: ```toml # Data loader of validation. [[__meta__]] reference = "cifar_loader.CIFARDataLoaderTask:validate" include = false path = "" profile = "validate_loader" execute = true # Data Loader of training. [[__meta__]] reference = "conv_train.ConvTrainTask:train" include = false path = "" profile = "train" execute = true ``` """ def __init__(self, _type: Text = None): if _type is None: self.PROVIDE_KEY = 'loader' else: self.PROVIDE_KEY = f'{_type}_loader' def invoke(self, profile: Profile, shared: Storage, logger: Logger) -> int: dataset = self.create_dataset(profile.dataset, shared, logger) assert isinstance(dataset, data.Dataset) loader_params = dict(profile.loader) loader_params['dataset'] = dataset assert profile.sampler_type in ('sampler', 'batch_sampler', 'none') if profile.sampler_type != 'none': loader_params[profile.sampler_type] = self.create_sampler( dataset, profile.sampler_type == 'batch_sampler', profile.loader, shared, logger ) if profile.sampler_type == 'batch_sampler': if 'batch_size' in loader_params: loader_params.pop('batch_size') if 'shuffle' in loader_params: loader_params.pop('shuffle') if 'sampler' in loader_params: loader_params.pop('sampler') if 'drop_last' in loader_params: loader_params.pop('drop_last') shared[self.PROVIDE_KEY] = data.DataLoader(**loader_params) return Return.SUCCESS.value def require(self) -> List[Text]: return [] def provide(self) -> List[Text]: return [self.PROVIDE_KEY] def remove(self) -> List[Text]: return [] @classmethod def define(cls) -> List[Definition]: """ ```toml __schema__ = "tasker.contrib.torch.DataLoaderTask" sampler_type = "" [loader] batch_size = 0 shuffle = true num_workers = 0 pin_memory = true drop_last = true ``` """ return [ value('dataset', list, cls.define_dataset()), value('loader', list, [ value('batch_size', int), value('shuffle', bool), value('num_workers', int), value('pin_memory', bool), value('drop_last', bool), ]), value('sampler_type', str), value('sampler', list, cls.define_sampler()) ] @abstractmethod def create_dataset(self, profile: Profile, shared: Storage, logger: Logger) -> data.Dataset: """ The function to create dataset instance with defined profile. Args: profile: Runtime profile defined in TOML file of dataset. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: A new dataset instance. """ raise NotImplementedError('Please create the dataset in create_dataset') @classmethod @abstractmethod def define_dataset(cls): """ A profile template of dataset need to be implemented by user. Returns: Definition of dataset profile. """ raise NotImplementedError('Please define the dataset profile in define_dataset') @abstractmethod def create_sampler(self, dataset: data.Dataset, batch_sampler: bool, profile: Profile, shared: Storage, logger: Logger): """ The function to create sampler instance with defined profile. Args: dataset: The dataset instance need to be loaded. batch_sampler: Whether to use batch_sampler. profile: Runtime profile defined in TOML file of sampler or batch sampler. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: A new sampler or batch sampler instance. """ if batch_sampler: raise NotImplementedError('Please create the batch sampler in create_sampler') else: raise NotImplementedError('Please create the sampler in create_sampler') @classmethod @abstractmethod def define_sampler(cls): raise NotImplementedError('Please define the sampler or batch sampler profile in define_sampler') class SimpleDataLoaderTask(DataLoaderTask): """ <i>tasker.contrib.torch.SimpleDataLoaderTask</i> An easy to use base class of task for providing data loader. You can create data loader only with reference of dataset and related profile. """ def create_dataset(self, profile: Profile, shared: Storage, logger: Logger) -> data.Dataset: dataset_cls = profile.reference return dataset_cls(**profile.kwargs) @classmethod def define_dataset(cls): return [ value('reference', str), value('kwargs', list, []) ] def create_sampler(self, dataset: data.Dataset, batch_sampler: bool, profile: Profile, shared: Storage, logger: Logger): return None @classmethod def define_sampler(cls): return [] class TrainTask(Task): """ <i>tasker.contrib.torch.TrainTask</i> The fundamental task construction to train a model by provided data loaders. You need to run a task providing two data loaders named "train_loader" and "validate_loader" in shared storage before this task as well as the trained model will be stored into "\\<something\\>_model" or "model" label in shared storage. However, many actions should be redefined by user when implementing `TrainTask`. You can also implement [SimpleTrainTask][tasker.contrib.torch.SimpleTrainTask] to boost your development. If you want to store the model with a prefix, please fill the prefix name into the first parameter when referencing it. """ def __init__(self, *args, **kwargs): if len(args) >= 1: self.prefix = args[0] else: self.prefix = None def invoke(self, profile: Profile, shared: Storage, logger: Logger) -> int: torch.manual_seed(profile.seed if 'seed' in profile else 0x3a4e) if 'model' in profile: device = profile.device if 'device' in profile else 'cpu' model = self.create_model(profile.model, shared, logger).to(device) else: raise RuntimeError('Missing profile field "model" to define the model.') if 'train_loader' in shared: train_loader: torch.utils.data.DataLoader = shared['train_loader'] else: raise RuntimeError('Missing shared object "train_loader" to provide training sets.') if 'validate_loader' in shared: validate_loader: torch.utils.data.DataLoader = shared['validate_loader'] else: raise RuntimeError('Missing shared object "validate_loader" to provide validating sets.') if 'optimizer' in profile: optimizer, lr_scheduler = self.create_optimizer(profile.optimizer, shared, logger, model) else: raise RuntimeError('Missing profile field "optimizer" to define the optimizer.') if 'loss_function' in profile: loss_function = self.create_loss_function(profile.loss_function, shared, logger) else: raise RuntimeError('Missing profile field "loss_function" to define the loss function.') trainer = self.create_trainer( profile, shared, logger, model, loss_function, optimizer, lr_scheduler, profile.train_output_transform if 'train_output_transform' in profile else lambda x, y, y_pred, loss: loss.item() ) evaluator = self.create_evaluator( profile, shared, logger, model, loss_function, optimizer, lr_scheduler, profile.evaluate_output_transform if 'evaluate_output_transform' in profile else lambda x, y, y_pred: ( y_pred, y) ) context = {} @evaluator.on(engine.Events.COMPLETED) def display_metrics(_engine: engine.Engine): logger.info('EVALUATE EPOCH {} | {}'.format(trainer.state.epoch, ' | '.join(map( lambda it: '{}: {}'.format(it[0], repr(it[1]).replace('\n', ' ')), _engine.state.metrics.items(), )))) @evaluator.on(engine.Events.COMPLETED) def store_model(_engine: engine.Engine): if 'compare_metric' not in context: context['compare_metric'] = float('-inf') if 'compare_by' not in profile or len(profile.compare_by) == 0: compare_by = 'loss' sign = '-' else: compare_by = profile.compare_by if compare_by[0] in '+-': sign = compare_by[0] compare_by = compare_by[1:] else: sign = '+' if compare_by not in _engine.state.metrics: logger.warning(f'Not found "{compare_by}" in metrics. Fall back to loss.') compare_by = 'loss' sign = '-' metric_value = _engine.state.metrics[compare_by] if sign == '-': metric_value = -metric_value if metric_value > context['compare_metric']: context['compare_metric'] = metric_value shared[self._model_key] = deepcopy(model.eval()) logger.info(f'Stored the model with {compare_by} of {metric_value}.') @trainer.on(engine.Events.ITERATION_COMPLETED( every=int(len(train_loader) * (profile.loss_display if 'loss_display' in profile else 0.1)) )) def display_loss(_engine: engine.Engine): epoch_iteration = _engine.state.iteration % _engine.state.epoch_length if epoch_iteration == 0: epoch_iteration = _engine.state.epoch_length logger.info('TRAIN EPOCH {} ITERATION {} | output: {}'.format( _engine.state.epoch, epoch_iteration, _engine.state.output )) @trainer.on(engine.Events.EPOCH_COMPLETED) def evaluate(_engine: engine.Engine): evaluator.run( validate_loader, ) self.register_handlers(profile, shared, logger, model, trainer, evaluator, context) trainer.run( train_loader, max_epochs=profile.max_epochs if 'max_epochs' in profile else 100, ) return Return.SUCCESS @property def _model_key(self): return 'model' if self.prefix is None else f'{self.prefix}_model' def require(self) -> List[Text]: """ The task requires 2 items, including "train_loader" and "validate_loader. Returns: "train_loader" and "validate_loader" """ return [ 'train_loader', 'validate_loader', ] def provide(self) -> List[Text]: """ The task provides 1 item, including "model" or "\\<something\\>_model". Returns: "model" or "\\<something\\>_model" """ return [ self._model_key ] def remove(self) -> List[Text]: """ This task removes nothing. Returns: nothing """ return [] @classmethod def define(cls) -> List[Definition]: """ Define the schema of `TrainTask`. Returns: Schema of `TrainTask`. Examples: See Also [Train AlexNet on Place 365 dataset](https://github.com/chenrz925/waterch-tasker/blob/master/examples/place365_alexnet.toml) """ return [ value('model', list, [ value('reference', str), value('kwargs', list, []) ]), value('loss_function', list, [ value('reference', str), value('kwargs', list, []) ]), value('metrics', list, []), value('optimizer', list, [ value('reference', str), value('kwargs', list, []), value('scheduler', list, [ value('reference', str), value('kwargs', list) ]) ]) ] @abstractmethod def create_model(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ Implement `create_model` to build the PyTorch model. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "model" in the task profile. """ raise NotImplementedError('Please create the model in create_model') @abstractmethod def create_loss_function(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ Implement `create_loss_function` to build the PyTorch loss function. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "loss_function" in the task profile. """ raise NotImplementedError('Please create the loss function in create_loss_function') @abstractmethod def create_optimizer(self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, **kwargs) -> optim.Optimizer: """ Implement `create_optimizer` to build the PyTorch optimizer. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: Always return [SUCCESS][tasker.typedef.Return.SUCCESS]. Notes: The profile should be attribute "optimizer" in the task profile. """ raise NotImplementedError('Please create the optimizer in create_optimizer') def prepare_train_batch( self, profile: Profile, shared: Storage, logger: Logger, batch: Tuple[torch.Tensor], device: Text, non_blocking: bool = False ): """ Preparing batch of samples when training. Implement this function to customize. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. batch: Raw batch provided by the data loader. device: Which device of the batch. non_blocking: Whether the action of moving the batch is blocking. Returns: Prepared batch. """ x, y = batch return ( convert_tensor(x, device=torch.device(device), non_blocking=non_blocking), convert_tensor(y, device=torch.device(device), non_blocking=non_blocking), ) def prepare_validate_batch( self, profile: Profile, shared: Storage, logger: Logger, batch: Tuple[torch.Tensor], device: Text, non_blocking: bool = False ): """ Preparing batch of samples when validating. Implement this function to customize. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. batch: Raw batch provided by the data loader. device: Which device of the batch. non_blocking: Whether the action of moving the batch is blocking. Returns: Prepared batch. """ x, y = batch return ( convert_tensor(x, device=torch.device(device), non_blocking=non_blocking), convert_tensor(y, device=torch.device(device), non_blocking=non_blocking), ) def create_trainer( self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, loss_function: nn.Module, optimizer: optim.Optimizer, lr_scheduler: Any, output_transform=lambda x, y, y_pred, loss: loss.item(), **kwargs ) -> engine.Engine: """ Build the trainer engine. Re-implement this function when you want to customize the updating actions of training. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. loss_function: The loss function to train. optimizer: The optimizer to train. lr_scheduler: The scheduler to control the learning rate. output_transform: The action to transform the output of the model. Returns: The trainer engine. """ if 'device' in profile: device_type = profile.device else: device_type = 'cpu' if 'non_blocking' in profile: non_blocking = profile.non_blocking else: non_blocking = False if 'deterministic' in profile: deterministic = profile.deterministic else: deterministic = False def _update(_engine: engine.Engine, _batch: Tuple[torch.Tensor]): model.train() optimizer.zero_grad() x, y = self.prepare_train_batch(profile, shared, logger, _batch, device=device_type, non_blocking=non_blocking) y_pred = model(x) loss = loss_function(y_pred, y) loss.backward() optimizer.step() if lr_scheduler is not None: lr_scheduler.step(loss) return output_transform(x, y, y_pred, loss) trainer = engine.Engine(_update) if not deterministic else engine.DeterministicEngine(_update) return trainer def register_metrics( self, profile: Profile, shared: Storage, logger: Logger, _metrics: Dict ): """ Register the metric methods. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. _metrics: The metrics dictionary to register. Returns: The metrics dictionary. """ return _metrics def register_handlers(self, profile, shared, logger, model, trainer, evaluator, context): """ Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. trainer: The trainer of the model. evaluator: The evaluator of the model. context: The context dictionary to store states in handlers. Returns: Nothing. """ pass def create_evaluator( self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, loss_function: nn.Module, optimizer: optim.Optimizer, lr_scheduler: Any, output_transform=lambda x, y, y_pred: (y_pred, y), **kwargs ) -> engine.Engine: """ Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. loss_function: The loss function to train. optimizer: The optimizer to train. lr_scheduler: The scheduler to control the learning rate. output_transform: The action to transform the output of the model. Returns: The evaluator engine. """ if 'device' in profile: device_type = profile.device else: device_type = 'cpu' if 'non_blocking' in profile: non_blocking = profile.non_blocking else: non_blocking = False if 'deterministic' in profile: deterministic = profile.deterministic else: deterministic = False _metrics = {} self.register_metrics(profile, shared, logger, _metrics) def _inference(_engine: engine.Engine, _batch: Tuple[torch.Tensor]): model.eval() with torch.no_grad(): x, y = self.prepare_validate_batch(profile, shared, logger, _batch, device=device_type, non_blocking=non_blocking) y_pred = model(x) return output_transform(x, y, y_pred) evaluator = engine.DeterministicEngine(_inference) if deterministic else engine.Engine(_inference) for name, metric in _metrics.items(): metric.attach(evaluator, name) return evaluator class SimpleTrainTask(TrainTask): """ <i>tasker.contrib.torch.SimpleTrainTask</i> An easy to use base class of task for training model. You can create model only with reference of dataset and related profile. Examples: See Also [Train AlexNet on Place 365 dataset](https://github.com/chenrz925/waterch-tasker/blob/master/examples/place365_alexnet.toml) """ def create_model(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ You can build the model class implementing [`Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module). And the parameters of the model class can be passed by `kwargs`. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: New model instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, nn.Module): logger.warning('Referenced class is not a subclass of torch.nn.Module.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the model profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} model = clz(**kwargs) return model def create_loss_function(self, profile: Profile, shared: Storage, logger: Logger, **kwargs) -> nn.Module: """ You can build the loss function class implementing [`Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module). And the parameters of the model class can be passed by `kwargs`. All loss functions provided PyTorch officially can be referenced. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. Returns: New model instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, nn.Module): logger.warning('Referenced class is not a subclass of torch.nn.Module.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the loss_function profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} loss_function = clz(**kwargs) return loss_function def create_optimizer(self, profile: Profile, shared: Storage, logger: Logger, model: nn.Module, **kwargs) -> Tuple[ optim.Optimizer, Any]: """ You can build the optimizer class implementing [`Optimizer`](https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer). And the parameters of the optimizer class can be passed by `kwargs`. All optimizers provided PyTorch officially can be referenced. You can also build a learning rate scheduler through `lr_scheduler` field. Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. model: The model to train. Returns: New optimizer instance. """ if 'reference' in profile: clz = profile.reference try: if not issubclass(clz, optim.Optimizer): logger.warning('Referenced class is not a subclass of torch.optim.Optimizer.') except TypeError: logger.warning('Referenced object is not a class, maybe a function?') else: raise RuntimeError('Missing field "reference" in the optimizer profile.') if 'kwargs' in profile: kwargs = profile.kwargs else: kwargs = {} optimizer = clz(model.parameters(), **kwargs) if 'lr_scheduler' in profile: if 'reference' in profile.lr_scheduler: lr_scheduler_clz = profile.lr_scheduler.reference if 'kwargs' in profile.lr_scheduler: lr_scheduler_kwargs = profile.lr_scheduler.kwargs else: lr_scheduler_kwargs = {} lr_scheduler = lr_scheduler_clz(optimizer, **lr_scheduler_kwargs) else: lr_scheduler = None else: lr_scheduler = None return optimizer, lr_scheduler def register_metrics( self, profile: Profile, shared: Storage, logger: Logger, _metrics: Dict ): """ Register the metric methods. In `SimpleTrainTask`, all the metrics can be initialized in profile by "M" type field. Examples: Register accuracy as metric method. ```toml accuracy = '$M$ignite.metrics.Accuracy' ``` Register F1 macro as metric method. ```toml f1macro = '1$M$tasker.contrib.torch.FBetaMacro$I' ``` Args: profile: Runtime profile defined in TOML file. shared: Shared storage in the whole lifecycle. logger: The logger named with this Task. _metrics: The metrics dictionary to register. Returns: The metrics dictionary. """ _metrics['loss'] = metrics.Loss(self.create_loss_function(profile.loss_function, shared, logger)) if 'metrics' in profile: _metrics.update(profile.metrics) return _metrics
0.828904
0.539347
import numpy as np import pytest from pandas import MultiIndex import pandas._testing as tm def test_numeric_compat(idx): with pytest.raises(TypeError, match="cannot perform __mul__"): idx * 1 with pytest.raises(TypeError, match="cannot perform __rmul__"): 1 * idx div_err = "cannot perform __truediv__" with pytest.raises(TypeError, match=div_err): idx / 1 div_err = div_err.replace(" __", " __r") with pytest.raises(TypeError, match=div_err): 1 / idx with pytest.raises(TypeError, match="cannot perform __floordiv__"): idx // 1 with pytest.raises(TypeError, match="cannot perform __rfloordiv__"): 1 // idx @pytest.mark.parametrize("method", ["all", "any"]) def test_logical_compat(idx, method): msg = f"cannot perform {method}" with pytest.raises(TypeError, match=msg): getattr(idx, method)() def test_inplace_mutation_resets_values(): levels = [["a", "b", "c"], [4]] levels2 = [[1, 2, 3], ["a"]] codes = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, codes=codes) mi2 = MultiIndex(levels=levels2, codes=codes) # instantiating MultiIndex should not access/cache _.values assert "_values" not in mi1._cache assert "_values" not in mi2._cache vals = mi1.values.copy() vals2 = mi2.values.copy() # accessing .values should cache ._values assert mi1._values is mi1._cache["_values"] assert mi1.values is mi1._cache["_values"] assert isinstance(mi1._cache["_values"], np.ndarray) # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't drop _values from _cache [implementation detail] tm.assert_almost_equal(mi1._cache["_values"], vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should drop _values from _cache with tm.assert_produces_warning(FutureWarning): mi1.set_levels(levels2, inplace=True) assert "_values" not in mi1._cache tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too codes2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(1, "a")] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_mi = mi2.set_codes(codes2) assert "_values" not in new_mi._cache new_values = new_mi.values assert "_values" in new_mi._cache # Not inplace shouldn't change tm.assert_almost_equal(mi2._cache["_values"], vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should drop _values from _cache, etc with tm.assert_produces_warning(FutureWarning): mi2.set_codes(codes2, inplace=True) assert "_values" not in mi2._cache tm.assert_almost_equal(mi2.values, new_values) assert "_values" in mi2._cache def test_pickle_compat_construction(): # this is testing for pickle compat # need an object to create with with pytest.raises(TypeError, match="Must pass both levels and codes"): MultiIndex()
venv/Lib/site-packages/pandas/tests/indexes/multi/test_compat.py
import numpy as np import pytest from pandas import MultiIndex import pandas._testing as tm def test_numeric_compat(idx): with pytest.raises(TypeError, match="cannot perform __mul__"): idx * 1 with pytest.raises(TypeError, match="cannot perform __rmul__"): 1 * idx div_err = "cannot perform __truediv__" with pytest.raises(TypeError, match=div_err): idx / 1 div_err = div_err.replace(" __", " __r") with pytest.raises(TypeError, match=div_err): 1 / idx with pytest.raises(TypeError, match="cannot perform __floordiv__"): idx // 1 with pytest.raises(TypeError, match="cannot perform __rfloordiv__"): 1 // idx @pytest.mark.parametrize("method", ["all", "any"]) def test_logical_compat(idx, method): msg = f"cannot perform {method}" with pytest.raises(TypeError, match=msg): getattr(idx, method)() def test_inplace_mutation_resets_values(): levels = [["a", "b", "c"], [4]] levels2 = [[1, 2, 3], ["a"]] codes = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, codes=codes) mi2 = MultiIndex(levels=levels2, codes=codes) # instantiating MultiIndex should not access/cache _.values assert "_values" not in mi1._cache assert "_values" not in mi2._cache vals = mi1.values.copy() vals2 = mi2.values.copy() # accessing .values should cache ._values assert mi1._values is mi1._cache["_values"] assert mi1.values is mi1._cache["_values"] assert isinstance(mi1._cache["_values"], np.ndarray) # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't drop _values from _cache [implementation detail] tm.assert_almost_equal(mi1._cache["_values"], vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should drop _values from _cache with tm.assert_produces_warning(FutureWarning): mi1.set_levels(levels2, inplace=True) assert "_values" not in mi1._cache tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too codes2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(1, "a")] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_mi = mi2.set_codes(codes2) assert "_values" not in new_mi._cache new_values = new_mi.values assert "_values" in new_mi._cache # Not inplace shouldn't change tm.assert_almost_equal(mi2._cache["_values"], vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should drop _values from _cache, etc with tm.assert_produces_warning(FutureWarning): mi2.set_codes(codes2, inplace=True) assert "_values" not in mi2._cache tm.assert_almost_equal(mi2.values, new_values) assert "_values" in mi2._cache def test_pickle_compat_construction(): # this is testing for pickle compat # need an object to create with with pytest.raises(TypeError, match="Must pass both levels and codes"): MultiIndex()
0.512205
0.662783
chars = [ [ "0000", "0000", "0000", "0000" ], [ "0100", "0100", "0000", "0100" ], [ "1010", "1010", "0000", "0000" ], [ "1010", "1111", "1010", "1111" ], [ "1110", "1100", "0110", "1110" ], [ "1001", "0010", "0100", "1001" ], [ "0110", "0110", "1010", "1111" ], [ "0100", "0100", "0000", "0000" ], [ "0010", "0100", "0100", "0010" ], [ "0100", "0010", "0010", "0100" ], [ "1010", "0100", "1010", "0000" ], [ "0000", "0100", "1110", "0100" ], [ "0000", "0000", "0010", "0100" ], [ "0000", "0000", "1110", "0000" ], [ "0000", "0000", "0000", "0100" ], [ "0001", "0010", "0100", "1000" ], [ "0110", "1010", "1010", "1100" ], [ "0010", "0110", "0010", "0010" ], [ "0110", "0001", "0110", "0111" ], [ "1100", "0110", "0010", "1100" ], [ "1010", "1110", "0010", "0010" ], [ "1110", "1000", "0110", "1110" ], [ "0100", "0111", "0101", "0011" ], [ "1100", "0010", "0010", "0010" ], [ "1110", "1010", "1110", "1110" ], [ "1100", "1010", "0110", "0010" ], [ "0100", "0000", "0100", "0000" ], [ "0100", "0000", "0100", "1000" ], [ "0000", "0010", "0100", "0010" ], [ "0000", "1110", "0000", "1110" ], [ "0000", "0100", "0010", "0100" ], [ "1110", "0010", "0110", "0100" ], [ "0110", "1001", "1010", "0111" ], [ "0100", "1010", "1110", "1010" ], [ "0110", "0111", "0101", "0110" ], [ "0011", "0100", "0100", "0011" ], [ "0110", "0101", "0101", "0110" ], [ "0011", "0110", "0100", "0111" ], [ "0111", "0100", "0110", "0100" ], [ "0111", "0100", "0101", "0111" ], [ "1010", "1010", "1110", "1010" ], [ "1110", "0100", "0100", "1110" ], [ "0010", "0010", "1010", "1110" ], [ "0101", "0110", "0110", "0101" ], [ "0100", "0100", "0100", "0111" ], [ "1001", "1111", "1001", "1001" ], [ "1110", "1010", "1010", "1010" ], [ "0110", "1001", "1001", "0110" ], [ "0110", "0101", "0110", "0100" ], [ "0100", "1010", "1010", "0111" ], [ "0110", "0101", "0110", "0101" ], [ "0110", "1100", "0110", "1100" ], [ "1110", "0100", "0100", "0100" ], [ "1010", "1010", "1010", "0110" ], [ "1010", "1010", "1110", "0100" ], [ "1001", "1001", "1111", "0110" ], [ "1010", "1010", "0100", "1010" ], [ "1010", "1010", "0100", "0100" ], [ "1111", "0010", "0100", "1111" ], [ "0110", "0100", "0100", "0110" ], [ "1000", "0100", "0010", "0001" ], [ "0110", "0010", "0010", "0110" ], [ "0100", "1010", "0000", "0000" ], [ "0000", "0000", "0000", "1111" ], [ "0100", "0010", "0000", "0000" ], [ "0000", "0110", "1010", "0110" ], [ "0100", "0110", "0101", "0110" ], [ "0000", "0110", "1000", "0110" ], [ "0010", "0110", "1010", "0110" ], [ "0110", "1010", "1100", "0110" ], [ "0010", "0100", "0110", "0100" ], [ "0110", "1000", "1010", "0110" ], [ "0100", "0100", "0111", "0101" ], [ "0100", "0000", "0100", "0100" ], [ "0010", "0010", "1010", "0100" ], [ "0100", "0101", "0110", "0101" ], [ "0100", "0100", "0100", "0010" ], [ "1000", "1111", "1011", "1011" ], [ "0000", "1100", "1010", "1010" ], [ "0000", "0100", "1010", "0100" ], [ "0010", "0101", "0110", "0100" ], [ "0100", "1010", "0110", "0011" ], [ "0100", "0110", "0100", "0100" ], [ "0000", "0110", "0100", "1100" ], [ "0100", "1110", "0100", "0100" ], [ "0000", "1010", "1010", "0110" ], [ "0000", "1010", "1110", "0100" ], [ "0000", "1011", "1011", "0110" ], [ "0000", "1010", "0100", "1010" ], [ "0000", "1010", "0100", "0100" ], [ "0000", "1100", "0100", "0110" ], [ "0110", "0100", "1100", "0110" ], [ "0010", "0010", "0010", "0010" ], [ "0110", "0010", "0011", "0110" ], [ "0000", "0101", "1010", "0000" ], ]
font4x4.py
chars = [ [ "0000", "0000", "0000", "0000" ], [ "0100", "0100", "0000", "0100" ], [ "1010", "1010", "0000", "0000" ], [ "1010", "1111", "1010", "1111" ], [ "1110", "1100", "0110", "1110" ], [ "1001", "0010", "0100", "1001" ], [ "0110", "0110", "1010", "1111" ], [ "0100", "0100", "0000", "0000" ], [ "0010", "0100", "0100", "0010" ], [ "0100", "0010", "0010", "0100" ], [ "1010", "0100", "1010", "0000" ], [ "0000", "0100", "1110", "0100" ], [ "0000", "0000", "0010", "0100" ], [ "0000", "0000", "1110", "0000" ], [ "0000", "0000", "0000", "0100" ], [ "0001", "0010", "0100", "1000" ], [ "0110", "1010", "1010", "1100" ], [ "0010", "0110", "0010", "0010" ], [ "0110", "0001", "0110", "0111" ], [ "1100", "0110", "0010", "1100" ], [ "1010", "1110", "0010", "0010" ], [ "1110", "1000", "0110", "1110" ], [ "0100", "0111", "0101", "0011" ], [ "1100", "0010", "0010", "0010" ], [ "1110", "1010", "1110", "1110" ], [ "1100", "1010", "0110", "0010" ], [ "0100", "0000", "0100", "0000" ], [ "0100", "0000", "0100", "1000" ], [ "0000", "0010", "0100", "0010" ], [ "0000", "1110", "0000", "1110" ], [ "0000", "0100", "0010", "0100" ], [ "1110", "0010", "0110", "0100" ], [ "0110", "1001", "1010", "0111" ], [ "0100", "1010", "1110", "1010" ], [ "0110", "0111", "0101", "0110" ], [ "0011", "0100", "0100", "0011" ], [ "0110", "0101", "0101", "0110" ], [ "0011", "0110", "0100", "0111" ], [ "0111", "0100", "0110", "0100" ], [ "0111", "0100", "0101", "0111" ], [ "1010", "1010", "1110", "1010" ], [ "1110", "0100", "0100", "1110" ], [ "0010", "0010", "1010", "1110" ], [ "0101", "0110", "0110", "0101" ], [ "0100", "0100", "0100", "0111" ], [ "1001", "1111", "1001", "1001" ], [ "1110", "1010", "1010", "1010" ], [ "0110", "1001", "1001", "0110" ], [ "0110", "0101", "0110", "0100" ], [ "0100", "1010", "1010", "0111" ], [ "0110", "0101", "0110", "0101" ], [ "0110", "1100", "0110", "1100" ], [ "1110", "0100", "0100", "0100" ], [ "1010", "1010", "1010", "0110" ], [ "1010", "1010", "1110", "0100" ], [ "1001", "1001", "1111", "0110" ], [ "1010", "1010", "0100", "1010" ], [ "1010", "1010", "0100", "0100" ], [ "1111", "0010", "0100", "1111" ], [ "0110", "0100", "0100", "0110" ], [ "1000", "0100", "0010", "0001" ], [ "0110", "0010", "0010", "0110" ], [ "0100", "1010", "0000", "0000" ], [ "0000", "0000", "0000", "1111" ], [ "0100", "0010", "0000", "0000" ], [ "0000", "0110", "1010", "0110" ], [ "0100", "0110", "0101", "0110" ], [ "0000", "0110", "1000", "0110" ], [ "0010", "0110", "1010", "0110" ], [ "0110", "1010", "1100", "0110" ], [ "0010", "0100", "0110", "0100" ], [ "0110", "1000", "1010", "0110" ], [ "0100", "0100", "0111", "0101" ], [ "0100", "0000", "0100", "0100" ], [ "0010", "0010", "1010", "0100" ], [ "0100", "0101", "0110", "0101" ], [ "0100", "0100", "0100", "0010" ], [ "1000", "1111", "1011", "1011" ], [ "0000", "1100", "1010", "1010" ], [ "0000", "0100", "1010", "0100" ], [ "0010", "0101", "0110", "0100" ], [ "0100", "1010", "0110", "0011" ], [ "0100", "0110", "0100", "0100" ], [ "0000", "0110", "0100", "1100" ], [ "0100", "1110", "0100", "0100" ], [ "0000", "1010", "1010", "0110" ], [ "0000", "1010", "1110", "0100" ], [ "0000", "1011", "1011", "0110" ], [ "0000", "1010", "0100", "1010" ], [ "0000", "1010", "0100", "0100" ], [ "0000", "1100", "0100", "0110" ], [ "0110", "0100", "1100", "0110" ], [ "0010", "0010", "0010", "0010" ], [ "0110", "0010", "0011", "0110" ], [ "0000", "0101", "1010", "0000" ], ]
0.275812
0.391755
import gzip import io import json import time import sys def decompress(inputBytes): with io.BytesIO() as bio: with io.BytesIO(inputBytes) as stream: decompressor = gzip.GzipFile(fileobj=stream, mode='r') while True: # until EOF chunk = decompressor.read(8192) if not chunk: decompressor.close() bio.seek(0) return bio.read().decode("utf-8") bio.write(chunk) return None def compress(inputString): with io.BytesIO() as bio: bio.write(inputString.encode("utf-8")) bio.seek(0) with io.BytesIO() as stream: compressor = gzip.GzipFile(fileobj=stream, mode='w') while True: # until EOF chunk = bio.read(8192) if not chunk: # EOF? compressor.close() return stream.getvalue() compressor.write(chunk) if __name__ == "__main__": if len(sys.argv) >= 1: fn = ' '.join(sys.argv[1:]) ext = fn.split('.')[-1] try: with open(fn, "rb") as ifstream: if ext == 'json': print(f'Compressing "{fn}"') data = compress(ifstream.read().decode('utf-8')) with open(".".join(fn.split(".")[:-1]) + ".gzip", "wb") as ofstream: ofstream.write(data) print('Done') elif ext == 'gzip': print(f'Decompressing "{fn}"') data = decompress(ifstream.read()) with open(".".join(fn.split(".")[:-1]) + ".json", "w", encoding="utf-8") as ofstream: ofstream.write(data) print('Done') else: print(f'Unknown file type "{ext}"') except: print(f'Error opening file "{fn}"') else: print('Please drag and drop on save_gzipper.py" either a .json or .gzip file to compress/decompress it') print('Closing this prompt in 10 seconds') time.sleep(10) with open("save.json", "r") as stream: data = compressStringToBytes(stream.read()) with open("out.gzip", "wb") as stream: stream.write(data)
tools/save_gzipper.py
import gzip import io import json import time import sys def decompress(inputBytes): with io.BytesIO() as bio: with io.BytesIO(inputBytes) as stream: decompressor = gzip.GzipFile(fileobj=stream, mode='r') while True: # until EOF chunk = decompressor.read(8192) if not chunk: decompressor.close() bio.seek(0) return bio.read().decode("utf-8") bio.write(chunk) return None def compress(inputString): with io.BytesIO() as bio: bio.write(inputString.encode("utf-8")) bio.seek(0) with io.BytesIO() as stream: compressor = gzip.GzipFile(fileobj=stream, mode='w') while True: # until EOF chunk = bio.read(8192) if not chunk: # EOF? compressor.close() return stream.getvalue() compressor.write(chunk) if __name__ == "__main__": if len(sys.argv) >= 1: fn = ' '.join(sys.argv[1:]) ext = fn.split('.')[-1] try: with open(fn, "rb") as ifstream: if ext == 'json': print(f'Compressing "{fn}"') data = compress(ifstream.read().decode('utf-8')) with open(".".join(fn.split(".")[:-1]) + ".gzip", "wb") as ofstream: ofstream.write(data) print('Done') elif ext == 'gzip': print(f'Decompressing "{fn}"') data = decompress(ifstream.read()) with open(".".join(fn.split(".")[:-1]) + ".json", "w", encoding="utf-8") as ofstream: ofstream.write(data) print('Done') else: print(f'Unknown file type "{ext}"') except: print(f'Error opening file "{fn}"') else: print('Please drag and drop on save_gzipper.py" either a .json or .gzip file to compress/decompress it') print('Closing this prompt in 10 seconds') time.sleep(10) with open("save.json", "r") as stream: data = compressStringToBytes(stream.read()) with open("out.gzip", "wb") as stream: stream.write(data)
0.144239
0.072112
import os import re def update_repository_name(repository): """Update given repository name so it won't contain any prefix(es).""" lastSlash = repository.rfind("/") # make sure we use just the repo name if lastSlash >= 0 and lastSlash < len(repository) - 1: return repository[1 + lastSlash:] else: return repository def is_repository_cloned(repository): """Check if the directory with cloned repository exist.""" return os.path.isdir("repositories/" + update_repository_name(repository)) def clone_repository(repository, full_history): """Clone the selected repository.""" print("Cloning the repository {repository}".format(repository=repository)) prefix = "https://github.com" if full_history: cmd = "pushd repositories; git clone {prefix}/{repo}.git; popd".\ format(prefix=prefix, repo=repository) else: cmd = "pushd repositories; git clone --single-branch --depth 1 {prefix}/{repo}.git; popd".\ format(prefix=prefix, repo=repository) os.system(cmd) def fetch_repository(repository): """Fetch the selected repository.""" repository = update_repository_name(repository) print("Fetching changes from the repository {repository}".format(repository=repository)) command = "pushd repositories/{repository}; git fetch; popd".format(repository=repository) os.system(command) def clone_or_fetch_repository(repository, full_history=False): """Clone or fetch the selected repository.""" if is_repository_cloned(repository): # make sure we don't have detached head checkout(repository, "master") fetch_repository(repository) else: clone_repository(repository, full_history) def create_log(repository): """Retrieve the log for the given repository.""" repository = update_repository_name(repository) command = ("pushd repositories/{repo} >> /dev/null; " + "git log --pretty=oneline > ../logs.txt; " + "popd >> /dev/null").format(repo=repository) os.system(command) def read_all_commits(filename): """Read all commits from the given GIT log file.""" commits = [] with open(filename) as fin: for line in fin: splitted = line.strip().split(" ", 1) commits.append(splitted) commits.reverse() return commits def read_commits(filename, pattern): """Read commits from the given GIT log file that pass the selected pattern.""" commits = read_all_commits(filename) # filter commits return [commit for commit in commits if re.fullmatch(pattern, commit[1])] def checkout(repository, commit): """Perform the GIT checkout in the selected repository.""" repository = update_repository_name(repository) command = ("pushd repositories/{repo} >> /dev/null; " + "git checkout {commit}; " + "popd >> /dev/null").format(repo=repository, commit=commit) os.system(command)
dashboard/src/git_utils.py
import os import re def update_repository_name(repository): """Update given repository name so it won't contain any prefix(es).""" lastSlash = repository.rfind("/") # make sure we use just the repo name if lastSlash >= 0 and lastSlash < len(repository) - 1: return repository[1 + lastSlash:] else: return repository def is_repository_cloned(repository): """Check if the directory with cloned repository exist.""" return os.path.isdir("repositories/" + update_repository_name(repository)) def clone_repository(repository, full_history): """Clone the selected repository.""" print("Cloning the repository {repository}".format(repository=repository)) prefix = "https://github.com" if full_history: cmd = "pushd repositories; git clone {prefix}/{repo}.git; popd".\ format(prefix=prefix, repo=repository) else: cmd = "pushd repositories; git clone --single-branch --depth 1 {prefix}/{repo}.git; popd".\ format(prefix=prefix, repo=repository) os.system(cmd) def fetch_repository(repository): """Fetch the selected repository.""" repository = update_repository_name(repository) print("Fetching changes from the repository {repository}".format(repository=repository)) command = "pushd repositories/{repository}; git fetch; popd".format(repository=repository) os.system(command) def clone_or_fetch_repository(repository, full_history=False): """Clone or fetch the selected repository.""" if is_repository_cloned(repository): # make sure we don't have detached head checkout(repository, "master") fetch_repository(repository) else: clone_repository(repository, full_history) def create_log(repository): """Retrieve the log for the given repository.""" repository = update_repository_name(repository) command = ("pushd repositories/{repo} >> /dev/null; " + "git log --pretty=oneline > ../logs.txt; " + "popd >> /dev/null").format(repo=repository) os.system(command) def read_all_commits(filename): """Read all commits from the given GIT log file.""" commits = [] with open(filename) as fin: for line in fin: splitted = line.strip().split(" ", 1) commits.append(splitted) commits.reverse() return commits def read_commits(filename, pattern): """Read commits from the given GIT log file that pass the selected pattern.""" commits = read_all_commits(filename) # filter commits return [commit for commit in commits if re.fullmatch(pattern, commit[1])] def checkout(repository, commit): """Perform the GIT checkout in the selected repository.""" repository = update_repository_name(repository) command = ("pushd repositories/{repo} >> /dev/null; " + "git checkout {commit}; " + "popd >> /dev/null").format(repo=repository, commit=commit) os.system(command)
0.523908
0.093844
import json import types import itertools import torch import numpy as np from train import argument_parser, parse_args, configure from train import get_validation_dataset, get_validation_iterator from train import build_net from diora.logging.configuration import get_logger try: import faiss from faiss import normalize_L2 except: print('Could not import `faiss`, which is used to find nearest neighbors.') def get_cell_index(entity_labels, i_label=0, i_pos=1, i_size=2): def helper(): for i, lst in enumerate(entity_labels): for el in lst: if el is None: continue pos = el[i_pos] size = el[i_size] label = el[i_label] yield (i, pos, size, label) lst = list(helper()) if len(lst) == 0: return None, [] batch_index = [x[0] for x in lst] positions = [x[1] for x in lst] sizes = [x[2] for x in lst] labels = [x[3] for x in lst] return batch_index, positions, sizes, labels def get_many_cells(diora, chart, batch_index, positions, sizes): cells = [] length = diora.length idx = [] for bi, pos, size in zip(batch_index, positions, sizes): level = size - 1 offset = diora.index.get_offset(length)[level] absolute_pos = offset + pos idx.append(absolute_pos) cells = chart[batch_index, idx] return cells def get_many_phrases(batch, batch_index, positions, sizes): batch = batch.tolist() lst = [] for bi, pos, size in zip(batch_index, positions, sizes): phrase = tuple(batch[bi][pos:pos+size]) lst.append(phrase) return lst class BatchRecorder(object): def __init__(self, dtype={}): super(BatchRecorder, self).__init__() self.cache = {} self.dtype = dtype self.dtype2flatten = { 'list': self._flatten_list, 'np': self._flatten_np, 'torch': self._flatten_torch, } def _flatten_list(self, v): return list(itertools.chain(*v)) def _flatten_np(self, v): return np.concatenate(v, axis=0) def _flatten_torch(self, v): return torch.cat(v, 0).cpu().data.numpy() def get_flattened_result(self): def helper(): for k, v in self.cache.items(): flatten = self.dtype2flatten[self.dtype.get(k, 'list')] yield k, flatten(v) return {k: v for k, v in helper()} def record(self, **kwargs): for k, v in kwargs.items(): self.cache.setdefault(k, []).append(v) class Index(object): def __init__(self, dim=None): super(Index, self).__init__() self.D, self.I = None, None self.index = faiss.IndexFlatIP(dim) def add(self, vecs): self.index.add(vecs) def cache(self, vecs, k): self.D, self.I = self.index.search(vecs, k) def topk(self, q, k): for j in range(k): idx = self.I[q][j] dist = self.D[q][j] yield idx, dist class NearestNeighborsLookup(object): def __init__(self): super(NearestNeighborsLookup, self).__init__() def run(options): logger = get_logger() validation_dataset = get_validation_dataset(options) validation_iterator = get_validation_iterator(options, validation_dataset) word2idx = validation_dataset['word2idx'] embeddings = validation_dataset['embeddings'] idx2word = {v: k for k, v in word2idx.items()} logger.info('Initializing model.') trainer = build_net(options, embeddings, validation_iterator) diora = trainer.net.diora # 1. Get all relevant phrase vectors. dtype = { 'example_ids': 'list', 'labels': 'list', 'positions': 'list', 'sizes': 'list', 'phrases': 'list', 'inside': 'torch', 'outside': 'torch', } batch_recorder = BatchRecorder(dtype=dtype) ## Eval mode. trainer.net.eval() batches = validation_iterator.get_iterator(random_seed=options.seed) logger.info('Beginning to embed phrases.') with torch.no_grad(): for i, batch_map in enumerate(batches): sentences = batch_map['sentences'] batch_size = sentences.shape[0] length = sentences.shape[1] # Skips very short examples. if length <= 2: continue _ = trainer.step(batch_map, train=False, compute_loss=False) entity_labels = batch_map['entity_labels'] batch_index, positions, sizes, labels = get_cell_index(entity_labels) # Skip short phrases. batch_index = [x for x, y in zip(batch_index, sizes) if y >= 2] positions = [x for x, y in zip(positions, sizes) if y >= 2] labels = [x for x, y in zip(labels, sizes) if y >= 2] sizes = [y for y in sizes if y >= 2] cell_index = (batch_index, positions, sizes) batch_result = {} batch_result['example_ids'] = [batch_map['example_ids'][idx] for idx in cell_index[0]] batch_result['labels'] = labels batch_result['positions'] = cell_index[1] batch_result['sizes'] = cell_index[2] batch_result['phrases'] = get_many_phrases(sentences, *cell_index) batch_result['inside'] = get_many_cells(diora, diora.inside_h, *cell_index) batch_result['outside'] = get_many_cells(diora, diora.outside_h, *cell_index) batch_recorder.record(**batch_result) result = batch_recorder.get_flattened_result() # 2. Build an index of nearest neighbors. vectors = np.concatenate([result['inside'], result['outside']], axis=1) normalize_L2(vectors) index = Index(dim=vectors.shape[1]) index.add(vectors) index.cache(vectors, options.k_candidates) # 3. Print a summary. example_ids = result['example_ids'] phrases = result['phrases'] assert len(example_ids) == len(phrases) assert len(example_ids) == vectors.shape[0] def stringify(phrase): return ' '.join([idx2word[idx] for idx in phrase]) for i in range(vectors.shape[0]): topk = [] for j, score in index.topk(i, options.k_candidates): # Skip same example. if example_ids[i] == example_ids[j]: continue # Skip string match. if phrases[i] == phrases[j]: continue topk.append((j, score)) if len(topk) == options.k_top: break assert len(topk) == options.k_top, 'Did not find enough valid candidates.' # Print. print('[query] example_id={} phrase={}'.format( example_ids[i], stringify(phrases[i]))) for rank, (j, score) in enumerate(topk): print('rank={} score={:.3f} example_id={} phrase={}'.format( rank, score, example_ids[j], stringify(phrases[j]))) if __name__ == '__main__': parser = argument_parser() parser.add_argument('--k_candidates', default=100, type=int) parser.add_argument('--k_top', default=3, type=int) options = parse_args(parser) configure(options) run(options)
pytorch/diora/scripts/phrase_embed.py
import json import types import itertools import torch import numpy as np from train import argument_parser, parse_args, configure from train import get_validation_dataset, get_validation_iterator from train import build_net from diora.logging.configuration import get_logger try: import faiss from faiss import normalize_L2 except: print('Could not import `faiss`, which is used to find nearest neighbors.') def get_cell_index(entity_labels, i_label=0, i_pos=1, i_size=2): def helper(): for i, lst in enumerate(entity_labels): for el in lst: if el is None: continue pos = el[i_pos] size = el[i_size] label = el[i_label] yield (i, pos, size, label) lst = list(helper()) if len(lst) == 0: return None, [] batch_index = [x[0] for x in lst] positions = [x[1] for x in lst] sizes = [x[2] for x in lst] labels = [x[3] for x in lst] return batch_index, positions, sizes, labels def get_many_cells(diora, chart, batch_index, positions, sizes): cells = [] length = diora.length idx = [] for bi, pos, size in zip(batch_index, positions, sizes): level = size - 1 offset = diora.index.get_offset(length)[level] absolute_pos = offset + pos idx.append(absolute_pos) cells = chart[batch_index, idx] return cells def get_many_phrases(batch, batch_index, positions, sizes): batch = batch.tolist() lst = [] for bi, pos, size in zip(batch_index, positions, sizes): phrase = tuple(batch[bi][pos:pos+size]) lst.append(phrase) return lst class BatchRecorder(object): def __init__(self, dtype={}): super(BatchRecorder, self).__init__() self.cache = {} self.dtype = dtype self.dtype2flatten = { 'list': self._flatten_list, 'np': self._flatten_np, 'torch': self._flatten_torch, } def _flatten_list(self, v): return list(itertools.chain(*v)) def _flatten_np(self, v): return np.concatenate(v, axis=0) def _flatten_torch(self, v): return torch.cat(v, 0).cpu().data.numpy() def get_flattened_result(self): def helper(): for k, v in self.cache.items(): flatten = self.dtype2flatten[self.dtype.get(k, 'list')] yield k, flatten(v) return {k: v for k, v in helper()} def record(self, **kwargs): for k, v in kwargs.items(): self.cache.setdefault(k, []).append(v) class Index(object): def __init__(self, dim=None): super(Index, self).__init__() self.D, self.I = None, None self.index = faiss.IndexFlatIP(dim) def add(self, vecs): self.index.add(vecs) def cache(self, vecs, k): self.D, self.I = self.index.search(vecs, k) def topk(self, q, k): for j in range(k): idx = self.I[q][j] dist = self.D[q][j] yield idx, dist class NearestNeighborsLookup(object): def __init__(self): super(NearestNeighborsLookup, self).__init__() def run(options): logger = get_logger() validation_dataset = get_validation_dataset(options) validation_iterator = get_validation_iterator(options, validation_dataset) word2idx = validation_dataset['word2idx'] embeddings = validation_dataset['embeddings'] idx2word = {v: k for k, v in word2idx.items()} logger.info('Initializing model.') trainer = build_net(options, embeddings, validation_iterator) diora = trainer.net.diora # 1. Get all relevant phrase vectors. dtype = { 'example_ids': 'list', 'labels': 'list', 'positions': 'list', 'sizes': 'list', 'phrases': 'list', 'inside': 'torch', 'outside': 'torch', } batch_recorder = BatchRecorder(dtype=dtype) ## Eval mode. trainer.net.eval() batches = validation_iterator.get_iterator(random_seed=options.seed) logger.info('Beginning to embed phrases.') with torch.no_grad(): for i, batch_map in enumerate(batches): sentences = batch_map['sentences'] batch_size = sentences.shape[0] length = sentences.shape[1] # Skips very short examples. if length <= 2: continue _ = trainer.step(batch_map, train=False, compute_loss=False) entity_labels = batch_map['entity_labels'] batch_index, positions, sizes, labels = get_cell_index(entity_labels) # Skip short phrases. batch_index = [x for x, y in zip(batch_index, sizes) if y >= 2] positions = [x for x, y in zip(positions, sizes) if y >= 2] labels = [x for x, y in zip(labels, sizes) if y >= 2] sizes = [y for y in sizes if y >= 2] cell_index = (batch_index, positions, sizes) batch_result = {} batch_result['example_ids'] = [batch_map['example_ids'][idx] for idx in cell_index[0]] batch_result['labels'] = labels batch_result['positions'] = cell_index[1] batch_result['sizes'] = cell_index[2] batch_result['phrases'] = get_many_phrases(sentences, *cell_index) batch_result['inside'] = get_many_cells(diora, diora.inside_h, *cell_index) batch_result['outside'] = get_many_cells(diora, diora.outside_h, *cell_index) batch_recorder.record(**batch_result) result = batch_recorder.get_flattened_result() # 2. Build an index of nearest neighbors. vectors = np.concatenate([result['inside'], result['outside']], axis=1) normalize_L2(vectors) index = Index(dim=vectors.shape[1]) index.add(vectors) index.cache(vectors, options.k_candidates) # 3. Print a summary. example_ids = result['example_ids'] phrases = result['phrases'] assert len(example_ids) == len(phrases) assert len(example_ids) == vectors.shape[0] def stringify(phrase): return ' '.join([idx2word[idx] for idx in phrase]) for i in range(vectors.shape[0]): topk = [] for j, score in index.topk(i, options.k_candidates): # Skip same example. if example_ids[i] == example_ids[j]: continue # Skip string match. if phrases[i] == phrases[j]: continue topk.append((j, score)) if len(topk) == options.k_top: break assert len(topk) == options.k_top, 'Did not find enough valid candidates.' # Print. print('[query] example_id={} phrase={}'.format( example_ids[i], stringify(phrases[i]))) for rank, (j, score) in enumerate(topk): print('rank={} score={:.3f} example_id={} phrase={}'.format( rank, score, example_ids[j], stringify(phrases[j]))) if __name__ == '__main__': parser = argument_parser() parser.add_argument('--k_candidates', default=100, type=int) parser.add_argument('--k_top', default=3, type=int) options = parse_args(parser) configure(options) run(options)
0.70304
0.32861
import requests from requests.auth import HTTPBasicAuth from ..resources.resource import Resource class Products(Resource): def __init__(self): super().__init__("products") def activate_product(self, id): return requests.post(self.config.base_url + self.path + '/' + str(id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_warehouse_settings(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/warehouses", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def update_warehouse_settings(self, product_id, warehouse_id, settings_object): return requests.put(self.config.base_url + self.path + "/" + str(product_id) + "/warehouses/" + str(settings_object), data=object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_images(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/images", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def post_images(self, id, image_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/images", data=image_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def delete_image(self, id, image_id): return requests.delete(self.config.base_url + self.path + '/' + str(id) + "/images/" + str(image_id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_locations(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/locations", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def link_product(self, id, link_product_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/locations", data=link_product_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def unlink_product(self, id, location_id): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/locations/" + location_id, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_tag(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/tags", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def post_tag(self, id, tag_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/tags", data=tag_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def remove_tag(self, id, tags_id): return requests.delete(self.config.base_url + self.path + '/' + str(id) + "/tags/" + tags_id, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_stock(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/stock", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_stock_in_single_warehouse(self, product_id, warehouse_id): return requests.get(self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def change_stock(self, product_id, warehouse_id, stock_object): return requests.post(self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id), data=stock_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def move_stock(self, product_id, warehouse_id, stock_object): return requests.post( self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id) + "/move", data=stock_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def delete(self, id): raise NotImplementedError("Not possible to delete a product")
picqer_client_python/resources/products.py
import requests from requests.auth import HTTPBasicAuth from ..resources.resource import Resource class Products(Resource): def __init__(self): super().__init__("products") def activate_product(self, id): return requests.post(self.config.base_url + self.path + '/' + str(id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_warehouse_settings(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/warehouses", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def update_warehouse_settings(self, product_id, warehouse_id, settings_object): return requests.put(self.config.base_url + self.path + "/" + str(product_id) + "/warehouses/" + str(settings_object), data=object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_images(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/images", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def post_images(self, id, image_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/images", data=image_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def delete_image(self, id, image_id): return requests.delete(self.config.base_url + self.path + '/' + str(id) + "/images/" + str(image_id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_locations(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/locations", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def link_product(self, id, link_product_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/locations", data=link_product_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def unlink_product(self, id, location_id): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/locations/" + location_id, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_tag(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/tags", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def post_tag(self, id, tag_object): return requests.post(self.config.base_url + self.path + '/' + str(id) + "/tags", data=tag_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def remove_tag(self, id, tags_id): return requests.delete(self.config.base_url + self.path + '/' + str(id) + "/tags/" + tags_id, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_stock(self, id): return requests.get(self.config.base_url + self.path + '/' + str(id) + "/stock", verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def get_stock_in_single_warehouse(self, product_id, warehouse_id): return requests.get(self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id), verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def change_stock(self, product_id, warehouse_id, stock_object): return requests.post(self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id), data=stock_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def move_stock(self, product_id, warehouse_id, stock_object): return requests.post( self.config.base_url + self.path + '/' + str(product_id) + "/stock/" + str(warehouse_id) + "/move", data=stock_object, verify=True, auth=HTTPBasicAuth(self.config.api_key, '')) def delete(self, id): raise NotImplementedError("Not possible to delete a product")
0.347426
0.045016
from collections import namedtuple from django.db import models from django.test import TestCase from rest_framework.viewsets import ModelViewSet from rest_framework_nested.routers import SimpleRouter, NestedSimpleRouter from tests.helpers import get_regex_pattern def pattern_from_url(url_pattern): """ Finds the internal stringified pattern for a URL across Django versions. Newer versions of Django use URLPattern, as opposed to RegexURLPattern. """ if hasattr(url_pattern, 'pattern'): pattern = str(url_pattern.pattern) elif hasattr(url_pattern._regex, 'pattern'): pattern = str(url_pattern.regex.pattern) else: pattern = url_pattern._regex return pattern QS = namedtuple('Queryset', ['model']) class A(models.Model): name = models.CharField(max_length=255) class B(models.Model): name = models.CharField(max_length=255) parent = models.ForeignKey(A, on_delete=models.CASCADE) class C(models.Model): name = models.CharField(max_length=255) parent = models.ForeignKey(B, on_delete=models.CASCADE) class AViewSet(ModelViewSet): lookup_value_regex = '[0-9a-f]{32}' model = A queryset = QS(A) class BViewSet(ModelViewSet): model = B queryset = QS(B) class CViewSet(ModelViewSet): model = C queryset = QS(C) class TestNestedSimpleRouter(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'a', AViewSet) self.a_router = NestedSimpleRouter(self.router, r'a', lookup='a') self.a_router.register(r'b', BViewSet) self.b_router = NestedSimpleRouter(self.a_router, r'b', lookup='b') self.b_router.register(r'c', CViewSet) def test_recursive_nested_simple_routers(self): self.assertFalse(hasattr(self.router, 'parent_regex')) urls = self.router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<pk>[0-9a-f]{32})/$') self.assertEqual(self.a_router.parent_regex, u'a/(?P<a_pk>[0-9a-f]{32})/') urls = self.a_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<pk>[^/.]+)/$') self.assertEqual(self.b_router.parent_regex, u'a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/') urls = self.b_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/c/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/c/(?P<pk>[^/.]+)/$') class TestEmptyPrefix(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'', AViewSet) self.a_router = NestedSimpleRouter(self.router, r'', lookup='a') self.a_router.register(r'b', BViewSet) def test_empty_prefix(self): urls = self.router.urls urls = self.a_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^(?P<a_pk>[0-9a-f]{32})/b/$') self.assertEquals(get_regex_pattern(urls[1]), u'^(?P<a_pk>[0-9a-f]{32})/b/(?P<pk>[^/.]+)/$') class TestBadLookupValue(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'parents', AViewSet, base_name='ui-parent_1') def test_bad_lookup(self): with self.assertRaises(ValueError): self.a_router = NestedSimpleRouter(self.router, r'parents', lookup='ui-parent_2') self.a_router.register(r'child', BViewSet, base_name='ui-parent-child') class TestRouterSettingInheritance(TestCase): """ Ensure that nested routers inherit the trailing_slash option from their parent unless explicitly told not to. note: drf transforms the boolean from the kwargs into an internal pattern string, so it required to test these values instead of the boolean. trailing_slash=True -> '/' trailing_slash=False -> '' trailing_slash should - always give priority to the value explicitly defined on the router - if inherited, use the trailing slash exactly as set in the parent """ def _assertHasTrailingSlash(self, router): self.assertEqual(router.trailing_slash, u'/', "router does not have trailing slash when it should") self.assertTrue(pattern_from_url(router.urls[0]).endswith('/$'), "router created url without trailing slash when it should have") def _assertDoesNotHaveTrailingSlash(self, router): self.assertEqual(router.trailing_slash, u'', "router has trailing slash when it should not") self.assertFalse(pattern_from_url(router.urls[0]).endswith('/$'), "router created url with trailing slash when it should not have") def test_inherits_no_trailing_slash(self): """ Test whether the trailing_slash=False value is inherited when it is unspecified on the nested router. """ router = SimpleRouter(trailing_slash=False) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self._assertDoesNotHaveTrailingSlash(a_router) def test_inherits_trailing_slash(self): """ Test whether the trailing_slash=False value is inherited when it is unspecified on the nested router. """ router = SimpleRouter(trailing_slash=True) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self._assertHasTrailingSlash(a_router) def test_explicit_no_trailing_slash(self): router = SimpleRouter(trailing_slash=True) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a', trailing_slash=False) a_router.register('b', BViewSet) self._assertDoesNotHaveTrailingSlash(a_router) def test_explicit_trailing_slash(self): """ Test whether the trailing_slash=False value is properly overridden when setting trailing_slash=True on the nested router. """ router = SimpleRouter(trailing_slash=False) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a', trailing_slash=True) a_router.register('b', BViewSet) self._assertHasTrailingSlash(a_router) def test_inherits_nonstandard_trailing_slash(self): """ Test whether the trailing_slash attribute, when set with a custom value, is inherited by the nested routed. """ router = SimpleRouter() router.trailing_slash = '/?' router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self.assertEqual(a_router.trailing_slash, u'/?', "router does not have trailing slash when it should") self.assertTrue(pattern_from_url(a_router.urls[0]).endswith('/?$'), "router created url without trailing slash when it should have")
tests/test_routers.py
from collections import namedtuple from django.db import models from django.test import TestCase from rest_framework.viewsets import ModelViewSet from rest_framework_nested.routers import SimpleRouter, NestedSimpleRouter from tests.helpers import get_regex_pattern def pattern_from_url(url_pattern): """ Finds the internal stringified pattern for a URL across Django versions. Newer versions of Django use URLPattern, as opposed to RegexURLPattern. """ if hasattr(url_pattern, 'pattern'): pattern = str(url_pattern.pattern) elif hasattr(url_pattern._regex, 'pattern'): pattern = str(url_pattern.regex.pattern) else: pattern = url_pattern._regex return pattern QS = namedtuple('Queryset', ['model']) class A(models.Model): name = models.CharField(max_length=255) class B(models.Model): name = models.CharField(max_length=255) parent = models.ForeignKey(A, on_delete=models.CASCADE) class C(models.Model): name = models.CharField(max_length=255) parent = models.ForeignKey(B, on_delete=models.CASCADE) class AViewSet(ModelViewSet): lookup_value_regex = '[0-9a-f]{32}' model = A queryset = QS(A) class BViewSet(ModelViewSet): model = B queryset = QS(B) class CViewSet(ModelViewSet): model = C queryset = QS(C) class TestNestedSimpleRouter(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'a', AViewSet) self.a_router = NestedSimpleRouter(self.router, r'a', lookup='a') self.a_router.register(r'b', BViewSet) self.b_router = NestedSimpleRouter(self.a_router, r'b', lookup='b') self.b_router.register(r'c', CViewSet) def test_recursive_nested_simple_routers(self): self.assertFalse(hasattr(self.router, 'parent_regex')) urls = self.router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<pk>[0-9a-f]{32})/$') self.assertEqual(self.a_router.parent_regex, u'a/(?P<a_pk>[0-9a-f]{32})/') urls = self.a_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<pk>[^/.]+)/$') self.assertEqual(self.b_router.parent_regex, u'a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/') urls = self.b_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/c/$') self.assertEquals(get_regex_pattern(urls[1]), u'^a/(?P<a_pk>[0-9a-f]{32})/b/(?P<b_pk>[^/.]+)/c/(?P<pk>[^/.]+)/$') class TestEmptyPrefix(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'', AViewSet) self.a_router = NestedSimpleRouter(self.router, r'', lookup='a') self.a_router.register(r'b', BViewSet) def test_empty_prefix(self): urls = self.router.urls urls = self.a_router.urls self.assertEquals(len(urls), 2) self.assertEquals(get_regex_pattern(urls[0]), u'^(?P<a_pk>[0-9a-f]{32})/b/$') self.assertEquals(get_regex_pattern(urls[1]), u'^(?P<a_pk>[0-9a-f]{32})/b/(?P<pk>[^/.]+)/$') class TestBadLookupValue(TestCase): def setUp(self): self.router = SimpleRouter() self.router.register(r'parents', AViewSet, base_name='ui-parent_1') def test_bad_lookup(self): with self.assertRaises(ValueError): self.a_router = NestedSimpleRouter(self.router, r'parents', lookup='ui-parent_2') self.a_router.register(r'child', BViewSet, base_name='ui-parent-child') class TestRouterSettingInheritance(TestCase): """ Ensure that nested routers inherit the trailing_slash option from their parent unless explicitly told not to. note: drf transforms the boolean from the kwargs into an internal pattern string, so it required to test these values instead of the boolean. trailing_slash=True -> '/' trailing_slash=False -> '' trailing_slash should - always give priority to the value explicitly defined on the router - if inherited, use the trailing slash exactly as set in the parent """ def _assertHasTrailingSlash(self, router): self.assertEqual(router.trailing_slash, u'/', "router does not have trailing slash when it should") self.assertTrue(pattern_from_url(router.urls[0]).endswith('/$'), "router created url without trailing slash when it should have") def _assertDoesNotHaveTrailingSlash(self, router): self.assertEqual(router.trailing_slash, u'', "router has trailing slash when it should not") self.assertFalse(pattern_from_url(router.urls[0]).endswith('/$'), "router created url with trailing slash when it should not have") def test_inherits_no_trailing_slash(self): """ Test whether the trailing_slash=False value is inherited when it is unspecified on the nested router. """ router = SimpleRouter(trailing_slash=False) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self._assertDoesNotHaveTrailingSlash(a_router) def test_inherits_trailing_slash(self): """ Test whether the trailing_slash=False value is inherited when it is unspecified on the nested router. """ router = SimpleRouter(trailing_slash=True) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self._assertHasTrailingSlash(a_router) def test_explicit_no_trailing_slash(self): router = SimpleRouter(trailing_slash=True) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a', trailing_slash=False) a_router.register('b', BViewSet) self._assertDoesNotHaveTrailingSlash(a_router) def test_explicit_trailing_slash(self): """ Test whether the trailing_slash=False value is properly overridden when setting trailing_slash=True on the nested router. """ router = SimpleRouter(trailing_slash=False) router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a', trailing_slash=True) a_router.register('b', BViewSet) self._assertHasTrailingSlash(a_router) def test_inherits_nonstandard_trailing_slash(self): """ Test whether the trailing_slash attribute, when set with a custom value, is inherited by the nested routed. """ router = SimpleRouter() router.trailing_slash = '/?' router.register('a', AViewSet) a_router = NestedSimpleRouter(router, 'a', lookup='a') a_router.register('b', BViewSet) self.assertEqual(a_router.trailing_slash, u'/?', "router does not have trailing slash when it should") self.assertTrue(pattern_from_url(a_router.urls[0]).endswith('/?$'), "router created url without trailing slash when it should have")
0.800926
0.298364
import os import sys import subprocess from workflow import Workflow3 as Workflow, MATCH_SUBSTRING from workflow.background import run_in_background import cask_actions import helpers GITHUB_SLUG = 'fniephaus/alfred-homebrew' OPEN_HELP = 'open https://github.com/fniephaus/alfred-homebrew && exit' def execute(wf, cmd_list): opts = wf.settings.get('HOMEBREW_CASK_OPTS', None) if opts: if all(k in opts for k in ('appdir')): cmd_list += ['--appdir=%s' % opts['appdir']] brew_arch = helpers.get_brew_arch(wf) new_env = helpers.initialise_path(brew_arch) result, err = subprocess.Popen(cmd_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=new_env).communicate() if err: return 'Error: %s' % err return result def get_all_casks(): return execute(wf, ['brew', 'search', '--cask']).splitlines() def get_installed_casks(): return execute(wf, ['brew', 'list', '--cask']).splitlines() def get_outdated_casks(): return execute(wf, ['brew', 'outdated', '--cask']).splitlines() def filter_all_casks(wf, query): formulas = wf.cached_data('cask_all_casks', get_all_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def filter_installed_casks(wf, query): formulas = wf.cached_data('cask_installed_casks', get_installed_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def filter_outdated_casks(wf, query): formulas = wf.cached_data('cask_outdated_casks', get_outdated_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def main(wf): if wf.update_available: wf.add_item('An update is available!', autocomplete='workflow:update', valid=False, icon=helpers.get_icon(wf, 'cloud-download')) find_brew = helpers.brew_installed() if not (find_brew['INTEL'] or find_brew['ARM']): helpers.brew_installation_instructions(wf) else: # extract query query = wf.args[0] if len(wf.args) else None if (not query and len(wf.cached_data('cask_outdated_casks', get_outdated_casks, max_age=3600)) > 0): wf.add_item('Some of your casks are outdated!', autocomplete='outdated ', valid=False, icon=helpers.get_icon(wf, 'cloud-download')) if query and query.startswith('install'): for formula in filter_all_casks(wf, query): wf.add_item(formula, 'Install cask', arg='brew install --cask %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and any(query.startswith(x) for x in ['search', 'home']): for formula in filter_all_casks(wf, query): wf.add_item(formula, 'Open homepage', arg='brew home %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('uninstall'): for formula in filter_installed_casks(wf, query): name = formula.split(' ')[0] item = wf.add_item(formula, 'Uninstall cask', arg='brew uninstall --cask %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) item.add_modifier('alt', 'Uninstall and zap cask', arg='brew uninstall --cask --zap %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('list'): for formula in filter_installed_casks(wf, query): wf.add_item(formula, 'Open homepage', arg='brew home %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('outdated'): for formula in filter_outdated_casks(wf, query): name = formula.split(' ')[0] wf.add_item(formula, 'Upgrade cask', arg='brew upgrade --cask %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('config'): helpers.edit_settings(wf) wf.add_item('`settings.json` has been opened.', autocomplete='', icon=helpers.get_icon(wf, 'info')) else: actions = cask_actions.ACTIONS # filter actions by query if query: actions = wf.filter(query, actions, key=helpers.search_key_for_action, match_on=MATCH_SUBSTRING) if len(actions) > 0: for action in actions: wf.add_item(action['name'], action['description'], uid=action['name'], autocomplete=action['autocomplete'], arg=action['arg'], valid=action['valid'], icon=helpers.get_icon(wf, 'chevron-right')) else: wf.add_item('No action found for "%s"' % query, autocomplete='', icon=helpers.get_icon(wf, 'info')) if len(wf._items) == 0: query_name = query[query.find(' ') + 1:] wf.add_item('No formula found for "%s"' % query_name, autocomplete='%s ' % query[:query.find(' ')], icon=helpers.get_icon(wf, 'info')) wf.send_feedback() # refresh cache cmd = ['/usr/bin/python', wf.workflowfile('cask_refresh.py')] run_in_background('cask_refresh', cmd) if __name__ == '__main__': wf = Workflow(update_settings={'github_slug': GITHUB_SLUG}) sys.exit(wf.run(main))
src/cask.py
import os import sys import subprocess from workflow import Workflow3 as Workflow, MATCH_SUBSTRING from workflow.background import run_in_background import cask_actions import helpers GITHUB_SLUG = 'fniephaus/alfred-homebrew' OPEN_HELP = 'open https://github.com/fniephaus/alfred-homebrew && exit' def execute(wf, cmd_list): opts = wf.settings.get('HOMEBREW_CASK_OPTS', None) if opts: if all(k in opts for k in ('appdir')): cmd_list += ['--appdir=%s' % opts['appdir']] brew_arch = helpers.get_brew_arch(wf) new_env = helpers.initialise_path(brew_arch) result, err = subprocess.Popen(cmd_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=new_env).communicate() if err: return 'Error: %s' % err return result def get_all_casks(): return execute(wf, ['brew', 'search', '--cask']).splitlines() def get_installed_casks(): return execute(wf, ['brew', 'list', '--cask']).splitlines() def get_outdated_casks(): return execute(wf, ['brew', 'outdated', '--cask']).splitlines() def filter_all_casks(wf, query): formulas = wf.cached_data('cask_all_casks', get_all_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def filter_installed_casks(wf, query): formulas = wf.cached_data('cask_installed_casks', get_installed_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def filter_outdated_casks(wf, query): formulas = wf.cached_data('cask_outdated_casks', get_outdated_casks, max_age=3600) query_filter = query.split() if len(query_filter) > 1: return wf.filter(query_filter[1], formulas, match_on=MATCH_SUBSTRING) return formulas def main(wf): if wf.update_available: wf.add_item('An update is available!', autocomplete='workflow:update', valid=False, icon=helpers.get_icon(wf, 'cloud-download')) find_brew = helpers.brew_installed() if not (find_brew['INTEL'] or find_brew['ARM']): helpers.brew_installation_instructions(wf) else: # extract query query = wf.args[0] if len(wf.args) else None if (not query and len(wf.cached_data('cask_outdated_casks', get_outdated_casks, max_age=3600)) > 0): wf.add_item('Some of your casks are outdated!', autocomplete='outdated ', valid=False, icon=helpers.get_icon(wf, 'cloud-download')) if query and query.startswith('install'): for formula in filter_all_casks(wf, query): wf.add_item(formula, 'Install cask', arg='brew install --cask %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and any(query.startswith(x) for x in ['search', 'home']): for formula in filter_all_casks(wf, query): wf.add_item(formula, 'Open homepage', arg='brew home %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('uninstall'): for formula in filter_installed_casks(wf, query): name = formula.split(' ')[0] item = wf.add_item(formula, 'Uninstall cask', arg='brew uninstall --cask %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) item.add_modifier('alt', 'Uninstall and zap cask', arg='brew uninstall --cask --zap %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('list'): for formula in filter_installed_casks(wf, query): wf.add_item(formula, 'Open homepage', arg='brew home %s' % formula, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('outdated'): for formula in filter_outdated_casks(wf, query): name = formula.split(' ')[0] wf.add_item(formula, 'Upgrade cask', arg='brew upgrade --cask %s' % name, valid=True, icon=helpers.get_icon(wf, 'package')) elif query and query.startswith('config'): helpers.edit_settings(wf) wf.add_item('`settings.json` has been opened.', autocomplete='', icon=helpers.get_icon(wf, 'info')) else: actions = cask_actions.ACTIONS # filter actions by query if query: actions = wf.filter(query, actions, key=helpers.search_key_for_action, match_on=MATCH_SUBSTRING) if len(actions) > 0: for action in actions: wf.add_item(action['name'], action['description'], uid=action['name'], autocomplete=action['autocomplete'], arg=action['arg'], valid=action['valid'], icon=helpers.get_icon(wf, 'chevron-right')) else: wf.add_item('No action found for "%s"' % query, autocomplete='', icon=helpers.get_icon(wf, 'info')) if len(wf._items) == 0: query_name = query[query.find(' ') + 1:] wf.add_item('No formula found for "%s"' % query_name, autocomplete='%s ' % query[:query.find(' ')], icon=helpers.get_icon(wf, 'info')) wf.send_feedback() # refresh cache cmd = ['/usr/bin/python', wf.workflowfile('cask_refresh.py')] run_in_background('cask_refresh', cmd) if __name__ == '__main__': wf = Workflow(update_settings={'github_slug': GITHUB_SLUG}) sys.exit(wf.run(main))
0.315314
0.083928
import argparse import collections import datetime import json import progress.bar import sqlalchemy as sa import sqlalchemy.orm as orm import _sqlalchemy.models as m def bar(label, total): return progress.bar.Bar(label[:32].ljust(32), max=total) def bulk_insert(db, label, data, into): label = f"Creating {len(data)} {label}" pbar = bar(label, len(data)) while data: chunk = data[:1000] data = data[1000:] db.execute(sa.insert(into), chunk) db.commit() pbar.next(len(chunk)) pbar.finish() def reset_sequence(db, tablename): tab = sa.table(tablename, sa.column("id")) db.execute( sa.select( sa.func.setval( f"{tablename}_id_seq", sa.select(tab.c.id) .order_by(tab.c.id.desc()) .limit(1) .scalar_subquery(), ) ) ) def load_data(filename, engine): session_factory = orm.sessionmaker(bind=engine) Session = orm.scoped_session(session_factory) with Session() as db: # first clear all the existing data print(f"purging existing data...") db.execute(sa.delete(m.Directors)) db.execute(sa.delete(m.Cast)) db.execute(sa.delete(m.Review)) db.execute(sa.delete(m.Movie)) db.execute(sa.delete(m.Person)) db.execute(sa.delete(m.User)) db.commit() # read the JSON data print("loading JSON... ", end="", flush=True) with open(filename, "rt") as f: records = json.load(f) data = collections.defaultdict(list) for rec in records: rtype = rec["model"].split(".")[-1] datum = rec["fields"] if "pk" in rec: datum["id"] = rec["pk"] # convert datetime if rtype == "review": datum["creation_time"] = datetime.datetime.fromisoformat( datum["creation_time"] ) data[rtype].append(datum) print("done") with Session() as db: # bulk create all the users bulk_insert(db, "users", data["user"], m.User) # bulk create all the people bulk_insert(db, "people", data["person"], m.Person) # bulk create all the movies bulk_insert(db, "movies", data["movie"], m.Movie) # bulk create all the reviews bulk_insert(db, "reviews", data["review"], m.Review) # bulk create all the directors bulk_insert(db, "directors", data["directors"], m.Directors) # bulk create all the cast bulk_insert(db, "cast", data["cast"], m.Cast) # reconcile the autoincrementing indexes with the actual indexes reset_sequence(db, "cast") reset_sequence(db, "directors") reset_sequence(db, "movie") reset_sequence(db, "person") reset_sequence(db, "user") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Load a specific fixture, old data will be purged." ) parser.add_argument("filename", type=str, help="The JSON dataset file") args = parser.parse_args() engine = sa.create_engine( "postgresql+asyncpg://sqlalch_bench:edgedbbenchmark@localhost:15432/sqlalch_bench?async_fallback=True" ) load_data(args.filename, engine)
_sqlalchemy/loaddata.py
import argparse import collections import datetime import json import progress.bar import sqlalchemy as sa import sqlalchemy.orm as orm import _sqlalchemy.models as m def bar(label, total): return progress.bar.Bar(label[:32].ljust(32), max=total) def bulk_insert(db, label, data, into): label = f"Creating {len(data)} {label}" pbar = bar(label, len(data)) while data: chunk = data[:1000] data = data[1000:] db.execute(sa.insert(into), chunk) db.commit() pbar.next(len(chunk)) pbar.finish() def reset_sequence(db, tablename): tab = sa.table(tablename, sa.column("id")) db.execute( sa.select( sa.func.setval( f"{tablename}_id_seq", sa.select(tab.c.id) .order_by(tab.c.id.desc()) .limit(1) .scalar_subquery(), ) ) ) def load_data(filename, engine): session_factory = orm.sessionmaker(bind=engine) Session = orm.scoped_session(session_factory) with Session() as db: # first clear all the existing data print(f"purging existing data...") db.execute(sa.delete(m.Directors)) db.execute(sa.delete(m.Cast)) db.execute(sa.delete(m.Review)) db.execute(sa.delete(m.Movie)) db.execute(sa.delete(m.Person)) db.execute(sa.delete(m.User)) db.commit() # read the JSON data print("loading JSON... ", end="", flush=True) with open(filename, "rt") as f: records = json.load(f) data = collections.defaultdict(list) for rec in records: rtype = rec["model"].split(".")[-1] datum = rec["fields"] if "pk" in rec: datum["id"] = rec["pk"] # convert datetime if rtype == "review": datum["creation_time"] = datetime.datetime.fromisoformat( datum["creation_time"] ) data[rtype].append(datum) print("done") with Session() as db: # bulk create all the users bulk_insert(db, "users", data["user"], m.User) # bulk create all the people bulk_insert(db, "people", data["person"], m.Person) # bulk create all the movies bulk_insert(db, "movies", data["movie"], m.Movie) # bulk create all the reviews bulk_insert(db, "reviews", data["review"], m.Review) # bulk create all the directors bulk_insert(db, "directors", data["directors"], m.Directors) # bulk create all the cast bulk_insert(db, "cast", data["cast"], m.Cast) # reconcile the autoincrementing indexes with the actual indexes reset_sequence(db, "cast") reset_sequence(db, "directors") reset_sequence(db, "movie") reset_sequence(db, "person") reset_sequence(db, "user") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Load a specific fixture, old data will be purged." ) parser.add_argument("filename", type=str, help="The JSON dataset file") args = parser.parse_args() engine = sa.create_engine( "postgresql+asyncpg://sqlalch_bench:edgedbbenchmark@localhost:15432/sqlalch_bench?async_fallback=True" ) load_data(args.filename, engine)
0.350421
0.241165
from __future__ import division import numpy as np #============================================================================== # The hat function #============================================================================== def hat(x): return -npHeaviside(x) * (-np.pi+x)/np.pi + npHeaviside(-x) * (np.pi+x)/np.pi #============================================================================== # The step function #============================================================================== def step(x): return npHeaviside(x) - npHeaviside(-1*x) #============================================================================== # The sawtooth function #============================================================================== def saw(x): return x/np.pi def npHeaviside(x): """ numpy compatible implementation of heaviside function :param x: ndarray :return: ndarray """ return np.piecewise(x, [x<0, x==0, x>0], [lambda arg: 0.0, lambda arg: 0.5, lambda arg: 1.0]) def npDirac(x, h): """ numpy compatible implementation of dirac delta. This implementation is representing a disrete version of dirac with width h and height 1/h. Area under dirac is equal to 1. :param x: ndarray, evaluation point :param h: width of dirac :return: ndarray """ return npHeaviside(x)*npHeaviside(h-x)*1.0/h def parser(fun_str): from sympy import sympify, lambdify from sympy.abc import x fun_sym = sympify(fun_str) fun_lam = lambdify(x, fun_sym,['numpy', {"Heaviside": npHeaviside}, {"Dirac": npDirac}]) return fun_lam def number_parser(number_str): from sympy import sympify number_sym = sympify(number_str) return float(number_sym) def coeff(f, start, end, N): """ This function computes the coefficients of the fourier series representation of the function f, which is periodic on the interval [start,end] up to the degree N. """ return coeff_fft(f, start, end, N) def coeff_fft(f, start, end, N): """ computes the fourier coefficients using fft :param f: :param start: :param end: :param N: :return: """ M = 4*N+1000+1 x = np.linspace(start, end, M, endpoint=False) u0 = f(x) c = np.fft.rfft(u0) / M a = 2 * np.real(c) b = -2 * np.imag(c) a[0] /= 2 return [a[0:N+1], b[0:N+1]] def fourier_series(a, b, N, T, x): """ This function evaluates the fourier series of degree N with the coefficient vectors a and b and the period length T at the points in the array x. :param a: even coefficients :param b: uneven coefficients :param N: degree of fourier series :param T: period length :param x: sample points :return: fourier series evaluated at sample points """ # numpy matrix version of code below a = a[:N+1] b = b[:N+1] """ y = np.zeros(x.shape) for k in range(N+1): kk = k * 2 * np.pi / T y += (b[k] * np.sin(kk*x) + a[k] * np.cos(kk*x)) """ k = np.arange(N+1) kk = k * 2 * np.pi / T y = np.sum(b * np.sin(np.outer(x, kk)) + a * np.cos(np.outer(x, kk)), axis=1) return y
Math_Apps/Fourier_series_approximation/fourier_functions.py
from __future__ import division import numpy as np #============================================================================== # The hat function #============================================================================== def hat(x): return -npHeaviside(x) * (-np.pi+x)/np.pi + npHeaviside(-x) * (np.pi+x)/np.pi #============================================================================== # The step function #============================================================================== def step(x): return npHeaviside(x) - npHeaviside(-1*x) #============================================================================== # The sawtooth function #============================================================================== def saw(x): return x/np.pi def npHeaviside(x): """ numpy compatible implementation of heaviside function :param x: ndarray :return: ndarray """ return np.piecewise(x, [x<0, x==0, x>0], [lambda arg: 0.0, lambda arg: 0.5, lambda arg: 1.0]) def npDirac(x, h): """ numpy compatible implementation of dirac delta. This implementation is representing a disrete version of dirac with width h and height 1/h. Area under dirac is equal to 1. :param x: ndarray, evaluation point :param h: width of dirac :return: ndarray """ return npHeaviside(x)*npHeaviside(h-x)*1.0/h def parser(fun_str): from sympy import sympify, lambdify from sympy.abc import x fun_sym = sympify(fun_str) fun_lam = lambdify(x, fun_sym,['numpy', {"Heaviside": npHeaviside}, {"Dirac": npDirac}]) return fun_lam def number_parser(number_str): from sympy import sympify number_sym = sympify(number_str) return float(number_sym) def coeff(f, start, end, N): """ This function computes the coefficients of the fourier series representation of the function f, which is periodic on the interval [start,end] up to the degree N. """ return coeff_fft(f, start, end, N) def coeff_fft(f, start, end, N): """ computes the fourier coefficients using fft :param f: :param start: :param end: :param N: :return: """ M = 4*N+1000+1 x = np.linspace(start, end, M, endpoint=False) u0 = f(x) c = np.fft.rfft(u0) / M a = 2 * np.real(c) b = -2 * np.imag(c) a[0] /= 2 return [a[0:N+1], b[0:N+1]] def fourier_series(a, b, N, T, x): """ This function evaluates the fourier series of degree N with the coefficient vectors a and b and the period length T at the points in the array x. :param a: even coefficients :param b: uneven coefficients :param N: degree of fourier series :param T: period length :param x: sample points :return: fourier series evaluated at sample points """ # numpy matrix version of code below a = a[:N+1] b = b[:N+1] """ y = np.zeros(x.shape) for k in range(N+1): kk = k * 2 * np.pi / T y += (b[k] * np.sin(kk*x) + a[k] * np.cos(kk*x)) """ k = np.arange(N+1) kk = k * 2 * np.pi / T y = np.sum(b * np.sin(np.outer(x, kk)) + a * np.cos(np.outer(x, kk)), axis=1) return y
0.896597
0.544135
import sys import hydra import torch from omegaconf.listconfig import ListConfig import logging from pathlib import Path log = logging.getLogger(__name__) # https://github.com/pytorch/examples/blob/8df8e747857261ea481e0b2492413d52bf7cc3a8/imagenet/main.py#L363 class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class RedirectOut(): def __init__(self, out): super().__init__() self.out = out self.original = sys.stdout def __enter__(self): self.__fd = open(self.out, 'w') sys.stdout = self.__fd def __exit__(self, type, value, traceback): sys.stdout = self.original self.__fd.close() def instantiate_augmenters(augmentation_list): augmentation_methods = [] for augmentation in augmentation_list: method = list(augmentation)[0] params = dict(augmentation[method]) if method == 'Sometimes': params["then_list"] = instantiate_augmenters(params["then_list"]) for k, v in params.items(): if isinstance(v, (list, ListConfig)): params[k] = tuple(v) m = hydra.utils.get_method( f"imgaug.augmenters.{method}")(**params) augmentation_methods.append(m) log.debug( f"Register imgaug.augmenters.{method} as augmentation method") return augmentation_methods # https://discuss.pytorch.org/t/access-att-of-model-wrapped-within-torch-nn-dataparallel-maximum-recursion-depth-exceeded/46975/2 class CustomDataParallel(torch.nn.DataParallel): def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.module, name) def load_model(model, optimizer, scheduler, path, resume=False): path = Path(path) if not path.exists(): log.warning(f"Model path {path} does not exists!") return 1 checkpoint = torch.load(path) epoch = checkpoint["epoch"] if resume else 0 state_dict_ = checkpoint['state_dict'] state_dict = {} # convert data_parallal to model for k in state_dict_: if k.startswith('module') and not k.startswith('module_list'): state_dict[k[7:]] = state_dict_[k] else: state_dict[k] = state_dict_[k] model_state_dict = model.state_dict() for k in state_dict: if k in model_state_dict: if state_dict[k].shape != model_state_dict[k].shape: log.warning( f"skip parameter {k} because of shape mismatch") state_dict[k] = model_state_dict[k] else: log.info(f"drop parameter {k}") for k in model_state_dict: if k not in state_dict: log.warning(f"no parameter {k} available") state_dict[k] = model_state_dict[k] model.load_state_dict(state_dict, strict=False) log.info(f"restore pretrained weights") if resume and 'optimizer' in checkpoint and optimizer is not None: log.info(f"restore optimizer state at epoch {epoch}") optimizer.load_state_dict(checkpoint['optimizer']) if 'scheduler' in checkpoint and scheduler is not None: log.info("restore scheduler state") scheduler.load_state_dict(checkpoint['scheduler']) return (epoch + 1) if resume else epoch def save_model(model, path, epoch, optimizer=None, scheduler=None): if isinstance(model, torch.nn.DataParallel): state_dict = model.module.state_dict() else: state_dict = model.state_dict() data = { 'epoch': epoch, 'state_dict': state_dict } if optimizer is not None: data["optimizer"] = optimizer.state_dict() if scheduler is not None: data["scheduler"] = scheduler.state_dict() torch.save(data, path)
utils/helper.py
import sys import hydra import torch from omegaconf.listconfig import ListConfig import logging from pathlib import Path log = logging.getLogger(__name__) # https://github.com/pytorch/examples/blob/8df8e747857261ea481e0b2492413d52bf7cc3a8/imagenet/main.py#L363 class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class RedirectOut(): def __init__(self, out): super().__init__() self.out = out self.original = sys.stdout def __enter__(self): self.__fd = open(self.out, 'w') sys.stdout = self.__fd def __exit__(self, type, value, traceback): sys.stdout = self.original self.__fd.close() def instantiate_augmenters(augmentation_list): augmentation_methods = [] for augmentation in augmentation_list: method = list(augmentation)[0] params = dict(augmentation[method]) if method == 'Sometimes': params["then_list"] = instantiate_augmenters(params["then_list"]) for k, v in params.items(): if isinstance(v, (list, ListConfig)): params[k] = tuple(v) m = hydra.utils.get_method( f"imgaug.augmenters.{method}")(**params) augmentation_methods.append(m) log.debug( f"Register imgaug.augmenters.{method} as augmentation method") return augmentation_methods # https://discuss.pytorch.org/t/access-att-of-model-wrapped-within-torch-nn-dataparallel-maximum-recursion-depth-exceeded/46975/2 class CustomDataParallel(torch.nn.DataParallel): def __getattr__(self, name): try: return super().__getattr__(name) except AttributeError: return getattr(self.module, name) def load_model(model, optimizer, scheduler, path, resume=False): path = Path(path) if not path.exists(): log.warning(f"Model path {path} does not exists!") return 1 checkpoint = torch.load(path) epoch = checkpoint["epoch"] if resume else 0 state_dict_ = checkpoint['state_dict'] state_dict = {} # convert data_parallal to model for k in state_dict_: if k.startswith('module') and not k.startswith('module_list'): state_dict[k[7:]] = state_dict_[k] else: state_dict[k] = state_dict_[k] model_state_dict = model.state_dict() for k in state_dict: if k in model_state_dict: if state_dict[k].shape != model_state_dict[k].shape: log.warning( f"skip parameter {k} because of shape mismatch") state_dict[k] = model_state_dict[k] else: log.info(f"drop parameter {k}") for k in model_state_dict: if k not in state_dict: log.warning(f"no parameter {k} available") state_dict[k] = model_state_dict[k] model.load_state_dict(state_dict, strict=False) log.info(f"restore pretrained weights") if resume and 'optimizer' in checkpoint and optimizer is not None: log.info(f"restore optimizer state at epoch {epoch}") optimizer.load_state_dict(checkpoint['optimizer']) if 'scheduler' in checkpoint and scheduler is not None: log.info("restore scheduler state") scheduler.load_state_dict(checkpoint['scheduler']) return (epoch + 1) if resume else epoch def save_model(model, path, epoch, optimizer=None, scheduler=None): if isinstance(model, torch.nn.DataParallel): state_dict = model.module.state_dict() else: state_dict = model.state_dict() data = { 'epoch': epoch, 'state_dict': state_dict } if optimizer is not None: data["optimizer"] = optimizer.state_dict() if scheduler is not None: data["scheduler"] = scheduler.state_dict() torch.save(data, path)
0.612078
0.167151
import os import re import sys from setuptools import find_packages, setup PKG = "hy" VERSIONFILE = os.path.join(PKG, "version.py") verstr = "unknown" try: verstrline = open(VERSIONFILE, "rt").read() except EnvironmentError: pass # Okay, there is no version file. else: VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VSRE, verstrline, re.M) if mo: __version__ = mo.group(1) else: msg = "if %s.py exists, it is required to be well-formed" % VERSIONFILE raise RuntimeError(msg) long_description = """Hy is a Python <--> Lisp layer. It helps make things work nicer, and lets Python and the Hy lisp variant play nice together. """ install_requires = ['rply>=0.7.0', 'astor>=0.5', 'clint>=0.4'] if sys.version_info[:2] < (2, 7): install_requires.append('argparse>=1.2.1') install_requires.append('importlib>=1.0.2') if os.name == 'nt': install_requires.append('pyreadline>=2.1') setup( name=PKG, version=__version__, install_requires=install_requires, entry_points={ 'console_scripts': [ 'hy = hy.cmdline:hy_main', 'hyc = hy.cmdline:hyc_main', 'hy2py = hy.cmdline:hy2py_main', ] }, packages=find_packages(exclude=['tests*']), package_data={ 'hy.contrib': ['*.hy'], 'hy.core': ['*.hy'], }, author="<NAME>", author_email="<EMAIL>", long_description=long_description, description='Lisp and Python love each other.', license="Expat", url="http://hylang.org/", platforms=['any'], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: DFSG approved", "License :: OSI Approved :: MIT License", # Really "Expat". Ugh. "Operating System :: OS Independent", "Programming Language :: Lisp", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Topic :: Software Development :: Code Generators", "Topic :: Software Development :: Compilers", "Topic :: Software Development :: Libraries", ] )
setup.py
import os import re import sys from setuptools import find_packages, setup PKG = "hy" VERSIONFILE = os.path.join(PKG, "version.py") verstr = "unknown" try: verstrline = open(VERSIONFILE, "rt").read() except EnvironmentError: pass # Okay, there is no version file. else: VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VSRE, verstrline, re.M) if mo: __version__ = mo.group(1) else: msg = "if %s.py exists, it is required to be well-formed" % VERSIONFILE raise RuntimeError(msg) long_description = """Hy is a Python <--> Lisp layer. It helps make things work nicer, and lets Python and the Hy lisp variant play nice together. """ install_requires = ['rply>=0.7.0', 'astor>=0.5', 'clint>=0.4'] if sys.version_info[:2] < (2, 7): install_requires.append('argparse>=1.2.1') install_requires.append('importlib>=1.0.2') if os.name == 'nt': install_requires.append('pyreadline>=2.1') setup( name=PKG, version=__version__, install_requires=install_requires, entry_points={ 'console_scripts': [ 'hy = hy.cmdline:hy_main', 'hyc = hy.cmdline:hyc_main', 'hy2py = hy.cmdline:hy2py_main', ] }, packages=find_packages(exclude=['tests*']), package_data={ 'hy.contrib': ['*.hy'], 'hy.core': ['*.hy'], }, author="<NAME>", author_email="<EMAIL>", long_description=long_description, description='Lisp and Python love each other.', license="Expat", url="http://hylang.org/", platforms=['any'], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: DFSG approved", "License :: OSI Approved :: MIT License", # Really "Expat". Ugh. "Operating System :: OS Independent", "Programming Language :: Lisp", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Topic :: Software Development :: Code Generators", "Topic :: Software Development :: Compilers", "Topic :: Software Development :: Libraries", ] )
0.232833
0.116011
from ludwig.backend.base import Backend, LocalTrainingMixin from ludwig.constants import NAME, PARQUET, PREPROCESSING from ludwig.data.dataframe.dask import DaskEngine from ludwig.data.dataset.partitioned import PartitionedDataset from ludwig.models.predictor import BasePredictor, Predictor, get_output_columns class DaskRemoteModel: def __init__(self, model): self.cls, self.args, state = list(model.__reduce__()) self.state = state def load(self): obj = self.cls(*self.args) # TODO(travis): get_connected_model is needed here because TF will not init # all weights until the graph has been traversed obj.get_connected_model() obj.__setstate__(self.state) return obj class DaskPredictor(BasePredictor): def __init__(self, predictor_kwargs): self.predictor_kwargs = predictor_kwargs def batch_predict(self, model, dataset, *args, **kwargs): self._check_dataset(dataset) remote_model = DaskRemoteModel(model) predictor_kwargs = self.predictor_kwargs output_columns = get_output_columns(model.output_features) def batch_predict_partition(dataset): model = remote_model.load() predictor = Predictor(**predictor_kwargs) predictions = predictor.batch_predict(model, dataset, *args, **kwargs) ordered_predictions = predictions[output_columns] return ordered_predictions return dataset.map_dataset_partitions( batch_predict_partition, meta=[(c, 'object') for c in output_columns] ) def batch_evaluation(self, model, dataset, collect_predictions=False, **kwargs): raise NotImplementedError( 'Dask backend does not support batch evaluation at this time.' ) def batch_collect_activations(self, model, *args, **kwargs): raise NotImplementedError( 'Dask backend does not support collecting activations at this time.' ) def _check_dataset(self, dataset): if not isinstance(dataset, PartitionedDataset): raise RuntimeError( f'Dask backend requires PartitionedDataset for inference, ' f'found: {type(dataset)}' ) def shutdown(self): pass class DaskBackend(LocalTrainingMixin, Backend): def __init__(self, data_format=PARQUET, **kwargs): super().__init__(data_format=data_format, **kwargs) self._df_engine = DaskEngine() if data_format != PARQUET: raise ValueError( f'Data format {data_format} is not supported when using the Dask backend. ' f'Try setting to `parquet`.' ) def initialize(self): pass def create_predictor(self, **kwargs): return DaskPredictor(kwargs) @property def df_engine(self): return self._df_engine @property def supports_multiprocessing(self): return False def check_lazy_load_supported(self, feature): if not feature[PREPROCESSING]['in_memory']: raise ValueError( f'DaskBackend does not support lazy loading of data files at train time. ' f'Set preprocessing config `in_memory: True` for feature {feature[NAME]}')
ludwig/backend/dask.py
from ludwig.backend.base import Backend, LocalTrainingMixin from ludwig.constants import NAME, PARQUET, PREPROCESSING from ludwig.data.dataframe.dask import DaskEngine from ludwig.data.dataset.partitioned import PartitionedDataset from ludwig.models.predictor import BasePredictor, Predictor, get_output_columns class DaskRemoteModel: def __init__(self, model): self.cls, self.args, state = list(model.__reduce__()) self.state = state def load(self): obj = self.cls(*self.args) # TODO(travis): get_connected_model is needed here because TF will not init # all weights until the graph has been traversed obj.get_connected_model() obj.__setstate__(self.state) return obj class DaskPredictor(BasePredictor): def __init__(self, predictor_kwargs): self.predictor_kwargs = predictor_kwargs def batch_predict(self, model, dataset, *args, **kwargs): self._check_dataset(dataset) remote_model = DaskRemoteModel(model) predictor_kwargs = self.predictor_kwargs output_columns = get_output_columns(model.output_features) def batch_predict_partition(dataset): model = remote_model.load() predictor = Predictor(**predictor_kwargs) predictions = predictor.batch_predict(model, dataset, *args, **kwargs) ordered_predictions = predictions[output_columns] return ordered_predictions return dataset.map_dataset_partitions( batch_predict_partition, meta=[(c, 'object') for c in output_columns] ) def batch_evaluation(self, model, dataset, collect_predictions=False, **kwargs): raise NotImplementedError( 'Dask backend does not support batch evaluation at this time.' ) def batch_collect_activations(self, model, *args, **kwargs): raise NotImplementedError( 'Dask backend does not support collecting activations at this time.' ) def _check_dataset(self, dataset): if not isinstance(dataset, PartitionedDataset): raise RuntimeError( f'Dask backend requires PartitionedDataset for inference, ' f'found: {type(dataset)}' ) def shutdown(self): pass class DaskBackend(LocalTrainingMixin, Backend): def __init__(self, data_format=PARQUET, **kwargs): super().__init__(data_format=data_format, **kwargs) self._df_engine = DaskEngine() if data_format != PARQUET: raise ValueError( f'Data format {data_format} is not supported when using the Dask backend. ' f'Try setting to `parquet`.' ) def initialize(self): pass def create_predictor(self, **kwargs): return DaskPredictor(kwargs) @property def df_engine(self): return self._df_engine @property def supports_multiprocessing(self): return False def check_lazy_load_supported(self, feature): if not feature[PREPROCESSING]['in_memory']: raise ValueError( f'DaskBackend does not support lazy loading of data files at train time. ' f'Set preprocessing config `in_memory: True` for feature {feature[NAME]}')
0.636127
0.203787
import glob import os import sys import warnings from typing import Optional import pkginfo class Installed(pkginfo.Installed): def read(self) -> Optional[str]: opj = os.path.join if self.package is not None: package = self.package.__package__ if package is None: package = self.package.__name__ egg_pattern = "%s*.egg-info" % package dist_pattern = "%s*.dist-info" % package file: Optional[str] = getattr(self.package, "__file__", None) if file is not None: candidates = [] def _add_candidate(where: str) -> None: candidates.extend(glob.glob(where)) for entry in sys.path: if file.startswith(entry): _add_candidate(opj(entry, "METADATA")) # egg? _add_candidate(opj(entry, "EGG-INFO")) # egg? # dist-installed? _add_candidate(opj(entry, egg_pattern)) _add_candidate(opj(entry, dist_pattern)) dir, name = os.path.split(self.package.__file__) _add_candidate(opj(dir, egg_pattern)) _add_candidate(opj(dir, dist_pattern)) _add_candidate(opj(dir, "..", egg_pattern)) _add_candidate(opj(dir, "..", dist_pattern)) for candidate in candidates: if os.path.isdir(candidate): path = opj(candidate, "PKG-INFO") if not os.path.exists(path): path = opj(candidate, "METADATA") else: path = candidate if os.path.exists(path): with open(path) as f: return f.read() warnings.warn( "No PKG-INFO or METADATA found for package: %s" % self.package_name ) return None
venv/Lib/site-packages/twine/_installed.py
import glob import os import sys import warnings from typing import Optional import pkginfo class Installed(pkginfo.Installed): def read(self) -> Optional[str]: opj = os.path.join if self.package is not None: package = self.package.__package__ if package is None: package = self.package.__name__ egg_pattern = "%s*.egg-info" % package dist_pattern = "%s*.dist-info" % package file: Optional[str] = getattr(self.package, "__file__", None) if file is not None: candidates = [] def _add_candidate(where: str) -> None: candidates.extend(glob.glob(where)) for entry in sys.path: if file.startswith(entry): _add_candidate(opj(entry, "METADATA")) # egg? _add_candidate(opj(entry, "EGG-INFO")) # egg? # dist-installed? _add_candidate(opj(entry, egg_pattern)) _add_candidate(opj(entry, dist_pattern)) dir, name = os.path.split(self.package.__file__) _add_candidate(opj(dir, egg_pattern)) _add_candidate(opj(dir, dist_pattern)) _add_candidate(opj(dir, "..", egg_pattern)) _add_candidate(opj(dir, "..", dist_pattern)) for candidate in candidates: if os.path.isdir(candidate): path = opj(candidate, "PKG-INFO") if not os.path.exists(path): path = opj(candidate, "METADATA") else: path = candidate if os.path.exists(path): with open(path) as f: return f.read() warnings.warn( "No PKG-INFO or METADATA found for package: %s" % self.package_name ) return None
0.372049
0.06148
from bson import ObjectId from app.api.data.command.UserMongoCommandRepository import UserMongoCommandRepository from app.api.domain.models.User import User from app.api.domain.services.data.command.errors.CommandError import CommandError from tests.integration.PdbMongoIntegrationTestBase import PdbMongoIntegrationTestBase class UserMongoCommandRepositoryIntegrationTest(PdbMongoIntegrationTestBase): def setUp(self): self.fixtures = [] super(UserMongoCommandRepositoryIntegrationTest, self).setUp() self.sut = UserMongoCommandRepository() def tearDown(self): self.db.users.delete_many({}) def test_updateUserAuthToken_calledWithValidAuthToken_authTokenCorrectlyUpdated(self): test_id = ObjectId("5aae93045b488007cb4af590") self.db.users.insert_one( {"email": "<EMAIL>", "password": "<PASSWORD>", "nickname": "jimmy", "role": "student", "_id": test_id}) self.sut.update_user_auth_token(test_id, "testauthtoken") actual = User.from_json(self.db.users.find_one({"_id": test_id})).get_authtoken() expected = "testauthtoken" self.assertEqual(actual, expected) def test_createUser_calledWithValidUser_userCorrectlyInserted(self): test_user = self.__get_user_test_instance() self.sut.create_user(test_user) self.assertEqual(test_user.to_json_dict(), self.db.users.find_one({"email": "<EMAIL>"})) def test_createUser_calledWithExistentUser_throwCommandError(self): user = self.__get_user_test_instance() self.sut.create_user(user) self.assertRaises(CommandError, self.sut.create_user, user) def test_incrementUserScore_calledWithExistentUserId_userScoreCorrectlyIncremented(self): test_id = ObjectId("5aae93045b488007cb4af590") self.db.users.insert_one( {"email": "<EMAIL>", "password": "<PASSWORD>", "nickname": "jimmy", "role": "student", "_id": test_id, "score": 400}) self.sut.increment_user_score(test_id, 30) expected = 430 actual = User.from_json(self.db.users.find_one({"_id": test_id})).get_score() self.assertEqual(actual, expected) def __get_user_test_instance(self): return User(_id=ObjectId("666f6f2d6261722d71757578"), email="<EMAIL>", password="<PASSWORD>", role="master", nickname="testnickname")
app/tests/integration/UserMongoCommandRepositoryIntegrationTest.py
from bson import ObjectId from app.api.data.command.UserMongoCommandRepository import UserMongoCommandRepository from app.api.domain.models.User import User from app.api.domain.services.data.command.errors.CommandError import CommandError from tests.integration.PdbMongoIntegrationTestBase import PdbMongoIntegrationTestBase class UserMongoCommandRepositoryIntegrationTest(PdbMongoIntegrationTestBase): def setUp(self): self.fixtures = [] super(UserMongoCommandRepositoryIntegrationTest, self).setUp() self.sut = UserMongoCommandRepository() def tearDown(self): self.db.users.delete_many({}) def test_updateUserAuthToken_calledWithValidAuthToken_authTokenCorrectlyUpdated(self): test_id = ObjectId("5aae93045b488007cb4af590") self.db.users.insert_one( {"email": "<EMAIL>", "password": "<PASSWORD>", "nickname": "jimmy", "role": "student", "_id": test_id}) self.sut.update_user_auth_token(test_id, "testauthtoken") actual = User.from_json(self.db.users.find_one({"_id": test_id})).get_authtoken() expected = "testauthtoken" self.assertEqual(actual, expected) def test_createUser_calledWithValidUser_userCorrectlyInserted(self): test_user = self.__get_user_test_instance() self.sut.create_user(test_user) self.assertEqual(test_user.to_json_dict(), self.db.users.find_one({"email": "<EMAIL>"})) def test_createUser_calledWithExistentUser_throwCommandError(self): user = self.__get_user_test_instance() self.sut.create_user(user) self.assertRaises(CommandError, self.sut.create_user, user) def test_incrementUserScore_calledWithExistentUserId_userScoreCorrectlyIncremented(self): test_id = ObjectId("5aae93045b488007cb4af590") self.db.users.insert_one( {"email": "<EMAIL>", "password": "<PASSWORD>", "nickname": "jimmy", "role": "student", "_id": test_id, "score": 400}) self.sut.increment_user_score(test_id, 30) expected = 430 actual = User.from_json(self.db.users.find_one({"_id": test_id})).get_score() self.assertEqual(actual, expected) def __get_user_test_instance(self): return User(_id=ObjectId("666f6f2d6261722d71757578"), email="<EMAIL>", password="<PASSWORD>", role="master", nickname="testnickname")
0.384912
0.149345
import logging import torchvision.transforms import torchvision.utils import thelper.utils logger = logging.getLogger(__name__) def load_transforms(stages, avoid_transform_wrapper=False): """Loads a transformation pipeline from a list of stages. Each entry in the provided list will be considered a stage in the pipeline. The ordering of the stages is important, as some transformations might not be compatible if taken out of order. The entries must each be dictionaries that define an operation, its parameters, and some meta-parameters (detailed below). The ``operation`` field of each stage will be used to dynamically import a specific type of operation to apply. The ``params`` field of each stage will then be used to pass parameters to the constructor of this operation. If an operation is identified as ``"Augmentor.Pipeline"`` or ``"albumentations.Compose"``, it will be specially handled. In both case, the ``params`` field becomes mandatory in the stage dictionary, and it must specify the Augmentor or albumentations pipeline operation names and parameters (as a dictionary). Two additional optional config fields can then be set for Augmentor pipelines: ``input_tensor`` (bool) which specifies whether the previous stage provides a ``torch.Tensor`` to the pipeline (default=False); and ``output_tensor`` (bool) which specifies whether the output of the pipeline should be converted into a tensor (default=False). For albumentations pipelines, two additional fields are also available, namely ``bbox_params`` (dict) and ``keypoint_params`` (dict). For more information on these, refer to the documentation of ``albumentations.core.composition.Compose``. Finally, when unpacking dictionaries for albumentations pipelines, the keys associated to bounding boxes/masks/keypoints that must be forwarded to the composer can be specified via the ``bboxes_key``, ``mask_key``, and ``keypoints_key`` fields. All operations can also specify which sample components they should be applied to via the ``target_key`` field. This field can contain a single key (typically a string), or a list of keys. The operation will be applied at runtime to all values which are found in the samples with one of those keys. If no key is provided for an operation, it will be applied to all array-like components of the sample. Finally, all operations can specify a ``linked_fate`` field (bool) to specify whether the samples provided in lists should all have the same fate or not (default=True). Usage examples inside a session configuration file:: # ... # the 'loaders' field may contain several transformation pipelines # (see 'thelper.data.utils.create_loaders' for more information on these pipelines) "loaders": { # ... # the 'base_transforms' operations are applied to all loaded samples "base_transforms": [ { "operation": "...", "params": { ... }, "target_key": [ ... ], "linked_fate": ... }, { "operation": "...", "params": { ... }, "target_key": [ ... ], "linked_fate": ... }, ... ], # ... Args: stages: a list defining a series of transformations to apply as a single pipeline. Returns: A transformation pipeline object compatible with the ``torchvision.transforms`` interface. .. seealso:: | :class:`thelper.transforms.wrappers.AlbumentationsWrapper` | :class:`thelper.transforms.wrappers.AugmentorWrapper` | :class:`thelper.transforms.wrappers.TransformWrapper` | :func:`thelper.transforms.utils.load_augments` | :func:`thelper.data.utils.create_loaders` """ assert isinstance(stages, list), "expected stages to be provided as a list" if not stages: return None, True # no-op transform, and dont-care append assert all([isinstance(stage, dict) for stage in stages]), "expected all stages to be provided as dictionaries" operations = [] for stage_idx, stage in enumerate(stages): assert "operation" in stage and stage["operation"], f"stage #{stage_idx} is missing its operation field" operation_name = stage["operation"] operation_params = thelper.utils.get_key_def(["params", "parameters"], stage, {}) assert isinstance(operation_params, dict), f"stage #{stage_idx} parameters are not provided as a dictionary" operation_targets = None if "target_key" in stage: assert isinstance(stage["target_key"], (list, str, int)), \ f"stage #{stage_idx} target keys are not provided as a list or string/int" operation_targets = stage["target_key"] if isinstance(stage["target_key"], list) else [stage["target_key"]] linked_fate = thelper.utils.str2bool(stage["linked_fate"]) if "linked_fate" in stage else True if operation_name == "Augmentor.Pipeline": import Augmentor pipeline = Augmentor.Pipeline() assert isinstance(operation_params, dict) and operation_params, \ "augmentor pipeline 'params' field should contain dictionary of suboperations" for pipeline_op_name, pipeline_op_params in operation_params.items(): getattr(pipeline, pipeline_op_name)(**pipeline_op_params) if "input_tensor" in stage and thelper.utils.str2bool(stage["input_tensor"]): operations.append(torchvision.transforms.ToPILImage()) operations.append(thelper.transforms.wrappers.AugmentorWrapper(pipeline, operation_targets, linked_fate)) if "output_tensor" in stage and thelper.utils.str2bool(stage["output_tensor"]): operations.append(torchvision.transforms.ToTensor()) elif operation_name == "albumentations.Compose": assert isinstance(operation_params, dict) and operation_params, \ "albumentations pipeline 'params' field should contain dictionary of suboperations" suboperations = [] for op_name, op_params in operation_params.items(): if not op_name.startswith("albumentations."): op_name = "albumentations." + op_name op_type = thelper.utils.import_class(op_name) suboperations.append(op_type(**op_params)) probability = thelper.utils.get_key_def("probability", stage, 1.0) to_tensor = thelper.utils.get_key_def("to_tensor", stage, None) bbox_params = thelper.utils.get_key_def("bbox_params", stage, {}) add_targets = thelper.utils.get_key_def("add_targets", stage, {}) bboxes_key = thelper.utils.get_key_def("bboxes_key", stage, "bbox") mask_key = thelper.utils.get_key_def("mask_key", stage, "mask") keypoints_key = thelper.utils.get_key_def("keypoints_key", stage, "keypoints") cvt_kpts_to_bboxes = thelper.utils.str2bool(thelper.utils.get_key_def("cvt_kpts_to_bboxes", stage, False)) operations.append(thelper.transforms.wrappers.AlbumentationsWrapper( transforms=suboperations, to_tensor=to_tensor, bbox_params=bbox_params, add_targets=add_targets, image_key=operation_targets, bboxes_key=bboxes_key, mask_key=mask_key, keypoints_key=keypoints_key, probability=probability, cvt_kpts_to_bboxes=cvt_kpts_to_bboxes, linked_fate=linked_fate)) else: operation_type = thelper.utils.import_class(operation_name) try: operation = operation_type(**operation_params) except Exception: logger.error(f"failed to create transform op {operation_name} with params:\n\t{str(operation_params)}") raise if not avoid_transform_wrapper and not isinstance(operation, (thelper.transforms.wrappers.TransformWrapper, thelper.transforms.operations.NoTransform, torchvision.transforms.Compose)): operations.append(thelper.transforms.wrappers.TransformWrapper(operation, target_keys=operation_targets, linked_fate=linked_fate)) else: operations.append(operation) if len(operations) > 1: return thelper.transforms.Compose(operations) elif len(operations) == 1: return operations[0] else: return None def load_augments(config): """Loads a data augmentation pipeline. An augmentation pipeline is essentially a specialized transformation pipeline that can be appended or prefixed to the base transforms defined for all samples. Augmentations are typically used to diversify the samples within the training set in order to help model generalization. They can also be applied to validation and test samples in order to get multiple responses for the same input so that they can be averaged/concatenated into a single output. Usage examples inside a session configuration file:: # ... # the 'loaders' field can contain several augmentation pipelines # (see 'thelper.data.utils.create_loaders' for more information on these pipelines) "loaders": { # ... # the 'train_augments' operations are applied to training samples only "train_augments": { # specifies whether to apply the augmentations before or after the base transforms "append": false, "transforms": [ { # here, we use a single stage, which is actually an augmentor sub-pipeline # that is purely probabilistic (i.e. it does not increase input sample count) "operation": "Augmentor.Pipeline", "params": { # the augmentor pipeline defines two operations: rotations and flips "rotate_random_90": {"probability": 0.75}, "flip_random": {"probability": 0.75} } } ] }, # ... } # ... Args: config: the configuration dictionary defining the meta parameters as well as the list of transformation operations of the augmentation pipeline. Returns: A tuple that consists of a pipeline compatible with the ``torchvision.transforms`` interfaces, and a bool specifying whether this pipeline should be appended or prefixed to the base transforms. .. seealso:: | :class:`thelper.transforms.wrappers.AugmentorWrapper` | :func:`thelper.transforms.utils.load_transforms` | :func:`thelper.data.utils.create_loaders` """ assert isinstance(config, dict), "augmentation config should be provided as dictionary" augments = None augments_append = False if "append" in config: augments_append = thelper.utils.str2bool(config["append"]) if "transforms" in config and config["transforms"]: augments = thelper.transforms.load_transforms(config["transforms"]) return augments, augments_append
thelper/transforms/utils.py
import logging import torchvision.transforms import torchvision.utils import thelper.utils logger = logging.getLogger(__name__) def load_transforms(stages, avoid_transform_wrapper=False): """Loads a transformation pipeline from a list of stages. Each entry in the provided list will be considered a stage in the pipeline. The ordering of the stages is important, as some transformations might not be compatible if taken out of order. The entries must each be dictionaries that define an operation, its parameters, and some meta-parameters (detailed below). The ``operation`` field of each stage will be used to dynamically import a specific type of operation to apply. The ``params`` field of each stage will then be used to pass parameters to the constructor of this operation. If an operation is identified as ``"Augmentor.Pipeline"`` or ``"albumentations.Compose"``, it will be specially handled. In both case, the ``params`` field becomes mandatory in the stage dictionary, and it must specify the Augmentor or albumentations pipeline operation names and parameters (as a dictionary). Two additional optional config fields can then be set for Augmentor pipelines: ``input_tensor`` (bool) which specifies whether the previous stage provides a ``torch.Tensor`` to the pipeline (default=False); and ``output_tensor`` (bool) which specifies whether the output of the pipeline should be converted into a tensor (default=False). For albumentations pipelines, two additional fields are also available, namely ``bbox_params`` (dict) and ``keypoint_params`` (dict). For more information on these, refer to the documentation of ``albumentations.core.composition.Compose``. Finally, when unpacking dictionaries for albumentations pipelines, the keys associated to bounding boxes/masks/keypoints that must be forwarded to the composer can be specified via the ``bboxes_key``, ``mask_key``, and ``keypoints_key`` fields. All operations can also specify which sample components they should be applied to via the ``target_key`` field. This field can contain a single key (typically a string), or a list of keys. The operation will be applied at runtime to all values which are found in the samples with one of those keys. If no key is provided for an operation, it will be applied to all array-like components of the sample. Finally, all operations can specify a ``linked_fate`` field (bool) to specify whether the samples provided in lists should all have the same fate or not (default=True). Usage examples inside a session configuration file:: # ... # the 'loaders' field may contain several transformation pipelines # (see 'thelper.data.utils.create_loaders' for more information on these pipelines) "loaders": { # ... # the 'base_transforms' operations are applied to all loaded samples "base_transforms": [ { "operation": "...", "params": { ... }, "target_key": [ ... ], "linked_fate": ... }, { "operation": "...", "params": { ... }, "target_key": [ ... ], "linked_fate": ... }, ... ], # ... Args: stages: a list defining a series of transformations to apply as a single pipeline. Returns: A transformation pipeline object compatible with the ``torchvision.transforms`` interface. .. seealso:: | :class:`thelper.transforms.wrappers.AlbumentationsWrapper` | :class:`thelper.transforms.wrappers.AugmentorWrapper` | :class:`thelper.transforms.wrappers.TransformWrapper` | :func:`thelper.transforms.utils.load_augments` | :func:`thelper.data.utils.create_loaders` """ assert isinstance(stages, list), "expected stages to be provided as a list" if not stages: return None, True # no-op transform, and dont-care append assert all([isinstance(stage, dict) for stage in stages]), "expected all stages to be provided as dictionaries" operations = [] for stage_idx, stage in enumerate(stages): assert "operation" in stage and stage["operation"], f"stage #{stage_idx} is missing its operation field" operation_name = stage["operation"] operation_params = thelper.utils.get_key_def(["params", "parameters"], stage, {}) assert isinstance(operation_params, dict), f"stage #{stage_idx} parameters are not provided as a dictionary" operation_targets = None if "target_key" in stage: assert isinstance(stage["target_key"], (list, str, int)), \ f"stage #{stage_idx} target keys are not provided as a list or string/int" operation_targets = stage["target_key"] if isinstance(stage["target_key"], list) else [stage["target_key"]] linked_fate = thelper.utils.str2bool(stage["linked_fate"]) if "linked_fate" in stage else True if operation_name == "Augmentor.Pipeline": import Augmentor pipeline = Augmentor.Pipeline() assert isinstance(operation_params, dict) and operation_params, \ "augmentor pipeline 'params' field should contain dictionary of suboperations" for pipeline_op_name, pipeline_op_params in operation_params.items(): getattr(pipeline, pipeline_op_name)(**pipeline_op_params) if "input_tensor" in stage and thelper.utils.str2bool(stage["input_tensor"]): operations.append(torchvision.transforms.ToPILImage()) operations.append(thelper.transforms.wrappers.AugmentorWrapper(pipeline, operation_targets, linked_fate)) if "output_tensor" in stage and thelper.utils.str2bool(stage["output_tensor"]): operations.append(torchvision.transforms.ToTensor()) elif operation_name == "albumentations.Compose": assert isinstance(operation_params, dict) and operation_params, \ "albumentations pipeline 'params' field should contain dictionary of suboperations" suboperations = [] for op_name, op_params in operation_params.items(): if not op_name.startswith("albumentations."): op_name = "albumentations." + op_name op_type = thelper.utils.import_class(op_name) suboperations.append(op_type(**op_params)) probability = thelper.utils.get_key_def("probability", stage, 1.0) to_tensor = thelper.utils.get_key_def("to_tensor", stage, None) bbox_params = thelper.utils.get_key_def("bbox_params", stage, {}) add_targets = thelper.utils.get_key_def("add_targets", stage, {}) bboxes_key = thelper.utils.get_key_def("bboxes_key", stage, "bbox") mask_key = thelper.utils.get_key_def("mask_key", stage, "mask") keypoints_key = thelper.utils.get_key_def("keypoints_key", stage, "keypoints") cvt_kpts_to_bboxes = thelper.utils.str2bool(thelper.utils.get_key_def("cvt_kpts_to_bboxes", stage, False)) operations.append(thelper.transforms.wrappers.AlbumentationsWrapper( transforms=suboperations, to_tensor=to_tensor, bbox_params=bbox_params, add_targets=add_targets, image_key=operation_targets, bboxes_key=bboxes_key, mask_key=mask_key, keypoints_key=keypoints_key, probability=probability, cvt_kpts_to_bboxes=cvt_kpts_to_bboxes, linked_fate=linked_fate)) else: operation_type = thelper.utils.import_class(operation_name) try: operation = operation_type(**operation_params) except Exception: logger.error(f"failed to create transform op {operation_name} with params:\n\t{str(operation_params)}") raise if not avoid_transform_wrapper and not isinstance(operation, (thelper.transforms.wrappers.TransformWrapper, thelper.transforms.operations.NoTransform, torchvision.transforms.Compose)): operations.append(thelper.transforms.wrappers.TransformWrapper(operation, target_keys=operation_targets, linked_fate=linked_fate)) else: operations.append(operation) if len(operations) > 1: return thelper.transforms.Compose(operations) elif len(operations) == 1: return operations[0] else: return None def load_augments(config): """Loads a data augmentation pipeline. An augmentation pipeline is essentially a specialized transformation pipeline that can be appended or prefixed to the base transforms defined for all samples. Augmentations are typically used to diversify the samples within the training set in order to help model generalization. They can also be applied to validation and test samples in order to get multiple responses for the same input so that they can be averaged/concatenated into a single output. Usage examples inside a session configuration file:: # ... # the 'loaders' field can contain several augmentation pipelines # (see 'thelper.data.utils.create_loaders' for more information on these pipelines) "loaders": { # ... # the 'train_augments' operations are applied to training samples only "train_augments": { # specifies whether to apply the augmentations before or after the base transforms "append": false, "transforms": [ { # here, we use a single stage, which is actually an augmentor sub-pipeline # that is purely probabilistic (i.e. it does not increase input sample count) "operation": "Augmentor.Pipeline", "params": { # the augmentor pipeline defines two operations: rotations and flips "rotate_random_90": {"probability": 0.75}, "flip_random": {"probability": 0.75} } } ] }, # ... } # ... Args: config: the configuration dictionary defining the meta parameters as well as the list of transformation operations of the augmentation pipeline. Returns: A tuple that consists of a pipeline compatible with the ``torchvision.transforms`` interfaces, and a bool specifying whether this pipeline should be appended or prefixed to the base transforms. .. seealso:: | :class:`thelper.transforms.wrappers.AugmentorWrapper` | :func:`thelper.transforms.utils.load_transforms` | :func:`thelper.data.utils.create_loaders` """ assert isinstance(config, dict), "augmentation config should be provided as dictionary" augments = None augments_append = False if "append" in config: augments_append = thelper.utils.str2bool(config["append"]) if "transforms" in config and config["transforms"]: augments = thelper.transforms.load_transforms(config["transforms"]) return augments, augments_append
0.86674
0.697107
__all__ = [ 'CHORDS', 'CHORD_TABS', 'UkuleleNoteError', 'UkuleleChordError', 'get_chord', 'get_note' ] class UkuleleNoteError(Exception) : pass class UkuleleChordError(Exception) : pass def get_note(string, fret) : if abs(string) < len(FRETS) : if abs(fret) < len(FRETS[string]) : return FRETS[string][fret] raise UkuleleNoteError(string, fret) def get_chord(chord) : if chord in CHORD_TABS : return tuple([ get_note(string, fret) for string, fret in enumerate(CHORD_TABS[chord]) ]) raise UkuleleChordError(chord) FRETS = ( ('G4', 'G#4', 'A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5', 'F5', 'F#5', 'G5'), ('C4', 'C#4', 'D4', 'D#4', 'E4', 'F4', 'F#4', 'G4', 'G#4', 'A4', 'A#4', 'B4', 'C5'), ('E4', 'F4', 'F#4', 'G4', 'G#4', 'A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5'), ('A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5', 'F5', 'F#5', 'G5', 'G#5', 'A5'), ) CHORD_TABS = { 'C' : (0, 0, 0, 3), 'C7' : (0, 0, 0, 1), 'Cm' : (0, 3, 3, 3), 'Cm7' : (3, 3, 3, 3), 'Cdim' : (2, 3, 2, 3), 'Caug' : (1, 0, 0, 3), 'C6' : (0, 0, 0, 0), 'Cmaj7' : (0, 0, 0, 2), 'C9' : (0, 2, 0, 1), 'C#' : (1, 1, 1, 4), 'C#7' : (1, 1, 1, 2), 'C#m' : (1, 1, 0, 3), 'C#m7' : (4, 4, 4, 4), 'C#dim' : (0, 1, 0, 1), 'C#aug' : (2, 1, 1, 0), 'C#6' : (1, 1, 1, 1), 'C#maj7' : (1, 1, 1, 3), 'C#9' : (1, 3, 1, 2), 'D' : (2, 2, 2, 0), 'D7' : (2, 2, 2, 3), 'Dm' : (2, 2, 1, 0), 'Dm7' : (2, 2, 1, 3), 'Ddim' : (1, 2, 1, 2), 'Daug' : (3, 2, 2, 1), 'D6' : (2, 2, 2, 2), 'Dmaj7' : (2, 2, 2, 4), 'D9' : (2, 4, 2, 3), 'Eb' : (1, 3, 3, 3), 'Eb7' : (3, 3, 3, 4), 'Ebm' : (3, 3, 2, 1), 'Ebm7' : (3, 3, 2, 4), 'Ebdim' : (2, 3, 2, 3), 'Ebaug' : (2, 1, 1, 4), 'Eb6' : (3, 3, 3, 3), 'Ebmaj7' : (3, 3, 3, 0), 'Eb9' : (0, 1, 1, 1), 'E' : (2, 4, 4, 4), 'E7' : (1, 2, 0, 2), 'Em' : (0, 4, 3, 2), 'Em7' : (0, 2, 0, 2), 'Edim' : (0, 1, 0, 1), 'Eaug' : (1, 0, 0, 3), 'E6' : (1, 0, 2, 0), 'Emaj7' : (1, 3, 0, 2), 'E9' : (1, 2, 2, 2), 'F' : (2, 0, 1, 0), 'F7' : (2, 3, 1, 0), 'Fm' : (1, 0, 1, 3), 'Fm7' : (1, 3, 1, 3), 'Fdim' : (1, 2, 1, 2), 'Faug' : (2, 1, 1, 0), 'F6' : (2, 2, 1, 3), 'Fmaj7' : (2, 4, 1, 3), 'F9' : (2, 3, 3, 3), 'F#' : (3, 1, 2, 1), 'F#7' : (3, 4, 2, 4), 'F#m' : (2, 1, 2, 0), 'F#m7' : (2, 4, 2, 4), 'F#dim' : (2, 3, 2, 3), 'F#aug' : (4, 3, 2, 2), 'F#6' : (3, 3, 2, 4), 'F#maj7' : (0, 1, 1, 1), 'F#9' : (1, 1, 0, 1), 'G' : (0, 2, 3, 2), 'G7' : (0, 2, 1, 2), 'Gm' : (0, 2, 3, 1), 'Gm7' : (0, 2, 1, 1), 'Gdim' : (0, 1, 0, 1), 'Gaug' : (4, 3, 3, 2), 'G6' : (0, 2, 0, 2), 'Gmaj7' : (0, 2, 2, 2), 'G9' : (2, 2, 1, 2), 'G#' : (5, 3, 4, 3), 'G#7' : (1, 3, 2, 3), 'G#m' : (1, 3, 4, 2), 'G#m7' : (0, 3, 2, 2), 'G#dim' : (1, 2, 1, 2), 'G#aug' : (1, 0, 0, 2), 'G#6' : (1, 3, 1, 3), 'G#maj7' : (1, 3, 3, 3), 'G#9' : (3, 3, 2, 3), 'A' : (2, 1, 0, 0), 'A7' : (0, 1, 0, 0), 'Am' : (2, 0, 0, 0), 'Am7' : (0, 4, 3, 3), 'Adim' : (2, 3, 2, 3), 'Aaug' : (2, 1, 1, 1), 'A6' : (2, 4, 2, 4), 'Amaj7' : (1, 1, 0, 0), 'A9' : (0, 1, 0, 2), 'Bb' : (3, 2, 1, 1), 'Bb7' : (1, 2, 1, 1), 'Bbm' : (3, 1, 1, 1), 'Bbm7' : (1, 1, 1, 1), 'Bbdim' : (0, 1, 0, 1), 'Bbaug' : (3, 2, 2, 1), 'Bb6' : (0, 2, 1, 1), 'Bbmaj7': (3, 2, 1, 0), 'Bb9' : (1, 2, 1, 3), 'B' : (4, 3, 2, 2), 'B7' : (2, 3, 2, 2), 'Bm' : (4, 2, 2, 2), 'Bm7' : (2, 2, 2, 2), 'Bdim' : (1, 2, 1, 2), 'Baug' : (4, 3, 3, 2), 'B6' : (1, 3, 2, 2), 'Bmaj7' : (3, 3, 2, 2), 'B9' : (2, 3, 2, 4), } CHORDS = dict() for chord in CHORD_TABS : CHORDS[chord] = get_chord(chord)
psox/ukulele.py
__all__ = [ 'CHORDS', 'CHORD_TABS', 'UkuleleNoteError', 'UkuleleChordError', 'get_chord', 'get_note' ] class UkuleleNoteError(Exception) : pass class UkuleleChordError(Exception) : pass def get_note(string, fret) : if abs(string) < len(FRETS) : if abs(fret) < len(FRETS[string]) : return FRETS[string][fret] raise UkuleleNoteError(string, fret) def get_chord(chord) : if chord in CHORD_TABS : return tuple([ get_note(string, fret) for string, fret in enumerate(CHORD_TABS[chord]) ]) raise UkuleleChordError(chord) FRETS = ( ('G4', 'G#4', 'A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5', 'F5', 'F#5', 'G5'), ('C4', 'C#4', 'D4', 'D#4', 'E4', 'F4', 'F#4', 'G4', 'G#4', 'A4', 'A#4', 'B4', 'C5'), ('E4', 'F4', 'F#4', 'G4', 'G#4', 'A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5'), ('A4', 'A#4', 'B4', 'C5', 'C#5', 'D5', 'D#5', 'E5', 'F5', 'F#5', 'G5', 'G#5', 'A5'), ) CHORD_TABS = { 'C' : (0, 0, 0, 3), 'C7' : (0, 0, 0, 1), 'Cm' : (0, 3, 3, 3), 'Cm7' : (3, 3, 3, 3), 'Cdim' : (2, 3, 2, 3), 'Caug' : (1, 0, 0, 3), 'C6' : (0, 0, 0, 0), 'Cmaj7' : (0, 0, 0, 2), 'C9' : (0, 2, 0, 1), 'C#' : (1, 1, 1, 4), 'C#7' : (1, 1, 1, 2), 'C#m' : (1, 1, 0, 3), 'C#m7' : (4, 4, 4, 4), 'C#dim' : (0, 1, 0, 1), 'C#aug' : (2, 1, 1, 0), 'C#6' : (1, 1, 1, 1), 'C#maj7' : (1, 1, 1, 3), 'C#9' : (1, 3, 1, 2), 'D' : (2, 2, 2, 0), 'D7' : (2, 2, 2, 3), 'Dm' : (2, 2, 1, 0), 'Dm7' : (2, 2, 1, 3), 'Ddim' : (1, 2, 1, 2), 'Daug' : (3, 2, 2, 1), 'D6' : (2, 2, 2, 2), 'Dmaj7' : (2, 2, 2, 4), 'D9' : (2, 4, 2, 3), 'Eb' : (1, 3, 3, 3), 'Eb7' : (3, 3, 3, 4), 'Ebm' : (3, 3, 2, 1), 'Ebm7' : (3, 3, 2, 4), 'Ebdim' : (2, 3, 2, 3), 'Ebaug' : (2, 1, 1, 4), 'Eb6' : (3, 3, 3, 3), 'Ebmaj7' : (3, 3, 3, 0), 'Eb9' : (0, 1, 1, 1), 'E' : (2, 4, 4, 4), 'E7' : (1, 2, 0, 2), 'Em' : (0, 4, 3, 2), 'Em7' : (0, 2, 0, 2), 'Edim' : (0, 1, 0, 1), 'Eaug' : (1, 0, 0, 3), 'E6' : (1, 0, 2, 0), 'Emaj7' : (1, 3, 0, 2), 'E9' : (1, 2, 2, 2), 'F' : (2, 0, 1, 0), 'F7' : (2, 3, 1, 0), 'Fm' : (1, 0, 1, 3), 'Fm7' : (1, 3, 1, 3), 'Fdim' : (1, 2, 1, 2), 'Faug' : (2, 1, 1, 0), 'F6' : (2, 2, 1, 3), 'Fmaj7' : (2, 4, 1, 3), 'F9' : (2, 3, 3, 3), 'F#' : (3, 1, 2, 1), 'F#7' : (3, 4, 2, 4), 'F#m' : (2, 1, 2, 0), 'F#m7' : (2, 4, 2, 4), 'F#dim' : (2, 3, 2, 3), 'F#aug' : (4, 3, 2, 2), 'F#6' : (3, 3, 2, 4), 'F#maj7' : (0, 1, 1, 1), 'F#9' : (1, 1, 0, 1), 'G' : (0, 2, 3, 2), 'G7' : (0, 2, 1, 2), 'Gm' : (0, 2, 3, 1), 'Gm7' : (0, 2, 1, 1), 'Gdim' : (0, 1, 0, 1), 'Gaug' : (4, 3, 3, 2), 'G6' : (0, 2, 0, 2), 'Gmaj7' : (0, 2, 2, 2), 'G9' : (2, 2, 1, 2), 'G#' : (5, 3, 4, 3), 'G#7' : (1, 3, 2, 3), 'G#m' : (1, 3, 4, 2), 'G#m7' : (0, 3, 2, 2), 'G#dim' : (1, 2, 1, 2), 'G#aug' : (1, 0, 0, 2), 'G#6' : (1, 3, 1, 3), 'G#maj7' : (1, 3, 3, 3), 'G#9' : (3, 3, 2, 3), 'A' : (2, 1, 0, 0), 'A7' : (0, 1, 0, 0), 'Am' : (2, 0, 0, 0), 'Am7' : (0, 4, 3, 3), 'Adim' : (2, 3, 2, 3), 'Aaug' : (2, 1, 1, 1), 'A6' : (2, 4, 2, 4), 'Amaj7' : (1, 1, 0, 0), 'A9' : (0, 1, 0, 2), 'Bb' : (3, 2, 1, 1), 'Bb7' : (1, 2, 1, 1), 'Bbm' : (3, 1, 1, 1), 'Bbm7' : (1, 1, 1, 1), 'Bbdim' : (0, 1, 0, 1), 'Bbaug' : (3, 2, 2, 1), 'Bb6' : (0, 2, 1, 1), 'Bbmaj7': (3, 2, 1, 0), 'Bb9' : (1, 2, 1, 3), 'B' : (4, 3, 2, 2), 'B7' : (2, 3, 2, 2), 'Bm' : (4, 2, 2, 2), 'Bm7' : (2, 2, 2, 2), 'Bdim' : (1, 2, 1, 2), 'Baug' : (4, 3, 3, 2), 'B6' : (1, 3, 2, 2), 'Bmaj7' : (3, 3, 2, 2), 'B9' : (2, 3, 2, 4), } CHORDS = dict() for chord in CHORD_TABS : CHORDS[chord] = get_chord(chord)
0.361052
0.325789
__authors__ = [ '"Madhusudan.C.S" <<EMAIL>>', ] from datetime import datetime from datetime import timedelta from google.appengine.ext import db from google.appengine.api import users from fixture import DataSet class UserData(DataSet): class all_admin: key_name = '<EMAIL>' link_id = 'super_admin' account = users.User(email='<EMAIL>') name = 'Super Admin' is_developer = True class site_admin: key_name = 'site_admin' link_id = 'site_admin' account = users.User(email='<EMAIL>') name = 'Site Admin' class melange_admin_0001: key_name = 'melange_admin_0001' link_id = 'melange_admin_0001' account = users.User(email='<EMAIL>') name = 'Melange Admin 0001' class melange_admin_0002: key_name = 'melange_admin_0002' link_id = 'melange_admin_0002' account = users.User(email='<EMAIL>') name = 'Melange Admin 0002' class asf_admin_0001: key_name = 'asf_admin_0001' link_id = 'asf_admin_0001' account = users.User(email='<EMAIL>') name = 'ASF Admin 0001' class melange_mentor_0001: key_name = 'melange_mentor_0001' link_id = 'melange_mentor_0001' account = users.User(email='<EMAIL>') name = '<NAME>or 0001' class melange_mentor_0002: key_name = 'melange_mentor_0002' link_id = 'melange_mentor_0002' account = users.User(email='<EMAIL>') name = '<NAME> 0002' class asf_mentor_0001: key_name = 'asf_mentor_0001' link_id = 'asf_mentor_0001' account = users.User(email='<EMAIL>') name = 'ASF Mentor 001' class melange_student_0001: key_name = 'melange_student_0001' link_id = 'melange_student_0001' account = users.User(email='<EMAIL>') name = 'Melange Student 0001' class melange_student_0002: key_name = 'melange_student_0002' link_id = 'melange_student_0002' account = users.User(email='<EMAIL>') name = 'Melange Student 0002' class asf_student_0001: key_name = 'asf_student_0001' link_id = 'asf_student_0001' account = users.User(email='<EMAIL>') name = 'ASF Student 0001' class public: key_name = 'public' link_id = 'public' account = users.User(email='<EMAIL>') name = 'Public' class SiteData(DataSet): class site: key_name = 'site' link_id = 'site' class SponsorData(DataSet): class google: key_name = 'google' link_id = 'google' name = 'Google Inc.' short_name = 'Google' founder = UserData.site_admin home_page = 'http://www.google.com' email = '<EMAIL>' description = 'This is the profile for Google.' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class HostData(DataSet): class google: key_name = 'google/test' link_id = 'test' scope = SponsorData.google scope_path = 'google' user = UserData.site_admin given_name = 'Test' surname = 'Example' name_on_documents = '<NAME>' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class TimelineData(DataSet): class gsoc2009: key_name = 'google/gsoc2009' link_id = 'gsoc2009' scope_path = 'google' scope = SponsorData.google class GHOPTimelineData(DataSet): class ghop2009: key_name = 'google/ghop2009' link_id = 'ghop2009' scope_path = 'google' scope = SponsorData.google program_start = datetime.today() - timedelta(days=30) program_end = datetime.today() + timedelta(days=30) org_signup_start = datetime.today() + timedelta(days=25) org_signup_end = datetime.today() + timedelta(days=25) class ProgramData(DataSet): class gsoc2009: key_name = 'google/gsoc2009' link_id = 'gsoc2009' scope_path ='google' scope = SponsorData.google name = 'Google Summer of Code 2009' short_name = 'GSoC 2009' group_label = 'GSOC' description = 'This is the program for GSoC 2009.' apps_tasks_limit = 42 slots = 42 timeline = TimelineData.gsoc2009 status = 'visible' class GHOPProgramData(DataSet): class ghop2009: key_name = 'google/ghop2009' link_id = 'ghop2009' scope_path ='google' scope = SponsorData.google name = 'Google Highly Open Participation Contest 2009' short_name = 'GHOP 2009' group_label = 'GHOP' description = 'This is the program for GHOP 2009.' apps_tasks_limit = 42 slots = 42 timeline = GHOPTimelineData.ghop2009 status = 'visible' class OrgData(DataSet): class melange_gsoc: key_name = 'google/ghop2009/melange' link_id = 'melange' name = '<NAME>' short_name = 'Melange' scope_path = 'google/gsoc2009' scope = ProgramData.gsoc2009 home_page = 'http://code.google.com/p/soc' description = 'Melange, share the love!' license_name = 'Apache License' ideas = 'http://code.google.com/p/soc/issues' founder = UserData.melange_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class GHOPOrganizationData(DataSet): class melange_ghop: key_name = 'google/ghop2009/melange' link_id = 'melange' name = 'Melange Development Team' short_name = 'Melange' scope_path = 'google/ghop2009' scope = GHOPProgramData.ghop2009 home_page = 'http://code.google.com/p/soc' description = 'Melange, share the love!' license_name = 'Apache License' ideas = 'http://code.google.com/p/soc/issues' founder = UserData.melange_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' task_quota_limit = 100 class asf_ghop: key_name = 'google/ghop2009/asf' link_id = 'asf' name = 'ASF Development Team' short_name = 'ASF' scope_path = 'google/ghop2009' scope = GHOPProgramData.ghop2009 home_page = 'http://apache.org' description = 'Apache Software Foundation' license_name = 'Apache License' ideas = 'http://apache.org/ideas' founder = UserData.asf_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class GHOPOrgAdminData(DataSet): class melange: key_name = 'google/ghop2009/melange/test' link_id = 'test' scope_path = 'google/ghop2009/melange' scope = GHOPOrganizationData.melange_ghop program = GHOPProgramData.ghop2009 user = UserData.melange_admin_0001 given_name = 'Test' surname = 'Example' name_on_documents = 'Test Example' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class GHOPMentorData(DataSet): class melange: key_name = 'google/ghop2009/melange/test' link_id = 'test' scope_path = 'google/ghop2009/melange' scope = GHOPOrganizationData.melange_ghop program = GHOPProgramData.ghop2009 user = UserData.melange_mentor_0001 given_name = 'Test' surname = 'Example' name_on_documents = 'Test Example' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class GHOPStudentData(DataSet): class melange_student_0001: student_id = 'melange_student_0001' key_name = GHOPProgramData.ghop2009.key_name + "/" + student_id link_id = student_id scope_path = GHOPProgramData.ghop2009.key_name scope = GHOPProgramData.ghop2009 program = GHOPProgramData.ghop2009 user = UserData.melange_student_0001 given_name = 'Melange_Student' surname = 'Melfam' birth_date = db.DateProperty.now() email = '<EMAIL>' im_handle = 'melange_student_0001' major = 'Aerospace Engineering' name_on_documents = 'melstud0001' res_country = 'United States' res_city = 'Minnesota' res_street = 'Good Street' res_postalcode = '12345' publish_location = True blog = 'http://www.blog.com/' home_page = 'http://www.homepage.com/' photo_url = 'http://www.photosite.com/thumbnail.png' ship_state = None expected_graduation = 2009 school_country = 'United States' school_name = 'St.Joseph School' tshirt_size = 'XS' tshirt_style = 'male' degree = 'Undergraduate' phone = '1650253000' can_we_contact_you = True program_knowledge = 'I heard about this program through a friend.' class asf_student_0001: student_id = 'asf_student_0001' key_name = GHOPProgramData.ghop2009.key_name + "/" + student_id link_id = student_id scope_path = GHOPProgramData.ghop2009.key_name scope = GHOPProgramData.ghop2009 program = GHOPProgramData.ghop2009 user = UserData.melange_student_0001 given_name = 'ASF_Student' surname = 'Asffam' birth_date = db.DateProperty.now() email = '<EMAIL>' im_handle = 'asf_student_0001' major = 'Chemical Engineering' name_on_documents = 'asfstud0001' res_country = 'United States' res_city = 'New York' res_street = 'Jam Street' res_postalcode = '452543' publish_location = True blog = 'http://www.hasblog.com/' home_page = 'http://www.merahomepage.com/' photo_url = 'http://www.clickphoto.com/thumbnail.png' ship_state = None expected_graduation = 2009 school_country = 'United States' school_name = 'Benedict School' tshirt_size = 'XXL' tshirt_style = 'male' degree = 'Undergraduate' phone = '1650253000' can_we_contact_you = True program_knowledge = 'From slashdot.org post last year.'
src/melange/src/tests/datasets.py
__authors__ = [ '"Madhusudan.C.S" <<EMAIL>>', ] from datetime import datetime from datetime import timedelta from google.appengine.ext import db from google.appengine.api import users from fixture import DataSet class UserData(DataSet): class all_admin: key_name = '<EMAIL>' link_id = 'super_admin' account = users.User(email='<EMAIL>') name = 'Super Admin' is_developer = True class site_admin: key_name = 'site_admin' link_id = 'site_admin' account = users.User(email='<EMAIL>') name = 'Site Admin' class melange_admin_0001: key_name = 'melange_admin_0001' link_id = 'melange_admin_0001' account = users.User(email='<EMAIL>') name = 'Melange Admin 0001' class melange_admin_0002: key_name = 'melange_admin_0002' link_id = 'melange_admin_0002' account = users.User(email='<EMAIL>') name = 'Melange Admin 0002' class asf_admin_0001: key_name = 'asf_admin_0001' link_id = 'asf_admin_0001' account = users.User(email='<EMAIL>') name = 'ASF Admin 0001' class melange_mentor_0001: key_name = 'melange_mentor_0001' link_id = 'melange_mentor_0001' account = users.User(email='<EMAIL>') name = '<NAME>or 0001' class melange_mentor_0002: key_name = 'melange_mentor_0002' link_id = 'melange_mentor_0002' account = users.User(email='<EMAIL>') name = '<NAME> 0002' class asf_mentor_0001: key_name = 'asf_mentor_0001' link_id = 'asf_mentor_0001' account = users.User(email='<EMAIL>') name = 'ASF Mentor 001' class melange_student_0001: key_name = 'melange_student_0001' link_id = 'melange_student_0001' account = users.User(email='<EMAIL>') name = 'Melange Student 0001' class melange_student_0002: key_name = 'melange_student_0002' link_id = 'melange_student_0002' account = users.User(email='<EMAIL>') name = 'Melange Student 0002' class asf_student_0001: key_name = 'asf_student_0001' link_id = 'asf_student_0001' account = users.User(email='<EMAIL>') name = 'ASF Student 0001' class public: key_name = 'public' link_id = 'public' account = users.User(email='<EMAIL>') name = 'Public' class SiteData(DataSet): class site: key_name = 'site' link_id = 'site' class SponsorData(DataSet): class google: key_name = 'google' link_id = 'google' name = 'Google Inc.' short_name = 'Google' founder = UserData.site_admin home_page = 'http://www.google.com' email = '<EMAIL>' description = 'This is the profile for Google.' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class HostData(DataSet): class google: key_name = 'google/test' link_id = 'test' scope = SponsorData.google scope_path = 'google' user = UserData.site_admin given_name = 'Test' surname = 'Example' name_on_documents = '<NAME>' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class TimelineData(DataSet): class gsoc2009: key_name = 'google/gsoc2009' link_id = 'gsoc2009' scope_path = 'google' scope = SponsorData.google class GHOPTimelineData(DataSet): class ghop2009: key_name = 'google/ghop2009' link_id = 'ghop2009' scope_path = 'google' scope = SponsorData.google program_start = datetime.today() - timedelta(days=30) program_end = datetime.today() + timedelta(days=30) org_signup_start = datetime.today() + timedelta(days=25) org_signup_end = datetime.today() + timedelta(days=25) class ProgramData(DataSet): class gsoc2009: key_name = 'google/gsoc2009' link_id = 'gsoc2009' scope_path ='google' scope = SponsorData.google name = 'Google Summer of Code 2009' short_name = 'GSoC 2009' group_label = 'GSOC' description = 'This is the program for GSoC 2009.' apps_tasks_limit = 42 slots = 42 timeline = TimelineData.gsoc2009 status = 'visible' class GHOPProgramData(DataSet): class ghop2009: key_name = 'google/ghop2009' link_id = 'ghop2009' scope_path ='google' scope = SponsorData.google name = 'Google Highly Open Participation Contest 2009' short_name = 'GHOP 2009' group_label = 'GHOP' description = 'This is the program for GHOP 2009.' apps_tasks_limit = 42 slots = 42 timeline = GHOPTimelineData.ghop2009 status = 'visible' class OrgData(DataSet): class melange_gsoc: key_name = 'google/ghop2009/melange' link_id = 'melange' name = '<NAME>' short_name = 'Melange' scope_path = 'google/gsoc2009' scope = ProgramData.gsoc2009 home_page = 'http://code.google.com/p/soc' description = 'Melange, share the love!' license_name = 'Apache License' ideas = 'http://code.google.com/p/soc/issues' founder = UserData.melange_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class GHOPOrganizationData(DataSet): class melange_ghop: key_name = 'google/ghop2009/melange' link_id = 'melange' name = 'Melange Development Team' short_name = 'Melange' scope_path = 'google/ghop2009' scope = GHOPProgramData.ghop2009 home_page = 'http://code.google.com/p/soc' description = 'Melange, share the love!' license_name = 'Apache License' ideas = 'http://code.google.com/p/soc/issues' founder = UserData.melange_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' task_quota_limit = 100 class asf_ghop: key_name = 'google/ghop2009/asf' link_id = 'asf' name = 'ASF Development Team' short_name = 'ASF' scope_path = 'google/ghop2009' scope = GHOPProgramData.ghop2009 home_page = 'http://apache.org' description = 'Apache Software Foundation' license_name = 'Apache License' ideas = 'http://apache.org/ideas' founder = UserData.asf_admin_0001 email = '<EMAIL>' contact_street = 'Some Street' contact_city = 'Some City' contact_country = 'United States' contact_postalcode = '12345' phone = '1-555-BANANA' status = 'active' class GHOPOrgAdminData(DataSet): class melange: key_name = 'google/ghop2009/melange/test' link_id = 'test' scope_path = 'google/ghop2009/melange' scope = GHOPOrganizationData.melange_ghop program = GHOPProgramData.ghop2009 user = UserData.melange_admin_0001 given_name = 'Test' surname = 'Example' name_on_documents = 'Test Example' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class GHOPMentorData(DataSet): class melange: key_name = 'google/ghop2009/melange/test' link_id = 'test' scope_path = 'google/ghop2009/melange' scope = GHOPOrganizationData.melange_ghop program = GHOPProgramData.ghop2009 user = UserData.melange_mentor_0001 given_name = 'Test' surname = 'Example' name_on_documents = 'Test Example' email = '<EMAIL>' res_street = 'Some Street' res_city = 'Some City' res_state = 'Some State' res_country = 'United States' res_postalcode = '12345' phone = '1-555-BANANA' birth_date = db.DateProperty.now() agreed_to_tos = True class GHOPStudentData(DataSet): class melange_student_0001: student_id = 'melange_student_0001' key_name = GHOPProgramData.ghop2009.key_name + "/" + student_id link_id = student_id scope_path = GHOPProgramData.ghop2009.key_name scope = GHOPProgramData.ghop2009 program = GHOPProgramData.ghop2009 user = UserData.melange_student_0001 given_name = 'Melange_Student' surname = 'Melfam' birth_date = db.DateProperty.now() email = '<EMAIL>' im_handle = 'melange_student_0001' major = 'Aerospace Engineering' name_on_documents = 'melstud0001' res_country = 'United States' res_city = 'Minnesota' res_street = 'Good Street' res_postalcode = '12345' publish_location = True blog = 'http://www.blog.com/' home_page = 'http://www.homepage.com/' photo_url = 'http://www.photosite.com/thumbnail.png' ship_state = None expected_graduation = 2009 school_country = 'United States' school_name = 'St.Joseph School' tshirt_size = 'XS' tshirt_style = 'male' degree = 'Undergraduate' phone = '1650253000' can_we_contact_you = True program_knowledge = 'I heard about this program through a friend.' class asf_student_0001: student_id = 'asf_student_0001' key_name = GHOPProgramData.ghop2009.key_name + "/" + student_id link_id = student_id scope_path = GHOPProgramData.ghop2009.key_name scope = GHOPProgramData.ghop2009 program = GHOPProgramData.ghop2009 user = UserData.melange_student_0001 given_name = 'ASF_Student' surname = 'Asffam' birth_date = db.DateProperty.now() email = '<EMAIL>' im_handle = 'asf_student_0001' major = 'Chemical Engineering' name_on_documents = 'asfstud0001' res_country = 'United States' res_city = 'New York' res_street = 'Jam Street' res_postalcode = '452543' publish_location = True blog = 'http://www.hasblog.com/' home_page = 'http://www.merahomepage.com/' photo_url = 'http://www.clickphoto.com/thumbnail.png' ship_state = None expected_graduation = 2009 school_country = 'United States' school_name = 'Benedict School' tshirt_size = 'XXL' tshirt_style = 'male' degree = 'Undergraduate' phone = '1650253000' can_we_contact_you = True program_knowledge = 'From slashdot.org post last year.'
0.336658
0.0745
import argparse import logging import sys import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from torch.utils.data import DataLoader, Dataset from mnist_net import mnist_net logger = logging.getLogger(__name__) logging.basicConfig( format='[%(asctime)s %(filename)s %(name)s %(levelname)s] - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.DEBUG) def clamp(X, lower_limit, upper_limit): return torch.max(torch.min(X, upper_limit), lower_limit) def attack_fgsm(model, X, y, epsilon): delta = torch.zeros_like(X, requires_grad=True) output = model(X + delta) loss = F.cross_entropy(output, y) loss.backward() grad = delta.grad.detach() delta.data = epsilon * torch.sign(grad) return delta.detach() def attack_pgd(model, X, y, epsilon, alpha, attack_iters, restarts): max_loss = torch.zeros(y.shape[0]).cuda() max_delta = torch.zeros_like(X).cuda() for _ in range(restarts): delta = torch.zeros_like(X).uniform_(-epsilon, epsilon).cuda() delta.data = clamp(delta, 0-X, 1-X) delta.requires_grad = True for _ in range(attack_iters): output = model(X + delta) index = torch.where(output.max(1)[1] == y)[0] if len(index) == 0: break loss = F.cross_entropy(output, y) loss.backward() grad = delta.grad.detach() d = torch.clamp(delta + alpha * torch.sign(grad), -epsilon, epsilon) d = clamp(d, 0-X, 1-X) delta.data[index] = d[index] delta.grad.zero_() all_loss = F.cross_entropy(model(X+delta), y, reduction='none') max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss] max_loss = torch.max(max_loss, all_loss) return max_delta def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch-size', default=100, type=int) parser.add_argument('--data-dir', default='../mnist-data', type=str) parser.add_argument('--fname', type=str) parser.add_argument('--attack', default='pgd', type=str, choices=['pgd', 'fgsm', 'none']) parser.add_argument('--epsilon', default=0.3, type=float) parser.add_argument('--attack-iters', default=50, type=int) parser.add_argument('--alpha', default=1e-2, type=float) parser.add_argument('--restarts', default=10, type=int) parser.add_argument('--seed', default=0, type=int) return parser.parse_args() def main(): args = get_args() logger.info(args) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) mnist_test = datasets.MNIST("../mnist-data", train=False, download=True, transform=transforms.ToTensor()) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=args.batch_size, shuffle=False) model = mnist_net().cuda() checkpoint = torch.load(args.fname) model.load_state_dict(checkpoint) model.eval() total_loss = 0 total_acc = 0 n = 0 if args.attack == 'none': with torch.no_grad(): for i, (X, y) in enumerate(test_loader): X, y = X.cuda(), y.cuda() output = model(X) loss = F.cross_entropy(output, y) total_loss += loss.item() * y.size(0) total_acc += (output.max(1)[1] == y).sum().item() n += y.size(0) else: for i, (X, y) in enumerate(test_loader): X, y = X.cuda(), y.cuda() if args.attack == 'pgd': delta = attack_pgd(model, X, y, args.epsilon, args.alpha, args.attack_iters, args.restarts) elif args.attack == 'fgsm': delta = attack_fgsm(model, X, y, args.epsilon) with torch.no_grad(): output = model(X + delta) loss = F.cross_entropy(output, y) total_loss += loss.item() * y.size(0) total_acc += (output.max(1)[1] == y).sum().item() n += y.size(0) logger.info('Test Loss: %.4f, Acc: %.4f', total_loss/n, total_acc/n) if __name__ == "__main__": main()
pytorch_ares/third_party/fast_adversarial/MNIST/evaluate_mnist.py
import argparse import logging import sys import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from torch.utils.data import DataLoader, Dataset from mnist_net import mnist_net logger = logging.getLogger(__name__) logging.basicConfig( format='[%(asctime)s %(filename)s %(name)s %(levelname)s] - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.DEBUG) def clamp(X, lower_limit, upper_limit): return torch.max(torch.min(X, upper_limit), lower_limit) def attack_fgsm(model, X, y, epsilon): delta = torch.zeros_like(X, requires_grad=True) output = model(X + delta) loss = F.cross_entropy(output, y) loss.backward() grad = delta.grad.detach() delta.data = epsilon * torch.sign(grad) return delta.detach() def attack_pgd(model, X, y, epsilon, alpha, attack_iters, restarts): max_loss = torch.zeros(y.shape[0]).cuda() max_delta = torch.zeros_like(X).cuda() for _ in range(restarts): delta = torch.zeros_like(X).uniform_(-epsilon, epsilon).cuda() delta.data = clamp(delta, 0-X, 1-X) delta.requires_grad = True for _ in range(attack_iters): output = model(X + delta) index = torch.where(output.max(1)[1] == y)[0] if len(index) == 0: break loss = F.cross_entropy(output, y) loss.backward() grad = delta.grad.detach() d = torch.clamp(delta + alpha * torch.sign(grad), -epsilon, epsilon) d = clamp(d, 0-X, 1-X) delta.data[index] = d[index] delta.grad.zero_() all_loss = F.cross_entropy(model(X+delta), y, reduction='none') max_delta[all_loss >= max_loss] = delta.detach()[all_loss >= max_loss] max_loss = torch.max(max_loss, all_loss) return max_delta def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch-size', default=100, type=int) parser.add_argument('--data-dir', default='../mnist-data', type=str) parser.add_argument('--fname', type=str) parser.add_argument('--attack', default='pgd', type=str, choices=['pgd', 'fgsm', 'none']) parser.add_argument('--epsilon', default=0.3, type=float) parser.add_argument('--attack-iters', default=50, type=int) parser.add_argument('--alpha', default=1e-2, type=float) parser.add_argument('--restarts', default=10, type=int) parser.add_argument('--seed', default=0, type=int) return parser.parse_args() def main(): args = get_args() logger.info(args) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) mnist_test = datasets.MNIST("../mnist-data", train=False, download=True, transform=transforms.ToTensor()) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=args.batch_size, shuffle=False) model = mnist_net().cuda() checkpoint = torch.load(args.fname) model.load_state_dict(checkpoint) model.eval() total_loss = 0 total_acc = 0 n = 0 if args.attack == 'none': with torch.no_grad(): for i, (X, y) in enumerate(test_loader): X, y = X.cuda(), y.cuda() output = model(X) loss = F.cross_entropy(output, y) total_loss += loss.item() * y.size(0) total_acc += (output.max(1)[1] == y).sum().item() n += y.size(0) else: for i, (X, y) in enumerate(test_loader): X, y = X.cuda(), y.cuda() if args.attack == 'pgd': delta = attack_pgd(model, X, y, args.epsilon, args.alpha, args.attack_iters, args.restarts) elif args.attack == 'fgsm': delta = attack_fgsm(model, X, y, args.epsilon) with torch.no_grad(): output = model(X + delta) loss = F.cross_entropy(output, y) total_loss += loss.item() * y.size(0) total_acc += (output.max(1)[1] == y).sum().item() n += y.size(0) logger.info('Test Loss: %.4f, Acc: %.4f', total_loss/n, total_acc/n) if __name__ == "__main__": main()
0.57523
0.431105
import datetime import os import sys from extension.src.ActionHandler import ActionHandler from extension.src.EnvLayer import EnvLayer from extension.src.EnvHealthManager import EnvHealthManager from extension.src.RuntimeContextHandler import RuntimeContextHandler from extension.src.TelemetryWriter import TelemetryWriter from extension.src.file_handlers.JsonFileHandler import JsonFileHandler from extension.src.file_handlers.CoreStateHandler import CoreStateHandler from extension.src.file_handlers.ExtConfigSettingsHandler import ExtConfigSettingsHandler from extension.src.file_handlers.ExtEnvHandler import ExtEnvHandler from extension.src.file_handlers.ExtOutputStatusHandler import ExtOutputStatusHandler from extension.src.file_handlers.ExtStateHandler import ExtStateHandler from extension.src.local_loggers.Logger import Logger from extension.src.ProcessHandler import ProcessHandler from extension.src.Utility import Utility from extension.src.Constants import Constants def main(argv): stdout_file_mirror = None file_logger = None logger = Logger() telemetry_writer = TelemetryWriter(logger) logger.telemetry_writer = telemetry_writer # Need to set telemetry_writer within logger to enable sending all logs to telemetry try: # initializing action handler # args will have values install, uninstall, etc, as given in MsftLinuxPatchExtShim.sh in the operation var cmd_exec_start_time = datetime.datetime.utcnow() utility = Utility(logger) runtime_context_handler = RuntimeContextHandler(logger) json_file_handler = JsonFileHandler(logger) ext_env_handler = ExtEnvHandler(json_file_handler) env_layer = EnvLayer() env_health_manager = EnvHealthManager(env_layer) if ext_env_handler.handler_environment_json is not None and ext_env_handler.config_folder is not None: config_folder = ext_env_handler.config_folder if config_folder is None or not os.path.exists(config_folder): logger.log_error("Config folder not found at [{0}].".format(repr(config_folder))) exit(Constants.ExitCode.MissingConfig) ext_config_settings_handler = ExtConfigSettingsHandler(logger, json_file_handler, config_folder) core_state_handler = CoreStateHandler(config_folder, json_file_handler) ext_state_handler = ExtStateHandler(config_folder, utility, json_file_handler) ext_output_status_handler = ExtOutputStatusHandler(logger, utility, json_file_handler, ext_env_handler.status_folder) process_handler = ProcessHandler(logger, env_layer, ext_output_status_handler) action_handler = ActionHandler(logger, env_layer, telemetry_writer, utility, runtime_context_handler, json_file_handler, env_health_manager, ext_env_handler, ext_config_settings_handler, core_state_handler, ext_state_handler, ext_output_status_handler, process_handler, cmd_exec_start_time) action_handler.determine_operation(argv[1]) else: error_cause = "No configuration provided in HandlerEnvironment" if ext_env_handler.handler_environment_json is None else "Path to config folder not specified in HandlerEnvironment" error_msg = "Error processing file. [File={0}] [Error={1}]".format(Constants.HANDLER_ENVIRONMENT_FILE, error_cause) raise Exception(error_msg) except Exception as error: logger.log_error(repr(error)) return Constants.ExitCode.HandlerFailed finally: if stdout_file_mirror is not None: stdout_file_mirror.stop() if file_logger is not None: file_logger.close() if __name__ == '__main__': main(sys.argv)
src/extension/src/__main__.py
import datetime import os import sys from extension.src.ActionHandler import ActionHandler from extension.src.EnvLayer import EnvLayer from extension.src.EnvHealthManager import EnvHealthManager from extension.src.RuntimeContextHandler import RuntimeContextHandler from extension.src.TelemetryWriter import TelemetryWriter from extension.src.file_handlers.JsonFileHandler import JsonFileHandler from extension.src.file_handlers.CoreStateHandler import CoreStateHandler from extension.src.file_handlers.ExtConfigSettingsHandler import ExtConfigSettingsHandler from extension.src.file_handlers.ExtEnvHandler import ExtEnvHandler from extension.src.file_handlers.ExtOutputStatusHandler import ExtOutputStatusHandler from extension.src.file_handlers.ExtStateHandler import ExtStateHandler from extension.src.local_loggers.Logger import Logger from extension.src.ProcessHandler import ProcessHandler from extension.src.Utility import Utility from extension.src.Constants import Constants def main(argv): stdout_file_mirror = None file_logger = None logger = Logger() telemetry_writer = TelemetryWriter(logger) logger.telemetry_writer = telemetry_writer # Need to set telemetry_writer within logger to enable sending all logs to telemetry try: # initializing action handler # args will have values install, uninstall, etc, as given in MsftLinuxPatchExtShim.sh in the operation var cmd_exec_start_time = datetime.datetime.utcnow() utility = Utility(logger) runtime_context_handler = RuntimeContextHandler(logger) json_file_handler = JsonFileHandler(logger) ext_env_handler = ExtEnvHandler(json_file_handler) env_layer = EnvLayer() env_health_manager = EnvHealthManager(env_layer) if ext_env_handler.handler_environment_json is not None and ext_env_handler.config_folder is not None: config_folder = ext_env_handler.config_folder if config_folder is None or not os.path.exists(config_folder): logger.log_error("Config folder not found at [{0}].".format(repr(config_folder))) exit(Constants.ExitCode.MissingConfig) ext_config_settings_handler = ExtConfigSettingsHandler(logger, json_file_handler, config_folder) core_state_handler = CoreStateHandler(config_folder, json_file_handler) ext_state_handler = ExtStateHandler(config_folder, utility, json_file_handler) ext_output_status_handler = ExtOutputStatusHandler(logger, utility, json_file_handler, ext_env_handler.status_folder) process_handler = ProcessHandler(logger, env_layer, ext_output_status_handler) action_handler = ActionHandler(logger, env_layer, telemetry_writer, utility, runtime_context_handler, json_file_handler, env_health_manager, ext_env_handler, ext_config_settings_handler, core_state_handler, ext_state_handler, ext_output_status_handler, process_handler, cmd_exec_start_time) action_handler.determine_operation(argv[1]) else: error_cause = "No configuration provided in HandlerEnvironment" if ext_env_handler.handler_environment_json is None else "Path to config folder not specified in HandlerEnvironment" error_msg = "Error processing file. [File={0}] [Error={1}]".format(Constants.HANDLER_ENVIRONMENT_FILE, error_cause) raise Exception(error_msg) except Exception as error: logger.log_error(repr(error)) return Constants.ExitCode.HandlerFailed finally: if stdout_file_mirror is not None: stdout_file_mirror.stop() if file_logger is not None: file_logger.close() if __name__ == '__main__': main(sys.argv)
0.285571
0.041269
from unittest import mock from openstackclient.common import module as osc_module from openstackclient.tests.unit import fakes from openstackclient.tests.unit import utils # NOTE(dtroyer): module_1 must match the version list filter (not --all) # currently == '*client*' module_name_1 = 'fakeclient' module_version_1 = '0.1.2' module_name_2 = 'zlib' module_version_2 = '1.1' # module_3 match openstacksdk module_name_3 = 'openstack' module_version_3 = '0.9.13' # module_4 match sub module of fakeclient module_name_4 = 'fakeclient.submodule' module_version_4 = '0.2.2' # module_5 match private module module_name_5 = '_private_module.lib' module_version_5 = '0.0.1' MODULES = { module_name_1: fakes.FakeModule(module_name_1, module_version_1), module_name_2: fakes.FakeModule(module_name_2, module_version_2), module_name_3: fakes.FakeModule(module_name_3, module_version_3), module_name_4: fakes.FakeModule(module_name_4, module_version_4), module_name_5: fakes.FakeModule(module_name_5, module_version_5), } class TestCommandList(utils.TestCommand): def setUp(self): super(TestCommandList, self).setUp() self.app.command_manager = mock.Mock() self.app.command_manager.get_command_groups.return_value = [ 'openstack.common' ] self.app.command_manager.get_command_names.return_value = [ 'limits show\nextension list' ] # Get the command object to test self.cmd = osc_module.ListCommand(self.app, None) def test_command_list_no_options(self): arglist = [] verifylist = [] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # TODO(bapalm): Adjust this when cliff properly supports # handling the detection rather than using the hard-code below. collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) datalist = (( 'openstack.common', 'limits show\nextension list' ),) self.assertEqual(datalist, tuple(data)) def test_command_list_with_group_not_found(self): arglist = [ '--group', 'not_exist', ] verifylist = [ ('group', 'not_exist'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) self.assertEqual([], data) def test_command_list_with_group(self): arglist = [ '--group', 'common', ] verifylist = [ ('group', 'common'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) datalist = (( 'openstack.common', 'limits show\nextension list' ),) self.assertEqual(datalist, tuple(data)) @mock.patch.dict( 'openstackclient.common.module.sys.modules', values=MODULES, clear=True, ) class TestModuleList(utils.TestCommand): def setUp(self): super(TestModuleList, self).setUp() # Get the command object to test self.cmd = osc_module.ListModule(self.app, None) def test_module_list_no_options(self): arglist = [] verifylist = [ ('all', False), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # Output xxxclient and openstacksdk, but not regular module, like: zlib self.assertIn(module_name_1, columns) self.assertIn(module_version_1, data) self.assertNotIn(module_name_2, columns) self.assertNotIn(module_version_2, data) self.assertIn(module_name_3, columns) self.assertIn(module_version_3, data) # Filter sub and private modules self.assertNotIn(module_name_4, columns) self.assertNotIn(module_version_4, data) self.assertNotIn(module_name_5, columns) self.assertNotIn(module_version_5, data) def test_module_list_all(self): arglist = [ '--all', ] verifylist = [ ('all', True), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # Output xxxclient, openstacksdk and regular module, like: zlib self.assertIn(module_name_1, columns) self.assertIn(module_version_1, data) self.assertIn(module_name_2, columns) self.assertIn(module_version_2, data) self.assertIn(module_name_3, columns) self.assertIn(module_version_3, data) # Filter sub and private modules self.assertNotIn(module_name_4, columns) self.assertNotIn(module_version_4, data) self.assertNotIn(module_name_5, columns) self.assertNotIn(module_version_5, data)
openstackclient/tests/unit/common/test_module.py
from unittest import mock from openstackclient.common import module as osc_module from openstackclient.tests.unit import fakes from openstackclient.tests.unit import utils # NOTE(dtroyer): module_1 must match the version list filter (not --all) # currently == '*client*' module_name_1 = 'fakeclient' module_version_1 = '0.1.2' module_name_2 = 'zlib' module_version_2 = '1.1' # module_3 match openstacksdk module_name_3 = 'openstack' module_version_3 = '0.9.13' # module_4 match sub module of fakeclient module_name_4 = 'fakeclient.submodule' module_version_4 = '0.2.2' # module_5 match private module module_name_5 = '_private_module.lib' module_version_5 = '0.0.1' MODULES = { module_name_1: fakes.FakeModule(module_name_1, module_version_1), module_name_2: fakes.FakeModule(module_name_2, module_version_2), module_name_3: fakes.FakeModule(module_name_3, module_version_3), module_name_4: fakes.FakeModule(module_name_4, module_version_4), module_name_5: fakes.FakeModule(module_name_5, module_version_5), } class TestCommandList(utils.TestCommand): def setUp(self): super(TestCommandList, self).setUp() self.app.command_manager = mock.Mock() self.app.command_manager.get_command_groups.return_value = [ 'openstack.common' ] self.app.command_manager.get_command_names.return_value = [ 'limits show\nextension list' ] # Get the command object to test self.cmd = osc_module.ListCommand(self.app, None) def test_command_list_no_options(self): arglist = [] verifylist = [] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # TODO(bapalm): Adjust this when cliff properly supports # handling the detection rather than using the hard-code below. collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) datalist = (( 'openstack.common', 'limits show\nextension list' ),) self.assertEqual(datalist, tuple(data)) def test_command_list_with_group_not_found(self): arglist = [ '--group', 'not_exist', ] verifylist = [ ('group', 'not_exist'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) self.assertEqual([], data) def test_command_list_with_group(self): arglist = [ '--group', 'common', ] verifylist = [ ('group', 'common'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) collist = ('Command Group', 'Commands') self.assertEqual(collist, columns) datalist = (( 'openstack.common', 'limits show\nextension list' ),) self.assertEqual(datalist, tuple(data)) @mock.patch.dict( 'openstackclient.common.module.sys.modules', values=MODULES, clear=True, ) class TestModuleList(utils.TestCommand): def setUp(self): super(TestModuleList, self).setUp() # Get the command object to test self.cmd = osc_module.ListModule(self.app, None) def test_module_list_no_options(self): arglist = [] verifylist = [ ('all', False), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # Output xxxclient and openstacksdk, but not regular module, like: zlib self.assertIn(module_name_1, columns) self.assertIn(module_version_1, data) self.assertNotIn(module_name_2, columns) self.assertNotIn(module_version_2, data) self.assertIn(module_name_3, columns) self.assertIn(module_version_3, data) # Filter sub and private modules self.assertNotIn(module_name_4, columns) self.assertNotIn(module_version_4, data) self.assertNotIn(module_name_5, columns) self.assertNotIn(module_version_5, data) def test_module_list_all(self): arglist = [ '--all', ] verifylist = [ ('all', True), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) # In base command class Lister in cliff, abstract method take_action() # returns a tuple containing the column names and an iterable # containing the data to be listed. columns, data = self.cmd.take_action(parsed_args) # Output xxxclient, openstacksdk and regular module, like: zlib self.assertIn(module_name_1, columns) self.assertIn(module_version_1, data) self.assertIn(module_name_2, columns) self.assertIn(module_version_2, data) self.assertIn(module_name_3, columns) self.assertIn(module_version_3, data) # Filter sub and private modules self.assertNotIn(module_name_4, columns) self.assertNotIn(module_version_4, data) self.assertNotIn(module_name_5, columns) self.assertNotIn(module_version_5, data)
0.487795
0.336944
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals __author__ = "d01" __email__ = "<EMAIL>" __copyright__ = "Copyright (C) 2016, <NAME>" __license__ = "MIT" __version__ = "0.1.0" __date__ = "2016-04-01" # Created: 2016-03-27 15:12 import hashlib from abc import ABCMeta import threading import os import datetime from paps.crowd import Plugin, PluginException def get_file_hash(file_path, block_size=1024, hasher=None): """ Generate hash for given file :param file_path: Path to file :type file_path: str :param block_size: Size of block to be read at once (default: 1024) :type block_size: int :param hasher: Use specific hasher, defaults to md5 (default: None) :type hasher: _hashlib.HASH :return: Hash of file :rtype: str """ if hasher is None: hasher = hashlib.md5() with open(file_path, 'rb') as f: while True: buffer = f.read(block_size) if len(buffer) <= 0: break hasher.update(buffer) return hasher.hexdigest() class SettablePlugin(Plugin): """ Abstract interface for plugin which can use the settings plugin """ __metaclass__ = ABCMeta def __init__(self, settings=None): """ Initialize object :param settings: Settings to be passed for init (default: None) :type settings: dict | None :rtype: None :raises TypeError: Controller missing """ if settings is None: settings = {} super(SettablePlugin, self).__init__(settings) self._resource_path = settings.get('resource_path') """ Path to the resource dir :type _resource_path: str """ self._resource_file_types = settings.get( 'resource_file_types', ["html", "js", "css"] ) """ List of acceptable file types (lower case) :type _resource_file_types: list[str] """ self._resource_file_types = [ s.lower() for s in self._resource_file_types ] self._resources = {} """ Inventory of resources :type _resources: dict[str, dict[str, str | datetime.datetime] """ self._resource_lock = threading.RLock() """ Lock to sync access to _resources :type _resource_lock: threading.RLock """ def on_config(self, settings): """ Change the settings for the plugin (implement if supported) :param settings: Settings to update current ones :type settings: dict :rtype: None """ raise NotImplementedError("Please implement") def get_data(self): """ Get current data of this plugin for frontend (or empty dict if nothing) (settings, etc.) :return: Data :rtype: dict """ return {} def get_info(self): """ Get information about this plugin for frontend (e.g. printable name, description, ..) :return: Information :rtype: dict """ return { 'name': self.name } def resource_get_list(self): """ Get list of this plugins resources and a hash to check for file changes (It is recommended to keep a in memory representation of this struct and not to generate it upon each request) :return: List of supported resources and hashes :rtype: list[(unicode, unicode)] """ if not self._resources: return self.resource_update_list() res = [] with self._resource_lock: for key in self._resources: res.append((key, self._resources[key]['hash'])) return res def resource_update_list(self, reset=False): """ Update internal struct of resource, hash list and get diff (Warning: Resource names have to be unique!!) :param reset: Should resources be rebuild from scratch (default: False) :type reset: bool :return: List of resources and hashes that changed :rtype: list[(unicode, unicode)] """ if not self._resource_path: raise PluginException("No resource path set") if not os.path.isdir(self._resource_path): raise PluginException( u"Resource path directory '{}' not found".format( self._resource_path ) ) res = [] with self._resource_lock: if reset: self._resources = {} old = dict(self._resources) for dirname, dirnames, filenames in os.walk(self._resource_path): for file_name in filenames: file_ext = os.path.splitext(file_name)[1].lower()[1:] if file_ext not in self._resource_file_types: self.debug(u"Skipping '{}'".format(file_name)) continue file_path = os.path.join(dirname, file_name) try: file_hash = get_file_hash(file_path) except: self.exception( u"Failed to hash '{}'".format(file_path) ) continue self._resources[file_name] = { 'name': file_name, 'path': file_path, 'hash': file_hash, 'checked': datetime.datetime.utcnow() } # generate diff for key in self._resources: resource = self._resources[key] if key not in old or old[key]['hash'] != resource['hash']: # new file or hash changed res.append((key, resource['hash'])) return res def resource_get(self, resource_name): """ Return resource info :param resource_name: Resource name as returned by resource_get_list() :type resource_name: str :return: Resource information (empty if not found) name: Resource name hash: Resource hash path: Path to resource checked: Last time information was updated :rtype: dict[str, str] """ try: with self._resource_lock: res = self._resources[resource_name] except KeyError: return {} return res
paps_settings/settable_plugin.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals __author__ = "d01" __email__ = "<EMAIL>" __copyright__ = "Copyright (C) 2016, <NAME>" __license__ = "MIT" __version__ = "0.1.0" __date__ = "2016-04-01" # Created: 2016-03-27 15:12 import hashlib from abc import ABCMeta import threading import os import datetime from paps.crowd import Plugin, PluginException def get_file_hash(file_path, block_size=1024, hasher=None): """ Generate hash for given file :param file_path: Path to file :type file_path: str :param block_size: Size of block to be read at once (default: 1024) :type block_size: int :param hasher: Use specific hasher, defaults to md5 (default: None) :type hasher: _hashlib.HASH :return: Hash of file :rtype: str """ if hasher is None: hasher = hashlib.md5() with open(file_path, 'rb') as f: while True: buffer = f.read(block_size) if len(buffer) <= 0: break hasher.update(buffer) return hasher.hexdigest() class SettablePlugin(Plugin): """ Abstract interface for plugin which can use the settings plugin """ __metaclass__ = ABCMeta def __init__(self, settings=None): """ Initialize object :param settings: Settings to be passed for init (default: None) :type settings: dict | None :rtype: None :raises TypeError: Controller missing """ if settings is None: settings = {} super(SettablePlugin, self).__init__(settings) self._resource_path = settings.get('resource_path') """ Path to the resource dir :type _resource_path: str """ self._resource_file_types = settings.get( 'resource_file_types', ["html", "js", "css"] ) """ List of acceptable file types (lower case) :type _resource_file_types: list[str] """ self._resource_file_types = [ s.lower() for s in self._resource_file_types ] self._resources = {} """ Inventory of resources :type _resources: dict[str, dict[str, str | datetime.datetime] """ self._resource_lock = threading.RLock() """ Lock to sync access to _resources :type _resource_lock: threading.RLock """ def on_config(self, settings): """ Change the settings for the plugin (implement if supported) :param settings: Settings to update current ones :type settings: dict :rtype: None """ raise NotImplementedError("Please implement") def get_data(self): """ Get current data of this plugin for frontend (or empty dict if nothing) (settings, etc.) :return: Data :rtype: dict """ return {} def get_info(self): """ Get information about this plugin for frontend (e.g. printable name, description, ..) :return: Information :rtype: dict """ return { 'name': self.name } def resource_get_list(self): """ Get list of this plugins resources and a hash to check for file changes (It is recommended to keep a in memory representation of this struct and not to generate it upon each request) :return: List of supported resources and hashes :rtype: list[(unicode, unicode)] """ if not self._resources: return self.resource_update_list() res = [] with self._resource_lock: for key in self._resources: res.append((key, self._resources[key]['hash'])) return res def resource_update_list(self, reset=False): """ Update internal struct of resource, hash list and get diff (Warning: Resource names have to be unique!!) :param reset: Should resources be rebuild from scratch (default: False) :type reset: bool :return: List of resources and hashes that changed :rtype: list[(unicode, unicode)] """ if not self._resource_path: raise PluginException("No resource path set") if not os.path.isdir(self._resource_path): raise PluginException( u"Resource path directory '{}' not found".format( self._resource_path ) ) res = [] with self._resource_lock: if reset: self._resources = {} old = dict(self._resources) for dirname, dirnames, filenames in os.walk(self._resource_path): for file_name in filenames: file_ext = os.path.splitext(file_name)[1].lower()[1:] if file_ext not in self._resource_file_types: self.debug(u"Skipping '{}'".format(file_name)) continue file_path = os.path.join(dirname, file_name) try: file_hash = get_file_hash(file_path) except: self.exception( u"Failed to hash '{}'".format(file_path) ) continue self._resources[file_name] = { 'name': file_name, 'path': file_path, 'hash': file_hash, 'checked': datetime.datetime.utcnow() } # generate diff for key in self._resources: resource = self._resources[key] if key not in old or old[key]['hash'] != resource['hash']: # new file or hash changed res.append((key, resource['hash'])) return res def resource_get(self, resource_name): """ Return resource info :param resource_name: Resource name as returned by resource_get_list() :type resource_name: str :return: Resource information (empty if not found) name: Resource name hash: Resource hash path: Path to resource checked: Last time information was updated :rtype: dict[str, str] """ try: with self._resource_lock: res = self._resources[resource_name] except KeyError: return {} return res
0.678007
0.081923
import numpy as np from PuzzleLib.Backend import gpuarray from PuzzleLib.Containers.Sequential import Sequential from PuzzleLib.Containers.Parallel import Parallel from PuzzleLib.Modules.Conv2D import Conv2D from PuzzleLib.Modules.BatchNorm2D import BatchNorm2D from PuzzleLib.Modules.Activation import Activation, relu from PuzzleLib.Modules.MaxPool2D import MaxPool2D from PuzzleLib.Modules.AvgPool2D import AvgPool2D from PuzzleLib.Modules.Flatten import Flatten from PuzzleLib.Modules.Linear import Linear from PuzzleLib.Modules.SoftMax import SoftMax from PuzzleLib.Modules.Replicate import Replicate from PuzzleLib.Modules.Concat import Concat from PuzzleLib.Modules.ToList import ToList def loadInceptionBN(modelpath, actInplace=False, bnInplace=False, initscheme="none", name="Inception-BN-0126"): net = Sequential(name=name) net.append(Conv2D(3, 64, 7, stride=2, pad=3, useBias=False, initscheme=initscheme, name="conv_1")) net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_1")) net.append(Activation(relu, inplace=actInplace, name="relu_1")) net.append(MaxPool2D(3, 2, pad=1, name="pool_1")) net.append(Conv2D(64, 64, 1, useBias=False, initscheme=initscheme, name="conv_2_red")) net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_2_red")) net.append(Activation(relu, inplace=actInplace, name="relu_2_red")) net.append(Conv2D(64, 192, 3, pad=1, useBias=False, initscheme=initscheme, name="conv_2")) net.append(BatchNorm2D(192, inplace=bnInplace, name="bn_2")) net.append(Activation(relu, inplace=actInplace, name="relu_2")) net.append(MaxPool2D(3, 2, pad=1, name="pool_2")) act, bn = actInplace, bnInplace net.extend(bnBlock(192, [64], [64, 64], [64, 96, 96], [32], act=act, bn=bn, scheme=initscheme, name="3a")) net.extend(bnBlock(256, [64], [64, 96], [64, 96, 96], [64], act=act, bn=bn, scheme=initscheme, name="3b")) net.extend(bnShrinkBlock(320, [128, 160], [64, 96, 96], bn=bn, act=act, scheme=initscheme, name="3c")) net.extend(bnBlock(576, [224], [64, 96], [96, 128, 128], [128], act=act, bn=bn, scheme=initscheme, name="4a")) net.extend(bnBlock(576, [192], [96, 128], [96, 128, 128], [128], act=act, bn=bn, scheme=initscheme, name="4b")) net.extend(bnBlock(576, [160], [128, 160], [128, 160, 160], [128], act=act,bn=bn, scheme=initscheme, name="4c")) net.extend(bnBlock(608, [96], [128,192], [160, 192, 192], [128], act=act, bn=bn, scheme=initscheme, name="4d")) net.extend(bnShrinkBlock(608, [128, 192], [192, 256, 256], act=act, bn=bn, scheme=initscheme, name="4e")) net.extend(bnBlock(1056, [352], [192, 320], [160,224,224], [128], act=act, bn=bn, scheme=initscheme, name="5a")) net.extend(bnBlock(1024, [352], [192, 320], [192,224,224], [128], act=act, bn=bn, scheme=initscheme, name="5b")) net.append(AvgPool2D(7, 1, name="global_pool")) net.append(Flatten(name="flatten")) net.append(Linear(1024, 1000, initscheme=initscheme, name="fc1")) net.append(SoftMax(name="softmax")) if modelpath is not None: net.load(modelpath, assumeUniqueNames=True) return net def loadInceptionV3(modelpath, actInplace=False, bnInplace=False, initscheme="none", name="Inception-7-0001"): net = Sequential(name=name) net.append(Conv2D(3, 32, 3, stride=2, useBias=False, initscheme=initscheme, name="conv_conv2d")) net.append(BatchNorm2D(32, name="conv_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_relu")) net.append(Conv2D(32, 32, 3, useBias=False, initscheme=initscheme, name="conv_1_conv2d")) net.append(BatchNorm2D(32, name="conv_1_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_1_relu")) net.append(Conv2D(32, 64, 3, pad=1, useBias=False, initscheme=initscheme, name="conv_2_conv2d")) net.append(BatchNorm2D(64, name="conv_2_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_2_relu")) net.append(MaxPool2D(3, 2, name="pool")) net.append(Conv2D(64, 80, 1, useBias=False, initscheme=initscheme, name="conv_3_conv2d")) net.append(BatchNorm2D(80, name="conv_3_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_3_relu")) net.append(Conv2D(80, 192, 3, useBias=False, initscheme=initscheme, name="conv_4_conv2d")) net.append(BatchNorm2D(192, name="conv_4_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_4_relu")) net.append(MaxPool2D(3, 2, name="pool1")) act, bn = actInplace, bnInplace net.extend(bnBlock(192, [64], [48, 64], [64, 96, 96], [32], "mixed", act, bn, initscheme, 5, 2, "v3")) net.extend(bnBlock(256, [64], [48, 64], [64, 96, 96], [64], "mixed_1", act, bn, initscheme, 5, 2, "v3")) net.extend(bnBlock(288, [64], [48, 64], [64, 96, 96], [64], "mixed_2", act, bn, initscheme, 5, 2, "v3")) net.extend(bnShrinkBlock(288, [384], [64, 96, 96], "mixed_3", act, bn, initscheme, False, 0, "v3")) net.extend(factorBlock(768, [192], [128, 128, 192], [128,128,128,128,192], [192], "mixed_4", act, bn, initscheme)) net.extend(factorBlock(768, [192], [160, 160, 192], [160,160,160,160,192], [192], "mixed_5", act, bn, initscheme)) net.extend(factorBlock(768, [192], [160, 160, 192], [160,160,160,160,192], [192], "mixed_6", act, bn, initscheme)) net.extend(factorBlock(768, [192], [192, 192, 192], [192,192,192,192,192], [192], "mixed_7", act, bn, initscheme)) net.extend(v3ShrinkBlock(768, [192, 320], [192, 192, 192, 192], "mixed_8", act, bn, initscheme)) net.extend(expandBlock( 1280, [320], [384, 384, 384], [448, 384, 384, 384], [192], "mixed_9", act, bn, initscheme, pool="avg" )) net.extend(expandBlock( 2048, [320], [384, 384, 384], [448, 384, 384, 384], [192], "mixed_10", act, bn, initscheme, pool="max" )) net.append(AvgPool2D(8, 1, name="global_pool")) net.append(Flatten(name="flatten")) net.append(Linear(2048, 1008, name="fc1")) net.append(SoftMax(name="softmax")) if modelpath is not None: net.load(modelpath, assumeUniqueNames=True) return net def convBN(inmaps, outmaps, size, stride, pad, name, actInplace, bnInplace, scheme, typ="bn"): block = Sequential() if typ == "bn": names = ["conv_%s" % name, "bn_%s" % name, "relu_%s" % name] elif typ == "v3": names = ["%s_conv2d" % name, "%s_batchnorm" % name, "%s_relu" % name] else: raise ValueError("Unrecognized convBN type") block.append(Conv2D(inmaps, outmaps, size, stride, pad, useBias=False, initscheme=scheme, name=names[0])) block.append(BatchNorm2D(outmaps, inplace=bnInplace, name=names[1])) block.append(Activation(relu, inplace=actInplace, name=names[2])) return block def pool2D(size, stride, pad, name): if "max" in name: return MaxPool2D(size, stride, pad) elif "avg" in name: return AvgPool2D(size, stride, pad) else: raise ValueError("Unrecognized pool type") def tower(towername, names, maps, sizes, strides, pads, act, bn, scheme, typ="bn"): block = Sequential() lvlnames = ["%s_%s" % (towername, name) for name in names] for i, name in enumerate(lvlnames): if "pool" in name: block.append(pool2D(sizes[i], strides[i], pads[i], name=names[i])) else: act = False if i == len(names) - 1 else act block.extend(convBN(maps[i], maps[i+1], sizes[i], strides[i], pads[i], lvlnames[i], act, bn, scheme, typ)) return block def bnBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme, b2size=3, b2pad=1, typ="bn"): block = Sequential() if typ == "bn": b1towername, b1names = name, ["1x1"] b2towername, b2names = name, ["3x3_reduce","3x3"] b3towername, b3names = name, ["double_3x3_reduce", "double_3x3_0", "double_3x3_1"] b4towername, b4names = name, ["avg_pool", "proj"] elif typ == "v3": b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1"] b3towername, b3names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2"] b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"] else: raise ValueError("Unrecognized block type") branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1], strides=[1], pads=[0], act=act, bn=bn, scheme=scheme, typ=typ ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, b2size], strides=[1, 1], pads=[0, b2pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch3 = tower( b3towername, b3names, [inmaps] + b3m, [1, 3, 3], strides=[1, 1, 1], pads=[0, 1, 1], act=act, bn=bn, scheme=scheme, typ=typ ) branch4 = tower( b4towername, b4names, [inmaps, inmaps] + b4m, [3, 1], strides=[1, 1], pads=[1, 0], act=act, bn=bn, scheme=scheme, typ=typ ) block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def bnShrinkBlock(inmaps, b1m, b2m, name, act, bn, scheme, b1deep=True, pad=1, typ="bn"): block = Sequential() if typ == "bn": if b1deep: b1towername, b1names = name, ["3x3_reduce","3x3"] else: b1towername, b1names = name, ["3x3"] b2towername, b2names = name, ["double_3x3_reduce", "double_3x3_0", "double_3x3_1"] b3towername, b3names = name, ["max_pool"] elif typ == "v3": if b1deep: b1towername, b1names = name, ["conv"] else: b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"] b3towername, b3names = name, ["max_pool"] else: raise ValueError("Unrecognized block type") if b1deep: branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, pad], act=act, bn=bn, scheme=scheme, typ=typ ) else: branch1 = tower( b1towername, b1names, [inmaps] + b1m, [3], [2], [pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, 3, 3], [1, 1, 2], [0, 1, pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch3 = tower( b3towername, b3names, [inmaps, inmaps], [3], [2], [pad], act=act, bn=bn, scheme=scheme, typ=typ ) block.append(Replicate(times=3)) block.append(Parallel().append(branch1).append(branch2).append(branch3)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def factorBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme): block = Sequential() b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"] b3towername, b3names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2", "conv_3", "conv_4"] b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"] branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, (1, 7), (7, 1)], [1, 1, 1], [0, (0, 3), (3, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3 = tower( b3towername, b3names, [inmaps] + b3m, [1, (7, 1), (1, 7), (7, 1), (1, 7)], [1, 1, 1, 1, 1], [0, (3, 0), (0, 3), (3, 0), (0, 3)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch4 = tower( b4towername, b4names, [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def v3ShrinkBlock(inmaps, b1m, b2m, name, act, bn, scheme): block = Sequential() b1towername, b1names = "%s_tower" % name, ["conv", "conv_1"] b2towername, b2names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2", "conv_3"] b3towername, b3names = name, ["max_pool"] branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, (1, 7), (7, 1), 3], [1, 1, 1, 2], [0, (0, 3), (3, 0), 0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3 = tower(b3towername, b3names, [inmaps, inmaps], [3], [2], [0], act=act, bn=bn, scheme=scheme, typ="v3") block.append(Replicate(times=3)) block.append(Parallel().append(branch1).append(branch2).append(branch3)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def expandBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme, pool="avg"): block = Sequential() b1towername, b1names = name, ["conv"] b2towername, b2names, b2sub1names, b2sub2names = "%s_tower" % name, ["conv"], ["mixed_conv"], ["mixed_conv_1"] b3towername,b3names,b3sub1names,b3sub2names = "%s_tower_1"%name, ["conv","conv_1"], ["mixed_conv"], ["mixed_conv_1"] branch1 = tower(b1towername, b1names, [inmaps] + b1m, [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3") branch2 = tower(b2towername, b2names, [inmaps, b2m[0]], [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3") branch2sub1 = tower( b2towername, b2sub1names, [b2m[0], b2m[1]], [(1, 3)], [1], [(0, 1)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2sub2 = tower( b2towername, b2sub2names, [b2m[0], b2m[2]], [(3, 1)], [1], [(1, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2.append(Replicate(times=2)) branch2.append(Parallel().append(branch2sub1).append(branch2sub2)) branch3 = tower( b3towername, b3names, [inmaps, b3m[0], b3m[1]], [1, 3], [1, 1], [0, 1], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3sub1 = tower( b3towername, b3sub1names, [b3m[1], b3m[2]], [(1, 3)], [1], [(0, 1)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3sub2 = tower( b3towername, b3sub2names, [b3m[1], b3m[3]], [(3, 1)], [1], [(1, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3.append(Replicate(times=2)) branch3.append(Parallel().append(branch3sub1).append(branch3sub2)) if pool == "avg": branch4 = tower( "%s_tower_2" % name, ["avg_pool", "conv"], [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) elif pool == "max": branch4 = tower( "%s_tower_2" % name, ["max_pool", "conv"], [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) else: raise ValueError("Unrecognized block type") block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(ToList()) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def unittest(): bn = loadInceptionBN(None, initscheme="gaussian") data = gpuarray.to_gpu(np.random.randn(1, 3, 224, 224).astype(np.float32)) bn(data) del bn gpuarray.memoryPool.freeHeld() v3 = loadInceptionV3(None, initscheme="gaussian") data = gpuarray.to_gpu(np.random.randn(1, 3, 299, 299).astype(np.float32)) v3(data) del v3 gpuarray.memoryPool.freeHeld() if __name__ == "__main__": unittest()
Models/Nets/Inception.py
import numpy as np from PuzzleLib.Backend import gpuarray from PuzzleLib.Containers.Sequential import Sequential from PuzzleLib.Containers.Parallel import Parallel from PuzzleLib.Modules.Conv2D import Conv2D from PuzzleLib.Modules.BatchNorm2D import BatchNorm2D from PuzzleLib.Modules.Activation import Activation, relu from PuzzleLib.Modules.MaxPool2D import MaxPool2D from PuzzleLib.Modules.AvgPool2D import AvgPool2D from PuzzleLib.Modules.Flatten import Flatten from PuzzleLib.Modules.Linear import Linear from PuzzleLib.Modules.SoftMax import SoftMax from PuzzleLib.Modules.Replicate import Replicate from PuzzleLib.Modules.Concat import Concat from PuzzleLib.Modules.ToList import ToList def loadInceptionBN(modelpath, actInplace=False, bnInplace=False, initscheme="none", name="Inception-BN-0126"): net = Sequential(name=name) net.append(Conv2D(3, 64, 7, stride=2, pad=3, useBias=False, initscheme=initscheme, name="conv_1")) net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_1")) net.append(Activation(relu, inplace=actInplace, name="relu_1")) net.append(MaxPool2D(3, 2, pad=1, name="pool_1")) net.append(Conv2D(64, 64, 1, useBias=False, initscheme=initscheme, name="conv_2_red")) net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_2_red")) net.append(Activation(relu, inplace=actInplace, name="relu_2_red")) net.append(Conv2D(64, 192, 3, pad=1, useBias=False, initscheme=initscheme, name="conv_2")) net.append(BatchNorm2D(192, inplace=bnInplace, name="bn_2")) net.append(Activation(relu, inplace=actInplace, name="relu_2")) net.append(MaxPool2D(3, 2, pad=1, name="pool_2")) act, bn = actInplace, bnInplace net.extend(bnBlock(192, [64], [64, 64], [64, 96, 96], [32], act=act, bn=bn, scheme=initscheme, name="3a")) net.extend(bnBlock(256, [64], [64, 96], [64, 96, 96], [64], act=act, bn=bn, scheme=initscheme, name="3b")) net.extend(bnShrinkBlock(320, [128, 160], [64, 96, 96], bn=bn, act=act, scheme=initscheme, name="3c")) net.extend(bnBlock(576, [224], [64, 96], [96, 128, 128], [128], act=act, bn=bn, scheme=initscheme, name="4a")) net.extend(bnBlock(576, [192], [96, 128], [96, 128, 128], [128], act=act, bn=bn, scheme=initscheme, name="4b")) net.extend(bnBlock(576, [160], [128, 160], [128, 160, 160], [128], act=act,bn=bn, scheme=initscheme, name="4c")) net.extend(bnBlock(608, [96], [128,192], [160, 192, 192], [128], act=act, bn=bn, scheme=initscheme, name="4d")) net.extend(bnShrinkBlock(608, [128, 192], [192, 256, 256], act=act, bn=bn, scheme=initscheme, name="4e")) net.extend(bnBlock(1056, [352], [192, 320], [160,224,224], [128], act=act, bn=bn, scheme=initscheme, name="5a")) net.extend(bnBlock(1024, [352], [192, 320], [192,224,224], [128], act=act, bn=bn, scheme=initscheme, name="5b")) net.append(AvgPool2D(7, 1, name="global_pool")) net.append(Flatten(name="flatten")) net.append(Linear(1024, 1000, initscheme=initscheme, name="fc1")) net.append(SoftMax(name="softmax")) if modelpath is not None: net.load(modelpath, assumeUniqueNames=True) return net def loadInceptionV3(modelpath, actInplace=False, bnInplace=False, initscheme="none", name="Inception-7-0001"): net = Sequential(name=name) net.append(Conv2D(3, 32, 3, stride=2, useBias=False, initscheme=initscheme, name="conv_conv2d")) net.append(BatchNorm2D(32, name="conv_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_relu")) net.append(Conv2D(32, 32, 3, useBias=False, initscheme=initscheme, name="conv_1_conv2d")) net.append(BatchNorm2D(32, name="conv_1_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_1_relu")) net.append(Conv2D(32, 64, 3, pad=1, useBias=False, initscheme=initscheme, name="conv_2_conv2d")) net.append(BatchNorm2D(64, name="conv_2_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_2_relu")) net.append(MaxPool2D(3, 2, name="pool")) net.append(Conv2D(64, 80, 1, useBias=False, initscheme=initscheme, name="conv_3_conv2d")) net.append(BatchNorm2D(80, name="conv_3_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_3_relu")) net.append(Conv2D(80, 192, 3, useBias=False, initscheme=initscheme, name="conv_4_conv2d")) net.append(BatchNorm2D(192, name="conv_4_batchnorm")) net.append(Activation(relu, inplace=actInplace, name="conv_4_relu")) net.append(MaxPool2D(3, 2, name="pool1")) act, bn = actInplace, bnInplace net.extend(bnBlock(192, [64], [48, 64], [64, 96, 96], [32], "mixed", act, bn, initscheme, 5, 2, "v3")) net.extend(bnBlock(256, [64], [48, 64], [64, 96, 96], [64], "mixed_1", act, bn, initscheme, 5, 2, "v3")) net.extend(bnBlock(288, [64], [48, 64], [64, 96, 96], [64], "mixed_2", act, bn, initscheme, 5, 2, "v3")) net.extend(bnShrinkBlock(288, [384], [64, 96, 96], "mixed_3", act, bn, initscheme, False, 0, "v3")) net.extend(factorBlock(768, [192], [128, 128, 192], [128,128,128,128,192], [192], "mixed_4", act, bn, initscheme)) net.extend(factorBlock(768, [192], [160, 160, 192], [160,160,160,160,192], [192], "mixed_5", act, bn, initscheme)) net.extend(factorBlock(768, [192], [160, 160, 192], [160,160,160,160,192], [192], "mixed_6", act, bn, initscheme)) net.extend(factorBlock(768, [192], [192, 192, 192], [192,192,192,192,192], [192], "mixed_7", act, bn, initscheme)) net.extend(v3ShrinkBlock(768, [192, 320], [192, 192, 192, 192], "mixed_8", act, bn, initscheme)) net.extend(expandBlock( 1280, [320], [384, 384, 384], [448, 384, 384, 384], [192], "mixed_9", act, bn, initscheme, pool="avg" )) net.extend(expandBlock( 2048, [320], [384, 384, 384], [448, 384, 384, 384], [192], "mixed_10", act, bn, initscheme, pool="max" )) net.append(AvgPool2D(8, 1, name="global_pool")) net.append(Flatten(name="flatten")) net.append(Linear(2048, 1008, name="fc1")) net.append(SoftMax(name="softmax")) if modelpath is not None: net.load(modelpath, assumeUniqueNames=True) return net def convBN(inmaps, outmaps, size, stride, pad, name, actInplace, bnInplace, scheme, typ="bn"): block = Sequential() if typ == "bn": names = ["conv_%s" % name, "bn_%s" % name, "relu_%s" % name] elif typ == "v3": names = ["%s_conv2d" % name, "%s_batchnorm" % name, "%s_relu" % name] else: raise ValueError("Unrecognized convBN type") block.append(Conv2D(inmaps, outmaps, size, stride, pad, useBias=False, initscheme=scheme, name=names[0])) block.append(BatchNorm2D(outmaps, inplace=bnInplace, name=names[1])) block.append(Activation(relu, inplace=actInplace, name=names[2])) return block def pool2D(size, stride, pad, name): if "max" in name: return MaxPool2D(size, stride, pad) elif "avg" in name: return AvgPool2D(size, stride, pad) else: raise ValueError("Unrecognized pool type") def tower(towername, names, maps, sizes, strides, pads, act, bn, scheme, typ="bn"): block = Sequential() lvlnames = ["%s_%s" % (towername, name) for name in names] for i, name in enumerate(lvlnames): if "pool" in name: block.append(pool2D(sizes[i], strides[i], pads[i], name=names[i])) else: act = False if i == len(names) - 1 else act block.extend(convBN(maps[i], maps[i+1], sizes[i], strides[i], pads[i], lvlnames[i], act, bn, scheme, typ)) return block def bnBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme, b2size=3, b2pad=1, typ="bn"): block = Sequential() if typ == "bn": b1towername, b1names = name, ["1x1"] b2towername, b2names = name, ["3x3_reduce","3x3"] b3towername, b3names = name, ["double_3x3_reduce", "double_3x3_0", "double_3x3_1"] b4towername, b4names = name, ["avg_pool", "proj"] elif typ == "v3": b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1"] b3towername, b3names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2"] b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"] else: raise ValueError("Unrecognized block type") branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1], strides=[1], pads=[0], act=act, bn=bn, scheme=scheme, typ=typ ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, b2size], strides=[1, 1], pads=[0, b2pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch3 = tower( b3towername, b3names, [inmaps] + b3m, [1, 3, 3], strides=[1, 1, 1], pads=[0, 1, 1], act=act, bn=bn, scheme=scheme, typ=typ ) branch4 = tower( b4towername, b4names, [inmaps, inmaps] + b4m, [3, 1], strides=[1, 1], pads=[1, 0], act=act, bn=bn, scheme=scheme, typ=typ ) block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def bnShrinkBlock(inmaps, b1m, b2m, name, act, bn, scheme, b1deep=True, pad=1, typ="bn"): block = Sequential() if typ == "bn": if b1deep: b1towername, b1names = name, ["3x3_reduce","3x3"] else: b1towername, b1names = name, ["3x3"] b2towername, b2names = name, ["double_3x3_reduce", "double_3x3_0", "double_3x3_1"] b3towername, b3names = name, ["max_pool"] elif typ == "v3": if b1deep: b1towername, b1names = name, ["conv"] else: b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"] b3towername, b3names = name, ["max_pool"] else: raise ValueError("Unrecognized block type") if b1deep: branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, pad], act=act, bn=bn, scheme=scheme, typ=typ ) else: branch1 = tower( b1towername, b1names, [inmaps] + b1m, [3], [2], [pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, 3, 3], [1, 1, 2], [0, 1, pad], act=act, bn=bn, scheme=scheme, typ=typ ) branch3 = tower( b3towername, b3names, [inmaps, inmaps], [3], [2], [pad], act=act, bn=bn, scheme=scheme, typ=typ ) block.append(Replicate(times=3)) block.append(Parallel().append(branch1).append(branch2).append(branch3)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def factorBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme): block = Sequential() b1towername, b1names = name, ["conv"] b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"] b3towername, b3names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2", "conv_3", "conv_4"] b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"] branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, (1, 7), (7, 1)], [1, 1, 1], [0, (0, 3), (3, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3 = tower( b3towername, b3names, [inmaps] + b3m, [1, (7, 1), (1, 7), (7, 1), (1, 7)], [1, 1, 1, 1, 1], [0, (3, 0), (0, 3), (3, 0), (0, 3)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch4 = tower( b4towername, b4names, [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def v3ShrinkBlock(inmaps, b1m, b2m, name, act, bn, scheme): block = Sequential() b1towername, b1names = "%s_tower" % name, ["conv", "conv_1"] b2towername, b2names = "%s_tower_1" % name, ["conv", "conv_1", "conv_2", "conv_3"] b3towername, b3names = name, ["max_pool"] branch1 = tower( b1towername, b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2 = tower( b2towername, b2names, [inmaps] + b2m, [1, (1, 7), (7, 1), 3], [1, 1, 1, 2], [0, (0, 3), (3, 0), 0], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3 = tower(b3towername, b3names, [inmaps, inmaps], [3], [2], [0], act=act, bn=bn, scheme=scheme, typ="v3") block.append(Replicate(times=3)) block.append(Parallel().append(branch1).append(branch2).append(branch3)) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def expandBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme, pool="avg"): block = Sequential() b1towername, b1names = name, ["conv"] b2towername, b2names, b2sub1names, b2sub2names = "%s_tower" % name, ["conv"], ["mixed_conv"], ["mixed_conv_1"] b3towername,b3names,b3sub1names,b3sub2names = "%s_tower_1"%name, ["conv","conv_1"], ["mixed_conv"], ["mixed_conv_1"] branch1 = tower(b1towername, b1names, [inmaps] + b1m, [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3") branch2 = tower(b2towername, b2names, [inmaps, b2m[0]], [1], [1], [0], act=act, bn=bn, scheme=scheme, typ="v3") branch2sub1 = tower( b2towername, b2sub1names, [b2m[0], b2m[1]], [(1, 3)], [1], [(0, 1)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2sub2 = tower( b2towername, b2sub2names, [b2m[0], b2m[2]], [(3, 1)], [1], [(1, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch2.append(Replicate(times=2)) branch2.append(Parallel().append(branch2sub1).append(branch2sub2)) branch3 = tower( b3towername, b3names, [inmaps, b3m[0], b3m[1]], [1, 3], [1, 1], [0, 1], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3sub1 = tower( b3towername, b3sub1names, [b3m[1], b3m[2]], [(1, 3)], [1], [(0, 1)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3sub2 = tower( b3towername, b3sub2names, [b3m[1], b3m[3]], [(3, 1)], [1], [(1, 0)], act=act, bn=bn, scheme=scheme, typ="v3" ) branch3.append(Replicate(times=2)) branch3.append(Parallel().append(branch3sub1).append(branch3sub2)) if pool == "avg": branch4 = tower( "%s_tower_2" % name, ["avg_pool", "conv"], [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) elif pool == "max": branch4 = tower( "%s_tower_2" % name, ["max_pool", "conv"], [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0], act=act, bn=bn, scheme=scheme, typ="v3" ) else: raise ValueError("Unrecognized block type") block.append(Replicate(times=4)) block.append(Parallel().append(branch1).append(branch2).append(branch3).append(branch4)) block.append(ToList()) block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name)) return block def unittest(): bn = loadInceptionBN(None, initscheme="gaussian") data = gpuarray.to_gpu(np.random.randn(1, 3, 224, 224).astype(np.float32)) bn(data) del bn gpuarray.memoryPool.freeHeld() v3 = loadInceptionV3(None, initscheme="gaussian") data = gpuarray.to_gpu(np.random.randn(1, 3, 299, 299).astype(np.float32)) v3(data) del v3 gpuarray.memoryPool.freeHeld() if __name__ == "__main__": unittest()
0.489259
0.316554
import pytest from netaddr import * import sys import time import ipaddress from ansible_host import AnsibleHost from ptf_runner import ptf_runner def generate_ips(num, prefix, exclude_ips): """ Generate random ips within prefix """ prefix = IPNetwork(prefix) exclude_ips.append(prefix.broadcast) exclude_ips.append(prefix.network) available_ips = list(prefix) if len(available_ips) - len(exclude_ips)< num: raise Exception("Not enough available IPs") generated_ips = [] for available_ip in available_ips: if available_ip not in exclude_ips: generated_ips.append(IPNetwork(str(available_ip) + '/' + str(prefix.prefixlen))) if len(generated_ips) == num: break return generated_ips @pytest.mark.parametrize( "ipv4, ipv6, mtu", [ pytest.param(True, False, 1514), ], ) def test_bgp_speaker(localhost, ansible_adhoc, testbed, ipv4, ipv6, mtu): """setup bgp speaker on T0 topology and verify routes advertised by bgp speaker is received by T0 TOR """ hostname = testbed['dut'] ptf_hostname = testbed['ptf'] host = AnsibleHost(ansible_adhoc, hostname) ptfhost = AnsibleHost(ansible_adhoc, ptf_hostname) mg_facts = host.minigraph_facts(host=hostname)['ansible_facts'] host_facts = host.setup()['ansible_facts'] res = host.shell("sonic-cfggen -m -d -y /etc/sonic/constants.yml -v \"constants.deployment_id_asn_map[DEVICE_METADATA['localhost']['deployment_id']]\"") bgp_speaker_asn = res['stdout'] vlan_ips = generate_ips(3, \ "%s/%s" % (mg_facts['minigraph_vlan_interfaces'][0]['addr'], mg_facts['minigraph_vlan_interfaces'][0]['prefixlen']), [IPAddress(mg_facts['minigraph_vlan_interfaces'][0]['addr'])]) # three speaker ips, two from peer range, another is vlan ip [0] speaker_ips = generate_ips(2, mg_facts['minigraph_bgp_peers_with_range'][0]['ip_range'][0], []) speaker_ips.append(vlan_ips[0]) for ip in vlan_ips: host.command("ip route flush %s/32" % ip.ip) host.command("ip route add %s/32 dev %s" % (ip.ip, mg_facts['minigraph_vlan_interfaces'][0]['attachto'])) root_dir = "/root" exabgp_dir = "/root/exabgp" helper_dir = "/root/helpers" port_num = [5000, 6000, 7000] cfnames = ["config_1.ini", "config_2.ini", "config_3.ini"] vlan_ports = [] for i in range(0, 3): vlan_ports.append(mg_facts['minigraph_port_indices'][mg_facts['minigraph_vlans'][mg_facts['minigraph_vlan_interfaces'][0]['attachto']]['members'][i]]) ptfhost.file(path=exabgp_dir, state="directory") ptfhost.file(path=helper_dir, state="directory") ptfhost.copy(src="bgp_speaker/dump.py", dest=helper_dir) ptfhost.copy(src="bgp_speaker/http_api.py", dest=helper_dir) ptfhost.copy(src="bgp_speaker/announce_routes.py", dest=helper_dir) # deploy config file extra_vars = \ { 'helper_dir': helper_dir, 'exabgp_dir': exabgp_dir, 'lo_addr' : mg_facts['minigraph_lo_interfaces'][0]['addr'], 'lo_addr_prefixlen' : mg_facts['minigraph_lo_interfaces'][0]['prefixlen'], 'vlan_addr' : mg_facts['minigraph_vlan_interfaces'][0]['addr'], 'peer_range': mg_facts['minigraph_bgp_peers_with_range'][0]['ip_range'][0], 'announce_prefix': '10.10.10.0/26', 'minigraph_portchannels' : mg_facts['minigraph_portchannels'], 'minigraph_vlans' : mg_facts['minigraph_vlans'], 'minigraph_port_indices' : mg_facts['minigraph_port_indices'], 'peer_asn' : mg_facts['minigraph_bgp_asn'], 'peer_asn' : mg_facts['minigraph_bgp_asn'], 'my_asn' : bgp_speaker_asn, 'vlan_ports' : vlan_ports, 'port_num' : port_num, 'speaker_ips': [str(ip) for ip in speaker_ips], 'vlan_ips': [str(ip) for ip in vlan_ips], 'cfnames': cfnames } for i in range(0, 3): extra_vars.update({ 'cidx':i }) extra_vars.update({ 'speaker_ip': str(speaker_ips[i].ip) }) ptfhost.host.options['variable_manager'].extra_vars.update(extra_vars) ptfhost.template(src="bgp_speaker/config.j2", dest="%s/%s" % (exabgp_dir, cfnames[i])) # deploy routes ptfhost.template(src="bgp_speaker/routes.j2", dest="%s/%s" % (exabgp_dir, "routes")) # deploy start script ptfhost.template(src="bgp_speaker/start.j2", dest="%s/%s" % (exabgp_dir, "start.sh"), mode="u+rwx") # kill exabgp res = ptfhost.shell("pkill exabgp || true") print res # start exabgp instance res = ptfhost.shell("bash %s/start.sh" % exabgp_dir) print res time.sleep(10) # announce route res = ptfhost.shell("nohup python %s/announce_routes.py %s/routes >/dev/null 2>&1 &" % (helper_dir, exabgp_dir)) print res # make sure routes announced to dynamic bgp neighbors time.sleep(60) bgp_facts = host.bgp_facts()['ansible_facts'] # Verify bgp sessions are established for k, v in bgp_facts['bgp_neighbors'].items(): assert v['state'] == 'established' # Verify accepted prefixes of the dynamic neighbors are correct for ip in speaker_ips: assert bgp_facts['bgp_neighbors'][str(ip.ip)]['accepted prefixes'] == 1 assert bgp_facts['bgp_neighbors'][str(vlan_ips[0].ip)]['accepted prefixes'] == 1 # Generate route-port map information ptfhost.template(src="bgp_speaker/bgp_speaker_route.j2", dest="/root/bgp_speaker_route.txt") ptfhost.copy(src="ptftests", dest=root_dir) ptf_runner(ptfhost, \ "ptftests", "fib_test.FibTest", platform_dir="ptftests", params={"testbed_type": "t0", "router_mac": host_facts['ansible_Ethernet0']['macaddress'], "fib_info": "/root/bgp_speaker_route.txt", "ipv4": ipv4, "ipv6": ipv6, "testbed_mtu": mtu }, log_file="/tmp/bgp_speaker_test.FibTest.log", socket_recv_size=16384) res = ptfhost.shell("pkill exabgp || true") for ip in vlan_ips: host.command("ip route flush %s/32" % ip.ip) ptfhost.shell("ip addr flush dev eth{}".format(mg_facts['minigraph_port_indices'][mg_facts['minigraph_vlans'][mg_facts['minigraph_vlan_interfaces'][0]['attachto']]['members'][0]]))
tests/test_bgp_speaker.py
import pytest from netaddr import * import sys import time import ipaddress from ansible_host import AnsibleHost from ptf_runner import ptf_runner def generate_ips(num, prefix, exclude_ips): """ Generate random ips within prefix """ prefix = IPNetwork(prefix) exclude_ips.append(prefix.broadcast) exclude_ips.append(prefix.network) available_ips = list(prefix) if len(available_ips) - len(exclude_ips)< num: raise Exception("Not enough available IPs") generated_ips = [] for available_ip in available_ips: if available_ip not in exclude_ips: generated_ips.append(IPNetwork(str(available_ip) + '/' + str(prefix.prefixlen))) if len(generated_ips) == num: break return generated_ips @pytest.mark.parametrize( "ipv4, ipv6, mtu", [ pytest.param(True, False, 1514), ], ) def test_bgp_speaker(localhost, ansible_adhoc, testbed, ipv4, ipv6, mtu): """setup bgp speaker on T0 topology and verify routes advertised by bgp speaker is received by T0 TOR """ hostname = testbed['dut'] ptf_hostname = testbed['ptf'] host = AnsibleHost(ansible_adhoc, hostname) ptfhost = AnsibleHost(ansible_adhoc, ptf_hostname) mg_facts = host.minigraph_facts(host=hostname)['ansible_facts'] host_facts = host.setup()['ansible_facts'] res = host.shell("sonic-cfggen -m -d -y /etc/sonic/constants.yml -v \"constants.deployment_id_asn_map[DEVICE_METADATA['localhost']['deployment_id']]\"") bgp_speaker_asn = res['stdout'] vlan_ips = generate_ips(3, \ "%s/%s" % (mg_facts['minigraph_vlan_interfaces'][0]['addr'], mg_facts['minigraph_vlan_interfaces'][0]['prefixlen']), [IPAddress(mg_facts['minigraph_vlan_interfaces'][0]['addr'])]) # three speaker ips, two from peer range, another is vlan ip [0] speaker_ips = generate_ips(2, mg_facts['minigraph_bgp_peers_with_range'][0]['ip_range'][0], []) speaker_ips.append(vlan_ips[0]) for ip in vlan_ips: host.command("ip route flush %s/32" % ip.ip) host.command("ip route add %s/32 dev %s" % (ip.ip, mg_facts['minigraph_vlan_interfaces'][0]['attachto'])) root_dir = "/root" exabgp_dir = "/root/exabgp" helper_dir = "/root/helpers" port_num = [5000, 6000, 7000] cfnames = ["config_1.ini", "config_2.ini", "config_3.ini"] vlan_ports = [] for i in range(0, 3): vlan_ports.append(mg_facts['minigraph_port_indices'][mg_facts['minigraph_vlans'][mg_facts['minigraph_vlan_interfaces'][0]['attachto']]['members'][i]]) ptfhost.file(path=exabgp_dir, state="directory") ptfhost.file(path=helper_dir, state="directory") ptfhost.copy(src="bgp_speaker/dump.py", dest=helper_dir) ptfhost.copy(src="bgp_speaker/http_api.py", dest=helper_dir) ptfhost.copy(src="bgp_speaker/announce_routes.py", dest=helper_dir) # deploy config file extra_vars = \ { 'helper_dir': helper_dir, 'exabgp_dir': exabgp_dir, 'lo_addr' : mg_facts['minigraph_lo_interfaces'][0]['addr'], 'lo_addr_prefixlen' : mg_facts['minigraph_lo_interfaces'][0]['prefixlen'], 'vlan_addr' : mg_facts['minigraph_vlan_interfaces'][0]['addr'], 'peer_range': mg_facts['minigraph_bgp_peers_with_range'][0]['ip_range'][0], 'announce_prefix': '10.10.10.0/26', 'minigraph_portchannels' : mg_facts['minigraph_portchannels'], 'minigraph_vlans' : mg_facts['minigraph_vlans'], 'minigraph_port_indices' : mg_facts['minigraph_port_indices'], 'peer_asn' : mg_facts['minigraph_bgp_asn'], 'peer_asn' : mg_facts['minigraph_bgp_asn'], 'my_asn' : bgp_speaker_asn, 'vlan_ports' : vlan_ports, 'port_num' : port_num, 'speaker_ips': [str(ip) for ip in speaker_ips], 'vlan_ips': [str(ip) for ip in vlan_ips], 'cfnames': cfnames } for i in range(0, 3): extra_vars.update({ 'cidx':i }) extra_vars.update({ 'speaker_ip': str(speaker_ips[i].ip) }) ptfhost.host.options['variable_manager'].extra_vars.update(extra_vars) ptfhost.template(src="bgp_speaker/config.j2", dest="%s/%s" % (exabgp_dir, cfnames[i])) # deploy routes ptfhost.template(src="bgp_speaker/routes.j2", dest="%s/%s" % (exabgp_dir, "routes")) # deploy start script ptfhost.template(src="bgp_speaker/start.j2", dest="%s/%s" % (exabgp_dir, "start.sh"), mode="u+rwx") # kill exabgp res = ptfhost.shell("pkill exabgp || true") print res # start exabgp instance res = ptfhost.shell("bash %s/start.sh" % exabgp_dir) print res time.sleep(10) # announce route res = ptfhost.shell("nohup python %s/announce_routes.py %s/routes >/dev/null 2>&1 &" % (helper_dir, exabgp_dir)) print res # make sure routes announced to dynamic bgp neighbors time.sleep(60) bgp_facts = host.bgp_facts()['ansible_facts'] # Verify bgp sessions are established for k, v in bgp_facts['bgp_neighbors'].items(): assert v['state'] == 'established' # Verify accepted prefixes of the dynamic neighbors are correct for ip in speaker_ips: assert bgp_facts['bgp_neighbors'][str(ip.ip)]['accepted prefixes'] == 1 assert bgp_facts['bgp_neighbors'][str(vlan_ips[0].ip)]['accepted prefixes'] == 1 # Generate route-port map information ptfhost.template(src="bgp_speaker/bgp_speaker_route.j2", dest="/root/bgp_speaker_route.txt") ptfhost.copy(src="ptftests", dest=root_dir) ptf_runner(ptfhost, \ "ptftests", "fib_test.FibTest", platform_dir="ptftests", params={"testbed_type": "t0", "router_mac": host_facts['ansible_Ethernet0']['macaddress'], "fib_info": "/root/bgp_speaker_route.txt", "ipv4": ipv4, "ipv6": ipv6, "testbed_mtu": mtu }, log_file="/tmp/bgp_speaker_test.FibTest.log", socket_recv_size=16384) res = ptfhost.shell("pkill exabgp || true") for ip in vlan_ips: host.command("ip route flush %s/32" % ip.ip) ptfhost.shell("ip addr flush dev eth{}".format(mg_facts['minigraph_port_indices'][mg_facts['minigraph_vlans'][mg_facts['minigraph_vlan_interfaces'][0]['attachto']]['members'][0]]))
0.283881
0.167083
import os import inspect from ..utils.import_helper import ImportHelper from ..core.errors import ImproperlyConfigured from . import global_settings from ..utils.lazy_obj import empty, LazyObject __all__ = ['settings', 'SettingsFileFinder'] class SettingsFileFinder(object): def __init__(self, settings_file_name='settings.py'): self.__settings_file_name = settings_file_name def is_py_package(self, dirpath): return os.path.isdir(dirpath) and os.path.isfile(os.path.join(dirpath, '__init__.py')) @property def settings_file_name(self): return self.__settings_file_name def __issuite(self, tc): "A crude way to tell apart testcases and suites with duck-typing" try: iter(tc) except TypeError: return False return True def __all_in_one(self, tc): alltests = [] if self.__issuite(tc): for one in tc: if not self.__issuite(one): alltests.append(one) else: alltests.extend(self.__all_in_one(one)) else: alltests.append(tc) return alltests def __is_exists_file(self, path): return os.path.exists(path) and os.path.isfile(path) def find_settings_file_from_start_dir(self, dirpath): """ 从给定的目录开始查找配置文件,如果在该目录能找到配置文件,则不会遍历其子目录,否则会一直遍历。 遍历完其下所有子孙目录后,仍找不到则返回None,找到则返回完整配置文件路径 Args: dirpath: 开始查找的目录 """ if not os.path.isdir(dirpath): return None filepath = os.path.join(dirpath, self.settings_file_name) if not self.__is_exists_file(filepath): filepath = self.__find_settings_file_from_subdir(dirpath) return filepath def __find_settings_file_from_subdir(self, dirpath): names = os.listdir(dirpath) settings_file_path = None for name in names: dpath = os.path.join(dirpath, name) if os.path.isdir(dpath): filepath = os.path.join(dpath, self.settings_file_name) if self.__is_exists_file(filepath): settings_file_path = filepath break else: result = self.__find_settings_file_from_subdir(dpath) if result: settings_file_path = result break return settings_file_path def set_non_py_package_dir_as_start_dir(self, abspath): """ 设置开始查找配置文件的目录为第一个非python包的目录, 如果给定的路径中的目录没有非python包目录,则设置当前目录为开始查找配置文件的目录 Args: abspath: 绝对路径 """ if not os.path.exists(abspath): return (None, None) if os.path.isfile(abspath): dirpath = os.path.dirname(abspath) else: dirpath = abspath current_dirpath = dirpath paths = [] start_dirpath = os.path.dirname(current_dirpath) # 从哪个路径开始查找配置文件 sconfig.py while True: if not self.is_py_package(dirpath): start_dirpath = dirpath break if os.path.basename(dirpath): paths.append(dirpath) dirpath = os.path.dirname(dirpath) else: break return start_dirpath def find_settings_file_by_test(self, test): used = set() start_path = None config_path = None for t in self.__all_in_one(test): mod = inspect.getmodule(t) if mod in used: continue else: used.add(mod) file_path = os.path.abspath(mod.__file__) start_path = self.set_non_py_package_dir_as_start_dir(file_path) config_path = self.find_settings_file_from_start_dir(start_path) if config_path: break return (start_path, config_path) def find_settings_file_by_testcase_class(self, testclass): start_path = None config_path = None mod = inspect.getmodule(testclass) file_path = os.path.abspath(mod.__file__) start_path = self.set_non_py_package_dir_as_start_dir(file_path) config_path = self.find_settings_file_from_start_dir(start_path) return (start_path, config_path) class LazySettings(LazyObject): """ 框架会在运行测试时去查找项目配置文件,并调用load_configure_from_file()方法载入配置文件中的配置 """ def _setup(self): self._wrapped = Settings() def __repr__(self): # Hardcode the class name as otherwise it yields 'Settings'. if self._wrapped is empty: return '<LazySettings [Unevaluated]>' return '<LazySettings "%(settings_module_file_path)s">' % { 'settings_module_file_path': self._wrapped.SETTINGS_MODULE_FILE_PATH, } def __getattr__(self, name): if self._wrapped is empty: self._setup() val = getattr(self._wrapped, name) self.__dict__[name] = val return val def __setattr__(self, name, value): if name == '_wrapped': self.__dict__.clear() else: self.__dict__.pop(name, None) super().__setattr__(name, value) def __delattr__(self, name): super().__delattr__(name) self.__dict__.pop(name, None) def load_configure_from_file(self, settings_module_filepath, force=False): if force or (not self.is_loaded): if self._wrapped is empty: self._wrapped = Settings() self._wrapped.load(settings_module_filepath) @property def configured(self): return self._wrapped is not empty @property def is_loaded(self): return self.configured and self._wrapped.is_loaded class Settings(object): def __init__(self): for setting in dir(global_settings): if setting.isupper(): setattr(self, setting, getattr(global_settings, setting)) self._explicit_settings = set() self._is_loaded = False self.SETTINGS_MODULE_FILE_PATH = None def load(self, settings_module_filepath): self.SETTINGS_MODULE_FILE_PATH = settings_module_filepath mod = ImportHelper().load_module(self.SETTINGS_MODULE_FILE_PATH) tuple_settings = () for setting in dir(mod): if setting.isupper(): setting_value = getattr(mod, setting) if (setting in tuple_settings and not isinstance(setting_value, (list, tuple))): raise ImproperlyConfigured("The %s setting must be a list or a tuple. " % setting) setattr(self, setting, setting_value) self._explicit_settings.add(setting) self._is_loaded = True def is_overridden(self, setting): return setting in self._explicit_settings @property def is_loaded(self): return self._is_loaded def __repr__(self): return '<%(cls)s "%(settings_module_file_path)s">' % { 'cls': self.__class__.__name__, 'settings_module_file_path': self.SETTINGS_MODULE_FILE_PATH, } settings = LazySettings()
stest/conf/__init__.py
import os import inspect from ..utils.import_helper import ImportHelper from ..core.errors import ImproperlyConfigured from . import global_settings from ..utils.lazy_obj import empty, LazyObject __all__ = ['settings', 'SettingsFileFinder'] class SettingsFileFinder(object): def __init__(self, settings_file_name='settings.py'): self.__settings_file_name = settings_file_name def is_py_package(self, dirpath): return os.path.isdir(dirpath) and os.path.isfile(os.path.join(dirpath, '__init__.py')) @property def settings_file_name(self): return self.__settings_file_name def __issuite(self, tc): "A crude way to tell apart testcases and suites with duck-typing" try: iter(tc) except TypeError: return False return True def __all_in_one(self, tc): alltests = [] if self.__issuite(tc): for one in tc: if not self.__issuite(one): alltests.append(one) else: alltests.extend(self.__all_in_one(one)) else: alltests.append(tc) return alltests def __is_exists_file(self, path): return os.path.exists(path) and os.path.isfile(path) def find_settings_file_from_start_dir(self, dirpath): """ 从给定的目录开始查找配置文件,如果在该目录能找到配置文件,则不会遍历其子目录,否则会一直遍历。 遍历完其下所有子孙目录后,仍找不到则返回None,找到则返回完整配置文件路径 Args: dirpath: 开始查找的目录 """ if not os.path.isdir(dirpath): return None filepath = os.path.join(dirpath, self.settings_file_name) if not self.__is_exists_file(filepath): filepath = self.__find_settings_file_from_subdir(dirpath) return filepath def __find_settings_file_from_subdir(self, dirpath): names = os.listdir(dirpath) settings_file_path = None for name in names: dpath = os.path.join(dirpath, name) if os.path.isdir(dpath): filepath = os.path.join(dpath, self.settings_file_name) if self.__is_exists_file(filepath): settings_file_path = filepath break else: result = self.__find_settings_file_from_subdir(dpath) if result: settings_file_path = result break return settings_file_path def set_non_py_package_dir_as_start_dir(self, abspath): """ 设置开始查找配置文件的目录为第一个非python包的目录, 如果给定的路径中的目录没有非python包目录,则设置当前目录为开始查找配置文件的目录 Args: abspath: 绝对路径 """ if not os.path.exists(abspath): return (None, None) if os.path.isfile(abspath): dirpath = os.path.dirname(abspath) else: dirpath = abspath current_dirpath = dirpath paths = [] start_dirpath = os.path.dirname(current_dirpath) # 从哪个路径开始查找配置文件 sconfig.py while True: if not self.is_py_package(dirpath): start_dirpath = dirpath break if os.path.basename(dirpath): paths.append(dirpath) dirpath = os.path.dirname(dirpath) else: break return start_dirpath def find_settings_file_by_test(self, test): used = set() start_path = None config_path = None for t in self.__all_in_one(test): mod = inspect.getmodule(t) if mod in used: continue else: used.add(mod) file_path = os.path.abspath(mod.__file__) start_path = self.set_non_py_package_dir_as_start_dir(file_path) config_path = self.find_settings_file_from_start_dir(start_path) if config_path: break return (start_path, config_path) def find_settings_file_by_testcase_class(self, testclass): start_path = None config_path = None mod = inspect.getmodule(testclass) file_path = os.path.abspath(mod.__file__) start_path = self.set_non_py_package_dir_as_start_dir(file_path) config_path = self.find_settings_file_from_start_dir(start_path) return (start_path, config_path) class LazySettings(LazyObject): """ 框架会在运行测试时去查找项目配置文件,并调用load_configure_from_file()方法载入配置文件中的配置 """ def _setup(self): self._wrapped = Settings() def __repr__(self): # Hardcode the class name as otherwise it yields 'Settings'. if self._wrapped is empty: return '<LazySettings [Unevaluated]>' return '<LazySettings "%(settings_module_file_path)s">' % { 'settings_module_file_path': self._wrapped.SETTINGS_MODULE_FILE_PATH, } def __getattr__(self, name): if self._wrapped is empty: self._setup() val = getattr(self._wrapped, name) self.__dict__[name] = val return val def __setattr__(self, name, value): if name == '_wrapped': self.__dict__.clear() else: self.__dict__.pop(name, None) super().__setattr__(name, value) def __delattr__(self, name): super().__delattr__(name) self.__dict__.pop(name, None) def load_configure_from_file(self, settings_module_filepath, force=False): if force or (not self.is_loaded): if self._wrapped is empty: self._wrapped = Settings() self._wrapped.load(settings_module_filepath) @property def configured(self): return self._wrapped is not empty @property def is_loaded(self): return self.configured and self._wrapped.is_loaded class Settings(object): def __init__(self): for setting in dir(global_settings): if setting.isupper(): setattr(self, setting, getattr(global_settings, setting)) self._explicit_settings = set() self._is_loaded = False self.SETTINGS_MODULE_FILE_PATH = None def load(self, settings_module_filepath): self.SETTINGS_MODULE_FILE_PATH = settings_module_filepath mod = ImportHelper().load_module(self.SETTINGS_MODULE_FILE_PATH) tuple_settings = () for setting in dir(mod): if setting.isupper(): setting_value = getattr(mod, setting) if (setting in tuple_settings and not isinstance(setting_value, (list, tuple))): raise ImproperlyConfigured("The %s setting must be a list or a tuple. " % setting) setattr(self, setting, setting_value) self._explicit_settings.add(setting) self._is_loaded = True def is_overridden(self, setting): return setting in self._explicit_settings @property def is_loaded(self): return self._is_loaded def __repr__(self): return '<%(cls)s "%(settings_module_file_path)s">' % { 'cls': self.__class__.__name__, 'settings_module_file_path': self.SETTINGS_MODULE_FILE_PATH, } settings = LazySettings()
0.324663
0.09118
from sys import version_info if version_info >= (3,0,0): new_instancemethod = lambda func, inst, cls: _GccIter.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_GccIter', [dirname(__file__)]) except ImportError: import _GccIter return _GccIter if fp is not None: try: _mod = imp.load_module('_GccIter', fp, pathname, description) finally: fp.close() return _mod _GccIter = swig_import_helper() del swig_import_helper else: import _GccIter del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self,name,value): if (name == "thisown"): return self.this.own(value) if hasattr(self,name) or (name == "this"): set(self,name,value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr class SwigPyIterator(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _GccIter.delete_SwigPyIterator def __iter__(self): return self SwigPyIterator.value = new_instancemethod(_GccIter.SwigPyIterator_value,None,SwigPyIterator) SwigPyIterator.incr = new_instancemethod(_GccIter.SwigPyIterator_incr,None,SwigPyIterator) SwigPyIterator.decr = new_instancemethod(_GccIter.SwigPyIterator_decr,None,SwigPyIterator) SwigPyIterator.distance = new_instancemethod(_GccIter.SwigPyIterator_distance,None,SwigPyIterator) SwigPyIterator.equal = new_instancemethod(_GccIter.SwigPyIterator_equal,None,SwigPyIterator) SwigPyIterator.copy = new_instancemethod(_GccIter.SwigPyIterator_copy,None,SwigPyIterator) SwigPyIterator.next = new_instancemethod(_GccIter.SwigPyIterator_next,None,SwigPyIterator) SwigPyIterator.__next__ = new_instancemethod(_GccIter.SwigPyIterator___next__,None,SwigPyIterator) SwigPyIterator.previous = new_instancemethod(_GccIter.SwigPyIterator_previous,None,SwigPyIterator) SwigPyIterator.advance = new_instancemethod(_GccIter.SwigPyIterator_advance,None,SwigPyIterator) SwigPyIterator.__eq__ = new_instancemethod(_GccIter.SwigPyIterator___eq__,None,SwigPyIterator) SwigPyIterator.__ne__ = new_instancemethod(_GccIter.SwigPyIterator___ne__,None,SwigPyIterator) SwigPyIterator.__iadd__ = new_instancemethod(_GccIter.SwigPyIterator___iadd__,None,SwigPyIterator) SwigPyIterator.__isub__ = new_instancemethod(_GccIter.SwigPyIterator___isub__,None,SwigPyIterator) SwigPyIterator.__add__ = new_instancemethod(_GccIter.SwigPyIterator___add__,None,SwigPyIterator) SwigPyIterator.__sub__ = new_instancemethod(_GccIter.SwigPyIterator___sub__,None,SwigPyIterator) SwigPyIterator_swigregister = _GccIter.SwigPyIterator_swigregister SwigPyIterator_swigregister(SwigPyIterator) GccIter_CuCuCu = _GccIter.GccIter_CuCuCu GccIter_CiCuCu = _GccIter.GccIter_CiCuCu GccIter_CiCiCu = _GccIter.GccIter_CiCiCu GccIter_CiLiCu = _GccIter.GccIter_CiLiCu GccIter_LiLiCu = _GccIter.GccIter_LiLiCu GccIter_LiCuCu = _GccIter.GccIter_LiCuCu GccIter_CuCuOnCu = _GccIter.GccIter_CuCuOnCu GccIter_CiCuOnCu = _GccIter.GccIter_CiCuOnCu GccIter_LiCuOnCu = _GccIter.GccIter_LiCuOnCu GccIter_CuPtOnCu = _GccIter.GccIter_CuPtOnCu GccIter_CuCuOnLi = _GccIter.GccIter_CuCuOnLi GccIter_CiCuOnLi = _GccIter.GccIter_CiCuOnLi GccIter_LiCuOnLi = _GccIter.GccIter_LiCuOnLi GccIter_CuPtOnLi = _GccIter.GccIter_CuPtOnLi GccIter_CuCuOnCi = _GccIter.GccIter_CuCuOnCi GccIter_CiCuOnCi = _GccIter.GccIter_CiCuOnCi GccIter_LiCuOnCi = _GccIter.GccIter_LiCuOnCi GccIter_CuPtOnCi = _GccIter.GccIter_CuPtOnCi GccIter_CuCu = _GccIter.GccIter_CuCu GccIter_CiCu = _GccIter.GccIter_CiCu
Lib/site-packages/OCC/GccIter.py
from sys import version_info if version_info >= (3,0,0): new_instancemethod = lambda func, inst, cls: _GccIter.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_GccIter', [dirname(__file__)]) except ImportError: import _GccIter return _GccIter if fp is not None: try: _mod = imp.load_module('_GccIter', fp, pathname, description) finally: fp.close() return _mod _GccIter = swig_import_helper() del swig_import_helper else: import _GccIter del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self,name,value): if (name == "thisown"): return self.this.own(value) if hasattr(self,name) or (name == "this"): set(self,name,value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr class SwigPyIterator(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _GccIter.delete_SwigPyIterator def __iter__(self): return self SwigPyIterator.value = new_instancemethod(_GccIter.SwigPyIterator_value,None,SwigPyIterator) SwigPyIterator.incr = new_instancemethod(_GccIter.SwigPyIterator_incr,None,SwigPyIterator) SwigPyIterator.decr = new_instancemethod(_GccIter.SwigPyIterator_decr,None,SwigPyIterator) SwigPyIterator.distance = new_instancemethod(_GccIter.SwigPyIterator_distance,None,SwigPyIterator) SwigPyIterator.equal = new_instancemethod(_GccIter.SwigPyIterator_equal,None,SwigPyIterator) SwigPyIterator.copy = new_instancemethod(_GccIter.SwigPyIterator_copy,None,SwigPyIterator) SwigPyIterator.next = new_instancemethod(_GccIter.SwigPyIterator_next,None,SwigPyIterator) SwigPyIterator.__next__ = new_instancemethod(_GccIter.SwigPyIterator___next__,None,SwigPyIterator) SwigPyIterator.previous = new_instancemethod(_GccIter.SwigPyIterator_previous,None,SwigPyIterator) SwigPyIterator.advance = new_instancemethod(_GccIter.SwigPyIterator_advance,None,SwigPyIterator) SwigPyIterator.__eq__ = new_instancemethod(_GccIter.SwigPyIterator___eq__,None,SwigPyIterator) SwigPyIterator.__ne__ = new_instancemethod(_GccIter.SwigPyIterator___ne__,None,SwigPyIterator) SwigPyIterator.__iadd__ = new_instancemethod(_GccIter.SwigPyIterator___iadd__,None,SwigPyIterator) SwigPyIterator.__isub__ = new_instancemethod(_GccIter.SwigPyIterator___isub__,None,SwigPyIterator) SwigPyIterator.__add__ = new_instancemethod(_GccIter.SwigPyIterator___add__,None,SwigPyIterator) SwigPyIterator.__sub__ = new_instancemethod(_GccIter.SwigPyIterator___sub__,None,SwigPyIterator) SwigPyIterator_swigregister = _GccIter.SwigPyIterator_swigregister SwigPyIterator_swigregister(SwigPyIterator) GccIter_CuCuCu = _GccIter.GccIter_CuCuCu GccIter_CiCuCu = _GccIter.GccIter_CiCuCu GccIter_CiCiCu = _GccIter.GccIter_CiCiCu GccIter_CiLiCu = _GccIter.GccIter_CiLiCu GccIter_LiLiCu = _GccIter.GccIter_LiLiCu GccIter_LiCuCu = _GccIter.GccIter_LiCuCu GccIter_CuCuOnCu = _GccIter.GccIter_CuCuOnCu GccIter_CiCuOnCu = _GccIter.GccIter_CiCuOnCu GccIter_LiCuOnCu = _GccIter.GccIter_LiCuOnCu GccIter_CuPtOnCu = _GccIter.GccIter_CuPtOnCu GccIter_CuCuOnLi = _GccIter.GccIter_CuCuOnLi GccIter_CiCuOnLi = _GccIter.GccIter_CiCuOnLi GccIter_LiCuOnLi = _GccIter.GccIter_LiCuOnLi GccIter_CuPtOnLi = _GccIter.GccIter_CuPtOnLi GccIter_CuCuOnCi = _GccIter.GccIter_CuCuOnCi GccIter_CiCuOnCi = _GccIter.GccIter_CiCuOnCi GccIter_LiCuOnCi = _GccIter.GccIter_LiCuOnCi GccIter_CuPtOnCi = _GccIter.GccIter_CuPtOnCi GccIter_CuCu = _GccIter.GccIter_CuCu GccIter_CiCu = _GccIter.GccIter_CiCu
0.154153
0.081447
import json # Used when TRACE=jsonp import os # Used to get the TRACE environment variable import re # Used when TRACE=jsonp import sys # Used to smooth over the range / xrange issue. import aug_avl # Python 3 doesn't have xrange, and range behaves like xrange. if sys.version_info >= (3,): xrange = range # Circuit verification library. class Wire(object): """A wire in an on-chip circuit. Wires are immutable, and are either horizontal or vertical. """ def __init__(self, name, x1, y1, x2, y2): """Creates a wire. Raises an ValueError if the coordinates don't make up a horizontal wire or a vertical wire. Args: name: the wire's user-visible name x1: the X coordinate of the wire's first endpoint y1: the Y coordinate of the wire's first endpoint x2: the X coordinate of the wire's last endpoint y2: the Y coordinate of the wire's last endpoint """ # Normalize the coordinates. if x1 > x2: x1, x2 = x2, x1 if y1 > y2: y1, y2 = y2, y1 self.name = name self.x1, self.y1 = x1, y1 self.x2, self.y2 = x2, y2 self.object_id = Wire.next_object_id() if not (self.is_horizontal() or self.is_vertical()): raise ValueError(str(self) + ' is neither horizontal nor vertical') def is_horizontal(self): """True if the wire's endpoints have the same Y coordinates.""" return self.y1 == self.y2 def is_vertical(self): """True if the wire's endpoints have the same X coordinates.""" return self.x1 == self.x2 def intersects(self, other_wire): """True if this wire intersects another wire.""" # NOTE: we assume that wires can only cross, but not overlap. if self.is_horizontal() == other_wire.is_horizontal(): return False if self.is_horizontal(): h = self v = other_wire else: h = other_wire v = self return v.y1 <= h.y1 and h.y1 <= v.y2 and h.x1 <= v.x1 and v.x1 <= h.x2 def __repr__(self): # :nodoc: nicer formatting to help with debugging return('<wire ' + self.name + ' (' + str(self.x1) + ',' + str(self.y1) + ')-(' + str(self.x2) + ',' + str(self.y2) + ')>') def as_json(self): """Dict that obeys the JSON format restrictions, representing the wire.""" return {'id': self.name, 'x': [self.x1, self.x2], 'y': [self.y1, self.y2]} # Next number handed out by Wire.next_object_id() _next_id = 0 @staticmethod def next_object_id(): """Returns a unique numerical ID to be used as a Wire's object_id.""" id = Wire._next_id Wire._next_id += 1 return id class WireLayer(object): """The layout of one layer of wires in a chip.""" def __init__(self): """Creates a layer layout with no wires.""" self.wires = {} def wires(self): """The wires in the layout.""" self.wires.values() def add_wire(self, name, x1, y1, x2, y2): """Adds a wire to a layer layout. Args: name: the wire's unique name x1: the X coordinate of the wire's first endpoint y1: the Y coordinate of the wire's first endpoint x2: the X coordinate of the wire's last endpoint y2: the Y coordinate of the wire's last endpoint Raises an exception if the wire isn't perfectly horizontal (y1 = y2) or perfectly vertical (x1 = x2).""" if name in self.wires: raise ValueError('Wire name ' + name + ' not unique') self.wires[name] = Wire(name, x1, y1, x2, y2) def as_json(self): """Dict that obeys the JSON format restrictions, representing the layout.""" return { 'wires': [wire.as_json() for wire in self.wires.values()] } @staticmethod def from_file(file): """Builds a wire layer layout by reading a textual description from a file. Args: file: a File object supplying the input Returns a new Simulation instance.""" layer = WireLayer() while True: command = file.readline().split() if command[0] == 'wire': coordinates = [float(token) for token in command[2:6]] layer.add_wire(command[1], *coordinates) elif command[0] == 'done': break return layer class RangeIndex(object): """Array-based range index implementation.""" def __init__(self): """Initially empty range index.""" self.data = aug_avl.AugAVL() def add(self, key): """Inserts a key in the range index.""" if key is None: raise ValueError('Cannot insert nil in the index') self.data.insert(key) def remove(self, key): """Removes a key from the range index.""" self.data.delete(key) def list(self, first_key, last_key): """List of values for the keys that fall within [first_key, last_key].""" return self.data.list(first_key, last_key) def count(self, first_key, last_key): """Number of keys that fall within [first_key, last_key].""" return self.data.count(first_key, last_key) class TracedRangeIndex(RangeIndex): """Augments RangeIndex to build a trace for the visualizer.""" def __init__(self, trace): """Sets the object receiving tracing info.""" RangeIndex.__init__(self) self.trace = trace def add(self, key): self.trace.append({'type': 'add', 'id': key.wire.name}) RangeIndex.add(self, key) def remove(self, key): self.trace.append({'type': 'delete', 'id': key.wire.name}) RangeIndex.remove(self, key) def list(self, first_key, last_key): result = RangeIndex.list(self, first_key, last_key) self.trace.append({'type': 'list', 'from': first_key.key, 'to': last_key.key, 'ids': [key.wire.name for key in result]}) return result def count(self, first_key, last_key): result = RangeIndex.count(self, first_key, last_key) self.trace.append({'type': 'list', 'from': first_key.key, 'to': last_key.key, 'count': result}) return result class ResultSet(object): """Records the result of the circuit verifier (pairs of crossing wires).""" def __init__(self): """Creates an empty result set.""" self.crossings = [] def add_crossing(self, wire1, wire2): """Records the fact that two wires are crossing.""" self.crossings.append(sorted([wire1.name, wire2.name])) def write_to_file(self, file): """Write the result to a file.""" for crossing in self.crossings: file.write(' '.join(crossing)) file.write('\n') class TracedResultSet(ResultSet): """Augments ResultSet to build a trace for the visualizer.""" def __init__(self, trace): """Sets the object receiving tracing info.""" ResultSet.__init__(self) self.trace = trace def add_crossing(self, wire1, wire2): self.trace.append({'type': 'crossing', 'id1': wire1.name, 'id2': wire2.name}) ResultSet.add_crossing(self, wire1, wire2) class KeyWirePair(object): """Wraps a wire and the key representing it in the range index. Once created, a key-wire pair is immutable.""" def __init__(self, key, wire): """Creates a new key for insertion in the range index.""" self.key = key if wire is None: raise ValueError('Use KeyWirePairL or KeyWirePairH for queries') self.wire = wire self.wire_id = wire.object_id def __lt__(self, other): # :nodoc: Delegate comparison to keys. return (self.key < other.key or (self.key == other.key and self.wire_id < other.wire_id)) def __le__(self, other): # :nodoc: Delegate comparison to keys. return (self.key < other.key or (self.key == other.key and self.wire_id <= other.wire_id)) def __gt__(self, other): # :nodoc: Delegate comparison to keys. return (self.key > other.key or (self.key == other.key and self.wire_id > other.wire_id)) def __ge__(self, other): # :nodoc: Delegate comparison to keys. return (self.key > other.key or (self.key == other.key and self.wire_id >= other.wire_id)) def __eq__(self, other): # :nodoc: Delegate comparison to keys. return self.key == other.key and self.wire_id == other.wire_id def __ne__(self, other): # :nodoc: Delegate comparison to keys. return self.key == other.key and self.wire_id == other.wire_id def __hash__(self): # :nodoc: Delegate comparison to keys. return hash([self.key, self.wire_id]) def __repr__(self): # :nodoc: nicer formatting to help with debugging return '<key: ' + str(self.key) + ' wire: ' + str(self.wire) + '>' class KeyWirePairL(KeyWirePair): """A KeyWirePair that is used as the low end of a range query. This KeyWirePair is smaller than all other KeyWirePairs with the same key.""" def __init__(self, key): self.key = key self.wire = None self.wire_id = -1000000000 class KeyWirePairH(KeyWirePair): """A KeyWirePair that is used as the high end of a range query. This KeyWirePair is larger than all other KeyWirePairs with the same key.""" def __init__(self, key): self.key = key self.wire = None # HACK(pwnall): assuming 1 billion objects won't fit into RAM. self.wire_id = 1000000000 class CrossVerifier(object): """Checks whether a wire network has any crossing wires.""" def __init__(self, layer): """Verifier for a layer of wires. Once created, the verifier can list the crossings between wires (the wire_crossings method) or count the crossings (count_crossings).""" self.events = [] self._events_from_layer(layer) self.events.sort() self.index = RangeIndex() self.result_set = ResultSet() self.performed = False def count_crossings(self): """Returns the number of pairs of wires that cross each other.""" if self.performed: raise self.performed = True return self._compute_crossings(True) def wire_crossings(self): """An array of pairs of wires that cross each other.""" if self.performed: raise self.performed = True return self._compute_crossings(False) def _events_from_layer(self, layer): """Populates the sweep line events from the wire layer.""" left_edge = min([wire.x1 for wire in layer.wires.values()]) for wire in layer.wires.values(): if wire.is_horizontal(): self.events.append([wire.x1, 0, wire.object_id, 'add', wire]) self.events.append([wire.x2, 2, wire.object_id, 'remove', wire]) else: self.events.append([wire.x1, 1, wire.object_id, 'query', wire]) def _compute_crossings(self, count_only): """Implements count_crossings and wire_crossings.""" if count_only: result = 0 else: result = self.result_set for event in self.events: event_x, event_type, wire = event[0], event[3], event[4] if event_type == 'add': self.trace_sweep_line(wire.x1) self.index.add(KeyWirePair(wire.y1, wire)) elif event_type == 'remove': self.trace_sweep_line(wire.x2) self.index.remove(KeyWirePair(wire.y1, wire)) elif event_type == 'query': self.trace_sweep_line(event_x) if count_only: result += self.index.count(KeyWirePairL(wire.y1), KeyWirePairH(wire.y2)) else: cross_wires = [] for kwp in self.index.list(KeyWirePairL(wire.y1), KeyWirePairH(wire.y2)): cross_wires.append(kwp.wire) for cross_wire in cross_wires: result.add_crossing(wire, cross_wire) return result def trace_sweep_line(self, x): """When tracing is enabled, adds info about where the sweep line is. Args: x: the coordinate of the vertical sweep line """ # NOTE: this is overridden in TracedCrossVerifier pass class TracedCrossVerifier(CrossVerifier): """Augments CrossVerifier to build a trace for the visualizer.""" def __init__(self, layer): CrossVerifier.__init__(self, layer) self.trace = [] self.index = TracedRangeIndex(self.trace) self.result_set = TracedResultSet(self.trace) def trace_sweep_line(self, x): self.trace.append({'type': 'sweep', 'x': x}) def trace_as_json(self): """List that obeys the JSON format restrictions with the verifier trace.""" return self.trace # Command-line controller. if __name__ == '__main__': import sys layer = WireLayer.from_file(sys.stdin) verifier = CrossVerifier(layer) if os.environ.get('TRACE') == 'jsonp': verifier = TracedCrossVerifier(layer) result = verifier.wire_crossings() json_obj = {'layer': layer.as_json(), 'trace': verifier.trace_as_json()} sys.stdout.write('onJsonp(') json.dump(json_obj, sys.stdout) sys.stdout.write(');\n') elif os.environ.get('TRACE') == 'list': verifier.wire_crossings().write_to_file(sys.stdout) else: sys.stdout.write(str(verifier.count_crossings()) + "\n")
Problem sets/PS3/circuit2/circuit2.py
import json # Used when TRACE=jsonp import os # Used to get the TRACE environment variable import re # Used when TRACE=jsonp import sys # Used to smooth over the range / xrange issue. import aug_avl # Python 3 doesn't have xrange, and range behaves like xrange. if sys.version_info >= (3,): xrange = range # Circuit verification library. class Wire(object): """A wire in an on-chip circuit. Wires are immutable, and are either horizontal or vertical. """ def __init__(self, name, x1, y1, x2, y2): """Creates a wire. Raises an ValueError if the coordinates don't make up a horizontal wire or a vertical wire. Args: name: the wire's user-visible name x1: the X coordinate of the wire's first endpoint y1: the Y coordinate of the wire's first endpoint x2: the X coordinate of the wire's last endpoint y2: the Y coordinate of the wire's last endpoint """ # Normalize the coordinates. if x1 > x2: x1, x2 = x2, x1 if y1 > y2: y1, y2 = y2, y1 self.name = name self.x1, self.y1 = x1, y1 self.x2, self.y2 = x2, y2 self.object_id = Wire.next_object_id() if not (self.is_horizontal() or self.is_vertical()): raise ValueError(str(self) + ' is neither horizontal nor vertical') def is_horizontal(self): """True if the wire's endpoints have the same Y coordinates.""" return self.y1 == self.y2 def is_vertical(self): """True if the wire's endpoints have the same X coordinates.""" return self.x1 == self.x2 def intersects(self, other_wire): """True if this wire intersects another wire.""" # NOTE: we assume that wires can only cross, but not overlap. if self.is_horizontal() == other_wire.is_horizontal(): return False if self.is_horizontal(): h = self v = other_wire else: h = other_wire v = self return v.y1 <= h.y1 and h.y1 <= v.y2 and h.x1 <= v.x1 and v.x1 <= h.x2 def __repr__(self): # :nodoc: nicer formatting to help with debugging return('<wire ' + self.name + ' (' + str(self.x1) + ',' + str(self.y1) + ')-(' + str(self.x2) + ',' + str(self.y2) + ')>') def as_json(self): """Dict that obeys the JSON format restrictions, representing the wire.""" return {'id': self.name, 'x': [self.x1, self.x2], 'y': [self.y1, self.y2]} # Next number handed out by Wire.next_object_id() _next_id = 0 @staticmethod def next_object_id(): """Returns a unique numerical ID to be used as a Wire's object_id.""" id = Wire._next_id Wire._next_id += 1 return id class WireLayer(object): """The layout of one layer of wires in a chip.""" def __init__(self): """Creates a layer layout with no wires.""" self.wires = {} def wires(self): """The wires in the layout.""" self.wires.values() def add_wire(self, name, x1, y1, x2, y2): """Adds a wire to a layer layout. Args: name: the wire's unique name x1: the X coordinate of the wire's first endpoint y1: the Y coordinate of the wire's first endpoint x2: the X coordinate of the wire's last endpoint y2: the Y coordinate of the wire's last endpoint Raises an exception if the wire isn't perfectly horizontal (y1 = y2) or perfectly vertical (x1 = x2).""" if name in self.wires: raise ValueError('Wire name ' + name + ' not unique') self.wires[name] = Wire(name, x1, y1, x2, y2) def as_json(self): """Dict that obeys the JSON format restrictions, representing the layout.""" return { 'wires': [wire.as_json() for wire in self.wires.values()] } @staticmethod def from_file(file): """Builds a wire layer layout by reading a textual description from a file. Args: file: a File object supplying the input Returns a new Simulation instance.""" layer = WireLayer() while True: command = file.readline().split() if command[0] == 'wire': coordinates = [float(token) for token in command[2:6]] layer.add_wire(command[1], *coordinates) elif command[0] == 'done': break return layer class RangeIndex(object): """Array-based range index implementation.""" def __init__(self): """Initially empty range index.""" self.data = aug_avl.AugAVL() def add(self, key): """Inserts a key in the range index.""" if key is None: raise ValueError('Cannot insert nil in the index') self.data.insert(key) def remove(self, key): """Removes a key from the range index.""" self.data.delete(key) def list(self, first_key, last_key): """List of values for the keys that fall within [first_key, last_key].""" return self.data.list(first_key, last_key) def count(self, first_key, last_key): """Number of keys that fall within [first_key, last_key].""" return self.data.count(first_key, last_key) class TracedRangeIndex(RangeIndex): """Augments RangeIndex to build a trace for the visualizer.""" def __init__(self, trace): """Sets the object receiving tracing info.""" RangeIndex.__init__(self) self.trace = trace def add(self, key): self.trace.append({'type': 'add', 'id': key.wire.name}) RangeIndex.add(self, key) def remove(self, key): self.trace.append({'type': 'delete', 'id': key.wire.name}) RangeIndex.remove(self, key) def list(self, first_key, last_key): result = RangeIndex.list(self, first_key, last_key) self.trace.append({'type': 'list', 'from': first_key.key, 'to': last_key.key, 'ids': [key.wire.name for key in result]}) return result def count(self, first_key, last_key): result = RangeIndex.count(self, first_key, last_key) self.trace.append({'type': 'list', 'from': first_key.key, 'to': last_key.key, 'count': result}) return result class ResultSet(object): """Records the result of the circuit verifier (pairs of crossing wires).""" def __init__(self): """Creates an empty result set.""" self.crossings = [] def add_crossing(self, wire1, wire2): """Records the fact that two wires are crossing.""" self.crossings.append(sorted([wire1.name, wire2.name])) def write_to_file(self, file): """Write the result to a file.""" for crossing in self.crossings: file.write(' '.join(crossing)) file.write('\n') class TracedResultSet(ResultSet): """Augments ResultSet to build a trace for the visualizer.""" def __init__(self, trace): """Sets the object receiving tracing info.""" ResultSet.__init__(self) self.trace = trace def add_crossing(self, wire1, wire2): self.trace.append({'type': 'crossing', 'id1': wire1.name, 'id2': wire2.name}) ResultSet.add_crossing(self, wire1, wire2) class KeyWirePair(object): """Wraps a wire and the key representing it in the range index. Once created, a key-wire pair is immutable.""" def __init__(self, key, wire): """Creates a new key for insertion in the range index.""" self.key = key if wire is None: raise ValueError('Use KeyWirePairL or KeyWirePairH for queries') self.wire = wire self.wire_id = wire.object_id def __lt__(self, other): # :nodoc: Delegate comparison to keys. return (self.key < other.key or (self.key == other.key and self.wire_id < other.wire_id)) def __le__(self, other): # :nodoc: Delegate comparison to keys. return (self.key < other.key or (self.key == other.key and self.wire_id <= other.wire_id)) def __gt__(self, other): # :nodoc: Delegate comparison to keys. return (self.key > other.key or (self.key == other.key and self.wire_id > other.wire_id)) def __ge__(self, other): # :nodoc: Delegate comparison to keys. return (self.key > other.key or (self.key == other.key and self.wire_id >= other.wire_id)) def __eq__(self, other): # :nodoc: Delegate comparison to keys. return self.key == other.key and self.wire_id == other.wire_id def __ne__(self, other): # :nodoc: Delegate comparison to keys. return self.key == other.key and self.wire_id == other.wire_id def __hash__(self): # :nodoc: Delegate comparison to keys. return hash([self.key, self.wire_id]) def __repr__(self): # :nodoc: nicer formatting to help with debugging return '<key: ' + str(self.key) + ' wire: ' + str(self.wire) + '>' class KeyWirePairL(KeyWirePair): """A KeyWirePair that is used as the low end of a range query. This KeyWirePair is smaller than all other KeyWirePairs with the same key.""" def __init__(self, key): self.key = key self.wire = None self.wire_id = -1000000000 class KeyWirePairH(KeyWirePair): """A KeyWirePair that is used as the high end of a range query. This KeyWirePair is larger than all other KeyWirePairs with the same key.""" def __init__(self, key): self.key = key self.wire = None # HACK(pwnall): assuming 1 billion objects won't fit into RAM. self.wire_id = 1000000000 class CrossVerifier(object): """Checks whether a wire network has any crossing wires.""" def __init__(self, layer): """Verifier for a layer of wires. Once created, the verifier can list the crossings between wires (the wire_crossings method) or count the crossings (count_crossings).""" self.events = [] self._events_from_layer(layer) self.events.sort() self.index = RangeIndex() self.result_set = ResultSet() self.performed = False def count_crossings(self): """Returns the number of pairs of wires that cross each other.""" if self.performed: raise self.performed = True return self._compute_crossings(True) def wire_crossings(self): """An array of pairs of wires that cross each other.""" if self.performed: raise self.performed = True return self._compute_crossings(False) def _events_from_layer(self, layer): """Populates the sweep line events from the wire layer.""" left_edge = min([wire.x1 for wire in layer.wires.values()]) for wire in layer.wires.values(): if wire.is_horizontal(): self.events.append([wire.x1, 0, wire.object_id, 'add', wire]) self.events.append([wire.x2, 2, wire.object_id, 'remove', wire]) else: self.events.append([wire.x1, 1, wire.object_id, 'query', wire]) def _compute_crossings(self, count_only): """Implements count_crossings and wire_crossings.""" if count_only: result = 0 else: result = self.result_set for event in self.events: event_x, event_type, wire = event[0], event[3], event[4] if event_type == 'add': self.trace_sweep_line(wire.x1) self.index.add(KeyWirePair(wire.y1, wire)) elif event_type == 'remove': self.trace_sweep_line(wire.x2) self.index.remove(KeyWirePair(wire.y1, wire)) elif event_type == 'query': self.trace_sweep_line(event_x) if count_only: result += self.index.count(KeyWirePairL(wire.y1), KeyWirePairH(wire.y2)) else: cross_wires = [] for kwp in self.index.list(KeyWirePairL(wire.y1), KeyWirePairH(wire.y2)): cross_wires.append(kwp.wire) for cross_wire in cross_wires: result.add_crossing(wire, cross_wire) return result def trace_sweep_line(self, x): """When tracing is enabled, adds info about where the sweep line is. Args: x: the coordinate of the vertical sweep line """ # NOTE: this is overridden in TracedCrossVerifier pass class TracedCrossVerifier(CrossVerifier): """Augments CrossVerifier to build a trace for the visualizer.""" def __init__(self, layer): CrossVerifier.__init__(self, layer) self.trace = [] self.index = TracedRangeIndex(self.trace) self.result_set = TracedResultSet(self.trace) def trace_sweep_line(self, x): self.trace.append({'type': 'sweep', 'x': x}) def trace_as_json(self): """List that obeys the JSON format restrictions with the verifier trace.""" return self.trace # Command-line controller. if __name__ == '__main__': import sys layer = WireLayer.from_file(sys.stdin) verifier = CrossVerifier(layer) if os.environ.get('TRACE') == 'jsonp': verifier = TracedCrossVerifier(layer) result = verifier.wire_crossings() json_obj = {'layer': layer.as_json(), 'trace': verifier.trace_as_json()} sys.stdout.write('onJsonp(') json.dump(json_obj, sys.stdout) sys.stdout.write(');\n') elif os.environ.get('TRACE') == 'list': verifier.wire_crossings().write_to_file(sys.stdout) else: sys.stdout.write(str(verifier.count_crossings()) + "\n")
0.651577
0.467089
from typing import Type import coreapi import coreschema from django.db.models import Choices, IntegerChoices from rest_framework.filters import BaseFilterBackend class BaseKeyFilter(BaseFilterBackend): """Filter by foreign or primary key implementation.""" key: str def _get_pk_parameter(self, params): if self.key not in params: return None else: return [int(key) for key in params[self.key].split(",")] def filter_queryset(self, request, queryset, view): """Parse pk parameter, filter results.""" params = request.query_params filtered_ids = self._get_pk_parameter(params) if filtered_ids is not None: queryset = queryset.filter(**{f"{self.key}__in": filtered_ids}) return queryset def get_schema_fields(self, view): """Return schema for filter parameters.""" return [ coreapi.Field( name=self.key, required=False, location="query", schema=coreschema.String(description=f"filter objects by {self.key}"), ), ] class BaseChoicesFilter(BaseFilterBackend): """Filter by choice field implementation.""" choices: Type[Choices] # allowed choices field: str # choice field def _get_choice_parameter(self, params): """Filter unsupported values""" if self.field not in params: return None else: return [ choice for choice in params[self.field].split(",") if choice in self.choices.values ] def filter_queryset(self, request, queryset, view): """Parse choice field parameter, filter results.""" params = request.query_params filtered_choices = self._get_choice_parameter(params) if filtered_choices is not None: queryset = queryset.filter(**{f"{self.field}__in": filtered_choices}) return queryset def get_schema_fields(self, view): """Return schema for filter parameters.""" return [ coreapi.Field( name=self.field, required=False, location="query", schema=coreschema.String( description=f"filter objects by {self.field}", ), ), ] class BaseIntegerChoicesFilter(BaseChoicesFilter): """Filter by integer choice field implementation.""" choices: IntegerChoices def _get_choice_parameter(self, params): """Filter unsupported values""" if self.field not in params: return None else: return [ int(choice) for choice in params[self.field].split(",") if choice in self.choices.values and choice.isdigit() ] def key_filter(key_: str): class DynamicFilter(BaseKeyFilter): key = key_ return DynamicFilter def choices_filter(choices_: Type[Choices], field_: str) -> Type[BaseChoicesFilter]: class DynamicFilter(BaseChoicesFilter): choices = choices_ field = field_ return DynamicFilter def integer_choices_filter( choices_: IntegerChoices, field_: str ) -> Type[BaseIntegerChoicesFilter]: class DynamicFilter(BaseIntegerChoicesFilter): choices = choices_ field = field_ return DynamicFilter
django_boilerplate/common/drf_helpers/filters.py
from typing import Type import coreapi import coreschema from django.db.models import Choices, IntegerChoices from rest_framework.filters import BaseFilterBackend class BaseKeyFilter(BaseFilterBackend): """Filter by foreign or primary key implementation.""" key: str def _get_pk_parameter(self, params): if self.key not in params: return None else: return [int(key) for key in params[self.key].split(",")] def filter_queryset(self, request, queryset, view): """Parse pk parameter, filter results.""" params = request.query_params filtered_ids = self._get_pk_parameter(params) if filtered_ids is not None: queryset = queryset.filter(**{f"{self.key}__in": filtered_ids}) return queryset def get_schema_fields(self, view): """Return schema for filter parameters.""" return [ coreapi.Field( name=self.key, required=False, location="query", schema=coreschema.String(description=f"filter objects by {self.key}"), ), ] class BaseChoicesFilter(BaseFilterBackend): """Filter by choice field implementation.""" choices: Type[Choices] # allowed choices field: str # choice field def _get_choice_parameter(self, params): """Filter unsupported values""" if self.field not in params: return None else: return [ choice for choice in params[self.field].split(",") if choice in self.choices.values ] def filter_queryset(self, request, queryset, view): """Parse choice field parameter, filter results.""" params = request.query_params filtered_choices = self._get_choice_parameter(params) if filtered_choices is not None: queryset = queryset.filter(**{f"{self.field}__in": filtered_choices}) return queryset def get_schema_fields(self, view): """Return schema for filter parameters.""" return [ coreapi.Field( name=self.field, required=False, location="query", schema=coreschema.String( description=f"filter objects by {self.field}", ), ), ] class BaseIntegerChoicesFilter(BaseChoicesFilter): """Filter by integer choice field implementation.""" choices: IntegerChoices def _get_choice_parameter(self, params): """Filter unsupported values""" if self.field not in params: return None else: return [ int(choice) for choice in params[self.field].split(",") if choice in self.choices.values and choice.isdigit() ] def key_filter(key_: str): class DynamicFilter(BaseKeyFilter): key = key_ return DynamicFilter def choices_filter(choices_: Type[Choices], field_: str) -> Type[BaseChoicesFilter]: class DynamicFilter(BaseChoicesFilter): choices = choices_ field = field_ return DynamicFilter def integer_choices_filter( choices_: IntegerChoices, field_: str ) -> Type[BaseIntegerChoicesFilter]: class DynamicFilter(BaseIntegerChoicesFilter): choices = choices_ field = field_ return DynamicFilter
0.845017
0.206844
import re from typing import List from bs4 import BeautifulSoup from ...orders.pending.models import PendingOrder from ...utils.input import InputHelper def parse_pending_orders(account_id: int, pending_orders_html: str) -> List[PendingOrder]: pending_orders = [] soup = BeautifulSoup(pending_orders_html, 'html.parser') pending_orders_table = soup.select_one('table[summary="Your current pending orders"]') if pending_orders_table is None: return pending_orders # Order date Code Quantity Stock Order type Limit price Status Cancel header_rows = pending_orders_table.select("thead > tr > th") if len(header_rows) != 8: raise Exception( f"Unexpected number of header rows({len(header_rows)}), see HTML for more details", pending_orders_table.text) row_data = [] table_rows = pending_orders_table.select("tbody > tr") for table_row in table_rows: row_cells = table_row.select("td") if len(row_cells) != 8: raise Exception(f"Unexpected number of cells({len(row_cells)}), see HTML for more details", pending_orders_table.text) cell_data = {} for col_index in range(len(header_rows)): item_key = header_rows[col_index].get_text(strip=True, separator=' ') if item_key == 'Cancel': cancel_button = row_cells[col_index].select_one('button') item_value = re.findall("value='(\\d*)'", cancel_button.attrs['onclick'])[0] else: item_value = row_cells[col_index].get_text(strip=True, separator=' ') cell_data[item_key] = item_value row_data.append(cell_data) for row in row_data: order_id = InputHelper.parse_int(row['Cancel']) order_date = InputHelper.parse_date(input_txt=row['Order date'], date_format='%d/%m/%y') trade_type = str(pending_orders_table.select_one(f"input[name='{order_id}_trade_type[]']").attrs['value']) sedol_code = str(pending_orders_table.select_one(f"input[name='{order_id}_sedol[]']").attrs['value']) stock_title = str(pending_orders_table.select_one(f"input[name='{order_id}_stoktitle[]']").attrs['value']) quantity = InputHelper.parse_float( pending_orders_table.select_one(f"input[name='{order_id}_quantity[]']").attrs['value']) qty_is_money = InputHelper.parse_bool( pending_orders_table.select_one(f"input[name='{order_id}_qty_is_money[]']").attrs['value']) limit_price = InputHelper.parse_float(row['Limit price'], default_empty=None, empty_values=['', '-']) status = str(row['Status']) pending_order = PendingOrder( account_id=account_id, order_id=order_id, order_date=order_date, trade_type=trade_type, sedol_code=sedol_code, stock_title=stock_title, quantity=quantity, qty_is_money=qty_is_money, limit_price=limit_price, status=status ) pending_orders.append(pending_order) return pending_orders
hargreaves/orders/pending/parsers.py
import re from typing import List from bs4 import BeautifulSoup from ...orders.pending.models import PendingOrder from ...utils.input import InputHelper def parse_pending_orders(account_id: int, pending_orders_html: str) -> List[PendingOrder]: pending_orders = [] soup = BeautifulSoup(pending_orders_html, 'html.parser') pending_orders_table = soup.select_one('table[summary="Your current pending orders"]') if pending_orders_table is None: return pending_orders # Order date Code Quantity Stock Order type Limit price Status Cancel header_rows = pending_orders_table.select("thead > tr > th") if len(header_rows) != 8: raise Exception( f"Unexpected number of header rows({len(header_rows)}), see HTML for more details", pending_orders_table.text) row_data = [] table_rows = pending_orders_table.select("tbody > tr") for table_row in table_rows: row_cells = table_row.select("td") if len(row_cells) != 8: raise Exception(f"Unexpected number of cells({len(row_cells)}), see HTML for more details", pending_orders_table.text) cell_data = {} for col_index in range(len(header_rows)): item_key = header_rows[col_index].get_text(strip=True, separator=' ') if item_key == 'Cancel': cancel_button = row_cells[col_index].select_one('button') item_value = re.findall("value='(\\d*)'", cancel_button.attrs['onclick'])[0] else: item_value = row_cells[col_index].get_text(strip=True, separator=' ') cell_data[item_key] = item_value row_data.append(cell_data) for row in row_data: order_id = InputHelper.parse_int(row['Cancel']) order_date = InputHelper.parse_date(input_txt=row['Order date'], date_format='%d/%m/%y') trade_type = str(pending_orders_table.select_one(f"input[name='{order_id}_trade_type[]']").attrs['value']) sedol_code = str(pending_orders_table.select_one(f"input[name='{order_id}_sedol[]']").attrs['value']) stock_title = str(pending_orders_table.select_one(f"input[name='{order_id}_stoktitle[]']").attrs['value']) quantity = InputHelper.parse_float( pending_orders_table.select_one(f"input[name='{order_id}_quantity[]']").attrs['value']) qty_is_money = InputHelper.parse_bool( pending_orders_table.select_one(f"input[name='{order_id}_qty_is_money[]']").attrs['value']) limit_price = InputHelper.parse_float(row['Limit price'], default_empty=None, empty_values=['', '-']) status = str(row['Status']) pending_order = PendingOrder( account_id=account_id, order_id=order_id, order_date=order_date, trade_type=trade_type, sedol_code=sedol_code, stock_title=stock_title, quantity=quantity, qty_is_money=qty_is_money, limit_price=limit_price, status=status ) pending_orders.append(pending_order) return pending_orders
0.404743
0.144873
from __future__ import absolute_import, print_function from glob import glob from friedrich.lightcurve import (LightCurve, generate_lc_depth, kepler17_params_db) from friedrich.fitting import peak_finder, summed_gaussians, gaussian import matplotlib.pyplot as plt import numpy as np from astropy.utils.console import ProgressBar # Settings: plots = True light_curve_paths = glob('/Users/bmmorris/data/kepler17/*slc.fits') depth = 0.13031**2 kepler17_params = kepler17_params_db() # Construct light curve object from the raw data whole_lc = LightCurve.from_raw_fits(light_curve_paths, name='Kepler17') transits = LightCurve(**whole_lc.mask_out_of_transit(kepler17_params) ).get_transit_light_curves(kepler17_params) delta_chi2 = {} with ProgressBar(len(transits)) as bar: for i, lc in enumerate(transits): # Remove linear out-of-transit trend from transit lc.remove_linear_baseline(kepler17_params) # Subtract out a transit model transit_model = generate_lc_depth(lc.times_jd, depth, kepler17_params) residuals = lc.fluxes - transit_model # Find peaks in the light curve residuals best_fit_params = peak_finder(lc.times.jd, residuals, lc.errors, kepler17_params) best_fit_gaussian_model = summed_gaussians(lc.times.jd, best_fit_params) # Measure delta chi^2 chi2_transit = np.sum((lc.fluxes - transit_model)**2 / lc.errors**2)/len(lc.fluxes) if best_fit_params is not None: split_input_parameters = np.split(np.array(best_fit_params), len(best_fit_params)/3) delta_chi2[i] = [] for amplitude, t0, sigma in split_input_parameters: model_i = gaussian(lc.times.jd, amplitude, t0, sigma) chi2_bumps = np.sum((lc.fluxes - transit_model - model_i)**2 / lc.errors**2)/len(lc.fluxes) delta_chi2[i].append(np.abs(chi2_transit - chi2_bumps)) if plots: fig, ax = plt.subplots(3, 1, figsize=(8, 14), sharex=True) ax[0].errorbar(lc.times.jd, lc.fluxes, lc.errors, fmt='.', color='k') ax[0].plot(lc.times.jd, transit_model, 'r') ax[0].set(ylabel='Flux') ax[1].axhline(0, color='gray', ls='--') ax[1].errorbar(lc.times.jd, lc.fluxes - transit_model, fmt='.', color='k') ax[1].plot(lc.times.jd, best_fit_gaussian_model, color='r') ax[1].set_ylabel('Transit Residuals') ax[2].axhline(0, color='gray', ls='--') ax[2].errorbar(lc.times.jd, lc.fluxes - transit_model - best_fit_gaussian_model, fmt='.', color='k') ax[2].set_ylabel('Gaussian Residuals') ax[2].set_title(r'$Delta \chi^2$ = '+'{0}' .format(delta_chi2[i])) fig.savefig('plots/{0:03d}.png'.format(i)) #plt.show() plt.close() bar.update() all_delta_chi2 = np.concatenate(list(delta_chi2.values())).ravel() fig, ax = plt.subplots(1,figsize=(12, 6)) ax.plot(np.log10(all_delta_chi2), '.') plt.show()
example_k17.py
from __future__ import absolute_import, print_function from glob import glob from friedrich.lightcurve import (LightCurve, generate_lc_depth, kepler17_params_db) from friedrich.fitting import peak_finder, summed_gaussians, gaussian import matplotlib.pyplot as plt import numpy as np from astropy.utils.console import ProgressBar # Settings: plots = True light_curve_paths = glob('/Users/bmmorris/data/kepler17/*slc.fits') depth = 0.13031**2 kepler17_params = kepler17_params_db() # Construct light curve object from the raw data whole_lc = LightCurve.from_raw_fits(light_curve_paths, name='Kepler17') transits = LightCurve(**whole_lc.mask_out_of_transit(kepler17_params) ).get_transit_light_curves(kepler17_params) delta_chi2 = {} with ProgressBar(len(transits)) as bar: for i, lc in enumerate(transits): # Remove linear out-of-transit trend from transit lc.remove_linear_baseline(kepler17_params) # Subtract out a transit model transit_model = generate_lc_depth(lc.times_jd, depth, kepler17_params) residuals = lc.fluxes - transit_model # Find peaks in the light curve residuals best_fit_params = peak_finder(lc.times.jd, residuals, lc.errors, kepler17_params) best_fit_gaussian_model = summed_gaussians(lc.times.jd, best_fit_params) # Measure delta chi^2 chi2_transit = np.sum((lc.fluxes - transit_model)**2 / lc.errors**2)/len(lc.fluxes) if best_fit_params is not None: split_input_parameters = np.split(np.array(best_fit_params), len(best_fit_params)/3) delta_chi2[i] = [] for amplitude, t0, sigma in split_input_parameters: model_i = gaussian(lc.times.jd, amplitude, t0, sigma) chi2_bumps = np.sum((lc.fluxes - transit_model - model_i)**2 / lc.errors**2)/len(lc.fluxes) delta_chi2[i].append(np.abs(chi2_transit - chi2_bumps)) if plots: fig, ax = plt.subplots(3, 1, figsize=(8, 14), sharex=True) ax[0].errorbar(lc.times.jd, lc.fluxes, lc.errors, fmt='.', color='k') ax[0].plot(lc.times.jd, transit_model, 'r') ax[0].set(ylabel='Flux') ax[1].axhline(0, color='gray', ls='--') ax[1].errorbar(lc.times.jd, lc.fluxes - transit_model, fmt='.', color='k') ax[1].plot(lc.times.jd, best_fit_gaussian_model, color='r') ax[1].set_ylabel('Transit Residuals') ax[2].axhline(0, color='gray', ls='--') ax[2].errorbar(lc.times.jd, lc.fluxes - transit_model - best_fit_gaussian_model, fmt='.', color='k') ax[2].set_ylabel('Gaussian Residuals') ax[2].set_title(r'$Delta \chi^2$ = '+'{0}' .format(delta_chi2[i])) fig.savefig('plots/{0:03d}.png'.format(i)) #plt.show() plt.close() bar.update() all_delta_chi2 = np.concatenate(list(delta_chi2.values())).ravel() fig, ax = plt.subplots(1,figsize=(12, 6)) ax.plot(np.log10(all_delta_chi2), '.') plt.show()
0.769946
0.354517
from typing import Optional, Sequence import numpy as np from fastmri.data.subsample import MaskFunc, RandomMaskFunc def create_mask_for_mask_type( mask_type_str: str, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool, ) -> MaskFunc: """ Creates a mask of the specified type. Args: center_fractions: What fraction of the center of k-space to include. accelerations: What accelerations to apply. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. Returns: A mask func for the target mask type. """ if mask_type_str == "random": return RandomMaskFunc(center_fractions, accelerations) elif mask_type_str == "adaptive_equispaced_fraction": return EquispacedMaskFractionFunc( center_fractions, accelerations, skip_low_freqs ) else: raise ValueError(f"{mask_type_str} not supported") class EquispacedMaskFractionFunc(MaskFunc): """ Equispaced mask with strictly exact acceleration matching. The mask selects a subset of columns from the input k-space data. If the k-space data has N columns, the mask picks out: 1. N_low_freqs = (N * center_fraction) columns in the center corresponding to low-frequencies. 2. The other columns are selected with equal spacing at a proportion that reaches the desired acceleration rate taking into consideration the number of low frequencies. This ensures that the expected number of columns selected is equal to (N / acceleration) It is possible to use multiple center_fractions and accelerations, in which case one possible (center_fraction, acceleration) is chosen uniformly at random each time the EquispacedMaskFunc object is called. Note that this function may not give equispaced samples (documented in https://github.com/facebookresearch/fastMRI/issues/54), which will require modifications to standard GRAPPA approaches. Nonetheless, this aspect of the function has been preserved to match the public multicoil data. """ def __init__( self, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool = False, ): """ Args: center_fractions: Fraction of low-frequency columns to be retained. If multiple values are provided, then one of these numbers is chosen uniformly each time. accelerations: Amount of under-sampling. This should have the same length as center_fractions. If multiple values are provided, then one of these is chosen uniformly each time. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. """ super().__init__(center_fractions, accelerations) self.skip_low_freqs = skip_low_freqs def calculate_acceleration_mask( self, num_cols: int, acceleration: int, offset: Optional[int], num_low_frequencies: int, ) -> np.ndarray: """ Produce mask for non-central acceleration lines. Args: num_cols: Number of columns of k-space (2D subsampling). acceleration: Desired acceleration rate. offset: Offset from 0 to begin masking. If no offset is specified, then one is selected randomly. num_low_frequencies: Number of low frequencies. Used to adjust mask to exactly match the target acceleration. Returns: A mask for the high spatial frequencies of k-space. """ mask = np.zeros(num_cols) pad = (num_cols - num_low_frequencies + 1) // 2 # determine acceleration rate by adjusting for the number of low frequencies adjusted_accel = (acceleration * (num_low_frequencies - num_cols)) / ( num_low_frequencies * acceleration - num_cols ) offset = self.rng.randint(0, round(adjusted_accel) - 1) # Select samples from the remaining columns accel_samples = np.arange( offset, num_cols - num_low_frequencies - 1, adjusted_accel ) accel_samples = np.around(accel_samples).astype(int) skip = ( num_low_frequencies # Skip low freq AND optionally lines right next to it ) for sample in accel_samples: if sample < pad: mask[sample] = True else: # sample is further than center, so skip low_freqs mask[int(sample + skip)] = True return mask
fastmri_examples/adaptive_varnet/subsample.py
from typing import Optional, Sequence import numpy as np from fastmri.data.subsample import MaskFunc, RandomMaskFunc def create_mask_for_mask_type( mask_type_str: str, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool, ) -> MaskFunc: """ Creates a mask of the specified type. Args: center_fractions: What fraction of the center of k-space to include. accelerations: What accelerations to apply. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. Returns: A mask func for the target mask type. """ if mask_type_str == "random": return RandomMaskFunc(center_fractions, accelerations) elif mask_type_str == "adaptive_equispaced_fraction": return EquispacedMaskFractionFunc( center_fractions, accelerations, skip_low_freqs ) else: raise ValueError(f"{mask_type_str} not supported") class EquispacedMaskFractionFunc(MaskFunc): """ Equispaced mask with strictly exact acceleration matching. The mask selects a subset of columns from the input k-space data. If the k-space data has N columns, the mask picks out: 1. N_low_freqs = (N * center_fraction) columns in the center corresponding to low-frequencies. 2. The other columns are selected with equal spacing at a proportion that reaches the desired acceleration rate taking into consideration the number of low frequencies. This ensures that the expected number of columns selected is equal to (N / acceleration) It is possible to use multiple center_fractions and accelerations, in which case one possible (center_fraction, acceleration) is chosen uniformly at random each time the EquispacedMaskFunc object is called. Note that this function may not give equispaced samples (documented in https://github.com/facebookresearch/fastMRI/issues/54), which will require modifications to standard GRAPPA approaches. Nonetheless, this aspect of the function has been preserved to match the public multicoil data. """ def __init__( self, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool = False, ): """ Args: center_fractions: Fraction of low-frequency columns to be retained. If multiple values are provided, then one of these numbers is chosen uniformly each time. accelerations: Amount of under-sampling. This should have the same length as center_fractions. If multiple values are provided, then one of these is chosen uniformly each time. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. """ super().__init__(center_fractions, accelerations) self.skip_low_freqs = skip_low_freqs def calculate_acceleration_mask( self, num_cols: int, acceleration: int, offset: Optional[int], num_low_frequencies: int, ) -> np.ndarray: """ Produce mask for non-central acceleration lines. Args: num_cols: Number of columns of k-space (2D subsampling). acceleration: Desired acceleration rate. offset: Offset from 0 to begin masking. If no offset is specified, then one is selected randomly. num_low_frequencies: Number of low frequencies. Used to adjust mask to exactly match the target acceleration. Returns: A mask for the high spatial frequencies of k-space. """ mask = np.zeros(num_cols) pad = (num_cols - num_low_frequencies + 1) // 2 # determine acceleration rate by adjusting for the number of low frequencies adjusted_accel = (acceleration * (num_low_frequencies - num_cols)) / ( num_low_frequencies * acceleration - num_cols ) offset = self.rng.randint(0, round(adjusted_accel) - 1) # Select samples from the remaining columns accel_samples = np.arange( offset, num_cols - num_low_frequencies - 1, adjusted_accel ) accel_samples = np.around(accel_samples).astype(int) skip = ( num_low_frequencies # Skip low freq AND optionally lines right next to it ) for sample in accel_samples: if sample < pad: mask[sample] = True else: # sample is further than center, so skip low_freqs mask[int(sample + skip)] = True return mask
0.980243
0.831554
from selenium import webdriver from keyboard import press from selenium.webdriver.common.keys import Keys import time import pandas as pd import keyboard import random pause_pt =False # setpause value to false def pause_func(): #function to stop loop global pause_pt pause_pt = True #set pause value to true data = pd.read_csv("ids.csv",names=['B']) #reading the csv file which contains the facebook ids(B column) ids_targets= data.B.tolist() #alternatively you can make a list of targets = [18882121112,12232442423..] print(ids_targets) x = "facebook_email" y = "facebook_password" driver = webdriver.Chrome() driver.get('https://www.facebook.com/') email = driver.find_element_by_css_selector("input[name=email]") email.send_keys(x) password = driver.find_element_by_css_selector("input[name=pass]") password.send_keys(y) login_button = driver.find_element_by_css_selector("input[type=submit]") login_button.click() id_dom = ["js_f","js_g","js_h","js_i", "js_j", "js_k","js_l","js_m","js_n","js_o","js_p","js_q","js_r", "js_s","js_t","js_u","js_v","js_w","js_x","js_y","js_z","js_a","js_b","js_c","js_d","js_e","js_1","js_2","js_3", "js_4","js_5","js_6","js_7","js_8","js_9","js_10","js_0", ] # list of ids to iterate # id of message box in messanger changes over requests number = 1 text = "your message" for id_target in ids_targets: msg_url ='https://www.facebook.com/messages/t/' + id_target keyboard.add_hotkey("ctrl+alt", lambda: pause_func()) #calling pause_func by clicking "ctrl+alt" if pause_pt == True: #it will break the loop break try: driver.get(msg_url) driver.implicitly_wait(5) msg = driver.find_element_by_css_selector('div._kmc._7kpg.navigationFocus') #finding the element of msg_box of class "_kmc _7kpg navigationFocus" for id_logic in id_dom: #iterating over ids of the msg_box since it changes everytime / most of the time try: msg_text = msg.find_element_by_id(id_logic) #finding the element of the msg for letters in text: msg_text.send_keys(letters) #sending each letter of the target msg time.sleep(random.uniform(0.1, 0.3)) #sending each letter at a time span to slow down the speed of typing msg_text.send_keys(Keys.ENTER) ids_targets.remove(id_target) #remove the id if msg is sent print("msg sent to\t",id_target) break except: print("error with\t",id_logic) except: print("Skiping") print(number,"-----------------------------------------Msg_automate_kaux---------------------------------------------") number+=1 time.sleep(random.uniform(3.2,4.5)) #sleeping after sending a msg pd.DataFrame(ids_targets).to_csv("ids.csv",mode='w') #saving the remaining facebook_ids
msg_automation.py
from selenium import webdriver from keyboard import press from selenium.webdriver.common.keys import Keys import time import pandas as pd import keyboard import random pause_pt =False # setpause value to false def pause_func(): #function to stop loop global pause_pt pause_pt = True #set pause value to true data = pd.read_csv("ids.csv",names=['B']) #reading the csv file which contains the facebook ids(B column) ids_targets= data.B.tolist() #alternatively you can make a list of targets = [18882121112,12232442423..] print(ids_targets) x = "facebook_email" y = "facebook_password" driver = webdriver.Chrome() driver.get('https://www.facebook.com/') email = driver.find_element_by_css_selector("input[name=email]") email.send_keys(x) password = driver.find_element_by_css_selector("input[name=pass]") password.send_keys(y) login_button = driver.find_element_by_css_selector("input[type=submit]") login_button.click() id_dom = ["js_f","js_g","js_h","js_i", "js_j", "js_k","js_l","js_m","js_n","js_o","js_p","js_q","js_r", "js_s","js_t","js_u","js_v","js_w","js_x","js_y","js_z","js_a","js_b","js_c","js_d","js_e","js_1","js_2","js_3", "js_4","js_5","js_6","js_7","js_8","js_9","js_10","js_0", ] # list of ids to iterate # id of message box in messanger changes over requests number = 1 text = "your message" for id_target in ids_targets: msg_url ='https://www.facebook.com/messages/t/' + id_target keyboard.add_hotkey("ctrl+alt", lambda: pause_func()) #calling pause_func by clicking "ctrl+alt" if pause_pt == True: #it will break the loop break try: driver.get(msg_url) driver.implicitly_wait(5) msg = driver.find_element_by_css_selector('div._kmc._7kpg.navigationFocus') #finding the element of msg_box of class "_kmc _7kpg navigationFocus" for id_logic in id_dom: #iterating over ids of the msg_box since it changes everytime / most of the time try: msg_text = msg.find_element_by_id(id_logic) #finding the element of the msg for letters in text: msg_text.send_keys(letters) #sending each letter of the target msg time.sleep(random.uniform(0.1, 0.3)) #sending each letter at a time span to slow down the speed of typing msg_text.send_keys(Keys.ENTER) ids_targets.remove(id_target) #remove the id if msg is sent print("msg sent to\t",id_target) break except: print("error with\t",id_logic) except: print("Skiping") print(number,"-----------------------------------------Msg_automate_kaux---------------------------------------------") number+=1 time.sleep(random.uniform(3.2,4.5)) #sleeping after sending a msg pd.DataFrame(ids_targets).to_csv("ids.csv",mode='w') #saving the remaining facebook_ids
0.165762
0.056288
from __future__ import absolute_import import six from django.core import mail from sentry.mail.actions import ActionTargetType, NotifyEmailAction, NotifyEmailForm from sentry.models import OrganizationMember, OrganizationMemberTeam, Rule from sentry.testutils import TestCase from sentry.testutils.cases import RuleTestCase from sentry.tasks.post_process import post_process_group from sentry.testutils.helpers.datetime import iso_format, before_now class NotifyEmailFormTest(TestCase): TARGET_TYPE_KEY = "targetType" TARGET_IDENTIFIER_KEY = "targetIdentifier" def setUp(self): super(NotifyEmailFormTest, self).setUp() self.user = self.create_user(email="<EMAIL>", is_active=True) self.user2 = self.create_user(email="<EMAIL>", is_active=True) self.inactive_user = self.create_user(email="<EMAIL>", is_active=False) organization = self.create_organization(owner=self.user) self.team = self.create_team(organization=organization) self.team_not_in_project = self.create_team(organization=organization) self.project = self.create_project(name="Test", teams=[self.team]) OrganizationMemberTeam.objects.create( organizationmember=OrganizationMember.objects.get( user=self.user, organization=organization ), team=self.team, ) self.create_member(user=self.user2, organization=organization, teams=[self.team]) self.create_member( user=self.inactive_user, organization=organization, teams=[self.team, self.team_not_in_project], ) def form_from_json(self, json): return NotifyEmailForm(self.project, json) def form_from_values(self, target_type_value, target_id=None): json = {self.TARGET_TYPE_KEY: target_type_value} if target_id: json[self.TARGET_IDENTIFIER_KEY] = target_id return self.form_from_json(json) def test_validate_empty_fail(self): form = self.form_from_json({}) assert not form.is_valid() def test_validate_none_fail(self): form = self.form_from_json(None) assert not form.is_valid() def test_validate_malformed_json_fail(self): form = self.form_from_json({"notTheRightK3yName": ActionTargetType.ISSUE_OWNERS.value}) assert not form.is_valid() def test_validate_invalid_target_type_fail(self): form = self.form_from_values("TheLegend27") assert not form.is_valid() def test_validate_issue_owners(self): form = self.form_from_values(ActionTargetType.ISSUE_OWNERS.value) assert form.is_valid() def test_validate_team(self): form = self.form_from_values(ActionTargetType.TEAM.value, self.team.id) assert form.is_valid() def test_validate_team_not_in_project_fail(self): form = self.form_from_values(ActionTargetType.TEAM.value, self.team_not_in_project.id) assert not form.is_valid() def test_validate_user(self): for u in [self.user, self.user2]: form = self.form_from_values(ActionTargetType.MEMBER.value, u.id) assert form.is_valid() def test_validate_inactive_user_fail(self): form = self.form_from_values(ActionTargetType.MEMBER.value, self.inactive_user) assert not form.is_valid() def test_none_target_identifier(self): json = {self.TARGET_TYPE_KEY: ActionTargetType.ISSUE_OWNERS.value} json[self.TARGET_IDENTIFIER_KEY] = "None" form = self.form_from_json(json) assert form.is_valid() class NotifyEmailTest(RuleTestCase): rule_cls = NotifyEmailAction def test_simple(self): event = self.get_event() rule = self.get_rule() results = list(rule.after(event=event, state=self.get_state())) assert len(results) == 1 def test_full_integration(self): one_min_ago = iso_format(before_now(minutes=1)) event = self.store_event( data={ "message": "hello", "exception": {"type": "Foo", "value": "uh oh"}, "level": "error", "timestamp": one_min_ago, }, project_id=self.project.id, assert_no_errors=False, ) action_data = { "id": "sentry.mail.actions.NotifyEmailAction", "targetType": "Member", "targetIdentifier": six.text_type(self.user.id), } condition_data = {"id": "sentry.rules.conditions.first_seen_event.FirstSeenEventCondition"} Rule.objects.filter(project=event.project).delete() Rule.objects.create( project=event.project, data={"conditions": [condition_data], "actions": [action_data]} ) with self.tasks(): post_process_group( event=event, is_new=True, is_regression=False, is_new_group_environment=False ) assert len(mail.outbox) == 1 sent = mail.outbox[0] assert sent.to == [self.user.email] assert "uh oh" in sent.subject
tests/sentry/mail/test_actions.py
from __future__ import absolute_import import six from django.core import mail from sentry.mail.actions import ActionTargetType, NotifyEmailAction, NotifyEmailForm from sentry.models import OrganizationMember, OrganizationMemberTeam, Rule from sentry.testutils import TestCase from sentry.testutils.cases import RuleTestCase from sentry.tasks.post_process import post_process_group from sentry.testutils.helpers.datetime import iso_format, before_now class NotifyEmailFormTest(TestCase): TARGET_TYPE_KEY = "targetType" TARGET_IDENTIFIER_KEY = "targetIdentifier" def setUp(self): super(NotifyEmailFormTest, self).setUp() self.user = self.create_user(email="<EMAIL>", is_active=True) self.user2 = self.create_user(email="<EMAIL>", is_active=True) self.inactive_user = self.create_user(email="<EMAIL>", is_active=False) organization = self.create_organization(owner=self.user) self.team = self.create_team(organization=organization) self.team_not_in_project = self.create_team(organization=organization) self.project = self.create_project(name="Test", teams=[self.team]) OrganizationMemberTeam.objects.create( organizationmember=OrganizationMember.objects.get( user=self.user, organization=organization ), team=self.team, ) self.create_member(user=self.user2, organization=organization, teams=[self.team]) self.create_member( user=self.inactive_user, organization=organization, teams=[self.team, self.team_not_in_project], ) def form_from_json(self, json): return NotifyEmailForm(self.project, json) def form_from_values(self, target_type_value, target_id=None): json = {self.TARGET_TYPE_KEY: target_type_value} if target_id: json[self.TARGET_IDENTIFIER_KEY] = target_id return self.form_from_json(json) def test_validate_empty_fail(self): form = self.form_from_json({}) assert not form.is_valid() def test_validate_none_fail(self): form = self.form_from_json(None) assert not form.is_valid() def test_validate_malformed_json_fail(self): form = self.form_from_json({"notTheRightK3yName": ActionTargetType.ISSUE_OWNERS.value}) assert not form.is_valid() def test_validate_invalid_target_type_fail(self): form = self.form_from_values("TheLegend27") assert not form.is_valid() def test_validate_issue_owners(self): form = self.form_from_values(ActionTargetType.ISSUE_OWNERS.value) assert form.is_valid() def test_validate_team(self): form = self.form_from_values(ActionTargetType.TEAM.value, self.team.id) assert form.is_valid() def test_validate_team_not_in_project_fail(self): form = self.form_from_values(ActionTargetType.TEAM.value, self.team_not_in_project.id) assert not form.is_valid() def test_validate_user(self): for u in [self.user, self.user2]: form = self.form_from_values(ActionTargetType.MEMBER.value, u.id) assert form.is_valid() def test_validate_inactive_user_fail(self): form = self.form_from_values(ActionTargetType.MEMBER.value, self.inactive_user) assert not form.is_valid() def test_none_target_identifier(self): json = {self.TARGET_TYPE_KEY: ActionTargetType.ISSUE_OWNERS.value} json[self.TARGET_IDENTIFIER_KEY] = "None" form = self.form_from_json(json) assert form.is_valid() class NotifyEmailTest(RuleTestCase): rule_cls = NotifyEmailAction def test_simple(self): event = self.get_event() rule = self.get_rule() results = list(rule.after(event=event, state=self.get_state())) assert len(results) == 1 def test_full_integration(self): one_min_ago = iso_format(before_now(minutes=1)) event = self.store_event( data={ "message": "hello", "exception": {"type": "Foo", "value": "uh oh"}, "level": "error", "timestamp": one_min_ago, }, project_id=self.project.id, assert_no_errors=False, ) action_data = { "id": "sentry.mail.actions.NotifyEmailAction", "targetType": "Member", "targetIdentifier": six.text_type(self.user.id), } condition_data = {"id": "sentry.rules.conditions.first_seen_event.FirstSeenEventCondition"} Rule.objects.filter(project=event.project).delete() Rule.objects.create( project=event.project, data={"conditions": [condition_data], "actions": [action_data]} ) with self.tasks(): post_process_group( event=event, is_new=True, is_regression=False, is_new_group_environment=False ) assert len(mail.outbox) == 1 sent = mail.outbox[0] assert sent.to == [self.user.email] assert "uh oh" in sent.subject
0.44071
0.275501
# template for calling functions in another file def print_function(): print("I'm in another file :)") def while_loop(max_number=10): my_list = [] i = 1 while i <= max_number: my_list.append(i) i += 1 print(my_list) def while_loop2(neg_number): my_list1 = [] i = 1 while i >= neg_number: my_list1.append(i) i -= 1 print(my_list1) def while_loop3(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum = accum + w my_list.append(accum) print(my_list) def while_loop4(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum =def while_loop3(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum = accum + w accum + w if i < -12 or i > 12: break my_list.append(accum) print(my_list) '''def while_loop5(max_number, even): my_list = [] i = 1 while i <= max_number: my_list.append(i) i += 1 accum = 0 for w in my_list: accum = accum + w if i < -12 or i > 12: break elif i % 2 == 0: i += 1 continue my_list.append(accum) print(my_list) ''' def while_loop5(max_number=10, even=False): my_list = [] accum = 0 i = 1 if max_number < 0: while i >= max_number: if even and i % 2 == 1: i -= 1 continue my_list.append(i) accum -= i i -= 1 if i < -12: break else: while i <= max_number: if even and i % 2 == 1: i += 1 continue my_list.append(i) accum += i i += 1 if i > 12: break my_list.append(accum) print(my_list) def while_loop6(max_number=10, even=False, boolean="False"): my_list = [] accum = 0 factorial = 1 i = 1 if max_number < 0: while i >= max_number: if even and i % 2 == 1: i -= 1 continue my_list.append(i) accum -= i i -= 1 if i < -12: break elif max_number > 0: while i <= max_number: my_list = my_list + [i] factorial = factorial * i accum += i i += 1 if i > 12: break else: while i <= max_number: if even and i % 2 == 1: i += 1 continue my_list.append(i) accum += i i += 1 if i > 12: break my_list.append(accum) my_list.append(factorial) print(my_list)
Lab5/functions.py
# template for calling functions in another file def print_function(): print("I'm in another file :)") def while_loop(max_number=10): my_list = [] i = 1 while i <= max_number: my_list.append(i) i += 1 print(my_list) def while_loop2(neg_number): my_list1 = [] i = 1 while i >= neg_number: my_list1.append(i) i -= 1 print(my_list1) def while_loop3(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum = accum + w my_list.append(accum) print(my_list) def while_loop4(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum =def while_loop3(max_number): my_list = [] i = 1 while i <= max_number: my_list.append(i) i -= 1 accum = 0 for w in my_list: accum = accum + w accum + w if i < -12 or i > 12: break my_list.append(accum) print(my_list) '''def while_loop5(max_number, even): my_list = [] i = 1 while i <= max_number: my_list.append(i) i += 1 accum = 0 for w in my_list: accum = accum + w if i < -12 or i > 12: break elif i % 2 == 0: i += 1 continue my_list.append(accum) print(my_list) ''' def while_loop5(max_number=10, even=False): my_list = [] accum = 0 i = 1 if max_number < 0: while i >= max_number: if even and i % 2 == 1: i -= 1 continue my_list.append(i) accum -= i i -= 1 if i < -12: break else: while i <= max_number: if even and i % 2 == 1: i += 1 continue my_list.append(i) accum += i i += 1 if i > 12: break my_list.append(accum) print(my_list) def while_loop6(max_number=10, even=False, boolean="False"): my_list = [] accum = 0 factorial = 1 i = 1 if max_number < 0: while i >= max_number: if even and i % 2 == 1: i -= 1 continue my_list.append(i) accum -= i i -= 1 if i < -12: break elif max_number > 0: while i <= max_number: my_list = my_list + [i] factorial = factorial * i accum += i i += 1 if i > 12: break else: while i <= max_number: if even and i % 2 == 1: i += 1 continue my_list.append(i) accum += i i += 1 if i > 12: break my_list.append(accum) my_list.append(factorial) print(my_list)
0.134037
0.182044
import logging import os import sys try: import cPickle as pickle except ImportError: # Python 3.x import pickle import colorlog import numpy as np from PIL import Image logger = logging.getLogger() logger.setLevel(colorlog.colorlog.logging.INFO) handler = colorlog.StreamHandler() handler.setFormatter(colorlog.ColoredFormatter()) logger.addHandler(handler) # logger.debug("Debug message") # logger.info("Information message") # logger.warning("Warning message") # logger.error("Error message") # logger.critical("Critical message") np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(linewidth=10000) script_dir = os.path.dirname(__file__) training_data_dir = os.path.join( script_dir, "histogram_training_images", "sfa", "SKIN", "5" ) # training_data_dir = os.path.join(script_dir, # "histogram_training_images", # "sfa_small_test") hist_output_dir = os.path.join(script_dir, "histogram_data") def img2hists(img_path, hist_rgb={}, hist_hsv={}, total_pixels=0): """Given a Pillow image, return the number of pixels in it, and two dictionaries, containing the histogram data of the image as an RGB file and an HSV file respectively. By default it gives dictionaries for just the current image, but if you want to collect information for a sequence of images you can pass it non-empty dictionaries for hist_rgb and hist_hsv.""" image_array_rgb = np.array(Image.open(img).convert("RGB")) image_array_hsv = np.array(Image.open(img).convert("HSV")) total_pixels += image_array_rgb.shape[0] * image_array_rgb.shape[1] for i in range(0, image_array_rgb.shape[0]): for j in range(0, image_array_rgb.shape[1]): rgb = ( image_array_rgb[i, j, 0], image_array_rgb[i, j, 1], image_array_rgb[i, j, 2], ) hsv = ( image_array_hsv[i, j, 0], image_array_hsv[i, j, 1], image_array_hsv[i, j, 2], ) if rgb in hist_rgb: hist_rgb[rgb] += 1 else: hist_rgb[rgb] = 1 if hsv in hist_hsv: hist_hsv[hsv] += 1 else: hist_hsv[hsv] = 1 return (total_pixels, hist_rgb, hist_hsv) def slice_hist(hist): hist_xy = dict() hist_xz = dict() hist_yz = dict() for key in hist.keys(): if (key[0], key[1]) in hist_xy: hist_xy[(key[0], key[1])] += hist[key] else: hist_xy[(key[0], key[1])] = hist[key] if (key[0], key[2]) in hist_xz: hist_xz[(key[0], key[2])] += hist[key] else: hist_xz[(key[0], key[2])] = hist[key] if (key[1], key[2]) in hist_yz: hist_yz[(key[1], key[2])] += hist[key] else: hist_yz[(key[1], key[2])] = hist[key] logger.debug("XY hist created - {}".format(hist_xy)) logger.debug("XZ hist created - {}".format(hist_xz)) logger.debug("YZ hist created - {}".format(hist_yz)) return (hist_xy, hist_xz, hist_yz) if __name__ == "__main__": # Change this if you want more or fewer logging messages. logger.info("<NAME> - EECS 332, MP 4 - Histogram training module") logger.info("-" * 80) big_total_pixels = 0 big_hist_rgb = {} big_hist_hsv = {} logger.warning( "Constructing un-normalized histograms for directory (this might take a while): {}".format( training_data_dir ) ) for path, subdirs, files in os.walk(training_data_dir): for name in files: img = os.path.join(path, name) logger.debug("Now analyzing {}".format(img)) logger.debug("Constructing individual for {}".format(img)) (img_total_pixels, img_hist_rgb, img_hist_hsv) = img2hists(img) logger.debug("Histogram construction complete for {}".format(img)) logger.debug("Total pixels :: {}".format(img_total_pixels)) logger.debug("RGB individual histogram dict :: {}".format(img_hist_rgb)) logger.debug("HSV individual histogram dict :: {}".format(img_hist_hsv)) logger.debug("Adding to cumulative histogram data for {}".format(img)) (big_total_pixels, big_hist_rgb, big_hist_hsv) = img2hists( img, big_hist_rgb, big_hist_hsv, big_total_pixels ) logger.debug("Histogram construction complete for {}".format(img)) logger.debug("Total cumulative pixels :: {}".format(big_total_pixels)) logger.debug("RGB cumulative histogram dict :: {}".format(big_hist_rgb)) logger.debug("HSV cumulative histogram dict :: {}".format(big_hist_hsv)) logger.debug(" -> File competed: {}".format(img)) logger.info( "Non-normalized histograms have been constructed for directory: {}".format( training_data_dir ) ) logger.info("Constructiong 2-tuple slices of RGB and HSV hists.") (big_hist_rg, big_hist_rb, big_hist_gb) = slice_hist(big_hist_rgb) (big_hist_hs, big_hist_hv, big_hist_sv) = slice_hist(big_hist_hsv) rgb_count_check = 0 for key in big_hist_rgb.keys(): rgb_count_check += big_hist_rgb[key] rg_count_check = 0 for key in big_hist_rg.keys(): rg_count_check += big_hist_rg[key] rb_count_check = 0 for key in big_hist_rb.keys(): rb_count_check += big_hist_rb[key] gb_count_check = 0 for key in big_hist_gb.keys(): gb_count_check += big_hist_gb[key] hs_count_check = 0 for key in big_hist_hs.keys(): hs_count_check += big_hist_hs[key] hv_count_check = 0 for key in big_hist_hv.keys(): hv_count_check += big_hist_hv[key] sv_count_check = 0 for key in big_hist_sv.keys(): sv_count_check += big_hist_sv[key] hsv_count_check = 0 for key in big_hist_hsv.keys(): hsv_count_check += big_hist_hsv[key] try: if ( rgb_count_check != hsv_count_check or rgb_count_check != big_total_pixels or hsv_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("Histogram counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> rgb_count_check = {}".format(rgb_count_check)) logger.warning(" -> hsv_count_check = {}".format(hsv_count_check)) try: if ( hs_count_check != big_total_pixels or hv_count_check != big_total_pixels or sv_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("HSV 2-tuple slice counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> hv_count_check = {}".format(hv_count_check)) logger.warning(" -> hs_count_check = {}".format(hs_count_check)) logger.warning(" -> sv_count_check = {}".format(sv_count_check)) try: if ( rb_count_check != big_total_pixels or rg_count_check != big_total_pixels or gb_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("RGB 2-tuple slice counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> rg_count_check = {}".format(rg_count_check)) logger.warning(" -> rb_count_check = {}".format(rb_count_check)) logger.warning(" -> gb_count_check = {}".format(gb_count_check)) logger.info("Pickling non-normalized histogram dicts with 'size' key added.") big_hist_rgb["size"] = big_total_pixels big_hist_hsv["size"] = big_total_pixels big_hist_rg["size"] = big_total_pixels big_hist_rb["size"] = big_total_pixels big_hist_gb["size"] = big_total_pixels big_hist_hs["size"] = big_total_pixels big_hist_hv["size"] = big_total_pixels big_hist_sv["size"] = big_total_pixels rgb_hist_location = os.path.join(hist_output_dir, "hist_rgb.pickle") hsv_hist_location = os.path.join(hist_output_dir, "hist_hsv.pickle") rg_hist_location = os.path.join(hist_output_dir, "hist_rg.pickle") rb_hist_location = os.path.join(hist_output_dir, "hist_rb.pickle") gb_hist_location = os.path.join(hist_output_dir, "hist_gb.pickle") hs_hist_location = os.path.join(hist_output_dir, "hist_hs.pickle") hv_hist_location = os.path.join(hist_output_dir, "hist_hv.pickle") sv_hist_location = os.path.join(hist_output_dir, "hist_sv.pickle") with open(rgb_hist_location, "wb") as fp: pickle.dump(big_hist_rgb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rgb pickled to {}".format(fp)) with open(hsv_hist_location, "wb") as fp: pickle.dump(big_hist_hsv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hsv pickled to {}".format(fp)) with open(rg_hist_location, "wb") as fp: pickle.dump(big_hist_rg, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rg pickled to {}".format(fp)) with open(rb_hist_location, "wb") as fp: pickle.dump(big_hist_rb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rb pickled to {}".format(fp)) with open(gb_hist_location, "wb") as fp: pickle.dump(big_hist_gb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_gb pickled to {}".format(fp)) with open(hs_hist_location, "wb") as fp: pickle.dump(big_hist_hs, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hs pickled to {}".format(fp)) with open(hv_hist_location, "wb") as fp: pickle.dump(big_hist_hv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hv pickled to {}".format(fp)) with open(sv_hist_location, "wb") as fp: pickle.dump(big_hist_sv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_sv pickled to {}".format(fp)) logger.info("Histogram data for RGB and HSV has been pickled.") logger.warning("Removing 'size' key from histograms.") del big_hist_rgb["size"] del big_hist_hsv["size"] del big_hist_rg["size"] del big_hist_rb["size"] del big_hist_gb["size"] del big_hist_hs["size"] del big_hist_hv["size"] del big_hist_sv["size"]
MP4/mp4_histogram_training.py
import logging import os import sys try: import cPickle as pickle except ImportError: # Python 3.x import pickle import colorlog import numpy as np from PIL import Image logger = logging.getLogger() logger.setLevel(colorlog.colorlog.logging.INFO) handler = colorlog.StreamHandler() handler.setFormatter(colorlog.ColoredFormatter()) logger.addHandler(handler) # logger.debug("Debug message") # logger.info("Information message") # logger.warning("Warning message") # logger.error("Error message") # logger.critical("Critical message") np.set_printoptions(threshold=sys.maxsize) np.set_printoptions(linewidth=10000) script_dir = os.path.dirname(__file__) training_data_dir = os.path.join( script_dir, "histogram_training_images", "sfa", "SKIN", "5" ) # training_data_dir = os.path.join(script_dir, # "histogram_training_images", # "sfa_small_test") hist_output_dir = os.path.join(script_dir, "histogram_data") def img2hists(img_path, hist_rgb={}, hist_hsv={}, total_pixels=0): """Given a Pillow image, return the number of pixels in it, and two dictionaries, containing the histogram data of the image as an RGB file and an HSV file respectively. By default it gives dictionaries for just the current image, but if you want to collect information for a sequence of images you can pass it non-empty dictionaries for hist_rgb and hist_hsv.""" image_array_rgb = np.array(Image.open(img).convert("RGB")) image_array_hsv = np.array(Image.open(img).convert("HSV")) total_pixels += image_array_rgb.shape[0] * image_array_rgb.shape[1] for i in range(0, image_array_rgb.shape[0]): for j in range(0, image_array_rgb.shape[1]): rgb = ( image_array_rgb[i, j, 0], image_array_rgb[i, j, 1], image_array_rgb[i, j, 2], ) hsv = ( image_array_hsv[i, j, 0], image_array_hsv[i, j, 1], image_array_hsv[i, j, 2], ) if rgb in hist_rgb: hist_rgb[rgb] += 1 else: hist_rgb[rgb] = 1 if hsv in hist_hsv: hist_hsv[hsv] += 1 else: hist_hsv[hsv] = 1 return (total_pixels, hist_rgb, hist_hsv) def slice_hist(hist): hist_xy = dict() hist_xz = dict() hist_yz = dict() for key in hist.keys(): if (key[0], key[1]) in hist_xy: hist_xy[(key[0], key[1])] += hist[key] else: hist_xy[(key[0], key[1])] = hist[key] if (key[0], key[2]) in hist_xz: hist_xz[(key[0], key[2])] += hist[key] else: hist_xz[(key[0], key[2])] = hist[key] if (key[1], key[2]) in hist_yz: hist_yz[(key[1], key[2])] += hist[key] else: hist_yz[(key[1], key[2])] = hist[key] logger.debug("XY hist created - {}".format(hist_xy)) logger.debug("XZ hist created - {}".format(hist_xz)) logger.debug("YZ hist created - {}".format(hist_yz)) return (hist_xy, hist_xz, hist_yz) if __name__ == "__main__": # Change this if you want more or fewer logging messages. logger.info("<NAME> - EECS 332, MP 4 - Histogram training module") logger.info("-" * 80) big_total_pixels = 0 big_hist_rgb = {} big_hist_hsv = {} logger.warning( "Constructing un-normalized histograms for directory (this might take a while): {}".format( training_data_dir ) ) for path, subdirs, files in os.walk(training_data_dir): for name in files: img = os.path.join(path, name) logger.debug("Now analyzing {}".format(img)) logger.debug("Constructing individual for {}".format(img)) (img_total_pixels, img_hist_rgb, img_hist_hsv) = img2hists(img) logger.debug("Histogram construction complete for {}".format(img)) logger.debug("Total pixels :: {}".format(img_total_pixels)) logger.debug("RGB individual histogram dict :: {}".format(img_hist_rgb)) logger.debug("HSV individual histogram dict :: {}".format(img_hist_hsv)) logger.debug("Adding to cumulative histogram data for {}".format(img)) (big_total_pixels, big_hist_rgb, big_hist_hsv) = img2hists( img, big_hist_rgb, big_hist_hsv, big_total_pixels ) logger.debug("Histogram construction complete for {}".format(img)) logger.debug("Total cumulative pixels :: {}".format(big_total_pixels)) logger.debug("RGB cumulative histogram dict :: {}".format(big_hist_rgb)) logger.debug("HSV cumulative histogram dict :: {}".format(big_hist_hsv)) logger.debug(" -> File competed: {}".format(img)) logger.info( "Non-normalized histograms have been constructed for directory: {}".format( training_data_dir ) ) logger.info("Constructiong 2-tuple slices of RGB and HSV hists.") (big_hist_rg, big_hist_rb, big_hist_gb) = slice_hist(big_hist_rgb) (big_hist_hs, big_hist_hv, big_hist_sv) = slice_hist(big_hist_hsv) rgb_count_check = 0 for key in big_hist_rgb.keys(): rgb_count_check += big_hist_rgb[key] rg_count_check = 0 for key in big_hist_rg.keys(): rg_count_check += big_hist_rg[key] rb_count_check = 0 for key in big_hist_rb.keys(): rb_count_check += big_hist_rb[key] gb_count_check = 0 for key in big_hist_gb.keys(): gb_count_check += big_hist_gb[key] hs_count_check = 0 for key in big_hist_hs.keys(): hs_count_check += big_hist_hs[key] hv_count_check = 0 for key in big_hist_hv.keys(): hv_count_check += big_hist_hv[key] sv_count_check = 0 for key in big_hist_sv.keys(): sv_count_check += big_hist_sv[key] hsv_count_check = 0 for key in big_hist_hsv.keys(): hsv_count_check += big_hist_hsv[key] try: if ( rgb_count_check != hsv_count_check or rgb_count_check != big_total_pixels or hsv_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("Histogram counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> rgb_count_check = {}".format(rgb_count_check)) logger.warning(" -> hsv_count_check = {}".format(hsv_count_check)) try: if ( hs_count_check != big_total_pixels or hv_count_check != big_total_pixels or sv_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("HSV 2-tuple slice counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> hv_count_check = {}".format(hv_count_check)) logger.warning(" -> hs_count_check = {}".format(hs_count_check)) logger.warning(" -> sv_count_check = {}".format(sv_count_check)) try: if ( rb_count_check != big_total_pixels or rg_count_check != big_total_pixels or gb_count_check != big_total_pixels ): raise ValueError except ValueError: logger.warning("RGB 2-tuple slice counts don't match up!") logger.warning(" -> big_total_pixels = {}".format(big_total_pixels)) logger.warning(" -> rg_count_check = {}".format(rg_count_check)) logger.warning(" -> rb_count_check = {}".format(rb_count_check)) logger.warning(" -> gb_count_check = {}".format(gb_count_check)) logger.info("Pickling non-normalized histogram dicts with 'size' key added.") big_hist_rgb["size"] = big_total_pixels big_hist_hsv["size"] = big_total_pixels big_hist_rg["size"] = big_total_pixels big_hist_rb["size"] = big_total_pixels big_hist_gb["size"] = big_total_pixels big_hist_hs["size"] = big_total_pixels big_hist_hv["size"] = big_total_pixels big_hist_sv["size"] = big_total_pixels rgb_hist_location = os.path.join(hist_output_dir, "hist_rgb.pickle") hsv_hist_location = os.path.join(hist_output_dir, "hist_hsv.pickle") rg_hist_location = os.path.join(hist_output_dir, "hist_rg.pickle") rb_hist_location = os.path.join(hist_output_dir, "hist_rb.pickle") gb_hist_location = os.path.join(hist_output_dir, "hist_gb.pickle") hs_hist_location = os.path.join(hist_output_dir, "hist_hs.pickle") hv_hist_location = os.path.join(hist_output_dir, "hist_hv.pickle") sv_hist_location = os.path.join(hist_output_dir, "hist_sv.pickle") with open(rgb_hist_location, "wb") as fp: pickle.dump(big_hist_rgb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rgb pickled to {}".format(fp)) with open(hsv_hist_location, "wb") as fp: pickle.dump(big_hist_hsv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hsv pickled to {}".format(fp)) with open(rg_hist_location, "wb") as fp: pickle.dump(big_hist_rg, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rg pickled to {}".format(fp)) with open(rb_hist_location, "wb") as fp: pickle.dump(big_hist_rb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_rb pickled to {}".format(fp)) with open(gb_hist_location, "wb") as fp: pickle.dump(big_hist_gb, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_gb pickled to {}".format(fp)) with open(hs_hist_location, "wb") as fp: pickle.dump(big_hist_hs, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hs pickled to {}".format(fp)) with open(hv_hist_location, "wb") as fp: pickle.dump(big_hist_hv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_hv pickled to {}".format(fp)) with open(sv_hist_location, "wb") as fp: pickle.dump(big_hist_sv, fp, protocol=pickle.HIGHEST_PROTOCOL) logger.info("big_hist_sv pickled to {}".format(fp)) logger.info("Histogram data for RGB and HSV has been pickled.") logger.warning("Removing 'size' key from histograms.") del big_hist_rgb["size"] del big_hist_hsv["size"] del big_hist_rg["size"] del big_hist_rb["size"] del big_hist_gb["size"] del big_hist_hs["size"] del big_hist_hv["size"] del big_hist_sv["size"]
0.391057
0.209025
import json import logging import uuid from typing import Type, TypeVar from dataclasses import replace from server.engine.action_result import ActionResult from server.engine.ending import Ending from server.engine.location import Location from server.engine.object import AdventureObject, Activateable # Generic variable that can be 'Scenario' or any subclass. T = TypeVar('T', bound='Scenario') class Scenario(): """A text adventure scenario.""" def __init__(self, title: str, greeting: str, starting_location_id: str, **kwargs): self.title: str = title self.greeting: str = greeting self.starting_location_id: str = starting_location_id self.UNKNOWN_ACTION_RESPONSE: str = kwargs.get( 'UNKNOWN_ACTION_RESPONSE', 'You aren\'t so sure about that.') self.game_id: str = kwargs.get('game_id', uuid.uuid4().__str__()) self.all_locations: Dict[str, Location] = {} self.all_objects: Dict[str, AdventureObject] = {} self.all_endings: list[Ending] = [] self.player_inventory: Dict[str, AdventureObject] = {} self.player_location = None self.ended = False def __repr__(self): return f'{self.title}, locs: {self.all_locations} objs: {self.all_objects}, endings: {self.all_endings}' def add_location(self, loc: Location) -> None: """Register a location in the scenario. Args: loc: The location to register. NOTE: The location must have a unique id inside of the scenario. """ if self.all_locations.get(loc.id) is not None: raise RuntimeError('location already exists in scenario') else: self.all_locations[loc.id] = loc def add_object(self, obj: AdventureObject) -> None: """Register a location in the scenario. Args: loc: The location to register. NOTE: The location must have a unique id inside of the scenario. """ if self.all_objects.get(obj.id) is not None: raise RuntimeError('location already exists in scenario') else: self.all_objects[obj.id] = obj def add_ending(self, ending: Ending): self.all_endings.append(ending) def begin(self) -> None: """Begins the scenario. The initialization logic once a Scenario is fully assembled and the AdventureEngine is ready to send the first message to the player. """ logging.debug('SCENARIO CONFIGURATION:') logging.debug( 'all_locations: %s', [location.id for location in self.all_locations.values()]) logging.debug('all_objects: %s', [obj.id for obj in self.all_objects.values()]) if not self.all_locations.get(self.starting_location_id): raise RuntimeError('staring location not found in all_locations') self.player_location = self.all_locations[self.starting_location_id] def move(self, direction: str, **kwargs) -> ActionResult: """Move action handler for the scenario. NOTE: This is the only handler that is called on a MOVE action. """ if direction in self.player_location.exits: target_loc = self.all_locations[ self.player_location.exits[direction]] # Check to see if the location requires any items. if target_loc.requires: for item_id in target_loc.requires: if item_id not in self.player_inventory: return ActionResult( action_text=target_loc.travel_failure) self.player_location = target_loc # After moving, remove any required items. for item_id in target_loc.requires: self.player_inventory.pop(item_id) target_loc.remove_requirement(item_id) # Check to see if the move ends the game. for ending in self.all_endings: if ending.fulfilled(self.player_inventory, self.player_location.id): self.ended = True return ActionResult(adventure_text=ending.message, action_text="") action_text = target_loc.travel_action or f'You travel {direction}.' # Use replace because look also returns a ActionResult. # (And we want the action_text to be either the generic travel text # or the location custom travel_action.) return replace(self.player_location.look(**kwargs), action_text=action_text, push_inventory_update=True) else: return ActionResult(action_text='You cannot go that way.') def serialize(self) -> str: """Transform the current scenario into a data string for storage.""" data = {} data['game_id'] = self.game_id data['title'] = self.title data['greeting'] = self.greeting data['starting_location_id'] = self.starting_location_id data['UNKNOWN_ACTION_RESPONSE'] = self.UNKNOWN_ACTION_RESPONSE data['all_locations'] = [ location.serialize() for location in self.all_locations.values() ] data['all_objects'] = [ obj.serialize() for obj in self.all_objects.values() ] data['player_location'] = self.player_location.serialize( ) if self.player_location else '' data['player_inventory'] = [ obj.serialize() for obj in self.player_inventory.values() ] data['all_endings'] = [ ending.serialize() for ending in self.all_endings ] logging.debug(f'serialize scenario: {self}') return json.dumps(data) @classmethod def deserialize(cls: Type[T], data: str) -> T: """Transform a data string into a loaded scenario.""" loaded = json.loads(data) scenario = cls(**loaded) for obj in loaded['all_objects']: loaded_obj = AdventureObject.deserialize(obj) scenario.all_objects[loaded_obj.id] = loaded_obj for loc in loaded['all_locations']: loaded_loc = Location.deserialize(loc) scenario.all_locations[loaded_loc.id] = loaded_loc player_location = Location.deserialize(loaded['player_location']) if player_location.id not in scenario.all_locations.keys(): raise RuntimeError( 'Player location could not be found in loaded data!') scenario.player_location = scenario.all_locations[player_location.id] for obj in loaded['player_inventory']: loaded_obj = AdventureObject.deserialize(obj) scenario.player_inventory[loaded_obj.id] = loaded_obj for ending in loaded['all_endings']: scenario.add_ending(Ending.deserialize(ending)) logging.debug(f'deserialize scenario: {scenario}') return scenario
server/engine/scenario.py
import json import logging import uuid from typing import Type, TypeVar from dataclasses import replace from server.engine.action_result import ActionResult from server.engine.ending import Ending from server.engine.location import Location from server.engine.object import AdventureObject, Activateable # Generic variable that can be 'Scenario' or any subclass. T = TypeVar('T', bound='Scenario') class Scenario(): """A text adventure scenario.""" def __init__(self, title: str, greeting: str, starting_location_id: str, **kwargs): self.title: str = title self.greeting: str = greeting self.starting_location_id: str = starting_location_id self.UNKNOWN_ACTION_RESPONSE: str = kwargs.get( 'UNKNOWN_ACTION_RESPONSE', 'You aren\'t so sure about that.') self.game_id: str = kwargs.get('game_id', uuid.uuid4().__str__()) self.all_locations: Dict[str, Location] = {} self.all_objects: Dict[str, AdventureObject] = {} self.all_endings: list[Ending] = [] self.player_inventory: Dict[str, AdventureObject] = {} self.player_location = None self.ended = False def __repr__(self): return f'{self.title}, locs: {self.all_locations} objs: {self.all_objects}, endings: {self.all_endings}' def add_location(self, loc: Location) -> None: """Register a location in the scenario. Args: loc: The location to register. NOTE: The location must have a unique id inside of the scenario. """ if self.all_locations.get(loc.id) is not None: raise RuntimeError('location already exists in scenario') else: self.all_locations[loc.id] = loc def add_object(self, obj: AdventureObject) -> None: """Register a location in the scenario. Args: loc: The location to register. NOTE: The location must have a unique id inside of the scenario. """ if self.all_objects.get(obj.id) is not None: raise RuntimeError('location already exists in scenario') else: self.all_objects[obj.id] = obj def add_ending(self, ending: Ending): self.all_endings.append(ending) def begin(self) -> None: """Begins the scenario. The initialization logic once a Scenario is fully assembled and the AdventureEngine is ready to send the first message to the player. """ logging.debug('SCENARIO CONFIGURATION:') logging.debug( 'all_locations: %s', [location.id for location in self.all_locations.values()]) logging.debug('all_objects: %s', [obj.id for obj in self.all_objects.values()]) if not self.all_locations.get(self.starting_location_id): raise RuntimeError('staring location not found in all_locations') self.player_location = self.all_locations[self.starting_location_id] def move(self, direction: str, **kwargs) -> ActionResult: """Move action handler for the scenario. NOTE: This is the only handler that is called on a MOVE action. """ if direction in self.player_location.exits: target_loc = self.all_locations[ self.player_location.exits[direction]] # Check to see if the location requires any items. if target_loc.requires: for item_id in target_loc.requires: if item_id not in self.player_inventory: return ActionResult( action_text=target_loc.travel_failure) self.player_location = target_loc # After moving, remove any required items. for item_id in target_loc.requires: self.player_inventory.pop(item_id) target_loc.remove_requirement(item_id) # Check to see if the move ends the game. for ending in self.all_endings: if ending.fulfilled(self.player_inventory, self.player_location.id): self.ended = True return ActionResult(adventure_text=ending.message, action_text="") action_text = target_loc.travel_action or f'You travel {direction}.' # Use replace because look also returns a ActionResult. # (And we want the action_text to be either the generic travel text # or the location custom travel_action.) return replace(self.player_location.look(**kwargs), action_text=action_text, push_inventory_update=True) else: return ActionResult(action_text='You cannot go that way.') def serialize(self) -> str: """Transform the current scenario into a data string for storage.""" data = {} data['game_id'] = self.game_id data['title'] = self.title data['greeting'] = self.greeting data['starting_location_id'] = self.starting_location_id data['UNKNOWN_ACTION_RESPONSE'] = self.UNKNOWN_ACTION_RESPONSE data['all_locations'] = [ location.serialize() for location in self.all_locations.values() ] data['all_objects'] = [ obj.serialize() for obj in self.all_objects.values() ] data['player_location'] = self.player_location.serialize( ) if self.player_location else '' data['player_inventory'] = [ obj.serialize() for obj in self.player_inventory.values() ] data['all_endings'] = [ ending.serialize() for ending in self.all_endings ] logging.debug(f'serialize scenario: {self}') return json.dumps(data) @classmethod def deserialize(cls: Type[T], data: str) -> T: """Transform a data string into a loaded scenario.""" loaded = json.loads(data) scenario = cls(**loaded) for obj in loaded['all_objects']: loaded_obj = AdventureObject.deserialize(obj) scenario.all_objects[loaded_obj.id] = loaded_obj for loc in loaded['all_locations']: loaded_loc = Location.deserialize(loc) scenario.all_locations[loaded_loc.id] = loaded_loc player_location = Location.deserialize(loaded['player_location']) if player_location.id not in scenario.all_locations.keys(): raise RuntimeError( 'Player location could not be found in loaded data!') scenario.player_location = scenario.all_locations[player_location.id] for obj in loaded['player_inventory']: loaded_obj = AdventureObject.deserialize(obj) scenario.player_inventory[loaded_obj.id] = loaded_obj for ending in loaded['all_endings']: scenario.add_ending(Ending.deserialize(ending)) logging.debug(f'deserialize scenario: {scenario}') return scenario
0.78037
0.179135
from bs4 import BeautifulSoup from Spiders.spiders.lottery.lottery_model import LotteryCNSSQ from Spiders.common import config, database, utils, utils_html def get_page_num(url, headers): """获取url总页数""" soup = BeautifulSoup(utils_html.getPage(url, headers).content, 'lxml') pagenums = soup.select('body > table > tr > td > p.pg > strong:nth-of-type(1)') if len(pagenums) > 0: return int(pagenums[0].get_text().replace(',', '')) else: return 0 def ins_data_ssq(): """爬取双色球开奖信息并插入数据库""" # 获取上次爬取的最大ID conn = database.CommonDBExecutor(config.get_database_url(), LotteryCNSSQ) results = conn.querybysqlstr(r'''select max(id_) max_id from data_analysis.lottery_cn_ssq''') end_id = utils.obj2int(results[0]['max_id']) for list_num in range(1, get_page_num(utils_html.getSSQURL(1), utils_html.getHeaders())): # 从第一页到第getPageNum(url)页 url = utils_html.getSSQURL(list_num) soup = BeautifulSoup(utils_html.getPage(url, utils_html.getHeaders()).content, 'lxml') list_date_ = soup.select('body > table > tr > td:nth-of-type(1)') list_id_ = soup.select('body > table > tr > td:nth-of-type(2)') list_win_nums = soup.select('body > table > tr > td:nth-of-type(3)') list_amount_ = soup.select('body > table > tr > td:nth-of-type(4) > strong') list_prize_first = soup.select('body > table > tr > td:nth-of-type(5) > strong') list_prize_second = soup.select('body > table > tr > td:nth-of-type(6) > strong') ssqdatas = [] for date_, id_, win_nums, amount_, prize_first, prize_second in zip(list_date_, list_id_, list_win_nums, list_amount_, list_prize_first, list_prize_second): if int(id_.get_text().replace(',', '')) <= int(end_id): break data = { 'id_': utils.obj2int(id_.get_text().replace(',', '')), 'date_': date_.get_text(), 'win_nums_red': ','.join(list(win_nums.stripped_strings)[:-1]), 'win_nums_blue': list(win_nums.stripped_strings)[-1], 'amount_': utils.obj2int(amount_.get_text().replace(',', '').strip()), 'prize_first': utils.obj2int(prize_first.get_text().replace(',', '').strip()), 'prize_second': utils.obj2int(prize_second.get_text().replace(',', '').strip()) } ssqdatas.append(data) if len(ssqdatas) == 0: print("【双色球】未爬取到符合条件数据!") break else: print("【双色球】本次爬取到%s条符合条件数据!" % (len(ssqdatas))) # 插入数据库 conn.insert_by_batch(ssqdatas)
Learn_pkgs/learn/BeautifulSoup/spider_ssq.py
from bs4 import BeautifulSoup from Spiders.spiders.lottery.lottery_model import LotteryCNSSQ from Spiders.common import config, database, utils, utils_html def get_page_num(url, headers): """获取url总页数""" soup = BeautifulSoup(utils_html.getPage(url, headers).content, 'lxml') pagenums = soup.select('body > table > tr > td > p.pg > strong:nth-of-type(1)') if len(pagenums) > 0: return int(pagenums[0].get_text().replace(',', '')) else: return 0 def ins_data_ssq(): """爬取双色球开奖信息并插入数据库""" # 获取上次爬取的最大ID conn = database.CommonDBExecutor(config.get_database_url(), LotteryCNSSQ) results = conn.querybysqlstr(r'''select max(id_) max_id from data_analysis.lottery_cn_ssq''') end_id = utils.obj2int(results[0]['max_id']) for list_num in range(1, get_page_num(utils_html.getSSQURL(1), utils_html.getHeaders())): # 从第一页到第getPageNum(url)页 url = utils_html.getSSQURL(list_num) soup = BeautifulSoup(utils_html.getPage(url, utils_html.getHeaders()).content, 'lxml') list_date_ = soup.select('body > table > tr > td:nth-of-type(1)') list_id_ = soup.select('body > table > tr > td:nth-of-type(2)') list_win_nums = soup.select('body > table > tr > td:nth-of-type(3)') list_amount_ = soup.select('body > table > tr > td:nth-of-type(4) > strong') list_prize_first = soup.select('body > table > tr > td:nth-of-type(5) > strong') list_prize_second = soup.select('body > table > tr > td:nth-of-type(6) > strong') ssqdatas = [] for date_, id_, win_nums, amount_, prize_first, prize_second in zip(list_date_, list_id_, list_win_nums, list_amount_, list_prize_first, list_prize_second): if int(id_.get_text().replace(',', '')) <= int(end_id): break data = { 'id_': utils.obj2int(id_.get_text().replace(',', '')), 'date_': date_.get_text(), 'win_nums_red': ','.join(list(win_nums.stripped_strings)[:-1]), 'win_nums_blue': list(win_nums.stripped_strings)[-1], 'amount_': utils.obj2int(amount_.get_text().replace(',', '').strip()), 'prize_first': utils.obj2int(prize_first.get_text().replace(',', '').strip()), 'prize_second': utils.obj2int(prize_second.get_text().replace(',', '').strip()) } ssqdatas.append(data) if len(ssqdatas) == 0: print("【双色球】未爬取到符合条件数据!") break else: print("【双色球】本次爬取到%s条符合条件数据!" % (len(ssqdatas))) # 插入数据库 conn.insert_by_batch(ssqdatas)
0.246715
0.120724
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import def_function from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.model_fn import EstimatorSpec from tensorflow.python.estimator.run_config import RunConfig from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.layers import core as core_layers from tensorflow.python.module import module from tensorflow.python.ops.losses import losses from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import saved_model from tensorflow.python.training import adam from tensorflow.python.training import training_util class RamFilesystemTest(test_util.TensorFlowTestCase): def test_write_file(self): with gfile.GFile('ram://a.txt', 'w') as f: f.write('Hello, world.') f.write('Hello, world.') with gfile.GFile('ram://a.txt', 'r') as f: self.assertEqual(f.read(), 'Hello, world.' * 2) def test_append_file_with_seek(self): with gfile.GFile('ram://c.txt', 'w') as f: f.write('Hello, world.') with gfile.GFile('ram://c.txt', 'w+') as f: f.seek(offset=0, whence=2) f.write('Hello, world.') with gfile.GFile('ram://c.txt', 'r') as f: self.assertEqual(f.read(), 'Hello, world.' * 2) def test_list_dir(self): for i in range(10): with gfile.GFile('ram://a/b/%d.txt' % i, 'w') as f: f.write('') with gfile.GFile('ram://c/b/%d.txt' % i, 'w') as f: f.write('') matches = ['ram://a/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.ListDirectory('ram://a/b/'), matches) def test_glob(self): for i in range(10): with gfile.GFile('ram://a/b/%d.txt' % i, 'w') as f: f.write('') with gfile.GFile('ram://c/b/%d.txt' % i, 'w') as f: f.write('') matches = ['ram://a/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.Glob('ram://a/b/*'), matches) matches = [] self.assertEqual(gfile.Glob('ram://b/b/*'), matches) matches = ['ram://c/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.Glob('ram://c/b/*'), matches) def test_file_exists(self): with gfile.GFile('ram://exists/a/b/c.txt', 'w') as f: f.write('') self.assertTrue(gfile.Exists('ram://exists/a')) self.assertTrue(gfile.Exists('ram://exists/a/b')) self.assertTrue(gfile.Exists('ram://exists/a/b/c.txt')) self.assertFalse(gfile.Exists('ram://exists/b')) self.assertFalse(gfile.Exists('ram://exists/a/c')) self.assertFalse(gfile.Exists('ram://exists/a/b/k')) def test_estimator(self): def model_fn(features, labels, mode, params): del params x = core_layers.dense(features, 100) x = core_layers.dense(x, 100) x = core_layers.dense(x, 100) x = core_layers.dense(x, 100) y = core_layers.dense(x, 1) loss = losses.mean_squared_error(labels, y) opt = adam.AdamOptimizer(learning_rate=0.1) train_op = opt.minimize( loss, global_step=training_util.get_or_create_global_step()) return EstimatorSpec(mode=mode, loss=loss, train_op=train_op) def input_fn(): batch_size = 128 return (constant_op.constant(np.random.randn(batch_size, 100), dtype=dtypes.float32), constant_op.constant(np.random.randn(batch_size, 1), dtype=dtypes.float32)) config = RunConfig( model_dir='ram://estimator-0/', save_checkpoints_steps=1) estimator = Estimator(config=config, model_fn=model_fn) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) def test_savedmodel(self): class MyModule(module.Module): @def_function.function(input_signature=[]) def foo(self): return constant_op.constant([1]) saved_model.save(MyModule(), 'ram://my_module') loaded = saved_model.load('ram://my_module') self.assertAllEqual(loaded.foo(), [1]) if __name__ == '__main__': test.main()
tensorflow/core/platform/ram_file_system_test.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import def_function from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.model_fn import EstimatorSpec from tensorflow.python.estimator.run_config import RunConfig from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.layers import core as core_layers from tensorflow.python.module import module from tensorflow.python.ops.losses import losses from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import saved_model from tensorflow.python.training import adam from tensorflow.python.training import training_util class RamFilesystemTest(test_util.TensorFlowTestCase): def test_write_file(self): with gfile.GFile('ram://a.txt', 'w') as f: f.write('Hello, world.') f.write('Hello, world.') with gfile.GFile('ram://a.txt', 'r') as f: self.assertEqual(f.read(), 'Hello, world.' * 2) def test_append_file_with_seek(self): with gfile.GFile('ram://c.txt', 'w') as f: f.write('Hello, world.') with gfile.GFile('ram://c.txt', 'w+') as f: f.seek(offset=0, whence=2) f.write('Hello, world.') with gfile.GFile('ram://c.txt', 'r') as f: self.assertEqual(f.read(), 'Hello, world.' * 2) def test_list_dir(self): for i in range(10): with gfile.GFile('ram://a/b/%d.txt' % i, 'w') as f: f.write('') with gfile.GFile('ram://c/b/%d.txt' % i, 'w') as f: f.write('') matches = ['ram://a/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.ListDirectory('ram://a/b/'), matches) def test_glob(self): for i in range(10): with gfile.GFile('ram://a/b/%d.txt' % i, 'w') as f: f.write('') with gfile.GFile('ram://c/b/%d.txt' % i, 'w') as f: f.write('') matches = ['ram://a/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.Glob('ram://a/b/*'), matches) matches = [] self.assertEqual(gfile.Glob('ram://b/b/*'), matches) matches = ['ram://c/b/%d.txt' % i for i in range(10)] self.assertEqual(gfile.Glob('ram://c/b/*'), matches) def test_file_exists(self): with gfile.GFile('ram://exists/a/b/c.txt', 'w') as f: f.write('') self.assertTrue(gfile.Exists('ram://exists/a')) self.assertTrue(gfile.Exists('ram://exists/a/b')) self.assertTrue(gfile.Exists('ram://exists/a/b/c.txt')) self.assertFalse(gfile.Exists('ram://exists/b')) self.assertFalse(gfile.Exists('ram://exists/a/c')) self.assertFalse(gfile.Exists('ram://exists/a/b/k')) def test_estimator(self): def model_fn(features, labels, mode, params): del params x = core_layers.dense(features, 100) x = core_layers.dense(x, 100) x = core_layers.dense(x, 100) x = core_layers.dense(x, 100) y = core_layers.dense(x, 1) loss = losses.mean_squared_error(labels, y) opt = adam.AdamOptimizer(learning_rate=0.1) train_op = opt.minimize( loss, global_step=training_util.get_or_create_global_step()) return EstimatorSpec(mode=mode, loss=loss, train_op=train_op) def input_fn(): batch_size = 128 return (constant_op.constant(np.random.randn(batch_size, 100), dtype=dtypes.float32), constant_op.constant(np.random.randn(batch_size, 1), dtype=dtypes.float32)) config = RunConfig( model_dir='ram://estimator-0/', save_checkpoints_steps=1) estimator = Estimator(config=config, model_fn=model_fn) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) estimator.train(input_fn=input_fn, steps=10) def test_savedmodel(self): class MyModule(module.Module): @def_function.function(input_signature=[]) def foo(self): return constant_op.constant([1]) saved_model.save(MyModule(), 'ram://my_module') loaded = saved_model.load('ram://my_module') self.assertAllEqual(loaded.foo(), [1]) if __name__ == '__main__': test.main()
0.759047
0.32021