dathi103's picture
End of training
a64183d verified
|
raw
history blame
3.85 kB
metadata
license: mit
base_model: dathi103/bert-job-german-extended
tags:
  - generated_from_trainer
model-index:
  - name: gerskill-bert-job-extended
    results: []

gerskill-bert-job-extended

This model is a fine-tuned version of dathi103/bert-job-german-extended on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1440
  • Hard: {'precision': 0.7093596059113301, 'recall': 0.7933884297520661, 'f1': 0.7490247074122237, 'number': 363}
  • Soft: {'precision': 0.7058823529411765, 'recall': 0.7272727272727273, 'f1': 0.7164179104477613, 'number': 66}
  • Overall Precision: 0.7089
  • Overall Recall: 0.7832
  • Overall F1: 0.7442
  • Overall Accuracy: 0.9650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Hard Soft Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 178 0.1035 {'precision': 0.6582278481012658, 'recall': 0.7162534435261708, 'f1': 0.6860158311345645, 'number': 363} {'precision': 0.6451612903225806, 'recall': 0.6060606060606061, 'f1': 0.625, 'number': 66} 0.6565 0.6993 0.6772 0.9597
No log 2.0 356 0.1067 {'precision': 0.6641414141414141, 'recall': 0.7245179063360881, 'f1': 0.6930171277997365, 'number': 363} {'precision': 0.676923076923077, 'recall': 0.6666666666666666, 'f1': 0.6717557251908397, 'number': 66} 0.6659 0.7156 0.6899 0.9634
0.1072 3.0 534 0.1204 {'precision': 0.7079207920792079, 'recall': 0.7878787878787878, 'f1': 0.7457627118644068, 'number': 363} {'precision': 0.6956521739130435, 'recall': 0.7272727272727273, 'f1': 0.711111111111111, 'number': 66} 0.7061 0.7786 0.7406 0.9652
0.1072 4.0 712 0.1350 {'precision': 0.7178841309823678, 'recall': 0.7851239669421488, 'f1': 0.7500000000000001, 'number': 363} {'precision': 0.6956521739130435, 'recall': 0.7272727272727273, 'f1': 0.711111111111111, 'number': 66} 0.7146 0.7762 0.7441 0.9644
0.1072 5.0 890 0.1440 {'precision': 0.7093596059113301, 'recall': 0.7933884297520661, 'f1': 0.7490247074122237, 'number': 363} {'precision': 0.7058823529411765, 'recall': 0.7272727272727273, 'f1': 0.7164179104477613, 'number': 66} 0.7089 0.7832 0.7442 0.9650

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2