dikdimon's picture
Upload extensions using SD-Hub extension
c336648 verified
raw
history blame
17.2 kB
##################
# Stable Diffusion Dynamic Thresholding (CFG Scale Fix)
#
# Author: Alex 'mcmonkey' Goodwin
# GitHub URL: https://github.com/mcmonkeyprojects/sd-dynamic-thresholding
# Created: 2022/01/26
# Last updated: 2023/01/30
#
# For usage help, view the README.md file in the extension root, or via the GitHub page.
#
##################
import gradio as gr
import torch, traceback
import dynthres_core
from modules import scripts, script_callbacks, sd_samplers, sd_samplers_compvis, sd_samplers_common
try:
import dynthres_unipc
except Exception as e:
print(f"\n\n======\nError! UniPC sampler support failed to load! Is your WebUI up to date?\n(Error: {e})\n======")
try:
from modules.sd_samplers_kdiffusion import CFGDenoiserKDiffusion as cfgdenoisekdiff
IS_AUTO_16 = True
except Exception as e:
print(f"\n\n======\nWarning! Using legacy KDiff version! Is your WebUI up to date?\n======")
from modules.sd_samplers_kdiffusion import CFGDenoiser as cfgdenoisekdiff
IS_AUTO_16 = False
DISABLE_VISIBILITY = True
######################### Data values #########################
MODES_WITH_VALUE = ["Power Up", "Power Down", "Linear Repeating", "Cosine Repeating", "Sawtooth"]
######################### Script class entrypoint #########################
class Script(scripts.Script):
def title(self):
return "Dynamic Thresholding (CFG Scale Fix)"
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
def vis_change(is_vis):
return {"visible": is_vis, "__type__": "update"}
# "Dynamic Thresholding (CFG Scale Fix)"
dtrue = gr.Checkbox(value=True, visible=False)
dfalse = gr.Checkbox(value=False, visible=False)
with gr.Accordion("Dynamic Thresholding (CFG Scale Fix)", open=False, elem_id="dynthres_" + ("img2img" if is_img2img else "txt2img")):
with gr.Row():
enabled = gr.Checkbox(value=False, label="Enable Dynamic Thresholding (CFG Scale Fix)", elem_classes=["dynthres-enabled"], elem_id='dynthres_enabled')
with gr.Group():
gr.HTML(value=f"View <a style=\"border-bottom: 1px #00ffff dotted;\" href=\"https://github.com/mcmonkeyprojects/sd-dynamic-thresholding/wiki/Usage-Tips\">the wiki for usage tips.</a><br><br>", elem_id='dynthres_wiki_link')
mimic_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Mimic CFG Scale', value=7.0, elem_id='dynthres_mimic_scale')
with gr.Accordion("Advanced Options", open=False, elem_id='dynthres_advanced_opts'):
with gr.Row():
threshold_percentile = gr.Slider(minimum=90.0, value=100.0, maximum=100.0, step=0.05, label='Top percentile of latents to clamp', elem_id='dynthres_threshold_percentile')
interpolate_phi = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Interpolate Phi", value=1.0, elem_id='dynthres_interpolate_phi')
with gr.Row():
mimic_mode = gr.Dropdown(dynthres_core.DynThresh.Modes, value="Constant", label="Mimic Scale Scheduler", elem_id='dynthres_mimic_mode')
cfg_mode = gr.Dropdown(dynthres_core.DynThresh.Modes, value="Constant", label="CFG Scale Scheduler", elem_id='dynthres_cfg_mode')
mimic_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, visible=DISABLE_VISIBILITY, label="Minimum value of the Mimic Scale Scheduler", elem_id='dynthres_mimic_scale_min')
cfg_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, visible=DISABLE_VISIBILITY, label="Minimum value of the CFG Scale Scheduler", elem_id='dynthres_cfg_scale_min')
sched_val = gr.Slider(minimum=0.0, maximum=40.0, step=0.5, value=4.0, visible=DISABLE_VISIBILITY, label="Scheduler Value", info="Value unique to the scheduler mode - for Power Up/Down, this is the power. For Linear/Cosine Repeating, this is the number of repeats per image.", elem_id='dynthres_sched_val')
with gr.Row():
separate_feature_channels = gr.Checkbox(value=True, label="Separate Feature Channels", elem_id='dynthres_separate_feature_channels')
scaling_startpoint = gr.Radio(["ZERO", "MEAN"], value="MEAN", label="Scaling Startpoint")
variability_measure = gr.Radio(["STD", "AD"], value="AD", label="Variability Measure")
def should_show_scheduler_value(cfg_mode, mimic_mode):
sched_vis = cfg_mode in MODES_WITH_VALUE or mimic_mode in MODES_WITH_VALUE or DISABLE_VISIBILITY
return vis_change(sched_vis), vis_change(mimic_mode != "Constant" or DISABLE_VISIBILITY), vis_change(cfg_mode != "Constant" or DISABLE_VISIBILITY)
cfg_mode.change(should_show_scheduler_value, inputs=[cfg_mode, mimic_mode], outputs=[sched_val, mimic_scale_min, cfg_scale_min])
mimic_mode.change(should_show_scheduler_value, inputs=[cfg_mode, mimic_mode], outputs=[sched_val, mimic_scale_min, cfg_scale_min])
enabled.change(
_js="dynthres_update_enabled",
fn=None,
inputs=[enabled, dtrue if is_img2img else dfalse],
show_progress = False)
self.infotext_fields = (
(enabled, lambda d: gr.Checkbox.update(value="Dynamic thresholding enabled" in d)),
(mimic_scale, "Mimic scale"),
(separate_feature_channels, "Separate Feature Channels"),
(scaling_startpoint, lambda d: gr.Radio.update(value=d.get("Scaling Startpoint", "MEAN"))),
(variability_measure, lambda d: gr.Radio.update(value=d.get("Variability Measure", "AD"))),
(interpolate_phi, "Interpolate Phi"),
(threshold_percentile, "Threshold percentile"),
(mimic_scale_min, "Mimic scale minimum"),
(mimic_mode, lambda d: gr.Dropdown.update(value=d.get("Mimic mode", "Constant"))),
(cfg_mode, lambda d: gr.Dropdown.update(value=d.get("CFG mode", "Constant"))),
(cfg_scale_min, "CFG scale minimum"),
(sched_val, "Scheduler value"))
return [enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi]
last_id = 0
def process_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi, batch_number, prompts, seeds, subseeds):
enabled = getattr(p, 'dynthres_enabled', enabled)
if not enabled:
return
orig_sampler_name = p.sampler_name
orig_latent_sampler_name = getattr(p, 'latent_sampler', None)
if orig_sampler_name in ["DDIM", "PLMS"]:
raise RuntimeError(f"Cannot use sampler {orig_sampler_name} with Dynamic Thresholding")
if orig_latent_sampler_name in ["DDIM", "PLMS"]:
raise RuntimeError(f"Cannot use secondary sampler {orig_latent_sampler_name} with Dynamic Thresholding")
if 'UniPC' in (orig_sampler_name, orig_latent_sampler_name) and p.enable_hr:
raise RuntimeError(f"UniPC does not support Hires Fix. Auto WebUI silently swaps to DDIM for this, which DynThresh does not support. Please swap to a sampler capable of img2img processing for HR Fix to work.")
mimic_scale = getattr(p, 'dynthres_mimic_scale', mimic_scale)
separate_feature_channels = getattr(p, 'dynthres_separate_feature_channels', separate_feature_channels)
scaling_startpoint = getattr(p, 'dynthres_scaling_startpoint', scaling_startpoint)
variability_measure = getattr(p, 'dynthres_variability_measure', variability_measure)
interpolate_phi = getattr(p, 'dynthres_interpolate_phi', interpolate_phi)
threshold_percentile = getattr(p, 'dynthres_threshold_percentile', threshold_percentile)
mimic_mode = getattr(p, 'dynthres_mimic_mode', mimic_mode)
mimic_scale_min = getattr(p, 'dynthres_mimic_scale_min', mimic_scale_min)
cfg_mode = getattr(p, 'dynthres_cfg_mode', cfg_mode)
cfg_scale_min = getattr(p, 'dynthres_cfg_scale_min', cfg_scale_min)
experiment_mode = getattr(p, 'dynthres_experiment_mode', 0)
sched_val = getattr(p, 'dynthres_scheduler_val', sched_val)
p.extra_generation_params["Dynamic thresholding enabled"] = True
p.extra_generation_params["Mimic scale"] = mimic_scale
p.extra_generation_params["Separate Feature Channels"] = separate_feature_channels
p.extra_generation_params["Scaling Startpoint"] = scaling_startpoint
p.extra_generation_params["Variability Measure"] = variability_measure
p.extra_generation_params["Interpolate Phi"] = interpolate_phi
p.extra_generation_params["Threshold percentile"] = threshold_percentile
p.extra_generation_params["Sampler"] = orig_sampler_name
if mimic_mode != "Constant":
p.extra_generation_params["Mimic mode"] = mimic_mode
p.extra_generation_params["Mimic scale minimum"] = mimic_scale_min
if cfg_mode != "Constant":
p.extra_generation_params["CFG mode"] = cfg_mode
p.extra_generation_params["CFG scale minimum"] = cfg_scale_min
if cfg_mode in MODES_WITH_VALUE or mimic_mode in MODES_WITH_VALUE:
p.extra_generation_params["Scheduler value"] = sched_val
# Note: the ID number is to protect the edge case of multiple simultaneous runs with different settings
Script.last_id += 1
# Percentage to portion
threshold_percentile *= 0.01
def make_sampler(orig_sampler_name):
fixed_sampler_name = f"{orig_sampler_name}_dynthres{Script.last_id}"
# Make a placeholder sampler
sampler = sd_samplers.all_samplers_map[orig_sampler_name]
dt_data = dynthres_core.DynThresh(mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, experiment_mode, p.steps, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi)
if orig_sampler_name == "UniPC":
def unipc_constructor(model):
return CustomVanillaSDSampler(dynthres_unipc.CustomUniPCSampler, model, dt_data)
new_sampler = sd_samplers_common.SamplerData(fixed_sampler_name, unipc_constructor, sampler.aliases, sampler.options)
else:
def new_constructor(model):
result = sampler.constructor(model)
cfg = CustomCFGDenoiser(result if IS_AUTO_16 else result.model_wrap_cfg.inner_model, dt_data)
result.model_wrap_cfg = cfg
return result
new_sampler = sd_samplers_common.SamplerData(fixed_sampler_name, new_constructor, sampler.aliases, sampler.options)
return fixed_sampler_name, new_sampler
# Apply for usage
p.orig_sampler_name = orig_sampler_name
p.orig_latent_sampler_name = orig_latent_sampler_name
p.fixed_samplers = []
if orig_latent_sampler_name:
latent_sampler_name, latent_sampler = make_sampler(orig_latent_sampler_name)
sd_samplers.all_samplers_map[latent_sampler_name] = latent_sampler
p.fixed_samplers.append(latent_sampler_name)
p.latent_sampler = latent_sampler_name
if orig_sampler_name != orig_latent_sampler_name:
p.sampler_name, new_sampler = make_sampler(orig_sampler_name)
sd_samplers.all_samplers_map[p.sampler_name] = new_sampler
p.fixed_samplers.append(p.sampler_name)
else:
p.sampler_name = p.latent_sampler
if p.sampler is not None:
p.sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
def postprocess_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, sched_val, separate_feature_channels, scaling_startpoint, variability_measure, interpolate_phi, batch_number, images):
if not enabled or not hasattr(p, 'orig_sampler_name'):
return
p.sampler_name = p.orig_sampler_name
if p.orig_latent_sampler_name:
p.latent_sampler = p.orig_latent_sampler_name
for added_sampler in p.fixed_samplers:
del sd_samplers.all_samplers_map[added_sampler]
del p.fixed_samplers
del p.orig_sampler_name
del p.orig_latent_sampler_name
######################### CompVis Implementation logic #########################
class CustomVanillaSDSampler(sd_samplers_compvis.VanillaStableDiffusionSampler):
def __init__(self, constructor, sd_model, dt_data):
super().__init__(constructor, sd_model)
self.sampler.main_class = dt_data
######################### K-Diffusion Implementation logic #########################
class CustomCFGDenoiser(cfgdenoisekdiff):
def __init__(self, model, dt_data):
super().__init__(model)
self.main_class = dt_data
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
if isinstance(uncond, dict) and 'crossattn' in uncond:
uncond = uncond['crossattn']
denoised_uncond = x_out[-uncond.shape[0]:]
# conds_list shape is (batch, cond, 2)
weights = torch.tensor(conds_list, device=uncond.device).select(2, 1)
weights = weights.reshape(*weights.shape, 1, 1, 1)
self.main_class.step = self.step
if hasattr(self, 'total_steps'):
self.main_class.max_steps = self.total_steps
if self.main_class.experiment_mode >= 4 and self.main_class.experiment_mode <= 5:
# https://arxiv.org/pdf/2305.08891.pdf "Rescale CFG". It's not good, but if you want to test it, just set experiment_mode = 4 + phi.
denoised = torch.clone(denoised_uncond)
fi = self.main_class.experiment_mode - 4.0
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
xcfg = (denoised_uncond[i] + (x_out[cond_index] - denoised_uncond[i]) * (cond_scale * weight))
xrescaled = xcfg * (torch.std(x_out[cond_index]) / torch.std(xcfg))
xfinal = fi * xrescaled + (1.0 - fi) * xcfg
denoised[i] = xfinal
return denoised
return self.main_class.dynthresh(x_out[:-uncond.shape[0]], denoised_uncond, cond_scale, weights)
######################### XYZ Plot Script Support logic #########################
def make_axis_options():
xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ in ("xyz_grid.py", "scripts.xyz_grid")][0].module
def apply_mimic_scale(p, x, xs):
if x != 0:
setattr(p, "dynthres_enabled", True)
setattr(p, "dynthres_mimic_scale", x)
else:
setattr(p, "dynthres_enabled", False)
def confirm_scheduler(p, xs):
for x in xs:
if x not in dynthres_core.DynThresh.Modes:
raise RuntimeError(f"Unknown Scheduler: {x}")
extra_axis_options = [
xyz_grid.AxisOption("[DynThres] Mimic Scale", float, apply_mimic_scale),
xyz_grid.AxisOption("[DynThres] Separate Feature Channels", int,
xyz_grid.apply_field("dynthres_separate_feature_channels")),
xyz_grid.AxisOption("[DynThres] Scaling Startpoint", str, xyz_grid.apply_field("dynthres_scaling_startpoint"), choices=lambda:['ZERO', 'MEAN']),
xyz_grid.AxisOption("[DynThres] Variability Measure", str, xyz_grid.apply_field("dynthres_variability_measure"), choices=lambda:['STD', 'AD']),
xyz_grid.AxisOption("[DynThres] Interpolate Phi", float, xyz_grid.apply_field("dynthres_interpolate_phi")),
xyz_grid.AxisOption("[DynThres] Threshold Percentile", float, xyz_grid.apply_field("dynthres_threshold_percentile")),
xyz_grid.AxisOption("[DynThres] Mimic Scheduler", str, xyz_grid.apply_field("dynthres_mimic_mode"), confirm=confirm_scheduler, choices=lambda: dynthres_core.DynThresh.Modes),
xyz_grid.AxisOption("[DynThres] Mimic minimum", float, xyz_grid.apply_field("dynthres_mimic_scale_min")),
xyz_grid.AxisOption("[DynThres] CFG Scheduler", str, xyz_grid.apply_field("dynthres_cfg_mode"), confirm=confirm_scheduler, choices=lambda: dynthres_core.DynThresh.Modes),
xyz_grid.AxisOption("[DynThres] CFG minimum", float, xyz_grid.apply_field("dynthres_cfg_scale_min")),
xyz_grid.AxisOption("[DynThres] Scheduler value", float, xyz_grid.apply_field("dynthres_scheduler_val"))
]
if not any("[DynThres]" in x.label for x in xyz_grid.axis_options):
xyz_grid.axis_options.extend(extra_axis_options)
def callback_before_ui():
try:
make_axis_options()
except Exception as e:
traceback.print_exc()
print(f"Failed to add support for X/Y/Z Plot Script because: {e}")
script_callbacks.on_before_ui(callback_before_ui)