metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: hubert-base-ls960-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
hubert-base-ls960-finetuned-gtzan
This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.7461
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0275 | 1.0 | 225 | 1.8624 | 0.36 |
1.3649 | 2.0 | 450 | 1.4155 | 0.51 |
1.1545 | 3.0 | 675 | 1.2385 | 0.6 |
0.9293 | 4.0 | 900 | 0.9788 | 0.67 |
0.5855 | 5.0 | 1125 | 0.8809 | 0.7 |
0.2652 | 6.0 | 1350 | 0.9386 | 0.73 |
1.2178 | 7.0 | 1575 | 0.7286 | 0.81 |
0.1843 | 8.0 | 1800 | 1.2881 | 0.7 |
0.089 | 9.0 | 2025 | 0.4900 | 0.9 |
0.0928 | 10.0 | 2250 | 0.7461 | 0.85 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1