|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-amet |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: fleurs |
|
type: fleurs |
|
config: am_et |
|
split: validation |
|
args: am_et |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 100.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-amet |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 6.8012 |
|
- Wer: 100.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.9013 | 100.0 | 100 | 2.7051 | 276.0 | |
|
| 0.0002 | 200.0 | 200 | 3.7415 | 334.6667 | |
|
| 0.0001 | 300.0 | 300 | 3.8402 | 117.3333 | |
|
| 0.0001 | 400.0 | 400 | 3.8931 | 340.0 | |
|
| 0.0001 | 500.0 | 500 | 4.0671 | 397.3333 | |
|
| 0.0001 | 600.0 | 600 | 4.2844 | 137.3333 | |
|
| 0.0 | 700.0 | 700 | 4.4697 | 289.3333 | |
|
| 0.0 | 800.0 | 800 | 4.6278 | 449.3333 | |
|
| 0.0 | 900.0 | 900 | 4.7794 | 678.6667 | |
|
| 0.0405 | 1000.0 | 1000 | 4.6769 | 261.3333 | |
|
| 0.0002 | 1100.0 | 1100 | 5.4995 | 100.0 | |
|
| 0.0002 | 1200.0 | 1200 | 6.0033 | 100.0 | |
|
| 0.0002 | 1300.0 | 1300 | 6.2884 | 100.0 | |
|
| 0.0002 | 1400.0 | 1400 | 6.4744 | 100.0 | |
|
| 0.0002 | 1500.0 | 1500 | 6.5964 | 100.0 | |
|
| 0.0001 | 1600.0 | 1600 | 6.6792 | 100.0 | |
|
| 0.0001 | 1700.0 | 1700 | 6.7370 | 100.0 | |
|
| 0.0001 | 1800.0 | 1800 | 6.7735 | 100.0 | |
|
| 0.0001 | 1900.0 | 1900 | 6.7958 | 100.0 | |
|
| 0.0001 | 2000.0 | 2000 | 6.8012 | 100.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|