emilstabil's picture
End of training
d4840df
|
raw
history blame
3.6 kB
metadata
license: apache-2.0
base_model: Danish-summarisation/DanSumT5-large
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: DanSumT5-largeV_84227
    results: []

DanSumT5-largeV_84227

This model is a fine-tuned version of Danish-summarisation/DanSumT5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2976
  • Rouge1: 32.3488
  • Rouge2: 8.638
  • Rougel: 18.8215
  • Rougelsum: 29.8654
  • Gen Len: 126.28

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 200 2.5620 31.6386 7.3603 17.9932 28.8935 126.32
No log 2.0 400 2.4824 31.8478 8.0477 18.5952 29.2582 126.77
2.7655 3.0 600 2.4305 32.1965 8.4935 18.7317 29.9719 125.03
2.7655 4.0 800 2.3945 31.8539 8.7262 18.5421 29.8472 125.63
2.4368 5.0 1000 2.3685 32.0137 8.2933 18.7818 29.561 125.32
2.4368 6.0 1200 2.3522 31.5 8.3477 18.9478 29.3072 125.11
2.4368 7.0 1400 2.3364 31.6482 8.3012 18.9953 29.0985 123.38
2.2645 8.0 1600 2.3250 31.9939 8.5944 18.9914 29.5092 125.18
2.2645 9.0 1800 2.3212 31.5611 8.1969 18.7941 29.151 126.01
2.134 10.0 2000 2.3117 32.0902 8.6962 19.0793 29.758 125.4
2.134 11.0 2200 2.3064 31.9365 8.7161 18.9113 29.6812 125.86
2.134 12.0 2400 2.3062 32.3185 9.0913 19.2692 29.9962 126.24
2.0467 13.0 2600 2.3032 31.7591 8.4993 18.8326 29.4231 125.02
2.0467 14.0 2800 2.3008 32.0532 8.8654 18.897 29.5819 126.2
1.9931 15.0 3000 2.2980 31.8987 8.7669 19.0859 29.3799 126.0
1.9931 16.0 3200 2.2982 32.2458 8.7896 18.6845 29.6991 126.0
1.9931 17.0 3400 2.2987 32.0869 8.6678 18.7656 29.8441 125.66
1.949 18.0 3600 2.2974 32.1759 8.6004 18.7892 29.6918 126.31
1.949 19.0 3800 2.2970 32.1139 8.5827 18.7099 29.5327 126.15
1.9257 20.0 4000 2.2976 32.3488 8.638 18.8215 29.8654 126.28

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3