ethan-ky's picture
Add new SentenceTransformer model.
f37b046 verified
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: As of January 31, 2023, the weighted average remaining lease term
for operating leases was 7 years and for finance leases was 3 years.
sentences:
- What was the Company's net deferred tax assets as of December 30, 2023, and December
31, 2022?
- What were the weighted average remaining lease terms for operating and finance
leases as of January 31, 2023?
- How much did the net investment income change from 2021 to 2023?
- source_sentence: The 4.500% notes due in August 2034 have an interest rate of 4.55%.
sentences:
- What types of insurance coverage does the company provide to its employees at
no premium cost, as part of their general employee benefits package?
- What is the interest rate for the 4.500% notes due in August 2034?
- How much did the company's revenues decrease in 2023 compared to 2022?
- source_sentence: In 2023, other income (expense), net included $376 million of interest
income, partially offset by $167 million of net unrealized losses on equity investments.
Other income (expense), net in 2022 included $657 million of net unrealized losses
on equity investments, partially offset by $106 million of interest income.
sentences:
- What contributed to the net other income (expense) in 2023?
- What types of products does the Canada operation offer?
- What was the net change in cash and cash equivalents in 2022?
- source_sentence: We believe the claims in these cases are without merit and are
vigorously defending these lawsuits.
sentences:
- Where in the Annual Report can one find a description of certain legal matters
and their impact on the company?
- What is the goal of the company regarding its global corporate operations by 2030?
- What is the stance of the defending airlines on the claims made against them in
the capacity antitrust litigation?
- source_sentence: North America's total net revenues for the fiscal year ended October
1, 2023, were $26,569.6 million.
sentences:
- What was the total net revenue for North America in fiscal 2023?
- What are the consequences of impermissible use or disclosure of PHI according
to the HITECH Act?
- What does the index in a financial report indicate?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6171428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7457142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8114285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8585714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6171428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24857142857142858
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16228571428571428
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08585714285714285
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6171428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7457142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8114285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8585714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7357204832416036
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6965260770975052
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7015509951793545
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6214285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.74
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8642857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6214285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08642857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6214285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.74
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8642857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.738181682287809
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6983236961451246
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7027820040111107
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7271428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7928571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8442857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24238095238095236
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15857142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08442857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7271428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7928571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8442857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7182448637999702
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6782879818594099
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.683606591058064
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.5728571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7557142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5728571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2338095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1511428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08157142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5728571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7557142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6915163160852085
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6521536281179136
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6580414471513885
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5142857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6371428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6728571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7357142857142858
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5142857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21238095238095234
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13457142857142856
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07357142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5142857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6371428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6728571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7357142857142858
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6197107516374883
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5832369614512468
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5907376271746598
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ethan-ky/bge-base-financial-matryoshka")
# Run inference
sentences = [
"North America's total net revenues for the fiscal year ended October 1, 2023, were $26,569.6 million.",
'What was the total net revenue for North America in fiscal 2023?',
'What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6171 |
| cosine_accuracy@3 | 0.7457 |
| cosine_accuracy@5 | 0.8114 |
| cosine_accuracy@10 | 0.8586 |
| cosine_precision@1 | 0.6171 |
| cosine_precision@3 | 0.2486 |
| cosine_precision@5 | 0.1623 |
| cosine_precision@10 | 0.0859 |
| cosine_recall@1 | 0.6171 |
| cosine_recall@3 | 0.7457 |
| cosine_recall@5 | 0.8114 |
| cosine_recall@10 | 0.8586 |
| cosine_ndcg@10 | 0.7357 |
| cosine_mrr@10 | 0.6965 |
| **cosine_map@100** | **0.7016** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6214 |
| cosine_accuracy@3 | 0.74 |
| cosine_accuracy@5 | 0.8 |
| cosine_accuracy@10 | 0.8643 |
| cosine_precision@1 | 0.6214 |
| cosine_precision@3 | 0.2467 |
| cosine_precision@5 | 0.16 |
| cosine_precision@10 | 0.0864 |
| cosine_recall@1 | 0.6214 |
| cosine_recall@3 | 0.74 |
| cosine_recall@5 | 0.8 |
| cosine_recall@10 | 0.8643 |
| cosine_ndcg@10 | 0.7382 |
| cosine_mrr@10 | 0.6983 |
| **cosine_map@100** | **0.7028** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6 |
| cosine_accuracy@3 | 0.7271 |
| cosine_accuracy@5 | 0.7929 |
| cosine_accuracy@10 | 0.8443 |
| cosine_precision@1 | 0.6 |
| cosine_precision@3 | 0.2424 |
| cosine_precision@5 | 0.1586 |
| cosine_precision@10 | 0.0844 |
| cosine_recall@1 | 0.6 |
| cosine_recall@3 | 0.7271 |
| cosine_recall@5 | 0.7929 |
| cosine_recall@10 | 0.8443 |
| cosine_ndcg@10 | 0.7182 |
| cosine_mrr@10 | 0.6783 |
| **cosine_map@100** | **0.6836** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.5729 |
| cosine_accuracy@3 | 0.7014 |
| cosine_accuracy@5 | 0.7557 |
| cosine_accuracy@10 | 0.8157 |
| cosine_precision@1 | 0.5729 |
| cosine_precision@3 | 0.2338 |
| cosine_precision@5 | 0.1511 |
| cosine_precision@10 | 0.0816 |
| cosine_recall@1 | 0.5729 |
| cosine_recall@3 | 0.7014 |
| cosine_recall@5 | 0.7557 |
| cosine_recall@10 | 0.8157 |
| cosine_ndcg@10 | 0.6915 |
| cosine_mrr@10 | 0.6522 |
| **cosine_map@100** | **0.658** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5143 |
| cosine_accuracy@3 | 0.6371 |
| cosine_accuracy@5 | 0.6729 |
| cosine_accuracy@10 | 0.7357 |
| cosine_precision@1 | 0.5143 |
| cosine_precision@3 | 0.2124 |
| cosine_precision@5 | 0.1346 |
| cosine_precision@10 | 0.0736 |
| cosine_recall@1 | 0.5143 |
| cosine_recall@3 | 0.6371 |
| cosine_recall@5 | 0.6729 |
| cosine_recall@10 | 0.7357 |
| cosine_ndcg@10 | 0.6197 |
| cosine_mrr@10 | 0.5832 |
| **cosine_map@100** | **0.5907** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 45.35 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.67 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
| <code>Our ability to develop and operate units at the right locations and to deliver a customer-centric omni-channel experience largely determines our competitive position within the retail industry. We believe price leadership is a critical part of our business model and we continue to focus on moving our markets towards an EDLP approach. Additionally, our ability to operate food departments effectively has a significant impact on our competitive position in the markets where we operate.</code> | <code>What factors contribute to Walmart International's competitive position?</code> |
| <code>tax annual aggregate losses incurred in any year from U.S. hurricane events could be in excess of $3,827 million (or 6.4 percent of total Chubb shareholders’ equity at December 31, 2023).</code> | <code>What is the expected maximum potential loss from hurricane events for Chubb as of the end of 2023?</code> |
| <code>The 'Glossary of Terms and Acronyms’ is included on pages 315-321.</code> | <code>What is included on pages 315 to 321 of the document?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122 | 10 | 1.3939 | - | - | - | - | - |
| **0.9746** | **12** | **-** | **0.658** | **0.6836** | **0.7028** | **0.5907** | **0.7016** |
| 1.6244 | 20 | 1.3574 | - | - | - | - | - |
| 1.9492 | 24 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
| 2.4365 | 30 | 1.3485 | - | - | - | - | - |
| 2.9239 | 36 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
| 3.2487 | 40 | 1.3606 | - | - | - | - | - |
| 3.8985 | 48 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->