francisco-perez-sorrosal's picture
update model card README.md
8d8d6a3
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - dataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: dataset
          type: dataset
          config: 60-20-20
          split: dev
          args: 60-20-20
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5556323427781618
          - name: F1
            type: f1
            value: 0.5577964748279268
          - name: Precision
            type: precision
            value: 0.5682169161320979
          - name: Recall
            type: recall
            value: 0.5539741666889855

distilbert-base-uncased-finetuned-with-spanish-tweets-clf-cleaned-ds

This model is a fine-tuned version of distilbert-base-uncased on the dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1229
  • Accuracy: 0.5556
  • F1: 0.5578
  • Precision: 0.5682
  • Recall: 0.5540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0683 1.0 543 1.0019 0.4997 0.4041 0.4724 0.4488
0.9372 2.0 1086 0.9395 0.5425 0.5143 0.5480 0.5123
0.7283 3.0 1629 0.9674 0.5632 0.5615 0.5658 0.5587
0.5127 4.0 2172 1.1229 0.5556 0.5578 0.5682 0.5540

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1
  • Datasets 2.8.0
  • Tokenizers 0.13.2