hubert-classifier / README.md
fydhfzh's picture
End of training
66c6b45 verified
|
raw
history blame
2.78 kB
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-classifier
    results: []

hubert-classifier

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2561
  • Accuracy: 0.2155
  • Precision: 0.1870
  • Recall: 0.2155
  • F1: 0.1453
  • Binary: 0.4380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.86 50 4.2865 0.0291 0.0034 0.0291 0.0043 0.2661
No log 1.72 100 4.0141 0.0460 0.0306 0.0460 0.0187 0.3199
No log 2.59 150 3.8172 0.0630 0.0204 0.0630 0.0214 0.3378
No log 3.45 200 3.7045 0.0896 0.0534 0.0896 0.0533 0.3431
No log 4.31 250 3.5695 0.1308 0.0844 0.1308 0.0796 0.3785
No log 5.17 300 3.4883 0.1622 0.1140 0.1622 0.1002 0.3954
No log 6.03 350 3.4447 0.1622 0.1145 0.1622 0.1005 0.3925
No log 6.9 400 3.3482 0.1671 0.0972 0.1671 0.1026 0.4077
No log 7.76 450 3.3042 0.1961 0.1424 0.1961 0.1295 0.4228
3.7796 8.62 500 3.2724 0.2131 0.1898 0.2131 0.1472 0.4370
3.7796 9.48 550 3.2561 0.2155 0.1870 0.2155 0.1453 0.4380

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1