|
---
|
|
license: apache-2.0
|
|
base_model: facebook/hubert-base-ls960
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: hubert-classifier
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# hubert-classifier
|
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.2561
|
|
- Accuracy: 0.2155
|
|
- Precision: 0.1870
|
|
- Recall: 0.2155
|
|
- F1: 0.1453
|
|
- Binary: 0.4380
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 3e-05
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 128
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 10
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
|
| No log | 0.86 | 50 | 4.2865 | 0.0291 | 0.0034 | 0.0291 | 0.0043 | 0.2661 |
|
|
| No log | 1.72 | 100 | 4.0141 | 0.0460 | 0.0306 | 0.0460 | 0.0187 | 0.3199 |
|
|
| No log | 2.59 | 150 | 3.8172 | 0.0630 | 0.0204 | 0.0630 | 0.0214 | 0.3378 |
|
|
| No log | 3.45 | 200 | 3.7045 | 0.0896 | 0.0534 | 0.0896 | 0.0533 | 0.3431 |
|
|
| No log | 4.31 | 250 | 3.5695 | 0.1308 | 0.0844 | 0.1308 | 0.0796 | 0.3785 |
|
|
| No log | 5.17 | 300 | 3.4883 | 0.1622 | 0.1140 | 0.1622 | 0.1002 | 0.3954 |
|
|
| No log | 6.03 | 350 | 3.4447 | 0.1622 | 0.1145 | 0.1622 | 0.1005 | 0.3925 |
|
|
| No log | 6.9 | 400 | 3.3482 | 0.1671 | 0.0972 | 0.1671 | 0.1026 | 0.4077 |
|
|
| No log | 7.76 | 450 | 3.3042 | 0.1961 | 0.1424 | 0.1961 | 0.1295 | 0.4228 |
|
|
| 3.7796 | 8.62 | 500 | 3.2724 | 0.2131 | 0.1898 | 0.2131 | 0.1472 | 0.4370 |
|
|
| 3.7796 | 9.48 | 550 | 3.2561 | 0.2155 | 0.1870 | 0.2155 | 0.1453 | 0.4380 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.38.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.15.1
|
|
|