hubert-classifier / README.md
fydhfzh's picture
End of training
80279e7 verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-classifier
    results: []

hubert-classifier

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9330
  • Accuracy: 0.0674
  • Precision: 0.0116
  • Recall: 0.0674
  • F1: 0.0182
  • Binary: 0.3423

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.96 50 4.4099 0.0647 0.0191 0.0647 0.0221 0.2396
No log 1.91 100 4.3523 0.0593 0.0190 0.0593 0.0194 0.3019
No log 2.87 150 4.2416 0.0701 0.0246 0.0701 0.0235 0.3358
No log 3.83 200 4.1412 0.0701 0.0265 0.0701 0.0214 0.3437
No log 4.78 250 4.0716 0.0593 0.0069 0.0593 0.0122 0.3334
No log 5.74 300 4.0195 0.0701 0.0124 0.0701 0.0186 0.3453
No log 6.7 350 3.9850 0.0593 0.0073 0.0593 0.0126 0.3350
No log 7.66 400 3.9610 0.0647 0.0097 0.0647 0.0162 0.3388
No log 8.61 450 3.9420 0.0674 0.0113 0.0674 0.0180 0.3396
4.2019 9.57 500 3.9330 0.0674 0.0116 0.0674 0.0182 0.3423

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1