Visualize in Weights & Biases

grounded-ai-rag-3

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5557
  • Rouge1: 1.0
  • Rouge2: 0.0
  • Rougel: 1.0
  • Rougelsum: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 15
  • training_steps: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.8222 5.0 5 1.9460 1.0 0.0 1.0 1.0
1.7609 10.0 10 1.6547 1.0 0.0 1.0 1.0
1.4433 15.0 15 1.3821 1.0 0.0 1.0 1.0
1.2307 20.0 20 1.1176 1.0 0.0 1.0 1.0
0.9889 25.0 25 0.7975 1.0 0.0 1.0 1.0
0.6934 30.0 30 0.6240 1.0 0.0 1.0 1.0
0.5838 35.0 35 0.5633 1.0 0.0 1.0 1.0
0.5625 40.0 40 0.5557 1.0 0.0 1.0 1.0

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for grounded-ai/phi3.5-rag-relevance-judge

Adapter
(125)
this model

Collection including grounded-ai/phi3.5-rag-relevance-judge