ktp-crop-clip / README.md
habibi26's picture
Model save
c4a213b verified
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ktp-crop-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9864864864864865

ktp-crop-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1223
  • Accuracy: 0.9865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 6 0.8954 0.5270
0.7112 1.92 12 0.6729 0.5405
0.7112 2.88 18 0.6407 0.7297
0.4413 4.0 25 0.1279 0.9459
0.0935 4.96 31 0.1436 0.9730
0.0935 5.92 37 0.0021 1.0
0.0697 6.88 43 0.2862 0.9459
0.161 8.0 50 0.0843 0.9595
0.161 8.96 56 0.2255 0.9459
0.0061 9.92 62 0.4678 0.9054
0.0061 10.88 68 0.3299 0.9189
0.0309 12.0 75 0.5189 0.9189
0.0025 12.96 81 0.0850 0.9865
0.0025 13.92 87 0.0720 0.9865
0.0042 14.88 93 0.0745 0.9865
0.0002 16.0 100 0.0869 0.9865
0.0002 16.96 106 0.0895 0.9865
0.0001 17.92 112 0.1127 0.9865
0.0001 18.88 118 0.1219 0.9865
0.0 19.2 120 0.1223 0.9865

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1