|
--- |
|
base_model: openai/clip-vit-base-patch32 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ktp-crop-clip |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9864864864864865 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ktp-crop-clip |
|
|
|
This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1223 |
|
- Accuracy: 0.9865 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.96 | 6 | 0.8954 | 0.5270 | |
|
| 0.7112 | 1.92 | 12 | 0.6729 | 0.5405 | |
|
| 0.7112 | 2.88 | 18 | 0.6407 | 0.7297 | |
|
| 0.4413 | 4.0 | 25 | 0.1279 | 0.9459 | |
|
| 0.0935 | 4.96 | 31 | 0.1436 | 0.9730 | |
|
| 0.0935 | 5.92 | 37 | 0.0021 | 1.0 | |
|
| 0.0697 | 6.88 | 43 | 0.2862 | 0.9459 | |
|
| 0.161 | 8.0 | 50 | 0.0843 | 0.9595 | |
|
| 0.161 | 8.96 | 56 | 0.2255 | 0.9459 | |
|
| 0.0061 | 9.92 | 62 | 0.4678 | 0.9054 | |
|
| 0.0061 | 10.88 | 68 | 0.3299 | 0.9189 | |
|
| 0.0309 | 12.0 | 75 | 0.5189 | 0.9189 | |
|
| 0.0025 | 12.96 | 81 | 0.0850 | 0.9865 | |
|
| 0.0025 | 13.92 | 87 | 0.0720 | 0.9865 | |
|
| 0.0042 | 14.88 | 93 | 0.0745 | 0.9865 | |
|
| 0.0002 | 16.0 | 100 | 0.0869 | 0.9865 | |
|
| 0.0002 | 16.96 | 106 | 0.0895 | 0.9865 | |
|
| 0.0001 | 17.92 | 112 | 0.1127 | 0.9865 | |
|
| 0.0001 | 18.88 | 118 | 0.1219 | 0.9865 | |
|
| 0.0 | 19.2 | 120 | 0.1223 | 0.9865 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|