haryoaw's picture
Initial Commit
fa5dbeb verified
|
raw
history blame
3.4 kB
metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: scenario-KD-SCR-CDF-CL-D2_data-cl-cardiff_cl_only55
    results: []

scenario-KD-SCR-CDF-CL-D2_data-cl-cardiff_cl_only55

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-cardiff_cl_only on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.3333
  • F1: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.09 250 nan 0.3333 0.1667
1.0762 2.17 500 nan 0.3333 0.1667
1.0762 3.26 750 nan 0.3333 0.1667
0.0 4.35 1000 nan 0.3333 0.1667
0.0 5.43 1250 nan 0.3333 0.1667
0.0 6.52 1500 nan 0.3333 0.1667
0.0 7.61 1750 nan 0.3333 0.1667
0.0 8.7 2000 nan 0.3333 0.1667
0.0 9.78 2250 nan 0.3333 0.1667
0.0 10.87 2500 nan 0.3333 0.1667
0.0 11.96 2750 nan 0.3333 0.1667
0.0 13.04 3000 nan 0.3333 0.1667
0.0 14.13 3250 nan 0.3333 0.1667
0.0 15.22 3500 nan 0.3333 0.1667
0.0 16.3 3750 nan 0.3333 0.1667
0.0 17.39 4000 nan 0.3333 0.1667
0.0 18.48 4250 nan 0.3333 0.1667
0.0 19.57 4500 nan 0.3333 0.1667
0.0 20.65 4750 nan 0.3333 0.1667
0.0 21.74 5000 nan 0.3333 0.1667
0.0 22.83 5250 nan 0.3333 0.1667
0.0 23.91 5500 nan 0.3333 0.1667
0.0 25.0 5750 nan 0.3333 0.1667
0.0 26.09 6000 nan 0.3333 0.1667
0.0 27.17 6250 nan 0.3333 0.1667
0.0 28.26 6500 nan 0.3333 0.1667
0.0 29.35 6750 nan 0.3333 0.1667

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3