haryoaw's picture
Upload tokenizer
fbde9cd verified
metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: scenario-kd-scr-ner-full-xlmr_data-univner_half55
    results: []

scenario-kd-scr-ner-full-xlmr_data-univner_half55

This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_half on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 239.5321
  • Precision: 0.3634
  • Recall: 0.2698
  • F1: 0.3097
  • Accuracy: 0.9371

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 55
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
443.8944 0.5828 500 368.5827 1.0 0.0003 0.0006 0.9241
344.6514 1.1655 1000 338.3108 0.4198 0.0238 0.0451 0.9249
317.7911 1.7483 1500 323.1518 0.3373 0.0781 0.1268 0.9266
295.7283 2.3310 2000 304.1432 0.3776 0.0879 0.1426 0.9282
279.1692 2.9138 2500 298.1003 0.3030 0.1619 0.2110 0.9301
265.46 3.4965 3000 283.4411 0.3299 0.1756 0.2292 0.9326
253.3522 4.0793 3500 276.4803 0.3419 0.1991 0.2517 0.9335
243.6295 4.6620 4000 268.1132 0.3623 0.2144 0.2694 0.9355
235.7751 5.2448 4500 260.5050 0.3808 0.1952 0.2581 0.9358
229.31 5.8275 5000 255.4243 0.3822 0.2135 0.2740 0.9358
222.7415 6.4103 5500 253.6783 0.3210 0.2489 0.2804 0.9345
218.7321 6.9930 6000 250.1186 0.3372 0.2663 0.2976 0.9354
213.8638 7.5758 6500 245.7943 0.3533 0.2519 0.2941 0.9362
211.1232 8.1585 7000 241.6974 0.3942 0.2450 0.3022 0.9382
208.2374 8.7413 7500 241.2330 0.3854 0.2630 0.3127 0.9375
206.2932 9.3240 8000 240.2229 0.3769 0.2672 0.3127 0.9373
205.5458 9.9068 8500 239.5321 0.3634 0.2698 0.3097 0.9371

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1