haryoaw's picture
Upload tokenizer
fbde9cd verified
---
base_model: haryoaw/scenario-TCR-NER_data-univner_half
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full-xlmr_data-univner_half55
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-kd-scr-ner-full-xlmr_data-univner_half55
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 239.5321
- Precision: 0.3634
- Recall: 0.2698
- F1: 0.3097
- Accuracy: 0.9371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 55
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 443.8944 | 0.5828 | 500 | 368.5827 | 1.0 | 0.0003 | 0.0006 | 0.9241 |
| 344.6514 | 1.1655 | 1000 | 338.3108 | 0.4198 | 0.0238 | 0.0451 | 0.9249 |
| 317.7911 | 1.7483 | 1500 | 323.1518 | 0.3373 | 0.0781 | 0.1268 | 0.9266 |
| 295.7283 | 2.3310 | 2000 | 304.1432 | 0.3776 | 0.0879 | 0.1426 | 0.9282 |
| 279.1692 | 2.9138 | 2500 | 298.1003 | 0.3030 | 0.1619 | 0.2110 | 0.9301 |
| 265.46 | 3.4965 | 3000 | 283.4411 | 0.3299 | 0.1756 | 0.2292 | 0.9326 |
| 253.3522 | 4.0793 | 3500 | 276.4803 | 0.3419 | 0.1991 | 0.2517 | 0.9335 |
| 243.6295 | 4.6620 | 4000 | 268.1132 | 0.3623 | 0.2144 | 0.2694 | 0.9355 |
| 235.7751 | 5.2448 | 4500 | 260.5050 | 0.3808 | 0.1952 | 0.2581 | 0.9358 |
| 229.31 | 5.8275 | 5000 | 255.4243 | 0.3822 | 0.2135 | 0.2740 | 0.9358 |
| 222.7415 | 6.4103 | 5500 | 253.6783 | 0.3210 | 0.2489 | 0.2804 | 0.9345 |
| 218.7321 | 6.9930 | 6000 | 250.1186 | 0.3372 | 0.2663 | 0.2976 | 0.9354 |
| 213.8638 | 7.5758 | 6500 | 245.7943 | 0.3533 | 0.2519 | 0.2941 | 0.9362 |
| 211.1232 | 8.1585 | 7000 | 241.6974 | 0.3942 | 0.2450 | 0.3022 | 0.9382 |
| 208.2374 | 8.7413 | 7500 | 241.2330 | 0.3854 | 0.2630 | 0.3127 | 0.9375 |
| 206.2932 | 9.3240 | 8000 | 240.2229 | 0.3769 | 0.2672 | 0.3127 | 0.9373 |
| 205.5458 | 9.9068 | 8500 | 239.5321 | 0.3634 | 0.2698 | 0.3097 | 0.9371 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1