|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: stool-condition-classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: stool-image |
|
type: generator |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8171064604185623 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7841031149301826 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stool-condition-classification |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the stool-image dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4538 |
|
- Auroc: 0.8897 |
|
- Accuracy: 0.8171 |
|
- Sensitivity: 0.8111 |
|
- Specificty: 0.8213 |
|
- F1: 0.7841 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-----------:|:----------:|:------:| |
|
| 0.5303 | 0.98 | 100 | 0.4327 | 0.8826 | 0.7942 | 0.7191 | 0.8607 | 0.7665 | |
|
| 0.3909 | 1.96 | 200 | 0.5196 | 0.8675 | 0.8047 | 0.8539 | 0.7612 | 0.8042 | |
|
| 0.5328 | 2.94 | 300 | 0.4421 | 0.8864 | 0.8074 | 0.7528 | 0.8557 | 0.7859 | |
|
| 0.4834 | 3.92 | 400 | 0.4721 | 0.8596 | 0.7757 | 0.7135 | 0.8308 | 0.7493 | |
|
| 0.4209 | 4.9 | 500 | 0.4797 | 0.8625 | 0.7863 | 0.6798 | 0.8806 | 0.7492 | |
|
| 0.4567 | 5.88 | 600 | 0.5150 | 0.8688 | 0.7942 | 0.6011 | 0.9652 | 0.7329 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.1 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|