hossay's picture
?? cheers
ec5c089 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - generator
metrics:
  - accuracy
  - f1
model-index:
  - name: stool-condition-classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: stool-image
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.941747572815534
          - name: F1
            type: f1
            value: 0.9302325581395349

stool-condition-classification

This model is a fine-tuned version of google/vit-base-patch16-224 on the stool-image dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4237
  • Auroc: 0.9418
  • Accuracy: 0.9417
  • Sensitivity: 0.9091
  • Specificty: 0.9661
  • Ppv: 0.9524
  • Npv: 0.9344
  • F1: 0.9302
  • Model Selection: 0.9215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Auroc Accuracy Sensitivity Specificty Ppv Npv F1 Model Selection
0.5076 0.98 100 0.5361 0.8538 0.7731 0.5393 0.9801 0.96 0.7061 0.6906 0.5592
0.4086 1.96 200 0.4857 0.8728 0.7836 0.6011 0.9453 0.9068 0.7280 0.7230 0.6558
0.5208 2.94 300 0.5109 0.8059 0.7599 0.6124 0.8905 0.8321 0.7218 0.7055 0.7218
0.474 3.92 400 0.5212 0.8601 0.7995 0.6180 0.9602 0.9322 0.7395 0.7432 0.6578
0.4285 4.9 500 0.4511 0.8728 0.7757 0.7472 0.8010 0.7688 0.7816 0.7578 0.9462
0.3506 5.88 600 0.4716 0.8691 0.8047 0.6798 0.9154 0.8768 0.7635 0.7658 0.7644
0.4239 6.86 700 0.5043 0.8517 0.8100 0.6685 0.9353 0.9015 0.7611 0.7677 0.7332
0.2447 7.84 800 0.5804 0.8592 0.8074 0.6910 0.9104 0.8723 0.7689 0.7712 0.7806
0.1739 8.82 900 0.6225 0.8562 0.8074 0.7135 0.8905 0.8523 0.7783 0.7768 0.8229
0.2888 9.8 1000 0.5807 0.8570 0.8047 0.7528 0.8507 0.8171 0.7953 0.7836 0.9021

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.1
  • Datasets 2.14.7
  • Tokenizers 0.15.2