metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
- f1
model-index:
- name: stool-condition-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: stool-image
type: generator
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.941747572815534
- name: F1
type: f1
value: 0.9302325581395349
stool-condition-classification
This model is a fine-tuned version of google/vit-base-patch16-224 on the stool-image dataset. It achieves the following results on the evaluation set:
- Loss: 0.4237
- Auroc: 0.9418
- Accuracy: 0.9417
- Sensitivity: 0.9091
- Specificty: 0.9661
- Ppv: 0.9524
- Npv: 0.9344
- F1: 0.9302
- Model Selection: 0.9215
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | Ppv | Npv | F1 | Model Selection |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5076 | 0.98 | 100 | 0.5361 | 0.8538 | 0.7731 | 0.5393 | 0.9801 | 0.96 | 0.7061 | 0.6906 | 0.5592 |
0.4086 | 1.96 | 200 | 0.4857 | 0.8728 | 0.7836 | 0.6011 | 0.9453 | 0.9068 | 0.7280 | 0.7230 | 0.6558 |
0.5208 | 2.94 | 300 | 0.5109 | 0.8059 | 0.7599 | 0.6124 | 0.8905 | 0.8321 | 0.7218 | 0.7055 | 0.7218 |
0.474 | 3.92 | 400 | 0.5212 | 0.8601 | 0.7995 | 0.6180 | 0.9602 | 0.9322 | 0.7395 | 0.7432 | 0.6578 |
0.4285 | 4.9 | 500 | 0.4511 | 0.8728 | 0.7757 | 0.7472 | 0.8010 | 0.7688 | 0.7816 | 0.7578 | 0.9462 |
0.3506 | 5.88 | 600 | 0.4716 | 0.8691 | 0.8047 | 0.6798 | 0.9154 | 0.8768 | 0.7635 | 0.7658 | 0.7644 |
0.4239 | 6.86 | 700 | 0.5043 | 0.8517 | 0.8100 | 0.6685 | 0.9353 | 0.9015 | 0.7611 | 0.7677 | 0.7332 |
0.2447 | 7.84 | 800 | 0.5804 | 0.8592 | 0.8074 | 0.6910 | 0.9104 | 0.8723 | 0.7689 | 0.7712 | 0.7806 |
0.1739 | 8.82 | 900 | 0.6225 | 0.8562 | 0.8074 | 0.7135 | 0.8905 | 0.8523 | 0.7783 | 0.7768 | 0.8229 |
0.2888 | 9.8 | 1000 | 0.5807 | 0.8570 | 0.8047 | 0.7528 | 0.8507 | 0.8171 | 0.7953 | 0.7836 | 0.9021 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.14.7
- Tokenizers 0.15.2