|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: stool-condition-classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: stool-image |
|
type: generator |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.941747572815534 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9302325581395349 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stool-condition-classification |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the stool-image dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4237 |
|
- Auroc: 0.9418 |
|
- Accuracy: 0.9417 |
|
- Sensitivity: 0.9091 |
|
- Specificty: 0.9661 |
|
- Ppv: 0.9524 |
|
- Npv: 0.9344 |
|
- F1: 0.9302 |
|
- Model Selection: 0.9215 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Auroc | Accuracy | Sensitivity | Specificty | Ppv | Npv | F1 | Model Selection | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:-----------:|:----------:|:------:|:------:|:------:|:---------------:| |
|
| 0.5076 | 0.98 | 100 | 0.5361 | 0.8538 | 0.7731 | 0.5393 | 0.9801 | 0.96 | 0.7061 | 0.6906 | 0.5592 | |
|
| 0.4086 | 1.96 | 200 | 0.4857 | 0.8728 | 0.7836 | 0.6011 | 0.9453 | 0.9068 | 0.7280 | 0.7230 | 0.6558 | |
|
| 0.5208 | 2.94 | 300 | 0.5109 | 0.8059 | 0.7599 | 0.6124 | 0.8905 | 0.8321 | 0.7218 | 0.7055 | 0.7218 | |
|
| 0.474 | 3.92 | 400 | 0.5212 | 0.8601 | 0.7995 | 0.6180 | 0.9602 | 0.9322 | 0.7395 | 0.7432 | 0.6578 | |
|
| 0.4285 | 4.9 | 500 | 0.4511 | 0.8728 | 0.7757 | 0.7472 | 0.8010 | 0.7688 | 0.7816 | 0.7578 | 0.9462 | |
|
| 0.3506 | 5.88 | 600 | 0.4716 | 0.8691 | 0.8047 | 0.6798 | 0.9154 | 0.8768 | 0.7635 | 0.7658 | 0.7644 | |
|
| 0.4239 | 6.86 | 700 | 0.5043 | 0.8517 | 0.8100 | 0.6685 | 0.9353 | 0.9015 | 0.7611 | 0.7677 | 0.7332 | |
|
| 0.2447 | 7.84 | 800 | 0.5804 | 0.8592 | 0.8074 | 0.6910 | 0.9104 | 0.8723 | 0.7689 | 0.7712 | 0.7806 | |
|
| 0.1739 | 8.82 | 900 | 0.6225 | 0.8562 | 0.8074 | 0.7135 | 0.8905 | 0.8523 | 0.7783 | 0.7768 | 0.8229 | |
|
| 0.2888 | 9.8 | 1000 | 0.5807 | 0.8570 | 0.8047 | 0.7528 | 0.8507 | 0.8171 | 0.7953 | 0.7836 | 0.9021 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.15.2 |
|
|