|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
datasets: |
|
- jan-hq/distilabel_dpo_pairs_binarized |
|
- argilla/OpenHermes2.5-dpo-binarized-alpha |
|
- jan-hq/capybara_dpo_binarized |
|
- jan-hq/bagel_dpo_binarized |
|
- jan-hq/ultrafeedback_preferences_cleaned_binarized |
|
- jan-hq/openmath_instruct_dpo_binarized |
|
- jan-hq/distil_math_dpo_binarized |
|
- jan-hq/evol_codealpaca_dpo_binarized |
|
base_model: TomGrc/FusionNet_7Bx2_MoE_v0.1 |
|
model-index: |
|
- name: stealth-finance-v2-dpo-adapter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stealth-finance-v2-dpo-adapter |
|
|
|
This model is a fine-tuned version of [TomGrc/FusionNet_7Bx2_MoE_v0.1](https://huggingface.co/TomGrc/FusionNet_7Bx2_MoE_v0.1) on the jan-hq/distilabel_dpo_pairs_binarized, the argilla/OpenHermes2.5-dpo-binarized-alpha, the jan-hq/capybara_dpo_binarized, the jan-hq/bagel_dpo_binarized, the jan-hq/ultrafeedback_preferences_cleaned_binarized, the jan-hq/openmath_instruct_dpo_binarized, the jan-hq/distil_math_dpo_binarized and the jan-hq/evol_codealpaca_dpo_binarized datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1290 |
|
- Rewards/chosen: -0.1799 |
|
- Rewards/rejected: -6.0696 |
|
- Rewards/accuracies: 0.8597 |
|
- Rewards/margins: 5.8897 |
|
- Logps/rejected: -324.0384 |
|
- Logps/chosen: -275.3572 |
|
- Logits/rejected: -0.7749 |
|
- Logits/chosen: -0.7773 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.3593 | 1.0 | 3280 | 0.1290 | -0.1799 | -6.0696 | 0.8597 | 5.8897 | -324.0384 | -275.3572 | -0.7749 | -0.7773 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.0 |