File size: 21,683 Bytes
b78ae92
 
 
 
 
 
 
 
84d641c
b78ae92
3b19328
 
 
 
b78ae92
 
3b19328
 
 
 
 
 
b78ae92
 
 
da31baa
 
1e3fde7
da31baa
 
 
b78ae92
2a67565
f8280e7
2a67565
 
 
 
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3fde7
 
b78ae92
 
 
 
 
 
 
9043dde
da31baa
 
 
9043dde
 
 
 
 
 
 
 
f625a9e
b78ae92
 
 
 
 
f625a9e
b78ae92
 
da31baa
 
 
 
b78ae92
 
 
 
 
 
 
 
 
 
979ff6e
b78ae92
 
 
 
 
 
 
 
 
 
 
 
979ff6e
 
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
a064290
b78ae92
9043dde
b78ae92
 
9043dde
 
84d641c
 
9043dde
84d641c
9043dde
 
b78ae92
84d641c
 
 
f625a9e
84d641c
f625a9e
a064290
 
33e4bc7
b78ae92
 
1e3fde7
 
 
 
 
 
f8280e7
1e3fde7
 
 
 
 
 
 
 
 
b78ae92
84d641c
 
 
 
 
c52cc78
b78ae92
 
 
 
b1ba841
b78ae92
fc8d52a
b78ae92
 
c52cc78
56f8385
8e94abd
 
 
 
ad0f3fd
8e94abd
 
 
 
b78ae92
9043dde
 
 
c52cc78
b78ae92
 
 
 
 
c52cc78
17af2df
 
c52cc78
 
 
 
17af2df
c52cc78
713281e
 
 
c52cc78
 
17af2df
c52cc78
 
 
8696bb4
17af2df
 
 
 
a064290
f625a9e
fc8d52a
a064290
8e94abd
 
f625a9e
713281e
 
a064290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78ae92
 
 
 
 
 
 
da31baa
b78ae92
 
f625a9e
b78ae92
 
 
 
 
b07fb37
b78ae92
a064290
 
 
f625a9e
 
 
 
 
 
713281e
fc8d52a
713281e
fc8d52a
b78ae92
 
 
 
 
8e94abd
 
a064290
 
 
b78ae92
 
8e94abd
 
 
 
 
 
b78ae92
 
 
8e94abd
 
b78ae92
 
3214ca0
 
 
ad0f3fd
 
 
3214ca0
ad0f3fd
3214ca0
a064290
 
b78ae92
 
 
 
b07fb37
3214ca0
b07fb37
 
 
 
 
 
 
 
 
3214ca0
b07fb37
 
a064290
b78ae92
 
 
 
 
 
 
287debd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import argparse
import os
import random
from urllib import request

import torch
import torch.nn.functional as F
import progressbar
import torchaudio

from tortoise_tts.models.classifier import AudioMiniEncoderWithClassifierHead
from tortoise_tts.models.cvvp import CVVP
from tortoise_tts.models.diffusion_decoder import DiffusionTts
from tortoise_tts.models.autoregressive import UnifiedVoice
from tqdm import tqdm

from tortoise_tts.models.arch_util import TorchMelSpectrogram
from tortoise_tts.models.clvp import CLVP
from tortoise_tts.models.vocoder import UnivNetGenerator
from tortoise_tts.utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from tortoise_tts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from tortoise_tts.utils.tokenizer import VoiceBpeTokenizer, lev_distance


pbar = None


def download_models(specific_models=None):
    """
    Call to download all the models that Tortoise uses.
    """
    MODELS = {
        'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/autoregressive.pth',
        'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/classifier.pth',
        'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/clvp.pth',
        'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/cvvp.pth',
        'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/diffusion_decoder.pth',
        'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/vocoder.pth',
    }
    os.makedirs('.models', exist_ok=True)
    def show_progress(block_num, block_size, total_size):
        global pbar
        if pbar is None:
            pbar = progressbar.ProgressBar(maxval=total_size)
            pbar.start()

        downloaded = block_num * block_size
        if downloaded < total_size:
            pbar.update(downloaded)
        else:
            pbar.finish()
            pbar = None
    for model_name, url in MODELS.items():
        if specific_models is not None and model_name not in specific_models:
            continue
        if os.path.exists(f'.models/{model_name}'):
            continue
        print(f'Downloading {model_name} from {url}...')
        request.urlretrieve(url, f'.models/{model_name}', show_progress)
        print('Done.')


def pad_or_truncate(t, length):
    """
    Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
    """
    if t.shape[-1] == length:
        return t
    elif t.shape[-1] < length:
        return F.pad(t, (0, length-t.shape[-1]))
    else:
        return t[..., :length]


def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
    """
    Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
    """
    return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
                           model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
                           conditioning_free=cond_free, conditioning_free_k=cond_free_k)


def format_conditioning(clip, cond_length=132300):
    """
    Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
    """
    gap = clip.shape[-1] - cond_length
    if gap < 0:
        clip = F.pad(clip, pad=(0, abs(gap)))
    elif gap > 0:
        rand_start = random.randint(0, gap)
        clip = clip[:, rand_start:rand_start + cond_length]
    mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
    return mel_clip.unsqueeze(0).cuda()


def fix_autoregressive_output(codes, stop_token, complain=True):
    """
    This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
    trained on and what the autoregressive code generator creates (which has no padding or end).
    This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
    a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
    and copying out the last few codes.

    Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
    """
    # Strip off the autoregressive stop token and add padding.
    stop_token_indices = (codes == stop_token).nonzero()
    if len(stop_token_indices) == 0:
        if complain:
            print("No stop tokens found, enjoy that output of yours!")
        return codes
    else:
        codes[stop_token_indices] = 83
    stm = stop_token_indices.min().item()
    codes[stm:] = 83
    if stm - 3 < codes.shape[0]:
        codes[-3] = 45
        codes[-2] = 45
        codes[-1] = 248

    return codes


def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_samples, temperature=1, verbose=True):
    """
    Uses the specified diffusion model to convert discrete codes into a spectrogram.
    """
    with torch.no_grad():
        cond_mels = []
        for sample in conditioning_samples:
            # The diffuser operates at a sample rate of 24000 (except for the latent inputs)
            sample = torchaudio.functional.resample(sample, 22050, 24000)
            sample = pad_or_truncate(sample, 102400)
            cond_mel = wav_to_univnet_mel(sample.to(latents.device), do_normalization=False)
            cond_mels.append(cond_mel)
        cond_mels = torch.stack(cond_mels, dim=1)

        output_seq_len = latents.shape[1] * 4 * 24000 // 22050  # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
        output_shape = (latents.shape[0], 100, output_seq_len)
        precomputed_embeddings = diffusion_model.timestep_independent(latents, cond_mels, output_seq_len, False)

        noise = torch.randn(output_shape, device=latents.device) * temperature
        mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
                                      model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
                                     progress=verbose)
        return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]


def classify_audio_clip(clip):
    """
    Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
    :param clip: torch tensor containing audio waveform data (get it from load_audio)
    :return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
    """
    download_models(['classifier.pth'])
    classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
                                                    resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
                                                    dropout=0, kernel_size=5, distribute_zero_label=False)
    classifier.load_state_dict(torch.load('.models/classifier.pth', map_location=torch.device('cpu')))
    clip = clip.cpu().unsqueeze(0)
    results = F.softmax(classifier(clip), dim=-1)
    return results[0][0]


class TextToSpeech:
    """
    Main entry point into Tortoise.
    :param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
                                      GPU OOM errors. Larger numbers generates slightly faster.
    """
    def __init__(self, autoregressive_batch_size=16):
        self.autoregressive_batch_size = autoregressive_batch_size
        self.tokenizer = VoiceBpeTokenizer()
        download_models()

        self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
                                      model_dim=1024,
                                      heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
                                      train_solo_embeddings=False,
                                      average_conditioning_embeddings=True).cpu().eval()
        self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))

        self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
                         text_seq_len=350, text_heads=8,
                         num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
                         use_xformers=True).cpu().eval()
        self.clvp.load_state_dict(torch.load('.models/clvp.pth'))

        self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
                         speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
        self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))

        self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
                                      in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
                                      layer_drop=0, unconditioned_percentage=0).cpu().eval()
        self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth'))

        self.vocoder = UnivNetGenerator().cpu()
        self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
        self.vocoder.eval(inference=True)

    def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs):
        """
        Calls TTS with one of a set of preset generation parameters. Options:
            'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
            'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
            'standard': Very good quality. This is generally about as good as you are going to get.
            'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
        """
        # Use generally found best tuning knobs for generation.
        kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
                       #'typical_sampling': True,
                       'top_p': .8,
                       'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
        # Presets are defined here.
        presets = {
            'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False},
            'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32},
            'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128},
            'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024},
        }
        kwargs.update(presets[preset])
        return self.tts(text, voice_samples, **kwargs)

    def tts(self, text, voice_samples, k=1, verbose=True,
            # autoregressive generation parameters follow
            num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
            typical_sampling=False, typical_mass=.9,
            # CLVP & CVVP parameters
            clvp_cvvp_slider=.5,
            # diffusion generation parameters follow
            diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
            **hf_generate_kwargs):
        """
        Produces an audio clip of the given text being spoken with the given reference voice.
        :param text: Text to be spoken.
        :param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
        :param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned.
        :param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
        ~~AUTOREGRESSIVE KNOBS~~
        :param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP.
               As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
        :param temperature: The softmax temperature of the autoregressive model.
        :param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
        :param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
                                   of long silences or "uhhhhhhs", etc.
        :param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
        :param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
        :param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
                                 I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
                                 could use some tuning.
        :param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
        ~~CLVP-CVVP KNOBS~~
        :param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model.
                                [0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to
                                0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more
                                similar).
        ~~DIFFUSION KNOBS~~
        :param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
                                     the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
                                     however.
        :param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
                          each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
                          of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
                          dramatically improves realism.
        :param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
                            As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
                            Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
        :param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
                                      are the "mean" prediction of the diffusion network and will sound bland and smeared.
        ~~OTHER STUFF~~
        :param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
                                   Extra keyword args fed to this function get forwarded directly to that API. Documentation
                                   here: https://huggingface.co/docs/transformers/internal/generation_utils
        :return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
                 Sample rate is 24kHz.
        """
        text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
        text = F.pad(text, (0, 1))  # This may not be necessary.

        conds = []
        if not isinstance(voice_samples, list):
            voice_samples = [voice_samples]
        for vs in voice_samples:
            conds.append(format_conditioning(vs))
        conds = torch.stack(conds, dim=1)

        diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)

        with torch.no_grad():
            samples = []
            num_batches = num_autoregressive_samples // self.autoregressive_batch_size
            stop_mel_token = self.autoregressive.stop_mel_token
            calm_token = 83  # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
            self.autoregressive = self.autoregressive.cuda()
            if verbose:
                print("Generating autoregressive samples..")
            for b in tqdm(range(num_batches), disable=not verbose):
                codes = self.autoregressive.inference_speech(conds, text,
                                                             do_sample=True,
                                                             top_p=top_p,
                                                             temperature=temperature,
                                                             num_return_sequences=self.autoregressive_batch_size,
                                                             length_penalty=length_penalty,
                                                             repetition_penalty=repetition_penalty,
                                                             max_generate_length=max_mel_tokens,
                                                             **hf_generate_kwargs)
                padding_needed = max_mel_tokens - codes.shape[1]
                codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
                samples.append(codes)
            self.autoregressive = self.autoregressive.cpu()

            clip_results = []
            self.clvp = self.clvp.cuda()
            self.cvvp = self.cvvp.cuda()
            if verbose:
                print("Computing best candidates using CLVP and CVVP")
            for batch in tqdm(samples, disable=not verbose):
                for i in range(batch.shape[0]):
                    batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
                clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
                cvvp_accumulator = 0
                for cl in range(conds.shape[1]):
                    cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
                cvvp = cvvp_accumulator / conds.shape[1]
                clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
            clip_results = torch.cat(clip_results, dim=0)
            samples = torch.cat(samples, dim=0)
            best_results = samples[torch.topk(clip_results, k=k).indices]
            self.clvp = self.clvp.cpu()
            self.cvvp = self.cvvp.cpu()
            del samples

            # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
            # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
            # results, but will increase memory usage.
            self.autoregressive = self.autoregressive.cuda()
            best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results,
                                               torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device),
                                               return_latent=True, clip_inputs=False)
            self.autoregressive = self.autoregressive.cpu()

            if verbose:
                print("Transforming autoregressive outputs into audio..")
            wav_candidates = []
            self.diffusion = self.diffusion.cuda()
            self.vocoder = self.vocoder.cuda()
            for b in range(best_results.shape[0]):
                codes = best_results[b].unsqueeze(0)
                latents = best_latents[b].unsqueeze(0)

                # Find the first occurrence of the "calm" token and trim the codes to that.
                ctokens = 0
                for k in range(codes.shape[-1]):
                    if codes[0, k] == calm_token:
                        ctokens += 1
                    else:
                        ctokens = 0
                    if ctokens > 8:  # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
                        latents = latents[:, :k]
                        break

                mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature, verbose=verbose)
                wav = self.vocoder.inference(mel)
                wav_candidates.append(wav.cpu())
            self.diffusion = self.diffusion.cpu()
            self.vocoder = self.vocoder.cpu()

            if len(wav_candidates) > 1:
                return wav_candidates
            return wav_candidates[0]