Edit model card

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
toki pona
  • 'ona li toki "toki" tawa meli.'
  • 'toki li pona tawa mi.'
  • 'mi toki e ni tawa ona: "o kama tawa tomo mi."'
other
  • 'No te puedo creer el grado de precisión 🤣'
  • 'i can’t deny i’m invested in the aspect of things :’)'
  • "I'm live on #twitch, and speedrunning EarthBound!"

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("johnpaulbin/toki-pona-classifier-v2")
# Run inference
preds = model(["Hello!", "toki!"])

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.5705 61
Label Training Sample Count
other 2035
toki pona 2000

Training Hyperparameters

  • batch_size: (12, 12)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 1
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0015 1 0.3252 -
0.0743 50 0.2704 -
0.1486 100 0.2257 -
0.2229 150 0.0567 -
0.2972 200 0.0063 -
0.3715 250 0.0015 -
0.4458 300 0.0034 -
0.5201 350 0.0026 -
0.5944 400 0.0036 -
0.6686 450 0.0005 -
0.7429 500 0.0021 -
0.8172 550 0.0021 -
0.8915 600 0.0003 -
0.9658 650 0.0002 -
1.0401 700 0.0002 -
1.1144 750 0.0018 -
1.1887 800 0.0003 -
1.2630 850 0.0002 -
1.3373 900 0.0001 -
1.4116 950 0.0015 -
1.4859 1000 0.0004 -
1.5602 1050 0.0001 -
1.6345 1100 0.0001 -
1.7088 1150 0.0019 -
1.7831 1200 0.0001 -
1.8574 1250 0.0001 -
1.9316 1300 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for johnpaulbin/toki-pona-classifier-v2

Space using johnpaulbin/toki-pona-classifier-v2 1

Evaluation results