metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Wonderful person aboard!
- text: jan o lukin ala e pilin sina.
- text: Nothing…I’m just loudly complaining, I’ll get over it tomorrow.
- text: HEY THERE
- text: Pizza cutter 2
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
toki pona |
|
other |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("johnpaulbin/toki-pona-classifier-v2")
# Run inference
preds = model(["Hello!", "toki!"])
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 10.5705 | 61 |
Label | Training Sample Count |
---|---|
other | 2035 |
toki pona | 2000 |
Training Hyperparameters
- batch_size: (12, 12)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 1
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0015 | 1 | 0.3252 | - |
0.0743 | 50 | 0.2704 | - |
0.1486 | 100 | 0.2257 | - |
0.2229 | 150 | 0.0567 | - |
0.2972 | 200 | 0.0063 | - |
0.3715 | 250 | 0.0015 | - |
0.4458 | 300 | 0.0034 | - |
0.5201 | 350 | 0.0026 | - |
0.5944 | 400 | 0.0036 | - |
0.6686 | 450 | 0.0005 | - |
0.7429 | 500 | 0.0021 | - |
0.8172 | 550 | 0.0021 | - |
0.8915 | 600 | 0.0003 | - |
0.9658 | 650 | 0.0002 | - |
1.0401 | 700 | 0.0002 | - |
1.1144 | 750 | 0.0018 | - |
1.1887 | 800 | 0.0003 | - |
1.2630 | 850 | 0.0002 | - |
1.3373 | 900 | 0.0001 | - |
1.4116 | 950 | 0.0015 | - |
1.4859 | 1000 | 0.0004 | - |
1.5602 | 1050 | 0.0001 | - |
1.6345 | 1100 | 0.0001 | - |
1.7088 | 1150 | 0.0019 | - |
1.7831 | 1200 | 0.0001 | - |
1.8574 | 1250 | 0.0001 | - |
1.9316 | 1300 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}