johnpaulbin's picture
Update README.md
9fa629d verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Wonderful person aboard!
  - text: jan o lukin ala e pilin sina.
  - text: Nothing…I’m just loudly complaining, I’ll get over it tomorrow.
  - text: HEY THERE
  - text: Pizza cutter 2
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 1
            name: Accuracy

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
toki pona
  • 'ona li toki "toki" tawa meli.'
  • 'toki li pona tawa mi.'
  • 'mi toki e ni tawa ona: "o kama tawa tomo mi."'
other
  • 'No te puedo creer el grado de precisión 🤣'
  • 'i can’t deny i’m invested in the aspect of things :’)'
  • "I'm live on #twitch, and speedrunning EarthBound!"

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("johnpaulbin/toki-pona-classifier-v2")
# Run inference
preds = model(["Hello!", "toki!"])

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.5705 61
Label Training Sample Count
other 2035
toki pona 2000

Training Hyperparameters

  • batch_size: (12, 12)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 1
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0015 1 0.3252 -
0.0743 50 0.2704 -
0.1486 100 0.2257 -
0.2229 150 0.0567 -
0.2972 200 0.0063 -
0.3715 250 0.0015 -
0.4458 300 0.0034 -
0.5201 350 0.0026 -
0.5944 400 0.0036 -
0.6686 450 0.0005 -
0.7429 500 0.0021 -
0.8172 550 0.0021 -
0.8915 600 0.0003 -
0.9658 650 0.0002 -
1.0401 700 0.0002 -
1.1144 750 0.0018 -
1.1887 800 0.0003 -
1.2630 850 0.0002 -
1.3373 900 0.0001 -
1.4116 950 0.0015 -
1.4859 1000 0.0004 -
1.5602 1050 0.0001 -
1.6345 1100 0.0001 -
1.7088 1150 0.0019 -
1.7831 1200 0.0001 -
1.8574 1250 0.0001 -
1.9316 1300 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}