udpos28-sm-all-POS / README.md
jordyvl's picture
update model card README.md
6d40f37
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - udpos28
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: udpos28-sm-all-POS
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: udpos28
          type: udpos28
          args: en
        metrics:
          - name: Precision
            type: precision
            value: 0.9586517032792105
          - name: Recall
            type: recall
            value: 0.9588997472284696
          - name: F1
            type: f1
            value: 0.9587757092110369
          - name: Accuracy
            type: accuracy
            value: 0.964820639556654

udpos28-sm-all-POS

This model is a fine-tuned version of bert-base-cased on the udpos28 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1479
  • Precision: 0.9587
  • Recall: 0.9589
  • F1: 0.9588
  • Accuracy: 0.9648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1261 1.0 4978 0.1358 0.9513 0.9510 0.9512 0.9581
0.0788 2.0 9956 0.1326 0.9578 0.9578 0.9578 0.9642
0.0424 3.0 14934 0.1479 0.9587 0.9589 0.9588 0.9648

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.2+cu102
  • Datasets 2.2.2
  • Tokenizers 0.12.1