|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: PubMedBERT_CRAFT_NER |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PubMedBERT_CRAFT_NER |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1031 |
|
- Precision: 0.8429 |
|
- Recall: 0.8679 |
|
- F1: 0.8552 |
|
- Accuracy: 0.9734 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 347 | 0.1280 | 0.7851 | 0.8360 | 0.8097 | 0.9647 | |
|
| 0.1944 | 2.0 | 695 | 0.1092 | 0.8187 | 0.8615 | 0.8395 | 0.9707 | |
|
| 0.046 | 3.0 | 1041 | 0.1031 | 0.8429 | 0.8679 | 0.8552 | 0.9734 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|