layoutlmv3-test / README.md
katik0's picture
End of training
1cc9715 verified
|
raw
history blame
2.82 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - funsd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-test
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd
          type: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.8972868217054264
          - name: Recall
            type: recall
            value: 0.920019870839543
          - name: F1
            type: f1
            value: 0.9085111601667893
          - name: Accuracy
            type: accuracy
            value: 0.8480922382027815

layoutlmv3-test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8036
  • Precision: 0.8973
  • Recall: 0.9200
  • F1: 0.9085
  • Accuracy: 0.8481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 5.26 100 0.5115 0.8071 0.8624 0.8338 0.8407
No log 10.53 200 0.4661 0.8730 0.9086 0.8905 0.8546
No log 15.79 300 0.5613 0.8914 0.9091 0.9001 0.8552
No log 21.05 400 0.6767 0.8937 0.8982 0.8959 0.8507
0.3022 26.32 500 0.7020 0.8935 0.9165 0.9049 0.8626
0.3022 31.58 600 0.7108 0.9040 0.9220 0.9129 0.8591
0.3022 36.84 700 0.7378 0.9049 0.9175 0.9112 0.8517
0.3022 42.11 800 0.7892 0.9026 0.9210 0.9117 0.8537
0.3022 47.37 900 0.8133 0.8995 0.9205 0.9099 0.8490
0.0223 52.63 1000 0.8036 0.8973 0.9200 0.9085 0.8481

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1